
Dynamic Sparse Training of Diagonally Sparse Networks

Abhishek Tyagi 1 Arjun Iyer 2 William H Renninger 2 Christopher Kanan 1 Yuhao Zhu 1

Abstract

Recent advances in Dynamic Sparse Training

(DST) have pushed the frontier of sparse neural

network training in structured and unstructured

contexts, matching dense-model performance

while drastically reducing parameter counts to

facilitate model scaling. However, unstructured

sparsity often fails to translate into practical

speedups on modern hardware. To address this

shortcoming, we propose DynaDiag, a novel

structured sparse-to-sparse DST method that per-

forms at par with unstructured sparsity. Dyna-

Diag enforces a diagonal sparsity pattern through-

out training and preserves sparse computation

in forward and backward passes. We further

leverage the diagonal structure to accelerate com-

putation via a custom CUDA kernel, rendering

the method hardware-friendly. Empirical eval-

uations on diverse neural architectures demon-

strate that our method maintains accuracy on

par with unstructured counterparts while bene-

fiting from tangible computational gains. No-

tably, with 90% sparse linear layers in ViTs, we

observe up to a 3.13x speedup in online infer-

ence without sacrificing model performance and a

1.59x speedup in training on a GPU compared

to equivalent unstructured layers. Our source

code is available at https://github.com/

horizon-research/DynaDiag/.

1. Introduction

Over the years, deep neural networks (DNNs) have grown,

and their performance on complex tasks has increased to and

beyond human-level performance (Sparkes, 2023; Lykiar-

dopoulou, 2023). However, the cost of training and infer-

ence for such large DNNs has skyrocketed (Cottier, 2023).

1Department of Computer Science, University of Rochester,
Rochester, NY, USA 2The Institute of Optics, University of
Rochester, Rochester, NY, USA. Correspondence to: Abhishek
Tyagi <atyagi2@ur.rochester.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1.02

1.0

76.5 77.576.5 77.5

1.0

1.1

Figure 1: Comparing the inference (left) and training

speedups (right) (calculated using wall-clock time) of sparse

training methods and the Top-1 classification accuracy

(x-axis) for a ViT-Base model at 90% sparsity running

ImageNet-1K. DynaDiag, being closest to the top right cor-

ner, demonstrates superior accuracy and speedup compared

to structured and unstructured sparse training approaches.

One way to reduce the execution cost of these networks and

still perform at par with their dense counterparts (Frankle &

Carbin, 2018; Blalock et al., 2020; Mostafa & Wang, 2019)

is to compress them by removing unnecessary weights using

methods such as pruning (Molchanov et al., 2016; Tanaka

et al., 2020), and sparse training (Jaiswal et al., 2022; Zhang

et al., 2023b).

Weights are typically pruned either randomly (unstructured

sparsity (Evci et al., 2020; Han et al., 2015)) or in patterns

(structured sparsity (Liu et al., 2019)). Unstructured sparsity

achieves high sparsity ratios with minimal performance loss

but lacks hardware acceleration. Structured sparsity, while

hardware-friendly, has yet to match the performance of

unstructured approaches.

Current structured sparsity methods face two key issues.

First, they often use dense backpropagation (Lasby et al.,

2023), resulting in negligible training speedup. Even when

sparse gradients are computed, transposing weight matri-

ces in backpropagation breaks hardware-friendly patterns,

hindering acceleration (Hubara et al., 2021). Second, these

methods struggle with high sparsity, suffering significant

1



Dynamic Sparse Training of Diagonally Sparse Networks

performance drops—as we show later.

To address these limitations, we introduce a novel sparse

pattern inspired by small-world networks (Watts & Stro-

gatz, 1998; Telesford et al., 2011)—diagonal sparsity—that

retains its structure during backpropagation, enabling effi-

cient training acceleration. We propose DynaDiag, a fully

differentiable training method to learn diagonal sparsity by

dynamically selecting and updating the most critical diag-

onals during training. Our approach outperforms existing

structured sparsity methods across tasks and sparsity levels,

achieving high performance and efficiency, even at extreme

sparsities. Experiments show that diagonal sparsity consis-

tently surpasses structured sparse architectures in vision and

language tasks while maintaining computational benefits.

Fig. 1 presents a comparison of DynaDiag with existing Dy-

namic Sparse Training (DST) methods for both structured

and unstructured sparsity. DynaDiag achieves the highest

accuracy among the structured DST methods. Moreover,

DynaDiag significantly reduces the inference and training

wall-clock times on a GPU.

The following are the major contributions of our work:

1. We introduce a diagonal sparsity pattern inspired by

small-world networks that preserve its structure under

transposition and are efficiently accelerated on GPUs.

2. We propose DynaDiag, a differentiable TopK-

based Sparse-To-Sparse training algorithm to obtain

diagonally-sparse neural networks.

3. We conduct extensive empirical evaluations of Dy-

naDiag on computer vision and natural language

tasks, demonstrating that it outperforms all prior struc-

tured sparsity methods under the same sparsity bud-

get. Additionally, DynaDiag achieves competitive per-

formance, showing no statistically significant differ-

ence compared to unstructured sparsity techniques like

RigL (Evci et al., 2020).

4. We introduce a method to convert diagonally sparse ma-

trices to Block CSR (BCSR) format to enable speedups

in both inference and training.

2. Related Work

2.1. Sparsity in Neural Networks

The main idea behind sparsity in neural networks is to re-

move the weights or activations that have minimal contribu-

tion to the model’s overall performance. The most common

way of doing this is to pre-train a dense network and re-

move unimportant weights using heuristics such as weight

magnitude (Han et al., 2015) or gradients (Molchanov et al.,

2017; 2019; Lee et al., 2018; Wang et al., 2020) and then

fine-tune the model to maintain the accuracy. This approach

is commonly known as Pruning and has been used to com-

press CNNs (Cai et al., 2022; Lin et al., 2019), ViTs (Yang

et al., 2023b; Yu et al., 2022) and LLMs (Lu et al., 2024).

Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018)

states that within a large, randomly initialized neural net-

work, there exists a smaller, sparse subnetwork (a “winning

ticket”) that, when trained in isolation from the original

initialization, can match or exceed the performance of the

full, dense model and potentially be much more efficient to

train from scratch.

2.2. Sparse Training Methods

Sparse training aims to train a sparse neural network from

scratch. It can broadly be classified into either Static Sparse

Training (SST) or Dynamic Sparse Training (DST).

In SST, the positions of the non-zeros in each weight matrix

are fixed at the start of the training and are maintained the

same throughout. Training then optimizes the values of the

non-zeros for loss minimization. Pixelated Butterfly (Dao

et al., 2021) uses butterfly factorization to fix the mask at

initialization. However, SST is prone to a higher loss than

DST as DST can escape the local minimum (Evci et al.,

2020), especially at high sparsities.

In DST, the positions of the non-zeros are updated dynami-

cally during training. The usual way to do DST is by starting

with sparse weight matrices before repeatedly training the

network for a few iterations, then removing the weights

that are of least importance based on magnitude (Mocanu

et al., 2018; Jayakumar et al., 2020) or gradients (Evci et al.,

2020; Chen et al., 2022), and then growing another set of

connections which will be trained in the next iterations.

SET (Mocanu et al., 2018) is one of the earliest DST works

that introduced a prune-and-regrow strategy for DST, where

during the prune phase, weights are pruned based on their

magnitude and are regrown randomly. MEST (Yuan et al.,

2021) regrows weights randomly and uses a combination of

weight magnitude and gradient magnitude of the existing

weights to prune them. RigL (Evci et al., 2020), on the

other hand, prunes weights based on their magnitudes and

are regrown based on the gradients of missing links (zero

weights), which makes the backward pass dense and unable

to take advantage of the sparsity in the network. Addressing

this limitation of RigL, Zhang et al. (2024) proposes CHT

and CHTs (Zhang et al., 2025) methods where a gradient-

free (and based on the network topology) approach is used

during the regrow phase, which makes their method scalable

and achieves state-of-the-art performance at broad range of

sparsities.

Top-KAST (Jayakumar et al., 2020) is closest to our work

and uses a TopK function to pick the most useful weights in

both the forward and backward pass. However, unlike Dyna-

2



Dynamic Sparse Training of Diagonally Sparse Networks

Diag, both methods result in an unstructured distribution of

nonzero weights and, hence, do not yield speedups on GPUs.

SRigL (Lasby et al., 2023) addresses the above limitations

Diagonal 

(Our work)

BSF (γ=2.73) BSW (β=1)BSW (0<β<1)

2:4 Block Butterfly

Figure 2: Overview of different sparsity patterns from the

literature used in sparse training methods. Bipartite Scale-

Free (BSF) and behavior of Bipartite Small-World (BSW)

networks with varying β is explained in Apdx. I

of RigL by dynamically identifying weight matrices that

abide by N:M sparsity pattern, which can be accelerated on

GPUs (by transforming N:M to 2:4 pattern supported by

NVIDIA GPUs (Mishra et al., 2021; Hu et al., 2024)). The

authors show that SRigL retains the same accuracy as RigL

for ViTs and CNNs, though the method lacks evaluations

on large language models (LLMs). Moreover, while they

report inference speedups in the final trained models, the

training process does not currently benefit from this sparsity.

DSB (Jiang et al., 2022) uses block sparsity to accelerate

the training and inference while dynamically looking for

the optimal placement of non-zero blocks. However, as we

show in Sec. 4, block sparsity loses out significantly at high

sparsities like the pixelated butterfly method.

The various structured and unstructured sparsity patterns

discussed are shown in Fig. 2. We will now describe the

training of diagonally sparse neural networks.

3. Training Diagonally Sparse DNNs

We present a differentiable formulation of diagonally sparse

matrices (Sec. 3.1) to learn the pattern shown in Fig. 2. We

then describe our TopK -based training approach (Sec. 3.2)

that dynamically optimizes diagonal positions during train-

ing. Finally, we detail the conversion of our diagonal ma-

trices to the GPU-efficient BCSR format (Sec. 3.3). Fig. 3

breaks down the various stages of our training method into

forward and backward passes, illustrating what makes our

DST approach efficient.

3.1. Diagonal Sparsity Formulation

To formulate our weight matrix with diagonal sparsity, we

first define how the positions of the diagonals are determined

and how the trainable parameters along these diagonals are

specified.

Permutation Matrix. A permutation matrix P ∈ R
M×N

is a binary matrix containing precisely one entry of 1 per

row and column, with all other entries equal to 0. In our

setting, we place these 1s along a diagonal specified by an

offset off as described in Eqn. 1.

Value Vector. Let V ∈ R
max(M,N) be a vector whose

elements populate the diagonal entries of W at positions

indicated by P . The operator diag(V ) forms a diagonal

matrix K × K, where K = max(M,N), and places the

elements of V along its main diagonal.

Diagonal Definition. Let W ∈ R
M×N and define N =

min(M,N). We specify a diagonal in W with offset off as

the set of entries (i, j) such that

j = (i+ off) mod N. (1)

where a negative off indicates a diagonal below the main
diagonal.

We aim to learn both the positions and the values of diago-

nals in W . To achieve this, we express W ∈ R
M×N as the

product of a permutation matrix P and a diagonal matrix

diag(V ). Concretely, for a single diagonal weight matrix,

W1 = P × diag(V ) (2)

This factorization enables gradient-based methods to opti-

mize the corresponding values of W (through V ), making it

well-suited for end-to-end learning.

We generalize the single-diagonal form in (2) to represent

any matrix WK ∈ R
M×N with K being the required num-

ber of diagonals (calculated from the desired sparsity level

S1), each of length min(M,N). Specifically, we write

WK =

K
∑

j=1

Pj diag(Vj), (3)

where each Pj is a permutation matrix defining the position
of the j-th diagonal, and each Vj is a vector of diagonal

values.

3.2. TopK Based Diagonal Selection

With our learnable diagonal representation (Eqn. 3), we can

parameterize each layer, and our objective reduces to finding

the optimal diagonal placements (offsets) and associated

values that yield the lowest overall loss.

1
K =

(1−S)·M·N

min(M,N)

3



Dynamic Sparse Training of Diagonally Sparse Networks

WK

WK

V1

V3

V6

V8

V1

V3

V6

V8

Diags to BCSR

Diags to BCSR

Input Output

×

WK
Tg(Wk)

α
α1
α2
α3
α4
α5
α6
α7
α8

V1

V2

V3

V8

(a)

(f)(g)(h)(i)

(c) (d) (e)(b)

T
o

p
K

(α
,t

,s
) α1

0
α3
0
0
α6

α8
0

P1

P2

P3

P8

×

P
re

p
ro

c
e

s
s

in
g

P
re

p
ro

c
e

s
s

in
g

T
ra

n
s

p
o

s
e

C
U

D
A

 K
e

rn
e

l

∂L
∂Wk

α
Forward Pass

Backward Pass

×

Figure 3: Training with DynaDiag and diagonal sparsity. TopK induces sparsity in α (a), which leads to selecting a subset

of diagonals for the forward pass (b) and (c). Matrices with diagonals are converted to BCSR format to accelerate sparse

matrix-matrix multiplication (d) and (e). Backward pass is accelerated by converting the diagonal sparse weight matrix to

BCSR format (g). Sparse gradients are calculated using our custom CUDA kernels (h) and (i).

To determine which diagonals contribute the most to the

final matrix WK , we introduce a learnable vector of impor-

tance weights α ∈ R
max(M,N)(Fig. 3a). We use a TopK

function to select the K most significant diagonals out of

all possible diagonals based on the values in α (Fig. 3b).

Concretely, we replace the summation in (3) with

WK =

K
∑

j=1

α̃j Pj diag(Vj),

α̃ = TopK
(

α

)

,

(4)

where Pj and diag(Vj) specify the j-th diagonal in WK , and

α̃j is the importance weight for that diagonal after applying

TopK.

A differentiable TopK function takes a vector α of values

as inputs and outputs a vector with higher values assigned

to the top K values. We can use a differentiable TopK
function in an end-to-end training method and learn which

values in α should be in the top K for a particular task. We

use the following softmax-based TopK in our end-to-end

pipeline (we also experimented with other TopK methods,

such as the one proposed by Sander et al. (2023) but found

it to be too slow). For a given α ∈ R
max(M,N) vector,

α̃i = min
(

k ·
exp

(

αi

T

)

∑n

j=1 exp
(

αi

T

) , 1
)

(5)

where T is the temperature. We adopt a temperature-

controlled TopK function to enable a balance between

exploration (considering less dominant diagonals) and ex-

ploitation (focusing on the most important diagonals). Sub-

optimal solutions may arise without temperature-controlled

TopK or heuristics, especially when the initial selection is

biased or the significance of the diagonal evolves during

training. We employ a cosine-annealing schedule during

training to adjust T from a high starting value (yielding a

smoother TopK).To encourage sparsity in α, we employ an

ℓ1 regularization term. We derive per-layer sparsity budget

ρj from the global sparsity budget ρglobal, and the number

of diagonals Kj for each layer is determined based on ρj .

Having established the forward pass with diagonal sparse

matrices, we next describe how they are efficiently accel-

erated on GPUs by converting them into hardware-friendly

formats.

3.3. GPU Acceleration

To efficiently execute diagonally sparse matrices on GPUs,

they must be transformed into formats compatible with spe-

cialized hardware, such as dense matrices, 2:4 sparse matri-

ces, or block sparse matrices. We determined that converting

to block sparse matrices is the most effective approach for

our sparse pattern (Fig. 3d): converting to dense matrices

would introduce unnecessary overhead from additional vec-

tor addition operations, while 2:4 sparsity would impose

overly restrictive constraints on the positioning of the diago-

nals.

When converting diagonal patterns to BCSR format, we

optimize for two key objectives: minimizing the number

of blocks and maximizing block density. Dense blocks

ensure efficient hardware utilization by reducing redundant

computations on zero values, while fewer blocks minimize

memory access overhead and computational requirements

on the GPU.

4



Dynamic Sparse Training of Diagonally Sparse Networks

Although finding the optimal block-minimizing permuta-

tion from diagonals to BCSR is NP-hard, various heuristics

have been developed to cluster non-zero values and reduce

the block count. Our approach builds upon SmaT library,

proposed by Okanovic et al. (2024). The SmaT library uses

Jaccard-based similarity metric (Labini et al., 2022) for de-

termining blocking, which works the best when matrices

have a banded structure.

Our approach yields training acceleration by leveraging the

same diagonal-to-BCSR conversion for WK and W
⊺

K . This

optimization enables efficient sparse computation during

forward propagation and backpropagation, where we com-

pute sparse gradients and accelerate the sparse operations

required for gradient calculation.

Our hardware implementation also leverages key optimiza-

tions for sparse matrix multiplication on GPUs, inspired

by the techniques described in (Okanovic et al., 2024). We

elaborate on these techniques in more detail in Apdx. D.

4. Experiments

We first describe our experimental setup in Sec. 4.1. We

then present our main results, comparing the performance of

DynaDiag with other baselines (Sec. 4.2.1) and (Sec. 4.2.2)

and comparing DST methods’ training and inference time

on GPUs (Sec. 4.2.3). We wrap up this section by proposing

a fine-tuning method to improve DynaDiag’s algorithmic

performance beyond unstructured sparsity (Sec. 4.3.1).

4.1. Experimental Setup

The aim for our experiments is to show the efficacy of our

structured DST approach on different modalities (vision and

language), model types (mlp and attention), and sparsity

regimes.

Evaluation. We assess the algorithmic performance of all

training methods using Top-1 accuracy for vision tasks and

perplexity for language tasks. Additionally, we measure the

training and inference speedups achieved by each method

at varying sparsity levels through end-to-end execution. We

conduct paired asymptotic McNemar tests (α = 0.05) com-

paring the top-performing method at each sparsity level

against all others, bolding results that show no statistical

difference from the best.

Baselines. We compare our approach against the following

sparse training methods:

• RigL (Evci et al., 2020), MEST (Yuan et al., 2021),

SET (Mocanu et al., 2018), CHT (Zhang et al., 2024),

and CHTs (Zhang et al., 2025) uses DST to produce

unstructured sparsity, which does not yield significant

speedups in training or inference.

• SRigL (Lasby et al., 2023), DSB (Jiang et al., 2022),

and DiagHeur train networks with structured spar-

sity via DST. SRigL exploits N:M sparsity to accel-

erate inference (but not training), DSB accelerates

both, and DiagHeur serves as a diagonal-sparsity base-

line without our differentiable topk selection (it uses a

magnitude-based grow-and-decay scheme as detailed

in Apdx. H).

• PixelatedBFly (Dao et al., 2021) factorizes dense ma-

trices into a fixed butterfly structure. With further opti-

mizations, it leverages block sparsity to speed up both

training and inference.

4.2. Main Results

4.2.1. VISION EXPERIMENTS

Setup. We evaluate two architectures for vision tasks on

CIFAR10 and CIFAR100 (Krizhevsky & Hinton, 2009) and

ImageNet-1K (Deng et al., 2009). Due to space limitations,

we focus our discussion on ImageNet-1K results. For CI-

FAR10 and CIFAR100 results, please see Apdx. F.1.

• MLP: We use MLP-Mixer (Tolstikhin et al., 2021) to

focus on the impact of sparsity on large matrix multi-

plication components without additional complexities.

• ViT: To demonstrate scalability, we train various sizes

of Vision Transformers (ViT) (Dosovitskiy, 2020).

We test DynaDiag with uniform sparsity (Dao et al., 2021)

at 60%, 70%, 80%, 90%, and 95%, following the training

regime in Apdx. C.2

Results on ImageNet-1K. Tbl. 1 shows the performance

of MLP-Mixer and three sparse variants of ViTs—small

(S), large (L), and huge (H)—on ImageNet-1K. Except for

ViT-L/16 and ViT-H/14, all other experiments are performed

three times with average accuracies reported in the table.

The results highlight the effectiveness of DynaDiag, partic-

ularly at higher sparsities, where it consistently outperforms

other structured sparse training (DST) methods. DynaDiag

demonstrates significant improvements over competing DST

methods at higher sparsities (90% and 95%). For instance:

On ViT-L/16, DynaDiag achieves 77.74% accuracy at 90%

sparsity, outperforming the next best method (SRigL) by

2.28%.To the best of our knowledge, we are the first to show

a DST method’s performance training large and huge vari-

ants of ViTs from scratch. DynaDiag consistently achieves

results on par with RigL, SET, MEST, CHT and CHTs

across most sparsity levels. We explain the reason behind

2All modules in ViT-S/16 are set to the desired sparsity level,
except the multi-headed attention input projections.

5



Dynamic Sparse Training of Diagonally Sparse Networks

Table 1: Top-1 accuracy of DynaDiag alongside baseline methods at varying sparsities. We bold results that are not

significantly different (based on paired asymptotic McNemar tests (α = 0.05)) from the best-performing method (marked

with a *) in each column. Among all structured sparse training methods, DynaDiag achieves the highest accuracy on the

ImageNet-1K dataset.

Model Method Struc. 60% 70% 80% 90% 95%

ViT-B/16

dense accuracy = 78.5

RigL no 79.75 79.28 78.71 77.24 71.50

SET no 78.15 78.01 77.78 77.01 71.48

CHT no 79.78 79.37 79.06* 77.66* 71.68*

CHTs no 79.88* 79.38* 79.05 77.54 71.61

MEST no 78.04 77.76 77.39 76.45 69.67

SRigl yes 77.79 77.84 77.35 75.90 68.70

PixelatedBFly yes 78.04 77.90 77.31 73.89 62.52

DSB yes 77.98 77.85 76.26 72.89 64.17

DiagHeur. yes 77.37 76.95 75.75 71.46 68.06

DynaDiag yes 78.29 77.94 77.62 76.91 69.54

ViT-L/16

dense accuracy = 82.2

RigL no 81.85* 81.57* 81.7* 78.26* 72.11*

SRigL yes 79.87 78.94 77.54 75.46 66.68

PixelatedBFly yes 79.13 79.06 79.33 75.12 66.59

DSB yes 79.44 77.46 75.34 73.55 66.77

DiagHeur. yes 80.02 80.07 78.23 74.24 68.79

DynaDiag yes 81.52 81.56 81.37 77.74 69.59

ViT-H/14

dense accuracy = 83.2

RigL no 83.84* 83.47* 82.85* 80.52* 74.54*

SRigL yes 80.62 79.09 75.42 76.58 69.24

PixelatedBFly yes 82.24 82.10 81.37 79.91 70.21

DSB yes 79.53 76.44 71.32 68.09 62.86

DiagHeur. yes 80.64 78.97 73.07 75.04 65.45

DynaDiag yes 82.76 82.60 81.89 80.44 73.74

Mixer-S/16

dense accuracy = 72.4

RigL no 73.21* 73.23* 73.47* 73.01* 70.41*

SRigL yes 71.89 72.05 71.71 70.21 66.87

PixelatedBFly yes 71.95 71.91 71.45 69.17 67.85

DSB yes 69.94 70.21 68.9 65.16 60.88

DiagHeur. yes 69.91 69.77 67.87 64.17 59.16

DynaDiag yes 72.92 72.95 73.05 72.31 68.89

this disparity in accuracy between DynaDiag and unstruc-

tured methods in Sec. 4.3.1 to surpass RigL’s performance.)

DynaDiag achieves superior accuracy than other DST ap-

proaches on all the ViT variants, demonstrating the scal-

ability of our method to large models while maintaining

competitive performance. The p-values under the asymp-

totic McNemar’s test are reported in Tbl. 10 in Apdx. E.

This trend holds for CIFAR10 and CIFAR100 experiments

as well.

4.2.2. LANGUAGE EXPERIMENTS

Setup. For language tasks, we evaluate on the WikiText-

103 dataset using two variants (Small and Medium) of

GPT-2 (Radford et al., 2019) at varying sparsities s ∈
{40%, 50%, 60%, 80%, 90%}. This setup aims to reduce

the substantial memory and computational overheads asso-

ciated with increasing parameter counts in large language

models.

Results on WikiText-103. We train GPT2-Small and GPT2-

Medium (Radford et al., 2019) from scratch3 on WikiText-

103 data set and show the resulting performance in Tbl. 2.

All experiments are performed two times with average accu-

racies reported in the table. Both GPT2 models trained with

DynaDiag outperform other DST methods on the perplexity

metric (lower the better).

Notably, DynaDiag demonstrates increasingly significant

improvements over competing DST approaches as sparsity

levels rise. For example, at 90% sparsity on GPT2-Small,

3We make both the attention and MLP layers sparse.

6



Dynamic Sparse Training of Diagonally Sparse Networks

DynaDiag achieves a perplexity of 6.22 points lower than

that of the next best DST method while remaining within

2.57 points of the performance ceiling established by RigL.

The p-values under the asymptotic McNemar’s test are re-

ported in Tbl. 11 in Apdx. E.

Table 2: Perplexity of DynaDiag and baselines. We bold

results that are not significantly different from RigL based

on paired asymptotic McNemar tests (α = 0.05). Among

all the baselines, DynaDiag achieves the lower PPL (lower,

the better) on the WikiText-103 dataset.

Model Method 40% 50% 60% 80% 90%

GPT2-S

dense accuracy = 22.21

RigL 22.34 22.80 23.79 29.87 53.76

SRigL 22.74 23.19 25.09 31.08 62.55

PixelatedBFly 22.50 23.25 25.98 34.89 66.44

DynaDiag 22.60 22.74 24.67 30.46 56.33

GPT2-M

dense accuracy = 20.18

RigL 20.45 21.60 23.49 28.87 51.76

SRigL 21.14 22.59 26.09 32.16 55.66

PixelatedBFly 20.86 22.49 25.45 34.24 56.09

DynaDiag 20.69 22.14 24.98 29.65 54.87

0

50

100

150

Ti
m

e 
(m

s)

(a) Inference Time

60% 70% 80% 90%
Sparsity Level

0

5

10

15

Ti
m

e 
(h

rs
)

(b) Training Time

RigL
SRigL

DSB
PixelatedBFly

DynaDiag
Dense

Figure 4: Inference and training time of a ViT-Base at dif-

ferent sparsity levels trained with DynaDiag and baselines.

When controlling for an equivalent number of non-zero pa-

rameters, our specialized diagonal-sparse kernel achieves

faster execution on GPUs than standard sparse kernels.

4.2.3. TRAINING AND INFERENCE ACCELERATION

We measure GPU training and inference times for the meth-

ods described in Sec. 4.1. All reported timings reflect wall-

clock measurements.

Setup. We select the most suitable libraries to accelerate

execution based on the structured sparsity type: (1) RigL:

We use CUSPARSE, as RigL lacks exploitable structure.

(2) SRigL: The authors propose a custom method for the

acceleration of inference in SRigL (Lasby et al., 2023),

which we employ to estimate inference and training times.

However, the provided CUDA kernels lack the necessary

supporting infrastructure (e.g., integration with PyTorch4)

to enable end-to-end execution and real-time data collec-

tion. (3) DSB and PixelatedBFly: Both methods yield

block-sparse weight matrices. We use the Triton-based li-

brary from PixelatedBFly (Dao et al., 2021) to accelerate

inference for both. However, while this library is used for

PixelatedBFly training, it cannot be applied to DSB due

to the significant effort required to integrate it into DSB’s

training pipeline. (4) Diag: We employ custom-developed

kernels to accelerate both training and inference for diagonal

sparse networks.

Training & Inference Time. In Fig. 4, we present real-

world timing comparisons of DynaDiag and other dynamic

sparse training (DST) approaches. We implement custom

layers in PyTorch for each method and leverage their ded-

icated CUDA kernels to accelerate execution. Our results

demonstrate that DynaDiag achieves an inference speedup

of up to 3.1× and training speedup of 1.59× compared to

the dense equivalent at 90% sparsity. However, we observe

diminishing gains at lower sparsity levels, with inference

speedups of 1.37× at 60% sparsity and training times ap-

proaching parity (0.98× at 60% sparsity). Our PyTorch im-

plementation does not exploit CUDA kernel optimizations,

and addressing this could lead to further speed increases.

4.3. Additional Results

4.3.1. HOW TO IMPROVE DYNADIAG PERFORMANCE?

Tbl. 1 reveals a performance gap between RigL and Dyna-

Diag at sparsities ≥ 80%, which we attribute to the increased

expressivity of unstructured sparsity in RigL (Liu & Wang,

2023). To validate this hypothesis, we conduct an experi-

ment using LoRA-FA (Zhang et al., 2023a) to fine-tune the

weight matrices of a ViT-B/16 model at 80% sparsity trained

with DynaDiag. We choose LoRA-FA specifically for its

memory and computational efficiency during fine-tuning.

As shown in Fig. 5a), increasing the rank of LoRA-FA’s

A and B matrices leads to improved model accuracy. No-

4While custom CUDA kernels can theoretically accelerate train-
ing, their effectiveness depends on the surrounding infrastructure,
such as memory management and integration with deep learning
frameworks like PyTorch. In DSB and SRigL, the absence of this
supporting structure limits their practical utility for end-to-end
training acceleration.

7



Dynamic Sparse Training of Diagonally Sparse Networks

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 6412
8
25

6
Rank

80

82

84

Ac
cu

ra
cy

 (%
)

RigL
DynaDiag

DynaDiag w/ LoRA-FA
DynaDiag w/ Dense Fine Tuning

(a) ViT-Base with LoRA-FA.

0 192 384 576 768
Column Index

0

576

1152

1728

2304

Ro
w 

In
de

x

LoRA-FA Points

(b) Weight matrix (w/ LoRA-FA.)

Figure 5: Performance of ViT-Base at 80% sparsity fine-

tuned with LoRA-FA matrices of different ranks (a). We see

an increase in the accuracy over a diagonally sparse model,

with rank six matrices enough to match RigL performance.

(b) Shows a distribution of the new fine-tuned parameters

for a linear layer in the attention block of ViT-Base.

tably, DynaDiag surpasses RigL’s performance at rank 6,

requiring only a 1.67% increase in total parameters. This

minimal parameter overhead demonstrates that DynaDiag

can exceed the accuracy ceiling of unstructured sparsity

while maintaining most of its structured sparsity benefits for

inference acceleration.

We examine the spatial distribution of fine-tuned parameters

in Fig. 5, analyzing a linear layer within an attention head

of ViT-B/16 trained on ImageNet-1K. The visualization re-

veals that the newly introduced parameters are distributed

across the weight matrix in an unstructured pattern, support-

ing our hypothesis that unstructured sparsity enables better

optimization of the loss landscape.

100

101

102

Ac
cu

ra
cy

 (%
)

ViT Base

0.9 0.95 0.99 0.999
Sparsity

100

101

102

Ac
cu

ra
cy

 (%
)

MLPMixer

Dense
RiGL
SRigL

PixelatedBFly
DSB
Diag

Figure 6: Performance of DynaDiag compared to other base-

lines at extreme sparsities for a ViT-Base and MLPMixer

models on ImageNet-1K. DynaDiag outperforms other base-

lines, including RigL, at extreme sparsities.

4.3.2. PERFORMANCE AT EXTREME SPARSITY

Dynamic sparse training typically uses predefined layer-

wise sparsity ratios (e.g., uniform) to avoid layer col-

lapse at high sparsity levels, where entire layers risk be-

ing pruned (Tanaka et al., 2020). However, individual lay-

ers exhibit distinct learning dynamics (Chen et al., 2023),

and extreme sparsity can disrupt gradient flow. We eval-

uate DynaDiag under sparsity levels of up to 99.99% on

ImageNet-1K using ViT-Base and MLP-Mixer. As shown

in Fig. 6, DynaDiag demonstrates robust performance even

under these extreme conditions, indicating that it effectively

discovers accurate masks from the network topology—even

in highly sparse settings. DynaDiag outperforms RigL at

extreme sparsities, where RigL’s performance is known to

degrade significantly, as documented in prior work (Ji et al.,

2024).

8



Dynamic Sparse Training of Diagonally Sparse Networks

5. Discussion

We have identified three current limitations of DynaDiag,

which will be a significant part of the future work. First,

while effective for ViTs and LLMs, DynaDiag faces scalabil-

ity challenges with CNNs due to the overhead of searching

for distinct diagonal patterns across each channel. Secondly,

we aim to extend our method to networks with extremely

sparse weight matrices—e.g., at sparsity levels approaching

99.9999% or more—while still retaining more than a single

active diagonal. We believe that with large matrices, we will

see the effectiveness of having small-world connectivity,

resulting in highly sparse networks. However, we could

not find a good example model to test our hypothesis. Fi-

nally, our method’s performance could be further improved

through optimized GPU implementations of diagonal spar-

sity using frameworks like Triton.

6. Conclusion

This work presents a novel dynamic sparse training algo-

rithm, DynaDiag, that uses small world networks inspired

diagonal structured sparsity to train neural networks. We

demonstrate that models trained using our TopK -based al-

gorithm surpass those from other structured sparse training

approaches in terms of both algorithmic effectiveness and

hardware acceleration. Ultimately, we show that DynaDiag

achieves competitive performance — matching other un-

structured sparsity training methods at lower sparsity levels

while beginning to match and, in some cases, surpassing

them at extreme sparsity levels.

Acknowledgments

This work was partly supported by NSF award #2326491 to

CK and #2419721 to WR and YZ. The views and conclu-

sions contained herein are those of the authors and should

not be interpreted as representing any sponsor’s official poli-

cies or endorsements.

Impact Statement

Our work introduces an efficient sparse training method

that enables training larger models with fixed computational

resources, supporting the democratization of deep learning

as model sizes continue to grow. The method’s ability to

maintain sparsity throughout training reduces computational

and energy costs during both training and deployment, par-

ticularly benefiting on-device and real-time learning scenar-

ios. While we anticipate primarily positive impacts through

improved resource efficiency and accessibility, we acknowl-

edge that any advancement in machine learning capabili-

ties warrants careful consideration. We encourage future

research to investigate potential differential effects of our

sparsification approach on model fairness and bias, particu-

larly regarding class imbalances and data distribution shifts

compared to dense models.

References

Barabási, A.-L. and Albert, R. Emergence of scaling in

random networks. science, 286(5439):509–512, 1999.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.

What is the state of neural network pruning? Proceedings

of machine learning and systems, 2:129–146, 2020.

Cai, Y., Hua, W., Chen, H., Suh, G. E., De Sa, C., and

Zhang, Z. Structured pruning is all you need for pruning

cnns at initialization. arXiv preprint arXiv:2203.02549,

2022.

Chen, T., Zhang, Z., Wang, P., Balachandra, S., Ma, H.,

Wang, Z., and Wang, Z. Sparsity winning twice: Better

robust generalization from more efficient training. arXiv

preprint arXiv:2202.09844, 2022.

Chen, Y., Yuille, A., and Zhou, Z. Which layer is learning

faster? a systematic exploration of layer-wise conver-

gence rate for deep neural networks. In The Eleventh

International Conference on Learning Representations,

2023.

Cottier, B. Trends in the dollar training cost of machine

learning systems. Epoch. January, 31:2023, 2023.

Dao, T., Chen, B., Liang, K., Yang, J., Song, Z., Rudra,

A., and Re, C. Pixelated butterfly: Simple and efficient

sparse training for neural network models. arXiv preprint

arXiv:2112.00029, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

L. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE conference on computer vision and pattern

recognition, pp. 248–255. Ieee, 2009.

Dosovitskiy, A. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,

E. Rigging the lottery: Making all tickets winners. In

International conference on machine learning, pp. 2943–

2952. PMLR, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:

Finding sparse, trainable neural networks. arXiv preprint

arXiv:1803.03635, 2018.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both

weights and connections for efficient neural network.

Advances in neural information processing systems, 28,

2015.

9



Dynamic Sparse Training of Diagonally Sparse Networks

Hu, Y., Zhao, K., Huang, W., Chen, J., and Zhu, J. Acceler-

ating transformer pre-training with 2: 4 sparsity. arXiv

preprint arXiv:2404.01847, 2024.

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, J., and

Soudry, D. Accelerated sparse neural training: A provable

and efficient method to find n: m transposable masks.

Advances in neural information processing systems, 34:

21099–21111, 2021.

Jaiswal, A. K., Ma, H., Chen, T., Ding, Y., and Wang, Z.

Training your sparse neural network better with any mask.

In International Conference on Machine Learning, pp.

9833–9844. PMLR, 2022.

Jayakumar, S., Pascanu, R., Rae, J., Osindero, S., and Elsen,

E. Top-kast: Top-k always sparse training. Advances

in Neural Information Processing Systems, 33:20744–

20754, 2020.

Ji, J., Li, G., Yin, L., Qin, M., Yuan, G., Guo, L., Liu, S., and

Ma, X. Advancing dynamic sparse training by exploring

optimization opportunities. In Forty-First International

Conference on Machine Learning, 2024.

Jiang, P., Hu, L., and Song, S. Exposing and exploiting

fine-grained block structures for fast and accurate sparse

training. Advances in Neural Information Processing

Systems, 35:38345–38357, 2022.

Krizhevsky, A. and Hinton, G. Learning multiple layers of

features from tiny images. Technical Report TR-2009,

University of Toronto, 2009.

Kuznedelev, D., Kurtic, E., Iofinova, E., Frantar, E., Peste,

A., and Alistarh, D. Accurate neural network pruning

requires rethinking sparse optimization. arXiv preprint

arXiv:2308.02060, 2023.

Labini, P. S., Bernaschi, M., Nutt, W., Silvestri, F., and

Vella, F. Blocking sparse matrices to leverage dense-

specific multiplication. In 2022 IEEE/ACM Workshop

on Irregular Applications: Architectures and Algorithms

(IA3), pp. 19–24. IEEE, 2022.

Langley, P. Crafting papers on machine learning. In Langley,

P. (ed.), Proceedings of the 17th International Conference

on Machine Learning (ICML 2000), pp. 1207–1216, Stan-

ford, CA, 2000. Morgan Kaufmann.

Lasby, M., Golubeva, A., Evci, U., Nica, M., and Ioannou,

Y. Dynamic sparse training with structured sparsity. arXiv

preprint arXiv:2305.02299, 2023.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot

network pruning based on connection sensitivity. arXiv

preprint arXiv:1810.02340, 2018.

Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang,

F., and Doermann, D. Towards optimal structured cnn

pruning via generative adversarial learning. In Proceed-

ings of the IEEE/CVF conference on computer vision and

pattern recognition, pp. 2790–2799, 2019.

Liu, S. and Wang, Z. Ten lessons we have learned in the

new” sparseland. A short handbook for sparse neural

network researchers, 2023.

Liu, S., Mocanu, D. C., and Pechenizkiy, M. On improving

deep learning generalization with adaptive sparse connec-

tivity. arXiv preprint arXiv:1906.11626, 2019.

Lu, H., Zhou, Y., Liu, S., Wang, Z., Mahoney, M. W., and

Yang, Y. Alphapruning: Using heavy-tailed self reg-

ularization theory for improved layer-wise pruning of

large language models. arXiv preprint arXiv:2410.10912,

2024.

Lykiardopoulou, I. Ai beats humans for the first time in phys-

ical skill game. https://www.newscientist.

com/article/2402645, 12 2023. Accessed: 20 01

2025.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. Build-

ing a large annotated corpus of english: The penn tree-

bank. Computational linguistics, 19(2):313–330, 1993.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.

Pointer sentinel mixture models. arXiv preprint

arXiv:1609.07843, 2016.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic,

D., Venkatesh, G., Yu, C., and Micikevicius, P. Ac-

celerating sparse deep neural networks. arXiv preprint

arXiv:2104.08378, 2021.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,

Gibescu, M., and Liotta, A. Scalable training of arti-

ficial neural networks with adaptive sparse connectivity

inspired by network science. Nature communications, 9

(1):2383, 2018.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational

dropout sparsifies deep neural networks. In International

conference on machine learning, pp. 2498–2507. PMLR,

2017.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,

J. Pruning convolutional neural networks for resource

efficient inference. arXiv preprint arXiv:1611.06440,

2016.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., and Kautz,

J. Importance estimation for neural network pruning. In

Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 11264–11272, 2019.

10



Dynamic Sparse Training of Diagonally Sparse Networks

Mostafa, H. and Wang, X. Parameter efficient training of

deep convolutional neural networks by dynamic sparse

reparameterization. In International Conference on Ma-

chine Learning, pp. 4646–4655. PMLR, 2019.

Okanovic, P., Kwasniewski, G., Labini, P. S., Besta, M.,

Vella, F., and Hoefler, T. High performance unstructured

spmm computation using tensor cores. In SC24: Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 1–14. IEEE, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,

Sutskever, I., et al. Language models are unsupervised

multitask learners. OpenAI blog, 1(8):9, 2019.

Sander, M. E., Puigcerver, J., Djolonga, J., Peyré, G., and

Blondel, M. Fast, differentiable and sparse top-k: a

convex analysis perspective. In International Conference

on Machine Learning, pp. 29919–29936. PMLR, 2023.

Sparkes, M. Game-playing deepmind ai can beat top hu-

mans at chess, go and poker. https://thenextweb.

com/news/, 11 2023. Accessed: 20 01 2025.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and

effective pruning approach for large language models.

arXiv preprint arXiv:2306.11695, 2023.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-

ing neural networks without any data by iteratively con-

serving synaptic flow. Advances in neural information

processing systems, 33:6377–6389, 2020.

Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H.,

and Laurienti, P. J. The ubiquity of small-world networks.

Brain connectivity, 1(5):367–375, 2011.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L.,

Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers,

D., Uszkoreit, J., et al. Mlp-mixer: An all-mlp architec-

ture for vision. Advances in neural information process-

ing systems, 34:24261–24272, 2021.

Wang, C., Zhang, G., and Grosse, R. Picking winning

tickets before training by preserving gradient flow. arXiv

preprint arXiv:2002.07376, 2020.

Watts, D. J. and Strogatz, S. H. Collective dynamics of

‘small-world’ networks. nature, 393(6684):440–442,

1998.

Yamaguchi, T. and Busato, F. Accelerating matrix multipli-

cation with block sparse format and nvidia tensor cores.

NVIDIA Developer Technical Blog, https://developer.

nvidia. com/blog/accelerating-matrixmultiplication-with-

block-sparse-format-and-nvidia-tensor-cores, 2021.

Yang, H., Liang, Y., Guo, X., Wu, L., and Wang, Z. Pruning

before training may improve generalization, provably.

arXiv preprint arXiv:2301.00335, 2023a.

Yang, H., Yin, H., Shen, M., Molchanov, P., Li, H., and

Kautz, J. Global vision transformer pruning with hessian-

aware saliency. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pp.

18547–18557, 2023b.

Yu, F., Huang, K., Wang, M., Cheng, Y., Chu, W., and Cui,

L. Width & depth pruning for vision transformers. In

Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 36, pp. 3143–3151, 2022.

Yuan, G., Ma, X., Niu, W., Li, Z., Kong, Z., Liu, N., Gong,

Y., Zhan, Z., He, C., Jin, Q., et al. Mest: Accurate and fast

memory-economic sparse training framework on the edge.

Advances in Neural Information Processing Systems, 34:

20838–20850, 2021.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. Lora-fa:

Memory-efficient low-rank adaptation for large language

models fine-tuning. arXiv preprint arXiv:2308.03303,

2023a.

Zhang, X.-J., Moore, J. M., Yan, G., and Li, X. Universal

structural patterns in sparse recurrent neural networks.

Communications Physics, 6(1):243, 2023b.

Zhang, Y., Zhao, J., Wu, W., Muscoloni, A., and Cannis-

traci, C. V. Epitopological learning and cannistraci-hebb

network shape intelligence brain-inspired theory for ultra-

sparse advantage in deep learning. In The Twelfth Inter-

national Conference on Learning Representations, 2024.

Zhang, Y., Zhao, J., Wu, W., Liao, Z., Michieli, U., and Can-

nistraci, C. V. Brain-inspired sparse training enables trans-

formers and llms to perform as fully connected. arXiv

preprint arXiv:2501.19107, 2025.

11



Dynamic Sparse Training of Diagonally Sparse Networks

Appendix

• Apdx. A proves that pseudo-diagonal masks remain pseudo-diagonal after transposition.

• Apdx. B gives the theoretical justification for diagonal sparsity (coverage, rank, universal approximation).

• Apdx. C lists all experimental hyper-parameters and datasets.

• Apdx. D describes our CUDA / BCSR implementation and speed-up analysis.

• Apdx. E reports McNemar p-values for all comparative studies.

• Apdx. F.3 analyzes temperature, sparsity scheduling, and distribution schemes.

• Apdx. G summarizes accuracy vs. speed-up trade-offs across sparsity levels.

• Apdx. H details the diagonal-heuristic variant of RigL.

• Apdx. I reviews the BSW and BSF graph models.

• Apdx. I.1 quantifies the small-world properties of DynaDiag networks.

A. Proving the Transposability of Diagonal Sparse Matrices

THEOREM

Let M ∈ {0, 1}m×n be a binary mask matrix constructed with a pseudo-diagonal pattern starting at position s. Then, the

transpose M⊤ also exhibits a pseudo-diagonal pattern, with the diagonal’s starting position adjusted based on the relative

dimensions of m and n.

PROOF

We consider two cases based on the relationship between m and n:

CASE 1: m ≥ n (MORE ROWS THAN COLUMNS)

1. Construction of M :

• The diagonal starts at row s and spans n entries.

• Entries in M are at positions:

(r, c) = ((s+ c) mod m, c) for c ∈ {0, 1, . . . , n− 1}.

2. Transposition M⊤:

• The transposed matrix M⊤ has dimensions n×m.

• Entries in M⊤ are at positions:

(c, (s+ c) mod m) for c ∈ {0, 1, . . . , n− 1}.

3. Pseudo-Diagonal in M⊤:

• Since n ≤ m, the transposed matrix M⊤ now has fewer rows than columns.

• The pseudo-diagonal in M⊤ starts at column s (original row offset) and spans n entries:

(r, c) = (r, (s+ r) mod m) for r ∈ {0, 1, . . . , n− 1}.

• This matches the transposed entries, confirming M⊤ retains a pseudo-diagonal starting at column s.

12



Dynamic Sparse Training of Diagonally Sparse Networks

CASE 2: m < n (MORE COLUMNS THAN ROWS)

1. Construction of M :

• The diagonal starts at column s and spans m entries.

• Entries in M are at positions:

(r, c) = (r, (s+ r) mod n) for r ∈ {0, 1, . . . ,m− 1}.

2. Transposition M⊤:

• The transposed matrix M⊤ has dimensions n×m.

• Entries in M⊤ are at positions:

((s+ r) mod n, r) for r ∈ {0, 1, . . . ,m− 1}.

3. Pseudo-Diagonal in M⊤:

• Since n > m, M⊤ has more rows than columns.

• The pseudo-diagonal in M⊤ starts at row s (original column offset) and spans m entries:

(r, c) = ((s+ c) mod n, c) for c ∈ {0, 1, . . . ,m− 1}.

• This aligns with the transposed entries, confirming M⊤ retains a pseudo-diagonal starting at row s.

In both cases, transposing a pseudo-diagonal mask results in a matrix with an equivalent pseudo-diagonal structure. The

starting position s transitions between row and column offsets depending on the original matrix’s dimensions, preserving

the diagonal nature under transposition. Thus, matrices constructed with the described pseudo-diagonal pattern exhibit

transposition invariance in their sparsity structure.

B. Theoretical Justification of Diagonal Sparsity

Consider a single linear layer of a neural network represented by the weight matrix W ∈ R
n×m. Sparsity patterns enforce

structural constraints on W through binary masks M ∈ {0, 1}n×m, producing sparse weight matrices as W ⊙M , where ⊙
denotes element-wise multiplication.

Definition (Diagonal Sparsity). A diagonal sparsity pattern selects a set of diagonals defined by their offsets. Formally,

the mask M is constructed as:

Mij =

{

1, if (j − i) ≡ δ (mod min(n,m)) for some diagonal offset δ,

0, otherwise.

The number of diagonals selected, denoted k, controls the density of M .

Lemma 1 (Full Input-Output Coverage). A diagonal mask M constructed as above ensures that each row and each

column of M contains at least one nonzero entry, given k ≥ 1.

Proof. Consider two cases:

• Case n ≥ m: Each diagonal covers all m columns exactly once. By varying diagonal offsets, each row index i is

represented by some diagonal at least once, thus no row remains empty. Since each diagonal always covers every

column exactly once, no column remains empty either.

• Case m > n: By symmetry, each diagonal covers all n rows exactly once. By shifting offsets across multiple diagonals,

all columns are covered at least once.

13



Dynamic Sparse Training of Diagonally Sparse Networks

This ensures no input dimension or output neuron is ever completely disconnected by the sparsity mask, guaranteeing full

coverage. □

Expressivity via Universal Approximation. The universal approximation theorem (Cybenko, 1989; Hornik, 1991) asserts

that fully connected neural networks with nonlinear activations (such as ReLU or sigmoid) are capable of approximating

arbitrary continuous functions. Structural sparsity patterns, however, may potentially violate universal approximation by

severing input-output connections.

Theorem 2 (Universal Approximation under diagonal Sparsity). A feed-forward neural network consisting of layers

employing diagonal sparsity masks with sufficiently large number of diagonals k ≥ kmin, nonlinear activations, and adequate

width and depth, retains the universal approximation property.

Proof Universal approximation requires that any input neuron can influence any output neuron, possibly through multiple

layers. Lemma 1 ensures full input-output coverage at every sparse linear transformation. Thus, each neuron maintains at

least one active input and output edge, preserving connectivity across the network.

Because diagonal patterns ensure no dimension is eliminated globally, subsequent nonlinear activations can still combine

these preserved dimensions arbitrarily. Therefore, the assumptions required for universal approximation [1][2] remain valid,

implying the network’s expressivity is not significantly impaired by this structured sparsity pattern. □

Rank Preservation Argument. Another perspective on expressivity arises through linear algebraic arguments. Any row or

column in a weight matrix W being entirely zero automatically restricts the maximum achievable rank. A rank-deficient

weight matrix severely limits the set of linear transformations expressible by that layer.

With diagonal sparsity:

• Each row and column has at least one nonzero element, removing a trivial structural cause of rank deficiency.

• For random initialization of nonzero weights, such sparse matrices will have full achievable rank (min(n,m)) almost

surely (standard linear algebra argument; see e.g. random matrix theory.).

High rank at initialization and throughout training supports richer linear transformations, ultimately preserving higher

network expressivity and better gradient propagation properties.

Comparison to Other Patterns. Unlike structured sparsity patterns such as block-sparse or n-of-m sparsity, diagonal

sparsity guarantees deterministic full input-output coverage. In block sparsity, some neurons risk being completely

disconnected if blocks overlap in suboptimal ways, limiting expressivity and training stability. diagonal sparsity patterns

avoid these degeneracies by design.

Furthermore, diagonal sparsity provides a structured yet near-random pattern, capturing many beneficial properties of un-

structured random sparsity, demonstrated empirically by experiments in this paper—while offering improved computational

efficiency and implementation simplicity.

These theoretical results substantiate the empirically observed superior or near-optimal performance of diagonal sparsity

patterns, positioning them as a particularly promising structured sparsity approach for efficient neural network training and

inference.

C. Experiment Details

All experiments are conducted on the NVIDIA Tesla A100 GPUs with the following configuration:

• Model: NVIDIA A100 80GB

• Memory: 80GB HBM2e

• Memory Bandwidth: ∼2.0 TB/s (higher than the 40GB version)

14



Dynamic Sparse Training of Diagonally Sparse Networks

• TDP : 400W (PCIe: 300W)

• Peak FP32 Performance: ∼19.5 TFLOPS (same as 40GB)

• Peak FP16 Performance: ∼312 TFLOPS (same as 40GB)

C.1. Datasets

1. CIFAR-10 (Krizhevsky & Hinton, 2009) consists of 60,000 colored images of resolution 32 × 32, divided into 10

classes (e.g., airplanes, cars, birds). The dataset is split into 50,000 training and 10,000 test images.

2. CIFAR-100 (Krizhevsky & Hinton, 2009) also contains 32× 32 resolution images but spans 100 classes. Each class

includes 500 training and 100 test images, totaling 60,000 images.

3. ImageNet-1K (Deng et al., 2009) covers 1,000 object classes, with 1.28M training, 50,000 validation, and 100,000 test

images. Images are typically resized and cropped to 224× 224 for processing.

4. WikiText-103 (Merity et al., 2016) comprises over 100 million tokens extracted from verified Wikipedia articles. It is

significantly larger than other language datasets, such as Penn Treebank (PTB) (Marcus et al., 1993).

15



Dynamic Sparse Training of Diagonally Sparse Networks

Table 3: Configuration of the CIFAR10 and CIFAR100 experiments with MLPMixer.

Parameter Value

Adam β1 0.9

Adam β2 0.99

AutoAugment True

Batch Size 128

CutMix Probability 0.5

CutMix β 1.0

Dropout 0.0

Epochs 300

Hidden C 512

Hidden S 64

Hidden 128

(Initial LR, Final LR) (1× 10−3, 1× 10−6)
Label Smoothing 0.1

Layers 8

LR Scheduler Cosine

Optimizer Adam

Random Seed 3407

Weight Decay 5× 10−5

Warmup 5 epochs

Table 4: Configuration of the CIFAR10 and CIFAR100 experiments with ViT-Small.

Parameter Value

Epochs 200

Batch Size 128

Optimizer Adam

Weight Decay 5× 10−5

LR Scheduler Cosine

(Initial LR, Final LR) (1× 10−3, 1× 10−5)
Warmup 5 epochs

Dropout 0.0

AutoAugment True

Label Smoothing 0.1

Heads 12

Layers 7

Hidden 384

MLP Hidden 384

16



Dynamic Sparse Training of Diagonally Sparse Networks

Table 5: Configuration of the ImageNet experiments with ViT-Base and MLPMixer.

Model Optimizer Weight Decay Learning Rate Drop Path Warmup/Epoch

ViT-Base AdamW 0.05 0.001 0.1 5/300

DynaDiag-ViT-Base AdamW 0.05 0.001 0 5/300

Mixer-Small AdamW 0.1 0.001 0.1 5/300

DynaDiag-Mixer-Small AdamW 0.1 0.001 0 5/300

Table 6: Configuration of the ImageNet experiments with ViT-Large and Huge.

Parameter Value

Batch size 256

Optimizer AdamW

Learning Rate (LR) 3× 10−3

LR decay cosine

Weight decay 0.02

Warmup epochs 5

Label smoothing ε 0.1

Dropout ✗

Stochastic Depth ✓

Repeated Aug ✓

Gradient Clipping 1.0

Horizontal flip ✓

Random Resized Crop (RRC) ✓

Rand Augment ✗

3 Augment (ours) ✓

LayerScale ✓

Mixup α 0.8

Cutmix α 1.0

Erasing prob. ✗

ColorJitter 0.3

Test crop ratio 1.0

Loss BCE

D. GPU Acceleration

We leverage the known diagonal structure to enforce the clustering of rows/columns from the same diagonal into contiguous

blocks. Modify the reordering algorithm to:

• Prioritize grouping rows/columns from the same diagonal.

• Allow limited flexibility for rows/columns from adjacent diagonals (controlled by Diag Proximity).

We modify Jaccard’s similarity with a diagonal proximity term to prioritize clustering rows/columns that belong to diagonals

with nearby starting positions. For two rows i and j:

Sim(i, j) = α · Jaccard(i, j) + (1− α) · Proximity(i, j) (6)

where:

• Jaccard(i, j): Standard Jaccard index (overlap of non-zeros between rows i and j).

• Proximity(i, j): Normalized inverse distance between the starting positions of the diagonals containing rows i and j:

Proximity(i, j) = 1−
dist(di, dj)

max(dist)
(7)

17



Dynamic Sparse Training of Diagonally Sparse Networks

Table 7: Configuration of the Wikitext-103 experiments GPT-2Small experiments.

Model Optimizer Weight Decay Learning Rate Dropout Warmup/Epoch

GPT-2-Small AdamW 0.1 0.0001 0.1 5/100

DynaDiag AdamW 0.1 0.0001 0.1 5/100

where di, dj are the diagonal start positions for rows i, j, and max(dist) is the maximum possible distance between

diagonals.

• α: Tuning parameter (0 ≤ α ≤ 1) to balance the two terms. For our case, we set α < 0.5 to prioritize diagonal

structure over raw overlap.

Since the diagonals are determined by their starting positions, we precompute the diagonal membership for each row/column.

Using this preprocessing step, we can convert sparse diagonal matrices to dense blocks during the forward (Fig. 3d) and

backward (Fig. 3h) pass which accelerates both inference and training of models with DynaDiag.

Specifically, we employ the following strategies to maximize computational efficiency and minimize memory overhead:

• Tensor Cores (TC) API: We utilize half-precision matrix multiply-accumulate (mma.m16n8k16) operations via

the TC API, as illustrated in the PTX code provided in (Okanovic et al., 2024). This allows us to exploit the high

throughput of Tensor Cores for dense submatrix computations within the sparse matrix framework.

• Block Compressed Sparse Row (BCSR) Iteration: To efficiently iterate over non-zero blocks in the sparse matrix,

we use the BCSR format, which relies on rowPtr and colIdx arrays. This avoids unnecessary iterations over zero

blocks, significantly reducing computational overhead.

• Asynchronous Data Movement: To hide memory latency, we employ cuda::memcpy async for overlapping

computation with data transfers. This allows efficient movement of data from global memory to shared memory without

intermediate register staging, freeing up registers for computation.

• Warp-Level Parallelism: Each warp in our CUDA kernel is responsible for computing a submatrix of the output matrix

C, with dimensions matching those of the Tensor Cores. Non-zero blocks are loaded into registers using ldmatrix

(see Listings 2 and 3 in (Okanovic et al., 2024)), and the results are written back to global memory after computation.

For a comprehensive understanding of the implementation details, including pseudocode and additional optimizations, we

direct readers to (Okanovic et al., 2024). The SMAT library can be found at https://github.com/spcl/smat.

Correlation Between Number of Diagonals and Speedups. Using our custom CUDA implementation, we perform

matrix-matrix multiplication on matrices of size 768× 768(matching the size of the blocks.I.attn.proj.linear.weight layer

in ViT where I is the block count) to isolate the impact of number of diagonals on potential speedup. All the experiments

were carried out on NVIDIA A100 40GB GPUs. Each configuration was run 100 times, and we averaged the total time

of converting diagonals to BCSR plus the subsequent BCSR computation. As expected, below 50% sparsity, speed gains

taper off, and below 20% sparsity, we see some slowdown—yet this remains more favorable than comparable block-sparse

approaches(Yamaguchi & Busato, 2021).

Performance Impact of Diagonals to BCSR Conversion. With empirical experiments on ViT-B/16 at 90% sparsity

with ImageNet-1K, we verify that there is no significant accuracy difference between direct diagonal computation and the

BCSR-based approach. From Tbl. 8, we can see that there is no significant difference in the accuracies of the two methods,

proving their equivalence. However, the training time is significantly improved using our custom BCSR kernel.

E. McNemar’s Test Results

McNemar’s test is a non-parametric χ2 procedure for paired binary outcomes. Given two classifiers (or a pre–post condition)

evaluated on the same n instances, their predictions form a 2 × 2 contingency table. The statistic considers only the

off-diagonal counts—instances mis-classified by exactly one of the two methods—and tests the null hypothesis that these

two counts are equal, i.e., that the marginal proportions of successes are identical. A significant result therefore indicates

18



Dynamic Sparse Training of Diagonally Sparse Networks

2 (
99

.74
%)

8 (
98

.96
%)

15
 (9

8.0
5%

)

38
 (9

5.0
5%

)

76
 (9

0.1
0%

)

15
3 (

80
.08

%)

23
0 (

70
.05

%)

30
7 (

60
.03

%)

38
4 (

50
.00

%)

46
0 (

40
.10

%)

53
7 (

30
.08

%)

61
4 (

20
.05

%)

69
1 (

10
.03

%)

76
8 (

0.0
0%

)

Number of diagonals (sparsity)

0

5

10

15

20

25

Sp
ee

d
up

 (×
)

Speed up vs. Number of Diagonals for a 768×768 matrix
Speed up vs. Dense
1×

Figure 7: Speedup obtained using our custom CUDA implementation while doing matrix-matrix multiplication with matrices

having the diagonal sparsity pattern.

Table 8: DynaDiag performance with and without BCSR conversion with a 90% sparse ViT-B/16 on ImageNet-1K.

Method Accuracy Training Time (hrs)

Without BCSR Conversion 76.92±0.0011 18.07

With BCSR Conversion 76.91±0.0007 11.42

Table 9: P-values from McNemar’s test comparing each method with RigL at varying sparsities s ∈ {0.6, 0.7, 0.8, 0.9, 0.95}.

Bold values indicate no significant difference (p-value ≥ 0.05) from RigL.

Models Methods Struc. Cifar10 Cifar100
0.6 0.7 0.8 0.9 0.95 0.6 0.7 0.8 0.9 0.95

Mixer-S/16

RigL no - - - - - - - - - -
SRigL yes 0.0523 0.0614 0.0312 0.0285 0.0221 0.0654 0.0531 0.0598 0.0356 0.0299

PixelatedBFly yes 0.0751 0.0845 0.0213 0.0198 0.0174 0.0321 0.0212 0.0315 0.0287 0.0253
DSB yes 0.0231 0.0198 0.0123 0.0098 0.0075 0.0225 0.0187 0.0112 0.0085 0.0063

DiagHeur. yes 0.0145 0.0123 0.0091 0.0067 0.0052 0.0132 0.0110 0.0084 0.0058 0.0047
DynaDiag yes 0.0587 0.0674 0.0512 0.0543 0.0601 0.0756 0.0823 0.0654 0.0682 0.0745

ViT-S/16

RigL no - - - - - - - - - -
SRigL yes 0.0578 0.0695 0.0345 0.0302 0.0253 0.0712 0.0421 0.0623 0.0381 0.0324

PixelatedBFly yes 0.0245 0.0193 0.0167 0.0132 0.0111 0.0223 0.0676 0.0650 0.0125 0.0103
DSB yes 0.0184 0.0165 0.0122 0.0095 0.0078 0.0193 0.0161 0.0124 0.0090 0.0072

DiagHeur. yes 0.0123 0.0105 0.0087 0.0065 0.0051 0.0131 0.0114 0.0093 0.0069 0.0050
DynaDiag yes 0.0612 0.0725 0.0534 0.0568 0.0632 0.0773 0.0834 0.0675 0.0708 0.0761

that the two methods differ in predictive accuracy while properly accounting for the dependence induced by evaluating on

the same data points.

We show the p-values for ViT-S/16 and Mixer-S/16 running Cifar10 and Cifar100 in Tbl. 9. And the p-values for models on

ImageNet-1K and GPT models on WikiText-103 are shown in Tbl. 10 and Tbl. 11 respectively.

F. Additional Results

F.1. CIFAR10 and CIFAR100 Results

All the experiments are performed three times with the average accuracies shown in the table. We omit the standard deviation

since the training is relatively stable (i.e., usually less than 0.06% standard deviation). We present results for Mixer-S/16

19



Dynamic Sparse Training of Diagonally Sparse Networks

Table 10: P-values from paired asymptotic McNemar tests comparing each method with RigL at varying sparsities

s ∈ {60%, 70%, 80%, 90%, 95%}. Bold values indicate no significant difference (p-value ≥ 0.05) from RigL.

Model Method 60% 70% 80% 90% 95%

ViT-B/16

RigL - - - - -

SET 0.0542 0.0401 0.0364 0.0419 0.0564

CHT 0.0764 0.0672 0.0693 0.0628 0.0572

CHTs 0.0654 0.0619 0.0629 0.0724 0.0529

MEST 0.0598 0.0462 0.0298 0.0387 0.0432

SRigL 0.0473 0.0521 0.0345 0.0289 0.0224

PixelatedBFly 0.0542 0.0396 0.0317 0.0253 0.0198

DSB 0.0124 0.0187 0.0105 0.0083 0.0061

DiagHeur. 0.0098 0.0123 0.0075 0.0059 0.0043

DynaDiag 0.0654 0.0789 0.0411 0.0598 0.0352

ViT-L/16

RigL - - - - -

SRigL 0.0415 0.0253 0.0367 0.0302 0.0235

PixelatedBFly 0.0398 0.0312 0.0329 0.0264 0.0201

DSB 0.0142 0.0201 0.0113 0.0091 0.0067

DiagHeur. 0.0105 0.0137 0.0082 0.0065 0.0049

DynaDiag 0.0698 0.0836 0.0564 0.0517 0.0379

ViT-H/14

RigL - - - - -

SRigL 0.0431 0.0395 0.0382 0.0320 0.0258

PixelatedBFly 0.0627 0.0343 0.0341 0.0276 0.0214

DSB 0.0165 0.0223 0.0131 0.0105 0.0079

DiagHeur. 0.0128 0.0159 0.0095 0.0078 0.0056

DynaDiag 0.0725 0.0874 0.0583 0.0529 0.0394

Mixer-S/16

RigL - - - - -

SRigL 0.0672 0.0294 0.0356 0.0294 0.0230

PixelatedBFly 0.0311 0.0491 0.0308 0.0247 0.0185

DSB 0.0139 0.0195 0.0102 0.0079 0.0054

DiagHeur. 0.0112 0.0148 0.0087 0.0063 0.0045

DynaDiag 0.0701 0.0856 0.0605 0.0553 0.0617

Table 11: P-values from McNemar’s test comparing DynaDiag (Diag), SRigL, and PixelatedBFly with RigL at varying

sparsities s ∈ {0.4, 0.5, 0.6, 0.8, 0.9}. Bold values indicate no significant difference (p-value ≥ 0.05) from RigL.

Model Method 40% 50% 60% 80% 90%

GPT2-S

RigL - - - - -

SRigL 0.0456 0.0398 0.0321 0.0275 0.0213

PixelatedBFly 0.0523 0.0471 0.0384 0.0332 0.0285

DynaDiag 0.0183 0.0518 0.0675 0.0529 0.0401

GPT2-M

RigL - - - - -

SRigL 0.0395 0.0352 0.0287 0.0231 0.0178

PixelatedBFly 0.0589 0.0427 0.0356 0.0304 0.0256

DynaDiag 0.0518 0.0576 0.0547 0.0657 0.0136

20



Dynamic Sparse Training of Diagonally Sparse Networks

Table 12: Top-1 accuracy of DynaDiag alongside baseline methods at varying sparsities. We bold results that are not

significantly different from RigL based on paired asymptotic McNemar tests (α = 0.05). Among all structured sparse

training methods, DynaDiag achieves the highest accuracy on ViT-Small and MLPMixer architectures across CIFAR-10 and

CIFAR-100 datasets.

Models Methods Struc. CIFAR10 CIFAR100
60% 70% 80% 90% 95% 60% 70% 80% 90% 95%

Mixer-S/16

dense accuracy = 85.64 dense accuracy = 66.98
RigL no 86.44 86.47 86.74 85.85 84.65 67.44 67.97 67.54 66.52 64.2

SRigL yes 85.98 85.69 85.14 83.45 82.14 67.19 66.94 66.88 64.03 60.41
PixelatedBFly yes 85.39 85.25 84.69 82.41 81.09 66.45 65.74 64.36 63.57 59.56

DSB yes 83.14 83.45 82.14 80.21 80.12 65.14 64.74 64.26 62.44 58.14
DiagHeur. yes 82.69 83.01 81.11 79.56 78.65 64.54 64.21 63.47 62.3 60.08
DynaDiag yes 86.14 86.19 85.69 85.55 83.13 67.08 67.02 66.91 64.21 61.30

ViT-S/16

dense accuracy: 89.67 dense accuracy: 66.61
RigL no 91.04 91.03 90.58 88.45 84.56 68.91 68.43 66.54 65.31 62.32

SRigL yes 90.67 90.51 89.32 86.88 81.54 68.51 67.85 66.21 64.81 61.11
PixelatedBFly yes 90.08 90.16 87.51 83.31 80.14 68.14 68.10 66.13 64.12 61.33

DSB yes 89.55 89.45 88.39 83.52 80.09 68.01 67.69 66.05 63.23 60.08
DiagHeur. yes 88.41 89.14 88.51 86.49 80.61 66.87 65.57 65.08 64.09 60.26
DynaDiag yes 90.55 90.63 89.43 87.09 82.76 68.41 68.12 66.31 65.06 61.43

Table 13: Perplexity of DynaDiag alongside baseline methods. We bold results that are not significantly different (calculated

using paired asymptotic McNemar tests (α = 0.05)) from the best performing method in the column (marked with a *).

Among all the baselines, DynaDiag achieves the lower PPL (lower, the better) on the WikiText-103 dataset.

Model Method 40% 50% 60% 80% 90%

GPT2-S

dense accuracy = 22.21

RigL 22.34 22.80 23.79 29.87 53.76

SRigL 22.74 23.19 25.09 31.08 62.55

PixelatedBFly 22.50 23.25 25.98 34.89 66.44

Wanda 22.14* 22.35* 23.48* 29.12* 53.07*

DynaDiag 22.60 22.74 24.67 30.46 56.33

and ViT-Small in Tbl. 12, where DynaDiag performs as new state-of-the-art among structured DST methods, exceeding

prior approaches at every sparsity level except one (60% on CIFAR10 with Mixer-S/16). The p-values under the asymptotic

McNemar’s test are reported in Tbl. 9 in Apdx. E.

We also observe that for CIFAR10 , the accuracy of both ViT-S/16 and Mixer-S/16 improves after sparsification compared to

their dense counterparts. We hypothesize that this improvement stems from the fact that both models are overparameterized,

meaning they possess more parameters than necessary to fit the training data. By sparsifying the models, we eliminate less

important or redundant parameters, leading to a more efficient and generalizable model (Liu et al., 2019; Yang et al., 2023a).

F.2. Comparison with Pruning Methods

Pruning LLMs (Sun et al., 2023; Kuznedelev et al., 2023) has been an effective way of reducing the size of the model while

producing models with state-of-the-art inference accuracies at high sparsity levels. However, pruning requires dense training

along with fine-tuning post pruning which is not the case with sparse-to-sparse training of models.

To see how DynaDiag performs as compared to pruning methods, we ran Wanda (Sun et al., 2023) with the GPT-2 small

model and reported the results in Tbl. 13. As expected, Wanda, a pruning method, produces models with better perplexity

than DST-based methods. However, Wanda’s results are produced at a significantly higher computational cost (dense training

+ fine-tuning), whereas our method remains computationally efficient.

21



Dynamic Sparse Training of Diagonally Sparse Networks

Figure 8: Comparing the three different temperature schedules which affect the amount of non-zeros present at a training

step.

F.3. Impact of Temperature Scheduling, Sparsity Scheduling, and Sparsity Distribution on Training

Temperature Scheduling: We study the evolution of non-zero entries in a representative weight matrix from ViT-B/16

under three temperature scheduling strategies—Linear, Cosine, and Constant—in Fig. 8. All approaches target 90% sparsity

(i.e., retaining K = 78 values out of 768). We observe that both Linear and Cosine schedules gradually reduce the

number of non-zeros during the early training iterations (exploration phase), allowing the model to adapt its sparse structure

progressively. In contrast, the Constant schedule enforces the target sparsity from the beginning, leading to no exploration.

This supports our finding that gradual temperature decay yields better performance by allowing more flexible structural

learning early in training.

Sparsity Scheduling: We study the effect of different sparsity scheduling strategies—Constant, Linear, and Cosine—on

the performance of ViT-B/16 trained on ImageNet-1K. These schedules control how the sparsity level evolves over training.

As shown in Tbl. 15, the Cosine schedule consistently achieves the best accuracy across all sparsity levels, followed closely

by Linear, while Constant performs significantly worse. This highlights the importance of a gradually decaying sparsity

schedule for maintaining model accuracy under high sparsity regimes.

Sparsity Distribution: In our experiments, we allocate the sparsity budget, based on a layer’s compute fraction (proportional

to layer size) as proposed in Pixelated Butterfly (Dao et al., 2021)(Sec 3.3 and Appendix I.1). However, we also experiment

with two other distributions: Uniform and ERK and the results are shown in Tbl. 14. We can see that computational

fraction-based allocation yields better results, consistent with findings from Pixelated Butterfly.

Table 14: Impact of different sparsity distribution methods on ViT-B/16 performance on ImageNet-1K

Method 60% 70% 80% 90% 95%

Uniform 77.64±0.0021 77.02±0.0013 76.73±0.0020 76.14±0.0015 69.31±0.0011

Erdős-Rényi-Kernel (ERK) 77.93±0.0018 77.43±0.0019 76.53±0.0014 76.21±0.0007 69.45±0.0016

ComputeFraction (PBFly) 78.29±0.0020 77.94±0.0017 77.62±0.0016 76.91±0.0016 69.54±0.0014

22



Dynamic Sparse Training of Diagonally Sparse Networks

Table 15: Impact of different scheduling methods on ViT-B/16 performance on ImageNet-1K

Method 60% 70% 80% 90% 95%

Constant 75.64±0.0013 74.82±0.0019 74.03±0.0012 72.74±0.0015 68.17±0.0016

Linear 77.93±0.0018 77.43±0.0019 76.53±0.0014 76.21±0.0007 69.45±0.0016

Cosine 78.29±0.0020 77.94±0.0017 77.62±0.0016 76.91±0.0016 69.54±0.0014

1

1.2

1.4

1.6

1.8

2

0.6

65

70

75

80

0.7 0.8 0.9 0.95
Sparsity Level

A
c
c
u
ra

c
y
 (

%
)

T
ra

in
in

g
 S

p
e
e
d
u
p
 (

×
)

In
fe

re
n
c
e
 S

p
e
e
d
u
p
 (

×
)

0.6 0.7 0.8 0.9 0.95
Sparsity Level

0.6 0.7 0.8
0.9

0.95
Sparsity Level

1

2

3

4

1

1.1

1.2

0.6 0.620.58 0.95 0.960.94

1.1

1.3

1.5

1.01

0.58 0.6 0.62
0.995

1.005

0.95 0.960.94

0.58 0.6 0.62
77.5

78.5

79.5

0.94

71.5

71.6

71.7

0.95 0.96

A B A B

A B

B

A A

B

B

A

Figure 9: Comparing the inference speedup (left), training speedup (center), and Top-1 accuracy (right) of sparse training

methods for ViT-B/16 model at varying levels of sparsity running ImageNet-1K. DynaDiag achieves the highest training and

inference speedup while demonstrating superior accuracy to other structured sparsity patterns.

G. Summary of Our Experiments

Fig. 9 shows the results of our experiments in a single figure. We can see that at 60% and 70% sparsity, DST accuracy

performance is better than dense training, and that DynaDiag is the only structured method to keep its performance close

to the unstructured ones that perform better than dense. DynaDiag shows a stable accuracy curve that remains high in

comparison to the other structured methods. It is the only structured method to present a performance stability similar to

unstructured methods across different levels of sparsity.

H. Details of the Heuristics-Based Method

RigL is a dynamic sparsification technique that maintains a constant sparsity budget by repeatedly removing the lowest-

magnitude weights (decay) and “growing” new connections. Similarly, in our DiagHeur method, we follow the same

principle but focus on diagonal blocks: we prune the diagonals with the lowest magnitudes and randomly grow back the

same number of diagonal connections, thereby preserving overall sparsity while continually redistributing capacity to

potentially more valuable diagonals. We keep all the hyperparameters same as the original RigL (Evci et al., 2020) paper.

I. Bipartite Small-World (BSW) and Bipartite Scale-Free (BSF)

Bipartite Scale–Free (BSF). The Bipartite Scale-Free (BSF) model ofZhang et al. (2024) adapts scale-free connectivity to

bipartite graphs, making it ideal for dynamic sparse training. The procedure begins by sampling a standard Barabási–Albert

(BA) graph(Barabási & Albert, 1999), whose node degrees follow a power-law distribution. Every edge that links two

neurons in the same layer is then eliminated and re-attached to a neuron in the opposite layer. Crucially, each node keeps its

original degree, so the resulting bipartite network retains the BA power-law exponent.

Bipartite Small–World (BSW). The Bipartite Small-World (BSW) model ofZhang et al. (2024) embeds small-world

behaviour and strong clustering into a bipartite graph. It starts from a regular ring lattice, labeling the vertices with two

distinct layer types. Every vertex connects to the same number of nearest neighbours that belong to the opposite layer,

producing a highly clustered but not yet small—world structure. Analogous to the Watts–Strogatz construction(Watts

23



Dynamic Sparse Training of Diagonally Sparse Networks

& Strogatz, 1998), the model then applies a rewiring rate β: a proportion β of existing edges is randomly removed and

re-attached elsewhere, introducing the shortcuts that create small-world characteristics.

I.1. Diagonal Sparsity and Small World Networks

To test the small-worldness of networks trained with DynaDiag, we take a 90% sparse ViT-B/16 network trained on

ImageNet-1K and calculate the small-world factor, σ, using the NetworkX library in Python. Tbl. 16 shows that all tested

layers exhibit σ ≥ 1, confirming that DynaDiag’s structured sparsity indeed reflects small-world characteristics.

Table 16: Small-world factor, σ of various layers in a DynaDiag trained ViT-B/16 on ImageNet-1K at 90% sparsity. σ > 1
indicates small world.

Layer Cr Lr C L σ

blocks.0.attn.proj.linear.weight 0.032 2.14 0.063 3.94 1.069

blocks.1.mlp.fc1.linear.weight 0.039 2.67 0.072 3.67 1.343

blocks.2.mlp.fc2.linear.weight 0.041 2.64 0.084 3.55 1.524

blocks.3.attn.proj.linear.weight 0.047 2.94 0.088 3.95 1.394

blocks.4.mlp.fc1.linear.weight 0.029 2.15 0.061 3.87 1.169

blocks.5.mlp.fc2.linear.weight 0.049 3.42 0.087 3.31 1.835

blocks.6.attn.proj.linear.weight 0.061 2.65 0.099 3.91 1.100

blocks.7.mlp.fc1.linear.weight 0.041 2.71 0.097 3.90 1.644

blocks.8.mlp.fc2.linear.weigh 0.032 2.83 0.066 3.88 1.504

blocks.9.attn.proj.linear.weight 0.047 2.23 0.081 3.77 1.019

blocks.10.mlp.fc1.linear.weight 0.054 3.06 0.096 4.13 1.317

blocks.11.mlp.fc2.linear.weight 0.051 3.11 0.097 3.97 1.490

24


