Dynamic Sparse Training of Diagonally Sparse Networks

Abhishek Tyagi' Arjun Iyer? William H Renninger?> Christopher Kanan' Yuhao Zhu'

Abstract

Recent advances in Dynamic Sparse Training
(DST) have pushed the frontier of sparse neural
network training in structured and unstructured
contexts, matching dense-model performance
while drastically reducing parameter counts to
facilitate model scaling. However, unstructured
sparsity often fails to translate into practical
speedups on modern hardware. To address this
shortcoming, we propose DynaDiag, a novel
structured sparse-to-sparse DST method that per-
forms at par with unstructured sparsity. Dyna-
Diag enforces a diagonal sparsity pattern through-
out training and preserves sparse computation
in forward and backward passes. We further
leverage the diagonal structure to accelerate com-
putation via a custom CUDA kernel, rendering
the method hardware-friendly. Empirical eval-
uations on diverse neural architectures demon-
strate that our method maintains accuracy on
par with unstructured counterparts while bene-
fiting from tangible computational gains. No-
tably, with 90% sparse linear layers in ViTs, we
observe up to a 3.13x speedup in online infer-
ence without sacrificing model performance and a
1.59x speedup in training on a GPU compared
to equivalent unstructured layers. Our source
code is available at https://github.com/
horizon-research/DynaDiag/.

1. Introduction

Over the years, deep neural networks (DNNs) have grown,
and their performance on complex tasks has increased to and
beyond human-level performance (Sparkes, 2023; Lykiar-
dopoulou, 2023). However, the cost of training and infer-
ence for such large DNNs has skyrocketed (Cottier, 2023).

"Department of Computer Science, University of Rochester,
Rochester, NY, USA The Institute of Optics, University of
Rochester, Rochester, NY, USA. Correspondence to: Abhishek
Tyagi <atyagi2@ur.rochester.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

@® Dense * SET + CHTs A PixelatedBFly V¥V DSB
H RigL @® CHT X MEST € SRigL @ DynaDiag (Ours)
A ENP a—
! . : +
4.01! . 1.8}
i ! *m
—_ - X
X X 1.0 .
o ° £ 76.5 77.5
= o B e e e Pty
3 9]
]
O .
a25 Gl4r Struc. Sparsit
8 N £ v o
c . 4] c N
o Struc. Sparsit w | T
4
2 £
£ (T |
T p 1.0 iX sl e
1.0 (x ame e Noreoeee :
Better Better
74 76 78 74 76 78

Accuracy (%) Accuracy (%)

Figure 1: Comparing the inference (left) and training
speedups (right) (calculated using wall-clock time) of sparse
training methods and the Top-1 classification accuracy
(x-axis) for a ViT-Base model at 90% sparsity running
ImageNet-1K. DynaDiag, being closest to the top right cor-
ner, demonstrates superior accuracy and speedup compared
to structured and unstructured sparse training approaches.

One way to reduce the execution cost of these networks and
still perform at par with their dense counterparts (Frankle &
Carbin, 2018; Blalock et al., 2020; Mostafa & Wang, 2019)
is to compress them by removing unnecessary weights using
methods such as pruning (Molchanov et al., 2016; Tanaka
et al., 2020), and sparse training (Jaiswal et al., 2022; Zhang
et al., 2023b).

Weights are typically pruned either randomly (unstructured
sparsity (Evci et al., 2020; Han et al., 2015)) or in patterns
(structured sparsity (Liu et al., 2019)). Unstructured sparsity
achieves high sparsity ratios with minimal performance loss
but lacks hardware acceleration. Structured sparsity, while
hardware-friendly, has yet to match the performance of
unstructured approaches.

Current structured sparsity methods face two key issues.
First, they often use dense backpropagation (Lasby et al.,
2023), resulting in negligible training speedup. Even when
sparse gradients are computed, transposing weight matri-
ces in backpropagation breaks hardware-friendly patterns,
hindering acceleration (Hubara et al., 2021). Second, these
methods struggle with high sparsity, suffering significant

Dynamic Sparse Training of Diagonally Sparse Networks

performance drops—as we show later.

To address these limitations, we introduce a novel sparse
pattern inspired by small-world networks (Watts & Stro-
gatz, 1998; Telesford et al., 2011)—diagonal sparsity—that
retains its structure during backpropagation, enabling effi-
cient training acceleration. We propose DynaDiag, a fully
differentiable training method to learn diagonal sparsity by
dynamically selecting and updating the most critical diag-
onals during training. Our approach outperforms existing
structured sparsity methods across tasks and sparsity levels,
achieving high performance and efficiency, even at extreme
sparsities. Experiments show that diagonal sparsity consis-
tently surpasses structured sparse architectures in vision and
language tasks while maintaining computational benefits.

Fig. 1 presents a comparison of DynaDiag with existing Dy-
namic Sparse Training (DST) methods for both structured
and unstructured sparsity. DynaDiag achieves the highest
accuracy among the structured DST methods. Moreover,
DynaDiag significantly reduces the inference and training
wall-clock times on a GPU.

The following are the major contributions of our work:

1. We introduce a diagonal sparsity pattern inspired by
small-world networks that preserve its structure under
transposition and are efficiently accelerated on GPUs.

2. We propose DynaDiag, a differentiable TopK-
based Sparse-To-Sparse training algorithm to obtain
diagonally-sparse neural networks.

3. We conduct extensive empirical evaluations of Dy-
naDiag on computer vision and natural language
tasks, demonstrating that it outperforms all prior struc-
tured sparsity methods under the same sparsity bud-
get. Additionally, DynaDiag achieves competitive per-
formance, showing no statistically significant differ-
ence compared to unstructured sparsity techniques like
RigL (Evci et al., 2020).

4. We introduce a method to convert diagonally sparse ma-
trices to Block CSR (BCSR) format to enable speedups
in both inference and training.

2. Related Work
2.1. Sparsity in Neural Networks

The main idea behind sparsity in neural networks is to re-
move the weights or activations that have minimal contribu-
tion to the model’s overall performance. The most common
way of doing this is to pre-train a dense network and re-
move unimportant weights using heuristics such as weight
magnitude (Han et al., 2015) or gradients (Molchanov et al.,
2017; 2019; Lee et al., 2018; Wang et al., 2020) and then
fine-tune the model to maintain the accuracy. This approach

is commonly known as Pruning and has been used to com-
press CNNs (Cai et al., 2022; Lin et al., 2019), ViTs (Yang
et al., 2023b; Yu et al., 2022) and LLMs (Lu et al., 2024).
Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018)
states that within a large, randomly initialized neural net-
work, there exists a smaller, sparse subnetwork (a “winning
ticket”) that, when trained in isolation from the original
initialization, can match or exceed the performance of the
full, dense model and potentially be much more efficient to
train from scratch.

2.2. Sparse Training Methods

Sparse training aims to train a sparse neural network from
scratch. It can broadly be classified into either Static Sparse
Training (SST) or Dynamic Sparse Training (DST).

In SST, the positions of the non-zeros in each weight matrix
are fixed at the start of the training and are maintained the
same throughout. Training then optimizes the values of the
non-zeros for loss minimization. Pixelated Butterfly (Dao
et al., 2021) uses butterfly factorization to fix the mask at
initialization. However, SST is prone to a higher loss than
DST as DST can escape the local minimum (Evci et al.,
2020), especially at high sparsities.

In DST, the positions of the non-zeros are updated dynami-
cally during training. The usual way to do DST is by starting
with sparse weight matrices before repeatedly training the
network for a few iterations, then removing the weights
that are of least importance based on magnitude (Mocanu
et al., 2018; Jayakumar et al., 2020) or gradients (Evci et al.,
2020; Chen et al., 2022), and then growing another set of
connections which will be trained in the next iterations.

SET (Mocanu et al., 2018) is one of the earliest DST works
that introduced a prune-and-regrow strategy for DST, where
during the prune phase, weights are pruned based on their
magnitude and are regrown randomly. MEST (Yuan et al.,
2021) regrows weights randomly and uses a combination of
weight magnitude and gradient magnitude of the existing
weights to prune them. RigL (Evci et al., 2020), on the
other hand, prunes weights based on their magnitudes and
are regrown based on the gradients of missing links (zero
weights), which makes the backward pass dense and unable
to take advantage of the sparsity in the network. Addressing
this limitation of RigL, Zhang et al. (2024) proposes CHT
and CHTs (Zhang et al., 2025) methods where a gradient-
free (and based on the network topology) approach is used
during the regrow phase, which makes their method scalable
and achieves state-of-the-art performance at broad range of
sparsities.

Top-KAST (Jayakumar et al., 2020) is closest to our work
and uses a TopK function to pick the most useful weights in
both the forward and backward pass. However, unlike Dyna-

Dynamic Sparse Training of Diagonally Sparse Networks

Diag, both methods result in an unstructured distribution of
nonzero weights and, hence, do not yield speedups on GPUs.
SRigL (Lasby et al., 2023) addresses the above limitations

BSF (y=2.73) BSW (0<p<1) BSW (p=1)

Diagonal
(Our work)
|| ||

- o E

H n
|| H n
2:4 Block Butterfly

b || n

|| |

Figure 2: Overview of different sparsity patterns from the
literature used in sparse training methods. Bipartite Scale-
Free (BSF) and behavior of Bipartite Small-World (BSW)
networks with varying £ is explained in Apdx. I

of Rigl. by dynamically identifying weight matrices that
abide by N:M sparsity pattern, which can be accelerated on
GPUs (by transforming N:M to 2:4 pattern supported by
NVIDIA GPUs (Mishra et al., 2021; Hu et al., 2024)). The
authors show that SRigL retains the same accuracy as RigL
for ViTs and CNNs, though the method lacks evaluations
on large language models (LLMs). Moreover, while they
report inference speedups in the final trained models, the
training process does not currently benefit from this sparsity.
DSB (Jiang et al., 2022) uses block sparsity to accelerate
the training and inference while dynamically looking for
the optimal placement of non-zero blocks. However, as we
show in Sec. 4, block sparsity loses out significantly at high
sparsities like the pixelated butterfly method.

The various structured and unstructured sparsity patterns
discussed are shown in Fig. 2. We will now describe the
training of diagonally sparse neural networks.

3. Training Diagonally Sparse DNNs

We present a differentiable formulation of diagonally sparse
matrices (Sec. 3.1) to learn the pattern shown in Fig. 2. We
then describe our TopK -based training approach (Sec. 3.2)
that dynamically optimizes diagonal positions during train-
ing. Finally, we detail the conversion of our diagonal ma-
trices to the GPU-efficient BCSR format (Sec. 3.3). Fig. 3
breaks down the various stages of our training method into
forward and backward passes, illustrating what makes our
DST approach efficient.

3.1. Diagonal Sparsity Formulation

To formulate our weight matrix with diagonal sparsity, we
first define how the positions of the diagonals are determined
and how the trainable parameters along these diagonals are
specified.

Permutation Matrix. A permutation matrix P € RM*~N
is a binary matrix containing precisely one entry of 1 per
row and column, with all other entries equal to 0. In our
setting, we place these 1s along a diagonal specified by an
offset off as described in Eqn. 1.

Value Vector. Let V € R™*(M:N) be a vector whose
elements populate the diagonal entries of W at positions
indicated by P. The operator diag(V') forms a diagonal
matrix K x K, where K = max(M, N), and places the
elements of V' along its main diagonal.

Diagonal Definition. Let W € RM*¥ and define N =
min(M, N). We specify a diagonal in W with offset off as
the set of entries (i, j) such that

j = (i + off) mod N. e

where a negative off indicates a diagonal below the main
diagonal.

We aim to learn both the positions and the values of diago-
nals in W. To achieve this, we express W € RMXN a5 the
product of a permutation matrix P and a diagonal matrix
diag(V"). Concretely, for a single diagonal weight matrix,

W1 = P x diag(V))

This factorization enables gradient-based methods to opti-
mize the corresponding values of W (through V'), making it
well-suited for end-to-end learning.

We generalize the single-diagonal form in (2) to represent
any matrix Wy € RM>*¥ with K being the required num-
ber of diagonals (calculated from the desired sparsity level
S, each of length min(M, N). Specifically, we write

K

Wi = > P;diag(V;), 3)
j=1

where each P is a permutation matrix defining the position
of the j-th diagonal, and each V} is a vector of diagonal

values.

3.2. TopK Based Diagonal Selection

With our learnable diagonal representation (Eqn. 3), we can
parameterize each layer, and our objective reduces to finding
the optimal diagonal placements (offsets) and associated
values that yield the lowest overall loss.

1 _ (1-S5)-M-N
K= min(M,N)

Dynamic Sparse Training of Diagonally Sparse Networks

Forward Pass

o o Px. V)& >
P L Vo r. W Diags to BCSR Input Output
o | iy P, 3|'. - V, 3f T | | K g, | | i
@l 9 o] Pl Vv, M " i@ mE ™ 2
S u e 8 1| s E -
"E’ E ®| = ® - u 8| =m OF mul%
o u Ve | | s || a [1 |
° -. |) 1 |||)
oy 4 0 - v.@ m = [])]
oy ot
(a) (b) (©) (d) (e)
< Backward Pass
9(Wy) Diags to BCSR = W,T Wy
c || | [
H Bl N H e N ‘0 || o [|
| H N @ u 2 . |
N EE L H NN 3 u S W
Wy o o u) |
s | H ||
i Em | | @] = u
[] L[] e | |
0} (h) (9) ()

Figure 3: Training with DynaDiag and diagonal sparsity. TopK induces sparsity in « (a), which leads to selecting a subset
of diagonals for the forward pass (b) and (c). Matrices with diagonals are converted to BCSR format to accelerate sparse
matrix-matrix multiplication (d) and (e). Backward pass is accelerated by converting the diagonal sparse weight matrix to
BCSR format (g). Sparse gradients are calculated using our custom CUDA kernels (h) and (i).

To determine which diagonals contribute the most to the
final matrix Wi, we introduce a learnable vector of impor-
tance weights a € R™*>*(M.N)(Fig. 3a). We use a TopK
function to select the K most significant diagonals out of
all possible diagonals based on the values in a (Fig. 3b).
Concretely, we replace the summation in (3) with

K
Wk = Zdj P; diag(V}),
= @
a = TopK(oz)7

where P; and diag (V) specify the j-th diagonal in W, and
¢ is the importance weight for that diagonal after applying
TopK.

A differentiable TopK function takes a vector « of values
as inputs and outputs a vector with higher values assigned
to the top K values. We can use a differentiable TopK
function in an end-to-end training method and learn which
values in « should be in the top K for a particular task. We
use the following softmax-based TopK in our end-to-end
pipeline (we also experimented with other TopK methods,
such as the one proposed by Sander et al. (2023) but found
it to be too slow). For a given a € R™2*(M.N) yector,

exp(F)

= a1 5)
2 iz exp(F))

a; = min(k .

where T' is the temperature. We adopt a temperature-
controlled TopK function to enable a balance between
exploration (considering less dominant diagonals) and ex-
ploitation (focusing on the most important diagonals). Sub-
optimal solutions may arise without temperature-controlled

TopK or heuristics, especially when the initial selection is
biased or the significance of the diagonal evolves during
training. We employ a cosine-annealing schedule during
training to adjust 7" from a high starting value (yielding a
smoother TopK).To encourage sparsity in o, we employ an
¢y regularization term. We derive per-layer sparsity budget
p; from the global sparsity budget pgiobai, and the number
of diagonals K; for each layer is determined based on p;.

Having established the forward pass with diagonal sparse
matrices, we next describe how they are efficiently accel-
erated on GPUs by converting them into hardware-friendly
formats.

3.3. GPU Acceleration

To efficiently execute diagonally sparse matrices on GPUs,
they must be transformed into formats compatible with spe-
cialized hardware, such as dense matrices, 2:4 sparse matri-
ces, or block sparse matrices. We determined that converting
to block sparse matrices is the most effective approach for
our sparse pattern (Fig. 3d): converting to dense matrices
would introduce unnecessary overhead from additional vec-
tor addition operations, while 2:4 sparsity would impose
overly restrictive constraints on the positioning of the diago-
nals.

When converting diagonal patterns to BCSR format, we
optimize for two key objectives: minimizing the number
of blocks and maximizing block density. Dense blocks
ensure efficient hardware utilization by reducing redundant
computations on zero values, while fewer blocks minimize
memory access overhead and computational requirements
on the GPU.

Dynamic Sparse Training of Diagonally Sparse Networks

Although finding the optimal block-minimizing permuta-
tion from diagonals to BCSR is NP-hard, various heuristics
have been developed to cluster non-zero values and reduce
the block count. Our approach builds upon SmaT library,
proposed by Okanovic et al. (2024). The SmaT library uses
Jaccard-based similarity metric (Labini et al., 2022) for de-
termining blocking, which works the best when matrices
have a banded structure.

Our approach yields training acceleration by leveraging the
same diagonal-to-BCSR conversion for Wy and W . This
optimization enables efficient sparse computation during
forward propagation and backpropagation, where we com-
pute sparse gradients and accelerate the sparse operations
required for gradient calculation.

Our hardware implementation also leverages key optimiza-
tions for sparse matrix multiplication on GPUs, inspired
by the techniques described in (Okanovic et al., 2024). We
elaborate on these techniques in more detail in Apdx. D.

4. Experiments

We first describe our experimental setup in Sec. 4.1. We
then present our main results, comparing the performance of
DynaDiag with other baselines (Sec. 4.2.1) and (Sec. 4.2.2)
and comparing DST methods’ training and inference time
on GPUs (Sec. 4.2.3). We wrap up this section by proposing
a fine-tuning method to improve DynaDiag’s algorithmic
performance beyond unstructured sparsity (Sec. 4.3.1).

4.1. Experimental Setup

The aim for our experiments is to show the efficacy of our
structured DST approach on different modalities (vision and
language), model types (mlp and attention), and sparsity
regimes.

Evaluation. We assess the algorithmic performance of all
training methods using Top-1 accuracy for vision tasks and
perplexity for language tasks. Additionally, we measure the
training and inference speedups achieved by each method
at varying sparsity levels through end-to-end execution. We
conduct paired asymptotic McNemar tests (o = 0.05) com-
paring the top-performing method at each sparsity level
against all others, bolding results that show no statistical
difference from the best.

Baselines. We compare our approach against the following
sparse training methods:

e RigL (Evci et al., 2020), MEST (Yuan et al., 2021),
SET (Mocanu et al., 2018), CHT (Zhang et al., 2024),
and CHTs (Zhang et al., 2025) uses DST to produce
unstructured sparsity, which does not yield significant
speedups in training or inference.

* SRigL (Lasby et al., 2023), DSB (Jiang et al., 2022),
and DiagHeur train networks with structured spar-
sity via DST. SRigL exploits N:M sparsity to accel-
erate inference (but not training), DSB accelerates
both, and DiagHeur serves as a diagonal-sparsity base-
line without our differentiable topk selection (it uses a
magnitude-based grow-and-decay scheme as detailed
in Apdx. H).

* PixelatedBFly (Dao et al., 2021) factorizes dense ma-
trices into a fixed butterfly structure. With further opti-
mizations, it leverages block sparsity to speed up both
training and inference.

4.2. Main Results
4.2.1. VISION EXPERIMENTS

Setup. We evaluate two architectures for vision tasks on
CIFAR10 and CIFAR100 (Krizhevsky & Hinton, 2009) and
ImageNet-1K (Deng et al., 2009). Due to space limitations,
we focus our discussion on ImageNet-1K results. For CI-
FAR10 and CIFAR100 results, please see Apdx. F.1.

¢ MLP: We use MLP-Mixer (Tolstikhin et al., 2021) to
focus on the impact of sparsity on large matrix multi-
plication components without additional complexities.

* ViT: To demonstrate scalability, we train various sizes
of Vision Transformers (ViT) (Dosovitskiy, 2020).

We test DynaDiag with uniform sparsity (Dao et al., 2021)
at 60%, 70%, 80%, 90%, and 95%, following the training
regime in Apdx. C.2

Results on ImageNet-1K. Tbl. 1 shows the performance
of MLP-Mixer and three sparse variants of ViTs—small
(S), large (L), and huge (H)—on ImageNet-1K. Except for
ViT-L/16 and ViT-H/14, all other experiments are performed
three times with average accuracies reported in the table.

The results highlight the effectiveness of DynaDiag, partic-
ularly at higher sparsities, where it consistently outperforms
other structured sparse training (DST) methods. DynaDiag
demonstrates significant improvements over competing DST
methods at higher sparsities (90% and 95%). For instance:
On ViT-L/16, DynaDiag achieves 77.74% accuracy at 90%
sparsity, outperforming the next best method (SRigL) by
2.28%.To the best of our knowledge, we are the first to show
a DST method’s performance training large and huge vari-
ants of ViTs from scratch. DynaDiag consistently achieves
results on par with Rigl,, SET, MEST, CHT and CHTs
across most sparsity levels. We explain the reason behind

2All modules in ViT-S/16 are set to the desired sparsity level,
except the multi-headed attention input projections.

Dynamic Sparse Training of Diagonally Sparse Networks

Table 1: Top-1 accuracy of DynaDiag alongside baseline methods at varying sparsities. We bold results that are not
significantly different (based on paired asymptotic McNemar tests (o« = 0.05)) from the best-performing method (marked
with a *) in each column. Among all structured sparse training methods, DynaDiag achieves the highest accuracy on the

ImageNet-1K dataset.

Model Method Struc. 60% 70% 80% 90 % 95 %
dense accuracy = 78.5
RigL no 79.75 79.28 78.71 77.24 71.50
SET no 78.15 78.01 77.78 77.01 71.48
CHT no 79.78 79.37 79.06% 77.66% 71.68%
ViT-B/16 CHTs no 79.88*% 79.38* 79.05 77.54 71.61
MEST no 78.04 77.76 77.39 76.45 69.67
SRigl yes 77.79 77.84 77.35 75.90 68.70
PixelatedBFly yes 78.04 77.90 77.31 73.89 62.52
DSB yes 77.98 77.85 76.26 72.89 64.17
DiagHeur. yes 77.37 76.95 75.75 71.46 68.06
DynaDiag yes 78.29 77.94 77.62 76.91 69.54
dense accuracy = 82.2
RigL no 81.85% 81.57* 81.7% 7826% 72.11%
VIT-L/16 SRigL yes 79.87 78.94 77.54 75.46 66.68
PixelatedBFly yes 79.13 79.06 79.33 75.12 66.59
DSB yes 79.44 77.46 75.34 73.55 66.77
DiagHeur. yes 80.02 80.07 78.23 74.24 68.79
DynaDiag yes 81.52 81.56 81.37 77.74 69.59
dense accuracy = 83.2
RigL no 83.84*% 83.47* 82.85* 80.52* 74.54*
ViT-H/14 SRigL yes 80.62 79.09 75.42 76.58 69.24
PixelatedBFly yes 82.24 82.10 81.37 79.91 70.21
DSB yes 79.53 76.44 71.32 68.09 62.86
DiagHeur. yes 80.64 78.97 73.07 75.04 65.45
DynaDiag yes 82.76 82.60 81.89 80.44 73.74
dense accuracy = 72.4
RigL no 73.21% 73.23* 73.47* 73.01* 70.41%
. SRigL yes 71.89 72.05 71.71 70.21 66.87
Mixer-S/16 . clatedBFly yes 7195 7191 7145 6917 67.85
DSB yes 69.94 70.21 68.9 65.16 60.88
DiagHeur. yes 69.91 69.77 67.87 64.17 59.16
DynaDiag yes 72.92 72.95 73.05 72.31 68.89

this disparity in accuracy between DynaDiag and unstruc-
tured methods in Sec. 4.3.1 to surpass RigL’s performance.)

DynaDiag achieves superior accuracy than other DST ap-
proaches on all the ViT variants, demonstrating the scal-
ability of our method to large models while maintaining
competitive performance. The p-values under the asymp-
totic McNemar’s test are reported in Tbl. 10 in Apdx. E.
This trend holds for CIFAR10 and CIFAR100 experiments
as well.

4.2.2. LANGUAGE EXPERIMENTS

Setup. For language tasks, we evaluate on the WikiText-
103 dataset using two variants (Small and Medium) of
GPT-2 (Radford et al., 2019) at varying sparsities s &€
{40%, 50%, 60%, 80%, 90%}. This setup aims to reduce

the substantial memory and computational overheads asso-
ciated with increasing parameter counts in large language
models.

Results on WikiText-103. We train GPT2-Small and GPT2-
Medium (Radford et al., 2019) from scratch® on WikiText-
103 data set and show the resulting performance in Tbl. 2.
All experiments are performed two times with average accu-
racies reported in the table. Both GPT2 models trained with
DynaDiag outperform other DST methods on the perplexity
metric (lower the better).

Notably, DynaDiag demonstrates increasingly significant
improvements over competing DST approaches as sparsity
levels rise. For example, at 90% sparsity on GPT2-Small,

3We make both the attention and MLP layers sparse.

Dynamic Sparse Training of Diagonally Sparse Networks

DynaDiag achieves a perplexity of 6.22 points lower than
that of the next best DST method while remaining within
2.57 points of the performance ceiling established by RigL.
The p-values under the asymptotic McNemar’s test are re-
ported in Tbl. 11 in Apdx. E.

Table 2: Perplexity of DynaDiag and baselines. We bold
results that are not significantly different from RigL based
on paired asymptotic McNemar tests (a« = 0.05). Among
all the baselines, DynaDiag achieves the lower PPL (lower,
the better) on the WikiText-103 dataset.

Model Method 40% 50% 60% 80% 90%
dense accuracy = 22.21
RigL 2234 22.80 23.79 29.87 53.76
GPT2-S SRigL 22774 23.19 25.09 31.08 62.55
PixelatedBFly 22.50 23.25 2598 34.89 66.44
DynaDiag 22.60 22.74 24.67 30.46 56.33
dense accuracy = 20.18
RigL 2045 21.60 2349 28.87 51.76
GPT2-M SRigL 21.14 2259 26.09 32.16 55.66
PixelatedBFly 20.86 2249 2545 3424 56.09
DynaDiag 20.69 22.14 2498 29.65 54.87

B RiglL [DSB EE# DynaDiag
SRigL E= PixelatedBFly ------ Dense

1507
m
£100
g
= 50

0

(a) Inference Time

@

70% 80%
Sparsity Level
(b) Training Time

Time (hrs)

(S
INNINRRRNINRRINENNE
UL LT TTH

X
@v
S
x

60%

Figure 4: Inference and training time of a ViT-Base at dif-
ferent sparsity levels trained with DynaDiag and baselines.
When controlling for an equivalent number of non-zero pa-
rameters, our specialized diagonal-sparse kernel achieves
faster execution on GPUs than standard sparse kernels.

4.2.3. TRAINING AND INFERENCE ACCELERATION

We measure GPU training and inference times for the meth-
ods described in Sec. 4.1. All reported timings reflect wall-

clock measurements.

Setup. We select the most suitable libraries to accelerate
execution based on the structured sparsity type: (1) RigL:
We use CUSPARSE, as RigL lacks exploitable structure.
(2) SRigL: The authors propose a custom method for the
acceleration of inference in SRigL (Lasby et al., 2023),
which we employ to estimate inference and training times.
However, the provided CUDA kernels lack the necessary
supporting infrastructure (e.g., integration with PyTorch*)
to enable end-to-end execution and real-time data collec-
tion. (3) DSB and PixelatedBFly: Both methods yield
block-sparse weight matrices. We use the Triton-based li-
brary from PixelatedBFly (Dao et al., 2021) to accelerate
inference for both. However, while this library is used for
PixelatedBFly training, it cannot be applied to DSB due
to the significant effort required to integrate it into DSB’s
training pipeline. (4) Diag: We employ custom-developed
kernels to accelerate both training and inference for diagonal
sparse networks.

Training & Inference Time. In Fig. 4, we present real-
world timing comparisons of DynaDiag and other dynamic
sparse training (DST) approaches. We implement custom
layers in PyTorch for each method and leverage their ded-
icated CUDA kernels to accelerate execution. Our results
demonstrate that DynaDiag achieves an inference speedup
of up to 3.1x and training speedup of 1.59x compared to
the dense equivalent at 90% sparsity. However, we observe
diminishing gains at lower sparsity levels, with inference
speedups of 1.37x at 60% sparsity and training times ap-
proaching parity (0.98x at 60% sparsity). Our PyTorch im-
plementation does not exploit CUDA kernel optimizations,
and addressing this could lead to further speed increases.

4.3. Additional Results
4.3.1. How To IMPROVE DYNADIAG PERFORMANCE?

Tbl. 1 reveals a performance gap between RigL and Dyna-
Diag at sparsities > 80%, which we attribute to the increased
expressivity of unstructured sparsity in RigL (Liu & Wang,
2023). To validate this hypothesis, we conduct an experi-
ment using LORA-FA (Zhang et al., 2023a) to fine-tune the
weight matrices of a ViT-B/16 model at 80% sparsity trained
with DynaDiag. We choose LoRA-FA specifically for its
memory and computational efficiency during fine-tuning.

As shown in Fig. 5a), increasing the rank of LoRA-FA’s
A and B matrices leads to improved model accuracy. No-

*While custom CUDA kernels can theoretically accelerate train-
ing, their effectiveness depends on the surrounding infrastructure,
such as memory management and integration with deep learning
frameworks like PyTorch. In DSB and SRigL, the absence of this
supporting structure limits their practical utility for end-to-end
training acceleration.

Dynamic Sparse Training of Diagonally Sparse Networks

RigL —A— DynaDiag w/ LORA-FA
DynaDiag DynaDiag w/ Dense Fine Tunin

~84

<

282

I

380

O

<

v %9 01N D Q'\'Q'\"\'N%‘\’rb&b"\?"\,b”y’bbb‘\'ﬁ,%qf)b

Rank

(a) ViT-Base with LoRA-FA.

« LoRA-FA Points

576|

1152}

Row Index

1728y

230415

384
Column Index

(b) Weight matrix (w/ LoORA-FA.)

576 7

Figure 5: Performance of ViT-Base at 80% sparsity fine-
tuned with LoRA-FA matrices of different ranks (a). We see
an increase in the accuracy over a diagonally sparse model,
with rank six matrices enough to match RigL performance.
(b) Shows a distribution of the new fine-tuned parameters
for a linear layer in the attention block of ViT-Base.

tably, DynaDiag surpasses Rigl’s performance at rank 6,
requiring only a 1.67% increase in total parameters. This
minimal parameter overhead demonstrates that DynaDiag
can exceed the accuracy ceiling of unstructured sparsity
while maintaining most of its structured sparsity benefits for
inference acceleration.

We examine the spatial distribution of fine-tuned parameters
in Fig. 5, analyzing a linear layer within an attention head
of ViT-B/16 trained on ImageNet-1K. The visualization re-
veals that the newly introduced parameters are distributed
across the weight matrix in an unstructured pattern, support-
ing our hypothesis that unstructured sparsity enables better
optimization of the loss landscape.

® Dense PixelatedBFly
RiGL v DSB
¢ SRigL e Diag
ViT Base

102

Accuracy (%)
[
<

10°
MLPMixer
2
10 o o
S
>
@ 101
>
(O]
O
<
0
10 0.9 0.95 0.99 0.999
Sparsity

Figure 6: Performance of DynaDiag compared to other base-
lines at extreme sparsities for a ViT-Base and MLPMixer
models on ImageNet-1K. DynaDiag outperforms other base-
lines, including RigL, at extreme sparsities.

4.3.2. PERFORMANCE AT EXTREME SPARSITY

Dynamic sparse training typically uses predefined layer-
wise sparsity ratios (e.g., uniform) to avoid layer col-
lapse at high sparsity levels, where entire layers risk be-
ing pruned (Tanaka et al., 2020). However, individual lay-
ers exhibit distinct learning dynamics (Chen et al., 2023),
and extreme sparsity can disrupt gradient flow. We eval-
uate DynaDiag under sparsity levels of up to 99.99% on
ImageNet-1K using ViT-Base and MLP-Mixer. As shown
in Fig. 6, DynaDiag demonstrates robust performance even
under these extreme conditions, indicating that it effectively
discovers accurate masks from the network topology—even
in highly sparse settings. DynaDiag outperforms RigL at
extreme sparsities, where Rigl.’s performance is known to
degrade significantly, as documented in prior work (Ji et al.,
2024).

Dynamic Sparse Training of Diagonally Sparse Networks

5. Discussion

We have identified three current limitations of DynaDiag,
which will be a significant part of the future work. First,
while effective for ViTs and LLMs, DynaDiag faces scalabil-
ity challenges with CNNs due to the overhead of searching
for distinct diagonal patterns across each channel. Secondly,
we aim to extend our method to networks with extremely
sparse weight matrices—e.g., at sparsity levels approaching
99.9999% or more—while still retaining more than a single
active diagonal. We believe that with large matrices, we will
see the effectiveness of having small-world connectivity,
resulting in highly sparse networks. However, we could
not find a good example model to test our hypothesis. Fi-
nally, our method’s performance could be further improved
through optimized GPU implementations of diagonal spar-
sity using frameworks like Triton.

6. Conclusion

This work presents a novel dynamic sparse training algo-
rithm, DynaDiag, that uses small world networks inspired
diagonal structured sparsity to train neural networks. We
demonstrate that models trained using our TopK -based al-
gorithm surpass those from other structured sparse training
approaches in terms of both algorithmic effectiveness and
hardware acceleration. Ultimately, we show that DynaDiag
achieves competitive performance — matching other un-
structured sparsity training methods at lower sparsity levels
while beginning to match and, in some cases, surpassing
them at extreme sparsity levels.

Acknowledgments

This work was partly supported by NSF award #2326491 to
CK and #2419721 to WR and YZ. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as representing any sponsor’s official poli-
cies or endorsements.

Impact Statement

Our work introduces an efficient sparse training method
that enables training larger models with fixed computational
resources, supporting the democratization of deep learning
as model sizes continue to grow. The method’s ability to
maintain sparsity throughout training reduces computational
and energy costs during both training and deployment, par-
ticularly benefiting on-device and real-time learning scenar-
ios. While we anticipate primarily positive impacts through
improved resource efficiency and accessibility, we acknowl-
edge that any advancement in machine learning capabili-
ties warrants careful consideration. We encourage future
research to investigate potential differential effects of our

sparsification approach on model fairness and bias, particu-
larly regarding class imbalances and data distribution shifts
compared to dense models.

References

Barabdsi, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509-512, 1999.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the state of neural network pruning? Proceedings
of machine learning and systems, 2:129-146, 2020.

Cai, Y., Hua, W., Chen, H., Suh, G. E., De Sa, C., and
Zhang, Z. Structured pruning is all you need for pruning
cnns at initialization. arXiv preprint arXiv:2203.02549,
2022.

Chen, T., Zhang, Z., Wang, P., Balachandra, S., Ma, H.,
Wang, Z., and Wang, Z. Sparsity winning twice: Better
robust generalization from more efficient training. arXiv
preprint arXiv:2202.09844, 2022.

Chen, Y., Yuille, A., and Zhou, Z. Which layer is learning
faster? a systematic exploration of layer-wise conver-
gence rate for deep neural networks. In The Eleventh

International Conference on Learning Representations,
2023.

Cottier, B. Trends in the dollar training cost of machine
learning systems. Epoch. January, 31:2023, 2023.

Dao, T., Chen, B., Liang, K., Yang, J., Song, Z., Rudra,
A., and Re, C. Pixelated butterfly: Simple and efficient
sparse training for neural network models. arXiv preprint
arXiv:2112.00029, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248-255. Ieee, 2009.

Dosovitskiy, A. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International conference on machine learning, pp. 2943—
2952. PMLR, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.

Advances in neural information processing systems, 28,
2015.

Dynamic Sparse Training of Diagonally Sparse Networks

Hu, Y., Zhao, K., Huang, W., Chen, J., and Zhu, J. Acceler-
ating transformer pre-training with 2: 4 sparsity. arXiv
preprint arXiv:2404.01847, 2024.

Hubara, 1., Chmiel, B., Island, M., Banner, R., Naor, J., and
Soudry, D. Accelerated sparse neural training: A provable
and efficient method to find n: m transposable masks.

Advances in neural information processing systems, 34:
2109921111, 2021.

Jaiswal, A. K., Ma, H., Chen, T., Ding, Y., and Wang, Z.
Training your sparse neural network better with any mask.
In International Conference on Machine Learning, pp.

9833-9844. PMLR, 2022.

Jayakumar, S., Pascanu, R., Rae, J., Osindero, S., and Elsen,
E. Top-kast: Top-k always sparse training. Advances
in Neural Information Processing Systems, 33:20744—
20754, 2020.

Ii, J., Li, G., Yin, L., Qin, M., Yuan, G., Guo, L., Liu, S., and
Ma, X. Advancing dynamic sparse training by exploring
optimization opportunities. In Forty-First International
Conference on Machine Learning, 2024.

Jiang, P, Hu, L., and Song, S. Exposing and exploiting
fine-grained block structures for fast and accurate sparse
training. Advances in Neural Information Processing
Systems, 35:38345-38357, 2022.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical Report TR-2009,
University of Toronto, 2009.

Kuznedelev, D., Kurtic, E., Iofinova, E., Frantar, E., Peste,
A., and Alistarh, D. Accurate neural network pruning
requires rethinking sparse optimization. arXiv preprint
arXiv:2308.02060, 2023.

Labini, P. S., Bernaschi, M., Nutt, W., Silvestri, F., and
Vella, F. Blocking sparse matrices to leverage dense-
specific multiplication. In 2022 IEEE/ACM Workshop
on Irregular Applications: Architectures and Algorithms
(IA3), pp. 19-24. IEEE, 2022.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lasby, M., Golubeva, A., Evci, U., Nica, M., and loannou,
Y. Dynamic sparse training with structured sparsity. arXiv
preprint arXiv:2305.02299, 2023.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

10

Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang,
F., and Doermann, D. Towards optimal structured cnn
pruning via generative adversarial learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2790-2799, 2019.

Liu, S. and Wang, Z. Ten lessons we have learned in the
new” sparseland. A short handbook for sparse neural
network researchers, 2023.

Liu, S., Mocanu, D. C., and Pechenizkiy, M. On improving
deep learning generalization with adaptive sparse connec-
tivity. arXiv preprint arXiv:1906.11626, 2019.

Lu, H., Zhou, Y., Liu, S., Wang, Z., Mahoney, M. W., and
Yang, Y. Alphapruning: Using heavy-tailed self reg-
ularization theory for improved layer-wise pruning of
large language models. arXiv preprint arXiv:2410.10912,
2024.

Lykiardopoulou, I. Ai beats humans for the first time in phys-
ical skill game. https://www.newscientist.
com/article/2402645, 12 2023. Accessed: 20 01
2025.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. Build-
ing a large annotated corpus of english: The penn tree-
bank. Computational linguistics, 19(2):313-330, 1993.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic,
D., Venkatesh, G., Yu, C., and Micikevicius, P. Ac-
celerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9
(1):2383, 2018.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In International
conference on machine learning, pp. 2498-2507. PMLR,
2017.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,
J. Pruning convolutional neural networks for resource
efficient inference. arXiv preprint arXiv:1611.06440,
2016.

Molchanov, P., Mallya, A., Tyree, S., Frosio, 1., and Kautz,
J. Importance estimation for neural network pruning. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11264-11272, 2019.

Dynamic Sparse Training of Diagonally Sparse Networks

Mostafa, H. and Wang, X. Parameter efficient training of
deep convolutional neural networks by dynamic sparse
reparameterization. In International Conference on Ma-
chine Learning, pp. 4646-4655. PMLR, 2019.

Okanovic, P, Kwasniewski, G., Labini, P. S., Besta, M.,
Vella, F., and Hoefler, T. High performance unstructured
spmm computation using tensor cores. In SC24: Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-14. IEEE, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, 1., et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

Sander, M. E., Puigcerver, J., Djolonga, J., Peyré, G., and
Blondel, M. Fast, differentiable and sparse top-k: a
convex analysis perspective. In International Conference
on Machine Learning, pp. 29919-29936. PMLR, 2023.

Sparkes, M. Game-playing deepmind ai can beat top hu-

mans at chess, go and poker. https://thenextweb.

com/news/, 11 2023. Accessed: 20 01 2025.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. Advances in neural information
processing systems, 33:6377-6389, 2020.

Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H.,
and Laurienti, P. J. The ubiquity of small-world networks.
Brain connectivity, 1(5):367-375, 2011.

Tolstikhin, 1. O., Houlsby, N., Kolesnikov, A., Beyer, L.,
Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers,
D., Uszkoreit, J., et al. Mlp-mixer: An all-mlp architec-

ture for vision. Advances in neural information process-
ing systems, 34:24261-24272, 2021.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. arXiv
preprint arXiv:2002.07376, 2020.

Watts, D. J. and Strogatz, S. H. Collective dynamics of
‘small-world’ networks. nature, 393(6684):440-442,
1998.

Yamaguchi, T. and Busato, F. Accelerating matrix multipli-
cation with block sparse format and nvidia tensor cores.
NVIDIA Developer Technical Blog, https://developer.
nvidia. com/blog/accelerating-matrixmultiplication-with-
block-sparse-format-and-nvidia-tensor-cores, 2021.

11

Yang, H., Liang, Y., Guo, X., Wu, L., and Wang, Z. Pruning
before training may improve generalization, provably.
arXiv preprint arXiv:2301.00335, 2023a.

Yang, H., Yin, H., Shen, M., Molchanov, P., Li, H., and
Kautz, J. Global vision transformer pruning with hessian-
aware saliency. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
18547-18557, 2023b.

Yu, F,, Huang, K., Wang, M., Cheng, Y., Chu, W., and Cui,
L. Width & depth pruning for vision transformers. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 3143-3151, 2022.

Yuan, G., Ma, X., Niu, W,, Li, Z., Kong, Z., Liu, N., Gong,
Y., Zhan, Z., He, C., Jin, Q., et al. Mest: Accurate and fast
memory-economic sparse training framework on the edge.

Advances in Neural Information Processing Systems, 34:
20838-20850, 2021.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. Lora-fa:
Memory-efficient low-rank adaptation for large language
models fine-tuning. arXiv preprint arXiv:2308.03303,
2023a.

Zhang, X.-J., Moore, J. M., Yan, G., and Li, X. Universal
structural patterns in sparse recurrent neural networks.
Communications Physics, 6(1):243, 2023b.

Zhang, Y., Zhao, J., Wu, W., Muscoloni, A., and Cannis-
traci, C. V. Epitopological learning and cannistraci-hebb
network shape intelligence brain-inspired theory for ultra-
sparse advantage in deep learning. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Zhang, Y., Zhao, J., Wu, W,, Liao, Z., Michieli, U., and Can-
nistraci, C. V. Brain-inspired sparse training enables trans-
formers and llms to perform as fully connected. arXiv
preprint arXiv:2501.19107, 2025.

Dynamic Sparse Training of Diagonally Sparse Networks

* Apdx.
e Apdx.
e Apdx.
e Apdx.
o Apdx.
* Apdx.
* Apdx.
* Apdx.
* Apdx.

e Apdx

A. Provi

Appendix

A proves that pseudo-diagonal masks remain pseudo-diagonal after transposition.

B gives the theoretical justification for diagonal sparsity (coverage, rank, universal approximation).
C lists all experimental hyper-parameters and datasets.

D describes our CUDA / BCSR implementation and speed-up analysis.

E reports McNemar p-values for all comparative studies.

F.3 analyzes temperature, sparsity scheduling, and distribution schemes.

G summarizes accuracy vs. speed-up trade-offs across sparsity levels.

H details the diagonal-heuristic variant of RigL.

I reviews the BSW and BSF graph models.

. .1 quantifies the small-world properties of DynaDiag networks.

ng the Transposability of Diagonal Sparse Matrices

THEOREM

Let M € {0,1}™*™ be a binary mask matrix constructed with a pseudo-diagonal pattern starting at position s. Then, the
transpose M T also exhibits a pseudo-diagonal pattern, with the diagonal’s starting position adjusted based on the relative
dimensions of m and n.

PROOF

We consider two cases based on the relationship between m and n:

CASE 1: m > n (MORE ROWS THAN COLUMNS)

1. Construction of M:

* The diagonal starts at row s and spans n entries.

* Entries in M are at positions:

(rye)=((s+¢) modm,c) force{0,1,...,n—1}.

2. Transposition M/ T:

* The transposed matrix M T has dimensions n x m.

* Entries in M " are at positions:

(¢,(s4+¢) modm) force{0,1,...,n—1}.

3. Pseudo-Diagonal in M " :

 Since n < m, the transposed matrix M T now has fewer rows than columns.

* The pseudo-diagonal in M " starts at column s (original row offset) and spans 7 entries:

(r,¢)=(r, (s+r) modm) forre{0,1,...,n—1}.

« This matches the transposed entries, confirming M " retains a pseudo-diagonal starting at column s.

12

Dynamic Sparse Training of Diagonally Sparse Networks

CASE 2: m < n (MORE COLUMNS THAN ROWS)

1. Construction of M:

» The diagonal starts at column s and spans m entries.

¢ Entries in M are at positions:
(rye)=(r, (s+7r) modn) forre{0,1,...,m—1}.

2. Transposition M/ ":

* The transposed matrix M | has dimensions n x m.

« Entries in M " are at positions:
((s+r) modmn,r) forre{0,1,...,m—1}.

3. Pseudo-Diagonal in M " :

* Since n > m, M " has more rows than columns.

* The pseudo-diagonal in M " starts at row s (original column offset) and spans m entries:
(r,e)=((s+¢) modn,c) force{0,1,...,m—1}.

« This aligns with the transposed entries, confirming M " retains a pseudo-diagonal starting at row s.

In both cases, transposing a pseudo-diagonal mask results in a matrix with an equivalent pseudo-diagonal structure. The
starting position s transitions between row and column offsets depending on the original matrix’s dimensions, preserving
the diagonal nature under transposition. Thus, matrices constructed with the described pseudo-diagonal pattern exhibit
transposition invariance in their sparsity structure.

B. Theoretical Justification of Diagonal Sparsity

Consider a single linear layer of a neural network represented by the weight matrix W € R"™*"™., Sparsity patterns enforce
structural constraints on W through binary masks M € {0, 1}"*™, producing sparse weight matrices as W © M, where ®
denotes element-wise multiplication.

Definition (Diagonal Sparsity). A diagonal sparsity pattern selects a set of diagonals defined by their offsets. Formally,
the mask M is constructed as:

i —

u 1, if (j —4) = ¢ (mod min(n, m)) for some diagonal offset ¢,
0, otherwise.

The number of diagonals selected, denoted k, controls the density of M.

Lemma 1 (Full Input-Output Coverage). A diagonal mask M constructed as above ensures that each row and each
column of M contains at least one nonzero entry, given k > 1.

Proof. Consider two cases:

* Case n > m: Each diagonal covers all m columns exactly once. By varying diagonal offsets, each row index ¢ is
represented by some diagonal at least once, thus no row remains empty. Since each diagonal always covers every
column exactly once, no column remains empty either.

» Case m > n: By symmetry, each diagonal covers all n rows exactly once. By shifting offsets across multiple diagonals,
all columns are covered at least once.

13

Dynamic Sparse Training of Diagonally Sparse Networks

This ensures no input dimension or output neuron is ever completely disconnected by the sparsity mask, guaranteeing full
coverage. [

Expressivity via Universal Approximation. The universal approximation theorem (Cybenko, 1989; Hornik, 1991) asserts
that fully connected neural networks with nonlinear activations (such as ReLU or sigmoid) are capable of approximating
arbitrary continuous functions. Structural sparsity patterns, however, may potentially violate universal approximation by
severing input-output connections.

Theorem 2 (Universal Approximation under diagonal Sparsity). A feed-forward neural network consisting of layers
employing diagonal sparsity masks with sufficiently large number of diagonals £ > ky,i,, nonlinear activations, and adequate
width and depth, retains the universal approximation property.

Proof Universal approximation requires that any input neuron can influence any output neuron, possibly through multiple
layers. Lemma 1 ensures full input-output coverage at every sparse linear transformation. Thus, each neuron maintains at
least one active input and output edge, preserving connectivity across the network.

Because diagonal patterns ensure no dimension is eliminated globally, subsequent nonlinear activations can still combine
these preserved dimensions arbitrarily. Therefore, the assumptions required for universal approximation [1][2] remain valid,
implying the network’s expressivity is not significantly impaired by this structured sparsity pattern. [

Rank Preservation Argument. Another perspective on expressivity arises through linear algebraic arguments. Any row or
column in a weight matrix W being entirely zero automatically restricts the maximum achievable rank. A rank-deficient
weight matrix severely limits the set of linear transformations expressible by that layer.

With diagonal sparsity:

* Each row and column has at least one nonzero element, removing a trivial structural cause of rank deficiency.

* For random initialization of nonzero weights, such sparse matrices will have full achievable rank (min(7n, m)) almost
surely (standard linear algebra argument; see e.g. random matrix theory.).

High rank at initialization and throughout training supports richer linear transformations, ultimately preserving higher
network expressivity and better gradient propagation properties.

Comparison to Other Patterns. Unlike structured sparsity patterns such as block-sparse or n-of-m sparsity, diagonal
sparsity guarantees deterministic full input-output coverage. In block sparsity, some neurons risk being completely
disconnected if blocks overlap in suboptimal ways, limiting expressivity and training stability. diagonal sparsity patterns
avoid these degeneracies by design.

Furthermore, diagonal sparsity provides a structured yet near-random pattern, capturing many beneficial properties of un-
structured random sparsity, demonstrated empirically by experiments in this paper—while offering improved computational
efficiency and implementation simplicity.

These theoretical results substantiate the empirically observed superior or near-optimal performance of diagonal sparsity
patterns, positioning them as a particularly promising structured sparsity approach for efficient neural network training and
inference.

C. Experiment Details

All experiments are conducted on the NVIDIA Tesla A100 GPUs with the following configuration:

* Model: NVIDIA A100 80GB

* Memory: 80GB HBM2e

e Memory Bandwidth: ~2.0 TB/s (higher than the 40GB version)

14

Dynamic Sparse Training of Diagonally Sparse Networks

« TDP : 400W (PCle: 300W)

C.1.

Peak FP32 Performance: ~19.5 TFLOPS (same as 40GB)

Peak FP16 Performance: ~312 TFLOPS (same as 40GB)

Datasets

CIFAR-10 (Krizhevsky & Hinton, 2009) consists of 60,000 colored images of resolution 32 x 32, divided into 10
classes (e.g., airplanes, cars, birds). The dataset is split into 50,000 training and 10,000 test images.

CIFAR-100 (Krizhevsky & Hinton, 2009) also contains 32 X 32 resolution images but spans 100 classes. Each class
includes 500 training and 100 test images, totaling 60,000 images.

. ImageNet-1K (Deng et al., 2009) covers 1,000 object classes, with 1.28M training, 50,000 validation, and 100,000 test

images. Images are typically resized and cropped to 224 x 224 for processing.

WikiText-103 (Merity et al., 2016) comprises over 100 million tokens extracted from verified Wikipedia articles. It is
significantly larger than other language datasets, such as Penn Treebank (PTB) (Marcus et al., 1993).

15

Dynamic Sparse Training of Diagonally Sparse Networks

Table 3: Configuration of the CIFAR10 and CIFAR100 experiments with MLPMixer.

Parameter Value
Adam f; 0.9
Adam (35 0.99
AutoAugment True
Batch Size 128
CutMix Probability 0.5
CutMix 3 1.0
Dropout 0.0
Epochs 300
Hidden_C 512
Hidden_S 64
Hidden 128
(Initial LR, Final LR) (1 x 1073,1 x 107%)
Label Smoothing 0.1
Layers 8
LR Scheduler Cosine
Optimizer Adam
Random Seed 3407
Weight Decay 5x107°
Warmup 5 epochs
Table 4: Configuration of the CIFAR10 and CIFAR100 experiments with ViT-Small.
Parameter Value
Epochs 200
Batch Size 128
Optimizer Adam
Weight Decay 5x107°
LR Scheduler Cosine
(Initial LR, Final LR) (1 x 1073,1 x 107°)
Warmup 5 epochs
Dropout 0.0
AutoAugment True
Label Smoothing 0.1
Heads 12
Layers 7
Hidden 384
MLP Hidden 384

16

Dynamic Sparse Training of Diagonally Sparse Networks

Table 5: Configuration of the ImageNet experiments with ViT-Base and MLPMixer.

Model Optimizer Weight Decay Learning Rate Drop Path Warmup/Epoch
ViT-Base AdamW 0.05 0.001 0.1 5/300
DynaDiag-ViT-Base AdamW 0.05 0.001 0 5/300
Mixer-Small AdamW 0.1 0.001 0.1 5/300
DynaDiag-Mixer-Small ~ AdamW 0.1 0.001 0 5/300

Table 6: Configuration of the ImageNet experiments with ViT-Large and Huge.

Parameter Value
Batch size 256
Optimizer AdamW
Learning Rate (LR) 3x 1073
LR decay cosine
Weight decay 0.02
Warmup epochs 5
Label smoothing € 0.1
Dropout X
Stochastic Depth v
Repeated Aug v
Gradient Clipping 1.0
Horizontal flip v
Random Resized Crop (RRC) v
Rand Augment X

3 Augment (ours) v
LayerScale v
Mixup « 0.8
Cutmix « 1.0
Erasing prob. X
ColorlJitter 0.3
Test crop ratio 1.0
Loss BCE

D. GPU Acceleration

We leverage the known diagonal structure to enforce the clustering of rows/columns from the same diagonal into contiguous
blocks. Modify the reordering algorithm to:

* Prioritize grouping rows/columns from the same diagonal.

* Allow limited flexibility for rows/columns from adjacent diagonals (controlled by Diag_Proximity).

We modify Jaccard’s similarity with a diagonal proximity term to prioritize clustering rows/columns that belong to diagonals
with nearby starting positions. For two rows 7 and j:
Sim(i, j) = « - Jaccard(i, j) + (1 — «) - Proximity (4, 5) (6)

where:

e Jaccard(i, j): Standard Jaccard index (overlap of non-zeros between rows ¢ and j).

* Proximity (i, j): Normalized inverse distance between the starting positions of the diagonals containing rows ¢ and j:
diSt(di, d])

Proximity(z,j) =1 — -
ximity(7, j) max(dist)

(N

17

Dynamic Sparse Training of Diagonally Sparse Networks

Table 7: Configuration of the Wikitext-103 experiments GPT-2Small experiments.

Model Optimizer Weight Decay Learning Rate Dropout Warmup/Epoch
GPT-2-Small ~ AdamW 0.1 0.0001 0.1 5/100
DynaDiag AdamW 0.1 0.0001 0.1 5/100

where d;, d; are the diagonal start positions for rows 4, j, and max(dist) is the maximum possible distance between
diagonals.

e o: Tuning parameter (0 < o < 1) to balance the two terms. For our case, we set v < 0.5 to prioritize diagonal
structure over raw overlap.

Since the diagonals are determined by their starting positions, we precompute the diagonal membership for each row/column.
Using this preprocessing step, we can convert sparse diagonal matrices to dense blocks during the forward (Fig. 3d) and
backward (Fig. 3h) pass which accelerates both inference and training of models with DynaDiag.

Specifically, we employ the following strategies to maximize computational efficiency and minimize memory overhead:

* Tensor Cores (TC) API: We utilize half-precision matrix multiply-accumulate (mma .m16n8k16) operations via
the TC API, as illustrated in the PTX code provided in (Okanovic et al., 2024). This allows us to exploit the high
throughput of Tensor Cores for dense submatrix computations within the sparse matrix framework.

* Block Compressed Sparse Row (BCSR) Iteration: To efficiently iterate over non-zero blocks in the sparse matrix,
we use the BCSR format, which relies on rowPtr and colIdx arrays. This avoids unnecessary iterations over zero
blocks, significantly reducing computational overhead.

¢ Asynchronous Data Movement: To hide memory latency, we employ cuda: :memcpy_async for overlapping
computation with data transfers. This allows efficient movement of data from global memory to shared memory without
intermediate register staging, freeing up registers for computation.

* Warp-Level Parallelism: Each warp in our CUDA kernel is responsible for computing a submatrix of the output matrix
C, with dimensions matching those of the Tensor Cores. Non-zero blocks are loaded into registers using 1dmatrix
(see Listings 2 and 3 in (Okanovic et al., 2024)), and the results are written back to global memory after computation.

For a comprehensive understanding of the implementation details, including pseudocode and additional optimizations, we
direct readers to (Okanovic et al., 2024). The SMAT library can be found at https://github.com/spcl/smat.

Correlation Between Number of Diagonals and Speedups. Using our custom CUDA implementation, we perform
matrix-matrix multiplication on matrices of size 768 x 768(matching the size of the blocks.Lattn.proj.linear.weight layer
in ViT where I is the block count) to isolate the impact of number of diagonals on potential speedup. All the experiments
were carried out on NVIDIA A100 40GB GPUs. Each configuration was run 100 times, and we averaged the total time
of converting diagonals to BCSR plus the subsequent BCSR computation. As expected, below 50% sparsity, speed gains
taper off, and below 20% sparsity, we see some slowdown—yet this remains more favorable than comparable block-sparse
approaches(Yamaguchi & Busato, 2021).

Performance Impact of Diagonals to BCSR Conversion. With empirical experiments on ViT-B/16 at 90% sparsity
with ImageNet-1K, we verify that there is no significant accuracy difference between direct diagonal computation and the
BCSR-based approach. From Tbl. 8, we can see that there is no significant difference in the accuracies of the two methods,
proving their equivalence. However, the training time is significantly improved using our custom BCSR kernel.

E. McNemar’s Test Results

McNemar’s test is a non-parametric x? procedure for paired binary outcomes. Given two classifiers (or a pre—post condition)
evaluated on the same n instances, their predictions form a 2 x 2 contingency table. The statistic considers only the
off-diagonal counts—instances mis-classified by exactly one of the two methods—and tests the null hypothesis that these
two counts are equal, i.e., that the marginal proportions of successes are identical. A significant result therefore indicates

18

Dynamic Sparse Training of Diagonally Sparse Networks

Speed-up vs. Number of Diagonals for a 768x768 matrix

254 —e— Speed-up vs. Dense
—--- 11X

—~ 201

ke

%15-

©

o

910

(V2]
5-
O
A o Q(g\() QO\O\ QQ\O \90\0\ QQ?\O\ 0‘3\0\ 6’?\0\ QQO\O\ \90\0\ 00\0\ QO\O\ 00\0\ QO\O\
QQ‘ Q‘b‘ Q‘b’ cg')’ QQ’ Q)Q’ ,\Q’ bQ c)Q’ D‘Q‘ Q ,19' ,»0 O

’1«\ ‘b\ (9\ ‘b\ b\ a)\ Q\ ,\\ b‘\ 0\ ,\\ V\ ,\/\ b‘b

O NN, P AN N R ML M

Number of diagonals (sparsity)

Figure 7: Speedup obtained using our custom CUDA implementation while doing matrix-matrix multiplication with matrices
having the diagonal sparsity pattern.

Table 8: DynaDiag performance with and without BCSR conversion with a 90% sparse ViT-B/16 on ImageNet-1K.

Method Accuracy Training Time (hrs)
Without BCSR Conversion 76.92+0.0011 18.07
With BCSR Conversion 76.91+0.0007 11.42

Table 9: P-values from McNemar’s test comparing each method with RigL at varying sparsities s € {0.6,0.7,0.8,0.9,0.95}.
Bold values indicate no significant difference (p-value > 0.05) from RigL.

Models Methods Struc. Cifar10 Cifar100
0.6 0.7 0.8 0.9 0.95 0.6 0.7 0.8 0.9 0.95

RigL no - - - - - - - - - -
SRigL yes 0.0523 0.0614 0.0312 0.0285 0.0221 | 0.0654 0.0531 0.0598 0.0356 0.0299
Mixer-S/16 PixelatedBFly yes 0.0751 0.0845 0.0213 0.0198 0.0174 | 0.0321 0.0212 0.0315 0.0287 0.0253
DSB yes 0.0231 0.0198 0.0123 0.0098 0.0075 | 0.0225 0.0187 0.0112 0.0085 0.0063
DiagHeur. yes 0.0145 0.0123 0.0091 0.0067 0.0052 | 0.0132 0.0110 0.0084 0.0058 0.0047
DynaDiag yes 0.0587 0.0674 0.0512 0.0543 0.0601 | 0.0756 0.0823 0.0654 0.0682 0.0745

RigL no - - - - - - - - - -
SRigL yes 0.0578 0.0695 0.0345 0.0302 0.0253 | 0.0712 0.0421 0.0623 0.0381 0.0324
ViT-S/16 PixelatedBFly yes 0.0245 0.0193 0.0167 0.0132 0.0111 | 0.0223 0.0676 0.0650 0.0125 0.0103
DSB yes 0.0184 0.0165 0.0122 0.0095 0.0078 | 0.0193 0.0161 0.0124 0.0090 0.0072
DiagHeur. yes 0.0123 0.0105 0.0087 0.0065 0.0051 | 0.0131 0.0114 0.0093 0.0069 0.0050
DynaDiag yes 0.0612 0.0725 0.0534 0.0568 0.0632 | 0.0773 0.0834 0.0675 0.0708 0.0761

that the two methods differ in predictive accuracy while properly accounting for the dependence induced by evaluating on
the same data points.

We show the p-values for ViT-S/16 and Mixer-S/16 running Cifar10 and Cifar100 in Tbl. 9. And the p-values for models on
ImageNet-1K and GPT models on WikiText-103 are shown in Tbl. 10 and Tbl. 11 respectively.

F. Additional Results
F.1. CIFAR10 and CIFAR100 Results

All the experiments are performed three times with the average accuracies shown in the table. We omit the standard deviation
since the training is relatively stable (i.e., usually less than 0.06% standard deviation). We present results for Mixer-S/16

19

Dynamic Sparse Training of Diagonally Sparse Networks

Table 10: P-values from paired asymptotic McNemar tests comparing each method with RigL at varying sparsities
s € {60%, 70%, 80%, 90%, 95%}. Bold values indicate no significant difference (p-value > 0.05) from RigL.

Model Method 60% 70% 80% 90% 95%
RigL - - - - -
SET 0.0542 00401 0.0364 0.0419 0.0564
VIT-B/16 CHT 0.0764 0.0672 0.0693 0.0628 0.0572
CHTs 0.0654 0.0619 0.0629 0.0724 0.0529
MEST 0.0598 0.0462 0.0298 0.0387 0.0432
SRigL 0.0473 0.0521 0.0345 0.0289 0.0224
PixelatedBFly ~ 0.0542 0.0396 0.0317 0.0253 0.0198
DSB 0.0124 0.0187 0.0105 0.0083 0.0061
DiagHeur. 0.0098 0.0123 0.0075 0.0059 0.0043
DynaDiag 0.0654 0.0789 0.0411 0.0598 0.0352
RigL - - - - -
SRigL 0.0415 00253 00367 0.0302 0.0235
VITL/16 PixelatedBFly ~ 0.0398 0.0312 0.0329 0.0264 0.0201
DSB 00142 00201 00113 0.0091 0.0067
DiagHeur. 0.0105 0.0137 0.0082 0.0065 0.0049
DynaDiag 0.0698 0.0836 0.0564 0.0517 0.0379
RigL - - - - -
SRigL 0.0431 0.0395 0.0382 0.0320 0.0258
VIT.H/14 PixelatedBFly ~ 0.0627 0.0343 0.0341 0.0276 0.0214
DSB 0.0165 0.0223 0.0131 0.0105 0.0079
DiagHeur. 0.0128 0.0159 0.0095 0.0078 0.0056
DynaDiag 0.0725 0.0874 0.0583 0.0529 0.0394
RigL - - - - -
SRigL 0.0672 0.0294 0.0356 0.0294 0.0230
Mixer.g/16 PixclatedBEly 00311 00491 ~ 00308 ~ 0.0247 0.0185
DSB 00139 00195 00102 0.0079 0.0054
DiagHeur. 00112 00148 0.0087 0.0063 0.0045
DynaDiag 0.0701 0.0856 0.0605 0.0553 0.0617

Table 11: P-values from McNemar’s test comparing DynaDiag (Diag), SRigL, and PixelatedBFly with RigL at varying
sparsities s € {0.4,0.5,0.6,0.8,0.9}. Bold values indicate no significant difference (p-value > 0.05) from RigL.

Model Method 40% 50% 60% 80% 90%
RigL - - - - -

GPT2.S SRigL 0.0456 0.0398 0.0321 0.0275 0.0213
PixelatedBFly ~ 0.0523 0.0471 0.0384 0.0332 0.0285
DynaDiag 0.0183 0.0518 0.0675 0.0529 0.0401
RigL - - - - -

cprom SRieL 0.0395 0.0352 0.0287 0.0231 0.0178
PixelatedBFly ~ 0.0589 0.0427 0.0356 0.0304 0.0256
DynaDiag 0.0518 0.0576 0.0547 0.0657 0.0136

20

Dynamic Sparse Training of Diagonally Sparse Networks

Table 12: Top-1 accuracy of DynaDiag alongside baseline methods at varying sparsities. We bold results that are not
significantly different from RigL based on paired asymptotic McNemar tests (o = 0.05). Among all structured sparse
training methods, DynaDiag achieves the highest accuracy on ViT-Small and MLPMixer architectures across CIFAR-10 and
CIFAR-100 datasets.

Models Methods Struc. CIFAR10 CIFAR100
60% T70% 80% 90% 95% | 60% T0% 80% 90% 95%
dense accuracy = 85.64 dense accuracy = 66.98
RigL no 86.44 8647 86.74 8585 84.65 | 6744 6797 6754 66.52 642
Mixer-S/16 SRigL yes 8598 85.69 85.14 8345 8214 | 67.19 6694 66.88 64.03 6041
PixelatedBFly yes 8539 8525 84.69 8241 81.09 | 6645 6574 6436 63.57 59.56
DSB yes 83.14 8345 82.14 8021 80.12 | 65.14 6474 6426 6244 58.14
DiagHeur. yes 82.69 83.01 81.11 79.56 78.65 | 64.54 6421 6347 623 60.08
DynaDiag yes 86.14 86.19 85.69 85.55 83.13 | 67.08 67.02 6691 64.21 61.30
dense accuracy: 89.67 dense accuracy: 66.61
RigL no 91.04 91.03 90.58 8845 8456 | 6891 6843 66.54 6531 6232
ViT-S/16 SRigL yes 90.67 90.51 89.32 86.88 81.54 | 68.51 67.85 6621 64.81 6l1.11
PixelatedBFly yes 90.08 90.16 87.51 83.31 80.14 | 68.14 68.10 66.13 64.12 61.33
DSB yes 89.55 8945 8839 8352 80.09 | 68.01 67.69 66.05 6323 60.08
DiagHeur. yes 88.41 89.14 88.51 8649 80.61 | 66.87 65.57 65.08 64.09 60.26
DynaDiag yes 90.55 90.63 89.43 87.09 82.76 | 68.41 68.12 6631 65.06 61.43

Table 13: Perplexity of DynaDiag alongside baseline methods. We bold results that are not significantly different (calculated
using paired asymptotic McNemar tests (o = 0.05)) from the best performing method in the column (marked with a *).
Among all the baselines, DynaDiag achieves the lower PPL (lower, the better) on the WikiText-103 dataset.

Model Method 40 % 50% 60 % 80% 90 %
dense accuracy = 22.21
Rigl. 22.34 22.80 23.79 29.87 53.76
GPT2-S SRigL 22.74 23.19 25.09 31.08 62.55
PixelatedBFly 22.50 23.25 25.98 34.89 66.44
Wanda 22.14*% 22.35% 23.48* 29.12*% 53.07*
DynaDiag 22.60 22.74 24.67 30.46 56.33

and ViT-Small in Tbl. 12, where DynaDiag performs as new state-of-the-art among structured DST methods, exceeding
prior approaches at every sparsity level except one (60% on CIFAR10 with Mixer-S/16). The p-values under the asymptotic
McNemar’s test are reported in Tbl. 9 in Apdx. E.

We also observe that for CIFAR10 , the accuracy of both ViT-S/16 and Mixer-S/16 improves after sparsification compared to
their dense counterparts. We hypothesize that this improvement stems from the fact that both models are overparameterized,
meaning they possess more parameters than necessary to fit the training data. By sparsifying the models, we eliminate less
important or redundant parameters, leading to a more efficient and generalizable model (Liu et al., 2019; Yang et al., 2023a).

F.2. Comparison with Pruning Methods

Pruning LLMs (Sun et al., 2023; Kuznedelev et al., 2023) has been an effective way of reducing the size of the model while
producing models with state-of-the-art inference accuracies at high sparsity levels. However, pruning requires dense training
along with fine-tuning post pruning which is not the case with sparse-to-sparse training of models.

To see how DynaDiag performs as compared to pruning methods, we ran Wanda (Sun et al., 2023) with the GPT-2 small
model and reported the results in Tbl. 13. As expected, Wanda, a pruning method, produces models with better perplexity
than DST-based methods. However, Wanda’s results are produced at a significantly higher computational cost (dense training
+ fine-tuning), whereas our method remains computationally efficient.

21

Dynamic Sparse Training of Diagonally Sparse Networks

Comparison of Temperature Schedules (Target Sparsity: 90% or K = 78)
Weight Size: 768x768

180 { Exploration Phase Linear T

Cosine T
—— Constant T

—~ 160 -

140 4

120 4

100 A

Number of non-zero values in &
(ViT-B/16: blocks.1.attn.proj.linear.weight

80

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
!
0

0 50 100 150 200 250 300
Iteration

Figure 8: Comparing the three different temperature schedules which affect the amount of non-zeros present at a training
step.

F.3. Impact of Temperature Scheduling, Sparsity Scheduling, and Sparsity Distribution on Training

Temperature Scheduling: We study the evolution of non-zero entries in a representative weight matrix from ViT-B/16
under three temperature scheduling strategies—Linear, Cosine, and Constant—in Fig. 8. All approaches target 90% sparsity
(i.e., retaining K = 78 values out of 768). We observe that both Linear and Cosine schedules gradually reduce the
number of non-zeros during the early training iterations (exploration phase), allowing the model to adapt its sparse structure
progressively. In contrast, the Constant schedule enforces the target sparsity from the beginning, leading to no exploration.
This supports our finding that gradual temperature decay yields better performance by allowing more flexible structural
learning early in training.

Sparsity Scheduling: We study the effect of different sparsity scheduling strategies—Constant, Linear, and Cosine—on
the performance of ViT-B/16 trained on ImageNet-1K. These schedules control how the sparsity level evolves over training.
As shown in Tbl. 15, the Cosine schedule consistently achieves the best accuracy across all sparsity levels, followed closely
by Linear, while Constant performs significantly worse. This highlights the importance of a gradually decaying sparsity
schedule for maintaining model accuracy under high sparsity regimes.

Sparsity Distribution: In our experiments, we allocate the sparsity budget, based on a layer’s compute fraction (proportional
to layer size) as proposed in Pixelated Butterfly (Dao et al., 2021)(Sec 3.3 and Appendix I.1). However, we also experiment
with two other distributions: Uniform and ERK and the results are shown in Tbl. 14. We can see that computational
fraction-based allocation yields better results, consistent with findings from Pixelated Butterfly.

Table 14: Impact of different sparsity distribution methods on ViT-B/16 performance on ImageNet-1K

Method 60 % 70% 80% 90 % 95 %

Uniform 77.64+0.0021 77.02+0.0013 76.73+£0.0020 76.14£0.0015 69.31+0.0011
Erd6s-Rényi-Kernel (ERK) 77.93+0.0018 77.43£0.0019 76.53+0.0014 76.21£0.0007 69.454+0.0016
ComputeFraction (PBFly) ~ 78.294+0.0020 77.94+0.0017 77.62+0.0016 76.91+0.0016 69.54+0.0014

22

Dynamic Sparse Training of Diagonally Sparse Networks

Table 15: Impact of different scheduling methods on ViT-B/16 performance on ImageNet-1K

Method 60% 70% 80% 90% 95%

Constant 75.644+0.0013 74.82+£0.0019 74.03+0.0012 72.744+0.0015 68.17£0.0016
Linear 77.93+0.0018 77.43+0.0019 76.53+0.0014 76.21£0.0007 69.45£0.0016
Cosine 78.294+0.0020 77.944+0.0017 77.62+0.0016 76.91+0.0016 69.54£0.0014

[—0— Dense RigL +— SET CHT —— CHTs —<— MEST SRigL ~ —+— PixelatedBFly DSB —— DynabDiag (Ours)]

A/ 15 B

8o

1.2 2 ;
i !

4 31,1 1. A
x |1 X
Z Z | 75
a | | — a i
ER IRV =—— 216 3
2 |\ 05806062) 54 S
o 3] ~
& & |
© H
3 o1.4 £70 7.5
= = Q
[= < !
92 o 178.5
S Fi2 1
\ 7 65 §77.5
. e % 1
Lod e g [
0.6 0.7 0.8 0.95 . 0.8 0.6 0.7 0.8 0.9 0.95
Sparsity Level 0.9 Sparsity Level Sparsity Level

Figure 9: Comparing the inference speedup (left), training speedup (center), and Top-1 accuracy (right) of sparse training
methods for ViT-B/16 model at varying levels of sparsity running ImageNet-1K. DynaDiag achieves the highest training and
inference speedup while demonstrating superior accuracy to other structured sparsity patterns.

G. Summary of Our Experiments

Fig. 9 shows the results of our experiments in a single figure. We can see that at 60% and 70% sparsity, DST accuracy
performance is better than dense training, and that DynaDiag is the only structured method to keep its performance close
to the unstructured ones that perform better than dense. DynaDiag shows a stable accuracy curve that remains high in
comparison to the other structured methods. It is the only structured method to present a performance stability similar to
unstructured methods across different levels of sparsity.

H. Details of the Heuristics-Based Method

RigL is a dynamic sparsification technique that maintains a constant sparsity budget by repeatedly removing the lowest-
magnitude weights (decay) and “growing” new connections. Similarly, in our DiagHeur method, we follow the same
principle but focus on diagonal blocks: we prune the diagonals with the lowest magnitudes and randomly grow back the
same number of diagonal connections, thereby preserving overall sparsity while continually redistributing capacity to
potentially more valuable diagonals. We keep all the hyperparameters same as the original RigL (Evci et al., 2020) paper.

I. Bipartite Small-World (BSW) and Bipartite Scale-Free (BSF)

Bipartite Scale-Free (BSF). The Bipartite Scale-Free (BSF) model ofZhang et al. (2024) adapts scale-free connectivity to
bipartite graphs, making it ideal for dynamic sparse training. The procedure begins by sampling a standard Barabasi—Albert
(BA) graph(Barabasi & Albert, 1999), whose node degrees follow a power-law distribution. Every edge that links two
neurons in the same layer is then eliminated and re-attached to a neuron in the opposite layer. Crucially, each node keeps its
original degree, so the resulting bipartite network retains the BA power-law exponent.

Bipartite Small-World (BSW). The Bipartite Small-World (BSW) model ofZhang et al. (2024) embeds small-world
behaviour and strong clustering into a bipartite graph. It starts from a regular ring lattice, labeling the vertices with two
distinct layer types. Every vertex connects to the same number of nearest neighbours that belong to the opposite layer,
producing a highly clustered but not yet small—world structure. Analogous to the Watts—Strogatz construction(Watts

23

Dynamic Sparse Training of Diagonally Sparse Networks

& Strogatz, 1998), the model then applies a rewiring rate 5: a proportion § of existing edges is randomly removed and
re-attached elsewhere, introducing the shortcuts that create small-world characteristics.

I.1. Diagonal Sparsity and Small World Networks

To test the small-worldness of networks trained with DynaDiag, we take a 90% sparse ViT-B/16 network trained on
ImageNet-1K and calculate the small-world factor, o, using the NetworkX library in Python. Tbl. 16 shows that all tested
layers exhibit o > 1, confirming that DynaDiag’s structured sparsity indeed reflects small-world characteristics.

Table 16: Small-world factor, o of various layers in a DynaDiag trained ViT-B/16 on ImageNet-1K at 90% sparsity. o > 1
indicates small world.

Layer C, L, C L o

blocks.O.attn.proj.linear.weight 0.032 2.14 0.063 3.94 1.069
blocks.l.mlp.fcl.linear.weight 0.039 2.67 0.072 3.67 1.343
blocks.2.mlp.fc2.linear.weight 0.041 2.64 0.084 3.55 1.524
blocks.3.attn.proj.linear.weight 0.047 2.94 0.088 3.95 1.394
blocks.4.mlp.fcl.linear.weight 0.029 2.15 0.061 3.87 1.169
blocks.5.mlp.fc2.linear.weight 0.049 342 0.087 3.31 1.835
blocks.6.attn.proj.linear.weight 0.061 2.65 0.099 391 1.100
blocks.7.mlp.fcl.linear.weight 0.041 2.71 0.097 390 1.644
blocks.8.mlp.fc2.linear.weigh 0.032 283 0.066 3.88 1.504
blocks.9.attn.proj.linear.weight 0.047 2.23 0.081 3.77 1.019
blocks.10.mlp.fc1.linear.weight 0.054 3.06 0.096 4.13 1.317
blocks.11.mlp.fc2.linear.weight 0.051 3.11 0.097 397 1.490

24

