
Distance Adaptive Beam Search for Provably Accurate
Graph-Based Nearest Neighbor Search

Yousef Al-Jazzazi
New York University

Abu Dhabi
ya2225@nyu.edu

Haya Diwan
New York University
hd2371@nyu.edu

Jinrui Gou
New York University
jg6226@nyu.edu

Cameron Musco
UMass Amherst

cmusco@cs.umass.edu

Christopher Musco
New York University
cmusco@nyu.edu

Torsten Suel
New York University

torsten.suel@nyu.edu

Abstract

Nearest neighbor search is central in machine learning, information retrieval, and
databases. For high-dimensional datasets, graph-based methods such as HNSW,
DiskANN, and NSG have become popular thanks to their empirical accuracy
and efficiency. These methods construct a directed graph over the dataset and
perform beam search on the graph to find nodes close to a given query. While
significant work has focused on practical refinements and theoretical understanding
of graph-based methods, many questions remain. We propose a new distance-based
termination condition for beam search to replace the commonly used condition
based on beam width. We prove that, as long as the search graph is navigable, our
resulting Adaptive Beam Search method is guaranteed to approximately solve the
nearest-neighbor problem, establishing a connection between navigability and the
performance of graph-based search. We also provide extensive experiments on our
new termination condition for both navigable graphs and approximately navigable
graphs used in practice, such as HNSW and Vamana graphs. We find that Adaptive
Beam Search outperforms standard beam search over a range of recall values, data
sets, graph constructions, and target number of nearest neighbors. It thus provides
a simple and practical way to improve the performance of popular methods.

1 Introduction

High-dimensional nearest neighbor search is a basic building block in many areas, including image
and video processing [18, 26], information retrieval [6, 51], and algorithm design [10, 28]. It
is central to modern machine learning, underlying document and media search based on learned
embeddings [9, 40, 48], as well as retrieval-augmented generation (RAG) systems for large language
models [37, 46]. Nearest neighbor search also plays a role in hard-negative mining [62], accelerating
transformer architectures [29], and other applications across machine learning [58].

Formally, in the k-nearest neighbor search problem, we are given a set of data points, often machine-
learned vector embeddings of documents, images, or other media [12, 14]. We are also given a
distance measure, such as the Euclidean distance, or something more exotic like Chamfer distance
[25]. The goal is to pre-process the dataset into a search data structure so that, given any query point
q, we can efficiently find the k data points closest to q with respect to the distance measure.

Solving this problem exactly is notoriously difficult in high dimensions, so applications typically rely
on approximate nearest neighbor (ANN) methods that attempt to find most of the k closest neighbors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Popular ANN methods include locality sensitive hashing (LSH) [2, 3, 23, 41], inverted file indices
based on quantization or clustering [26, 27, 49], and more [8, 30, 34]. In this work, we focus on
graph-based ANN methods, which have been extensively studied and perform extremely well in
practice, topping leader boards at several recent ANN competitions [55, 56].

Graph-Based Nearest Neighbor Search. The high-level idea of graph-based methods is simple.
We construct an index by building a directed graph, G, with one node for each data point. Given a
query, q, we search the index by starting at an arbitrary node and performing a greedy graph traversal,
exploring neighbors in that graph that are closest to q. A specific choice of graph construction and
traversal method comprises a particular “graph-based” nearest neighbor search method.

Many algorithms for graph construction have been proposed, including the Hierarchical Navigable
Small World (HNSW) approach [43], Vamana/DiskANN [33, 59], Navigating Spreading-out Graphs
(NSG) [16], and others [45, 60]. All of these methods construct a graph G that, for a given node i,
contains out-edges to nearest neighbors of i, as well as “long range” connections to nodes far away
from i. Such constructions are loosely motivated by the concept of navigability, which dates back
to pioneering work on local graph routing by Kleinberg [31, 32] and Milgram [47]. We provide a
formal definition of navigability in Section 2, but the property roughly guarantees that there is a path
from any node i in G to any node j so that the distance to j strictly decreases along the path.

While graph constructions vary greatly, the choice of greedy traversal method used in graph-based
nearest neighbor search has seen less innovation. A variant of greedy search called beam search is
almost ubiquitous. Parameterized by a beam width b ≥ k, beam search maintains a list of b candidate
nearest neighbors and computes the query’s distance to each of those candidates’ neighbors, updating
them until it fails to find any better candidates. See Section 3 for a formal description.

Our Contributions. While graph-based ANN methods have seen significant practical success, their
performance is poorly understood from a theoretical perspective. This is in contrast to methods
like locality sensitive hashing, for which it is possible to prove strong worst-case approximation
guarantees [2, 4]. A lack of theory makes it difficult to iterate on and improve existing graph-based
methods, and to understand the limitations of these methods. We aim to address this theory-practice
gap, and in turn, introduce principled improvements to existing methods.

In particular, we re-examine the ubiquitous beam search method, viewing it, as in some previous work
[17], as a specific stopping rule for a much more general search procedure. This perspective motivates
a new algorithm called Adaptive Beam Search, which stops searching for candidates based on a
distance-based criterion instead of a fixed beam width, b. Our main theoretical result (Theorem 1) is
to prove that Adaptive Beam Search returns provable approximate nearest neighbors whenever the
search graph G is navigable. To the best of our knowledge, this result is the first to theoretically
connect the performance of greedy search (specifically, beam search) to the property of navigability.

Moreover, our theoretical results translate into practical performance. We perform an extensive
experimental evaluation of Adaptive Beam Search, comparing it to fixed-width beam search over a
wide range of data sets, graph constructions, recall values, and target number of nearest neighbors.
The method universally outperforms classic beam search, typically providing a 10− 50% reduction
in the number of distance computations required for a given level of recall. Moreover, Adaptive Beam
Search can be implemented with only minor code changes to existing graph-based libraries. We thus
hope that, beyond its theoretical relevance, the method will have practical impact.

Roadmap. The remainder of this paper is organized as follows. In Section 2, we discuss technical
preliminaries and related work. In Section 3, we introduce our Adaptive Beam Search method and
its motivating ideas. In Section 4, we prove that Adaptive Beam Search solves approximate nearest
neighbor search on navigable graphs (Theorem 1). In Section 5, we evaluate Adaptive Beam Search
on sparse navigable graphs and common heuristic graph constructions, including HNSW and Vamana.

2 Background and Related Work

We start by defining notation used throughout. Our goal in this paper is to find nearest neighbors in
a metric space X equipped with a distance function d : X × X → R+.1 We are given a database

1In particular, we just require that for all i, j, k ∈ X , d(i, j) = d(j, i), d(i, j) > 0 when i ̸= j, d(i, i) = 0,
and d(i, j) + d(j, k) ≥ d(i, k) (i.e., triangle inequality holds).

2

of n items in X , which we label {1, . . . , n}. We want to find the nearest k ≤ n items to a given
query q ∈ X . E.g., for k = 1, the goal is to find argminj∈{1,...,n} d(q, j). To avoid corner cases, we
assume items in the database are unique, i.e., d(i, j) > 0 for all i, j ∈ {1, . . . , n}, i ̸= j.

In practice, the n database items and the query q are usually associated with vectors (e.g., machine
learned embeddings) x1, . . . ,xn and xq ∈ Rm. The distance function d(i, j) is chosen to be some
function of these vectors, e.g., the Euclidean distance, d(i, j) = ∥xi − xj∥2.

Graph Navigability. Our theoretical guarantees assume use of a navigable search graph over n nodes
corresponding to our n database items. While the term “navigable” is sometimes used informally in
the literature, we use the following precise definition. Consider a directed graph G = (V,E), with
V = {1, . . . , n}. For a node x, let NG(x) denote its set of out-neighbors. Define:

Definition 1 (Navigable Graph). A directed graph G is navigable under distance function d if for
any nodes x, y ∈ {1, . . . , n} with d(x, y) > 0, there is some z ∈ NG(x) with d(z, y) < d(x, y).

Navigability ensures that, for any starting node s and target node t, a standard greedy search where
we always move to the neighbor of the current node closest to t, always converges to t.

When all distances between {1, . . . , n} are unique (this can be ensured by simply tie-breaking based
on node id) it was recently shown that any data set has an efficiently computable navigable graph with
average degree O(

√
n) for any distance metric [13, 11]. While the above bound is nearly optimal

for worst-case data sets, much sparser navigable graphs often exist. For the Euclidean distance in
m dimensions, Arya and Mount construct navigable graphs with degree 2O(m) [5]. For general
metrics, Indyk and Xu construct navigable graphs with degree 2O(m′) log∆ where m′ is the doubling
dimension of the data under d and ∆ = maxi,j d(i, j)/mini,j d(i, j) is the dynamic range [24].

Why do we focus on navigability? Navigability has become a standard notion of “quality” for graphs
used in nearest neighbor search. Indeed, the term lends its name to popular graph-based search
methods such as the Navigable Small World (NSW) [42] and Hierarchical Navigable Small World
(HNSW) [43] methods. Neither of these methods constructs graphs that are provably navigable, al-
though they produce graphs that should be approximately navigable in practical settings. Surprisingly,
however, to the best of our knowledge, no prior work formally links the accuracy of graph-based
search to this intuitive notion of graph quality. As discussed, a major goal here is to address this
theory-practice gap, and to use the resulting theory to propose new practical algorithms.

Related to our approach is a recent paper by Indyk and Xu [24] (and more recent follow-up work
[20]) which proves accuracy guarantees for standard beam search under the assumption that the
search graph is “α-shortcut reachable”, a strictly stronger criterion than navigability. A graph is
α-shortcut reachable if, for all x, y ∈ {1, . . . , n} with d(x, y) > 0, there is some z ∈ NG(x) with
α · d(z, y) < d(x, y) for some parameter α ≥ 1. Indeed, navigability exactly corresponds to this
definition with α = 1. However, the results from [24, 20] only yield a bounded approximation factor
for α > 1 (concretely, [24] obtains approximation factor 1+α

1−α). Thus, obtaining theoretical results for
graphs that are simply navigable remains an open question.

One reason this question is of practical importance is that navigable graphs can in general be much
sparser than α-shortcut reachable graphs. While it is possible to construct a navigable graph with
average degree O(

√
n) for any database under any metric (under the mild assumption of unique

distances) [11], it is not hard to observe that for any fixed α > 1, even a random point set in
O(log n)-dimensional Euclidean space does not admit an α-shortcut reachable graph with average
degree < n− 1 with high probability (see Appendix A.1 for details). This is also the case for other
stronger versions of navigability studied in recent work, like “τ -monotonicity” [52, 22]

2.1 Additional Related Work

Beyond [24, 20], a few other papers have studied graph-based ANN search from a theoretical
perspective. E.g., [35] and [54] study time-space tradeoffs akin to those available for LSH methods,
but only for random data. More significant work has focused on practical algorithmic improvements.
E.g., work has studied parallel implementations [45], methods for dynamic datasets [57, 63], distance
approximations [64], graph pruning [65], filtered search [19], search with coverage criteria [1], and
better search initialization strategies [66]. There has been relatively little work on alternatives to beam
width-based termination in beam search, although a few papers study “early stopping” criteria that

3

incorporate distance information like our Adaptive Beam Search [44, 21]. There has also been some
work on using machine learning to predict an optimal termination point [38]. In concurrent work,
[61] propose another algorithm called Adaptive Beam Search, but the approach is fundamentally
different than ours: they adapt the edges considered during the search process based on the query q.
They give theoretical bounds assuming G is τ -monotonic, a stronger variant of navigability [52, 22].

3 Adaptive Beam Search

Beam search is the de facto search method used for graph-based ANN [43, 59]. We start with a key
observation: beam search can be reframed by decoupling the method into two key components 1)
a search order, determined by a method for traversing the search graph to find candidate nearest
neighbors and 2) a stopping criterion, which governs when the algorithm stops considering candidates.

Our Adaptive Beam Search method modifies the standard beam search algorithm only by changing
the stopping criterion. The search order remains the same. Surprisingly, even this simple change leads
to an algorithm that both enjoys strong theoretical approximation guarantees when the underlying
graph is navigable (see Theorem 1) and outperforms standard beam search empirically.

The “decoupled view” of beam search is not entirely new. However, for completeness, we detail
this reframing in the next section, and show how a change in stopping criterion yields other search
algorithms, like simple greedy search and Adaptive Beam Search. We intuitively motivate the
stopping criterion used in Adaptive Beam Search before formally analyzing the method in Section 4.

3.1 Decoupling Beam Search as Ordered Traversal With a Stopping Condition

To be concrete, we provide pseudocode for a generic version of beam search in Algorithm 1.
Implementation details are deferred to Appendix B.1. Importantly, such details do not affect the
number of distance computations performed by the algorithm – i.e., how many times we evaluate
d(q, i) for a query point, q, and candidate nearest neighbor, i. Distance computations typically
dominate the cost of search in practice and, indeed, for the stopping criteria considered in this paper,
all other operations can be implemented in time nearly-linear in the number of such computations.

Algorithm 1 Generalized Beam Search
Input: Search graph G over nodes {1, . . . , n}, starting node s, distance function d, query q, target

number of nearest neighbors k.
Output: Set of k nodes B ⊂ {1, . . . , n}, where each x ∈ B is ideally close to q with respect to d.

1: Initialize min-priority queues C and D. ▷ Elements are nodes, priorities are distances to q. D
contains all discovered nodes. C contains discovered nodes that are not yet expanded.

2: Insert (s, d(q, s)) into C and D.
3: while C is not empty do
4: (x, d(q, x))← extractMin(C). ▷ Pop min. distance node.
5: if x satisfies [termination condition] then
6: break
7: For all y ∈ NG(x), if y is not in D, insert (y, d(q, y)) into C and D.2 ▷ Expand node x.
8: Obtain B by running extractMin k times on D, which returns the k elements with the smallest

distances from the query, q.

Algorithm 1 maintains a queue of “discovered nodes” D whose distances to q have been computed. It
repeatedly “expands” the nearest discovered (and not previously expanded) node to q by adding its
neighbors to the queue (Line 6). It does so until this nearest node triggers the termination condition
in Line 5. The choice of termination condition leads to various versions of greedy search, including
beam search and our new distance-based Adaptive Beam Search method. In particular, we have:

Classic Greedy Search. Terminate if there are at least:

k items j1, . . . , jk ∈ D with d(q, ji) ≤ d(q, x). (1)
2Note that if D is a simple priority queue, checking if y ∈ D may be inefficient. This can be resolved by

storing a dictionary of elements in D, as done in our more detailed pseudocode in Appendix B.1.

4

Beam Search, with beam-width parameter b ≥ k. Terminate if there are at least3 :

b items j1, . . . , jb ∈ D with d(q, ji) ≤ d(q, x). (2)

Adaptive Beam Search (our method) w/ parameter γ. Terminate if there are at least:

k items j1, . . . , jk ∈ D with (1 + γ) · d(q, ji) ≤ d(q, x). (3)

The rule for greedy search is simple: we terminate if we have already found k points closer to q
than the current candidate considered for expansion. For k = 1, it takes a moment to confirm that
this criterion yields a method that is exactly equivalent to the more typical way of presenting greedy
search: starting at s, move to the neighboring node nearest to q, terminating if there is no neighbor
closer than the current node. For k = 1, greedy search is known to converge to the exact nearest
neighbor if there is some x ∈ {1, . . . , n} for which d(x, q) = 0 and the search graph G is navigable
[13, 31, 47]. However, no comparable guarantees hold for k > 1 or when q’s nearest neighbor is
not at distance 0, which is typical in practice. Moreover, greedy search performs poorly empirically,
easily getting stuck in local minima and failing to find good approximate nearest neighbors.

3.2 Relaxing Greedy Search

The goal of beam search is to avoid such accuracy issues. It does so by relaxing the stopping criterion
from greedy search: in particular, by (2), we only terminate if we have found b ≥ k nodes closer to
the query q than our current node x. When b = k, the algorithms are identical. When b > k, greedy
search explores a prefix of the nodes explored by beam search, which simply terminates the search at
a later point. Beam search is thus guaranteed to obtain a more accurate result than greedy search, at
the cost of an increased number of distance computations.

With the above view in mind, many other relaxations of the greedy search termination condition
given in (1) become apparent. In (3), we introduce a slack parameter γ ≥ 0 and only terminate if x is
further from q than the kth best discovered point by a factor of 1 + γ. Setting γ = 0 recovers greedy
search, and larger values of γ will cause the search process to terminate later, yielding a better result,
but at the cost of a higher runtime. This simple idea yields our Adaptive Beam Search procedure.

While intuitively similar to beam search, a key difference of this distance-based termination rule is
that it naturally adapts to the query difficulty. For simplicity, consider the case of k = 1. Greedy
search tends to perform worse when there are many “false nearest neighbors”. For example, suppose
there is just one nearest neighbor x∗ with d(q, x∗) = 1, but many other points x1, . . . , xm with
d(q, xi) = 1.01. Assume that x1, . . . , xm, and x∗ are all connected with a navigable graph. If the
graph is sparse, only a small subset of the nodes in {x1, . . . , xm} will be connected to x∗. Thus, if
we initialize greedy search from a point in {x1, . . . , xm}, unless we chose a very large beam width b,
it is likely that before reaching one of the nodes connected to x∗ (and thus finding x∗), more than
b points at distance 1.01 will get added to D, causing the search to terminate. In contrast, as long
as γ > .01, Adaptive Beam Search will continue to search through all of the xi points, ultimately
finding x∗ before terminating. At the same time, Adaptive Beam Search will more quickly terminate
on easy queries if it becomes apparent that all remaining candidates are too far away to be useful in
finding additional nearest neighbors. Indeed, a criterion identical to Adaptive Beam Search has been
suggested as an “early stopping” heuristic in work on practical graph-based ANN methods [45, 44].

The intuition that Adaptive Beam Search adapts to query hardness shows clearly in our experiments:
as seen in Figure 1, the distribution of distance computations used by Adaptive Beam Search varies
more widely, as fewer computations are used for “easier” queries. As a result, across a variety of data
sets and search graphs, Adaptive Beam Search consistently outperforms classic beam search in terms
of total distance computations required to achieve a certain level of recall for a given query set.

3Remark on implementation: For beam search, it is easy to see that a node x will always satisfy termination
condition (2) if it is not one of the closest b neighbors to q in D. So, instead of maintaining two priority queues,
it is more computationally efficient to maintain a sorted list of the b closest nodes discovered so far. This is what
is done in typical implementations of beam search [59], and in our more detailed pseudocode in Appendix B.1.

5

Figure 1: Histograms for the number of distance computations performed by standard beam search
and our Adaptive Beam Search method when answering 10,000 queries for various datasets and
search graphs (see Section 5 for details). For a fair comparison, the b parameter in beam search and
γ parameter in Adaptive Beam Search were tuned to achieve a fixed level of recall for the batch of
queries. The histograms for Adaptive Beam Search are consistently flatter, confirming the intuition
that it better adapts to query difficulty, leading to fewer distance computations on average.

4 Theoretical Analysis

We support the improved empirical performance of Adaptive Beam Search with strong theoretical
guarantees. Formally, we prove that the method is guaranteed to solve the approximate nearest
neighbor search problem, assuming that the search graph G is navigable (Definition 1):

Theorem 1. Suppose d is a metric on X and G is navigable under d. Then for any query q ∈ X ,
if Adaptive Beam Search – i.e., Algorithm 1 with stopping criterion (3) – is run with parameter
0 < γ ≤ 2, it is guaranteed to return a set of k points B such that:

for all v ∈ {1, . . . , n} \ B, d(q, v) ≥ γ

2
max
j∈B

d(q, j).

Notably, setting γ = 2, we ensure that all points not returned by the algorithm are at least as far from
q as every point in B. Thus, for γ = 2, Adaptive Beam Search on a navigable graph is guaranteed
to exactly solve the k-nearest neighbor problem. For smaller γ, the method obtains an approximate
solution: no point in B can be further from q than any point not returned by more than a 2/γ factor.4

We can see that Theorem 1 proves a trade-off between runtime and accuracy: smaller values of γ
lead to a strictly faster algorithm (since termination is earlier) but a worse approximation guarantee.
While our result falls short of proving worst-case runtime guarantees, to the best of our knowledge,
it is the first result linking the accuracy of a natural greedy search method to the notion of graph
navigability. Importantly, we note that, unlike our Adaptive Beam Search, a result like Theorem 1
cannot be proven for standard beam search. In particular, in Appendix A.2 we prove:

Claim 2. Standard beam search with beam width b ≤ n− 3 fails to approximately solve the nearest
neighbor search problem on navigable graphs for any finite approximation factor.

Concretely, for any finite C, we can construct a set of n points in 2-dimensional Euclidean space
and a navigable graph G such that, for some query point q, beam search run on G with beam width
b ≤ n− 3 returns x̃ with d(q, x̃) ≥ C · min

x∈{1,...,n}
d(q, x).

Proof of Theorem 1. Our proof will use the terms “discovered” and “expanded” to identify nodes in
{1, . . . , n}. We consider a node j “discovered” if j ∈ D when Algorithm 1 terminates; i.e., we have
evaluated the distance between j and q. We consider a node j “expanded” if j is discovered and, at
some point, was both popped off C on Line 4 and did not cause the termination condition on Line 5
to be triggered. This ensures that all of its out-neighbors are discovered (see Line 7).

Note that all discovered nodes are added to both D and C. Formally, if the algorithm terminates
because the condition is true for some xterm, then C ∪ {xterm} is the set of discovered but not yet
expanded nodes, so the set of expanded nodes is D \ (C ∪ {xterm}).

4Many existing theoretical guarantees for approximate nearest neighbor search, such as those for LSH and
related methods [2, 4, 23] focus on the case of k = 1. A rephrasing of our result in this case is that Adaptive
Beam Search returns an approximate nearest neighbor x̃ with d(q, x̃) ≤ 2

γ
·minx∈{1,...,n} d(q, x).

6

Let B be the set of nodes returned upon termination and let x̃ = argmaxx∈B d(q, x) be the kth furthest
point from q in that set. Since G is navigable, and since we assume data points are unique, there
must be a path in G from any node x to any other node y (consisting of nodes that get monotonically
closer to y); i.e., G is strongly connected. Thus, if Algorithm 1 terminates because an empty queue C
causes the while loop to terminate, then all nodes in the graph must have been discovered, and so B
contains the exact k nearest neighbors to q, and the theorem holds immediately.

Thus, it suffices to consider the case when termination occurs because some node xterm causes the
termination condition in Line 5 to evaluate to true and the while loop to break early. We first claim:

Claim 3. When Algorithm 1 terminates, x̃ is guaranteed to have been expanded.

To see that this claim holds note that, by termination condition (3), it must be that d(q, xterm) ≥
(1 + γ)d(q, x̃) and thus d(q, xterm) > d(q, x̃).5 I.e., x̃ is closer to q then xterm. Thus, x̃ must have
already been popped off C and expanded before xterm was popped off C.

With Claim 3 in place, we can get into our main proof. Our goal is to prove that for all z /∈ B,

d(q, z) ≥ γ

2
d(q, x̃). (4)

It suffices to prove the claim for all undiscovered nodes z /∈ D, since if z ∈ D and d(q, z) < γ
2d(q, x̃),

then z is closer to q than x̃ and would have clearly been included in B (recall that γ ≤ 2).

Now, suppose by way of contradiction that (4) is not true, i.e., that there is some undiscovered node
z /∈ D with d(q, z) < γ

2d(q, x̃). We first observe that such a z cannot be an out neighbor of x̃: since
x̃ is expanded by Claim 3, all of its neighbors are discovered, i.e., all are in D.

Since G is navigable and all database items are unique, there must be some directed path P from x̃ to
z consisting of points that get monotonically closer to z. Moreover, since z /∈ NG(x̃), P must have
length ℓ ≥ 2. Denote the elements of P by P = {x̃ = p0 → p1 → . . .→ pℓ = z}. We have for all
1 ≤ i ≤ ℓ, d(z, pi−1) > d(z, pi). We make the following claim:

Claim 4. For any z /∈ D, there exists some node w ∈ {p1, . . . , pℓ−1} along the path from x̃ to z that
has been discovered but not expanded.

Proof. First observe that p1 must be discovered since, by Claim 3, x̃ was expanded and p1 is an
out-neighbor of x̃. Furthermore, if pi−1 is discovered and expanded then pi must be discovered.
So, inductively we see that there are two possible cases: either there is some i < ℓ for which pi is
discovered but not expanded (as desired) or pi is discovered and expanded for all i < ℓ. However,
the second case is impossible since z is not in D and it would be if pℓ−1 was expanded. We conclude
the claim that there is some w ∈ {p1, . . . , pℓ−1} that is discovered but not expanded.

Consider the unexpanded node w guaranteed to exist by Claim 4. When the algorithm terminates,

d(q, w) ≥ (1 + γ)d(q, x̃). (5)

If w = xterm this is trivially true as a consequence of the termination rule (3). Otherwise, if (5) were
not true, then w would be closer to q than xterm and it would have been popped off C before xterm

and expanded. With (5) in place, we are ready to obtain our contradiction. By triangle inequality
(since d is a metric) and our supposition that d(q, z) < γ

2d(q, x̃), we have:

d(x̃, z) ≤ d(x̃, q) + d(q, z) <
(
1 +

γ

2

)
d(q, x̃).

Combined with another application of triangle inequality and the fact the d(w, z) < d(x̃, z), we have

d(w, q) ≤ d(w, z) + d(z, q) < d(x̃, z) + d(z, q) <
(
1 +

γ

2

)
d(q, x̃) +

γ

2
d(q, x̃) = (1 + γ)d(q, x̃).

However, this claim contradicts (5). Thus, there cannot exist any z /∈ D with d(q, z) < γ
2d(q, x̃). I.e.,

(4) holds, proving Theorem 1. For a geometric illustration of the above proof, see Figure 2.

5The strict inequality clearly holds when d(q, x̃) > 0 since γ > 0. When d(q, x̃) = 0 it holds because
database items are assumed to be unique, so we cannot also have d(q, xterm) = 0.

7

Figure 2: Visualization of the proof of Theorem 1.
We let d̃ denote d(q, x̃). Our goal is to show that
there is no undiscovered z in a ball of radius γ

2 d̃
around q, which is shown with a dotted line. If
there was, we obtain a contradiction. In particular,
if G is navigable, we argue that there must be
some unexpanded node w on a path of decreasing
distance from x̃ to z. Since w is closer to z than
x̃, it must lie in a ball of radius

(
1 + γ

2

)
d̃ around

z, which is contained in a ball of radius (1 + γ)
around q. However, by (5), no unexpanded node
can lie in that ball.

q

x̃

z
w γ

2 d̃

(1
+
γ
2

) d̃

d̃

(1
+
γ)d̃

5 Experiments

We now experimentally compare our Adaptive Beam Search method with standard beam search,
demonstrating improved tradeoffs between efficiency and accuracy in a variety of settings.

Beam Search Algorithms. We primarily compare standard beam search (termination condition
(2)) with Adaptive Beam Search (termination condition (3)). To implement Algorithm 1 with these
termination conditions, we follow the pseudocode in Appendix B.1. For some settings, we test a third
method called Adaptive Beam Search V2, which terminates on node x if

d(q, x) ≥ d1 + γ · dk, (6)

where d1 and dk are the distances from the query q to the closest and kth closest discovered nodes,
respectively. Compared to (3), (6) replaces the threshold (1 + γ) · dk with the smaller threshold
d1 + γ · dk, leading to more aggressive stopping. Surprisingly, while (6) is not a relaxation of greedy
search (when γ < 1, it may stop earlier than greedy search), one can check that Theorem 1 still
holds under this condition. This motivates its inclusion in our experiments. However, we observe
that Adaptive Beam Search V2 generally underperforms Adaptive Beam Search. We leave open
developing other stopping conditions that satisfy bounds similar to Theorem 1 while obtaining strong
empirical performance like Adaptive Beam Search – see Appendix C.4 for some initial explorations.

Comparison Across Recall Values. The algorithms discussed above can all trade off accuracy for
runtime by adjusting the beam width, b, or the parameter γ. We thus vary these parameters to obtain
a range of recall values, i.e., the average fraction of the k nearest neighbors found over all queries on
a given dataset. Recall is a standard metric for evaluating ANN methods [43, 59]. We compare the
methods by plotting the average number of distance computations performed per query to achieve a
certain recall value. Since all three methods have essentially identical implementations, running time
scales very similarly with the number of distance computations. See Appendix B.1 for more details.

Datasets and Graph Constructions. We evaluate our Adaptive Beam Search on six standard
benchmark datasets for nearest neighbor search, which are listed in Table 1. All datasets consist of
real-valued vectors in varying dimensions, and we use Euclidean distance for search. We perform
evaluations using a variety of popular heuristic “approximately navigable” graphs, along with truly
navigable graphs for which the bound of Theorem 1 holds. Specifically, for the heuristic graphs, we
use four standard methods: HNSW [43], Vamana [59], NSG [16], and EFANNA [15]. Details on
how parameters are set for these algorithms are in Appendix B.3.

5.1 Experimental Setup

To construct the truly navigable graphs, we use the approach of [13] to create an initial navigable
graph with average degree Õ(

√
n), and then further prune this graph while maintaining navigability.

See Appendix B.2 for details. Pruning reduces the memory footprint of the graph, and results in
levels of sparsity closer to those of the heuristic constructions. However, since it is computationally
expensive, we only run our navigable graph experiments for random subsets of three of the datasets,

8

Dataset Dimensions # of Nodes # of Nodes in Navigable
Graph Experiments # Query Points

MNIST [36] 784 60K 50K 10K
SIFT1M [26] 128 1M 100K 10K
DEEP96 [7] 96 1M 100K 10K
DEEP256 [39] 256 1M - 10K
GloVe [53] 200 1M - 10K
GIST [50] 960 1M - 10K

Table 1: Datasets used for evaluation. For further details, refer to Appendix B.3.

with subsample sizes listed in Table 1. We believe that our subsample sizes are large enough to be
representative. However, it would be interesting to improve the running time of constructing very
sparse and truly navigable graphs, so that such graphs can be evaluated for larger datasets.

5.2 Results

We now discuss our experimental results on both truly navigable graphs and the commonly used
heuristic graphs discussed above.

Results for Navigable Graphs. Results for navigable graphs are shown in Figure 3 for SIFT,
DEEP256, and MNIST for k = 1 and 10. Results for k = 100 are included in Appendix C.1.
The y-axis shows recall, while the x-axis shows the average number of distance calculations per
query. Adaptive Beam Search always performs at least on par with classic beam search, and often
significantly better, with up to 30-40% decrease in distance computations for a given recall. Adaptive
Beam Search V2 performs worse, so is not evaluated in future experiments. The underperformance
of Adaptive Beam Search V2 is further explored in Appendix C.3. In a nutshell, when d1 ≪ dk, for
small γ we might stop when d(q, x) < dk, which means we do not even explore all the neighbors of
our current top-k results. If we increase γ to avoid this, we terminate too late when d1 is close to dk.

Figure 3: Navigable Graphs: Comparison of generalized beam search termination conditions on
navigable graphs across three datasets: SIFT1M, DEEP96, and MNIST (columns), with k = 1, and
k = 10 (rows). Adaptive Beam Search consistently outperforms standard beam search, while the
alternative Adaptive Beam Search V2 underperforms both by a significant margin. Note that for
k = 1, Adaptive Beam Search and Adaptive Beam Search V2 are identical, so only one line is shown.

9

Results for Heuristic Graphs. Our results for heuristic graphs with k = 10 across three datasets
are shown in Figure 4. For additional results covering the remaining datasets and values of k, see
Appendix C.2. In all cases, we see that Adaptive Beam Search outperforms standard beam search,
sometimes marginally, but sometimes by more than a factor of 2, e.g., on MNIST. The performance
gains are robust to changing the graph construction, indicating that Adaptive Beam Search is a strong
candidate for a drop-in replacement for standard beam search in graph-based ANN.

Adaptivity Across Queries. As discussed in Section 3.2, Adaptive Beam Search seems to outperform
standard greedy search because the distance-based stopping criterion is more “adaptive” to query
difficulty. For hard queries with many approximate nearest neighbors, it tends to use more distance
computations. However, the method terminates quickly on easy queries when there are few points
with d(q, x) ≤ (1 + γ)dk. This phenomenon is illustrated for a sample of settings in Figure 1.

Figure 4: Heuristic Graphs: Comparison of generalized beam search termination methods on
heuristic graphs produced by NSG, Vamana, EFANNA, and HNSW (rows), for k = 10 with 3
datasets: SIFT1M, DEEP256, and MNIST (columns). Adaptive beam search consistently outperforms
standard beam search across all cases, sometimes by a significant margin.

10

Acknowledgments

We would like to thank Ramon Li for contributions at an early stage of this work. Christopher Musco
was partially supported by NSF Award 2106888.

References
[1] Piyush Anand, Piotr Indyk, Ravishankar Krishnaswamy, Sepideh Mahabadi, Vikas C. Raykar,

Kirankumar Shiragur, and Haike Xu. Graph-based algorithms for diverse similarity search. In
Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Communications of the ACM, 51(1):117–122, 2008.

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal LSH for angular distance. In Advances in Neural Information Processing
Systems 28 (NeurIPS), 2015.

[4] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive
hashing. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2014.

[5] Sunil Arya and David M. Mount. Approximate nearest neighbor queries in fixed dimensions. In
Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1993.

[6] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-Benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms. Information Systems, 87, 2020. Data
accessed at https://github.com/erikbern/ann-benchmarks.

[7] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep
descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2055–2063, 2016. Data accessed at https://github.com/erikbern/
ann-benchmarks.

[8] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In
Proceedings of the 23rd International Conference on Machine Learning (ICML), 2006.

[9] Sebastian Bruch. Foundations of Vector Retrieval. Springer, 2024.

[10] Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density
estimation through density constrained near neighbor search. In Proceedings of the 63rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2020.

[11] Alex Conway, Laxman Dhulipala, Martin Farach-Colton, Rob Johnson, Ben Landrum, Christo-
pher Musco, Yarin Shechter, Torsten Suel, and Richard Wen. Efficiently constructing sparse
navigable graphs. In Proceedings of the 37th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2026.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4171–4186, 2019.

[13] Haya Diwan, Jinrui Gou, Cameron Musco, Christopher Musco, and Torsten Suel. Navigable
graphs for high-dimensional nearest neighbor search: Constructions and limits. In Advances in
Neural Information Processing Systems 37 (NeurIPS), 2024.

[14] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. SPLADE: sparse lexical and
expansion model for first stage ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2021.

[15] Cong Fu and Deng Cai. EFANNA: An extremely fast approximate nearest neighbor search
algorithm based on kNN graph. arXiv:1609.07228, 2016.

11

https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
http://arxiv.org/abs/1609.07228

[16] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graph. Proceedings of the VLDB Endowment, 12(5):461–474,
2019. Data acccessed at: https://github.com/ZJULearning/nsg.

[17] Jianyang Gao and Cheng Long. High-dimensional approximate nearest neighbor search: with
reliable and efficient distance comparison operations. Proceedings of the ACM on Management
of Data, 1(2), 2023.

[18] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search using GPU.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
2008.

[19] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy, Nikit Beg-
wani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premkumar Srinivasan, Amit
Singh, and Harsha Vardhan Simhadri. Filtered-DiskANN: Graph algorithms for approximate
nearest neighbor search with filters. In Proceedings of the 32nd International World Wide Web
Conference (WWW), pages 3406–3416, 2023.

[20] Siddharth Gollapudi, Ravishankar Krishnaswamy, Kirankumar Shiragur, and Harsh Wardhan.
Sort before you prune: Improved worst-case guarantees of the diskANN family of graphs. In
Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.

[21] Fabian Groh, Lukas Ruppert, Patrick Wieschollek, and Hendrik P. A. Lensch. GGNN: graph-
based GPU nearest neighbor search. IEEE Transactions on Big Data, 9(1):267–279, 2023.

[22] Ben Harwood and Tom Drummond. FANNG: fast approximate nearest neighbour graphs. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[23] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
(STOC), 1998.

[24] Piotr Indyk and Haike Xu. Worst-case performance of popular approximate nearest neighbor
search implementations: Guarantees and limitations. In Advances in Neural Information
Processing Systems 36 (NeurIPS), 2023.

[25] Rajesh Jayaram, Laxman Dhulipala, Majid Hadian, Jason Lee, and Vahab Mirrokni. MUVERA:
Multi-vector retrieval via fixed dimensional encoding. In Advances in Neural Information
Processing Systems 37 (NeurIPS), 2024.

[26] Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011.
Data accessed at http://corpus-texmex.irisa.fr.

[27] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(03):535–547, 2021.

[28] Matti Karppa, Martin Aumüller, and Rasmus Pagh. DEANN: Speeding up kernel-density
estimation using approximate nearest neighbor search. In Proceedings of the 25th International
Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

[29] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
Proceedings of the 8th International Conference on Learning Representations (ICLR), 2020.

[30] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In Proceed-
ings of the 29th Annual ACM Symposium on Theory of Computing (STOC), 1997.

[31] Jon M. Kleinberg. Navigation in a small world. Nature, 406(6798):845–845, 2000.

[32] Jon M. Kleinberg. The small-world phenomenon: an algorithmic perspective. In Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing (STOC), 2000.

[33] Ravishankar Krishnaswamy, Magdalen Dobson Manohar, and Harsha Vardhan Simhadri. The
DiskANN library: Graph-based indices for fast, fresh and filtered vector search. IEEE Data
Engineering Bulletin, 48(3):20–42, 2024.

12

https://github.com/ZJULearning/nsg
http://corpus-texmex.irisa.fr

[34] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. In Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (STOC), 1998.

[35] Thijs Laarhoven. Graph-based time-space trade-offs for approximate near neighbors. In
Proceedings of the 34th Annual Symposium on Computational Geometry (SOCG), 2018.

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. Data
accessed at https://github.com/erikbern/ann-benchmarks.

[37] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Advances
in Neural Information Processing Systems 33 (NeurIPS), 2020.

[38] Conglong Li, Minjia Zhang, David G Andersen, and Yuxiong He. Improving approximate
nearest neighbor search through learned adaptive early termination. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, 2020.

[39] Jinfeng Li, Xiao Yan, Jian Zhang, An Xu, James Cheng, Jie Liu, Kelvin K. W. Ng, and Ti-chung
Cheng. A general and efficient querying method for learning to hash. In Proceedings of the 2018
ACM SIGMOD International Conference on Management of Data, pages 1333–1347, 2018.
Data accessed at https://www.cse.cuhk.edu.hk/systems/hash/gqr/datasets.html.

[40] Chen Luo, Vihan Lakshman, Anshumali Shrivastava, Tianyu Cao, Sreyashi Nag, Rahul Goutam,
Hanqing Lu, Yiwei Song, and Bing Yin. ROSE: Robust caches for amazon product search.
https://www.amazon.science/publications/rose-robust-caches-for-amazon-product-search, 2022.

[41] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In Proceedings of the 33rd International
Conference on Very Large Data Bases, pages 950–961, 2007.

[42] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs. Information Systems,
45:61–68, 2014.

[43] Yury. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(4):824–836, 2020.

[44] Magdalen Dobson Manohar, Taekseung Kim, and Guy E. Blelloch. Range retrieval with
graph-based indices. arXiv:2502.13245, 2025.

[45] Magdalen Dobson Manohar, Zheqi Shen, Guy Blelloch, Laxman Dhulipala, Yan Gu, Har-
sha Vardhan Simhadri, and Yihan Sun. ParlayANN: Scalable and deterministic parallel graph-
based approximate nearest neighbor search algorithms. In Proceedings of the 29th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 270–285, 2024.

[46] Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru,
Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard
Grave, Yann LeCun, and Thomas Scialom. Augmented language models: a survey. Transactions
on Machine Learning Research, 2023. Survey Certification.

[47] Stanley Milgram. The small world problem. Psychology Today, 2(1):60–67, 1967.

[48] Bhaskar Mitra, Nick Craswell, et al. An introduction to neural information retrieval. Foundations
and Trends® in Information Retrieval, 13(1):1–126, 2018.

[49] Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for high dimensional
data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–2240,
2014.

13

https://github.com/erikbern/ann-benchmarks
https://www.cse.cuhk.edu.hk/systems/hash/gqr/datasets.html
http://arxiv.org/abs/2502.13245

[50] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic representation
of the spatial envelope. International Journal of Computer Vision, 42:145–175, 2001. Data
accessed at https://github.com/erikbern/ann-benchmarks.

[51] Apostolos N. Papadopoulos and Yannis Manolopoulos. Nearest Neighbor Search:: A Database
Perspective. Springer Science & Business Media, 2005.

[52] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. Efficient approximate
nearest neighbor search in multi-dimensional databases. Proceeding of the ACM on Management
of Data, 1(1), 2023.

[53] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014. Data accessed at https://github.com/erikbern/
ann-benchmarks.

[54] Liudmila Prokhorenkova and Aleksandr Shekhovtsov. Graph-based nearest neighbor search:
From practice to theory. In Proceedings of the 37th International Conference on Machine
Learning (ICML), 2020.

[55] Harsha Vardhan Simhadri, Martin Aumüller, Amir Ingber, Matthijs Douze, George Williams,
Magdalen Dobson Manohar, Dmitry Baranchuk, Edo Liberty, Frank Liu, Ben Landrum, Mazin
Karjikar, Laxman Dhulipala, Meng Chen, Yue Chen, Rui Ma, Kai Zhang, Yuzheng Cai, Jiayang
Shi, Yizhuo Chen, Weiguo Zheng, Zihao Wan, Jie Yin, and Ben Huang. Results of the Big
ANN: NeurIPS’23 competition. arXiv:2409.17424, 2024.

[56] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem Babenko,
Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamny, Gopal Srinivasa,
Suhas Jayaram Subramanya, and Jingdong Wang. Results of the NeurIPS’21 challenge on
billion-scale approximate nearest neighbor search. In Proceedings of the NeurIPS 2021 Compe-
titions and Demonstrations Track, 2022.

[57] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Harsha Vardhan
Simhadri. FreshDiskANN: A fast and accurate graph-based ann index for streaming similarity
search. arXiv:2105.09613, 2021.

[58] Ryan Spring and Anshumali Shrivastava. Scalable and sustainable deep learning via randomized
hashing. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 445–454, 2017.

[59] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Krishaswamy, and Har-
sha Vardhan Simhadri. DiskANN: Fast accurate billion-point nearest neighbor search on a
single node. In Advances in Neural Information Processing Systems 32 (NeurIPS), 2019.

[60] Javier Vargas Muñoz, Marcos A. Gonçalves, Zanoni Dias, and Ricardo da S. Torres. Hierar-
chical clustering-based graphs for large scale approximate nearest neighbor search. Pattern
Recognition, 96, 2019.

[61] Jiadong Xie, Jeffrey Xu Yu, and Yingfan Liu. Graph based k-nearest neighbor search revisited.
ACM Transactions on Database Systems, 2025.

[62] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense
text retrieval. In Proceedings of the 9th International Conference on Learning Representations
(ICLR), 2021.

[63] Haike Xu, Magdalen Dobson Manohar, Philip A. Bernstein, Badrish Chandramouli, Richard
Wen, and Harsha Vardhan Simhadri. In-place updates of a graph index for streaming approximate
nearest neighbor search. arXiv:2502.13826, 2025.

[64] Haike Xu, Sandeep Silwal, and Piotr Indyk. A bi-metric framework for fast similarity search.
arXiv:2406.02891, 2024.

14

https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
http://arxiv.org/abs/2409.17424
http://arxiv.org/abs/2105.09613
http://arxiv.org/abs/2502.13826
http://arxiv.org/abs/2406.02891

[65] Minjia Zhang, Wenhan Wang, and Yuxiong He. GraSP: Optimizing graph-based nearest
neighbor search with subgraph sampling and pruning. In Proceedings of the 15th International
Conference on Web Search and Data Mining (WSDM), pages 1395–1405, 2022.

[66] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. Towards efficient index
construction and approximate nearest neighbor search in high-dimensional spaces. Proceedings
of the VLDB Endowment, 16(8):1979–1991, 2023.

15

A Additional Proofs

A.1 Nonexistence of Sparse α-Shortcut Reachable Graphs

Recent work of Indyk and Xu [24] shows that, for k = 1, standard greedy search (i.e., beam
search with beam width b = 1) provably returns a

(
α+1
α−1 + ϵ

)
-approximate nearest neighbor for any

constant ϵ when run on an α-shortcut reachable search graph G. The α-shortcut reachability property
requires that, for any nodes x, y ∈ {1, . . . , n} with d(x, y) > 0, there is some z ∈ NG(x) with
α · d(z, y) < d(x, y) for some parameter α ≥ 1. The requirement exactly corresponds to navigability
(Definition 1) when α = 1 and is a strictly stronger condition when α > 1.

The guarantee of [24] is non-vacuous when α > 1. Unfortunately, it is also not hard to see that
for any fixed α > 1, there exist relatively low-dimensional point sets with no sparse α-shortcut
reachable graphs. In fact, for any constant α > 1, it suffices to consider a random point set in
O(log n) dimensional Euclidean space. This contrasts the situation for navigability (α = 1), since
[11] shows that an O(

√
n) average degree navigable graph can be efficiently constructed for any point

set in any dimension (indeed, in any metric space), under the mild assumption of unique pairwise
distances between points (which can be ensured, e.g., by tie-breaking with node id). Formally:

Claim 5. For any α > 1, let m = O
(

logn
(1−1/α)2

)
. There are n points in m-dimensional Euclidean

space with unique pairwise distances, but the only α-shortcut reachable graph for the points is the
complete graph. Further, by [11], the points admit a navigable graph with O(

√
n) average degree.

Note that for constant α > 1, 1− 1/α is a constant bounded away from 0, so m = O(log n).

Proof. It suffices to find a set of n points whose pairwise distances all lie in the range (1/α, 1]. Then,
for any x ̸= y, the only z with α · d(z, y) < d(x, y) is z = y. Thus, to ensure α-shortcut reachability,
all nodes must be connected to all other nodes – i.e., G must be the complete graph.

If we are not concerned about the dimensionality, finding a set of points in Euclidean space with all
pairwise distances lying in (1/α, 1] is trivial: take the n standard basis vectors in Rn, scaled by 1/

√
2

so that they all have distance 1 from each other. Subtract an infinitesimally small random amount
from the non-zero entry of each so that all pairwise distances are unique, but still lie in (1/α, 1].

To obtain a result in lower dimensions, we instead consider random points. Concretely, consider n
points in Rm with each entry set independently to 1 or −1 with probability 1/2. For each x, y, we
have E[∥x− y∥22] = 2m and by a standard binomial concentration bounds, Pr[|∥x− y∥22 − 2m| ≥
m(1− 1/α)] ≤ exp(−Ω((1− 1/α)2 ·m)). Setting m = O

(
logn

(1−1/α)2

)
, this probability is bounded

by 1/nc for a large constant c. Taking a union bound over all
(
n
2

)
< n2 pairs of points, we see

that all their squared pairwise distances lie in the range
(
2m(1− 1−1/α

2), 2m(1 + 1−1/α
2)

)
with

probability at least 1− 1/nc−2. Normalizing by 2m(1 + 1−1/α
2), all the squared pairwise distances

are less than one 1 and greater than 1− 1−1/α
2

1+
1−1/α

2

≥ 1− (1 − 1/α) = 1/α, where we use the fact that
1−x
1+x ≥ 1− 2x for all x. Thus, all squared pairwise distances, and in turn all pairwise distances, lie in
the range (1/α, 1), as desired. We can again ensure unique pairwise distances by adding arbitrarily
small random perturbations to each point, completing the claim.

A.2 Failure of Beam Search on Navigable Graphs

We next give a simple counterexample, showing that, unless the beam width is set to essentially the
full dataset size, standard beam search on a navigable graph can fail to find an approximate nearest
neighbor when run on a navigable graph. This observation in part motivates the definition of our
alternative distance-based stopping rule, (3), and the resulting Adaptive Beam Search algorithm.

Claim 6. For any finite C, there exists a set of n points in 2-dimensional Euclidean space and
a navigable graph G such that, for some query point q, beam search run on G with beam width
b ≤ n− 3 returns x̃ with d(q, x̃) ≥ C · d(q, x∗).

16

x1 = (0, 0) xi≥4 ≈ (1, 0)

x2 = (1, 1) x3 = (m, 1)

q = (m, 0)
≈ 1

√
2

≈ 1

m

Figure 5: Example showing that standard beam search fails to find a nearest neighbor in a navigable
graph. Points x4, . . . ,xn are all located arbitrarily close to (1, 0). They are all nnected to x1 and x2,
as well as to each other. The graph is navigable, since we can navigate from x1,x4, . . . ,xn to x3 and
vice-versa through x2. All other nodes are directly connected to each other. Suppose beam search
with beam width b ≤ n− 3 is initialized at x1 with query q. Because x4, . . . ,xn are all closer to the
q than x2, the method will never expand x2 and thus fail to reach the nearest neighbor x3.

Proof. Consider the following dataset in 2-dimensional Euclidean space shown in Figure 5: x1 =
(0, 0),x2 = (1, 1),x3 = (m, 1) for some arbitrarily large value m. Let x4, . . . ,xn all be located at
arbitrary positions in an ϵ ball around (1, 0) for arbitrarily small ϵ. We can check that the graph with
the following two-way edges is navigable: (x2,x3) and (xi,xj) for all i ∈ {1, 2}, j ∈ {4, . . . , n}.
Consider beam search initialized at starting point x1 = (0, 0) with query q = (m, 0). The nearest
neighbor to q is x3 with ∥q− x3∥2 = 1. In the first step of beam search, all neighbors of x1

(x2,x4, . . . ,xn) will be added to the search queue. Since x2 is further from q than all nodes in
x4, . . . ,xn, the algorithm will then expand nodes from this set in succession, adding no new nodes to
the queue since none of these nodes are connected to x3, the only remaining unexplored node. If
b ≤ n− 3, the algorithm will then terminate, with x2 never expanded and x3 never explored.

As a result, beam search returns some x̃ ∈ {x4, . . . ,xn} with distance ∥q− x̃∥2 ≥ m− ϵ. It thus
achieves approximation factor ∥q−x̃∥2

∥q−x3∥2
≥ m−ϵ

1 . Setting m = C + ϵ gives the result.

B Additional Implementation Details

B.1 Pseudocode for Generalized Beam Search Variants

Below, we provide detailed pseudocode for generalized beam search (Algorithm 1) under stopping
conditions (1) (classic greedy search), (2) (classic beam search), and (3) (Adaptive Beam Search).
While the greedy search order and stopping rule determine the number of distance computations
performed, it is possible to optimize runtime and storage requirements by using appropriate data
structures to implement the stopping rule. Additionally, we can avoid adding nodes to the candidate
set C if we are sure that, if popped off C, those nodes would trigger the termination condition anyways.

Adaptive Beam Search and Greedy Search. Pseudocode for Adaptive Beam Search is given in
Algorithm 2. The same pseudocode can be used for greedy search, by setting the approximation
parameter γ = 0, so that the Adaptive Beam Search stopping rule (3) becomes the greedy rule (1).

The key optimization is that we maintain a heap, B, of the k nearest points seen so far, which avoids
having to extract these neighbors from the set of discovered nodesD every time termination condition
(3) is checked. Further, if a newly discovered node has distance larger than (1 + γ) times the kth

closest seen so far, it will always trigger termination if considered for expansion. Thus, we can avoid
adding it to the candidate set of unexpanded nodes, C. See Lines 12-17. This optimization avoids
letting C grow unnecessarily large with nodes that will never be expanded.

Classic Beam Search. Pseudocode for classic beam search is given in Algorithm 3. The implementa-
tion is essentially identical to that of Adaptive Beam Search, except that a heap of the b ≥ k nearest
points seen so far must be maintained to efficiently check stopping condition (2) each time a node is
considered for expansion or newly discovered. At the end of the algorithm, the k nearest points from
this heap are ultimately returned. See Lines 22-23.

17

Algorithm 2 Adaptive Beam Search
Input: Search graph G over nodes {1, . . . , n}, starting node s, distance function d, query q, target

number of nearest neighbors k, approximation parameter γ.
Output: A set of k nodes B ⊂ {1, . . . , n}. Each x ∈ B is ideally close to q with respect to the

distance function d.
1: D ← {s} ▷ Dictionary of Discovered nodes
2: C ← {(s, d(q, s))} ▷ Min-heap of candidates
3: B ← {(s, d(q, s))} ▷ Max-heap of best results
4: while C is not empty do
5: (x, d(q, x))← heappop(C)
6: if |B| = k and (1 + γ) · findmax(B) ≤ d(q, x) then
7: break ▷ Termination condition from Eq. (3)
8: for all y ∈ NG(x) do
9: if y /∈ D then

10: D ← insert(D, y)
11: if |B| < k or d(q, y) < (1 + γ) · findmax(B) then
12: heappush(B, (y, d(q, y)))
13: heappush(C, (y, d(q, y)))
14: if |B| = k + 1 then
15: heappop(B)
16: return B

Algorithm 3 Classic Beam Search
Input: Search graph G over nodes {1, . . . , n}, starting node s, distance function d, query q, beam

width b, target number of nearest-neighbors k.
Output: A set of k nodes B ⊂ {1, . . . , n}. Each x ∈ B is ideally close to q with respect to the

distance function d.
1: D ← {s} ▷ Dictionary of discovered nodes
2: C ← {(s, d(q, s))} ▷ Min-heap of candidates
3: B ← {(s, d(q, s))} ▷ Max-heap of best results
4: while C is not empty do
5: (x, d(q, x))← heappop(C)
6: if |B| = b and findmax(B) ≤ d(q, x) then
7: break ▷ Termination condition from Eq. (2)
8: for all y ∈ NG(x) do
9: if y /∈ D then

10: D ← insert(D, y)
11: if |B| < b or d(q, y) < findmax(B) then
12: heappush(B, (y, d(q, y)))
13: heappush(C, (y, d(q, y)))
14: if |B| = b+ 1 then
15: heappop(B)
16: for i = 1 . . . (b− k) do
17: heappop(B). ▷ Reduce B down to the best k results.
18: return B

B.2 Sparse Navigable Graph Construction via Pruning

As discussed, in Section 5, we evaluate the performance of our Adaptive Beam Search method on
both truly navigable graphs, where it is backed by the theoretical guarantee of Theorem 1, and on
heuristic “approximately navigable” graphs constructed using a variety of popular methods.

To construct sparse navigable graphs, we use the construction of [13]. For m = ⌊
√
3n lnn⌋, each

node is connected to its m nearest neighbors along with ⌈ 3n lnn
m ⌉ uniformly random nodes. As shown

in [13], such a graph is navigable with high probability and has average degree O(
√
n log n).

18

We further sparsify these graphs, both to facilitate running large-scale experiments and to more
accurately reflect performance on graphs with practical levels of sparsity. To do so, we employ
a pruning strategy that removes redundant edges from the graph while maintaining navigability.
Pseudocode for the pruning method is given in Algorithm 4. It starts with a navigable graph G, then
iterates over each node s in the graph, only keeping a minimal set of out edges needed to ensure
navigability. In particular, for each node t ∈ {1, . . . , n} \ {s}, by Definition 1, we must ensure that s
has an out neighbor x with d(x, t) < d(s, t). The method iterates over each t, adding an out neighbor
of s to the keep set only if it is needed to ensure this condition holds for some t (i.e., if no edges
already in keep ensure the condition). After checking all t, it removes all neighbors of s not in keep.

Algorithm 4 Navigable Graph Pruning
Input: Navigable graph G on nodes {1, . . . , n}, distance function d.
Output: Subgraph of G that is still navigable over {1, . . . , n} but ideally has many fewer edges.

1: for all s in {1, . . . , n} do
2: keep← {} ▷ Set of out neighbors that will remain after pruning.
3: remove← NG(s) ▷ Set of out neighbors that will be removed after pruning.
4: for all t in {1, . . . , n} \ {s} do
5: navigable← FALSE
6: for all x in keep do
7: if d(x, t) < d(s, t) then
8: navigable← TRUE ▷ Navigability condition satisfied. No need to add an edge.
9: break

10: if not navigable then
11: for all y in remove do
12: if d(y, t) < d(s, t) then
13: keep← keep ∪ {y} ▷ Keeping edge from s to y ensures navigability to t
14: remove← remove \ {y}
15: break
16: for all y in remove do
17: G.remove_edge(s, y)

return G

The pruning strategy of Algorithm 4 can produce navigable graphs that are significantly sparser than
those constructed by [13]. See Table 2 for a summary of the average degrees achieved for our tested
datasets. Unfortunately, the runtime of our pruning method scales at least quadratically with n. This
limits our ability to apply the method to the full datasets. An interesting open question is to improve
the running time of constructing very sparse and truly navigable graphs.

Dataset Dimensions # Nodes Average Out Degree
Before Pruning

Average Out Degree
After Pruning

SIFT1M[26] 128 100K 3682 59
DEEP96 [7, 6] 96 100K 3682 77
MNIST [36, 6] 784 50K 2516 45

Table 2: Average out degrees of navigable graphs before and after pruning. Note that we run on
subsamples of the full datasets from Table 1 due to the high computational cost of pruning.

B.3 Omitted Details on Experimental Setup

We next give additional details on the datasets and graphs used to evaluate Adaptive Beam Search.

Datasets. Table 1 summarizes the six benchmark datasets used in our experiments. The citation for
each dataset includes a note listing the URL where we obtained the specific version of the dataset used
in our work. The datasets are available under the following licenses: MIT License (MNSIST), CC0
1.0 Universal (SIFT, GIST), and the Open Data Commons Public Domain Dedication and License
(GloVe). We were unable to find license information for Deep96 and Deep256. Both are available in
the public domain.

19

For DEEP96, we used a one-million-point pre-sampled dataset from [6], but our 100K points used
for the navigable graph experiments were sampled from the original dataset available at https:
//github.com/matsui528/deep1b_gt. For GloVe, we sampled one million nodes from the
original dataset. The GIST data only includes 1K query points by default. To generate 10K query
points, in order to match the other benchmarks, we sampled additional query points uniformly at
random from the so-called learning data points, which are included with GIST for hyperparameter
tuning. We did not use this set of points for any other purpose or any parameter tuning.

Graph Parameters. As discussed in Section 5, we construct heuristic graphs using four com-
mon methods: HNSW [43], Vamana [59], NSG [16], and EFANNA [15]. We used our own
implementations of HNSW and Vamana. Code for NSG is available under an MIT License at
https://github.com/ZJULearning/nsg and for EFANNA under a BSD License at https:
//github.com/ZJULearning/efanna.

The heuristic graph construction algorithms employed take as input various hyperparameters. Settings
used for these hyperparameters are given in Table 3. For Vamana, we used the same hyperparameters
for all datasets, matching those in the original paper [59], which were found to work well for SIFT,
DEEP96, and GIST; using the same parameters for the other datasets yielded similarly good results.
The hyperparameters for EFANNA [15] and NSG [16] for SIFT and GIST are taken from authors’
repository [16]. The same parameters were also used by [65] and [59]. For NSG and EFANNA
with DEEP96, we used the optimal values used by [65]. For EFANNA with MNIST, DEEP256, and
GloVe, we tested them using the two set of hyperparameters- the ones used for SIFT and GIST- and
picked the better performing. We did a similar thing for NSG with MNIST, DEEP256, and GloVe.

EFANNA HNSW NSG Vamana
Dataset K L iter S R M efC nn R L C L R α

SIFT1M 200 200 10 10 100 14 500 200 50 40 500 125 70 2
DEEP96 200 200 10 10 100 14 500 200 50 40 500 125 70 2

DEEP256 200 200 10 10 100 14 500 200 50 40 500 125 70 2
GloVe 200 200 10 10 100 16 500 400 70 60 500 125 70 2
GIST 400 400 12 15 100 24 500 400 70 60 500 125 70 2

MNIST 200 200 10 10 100 14 500 400 50 40 500 125 70 2

Table 3: Experimental Hyperparameters for Different Datasetsa dn Graph Constructions

For HNSW, we used the hyperparameters that [65] found to be optimal for SIFT, DEEP96, GIST, and
GloVe. For HNSW on MNIST and DEEP256, we tested with values of M=14,16,24 and used the
best performing on the standard beam search. Since the authors found the ideal value of efc for SIFT,
DEEP96, GIST, and GloVe to be 500, we used this value for DEEP256 and MNIST.

Computational Resources. Navigable graphs were constructed using our pruning methods run on
a single core of a 3.2GHz Intel Core i9-12900K CPU with access to 128GB of DDR5 4800mhz
RAM. To accelerate pruning and take advantage of available memory, we precomputed all pairwise
distances between pairs of points in the dataset. Each graph required several hours to construct. All
other experiments were run on a single 2.9GHz Intel(R) Xeon(R) Platinum 8268 CPU with access to
32GM of RAM, although at most 4GB was used for any individual experiment. Producing a single
recall/distance computation tradeoff curve requires several hours for each dataset and algorithm.

C Additional Experimental Results

In this section, we include additional experimental results.

C.1 Navigable Graphs

In Figure 6 we compare beam search termination conditions on three datasets for k = 100. The
results are similar to those reported in Figure 3 for k = 1 and k = 10, but with less significant gains
seen for Adaptive Beam Search as compared to standard beam search. As for smaller values of k,
Adaptive Beam Search V2 underperforms both other methods.

20

https://github.com/matsui528/deep1b_gt
https://github.com/matsui528/deep1b_gt
https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/efanna
https://github.com/ZJULearning/efanna

Figure 6: Comparison of generalized beam search termination conditions on navigable graphs across
three datasets: SIFT1M, DEEP96, and MNIST (columns), with k = 100 (rows). Adaptive Beam
Search consistently outperforms standard beam search, while the alternative Adaptive Beam Search
V2 underperforms both by a significant margin.

Figure 7: Comparison of generalized beam search termination methods on HNSW graphs with
k = 10 across six datasets. Adaptive Beam Search outperforms standard beam search, with the
degree of improvement varying across datasets.

C.2 Heuristic Graphs

In Figure 7 we compare beam search termination conditions on HNSW search graphs for all six
benchmarks and k = 10. In Figure 8, we include further results on HNSW graphs for k = 1 and
k = 50 across three datasets. As with our other experiments on heuristic graphs (see Figure 4), we
see that Adaptive Beam Search generally outperforms standard beam search, sometimes by a large
margin. One exception is for GIST with k = 1, where beam search performs marginally better.

C.3 Adaptive Beam Search vs. Adaptive Beam Search V2

As illustrated in Figure 3, Adaptive Beam Search V2, which uses the more aggressive stopping
condition of (6), generally underperforms both Adaptive Beam Search and classic beam search. We
believe this is due to the fact that, to achieve high recall, the γ parameter for this rule needs to be set
high, causing the method to terminate late and perform a large number of distance computations on
some queries. This phenomenon is illustrated in Figure 9.

21

Figure 8: Comparison of generalized beam search termination methods on HNSW graphs across
three datasets with k = 50 and k = 1. Adaptive Beam Search outperforms standard beam search as
we vary k, with the exception of GIST for k = 1, where it slightly underperforms.

Figure 9: Histograms for the number of distance computations performed by Adaptive Beam Search
and Adaptive Beam Search V2. We tune the γ parameter for each method to achieve a fixed recall
value, finding that Adaptive Beam Search V2 has a heavier tail of queries that require many distance
computations, in part explaining its poor performance seen in Figure 3.

Figure 10: Evaluation of the Hybrid Beam Search termination rule from (7) on three datasets. There
is very little difference in performance between the method and Adaptive Beam Search.

C.4 Hybrid Stopping Rule

As discussed in Section 5, it would be interesting to consider other relaxations of greedy search
beyond beam search and Adaptive Beam Search. For example, [21] considers a rule similar to
Adaptive Beam Search V2 (6): instead of using the stopping criteria d(q, x) ≥ (1 + γ) · dk as in
Adaptive Beam Search, they use criteria d(q, x) ≥ dk + γ · d1, where d1 and dk are the distances

22

from the query q to the closest and kth closest discovered nodes, respectively. Initial experiments on
this approach suggest that it performs very similarly to Adaptive Beam Search.

Another obvious candidate is a stopping rule that combines the distance-based relaxation of Adaptive
Beam Search and the rank-based stopping rule of standard beam search. In particular, in Algorithm 1
we could choose to terminate if there are at least:

b items j1, . . . , jb ∈ D with (1 + γ) · d(q, ji) ≤ d(q, x), (7)

where b > k is a “width parameter” and γ > 0 is a distance-based relaxation. We ran initial
experiments with this natural hybrid termination, which are shown in Figure 10. To obtain a trade-off
curve between recall and distance computations, we either fixed b = β · k for a parameter β > 1
and then varied γ, or we fixed γ and varied β. Somewhat surprisingly, the hybrid method appears to
perform very similarly to Adaptive Beam Search, although further study of this termination condition
and other relaxations would be valuable.

23

	Introduction
	Background and Related Work
	Additional Related Work

	Adaptive Beam Search
	Decoupling Beam Search as Ordered Traversal With a Stopping Condition
	Relaxing Greedy Search

	Theoretical Analysis
	Experiments
	Experimental Setup
	Results

	Additional Proofs
	Nonexistence of Sparse -Shortcut Reachable Graphs
	Failure of Beam Search on Navigable Graphs

	Additional Implementation Details
	Pseudocode for Generalized Beam Search Variants
	Sparse Navigable Graph Construction via Pruning
	Omitted Details on Experimental Setup

	Additional Experimental Results
	Navigable Graphs
	Heuristic Graphs
	Adaptive Beam Search vs. Adaptive Beam Search V2
	Hybrid Stopping Rule

