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Abstract
We propose a novel stochastic network model, called Fractal Gaussian Network

(FGN), that embodies well-defined and analytically tractable fractal structures. Such

fractal structures have been empirically observed in diverse applications. FGNs in-

terpolate continuously between the popular purely random geometric graphs (a.k.a.

the Poisson Boolean network), and random graphs with increasingly fractal behavior.

In fact, they form a parametric family of sparse random geometric graphs that are

parametrized by a fractality parameter ‹ which governs the strength of the fractal

structure. FGNs are driven by the latent spatial geometry of Gaussian Multiplicative

Chaos (GMC), a canonical model of fractality in its own right. We asymptotically

characterize the expected number of edges, triangles, cliques and hub-and-spoke motifs

in FGNs, unveiling a distinct pattern in their scaling with the size parameter of the

network. We then examine the natural question of detecting the presence of fractality

and the problem of parameter estimation based on observed network data, in addition

to fundamental properties of the FGN as a random graph model. We also explore

fractality in community structures by unveiling a natural stochastic block model in the

setting of FGNs. Finally, we substantiate our results with phenomenological analysis

of the FGN in the context of available scientific literature for fractality in networks,

including applications to real-world massive network data.

1 Stochastic Networks and Fractality
The unreasonable e�ectiveness of stochastic networks. Stochastic networks have
emerged as one of the fundamental modeling paradigms in the last few decades in our ef-
forts to e�ectively understand interactions underlying vast amounts of data with increasing
complexity, and in order to capture the e�ects of latent factors. At a broad level of ab-
straction, this involves nodes representing agents, and edges (weighted or otherwise) that
embody the interactions between these agents. Indeed, the ubiquity of stochastic network
models in the modern applied sciences may justifiably remind one of Eugene Wigner’s famous
article, [Wig60], on the unreasonable e�ectiveness of mathematics in the natural sciences.
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Within the domain of stochastic networks, many popular modeling formulations have been
proposed and investigated, in order to understand di�erent types of phenomena in large
complex systems. These include the fundamental Erd�s-Rényi random graph model, the
preferential attachment model and its variants, random geometric graphs, graphons and re-
lated exchangeable models, the stochastic block model and its various avatars, small world
networks like the Watts-Strogatz model, models of scale-free networks, to provide a par-
tial list of examples (see, e.g., [AB02],[Str01], [Lov12], [ER59], [Pen03], [BC09], [HLL83],
[OR14]). The application domains for stochastic network models are diverse, encompassing
the world-wide web and inter/intra-nets, collaboration networks in academia, and social and
communication networks. Indeed, modern day network science has developed into a unique
discipline of its own, for an overview of which we refer the reader to any amongst a multitude
of excellent texts - at this point we mention [Wat04], [CL06], [Cal07], [Kol09], [MMM09],
[Jac10], [BKM10], [Lew11], [Bar16], [VDH16] and [Cra18] only to provide a partial list. As
a preview to connect our present contribution to this classical literature, in this paper we
aim to propose a novel paradigm of statistical networks with a view to capturing fractal
phenomena.

Fractal structures in large scale networks. An important feature which has come to
the fore in recent investigations of networks is the emergence of inherent fractal structures in
diverse application domains. Heuristically, fractal structures are often characterized by non-
standard and anomalous behavior of various scaling and growth exponents, and truncated
power law tails for naturally associated statistics (c.f., [Fal04], [Man83], [ABLM98]). There
are many instances of emergence of fractality in networks. To provide a detailed example,
in human mobility networks, it has been observed that the layout of the way-points in the
trajectories and the boundaries of popular sojourn domains exhibit fractal properties on a
global scale, and the flight/pause times and inter-contact times between the agents exhibit
power law tails (see, e.g., [LHK+11], [RSH+11]). Another important class of examples is
the discovery of fractal structures in transportation networks, like urban bus transport net-
works and railway networks ([Ben92], [PDAVRC+17], [MMAB15], [Sal03]) and drainage net-
works ([RRIR+92], [RRIRIV93], [LBR89] [CFO96]). Fractality and multifractality are also
known to arise in the context of scale-free and other complex networks ([SHM05], [SHM06],
[KGKK07]), internet tra�c ([CMP00]) and financial networks; in fact, financial data in gen-
eral present an important class of problems where fractal properties are known to occur (c.f.,
[CBGC04], [dlTKKE17], [Man13a], [MH10], [INT+04], [Eve95]). Fractal phenomena have
emerged in sociological and ecological networks, dense graphs and graphons ([DFBCDM13],
[HBD08], [GHMP12], [PLV10], [LVT17]), biological neural networks ([BMLA+06]), network
dynamics ([Orb86], [GSKK06]) and even in the field of development economics ([BS06]).

In view of the diversity of settings in which fractality has been observed to occur in
networks, it is natural to investigate concrete mathematical models of fractality in networks
which, on one hand, are amenable to rigorous theoretical analysis, and on the other hand,
allow a broad enough horizon to study a reasonably wide class of interesting phenomena.
Furthermore, it would be of great interest to have a parametric statistical model, e.g. in the
spirit of exponential families of classical parametric statistics ([BD15]). This will open up
a natural programme of investigation in terms of parameter estimation, tests of hypothesis
with regard to fractal structures and examination of the model under parametric modulation.
Towards that, in this work, we propose a parametric model of fractality in sparse networks,
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to understand fractal structures in a rigorous and analytically tractable manner. Based on a
latent random field structure accorded by Gaussian Multiplicative Chaos (GMC), a canonical
model of fractal phenomena in various branches of natural and applied sciences, we call our
model the Fractal Gaussian Network model, which we will henceforth abbreviate as FGN.

Organization. The rest of the paper is organized as follows. In Section 2, we discuss
the fundamentals of Gaussian Multiplicative Chaos in a formal manner. In Section 3, we
introduce FGNs and discuss basic network properties including connectivity threshold, clus-
tering coe�cient and degree distribution. We conclude Section 3 by introducing a version
of stochastic block model with the FGN paradigm. In Section 4, we first provide theoretical
results on basic motifs including edge, triangle, hub-and-spoke and k-clique counts. We next
present interesting empirical observations regarding the spectrum of FGN, and provide esti-
mators of the parameters of the FGN model. In Section 5, we provide a phenomenological
perspective of FGN including a real-world data analysis.

2 Gaussian Multiplicative Chaos: An Overview
GMC is a canonical probabilistic model of fractal behavior in nature, endowed with statistical
invariance properties that make it both an attractive mathematical structure as well as a ro-
bust modeling paradigm. Originating in the study of quantum field theory ([HK71], [Sim15])
and the seminal work of Jean-Pierre Kahane ([Kah85], [KP76]), it has many applications to
fundamental problems like the study of quantum gravity (see, e.g., [DS09], [DS11]), as well
as applied sciences where the GMC and related ideas have been e�ectively used to model
volatility in financial assets and problems of turbulence (see, e.g., [LGS99], [DRV12], [Kol41],
[Kol62], [FLDR10] and related literature). In this section, we provide a brief introduction to
GMC, introducing tools which will aid in our analytical investigations subsequently. For an
elaborate discussion, we refer the reader to the extensive accounts [RV14], [Rho16], [Ber15],
[Ber17], [Lac19] for a partial list, and the references contained therein. On this note, we
also refer to the work [RV10], which essentially revived interest in GMC among probabilists,
after the seminal works of Kahane several decades ago.

Let {Xt(x), t Ø 0, x œ Rd} be a centered Gaussian field, which is a standard Brownian
motion as t evolves for each fixed x and

E[Xs(x)Xt(y)] =
⁄ emin(s,t)

1

k(u(x ≠ y))
u

du, (1)

therefore stationary in space variable. The introduction of the above Brownian motion
is helpful for computations; for more detail we refer the interested reader to [DRSV14a],
[DRSV14c] and [DRSV14b]. We make the following assumptions on the kernel throughout
this work.

Assumption 2.1. The map k : Rd æ [0, Œ) in Equation (1)

• satisfies k(0) = 1,
• is radial, i.e. k(x) = k(ÎxÎę) for any x œ Rd and ę = (1, 0, ..., 0) œ Rd, where Î · Î

denotes the Euclidean norm.
• is continuous and decays at infinity such that

s Œ
1

k(uę)
u du < Œ.
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As t æ Œ in Equation (1), one obtains a log-correlated Gaussian field X as a random
distribution. Indeed, it is easy to check that such functions k lead to the limiting covariance
function of the Gaussian field X that has the following form :

K(x, y) = ln+
T

Îx ≠ yÎ + g(x ≠ y) (2)

where T > 0 and g is a bounded continuous function. Here we adopt the notation ln+ =
max(ln, 0).

Gaussian Multiplicative Chaos (GMC) form a natural family of random fractal measures.
Roughly speaking, the GMC is defined on a Euclidean base space (e.g., a domain � œ
Rd, scaled to have volume 1), and originates from an underlying centered Gaussian field
(X(x))xœ�). Typically, on Euclidean spaces the Gaussian field X is taken to be translation
invariant and logarithmically correlated. This entails, for example, that the covariance kernel
K of the Gaussian field X has the form in Equation (2). Such fields arise naturally in many
areas of mathematics, statistical physics and their applications, an important example being
the celebrated Gaussian Free Field model (see, e.g., [She07] and the references therein).

Let µ be a Radon measure on �. For any “ > 0 (with “
2

< 2 dim(µ) in order to ensure
non-degeneracy of the limiting measure), we consider the random measure defined on � that
is given, heuristically speaking, by the formula

dM
“(x) := exp(“X(x) ≠ “

2

2 E[X(x)2])dµ(x). (3)

In the common setting of translation-invariance and µ the d-dimensional Lebesgue measure,
this simply reduces to the form dM

“(x) = C“ exp(“X(x))dx, which is the setting on which
we are going to focus in this article. It is known that in this case the expected measure
E[dM

“(x)] = dx, i.e. the d-dimensional Lebesgue measure, which provides a convenient
background measure to compare a typical realization of the GMC with. With these ingredi-
ents in hand, we may define

M
“ := lim

tæŒ
M

“
t a.s., where M

“
t (dx) = e

“Xt(x)≠ “2
2 E[Xt(x)2]dx, (4)

and the convergence is guaranteed by a martingale structure that is known to be inherent
in this setting. Since, for each x, we have E[Xt(x)2] = t, we may write

M
“
t (dx) = e

“Xt(x)≠ “2t
2 dx.

In this work, we set ‹ := “2

d to be the fractality parameter. If “
2

< 2d (equivalently,
‹ < 2), the limit M

“ is a non-degenerate measure, otherwise M
“ is a trivial zero measure.

This regime ‹ < 2 where the GMC is a non-degenerate measure will be referred to as the
subcritical regime. In our analytical considerations, we will assume the GMC is subcritical
and we consider the GMC on the d-dimensional unit cube � = [≠1/2, 1/2]d.

A crucial point is that, because of the logarithmic singularity of the covariance kernel,
the Gaussian field X is usually not well-defined as a function, but can be made sense of only
as a Schwarz distribution (that acts on a smooth enough class of functions). Consequently,
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Figure 1: Surface plots of discrete approximation to the GMC measure: As we move from
top to bottom and from left to right, the value of ‹ increases.

Equation (3) that essentially purports to give a formulaic description of the GMC in terms
of a random density with respect to the Lebesgue measure, is only valid as a heuristic
description. In fact, significant technical e�ort needs to be dedicated to make rigorous sense
of the GMC as a random measure (without a well-defined density), a natural path to which
is via approximating Gaussian fields for which everything is well-defined and taking limits.
The fact that the density in Equation (3) does not exist as a well-defined, albeit random,
function indicates that as a random measure GMC is indeed almost surely a fractal measure.
This can also be demonstrated rigorously, and it can be shown that the GMC a.s. has a
fractal dimension d ≠ “2

2 (in the case µ(dx) = dx). It may be noted that, compared to the
ambient dimension d, it is this fractal dimension that is more intrinsic to the GMC measure.
In Figure 1, we provide surface-plots of discrete approximations to the GMC measure as
the parameter ‹ varies. Such approximation may be obtained, e.g., by approximating the
Gaussian field X (that underlies the GMC) on a fine grid on Rd.

3 Fractal Gaussian Networks
We next proceed to describe the construction of the FGN based on the GMC. To this end,
we will require the following ingredients :

• An integer d > 0, a parameter “ > 0 with “
2

< 2d, and a domain � µ Rd with
Vol(�) = 1.
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• A centered Gaussian random field X that lives on �, with a logarithmically singular
covariance kernel at the diagonal.

• A realization of the GMC M
“ on the domain � and based on the random field X .

• A size parameter n, which is a positive integer (to be thought of as large but finite).
• A connectivity threshold ‡ (whose natural size will turn out to be Ã n

≠1/d)
• A Poisson random variable N that is distributed with mean nM

“(�)

With the above ingredients in hand, we now proceed to construct the FGN model via the
following steps:

• Sample N -many points, denoted by V := {x1, . . . , xN} at random from the given
realization M

“ of the GMC measure (after normalizing it to have total mass 1). The
points in V will form the nodes of the FGN.

• Connect each xi with any other xj that is within distance ‡ of xi. It turns out that there
are multiple ways of implementing such connectivity that, broadly speaking, leads to
similar behavior of various network statistics.

– A direct approach to just connect two points in V if and only if they are within
distance ‡ of each other.

– A refined approach to connect two vertices xi, xj œ V with probability Ã exp(≠Îxi≠xjÎ2

‡2 ).
This allows for the possibility of long range connectivity. In our considerations in
this article, for the sake of definiteness we will set the connection probability to
be exactly equal to exp(≠Îxi≠xjÎ2

‡2 ).

In the last step of constructing the edges, it is the latter, more refined approach of adding
edges randomly according to a Gaussian kernel that we will follow for the rest of this paper.
However, we note in the passing that we believe the key phenomena will largely be true for
the direct approach of connecting vertices merely based on their Euclidean separation. It
turns out that E[M“(�)] = |�| = 1, therefore E[N ] = nE[M“(�)] = n, so n is the natural
large parameter indexing a growing network size.

3.1 Single-Pass and Multi-Pass Observation Models
Our data access model is that we have access to the combinatorial data of the graph. In other
words, our information will consist merely of a graph with vertices labelled {1, . . . , N} and
vertices i and j connected by an edge if and only if the points xi and xj are connected in the
above geometric graph. Thus, the spatial geometric structure of the GMC is purely a latent
factor in the FGN, which we have no direct access to in our statistical investigations. We will
explore two di�erent observation models for the FGN. One observation model, which we call
the single-pass observation model is that we have access to a single realization of the network,
in the regime where the network size parameter n is very large. The other observation model,
which we call the multi-pass observation model, entails that we have access to a moderately
large number m of i.i.d. copies of the network, in the regime where the size parameter n is
also moderately large.

Both these observation models are well-motivated as modeling paradigms. In particular,
for the FGN model, it may be noted that the underlying Gaussian field X(x) is often taken
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to be translation invariant on Rd. Hence, if two samples of the spatial geometric graph
are obtained from two sub-domains of the full space that are translates of each other (i.e.,
we observe the nodes and edges for points in two domains D and D + x0 for some vector
x0 œ Rd), then the subgraphs so obtained are identically distributed (because of the trans-
lation invariance of the underlying Gaussian field). On the other hand, if the sub-domains
are well-separated in the ambient space, then they can be taken to be approximately inde-
pendent because of decay of correlations of the Gaussian field. Thus, several approximately
independent and identically distributed realizations of the same FGN can be obtained by
taking samples of a very large, universal network based on surveying spatially similar and
well-separated regions. Since the fractal properties may be reasonably assumed to be similar
in di�erent segments of a very large network, this provides us with a way of obtaining mul-
tiple samples from a FGN model that can capture fractal structures similar to the original
graph. This can be compared, for example, with taking localized snapshots of a di�erent
parts of a vast communication network like the internet.

3.2 Inherent Fractal Structure of the FGN

Figure 2: A realization of the FGN for the
purpose of Illustration.

The inherent fractal nature of a typical re-
alization of the GMC measure induces frac-
tality in the FGN. For instance, one con-
sequence of fractality in terms of the net-
work structure is a large measure of hetero-
geneity, often manifested in terms of the ir-
regular distribution of nodes in the form of
dense clusters and rarefied neighborhoods in
the graph. The GMC is characterized by re-
gions of high concentration of measure, in-
terspersed with regions of low mass distribu-
tion. To see this in more detail, we refer the
reader to Figure 1 in [RV14] and Figure 1. In
fact, a progressive increase in the irregularity
of the GMC can be observed as the param-
eter ‹ increases. The FGN, because of its
latent spatial geometry being derived from
the GMC, also inherits these heterogeneities
in its graphical structure, characterized by
certain vertex clusters of high connectivity
interspersed with sparsely connected vertices (see, e.g., Figure 2 for an illustration), with
such heterogeneous e�ects increasing in intensity as the parameter ‹ increases in value.

It may be observed that, once the realization of the GMC measure is in our hands, the
rest of the construction of the FGN is spatial geometric in nature, and can actually be
carried out for any non-negative measure on the domain � - random or otherwise. This
spatial geometric construction employs the commonly used technique for the construction of
random geometric graphs (RGG, c.f. [Pen03], [Gil61]), popularly considered in the setting
of the uniform distribution on � (which is going to be our “pure noise” case and the point of
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comparison with the FGN regarding the presence of fractal structures). At this point, a word
is in order regarding the spatiality inherent in the construction of the FGN. It turns out that
many natural applications of stochastic networks have spatiality built into their construction
- mobility networks, transportation networks or drainage networks are all examples of this
phenomenon. But even more generally, our construction of the FGN does not necessitate
the ambient Euclidean space Rd to correspond to our application in a physical sense. In fact,
the ambient space Rd can be taken to be the feature space obtained from a feature mapping
of the nodes, whose specifics can be completely problem-dependent. This is exemplified by
its applications in the social networks, where the feature mapping corresponding to a person
corresponds to his/her interests, and two persons are connected in the social network if their
interests (i.e., feature vectors) are close in the metric of the latent social space (c.f., [Jac10],
[RB17], [SM06], [GL16]).

Such graphs are of interest as statistical networks in both low and high dimensional
spatial settings (see, e.g., [BDER16], [BMR15], [MNS18]). Physical spatiality would often
correspond to a low ambient dimension (as in the case of transportation or drainage net-
works), whereas latent spatiality in the social/feature space may naturally correspond to a
relatively high ambient dimension d. It may be pointed out that the FGN model encom-
passes both low and high dimensions of the latent space, thereby catering to both types of
spatial structure.

3.3 The connectivity threshold, Locality and the Sparse Regime
In this section, we determine the right regime of the connectivity threshold ‡. In doing so,
our guiding principle would be to obtain a sparse random graph model in the end, one in
which the number of neighbors from the FGN of a given point in the latent social space is
typically O(1). This is most natural in the context of most real world networks - even though
the total network might be huge and highly complex, seen from the viewpoint of a particular
node it has a finite local neighborhood, which does not scale with the growing size of the
network (see, e.g., [Joh77], [KMM+13], [GV16], [BM01] and the references therein). We show
that, for any value of “, the normalization ‡ = 1Ô

fi fl
1/d

n
≠1/d will lead to, in expectation, fl

neighbors for a given point under our connection model.

Theorem 3.1. In the FGN model with size parameter n, setting the threshold parameter

‡ = 1Ô
fi

fl
1/d

n
≠1/d

,

one has that the expected number of neighbors of a given point is asymptotically fl œ (0, Œ).

Proof. Consider the FGN with N ≥ Poi(nM
“(�)), nodes {x1, . . . , xN} and threshold ‡. Fix

a deterministic point x0 œ �. We use the notation x ≥ y to denote that the point x is
connected to the point y by an edge. Observe that, under our connection model for edge
formation (once we are given some nodes), P[x0 ≥ xi] = e

≠ Îxi≠x0Î2

‡2 , and the total number of
points to which x0 may be connected to in this manner is

1qN
i=1 x0≥xi

2
. Therefore, in the

regime of small connection threshold ‡, since
⁄

Rd
e

≠ÎxÎ2dx = fi
d
2 ,
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the expected number of points in this FGN that would be connected of x0 is :

E
C

Nÿ

i=1
x0≥xi

D

= E
C

E
C

Nÿ

i=1
x0≥xi

---FGN
DD

= E
C

Nÿ

i=1
e

≠ Îxi≠x0Î2

‡2

D

= E
C

E
C

Nÿ

i=1
e

≠ Îxi≠x0Î2

‡2
---N, dM

“

DD

= E
C

N ·
⁄

�
e

≠ Îx≠x0Î2
‡2

M
“(dx)

M“(�)

D

= E
C

E
C

N ·
⁄

�
e

≠ Îx≠x0Î2
‡2

M
“(dx)

M“(�)
---dM

“

DD

= E
C

E
Ë
N

---dM
“
È

·
⁄

�
e

≠ Îx≠x0Î2
‡2

M
“(dx)

M“(�)

D

= n · E
5⁄

�
e

≠ Îx≠x0Î2
‡2 M

“(dx)
6

= n ·
5⁄

�
e

≠ Îx≠x0Î2
‡2 dx

6

= n‡
d ·

⁄

�/‡
e

≠Îx≠ x0
‡ Î2dx

= n(
Ô

fi‡)d(1 + o(1)),

where, �/‡ = [≠1/2‡, 1/2‡]d, the fourth equality follows since the {xi}N
i=1 are i.i.d. dM

“

given N, dM
“, the seventh equality follows since E[N

---dM
“] = nM

“(�), and, the eighth
inequality follows since the expected measure E[dM

“(x)] is Lebesgue. ⌅

We call fl the density parameter of the FGN. From a statistical point of view, the density
parameter fl may be learnt from the number of neighbors of vertices. This is motivated by
Theorem 3.1, which shows that the expected number of neighbors of a given point is asymp-
totically fl (as n æ Œ). This renders the density fl a local parameter in the FGN model.
Local parameters are much easier to investigate because they can be learnt by sampling
small local neighborhoods, which for practical purposes can be taken to be approximately
independent if they are well separated (e.g., in the graph distance). On the other hand, in
real world networks, fractality is often observed at the scale where one zooms out, i.e., at
mesoscopic scales or higher (c.f., [FM09], [PJ91], [DKBH11]). This necessitates the inves-
tigation of fractality to be contingent on more global aspects of the FGN, which makes it
much more challenging but at the same time more interesting to study and is the principal
focus of this article.

The intrinsic fractality parameter ‹. For the FGN model, the key determinant
of fundamental network statistics turns out be the quantity ‹ = “2

d , which we refer to as
the fractality parameter. Accordingly, we will maintain a particular consideration for the
fractality parameter ‹ in our statistical analysis of the FGN model.

9



Figure 4: Degree distribution of non-isolated nodes of the FGN: the value of ‹ increases from
left to right.

3.3.1 Clustering Coe�cient

In this section, we examine the clustering coe�cient of FGNs as a function of the fractality
parameter ‹. Network-average clustering coe�cient, proposed by [WS98], is a well-motivated
heuristic to measure how much the nodes of a graph tend to cluster together and has been
widely used to characterize the properties real-world networks. It is defined as follows: For
a graph with nodes V = {v1, . . . , vn} and with ejk œ {0, 1}, 1 Æ j, k Æ n, representing the
edges between the nodes, let the set Ni µ V denote the immediate neighbors of the node vi.
Then, note that if |Ni| = ki, ki(ki ≠ 1)/2 edges could potentially exists among the nodes in
the set Ni. The local clustering coe�cient (for 1 Æ i Æ n) and the network-average clustering
coe�cient are defined respectively as

Ci = 2|{ejk : vj, vk œ Ni, ej,k = 1}|
ki(ki ≠ 1) , and C̄ = 1

n

nÿ

i=1
Ci.

Figure 3: Network-average clustering coe�-
cient as a function of the fractality parameter
‹. The line represents the average over 1000
instances and the bars represent the standard
deviations.

For our examination, for each fixed
value of ‹, we generated 1000 instantia-
tions of FGNs with n = 500 and calcu-
lated the average (across the instantiations)
of the network-average clustering coe�cient
C̄. Figure 3 shows the observed results for
various values of ‹. We see that as the frac-
tality parameter increases, the clustering co-
e�cient increases, thereby empirically con-
firming our model property.

3.3.2 Degree distribution: Interpo-
lating Poisson and power laws

We now investigate the degree distribution
of the FGN model empirically (c.f. Figure 4).
We observe that, for small ‹, the degree
distribution is Poissonian, whereas with in-
creasing values of the parameter ‹, it de-
forms into a truncated power law like distribution. It may be noted that power laws and
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truncated power laws are ubiquitous in many real-world networks (c.f. [AB02] and the ref-
erences therein), whereas Poissonian behavior is a hallmark of classical mean-field models
(like the Erd�s-Rényi random graphs, c.f. [VDH16]). As parametric statistical model, the
FGN continuously interpolates between these two very di�erent worlds which are the two
major paradigms the distributions of degrees in networks.

3.4 Stochastic Block Models in the FGN paradigm
Stochastic Block Models (henceforth abbreviated as SBM) has become an important paradigm
for understanding and investigation community structures in networks, social or otherwise.
A long series of ground breaking results in this regard have been achieved in recent years;
we refer the interested reader to ([HLL83], [Abb17], [AS15], [RB17], [Muk18]) for a partial
overview of this vast and rapidly evolving field of research. However, a majority of the models
and the results are based on block models constructed out of Erd�s-Rényi random graphs;
a few exceptions include [ABS20, BRS19, Mey20].

In the context of networks with fractal structures, it is natural to envisage a situation
where there are multiple distinct communities in the network with potentially di�erent fractal
structures. It is also natural to posit that the communities have di�ering degrees of a�nity to
connect within each other as compared to connections across community boundaries, which
might be rarer. We encapsulate this idea in the form of a natural SBM structure in the
context of the FGN model. We need the following ingredients:

• Two independent GMC-s M
“1 , M

“2 corresponding to (possibly di�erent) positive pa-
rameters “1, “2 respectively on the same domain � µ Rd.

• Two di�erent positive threshold parameters ‡in and ‡out.
• A size parameter n œ N and two independent Poisson random variables N1 ≥ Poi(nM

“1(�))
and N2 ≥ Poi(nM

“2(�)).
Given these ingredients, we construct the SBM on the FGN model as follows.
• We generate N1 points {x1, . . . , xN1} i.i.d. from the (normalized) measure M

“1 and N2
points {y1, . . . , yN2} i.i.d. from the (normalized) measure M

“2 .
• For each pair of points xi, xj, we connect them with an edge with probability Ã

exp(≠Îxi≠xjÎ2

‡2
in

). Likewise, For each pair of points yi, yj, we connect them with an
edge with probability Ã exp(≠Îyi≠yjÎ2

‡2
in

). These are the intra-community links.
• For each pair of points xi, yj, we connect them with an edge with probability Ã

exp(≠Îxi≠yjÎ2

‡2
out

). These are the inter-community links.
We then forget the spatial identities of the points, and consider the resulting combinatorial
graph G, whose node set is the union of the node sets of the FGN-s G1 and G2, and whose
edges are those of G1 fi G2 along with the cross-community edges defined in the last step.
This forms a natural SBM structure in the context of the FGN model. A natural statistical
question in this context would be to understand separation thresholds between in the intra-
community connection radius ‡in and the inter-community connection radius ‡out which
allow for detection of the di�erent communities with reasonable accuracy and probabilistic
guarantees, as the network size parameter n æ Œ. We leave this and related questions for
future investigation.
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4 FGN as a Parametric Statistical Model
Interpolating homogeneity and fractality. We will formulate our analysis of the FGN as
a statistical model of network data in terms of the quantity ‹, a choice that is well-motivated
by the discussions in the preceding sections. It may be noted that, when ‹ = 0 (equivalently,
“ = 0), the GMC reduces to the Lebesgue measure, and we have a usual Poisson random
geometric graph, which we will consider as the pure noise case in our setting. We will
compare this against the presence of fractality in the network, a situation which would
correspond to ‹ > 0. Thus, the FGN model interpolates continuously between Poisson
random geometric graphs and networks with increasing degree of fractality, as the value of
the parameter ‹ increases from 0. On a related note, it would also be of interest to learn
the value of fractality parameter ‹ in its own right, which would correspond naturally to
the problem of parameter estimation in the FGN model. In our investigation of the above
standard statistical questions on the FGN model, such as parameter estimation and testing
(undertaken in Section 4.8 and Section 4.9 respectively), we will make extensive use of the
statistics of small subgraph counts (in particular the edge counts). This is well-motivated
by the e�ectiveness of small subgraph counts as statistical observables in the study of usual
spatial network models (see, e.g., [RB17], [BDER16], and the references therein).

4.1 Inferring the size parameter
It may be noted that the parameter n driving the network size is not given to us in the
combinatorial data that we can access. In some sense, it is also a latent parameter of
the model that we do not directly focus on in our study of the fractal properties of the
network. However, statistical procedures typically utilize large sample e�ects, and for that
purpose, it becomes imperative to develop an idea of the underlying size parameter n from
the combinatorial graph.

To this end, we observe that, conditioned on the GMC, the network size N is a Poisson
random variable with mean nM

“(�). As such, if {Yi}iØ0 are i.i.d. Poisson random variables
with mean M

“(�), then N = qn
i=1 Yi in distribution. Consequently, for a given realization of

the GMC, the quantity N
n = 1

n

qn
i=1 Yi æ M

“(�) a.s. as n æ Œ. As a result, N
n = O(1) with

high probability, as the size parameter n æ Œ. We record this as the following theorem,
complete with a concentration bound that is faster than any polynomial rate.

Theorem 4.1. For an FGN model with size parameter n, the number of nodes N satisfies
the following: for any p > 0, there exists c = c(p) such that

P
5
N

n
Ø 2M“(�)

6
Æ cn

≠p
.

Proof. Recall that a Poisson random variable Y with parameter – has moment generating
function E[etY ] = e

–(et≠1) for all t œ R. Hence by Markov inequality, we have P[Y Ø 2–] Æ
e

≠2–t+–(et≠1), yielding P[Y Ø 2–] Æ e
≠0.38– by choosing t = ln(2). Recall that N conditioning

on M
“(�) has Poisson distribution with parameter nM

“(�), thus the exponential tail bound
for Poisson distribution implies the following upper tail estimate

P[N Ø 2nM
“(�)] Æ E[e≠0.38nM“(�)].

12



To evaluate the expectation, we consider two cases: first on the event {M
“(�) Æ n

≠—} with
— œ (0, 1), we use the fact that M

“(�) has negative moments of all orders [RV14, Theorem
2.11] to deduce that for any p > 0, there exists c = c(p) = E[M“(�)≠p] < Œ, such that

E[e≠0.38nM“(�) (M“(�) Æ n
≠—)] Æ P[M“(�) Æ n

≠—] Æ cn
≠—p

where we used Markov inequality in the last step. On the other hand,

E[e≠0.38nM“(�) (M“(�) > n
≠—)] Æ e

≠0.38n1≠—
.

The desired conclusion follows immediately from the two estimates. ⌅

Remark 4.2 (Improving Concentration). It is of interest to consider strengthening of the
concentration bound in Theorem 4.1, e.g. to an exponential decay in n. In the current state of
the art, this seems to be beyond the scope of the available understanding of the GMC measure.
Herein, we outline the main issues to this end, and indicate the additional ingredients that
would be necessary from the theory of the GMC to obtain such a result.

Set c(p) : p ‘æ E[M≠p]. A potential approach to improving the bound in Theorem 4.1
would be to use a detailed understanding of c(p) as a function of p in order to optimize over p

in the existing bound. However, to the best of our knowledge, no quantitative understanding
is available in the literature about the growth of c(p) (as a function of p); existing results
merely establish that c(p) < Œ for any p > 0. A sharp estimate of this would improve greatly
the knowledge of the lower tail near 0 of the total mass of the GMC measure. This is lacking
in the theory of GMC.

Assuming that c(log n)) π e
(log n)2, then the one but last equation in the proof of Theorem

4.1 is at most (by setting p = log n)

exp(log c(log n) ≠ —(log n)2)) Æ exp(≠(—/2)(log n)2)),

which decays super-polynomially (compared to the polynomial decay in Theorem 4.1). The
availability of such refined estimated (as above on c(log n)) would therefore pave the way to
improved concentration behavior of the network size N in terms of the size parameter n.

In view of Theorem 4.1, for the single-pass observation model, in the regime of large size
parameter n (which is the regime in which we envisage the FGN model) we may justifiably
employ the network size N as an estimator for the latent size parameter n. In particular, on
the logarithmic scale we may deduce that

log N = log n(1 + oP (1)), (5)

which is a form that will be particularly useful in our later analysis. In the multi-pass observa-
tion model, where we have m i.i.d. realizations of the FGN with node counts N1, N2, . . . , Nm,
we will use N = 1

m

qm
i=1 Ni, which will strongly concentrate around its expectation n.

4.2 Edge Counts
In this section, we investigate the statistic of edge counts in the FGN model. To this end,
consider the FGN with N ≥ Poi(nM

“(�)), nodes {x1, . . . , xN} and threshold ‡. Let E

13



denote the number of edges in this FGN. We will work in the setting “
2

< d (equivalently,
‹ < 1) for our analysis. Interestingly, this corresponds to the so-called L

2 regime of the
GMC, where the model is believed to be technically more tractable in relative terms. We
believe that similar results would be true for the full range of validity of the GMC and the
FGN model (i.e., all the way up to ‹ < 2), albeit technically more challenging. We leave
this as an interesting direction for future study.

In Figure 5 (top left), we empirically plot the expected edge count as a function of the
number of nodes. Specifically, we consider various values of ‹ and n and compute the average
number of edges in 100 realizations of FGNs. We also empirically illustrate the distribution
of the edge count by means of a histogram, for various values of ‹ in Figure 5. From
the histogram, we observe that the edge count is concentrated around its expected value,
albeit with possibly heavy tails. Based on the above empirical observations, we provide an
analytical characterization of the expected edge count in Theorem 4.3. Our result below is
asymptotic but agrees with the finite-sample results obtained top left plot of Figure 5.

Theorem 4.3. For an FGN model with size parameter n, density parameter fl and fractality
parameter ‹ = “

2
/d < 1, under Assumption 2.1, the expected edge count satisfies

E[E ] = C(“, d)fl1≠‹
n

1+‹ (1 + o(1)) ,

as n æ Œ, where

C(“, d) = 1
2fi

1
2 d≠ 1

2 “2 ·
A⁄

Rd

1
ÎxÎ“2 e

≠ÎxÎ2dx

B

.

Proof. In the computations that follow, we will use the fact that if � ≥ Poi(⁄), then the sec-
ond factorial moment of � is given by the relation E[

1
�
2

2
] = ⁄2

2! (c.f. [Hai67]). Consequently,
recalling that given the GMC dM

“ the node count N ≥ Poi(nM
“(�)), we may deduce that

E[
1

N
2

2
|M“(�)] = 1

2 · n
2
M

“(�)2. In view of this, we may proceed as

E[E ] =E [E[E|FGN]]

=E
S

UE
S

U
ÿ

1Æi<jÆN
xi≥xj

---FGN
T

V

T

V

=E
S

U
ÿ

1Æi<jÆN

e
≠Îxi≠xjÎ2/‡2

T

V

=E
S

UE
S

U
ÿ

1Æi<jÆN

e
≠Îxi≠xjÎ2/‡2 ---N, dM

“

T

V

T

V

=E
CA

N

2

B

·
⁄⁄

�◊�
e

≠Îx≠yÎ2/‡2 M
“(dx)M“(dy)

M“(�)2

D

=E
C

E
CA

N

2

B

·
⁄⁄

�◊�
e

≠Îx≠yÎ2/‡2 M
“(dx)M“(dy)

M“(�)2

---dM
“

DD

=E
C

E
CA

N

2

B---dM
“

D

·
⁄⁄

�◊�
e

≠Îx≠yÎ2/‡2 M
“(dx)M“(dy)

M“(�)2

D
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=E
C

1
2n

2
M

“(�)2 ·
⁄⁄

�◊�
e

≠Îx≠yÎ2/‡2 M
“(dx)M“(dy)

M“(�)2

D

=n
2

2 E
5⁄⁄

�◊�
e

≠Îx≠yÎ2/‡2
M

“(dx)M“(dy)
6

,

where the fifth equality follows since the {xi}N
i=1 are i.i.d. dM

“ given N, dM
“. For further

analysis, we consider

I := E
C⁄⁄

�2
exp

A

≠Îx ≠ yÎ2

‡2

B

M
“(dx)M“(dy)

D

.

and

It := E
S

U
⁄⁄

�2
exp

Y
]

[ ≠ Îx ≠ yÎ2

‡2 + “(Xt(x) + Xt(y)) ≠ “
2
t

Z
^

\dxdy

T

V.

In view of the convergence Equation (4), we will use It as an approximation for I as t æ Œ.
Using the fact that for fixed t the field {Xt(x)} is a centered Gaussian random field with
covariance structure as in Equation (1), we may then proceed further as

E[E ] =n
2

2 lim
tæŒ

E
S

U
⁄⁄

�◊�
exp

Y
]

[ ≠ Îx ≠ yÎ2

‡2 + “(Xt(x) + Xt(y)) ≠ “
2
t

Z
^

\dxdy

T

V

=n
2

2 lim
tæŒ

⁄⁄

�◊�
exp

Y
]

[ ≠ Îx ≠ yÎ2

‡2 ≠ “
2
t

Z
^

\ · E [exp (“(Xt(x) + Xt(y)))] dxdy

=n
2

2 lim
tæŒ

⁄⁄

�◊�
exp

I

≠Îx ≠ yÎ2

‡2 ≠ “
2
t

J

· exp
I

“
2

2 (2t + 2
⁄ et

1

k(u(x ≠ y))
u

du)
J

dxdy

=n
2

2 lim
tæŒ

⁄⁄

�◊�
exp

Y
]

[ ≠ Îx ≠ yÎ2

‡2 + “
2

⁄ et

1

k(u(x ≠ y))
u

du

Z
^

\dxdy

=n
2

2

⁄⁄

�◊�
exp

Y
]

[ ≠ Îx ≠ yÎ2

‡2 + “
2

⁄ Œ

1

k(u(x ≠ y))
u

du

Z
^

\dxdy. (6)

A change of variables shows that
⁄ Œ

1

k(ux)
u

du =
⁄ Œ

ÎxÎ

k(uę)
u

du =: „(ÎxÎ). (7)

Combining Equation (6) and Equation (7), together with another change of variables (x, y) ‘æ
(x/‡, y/‡), gives

E[E ] = n
2
‡

2d

2

⁄⁄

(�/‡)2
exp

;
≠ Îx ≠ yÎ2 + “

2
„ (Îx ≠ yÎ‡)

<
dxdy (8)

Since Îx ≠ yÎ‡ Æ 1 for x, y œ �/‡, one has

„(Îx ≠ yÎ‡) =
⁄ 1

Îx≠yÎ‡

k(uę)
u

du +
⁄ Œ

1

k(uę)
u

du, (9)
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where the second term is finite by assumption. Thus, as ‡ ¿ 0, one obtains from Equation (9)
and Assumption 2.1

„(Îx ≠ yÎ‡) =
A⁄ 1

Îx≠yÎ‡

k(uę)
u

du

B

(1 + o(1))

=
A

log 1
Îx ≠ yÎ + log 1

‡

B

(1 + o(1)) . (10)

Note that when “
2

< d, we have
s
Rd

1
ÎxÎ“2 e

≠ÎxÎ2dx < Œ. Combining Equation (8) with
Equation (10), in the regime of small ‡ and “

2
< d, we obtain

E[E ] =n
2
‡

2d

2 ·
⁄⁄

(�/‡)2
exp

1
≠Îx ≠ yÎ2

2
· 1

Îx ≠ yÎ“2
‡“2 dxdy · (1 + o(1))

=n
2

2 ‡
2d≠“2 ·

⁄

�/‡

A⁄

z=y≠x
yœ�/‡

1
ÎzÎ“2 e

≠ÎzÎ2dz

B

dx · (1 + o(1))

=n
2

2 ‡
2d≠“2 ·

A⁄

�/‡

A⁄

Rd

1
ÎzÎ“2 e

≠ÎzÎ2dz

B

dx

B

· (1 + o(1))

=n
2

2 ‡
2d≠“2 ·

A⁄

Rd

1
ÎzÎ“2 e

≠ÎzÎ2dz

B

· ‡
≠d · (1 + o(1))

=C1(“, d) · n
2
‡

d≠“2 (1 + o(1)) , (11)

where,
C1(“, d) = 1

2

⁄

Rd

1
ÎzÎ“2 e

≠ÎzÎ2dz < Œ.

Using the choice ‡ = 1Ô
fi fl

1/d
n

≠1/d and ‹ = “
2
/d, we finally obtain

E[E ] = C(“, d)fl1≠‹
n

1+‹ (1 + o(1)) . (12)

⌅

4.3 Triangle Counts
We now investigate the statistics of triangle counts in the FGN model. In Figure 6 (top
left), we empirically plot expected triangle count. Specifically, we consider various values
of ‹ and n and compute the average number of triangles in 100 realizations of FGNs. We
also plot the histogram of the triangle counts for various values of ‹ in Figure 6. Similar to
the edge count, this statistic is concentrated around its expected value, albeit with possibly
heavy tails. Focussing on the asymptotics thereof, in the limit of large size parameter n, we
obtain the following analytical result for the expected triangle count in Theorem 4.4.

Theorem 4.4. For the FGN model with size parameter n, density parameter fl and fractality
parameter

‹ = “
2
/d < 1/2,
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Figure 5: The top left figure plots the expected edge count as a function of number of nodes
for various increasing of ‹. The other five figures plots the histogram of edge counts for a
fixed value of n and with increasing values of ‹, as we move from left to right and from top
to bottom. The x-axis is normalized by the sample mean.

under Assumption 2.1, the expected triangle count satisfies

E[�] = C(“, d)fl2≠‹
n

1+‹ (1 + o(1)) ,

as n æ Œ, where C(“, d) :=

1
6fi

d
2 ·

A⁄⁄

Rd◊Rd

1
Îu ≠ vÎ“2

e
≠ÎuÎ2

ÎuÎ“2
e

≠ÎvÎ2

ÎvÎ“2 e
≠Îu≠vÎ2dudv

B

.

Proof. In the computations that follow, we will use the fact that if � ≥ Poi(⁄), then the sec-
ond factorial moment of � is given by the relation E[

1
�
3

2
] = ⁄3

3! (c.f. [Hai67]). Consequently,
recalling that given the GMC dM

“ the node count N ≥ Poi(nM
“(�)), we may deduce that

E[
1

N
3

2
|M“(�)] = 1

6 · n
3
M

“(�)3.
In view of this, we may proceed with the expectation of the triangle count � as

E[�]

=E
S

U
ÿ

1Æi<j<kÆN

exp
A

≠Îxi ≠ xjÎ2 + Îxi ≠ xkÎ2 + Îxj ≠ xkÎ2

‡2

BT

V

=E
S

UE
S

U
ÿ

1<i<j<kÆN

exp
A

≠Îxi ≠ xjÎ2 + Îxi ≠ xkÎ2 + Îxj ≠ xkÎ2

‡2

B ---N, dM
“

T

V

T

V

=E
CA

N

3

B

·
A⁄⁄⁄

�3
exp

A

≠Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2

B
M

“(dx)M“(dy)M“(dz)
M“(�)3

BD

=E
C

E
CA

N

3

B

·
A⁄⁄⁄

�3
exp

A

≠Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2

B
M

“(dx)M“(dy)M“(dz)
M“(�)3

B ---dM
“

DD
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=E
C

E
CA

N

3

B---dM
“

D

·
A⁄⁄⁄

�3
exp

A

≠Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2

B
M

“(dx)M“(dy)M“(dz)
M“(�)3

BD

=E
C

1
6 · n

3
M

“(�)3 ·
A⁄⁄⁄

�3
exp

A

≠Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2

B
M

“(dx)M“(dy)M“(dz)
M“(�)3

BD

=1
6n

3 · E
C⁄⁄⁄

�3
exp

A

≠Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2

B

M
“(dx)M“(dy)M“(dz)

D

.

For further analysis, we introduce

I := E
C⁄⁄⁄

�3
exp

A

≠Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2

B

M
“(dx)M“(dy)M“(dz)

D

.

and

It := E
C⁄⁄⁄

�3
exp

I

≠Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2 + “(Xt(x) + Xt(y) + Xt(z)) ≠ 3“
2
t

2

J

dxdydz

D

.

In view of the convergence in Equation (4), we will use It as an approximation for I as
t æ Œ.

Using the fact that for fixed t the field {Xt(x)} is a centered Gaussian random field with
covariance structure as in Equation (1), we may then proceed further as

It

=E
C⁄⁄⁄

�3
exp

I

≠Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2 + “(Xt(x) + Xt(y) + Xt(z)) ≠ 3“
2
t

2

J

dxdydz

D

=
⁄⁄⁄

�3
exp

Y
]

[ ≠ Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2

+ “
2

2

A

3t + 2
⁄ et

1

k(u(x ≠ y)) + k(u(y ≠ z)) + k(u(x ≠ z))
u

du

B

≠ 3t“
2

2

Z
^

\dxdydz

=
⁄⁄⁄

�3
exp

Y
]

[ ≠ Îx ≠ yÎ2 + Îx ≠ zÎ2 + Îy ≠ zÎ2

‡2

+ “
2

⁄ et

1

k(u(x ≠ y)) + k(u(y ≠ z)) + k(u(x ≠ z))
u

du

Z
^

\dxdydz

Invoking Equation (7) and using the change of variables (x, y, z) ‘æ (x/‡, y/‡, z/‡), we
obtain

E[�] = n
3
‡

3d

6

⁄⁄⁄

( �
‡ )3

exp

Y
]

[ ≠ Îx ≠ yÎ2 ≠ Îy ≠ zÎ2 ≠ Îx ≠ zÎ2

+“
2(„(Îx ≠ yÎ‡) + „(Îx ≠ zÎ‡) + „(Îy ≠ zÎ‡))

Z
^

\dxdydz,
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As ‡ ¿ 0, using the properties of „ (c.f. Equation (7), Equation (9) and Equation (10)), one
has

E[�] = (1 + o(1))n
3

6 ‡
3d≠“2

⁄⁄⁄

( �
‡ )3

1
(Îx ≠ yÎÎy ≠ zÎÎz ≠ xÎ)“2 e

≠Îx≠yÎ2≠Îx≠zÎ2≠Îy≠zÎ2dxdydz.

(13)
We are left to estimate the triple integral above in the limit of large size parameter n (and
‡ decaying as n

≠1/d). Setting u := x ≠ z, v := y ≠ z and making the change of variables
(x, y, z) ‘æ (u, v, z) we obtain

E[�] = n
3
‡

3d≠“2

6

⁄

�/‡

A⁄⁄

(u,v):(x,y,z)œ(�/‡)3

e
≠ÎuÎ2≠ÎvÎ2≠Îu≠vÎ2

ÎuÎ“2ÎvÎ“2Îu ≠ vÎ“2 dudv

B

dz. (14)

Notice that, from the definition of u and v it follows that for a given z, the set {(u, v) :
(x, y, z) œ (�/‡)3} = (�/‡)2 ≠ (z, z). Since z itself belongs to the set �/‡, it follows that
the domain of (u, v) is always of the order 1

‡ . Since ‡ ¿ 0, the inner double integral tends to

J :=
⁄⁄

Rd◊Rd

1
Îu ≠ vÎ“2

e
≠ÎuÎ2

ÎuÎ“2
e

≠ÎvÎ2

ÎvÎ“2 e
≠Îu≠vÎ2dudv.

If we can show that J as defined above is finite, it would imply that the triple integral in
Equation (14) is of the order ‡

≠d, and hence E[�] = �(n3
‡

2d≠“2) = �(fl2≠‹
n

1+‹), wherein we
have used the optimal choice of ‡ as 1Ô

fi fl
1/d

n
≠1/d. Thus, we focus on showing that J < Œ.

It may be noted that, for “
2

< d, the integral
⁄

ÎuÎ>1

1
Îu ≠ vÎ“2

e
≠ÎuÎ2

ÎuÎ“2 e
≠Îu≠vÎ2du

is finite and uniformly bounded in v, a fact that follows essentially from the exponentially
decaying terms in the integrand. Since v ‘æ e≠ÎvÎ2

ÎvÎ“2 is integrable for “
2

< d, this implies that
the double integral

⁄⁄

{ÎuÎ>1}◊Rd

1
Îu ≠ vÎ“2

e
≠ÎuÎ2

ÎuÎ“2
e

≠ÎvÎ2

ÎvÎ“2 e
≠Îu≠vÎ2dudv < Œ.

This argument is symmetric in u and v, so in order to show the finiteness of J , we are reduced
to showing the finiteness of the associated double integral

J
ú :=

⁄⁄

{|u|Æ1}fl{|v|Æ1}

1
|u ≠ v|“2

du

ÎuÎ“2
dv

ÎvÎ“2 ,

where we have used the fact that e
≠ÎuÎ2 is uniformly bounded on ÎuÎ Æ 1. We consider the

measure µ on the unit Euclidean ball B of Rd given by dµ(u) := du
ÎuÎ“2 . Notice that, if B(x, r)

denotes the Euclidean ball of radius r > 0 centred at x œ B, we have µ(B(x, r)) Æ cdr
d≠“2 .

Then the integral J
ú reduces to

J
ú =

⁄⁄

B◊B

dµ(u)dµ(v)
Îu ≠ vÎ“2 .
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Figure 6: The top left figure plots the expected triangle count as a function of number of
nodes for various increasing of ‹. The other five figures plots the histogram of triangle counts
for a fixed value of n and with increasing values of ‹, as we move from left to right and from
top to bottom. The x-axis is normalized by the sample mean.

To consider the finiteness of J
ú, we fix u œ B and consider the integral

s
B

dµ(v)
Îu≠vÎ“2 ; our

goal is to show that for 2“
2

< d, this integral is finite and uniformly bounded in u, which
would complete our proof. We proceed as

⁄

B

dµ(v)
|u ≠ v|“2 =

Œÿ

n=≠1

⁄

2≠n≠1<Îu≠vÎÆ2≠n

dµ(v)
|u ≠ v|“2

Æ
Œÿ

n=≠1
2(n+1)“2

µ

1
B(u, 2≠n) \ B(u, 2≠n≠1)

2

Æ
Œÿ

n=≠1
2(n+1)“2

µ

1
B(u, 2≠n)

2

Æ
Œÿ

n=≠1
2(n+1)“2 · cd2≠n(d≠“2)

Æcd · 2“2 ·
Œÿ

n=≠1
2≠n(d≠2“2)

,

which is finite and uniformly bounded in u œ B when d ≠ 2“
2

> 0 ; equivalently, when
‹ = “2

d <
1
2 . This completes the proof. ⌅

4.4 Hub-and-Spoke Counts
A k-spoke with hub v in a simple graph G = (V, E) is a subgraph of G formed by v œ V and
{u1, ..., uk} µ V such that v ≥ ui for all i œ [k], where u ≥ v means that {u, v} is connected
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by an edge in E. In this section, we consider the number of k-spokes in FGN, denoted by
Sk, k œ N. Notice that the number of 1-spoke is twice the number of edges. A 2-spoke is
also known as a cherry.

Theorem 4.5. For integer k Ø 2, suppose that ‹ = “
2
/d < min(k≠1

, 2(k(k ≠ 1))≠1). Then
there exists a finite constant C(k, “, d, fl) > 0 such that

E[Sk] = C(“, d, k, fl)n1+‹(1 + o(1)).

Proof. Notice that the point process {X1, ..., XN} is a Poisson process with random intensity
measure M

“ (also known as Cox process). By the conditional independence of the edges given
the underlying point process, together with the multivariate Mecke equation for Poisson
processes (see, for example [LP17, Chapter 4]), one has that

E[Sk] = n
k+1

k! E
⁄

�k+1
exp(≠

kÿ

i=1
Îxi ≠ yÎ2)M“(dy)

kŸ

i=1
M

“(dxi).

Here k! counts the number of isomorphic k-spokes with the same hub.
Now we evaluate this expectation by approximating M

“ with M
“
t , then letting t æ Œ.

More precisely, we have

E[Sk] = n
k+1

k! lim
tæŒ

⁄

�k+1
E exp

3
≠

kÿ

i=1
Îxi ≠ yÎ2 + “(Xt(y) +

kÿ

i=1
Xt(xi)) ≠ k + 1

2 “
2
t

4
dy

kŸ

i=1
dxi.

Notice that the sum of variances of the Gaussian variables cancels with the term k+1
2 “

2
t in

the exponent when one evaluates the expectation on the right-hand side. By scaling each
variable by 1/‡, then handling the covariances as we did in the proof of Theorem 4.4, we
are led to the formula

E[Sk] = (1 + o(1))n
k+1

k! ‡
(k+1)d≠“2

⁄

(�/‡)k+1
exp(≠

kÿ

i=1
Îxi ≠ xk+1Î2)

Ÿ

{i,j}µ[k+1],i”=j

Îxi ≠ xjÎ≠“2
k+1Ÿ

i=1
dxi.

where we have renamed the variable y to xk+1.
In an analogous fashion as Equation (14) was obtained, as well as the fact that ‡ converges

to 0 as n æ Œ, one can shift the position of xk+1 and inspect the integral with respect to
x1, ..., xk on the whole space Rd. Observing that integration over the xk+1 variable on �/‡

yields a multiplicative factor of ‡
≠d in the right hand side of the display above, and recalling

the choice of ‡ = 1Ô
fi fl

1/d
n

≠1/d, the desired result follows as soon as one can prove that

K :=
⁄

Rdk
exp(≠

kÿ

i=1
ÎxiÎ2)

Ÿ

{i,j}µ[k],i”=j

Îxi ≠ xjÎ≠“2 Ÿ

jœ[k]
ÎxjÎ≠“2

kŸ

i=1
dxi

is finite.
Now we prove K < Œ. This is a bit delicate and we shall introduce three points which

reduces the study of K to much simpler integrals. Let y1 denote the point amongst {xi, i œ
[k]} that is closest to the origin. Let y2 and y3 be the closest pair in the family {xi, i œ [k]}
where y2 is closer to y1 than y3 is. Potentially y2 = y1.
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We claim that the contribution of the case y1 ”= y2 is at most

K1 := k

A
k ≠ 1

2

B3 ⁄

Rd
exp(≠ÎxÎ)dx

4k≠3

⁄

R3d
exp(≠Îy1Î2 ≠ Îy2Î2 ≠ Îy3Î2)Îy1Î≠k“2Îy2 ≠ y3Î≠(k

2)“2
dy1dy2dy3 .

Indeed, the factor k

1
k≠1

2

2
counts the number of ways of choosing y1, y2, y3, and that Îxi ≠

xjÎ Ø Îy2 ≠ y3Î and ÎxiÎ Ø Îy1Î by the definition of the yi’s.
As a result, we have K2 Æ c

s
R2d exp(≠Îy2Î2 ≠ Îy3Î2)Îy2 ≠ y3Î≠(k

2)“2
dy2dy3 Æ c

Õ for some
finite constants c, c

Õ
> 0 because the integral with respect to y1 is finite by the assumption

that k“
2

< d, and it is easily checked that the integral with respect to y2 and y3 is finite as
soon as

1
k
2

2
“

2
< d, as required.

Similarly, we notice that the contribution of the case y1 = y2 is at most

K2 := k(k ≠ 1)
⁄

R2d
exp(≠ÎxÎ2 ≠ ÎyÎ2)ÎxÎ≠k“2Îx ≠ yÎ≠(k

2)“2
dxdy

3 ⁄

Rd
exp(≠ÎzÎ2)dz

4k≠2
,

where we have renamed y1 and y3 to x and y respectively. Next we distinguish four cases
according to all combinations of the cases ÎxÎ Æ 1, ÎxÎ > 1, Îx ≠ yÎ Æ 1 and Îx ≠ yÎ > 1.
When both ÎxÎ and Îy ≠ xÎ are larger than 1, the integral in question is clearly finite. If
we have ÎxÎ > 1 and Îx ≠ yÎ Æ 1, then it is easy to see that the integral is finite when1

k
2

2
“

2
< d. If ÎxÎ Æ 1 and Îx ≠ yÎ > 1, then the integral is finite when k“

2
< d. Finally, if

both ÎxÎ and Îy ≠ xÎ are at most 1, then it su�ces to show that
⁄

B2
ÎxÎ≠k“2Îx ≠ yÎ≠(k

2)“2
dxdy < Œ,

where B is the Euclidean ball centered at the origin of radius 2. We have
⁄

B2
ÎxÎ≠k“2Îx ≠ yÎ≠(k

2)“2
dxdy Æ

⁄

B
ÎxÎ≠k“2

dx

⁄

2B
ÎzÎ≠(k

2)“2
dz < Œ

as long as both k“
2

< d and
1

k
2

2
“

2
< d. This shows K2 < Œ and ends the proof of the

theorem. ⌅

4.5 k-Clique Counts
A k-clique is a complete subgraph with k vertices. In what follows, we will denote by Qk

the number of k-cliques in a realization of the FGN model. Clearly, Qk is a random variable
and an important motif count for the FGN. We have the following results on the asymptotic
expected value of Qk.

Theorem 4.6. For integer k Ø 3, suppose that ‹ = “
2
/d < min((k≠1)≠1

, 2((k≠1)(k≠2))≠1).
Then there exists a finite constant C(“, d, k, fl) such that

E[Qk] ≥ C(“, d, k, fl)n1+‹(1 + o(1)).
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Proof. The central arguments are on similar lines to those in the case of hub-and-spoke
counts, so we provide a sketch herein. Since all possible edges among the vertices are con-
nected in a clique, one has that

E[Qk+1] = n
k+1

(k + 1)!E
⁄

�k+1
exp(≠

ÿ

{i,j}µ[k+1],i”=j

Îxi ≠ xjÎ)
k+1Ÿ

i=1
M

“(dxi).

By a routine computation as before, one derives

E[Qk+1] = (1 + o(1)) n
k+1

(k + 1)!‡
(k+1)d≠“2

⁄

(�/‡)k+1

Ÿ

{i,j}µ[k+1],i”=j

exp(≠Îxi ≠ xjÎ2)Îxi ≠ xjÎ≠“2
k+1Ÿ

i=1
dxi.

Isolating one variable, say xk+1, one is led to the desired estimates as long as one can show
that

K
Õ :=

⁄

Rdk
exp(≠

ÿ

{i,j}µ[k+1],i”=j

Îxi ≠ xjÎ2 ≠
kÿ

i=1
ÎxiÎ2)

Ÿ

{i,j}µ[k],i”=j

Îxi ≠ xjÎ≠“2 Ÿ

jœ[k]
ÎxjÎ≠“2

kŸ

i=1
dxi

is finite. Since K
Õ
< K < Œ, the proof is complete. ⌅

4.6 A heavy-tailed structural pattern
The expected behavior of the counts for the four motifs considered in the preceding sections
- i.e., edges, triangles, hub-and-spokes and cliques (of all possible sizes) - suggests a distinct
pattern. In all these cases, the expected count scales with the size parameter n as n

1+‹ .
We believe that this would hold true for all subgraph counts in the FGN model. However,
a mathematical proof of such a result is rendered di�cult by the technical challenges posed
by the GMC measure, not the least of which are the heavy-tailed phenomena induced by it,
a topic that we take up for discussion below.

From the proofs of Theorem 4.3 to Theorem 4.6, it appears that the expected edge,
triangle, hub-and-spoke and k-clique counts might not be finite for values of ‹ beyond the
thresholds in the respective theorems, due to the non-convergence of the integrals appearing
in respective factors C(“, d). Such behavior, in fact, would be commensurate with the general
heavy-tail character of statistics naturally associated with the FGN model, particularly in
the regime where fractal e�ects become significant (i.e., for relatively large ‹). The blow-
up of expectations may be explained heuristically by the presence of a moderately small
likelihood of extremely large values, a characteristic of heavy-tailed distributions. Such
heavy-tailed features also renders other possible techniques for theoretical study of the FGN
model to be ine�ective; for example it is challenging to make e�ective use of second moment
based arguments to rigorously establish concentration phenomena for FGN statistics in the
single-pass observation model. Providing a theoretical characterization of concentration
phenomenon, for both the edge and triangle count, is an extremely interesting problem for
future work.

23



4.7 Spectrum of the FGN
The spectrum of the adjacency matrix or the Laplacian matrix of a graph is considered to
be one of its most fundamental aspects, and is of independent academic interest; see, for
example, [FDBV01, CLV03b, EKYY13, TVW13, VDH16, BGBK19]. In this section, we
undertake an empirical investigation of the eigenvalue distribution of the Laplacian matrix
of the FGNs and illustrate several intriguing properties.

We recall that for an undirected graph with n vertices, its Laplacian matrix is defined
as L := D ≠ A, where D is the (diagonal) degree matrix and A is the (symmetric) adja-
cency matrix. We now describe the experimental setup in detail. For a given value of ‹,
after generating an FGN with n = 5000, we compute the Laplacian matrix and obtain its
eigenvalues. We then count the multiplicity of the eigenvalues. At this point, we noticed
that there are some eigenvalues that have extremely large multiplicities. We collected those
eigenvalues apart and first plot the remaining eigenvalues. This corresponds to the right
column of Figure 7. Then, we superimposed the eigenvalues with large multiplicities on top
of the previous histogram. This corresponds to the left column of Figure 7. This process is
repeated for increasing values of ‹, which corresponds to the rows of Figure 7.

There are several observations to be made regarding the obtained histogram. First, we
observe that there appears to be a singular component of the spectrum which is character-
ized by extremely large peaks (i.e., eigenvalues with extremely large multiplicity) scattered
through the entire support of the histogram, as evident in the left column of Figure 7. Next,
there seems to be an absolutely continuous component of the spectrum, whose histogram is
separately plotted in the right column of Figure 7. However, this component also seems to
exhibit relatively moderate peaks and dispersed through its support. In view of the peaks
of widely di�erent sizes and the irregular contour of the absolutely continuous part, the
spectrum of the Laplacian appears to exhibit a multi-scale structure. Such a nuanced spec-
tral behavior is markedly di�erent from that of the relatively simple spectrum exhibited by
the Erd�s-Rényi random graph Laplacian. In particular, in Figure 8 we plot the Laplacian
spectrum of an Erd�s-Rényi random graph. The edge probability was set to be 0.5, 0.1 and
0.01 thereby covering a class of sparse random graphs for comparison. We notice that as the
graph gets sparse, the spectrum exhibits peaks, however, they are not as significant as that
exhibited by the FGN.

4.8 Estimating the fractality parameter ‹.
In this section we propose an estimator for the crucial fractality parameter ‹ in the FGN
model. To this end, we will focus on small subgraph counts in the network, and utilize our
analysis of edge counts from Section 4.2) in order to detect fractal structures. In this section,
we will work in the setting “

2
< d, so that the results of Section 4.2 would be applicable.

Interestingly, this would correspond to the so-called L
2 regime in the theory of GMC, where

many of the mathematical technicalities are known to be relatively more tractable.
In the single-pass observation model, we consider the statistic

‹̂single := log E
log N

≠ 1 (15)
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Figure 7: Eigenvalue distribution of the Laplacian matrix of FGN: Left column corresponds
to the entire spectrum and right column corresponds to a zoomed-in part of the spectrum
without the tall peaks. As we move from top to bottom, the value of ‹ increases.
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Figure 8: Eigenvalue distribution of the Laplacian matrix of Erd�s-Rényi random graph:
The number of nodes is 1000. The probability of an edge were set to be 0.5 (left), 0.1 and
0.01 respectively.

as an estimator for ‹, where E is the edge count of the FGN. To see why ‹̂single is a good
estimator, we write

log E = log( E
n1+‹

· n
1+‹)

= (1 + ‹) log n + log(E/n
1+‹)

= log n

C

1 + ‹ + log(E/n
1+‹)

log n

D

.

But Theorem 4.3 and Figure 5 suggest that E/n
1+‹ is a �(1) quantity, which indicates that

log E
log n ≥ 1 + ‹ as n æ Œ. But we may now make use of the fact that we have log N =
log n(1 + o(1)) (as in Equation (5)), which, coupled with the last equation, implies that log E

log N

is approximately 1 + ‹, or equivalently log E
log N ≠ 1 is approximately ‹ in the regime of large

size parameter n, as desired.
In the multi-pass observation model, we have m i.i.d. samples of the FGN with Ei and

Ni being the edge count and the vertex count of the i-th sample. Then we may define E as
the mean edge count E := 1

m

qm
i=1 Ei and N as the mean vertex count N := 1

m

qm
i=1 Ni. We

observe that, in the regime of large m, the mean edge count E and the mean vertex count
N strongly concentrate around their expectations. As such, in the regime of large m we
have E = E[E ](1 + oP (1)) and N = E[N ](1 + oP (1)) = n(1 + oP (1)). This, coupled with our
analysis of the single-pass setting, naturally suggests consideration of the following estimator
of ‹ in the multi-pass observation model:

‹̂multi := log E
log N

≠ 1. (16)

The e�cacy of ‹̂multi as an estimator for ‹ follows from the afore-mentioned asymptotics of
E and N in the large m regime, which lead us to deduce that

‹̂multi = log E
log N

≠ 1

= (logE[E ] + log(1 + oP (1)))
(logE[N ] + log(1 + oP (1))) ≠ 1

=(1 + ‹) + oP (1) ≠ 1
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=‹ + oP (1),

where, in the last step, we have used the asymptotics of E[E ] in Theorem 4.3, coupled with
a small parameter expansion of log(1 + x). The estimator ‹̂ has the form of a log-log plot
between network observables and system size. Such log-log plots have been used e�ectively
in studying growth exponents and fractal behavior in the phenomenological literature, and
therefore are well-motivated and thoroughly contextualized in the setting of fractal networks.

4.9 Detecting the presence of fractality.
We examine the presence of fractality in the network by examining whether the combinatorial
data of the graph points to the occurrence of such structures. As argued earlier, in the context
of FGN this would entail determining whether ‹ = 0 (absence of fractality), and compare it
with the alternative possibility ‹ Ø ‹0 for some given threshold ‹0 (presence of a substantive
degree of fractality). Choosing a positive threshold for the alternative, separated from 0, is a
natural framework, because as discussed earlier the FGN interpolates continuously between
homogeneity and gradually increasing fractality. In this section, we will once again work
in the setting “

2
< d, so that the results of Section 4.2 would be applicable. As observed

earlier, this would correspond to the so-called L
2 regime in the theory of GMC.

In the single-pass observation model, we again exploit our analysis of edge counts for
this purpose. We recall that when ‹ = 0, that is for the Poisson random geometric graph,
E is a sum of indicators of all possible edges on the vertex set. Since edges are usually
formed when the underlying points xi, xj, xk are close to each other at the scale ‡, and since
‡ = O(n≠1/d), we may conclude that E is a sum of a large (and Poisson) number of weakly
dependent random variables. As such, it can be well-approximated by a compound Poisson
random variable, which in turn admits a normal approximation with appropriate centering
and scaling (c.f. [Pen03], [VDH16]).

The upshot of this is that under ‹ = 0, for large n, the normalized edge count E≠E[E]Ô
Var[E] is

approximately normally distributed ([Pen03, Theorem 3.4]). Under ‹ = 0, the edge count is
known to satisfy Var[E ] = C(d, fl)n(1 + o(1)) (c.f. [Pen03]), which implies the approximate
upper tail bound

P[E Ø C2(0, d)fl2
n + t] Æ C exp

A

≠ct
2

n

B

.

This suggests that, under ‹ = 0, the probability P[E Ø n
1+ 1

2 ‹0 ] Æ exp(≠cn
1+‹0). On the

other hand, under the alternative we have

E[E ] = C(“, d, fl)n1+‹(1 + o(1)) Ø C(“, d, fl)n1+‹0(1 + o(1)) ∫ n
1+‹0/2

,

as n æ Œ. This suggests that the threshold n
1+‹0/2 for the edge count separates the ‹ = 0

and ‹ Ø ‹0 settings.
However, in our observation models, we do not have direct access to the latent size

parameter n. Nonetheless, as discussed in Section 4.1, the observed network size N provides
a good approximation of n upto an O(1) multiplicative factor. Since E under the null and
the alternative hypotheses are orders of magnitude (in n) apart (which is a consequence of
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the positive separation between the null and the alternative), we can use N as a substitute
for n for obtaining a separation threshold. Thus, in the single-pass observation model,

Declaring the presence of fractality if E > N
1+ 1

2 ‹0 (17)

would provide a detection procedure for fractality with good discriminatory power. In the
multi-pass observation model, we make use of the mean edge count E = 1

m

qm
i=1 Ei and the

mean vertex count N = 1
m

qm
i=1 Ni. In the regime of large m, they concentrate strongly

around their respective means, with Gaussian CLT like e�ects. Thus, in the multi-pass
observation model

Declaring the presence of fractality if E > N
1+ 1

2 ‹0 (18)

would provide a detection procedure for fractality with good discriminatory power.

5 Fractality of FGN : a phenomenological perspective
While there has been interest in the presence of ‘fractal phenomena’ in networks in the
scientific literature, this has not been developed as a rigorous mathematics discipline. We
envisage our work as a step towards development of a general mathematical theory of fractal
phenomena in networks. In this context, we explore in the present section the fractal features
of the FGN model from a real-world phenomenological perspective, and demonstrate that
many of the indicators of fractal properties that are popular in the scientific literature arise
in the context of the FGN. This would substantiate the FGN as a naturally relevant model
that fits into the study of fractal phenomena in networks.

Anomalous growth exponents. Fractal behavior is understood to appear in physical
systems at criticality, which refers to the critical point (in terms of a relevant driving pa-
rameter of the system, such as temperature for spin systems) where a phase transition takes
place. There has been extensive research in the physical sciences on the emergence of fractal
phenomena at criticality (c.f., [Suz83, SV89, Isi92]). For the purposes of the present article,
we will content ourselves with the excellent overview of the main phenomena presented in
[Sti89].

Onset of criticality in statistical mechanical models, such as percolation and Ising models
on Euclidean lattices, is understood in physics to be accompanied with the appearance of
anomalous growth exponents. In percolation, for example, the volume growth exponent of
the infinite cluster (to be precise, the incipient infinite cluster) at criticality is known to be
d ≠ –, where the exponent – is the so-called length scaling exponent of the system, and d

is the dimension of the ambient Euclidean lattice. This is quite di�erent from the volume
growth exponent d for the infinite cluster in the supercritical regime, where the large scale
geometry of the infinite cluster is believed to be Euclidean [Sti89]. In a similar vein, the
growth exponent of the total magnetic moment (with system size) of the Ising model of
magnetism at its critical temperature is characterized by an analogous non-integer behavior
via a similar length-scaling exponent [Sti89].

In the setting of networks, for usual sparse networks, small subgraph counts are antici-
pated to grow in linear proportion to the ‘volume’ (i.e., the number of nodes) of the network
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(the case of sparse Erdos-Renyi random graphs or the sparse Poisson random geometric
graphs are concrete mathematical model that illustrates this fact). On the other hand, such
counts growing non-linearly as volume raised to a fractional power indicates an anomalous
growth behavior for motifs, and may be taken as an indicator of fractal properties. For
the FGN network, we demonstrate that the expected counts of important small subgraphs
such as edges, triangles, hub-and-spoke motifs, and k-cliques grow as volume/size parameter
raised to a power di�erent from 1. This demonstrates the occurrence of anomalous growth
exponents in the FGN model.

Heavy tailed phenomena. Heavy tailed behavior of distributions that are canoni-
cally associated with a model is believed to be another characteristic of fractal phenom-
ena. These are often associated with power-laws and so-called scaling e�ects. This con-
nection is of interest particularly in finance [Man13a], where the so-called scale-invariance
of power-law distributions has been classically understood as phenomenological behavior
of income distributions captured by the celebrated Pareto’s law. Fractal e�ects in finan-
cial time series are also believed to give rise to power-law behavior in its power spec-
trum, which in turn leads to the phenomenon of the so-called 1/f noise in such settings
[Vos92, Vos93, Man13b] In the setting of networks, one of the simplest and most fundamental
distributions associated with a network is its degree distribution. In this setting, power-law
behavior of degree distributions are associated with the so-called scale-free networks, which
are believed to be of great interest in studying real-world network phenomena [KGKK07].

Figure 9: Fractal Dimension computed based
on the scale-invariant renormalization proce-
dure in [SHM05].

For most of the usual sparse network
models, the degree distribution exhibits light
tails. For instance, in the sparse Erdos-
Renyi random graph model, the degree dis-
tribution is Poissonian. For the FGN net-
work, we demonstrate empirically that the
degree distribution appears to exhibit a
power-law tail, as opposed to a Poisson-
Binomial or Gaussian decay. In fact, the
heavy-tailed nature of the degree distribu-
tion appears to become more accentuated
as the value of the parameter ‹ increases
— for ‹ = 0, we have a Poisson type tail,
whereas the power-law behavior becomes
more prominent with growing ‹. This not
only demonstrates fractal characteristics in the FGN model, but also lends support to the
salience of the parameter ‹ as the fractality parameter in the model. This is in addition to
the observation that the ‘anomalous exponents’ in various small subgraph counts appear to
depend only on ‹ (and not on “ or d separately).

Long range order. Fractal behavior is also associated with the phenomena of long-
range dependence and slow decay of correlations in physical systems [Sti89]. In the setting of
the FGN, such long-range dependence is embodied in two di�erent ways – first, via the long-
range dependence and slow decay of correlations in the Gaussian field X that is underlying
the latent GMC measure; and secondly, via the fact that the dependence on the vertex count
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on the GMC introduces additional global dependencies.
Fractal dimension of networks. We also investigate additional indicators of fractal

behavior that are popular in the scientific literature, in particular the fractal dimension
computed based on the scale-invariant renormalization procedure popularized by [SHM05].
The box counting method is a standard method to calculate the fractal dimension of physical
systems. In the context of networks, the work of [SHM05] showed that a certain renormalized
version of the box counting provides a powerful tool for revealing the self-similar properties
of heterogenous networks.

In our experiment, we set the dimensionality d = 100 and varied ‹ from 0 to 0.8 in steps
of 0.2. We calculated the fractal dimension proposed by [SHM05] based on averaging over
1000 instantiations of FGNs. In Figure 9 we plot the average along with the standard errors.
We notice that the fractal dimension exhibits an inverse linear relationship with ‹. This is
indicative of the fractality emerging in the network based on that from the underlying latent
space.

5.1 Real-world Network data Analysis
Finally, we reinforce our study of the FGN model by analyzing large-scale real-world network
data that is believed to display fractal features. Specifically, we consider the answers and
flickr datasets from the Stanford Large Network Dataset Collection [LK14]. The answers
dataset [LLDM08] depicts the interaction structure of users of the Yahoo! answers portal.
The flickr dataset [KNT10] is based on encoding the interaction structure of the Flickr
photo-sharing website. The answers dataset has 598,314 nodes and 1,834,200 edges, while
the flickr dataset has 584,207 nodes and 3,555,115 edge; hence they are relatively sparse
networks. Furthermore, the works of [LLDM08] and [KNT10] have also demonstrated that
these datasets exhibit power-law behavior.

For our experiments, we fix the dimension of the latent space to be d = 2 and use the
parameter estimation procedure outlined above to estimate the fractality parameter ‹ for
the above two network datasets. We find that the estimated ‹ parameter for the answers
and flickr were 0.3234 and 0.1834 respectively highlighting the fact that the graphs exhibit
fractal structures. With the estimated values of ‹, we generated FGN graphs and compare
the properties of the real-world network and the simulated networks. Specifically, in Fig-
ure 10, we plot the degree distribution of both networks. Furthermore, in Figure 11 we plot
the scree plot – a plot of the eigenvalues of the graph adjacency matrix, versus their rank
(typically in the logarithmic scale). It has been shown analytically and empirically that such
plots have a power-law behavior for several real-world networks [CLV03a, FDBV11]. From
the plots we see that the generated FGN and the real-world network have great overlap in
terms of the degree distribution and the scree plot, demonstrating the fit of the proposed
model to real-world network datasets.

6 Conclusion
We proposed and investigated a parametric statistical model of sparse random graphs called
FGN that continuously interpolates between homogeneous, Poisson behavior on one hand,
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Figure 10: Degree distribution comparison: Both the x and y axis are in log-scale.

Figure 11: Scree-Plot comparison: The x axis is in log-sale.

and fractal behavior with anomalous exponents and power law distributions on the other. We
investigated the fundamental questions of parameter estimation and detecting the presence
of fractality based on observed network data. We demonstrated how to construct a natural
stochastic block model within the FGN framework.

This work raises many natural questions for further investigations. These include a more
detailed and rigorous mathematical study of the FGN as a model of sparse random graphs.
Another direction would be to obtain fundamental limits for natural statistical questions in
this setting, particularly the Stochastic Block Model in this context, and investigating the
computational-statistical trade-o� for these problems. Extending our analytical results, and
consequently the range of the estimation and detection procedures, beyond the L

2 regime
of the GMC would be a natural and interesting question. From a modeling perspective, it
would be natural to explore beyond Gaussianity in the construction of our networks, for
which the basic motivation and the probabilistic fundamentals seem to be promising (see,
e.g., [BM02], [BM03]). Another direction would be to venture beyond the Euclidean set-
up as the latent space. We leave these and related questions as natural avenues for future
investigation.
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