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Abstract

We conduct a comprehensive investigation into the dynamics of gradient descent using large-
order constant step-sizes in the context of quadratic regression models. Within this framework,
we reveal that the dynamics can be encapsulated by a specific cubic map, naturally parame-
terized by the step-size. Through a fine-grained bifurcation analysis concerning the step-size
parameter, we delineate five distinct training phases: (1) monotonic, (2) catapult, (3) periodic,
(4) chaotic, and (5) divergent, precisely demarcating the boundaries of each phase. As illustra-
tions, we provide examples involving phase retrieval and two-layer neural networks employing
quadratic activation functions and constant outer-layers, utilizing orthogonal training data. Our
simulations indicate that these five phases also manifest with generic non-orthogonal data. We
also empirically investigate the generalization performance when training in the various non-
monotonic (and non-divergent) phases. In particular, we observe that performing an ergodic
trajectory averaging stabilizes the test error in non-monotonic (and non-divergent) phases.

1 Introduction

Iterative algorithms like the gradient descent and its stochastic variants are widely used to train deep
neural networks. For a given step-size parameter n > 0, the gradient descent algorithm is of the form
wtt) = w® —pvy (w(t)) where £ is the training objective function being minimized, which depends
on the loss function and the neural network architecture and the dataset. Classical optimization
theory operates under small-order step-sizes. In this regime, one can think of the gradient descent
algorithm as a discretization of so-called gradient flow equation given by w® = —Vf(w(t)), which
could be obtained from the gradient descent algorithm by letting n» — 0. Additionally, assuming
that the objective function ¢ has gradients that are L-Lipschitz, selecting a step-size n < 1/L
guarantees convergence to stationarity.

In stark contrast to traditional optimization, recent empirical studies in deep learning have
revealed that training deep neural networks with large-order step-sizes yields superior generalization
performance. Unlike the scenario with small step-sizes, where gradient descent dynamics follow a
monotonic pattern, larger step-sizes introduce a more intricate behavior. Various patterns like
catapult (also related to edge of stability), periodicity and chaotic dynamics in neural network
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training with large step-sizes have been observed empirically, for example, by Lewkowycz et al.
(2020), Jastrzebski et al. (2020), Cohen et al. (2021), Lobacheva et al. (2021), Gilmer et al.
(2022), Zhang et al. (2022), Kodryan et al. (2022), Herrmann et al. (2022). In fact, the necessity
for larger step-sizes to expedite convergence and the ensuing chaotic behavior has also been observed
empirically outside the deep learning community by Van Den Doel and Ascher (2012), much earlier.

Faster convergence of gradient descent with iteration-dependent step-size schedules that have
specific patterns (including cyclic and fractal patterns) has been examined empirically by Lebedev
and Finogenov (1971); Smith (2017); Oymak (2021); Agarwal et al. (2021); Goujaud et al. (2022);
Grimmer (2023), with Altschuler and Parrilo (2023) and Grimmer et al. (2023) proving the state-
of-the art remarkable results; see also Altschuler and Parrilo (2023, Section 1.2) for a historical
overview. Notable, the stated faster convergence behavior of gradient descent requires large order
step-sizes, very much violating the classical case. More importantly, the corresponding optimization
trajectory, while being non-monotonic, exhibits intriguing patterns (Van Den Doel and Ascher,
2012).

Considering the aforementioned factors, gaining insight into the dynamics of gradient descent
with large-order step-sizes emerges as a pivotal endeavor. A precise theoretical characterizing of
the gradient descent dynamics in the large step-size regime for deep neural network, and other
such non-convex models, is a formidably challenging problem. Existing findings (as detailed in
Section 1.1) often rely on strong assumptions, even when attempting to delineate a subset of
the aforementioned patterns, and do not provide a comprehensive account of the entire narrative
underlying the training dynamics. Recent research, such as Agarwala et al. (2023), Zhu et al.
(2022), and Zhu et al. (2023b), has pivoted towards comprehending the dynamics of quadratic
regression models based on a local analysis. These models offer a valuable testing ground due to
their ability to provide tractable approximations for various machine learning models, including
phase retrieval, matrix factorization, and two-layer neural networks, all of which exhibit unstable
training dynamics. Despite their seeming simplicity, a fine-grained understanding of their training
dynamics is far from trivial. Building in this direction, the primary aim of our work is to attain a
precise characterization of the training dynamics of gradient descent in quadratic models, thereby
fostering a deeper comprehension of the diverse phases involved in the training process.

Contribution 1. We perform a fine-grained, global theoretical analysis of a cubic-map-based
dynamical system (see Equation 2.1), and identify the precise boundaries of the following five
phases: (i) monotonic, (ii) catapult, (iii) periodic, (iv) Li-Yorke chaotic, and (v) divergent.
See Figure 1 for an illustration, and Definition 2 and Theorem 2.1 for formal results. We
show in Theorem 3.2 and 3.3, that the dynamics of gradient descent for two non-convex
statistical problems, namely phase retrieval and two-layer neural networks with constant
outer layers and quadratic activation functions, with orthogonal training data is captured
by the cubic-map-based dynamical system. We provide empirical evidence of the presence
of similar phases in training with non-orthogonal data.

We also empirically examine the effect of training models in the above-mentioned phases, in
particular the non-monotonic ones, on the generalization error. Indeed, provable model-specific sta-
tistical benefits for training in catapult phase are studied in Lyu et al. (2022); Ahn et al. (2022b).
Lim et al. (2022) proposed to induce controlled chaos in the training trajectory to obtain better
generalization. Approaches to explain generalization with chaotic behavior are examined in Chan-
dramoorthy et al. (2022) based on a relaxed notion of statistical algorithmic stability. Although
our focus is on gradient descent, related notions of generalization of stochastic gradient algorithms,
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Figure 1: Phases of cubic-map based dynamical system in (2.1) parameterized by a. Sub-figure 1(a)
corresponds to the monotonic phases, where the dynamics monotonically decays to zero. Sub-
figure 1(b) corresponds to the catapult phase where the dynamics decays to zero but is non-
monotonic. Sub-figure 1(c) corresponds to the periodic phase, where the dynamics decays and set-
tles in a period-2 orbit (i.e., shuttles between two points) but never decays to zero. Sub-figures 1(d)
and 1(e) correspond to the chaotic phase (see Definition 1) and divergent phases, respectively. Note
that the order of z-axis and y-axis in Sub-figures 1(d) and 1(e) are different from the rest.

based on characterizing the fractal-like properties of the invariant measure they converge to (with
larger-order constant step-size choices) have been explored, for example, in Birdal et al. (2021);
Camuto et al. (2021); Dupuis et al. (2023); Hodgkinson et al. (2022). Hence, we also conduct
empirical investigations into the performance of generalization when training within the different
non-monotonic (and non-divergent) phases and make the following contribution.

Contribution 2. We propose a natural ergodic trajectory averaging based prediction mech-
anism (see Section 4.2) to stabilize the predictions when operating in any non-monotonic (and
non-divergent) phase.

1.1 Related works

Specific Models. Zhu et al. (2023b) and Chen and Bruna (2023) studied gradient descent dy-
namics for minimizing the functions ¢(u,v) = (u?v? — 1)? and ¢ = (u? — 1)2, respectively. Both
works primarily focused on characterizing period-2 orbits and hint at the possibility of chaos with-
out rigorous theoretical justifications. Furthermore, their proofs are relatively tedious and very
different from ours. Song and Yun (2023) provided empirical evidence of chaos for minimizing
¢(u,v) = using gradient descent. However, their results are not applicable to quadratic regression
models. Ahn et al. (2022a) examined the Edge of Stability (EoS) between the monotonic and cat-
apult phase for minimizing ¢(u,v) = [(uv), where [ is convex, even, and Lipschitz. Their analysis
is not directly extendable to the quadratic regression models we consider in this work. See also the
discussion below Theorem 2.1 for important technical comparisons. Wang et al. (2022) analyzed
additional benefits (e.g., taming homogeneity) of gradient descent with large step-sizes for matrix
factorization.

Agarwala et al. (2023) explored gradient descent dynamics for a class of quadratic regression
models and identified the EoS. Zhu et al. (2023a,b) also studied the catapult phase and EoS
for a class of quadratic regression models. Agarwala and Dauphin (2023) examined the EoS in
the context of Sharpness Aware Minimization for quadratic regression models. The above works
are related to our work in terms of the model that they study. However, none of the above
works characterize the five distinct phases (with precise boundaries) like we do, along with precise



boundaries. Furthermore, our analysis is distinct (and is also global') from the above works and is
firmly grounded in the rich literature on dynamical systems.

General results. Lewkowycz et al. (2020) empirically examine the catapult phase, particularly
in neural networks with one hidden layer and linear activations. Cohen et al. (2021) and Ahn
et al. (2022b) provide insights into the EoS. Damian et al. (2023) propose self-stabilization as a
phenomenological reason for the occurrence of catapults and EoS in gradient descent dynamics.
Kreisler et al. (2023) investigate how gradient descent monotonically decreases the sharpness of
Gradient Flow solutions, specifically in one-dimensional deep neural networks. Although they do
not formally prove the existence of chaos in the dynamics, they conjecture its possibility. Arora
et al. (2022) and Lyu et al. (2022) explore sharpness reduction flows, related to the above findings.
Andriushchenko et al. (2023) prove that large step-sizes in gradient descent can lead to the learning
of sparse features. Wu et al. (2023) investigate the EoS phenomenon for logistic regression. Kong
and Tao (2020) theoretically explore the chaotic dynamics (and related stochasticity) in gradient
descent for minimizing multi-scale functions under additional assumptions. While being extremely
insightful, their results are fairly qualitative and are not directly applicable to the cubic maps
analyzed in our work. As we focus on specific models, our results are more precise and quantitative.

Dynamical systems. Our results draw upon the rich literature available in the field of dy-
namical systems. We refer the interested reader to Alligood et al. (1997), Lasota and Mackey
(1998), Devaney (1989), Ott (2002), De Melo and Van Strien (2012) for a book-level introduction.
Birfurcation analysis of some classes of cubic maps has been studied, for example, by Skjolding
et al. (1983), Rogers and Whitley (1983), Branner and Hubbard (1988) and Milnor (1992). Some
of the above works are rather empirical, and the exact maps considered in the above works differ
significantly from our case.

2 Analyzing a discrete dynamical system with cubic map

Notations and definitions. We say a sequence {x}7° is increasing (decreasing), if 11 > x¢
(441 < x¢) for any t. Moreover, it is strictly increasing (decreasing) if the equalities never hold.
For a real-valued function f and a set S, define f(S) = {f(z) : z € S}, and f®)(z) := f(f*&V(x))
for any k € N with f(©(z) = z. The preimage of z under f on S is the set f~'(z) :== {y € S :
f(y) = x}. We say a property P holds for almost every = € S or almost surely in S, if the subset
{z € S : property P does not hold for x} is Lebesgue measure zero. A critical point of f is a point
x satisfying f'(xz) = 0. We call xg a period-k point of f, when f*)(z¢) = z¢ and f®(zg) # xo for
any 0 < i < k — 1. The orbit of a point z denotes the sequence {f®) (x0)}22,. A point z is called
asymptotically periodic if there exists a periodic point yo such that limg_,s | £ (z0) — f® (yo)| = 0.
The stable set of a period-k point xg is defined as W*(zg) := {x :limy, o0 fF™) (x) = xo.} :

The stable set of the orbit of a periodic point g is the union of the stable sets of all points in
the orbit of xy. A point xg is an aperiodic point if it is not an asymptotically periodic point and the
orbit of xg is bounded. We say a fixed point zy of f is stable if, for any € > 0, there is a § > 0 such
that for any z satisfiying |z — zo| < &, we have |f("™)(z) — x| < € for all n > 0. The fixed point zg is
said to be unstable if it is not stable. The fixed point x( is asymptotically stable if it is stable and
there is an 6 > 0 such that lim,, . £ (z) = xo for all z satisfying |z — zo| < 6. A period-p point
xo and its associated periodic orbit are asymptotically stable if xg is an asymptotically stable fixed
point of f®. A point z € R J{+00, —oc}\S is called an absorbing boundary point of S for f
with period p, for some p € {1, 2}, if there exists an open set U C S such that limg_, f(pk)(y) —x

! Analysis in Wang et al. (2022) and Chen and Bruna (2023) is also global, but not applicable to our model.



for all y € U. The Schwarzian derivative? of a three-times continuously differentiable function f is
defined (at non-critical points) as

Sf@) = (f"(2)/f'(x)) = 1.5 (f"(x)/f'(@))", where f'(z) # 0.

The Lyapunov exponent® of a given orbit with initialization zq is defined as
1 n—1
j— 1 P / .
Lf(xo) = lim - Z;log | ().
i=

The sharpness of a loss function is defined as the maximum eigenvalue of the Hessian matrix of the
loss.

Bifurcation analysis. Our main goal in this section is to undertake a bifurcation analysis of
the following discrete dynamics system defined by a cubic map. For a > 0, first define the functions
g and f, parameterized by a, as

ga(2) =22+ (a—2)2+1-2a=(24a)(z—2)+1 and f,(2) = 2g4(2). (2.1)
Next, consider the discrete dynamical system given by

ztv1 = fa(2t) = 2t9a(2t)- (2.2)

Note that for any a,e > 0 and zp > 2+€ or zp < —a — ¢, we will have lim;_, |2;| = +00. Hence, we
only study the case when zy € [—a,2]. We will show in Section 3 that the dynamics of the training
loss for several quadratic regression models could be captured by (2.2). The parameter a in (2.1)
for the models will naturally correspond to the step-size of the gradient descent algorithm.

We next introduce the precise definitions of the five phase that arise in the bifurcation anal-
ysis of (2.1). To do so, we need the following definition of chaos in the Li-Yorke sense (Li and
Yorke, 1975). Li-Yorke chaos is widely used in the study of dynamical systems and is also di-
rectly related to important measures of the complexity of dynamical systems, like the topological
entropy (Adler et al., 1965; Franzovd and Smital, 1991). We also refer to Aulbach and Kieninger
(2001) and Kolyada (2004) for its relationship to other notions of chaos and related history.

Definition 1 (Li-Yorke Chaos (Li and Yorke, 1975)). Suppose we are given a function f(x). If
there exists a compact interval I such that f : I — I, then it is called Li-Yorke chaotic (Li and
Yorke, 1975; Aulbach and Kieninger, 2001) when it satisfies

e For every k =1, 2,... there is a periodic point in I having period-k.

e There is an uncountable set S C I (containing no periodic points), which satisfies for any p,q € S
with p # g, limsup,_,.. [f® () — fB(q)| > 0, liminf; oo | (p) — fB(q)| = 0, and for any p € S
and periodic point ¢ € I, limsup,,_,, |f®(p) — fP(¢)| > 0.

To define the 5 phases in particular, we consider the orbit {f®*) (2)}{25 generated by a given
function f defined over a set I, in which the initial point x belongs to.

Definition 2. Given a function f(z) defined on a set I, we say the discrete dynamics is in the

2Tt is widely used in the study of dynamical systems for its sign-preservation property under compositions; see,
for example, De Melo and Van Strien (2012).

31t is associated with the stability properties and commonly used in dynamical systems to measure the sensitive
dependence on initial conditions (Strogatz, 2018).



Monotonic phase, when {|f*)(z)[}2°, is decreasing and limy,—, | ™ (z)| = 0 for almost every
xel.

Catapult phase, when {|f(*)(2)[}32 is not decreasing for any m and lim,,,« | f(™ (z)| = 0 for
almost every z € I. We say such sequences have catapults.

Periodic phase, when f is not Li-Yorke chaotic, {|f*)(x)|}22, is bounded and does not have a
limit for almost every x € I, and there exists period-2 points in 1.

Chaotic phase, when the function f is Li-Yorke chaotic and {| f*) (z)|}32, is bounded for almost
every x € I.

Divergent phase?, when lim,, .. | f" ()| = 400 for almost every z € I.

As an illustration, in Figure 1, we plot the five phases for the parameterized function and its

discrete dynamical system defined in (2.1) with initialization 1.9, i.e., xp = fék) (x0), xo =1.9. We
have the following main result for different phases of dynamics.

Theorem 2.1. Suppose fq(z) is defined in (2.1). Define zi41 = fo(z:) with zo sampled uniformly
at random in (—a,2). Then there exists a, € (1,2) such that the following holds.

If a € (0,2v/2 — 2], then almost surely lim;_,oo |2¢| = 0 and |z]| is decreasing, and hence the
dynamics is in the monotonic phase.

If a € (22 — 2,1], then almost surely lim; .o |2¢| = 0 and |z| have catapults, and hence the
dynamics is in the catapult phase.

If a € (1,a4), then there exists a period-2 point in (0,1). z; € (—a,2) for all t. If there exists an
asymptotically stable periodic orbit, then the orbit of zy is asymptotically periodic almost surely,
and hence the dynamics is in the periodic phase.

If a € (a4,2], fo is Li-Yorke chaotic. z; € (—a,2) for all t. If there exists an asymptotically
stable periodic orbit, then the orbit of zg is asymptotically periodic almost surely, and hence the
dynamics is in the chaotic phase.

Ifa € (2,+00), then limy_,o |2¢| = +00 almost surely, and hence the dynamics is in the divergent

phase.

In Figure 2 we numerically plot a bifurca-
tion diagram for a € (0,2) and Lyapunov ex-
ponent scatter plot with initialization zy = 0.1.
The main ingredients in proving Theorem 2.1 are
the following Lemmas 1, 2, and 3. Note that by
straightforward computations, we have
f(0)=1-2a€(-1,1) < ac(0,1).

a

This implies 0 is a asymptotically stable fixed
point when a € (0,1). This type of local stability
analysis is standard in dynamical systems litera-
ture (Hale and Kocak, 2012; Strogatz, 2018), and
has been used in analyzing the training dynam-
ics of gradient descent recently (Zhu et al., 2022;
Song and Yun, 2023). However, such results are
limited to only local regions. In contrast, the fol-
lowing results provide a global convergence anal-
ysis.

Bifurcation diagram

Lyapunov exponent

P

o

Figure 2: Bifurcation diagram and Lyapunov ex-
ponent. Initialization zg = 0.1.

“We do not further sub-characterize the divergent phase as it is uninteresting.



Lemma 1. Suppose 0 < a <1 and —a < zg < 2. Then we have

o (i) —a <z <2 for any t, and f, does not have a period-2 point on [—a,2].

o (ii) If zg is chosen from [—a, 2] uniformly at random, then lim;_,o z; = 0 almost surely. Moreover,
if 0 < a < 2v2 — 2, then almost surely |zi11| < |z for all t. If 2v/2 — 2 < a < 2, then almost
surely {|z|}22, has catpults.

Lemma 2. Suppose 1 < a <2 and —a < zg < 2. Then we have

o (i) —a <z <2 for anyt, and f,(z) has a period-2 point on [0, 1].

o (ii) There exists a, € (1,2) such that for any a € (ax,2), fq is Li-Yorke chaotic, and for any
a € (1,a.), fo is not Li-Yorke chaotic.

e (iii) If there exists an asymptotically stable orbit and zy is chosen from [—a,2] uniformly at
random, then the orbit of zg is asymptotically periodic almost surely.

Lemma 3. Suppose a > 2. zj is chosen from [—a, 2] uniformly at random. Then lim;_, |2¢| = 400
almost surely.

In Lemma 2, part (iii), we assume the existence of an asymptotically stable periodic point.
Note that such a point must have negative Lyapunov exponent (Strogatz, 2018). It is possible to
obtain particular values for a under which f,(z) has an asymptotically stable orbit. For example,
a can be chosen such that |f](p)f.i(q)| < 1, where p € (0,1) is a period-2 point with f,(p) = ¢. In
Figure 2 we plot the Lyapunov exponent of f, at the orbit starting from zg = 0.1. It is interesting
to explicitly characterize the set of a values in (1,2) such that f,(z) has an asymptotically stable
periodic orbit. Furthermore, we conjecture that a, defined in Lemma 2 is the smallest number
a € (1,2) such that (1 —2a)/3 is a period-3 point. The above two problems are challenging and
left as future work.

3 Applications to quadratic regression models

We now provide illustrative examples based on quadratic or second-order regression models, moti-
vated by the works of Zhu et al. (2022); Agarwala et al. (2023). Specifically, we consider a gener-
alized phase retrieval model and training hidden-layers of 2-layer neural networks with quadratic
activation function as examples.

3.1 Example 1: Generalized phase retrieval

Single Data Point. Following Zhu et al. (2022), it is instructive to study the dynamics with a
single training sample. Consider the following optimization problem on a single data point (X, y):

min {£(w) = 1 (gw; X) ~ y)?}, where g(w; X) =

(X Tw)?

5+ eX Tw, (3.1)

where v, ¢ are arbitrary constants. The above model, with v = 2 and, ¢ = 0 corresponds to the
classical phase retrieval model (also called as a single-index model with quadratic link function). We
refer to Jaganathan et al. (2016) and Fannjiang and Strohmer (2020) for an overview, importance
and applications of the phase retrieval model. We have the following Lemma for the training
dynamics of gradient descent on solving (3.1).



Theorem 3.1. Suppose we run gradient descent on (3.1) with step-size to be 1. Define

o = g X) — g, 2= X0, a = (v+ S )nIXIE. (3.2)

Then we have (i) zi41 = fa(zt) and thus Theorem 2.1 holds for f, and z;; (ii) The sharpness is
given by Amaz(V20(w®)) = %

Note that Zhu et al. (2022) studied a related neural quadratic model (see their Eq. (3)).
Here, we highlight that their results which does not cover our case. Indeed, defining ne it =
2/ )\maX(VQE(w(O))), according to their claim, catapults happen when 7eiy < 1 < 2nerig- In our no-
tation, this condition is equivalent to 2 < 3zg + 2a < 4. However this cannot happen because if the
initialization zg is sufficiently small, say zp = O(e), then we know the previous condition become
1—0(e) < a <2— 0O(e). However, according to Lemmas 1 and 2, we have that for 1 < a < 2 the
training dynamics is in the periodic or the chaotic phase and z; (and thus the loss function) will
not converge to 0. Our theory (Lemma 1) suggests that catapults for quadratic regression model
happens for almost every zy € (—a,2) provided that 2v/2 — 2 < a < 1. This intricate observation
reveals that extending the current results on the catapult phenomenon from the model in Zhu
et al. (2022) to our setting is not immediate and is actually highly non-trivial. We also notice that,
interestingly, in the monotonic and catapult phases (i.e., 0 < a < 1), we have the limiting sharpness
satisfy 1im; oo Amax(V20(w®)) = 2a/n = (2vy + ) | X|*.

Multiple Orthogonal Data Points. We now consider gradient descent on quadratic re-
gression on multiple data points that are mutually orthogonal. Suppose we are given a dataset
{(Xi,y) ¥, with X = (X1,...,X,)" satisfying XX = diag(||X1|*,..., | Xn|/*). Consider the
optimization problem defined by

mlnf Zﬂ ! Z(g(w X)) —ui)?. (3.3)

where /;(w) and g(w; X;) are as defined in (3.1).
Theorem 3.2. Define the following:

12 &
a(X;) = e(X0) + 79X 0, BX) = yi + ((;)) () = Mfu

e (X;) 1= g(w®; X)) — yi, 2 = k(X)) (X3), a5 = B(X:)kn(X5).

If we run gradient descent on solvmg (3 3) with step-size n, then we have (i) z( ) fai(zgt)) and

®) )
thus Theorem 2.1 hols for fq, and z . (i) The sharpness Amax(V20(w®)) = maxi<i<p 32 :2%.

For this setup, the above theorem shows that the loss function is a summation of the loss on
each individual data point. Recall that the training loss takes the form

(t))2

n n (t)\2 n
1 21 (%) n(z
w®) = — ®. X)) — ) = — i — B ot A
(w™) 2n ; <g(w Xi) —y ) 2n ; K2 (X;) ZZ; 2n32~2 HX¢H4

We can hence deduce that the dynamics is governed by maxi<;<y, a;. In other words, for almost
every 20 in {z : —a; < z < 2}, we have, by Lemma 1, that as long as 0 < a; < 1 for all
i, the training loss will converge to 0, and if maxj<;<, a@; > 1, then by Lemma 2 we know that
limy_, o |2¢] # 0. We summarize this in the following corollary, which is a direct application of
Theorems 2.1 and 3.2



Corollary 1. Under the setup in Theorem 3.2, for almost all 29 e {z: —a; < z; <2} we have

o If0 < maxi<i<na; <1, then lim; o E(w(t)) =0 . Moreover, if 0 < maxi<j<n @; < 2V2 — 2, the
sequence {£(w®)}2 is decreasing.

o If1 < maxj<i<pna; <2, then {K(w(t))}fio s bounded and does not converge to 0.

° If maxi<;<n G; > 2, then lim;_, oo E(w(t)) = +00.

3.2 Example 2: Neural network with quadratic activation

In this section, we consider the following two layer neural networks with its loss function on data
point (X;,y;) defined as:

(9(u,v; Xi) — 4:)"

l\D\r—l

g(u,v; X;) 1m§:vja<\[uTX) l; =

J=1

where the hidden-layer weights u; € R? are to be trained and outer-layer weights v; € R are held
constant, which corresponds to the feature-learning setting for neural networks. Also m is the
width of the hidden layer and o is the activation function. Define U = (uq,...,u,). When the
activation function is quadratic and v; = 1 for all 4, the loss function becomes

min £(U) := %Z 0,(U) = % 3 <\/7171d ST w)? ;) (3.4)
j=1 i—1

Jj=1

As in the previous example, we assume XX | = diag(]| X1|?, ..., || X, ||*). We then have the following
result on the gradient descent dynamics of the above problem.

Theorem 3.3. Define the following:

m 2 (b 2
RONS Tu)? (0 _ 20 Xill"e; 20 || X|” wi
X, o A0 =l s 2R
i ~Vimd £ Z( \ v Jmdn " Jmdn

If we run gradient descent on solving problem (3.4) with step-size n, we have z = fa,( z(t ) and
thus Theorem 2.1 and Corollary 1 hold for £(U®).

The orthogonal assumption that XX = diag(]| X1|*, ..., || X,|/*), helps decouple the loss func-
tion across the samples and makes the evolution of the overall loss non-interacting (across the
training samples). In order to relax this assumption, it is required to analyze bifurcation analysis
of interacting dynamical systems, which is extremely challenging and not well-explored (Xu et al.,
2021). In Section C.2, we present empirical results showing that similar phases exists in the general
non-orthogonal setting as well. Theoretically characterizing this is left as an open problem.

4 Experimental investigations

4.1 Gradient descent dynamics with orthogonal data for model (3.4)

Experimental setup. We now conduct experiments to evaluate the developed theory. We consider
gradient descent for training the hidden layers of a two-layer neural network with orthogonal training
data, described in Section 3.2. Recall that d,m, and n represents the dimension, hidden-layer
width, and number of data points respectively. We set d = 100,m € {5,10,25},n = 80. We



generate the ground-truth matrix U* € R¥™ where each entry is sampled from the standard
normal distribution. The training data points collected in the data matrix, denoted as X € R™*¢,
are the first n rows of a randomly generated orthogonal matrix. The labels are generated via the
model in Section 3.2, i.e., y; = ﬁ Z;":l (XiTuj)2 + &; where ¢; is scalar noise sampled from a
zero-mean normal distribution, with variances equal to 0,0.25, 1 in different experiments.

We set the step-size 7 such that maxj<;<y, a; defined in Theorem 3.2 belongs to the intervals of
the first four phases. In particular, we choose 0.3,0.9,1,1.2,1.8 for m = 5,10 and 0.3,0.9,1,1.2,1.6
for m = 25 (for each m, 0.9 and 1 are both in the catapult phase, and we pick 1 since it is the
largest step-size choice allowed in the catapult phase). The numbers 0,1, 2, 3,4 of the plot labels
correspond to these step-size choices respectively. In Figure 4 we present the training loss curves in
log scale and the sharpness curves for m = 25. The horizontal axes denote the number of steps of
gradient descent. In Section C.1, we also provide additional simulation results for different hidden-
layer widths. From the training loss curves (left column) and the sharpness curves (middle column)
we can clearly observe the four phases® thereby confirming our theoretical results.

4.2 Prediction based on ergodic trajectory averaging

A main take-away from our analysis and exper-
iments so far is that gradient descent with large
step-size behaves like stochastic gradient descent,

—k— Testing Log Loss 3

2.01 —=— Testing Log Loss 4 except the randomness here is with respect to
s O[3 e i o i 1 8 the orbit it converges to (in the non-monotonic
W " phases). Recall that this viewpoint is also put-

g o J NV" ’ “ ’ m m { forward is several works, in particular Kong and
g o5 . “ Tao (2020). Hence, a natural approach is to do
. perform ergodic trajectory averaging to reduce
o the fluctuations (see right column in Figure 4).

—0.5 4

For any give point X € R? and any training
T s s s 100 15 1t0 105 200 iteration count t, the prediction y for the point

Iterations X is given by ¢ := % S g(w®; X), where w(®
corresponds to the training trajectory of the gra-
dient descent algorithm trained with step-size 7.
Another way to think about the above prediction
strategy is that the ergodic average approximates, in the limit, expectation with respect to the in-
variant distribution (supported on the orbit to which the trajectory converges to). In particular,
Figure 4 right column, for the orthogonal setup, we see that as the noise increases, training in the
chaotic regime and performing ergodic trajectory averaging provides a fast decay of training loss.
A disadvantage of the ergodic averaging based prediction strategy described above is the test-time
computational cost increases by O(t), per test point.

Figure 3 plots the testing loss for the model in (3.4), when trained with two values of large
step-sizes (n = 48,60). We observe from the figure that the ergodic trajectory averaging prediction
smoothens the more chaotic testing loss. However, we also remark that from the plots in Figure 10°,
operating with slightly smaller step-size choice (n = 36) achieves the best testing error curves. See
Section C.2 for additional observations. In the literature, ways of artificially inducing controlled
chaos in the gradient descent trajectory has been proposed to obtain improved testing accuracy;

Figure 3: Test loss with and without averaging.

5Here, we do not plot the divergent phase here for simplicity.
SFigure 10 provides a detailed comparison across various step-sizes, for different noise variances.
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Figure 4: Hidden layer width = 25, with orthogonal data points. Rows from top to bottom represent
different levels of noise — mean-zero normal distribution with variance 0,0.25, 1 respectively. The
vertical axes are in log scale for the training loss curves. The second column is about the sharpness
of the training loss functions.

see, for example, Lim et al. (2022). We believe the ergodic trajectory averaging based prediction
methodology discussed above may prove to be fruitful to stabilize the testing loss in such cases as
well. A detailed investigation of provable benefits of the ergodic trajector averaging predictor, is
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beyond the scope of the current work, and we leave it as intriguing future work.

4.3 Additional Experiments

We provide the following additional simulation results in the appendix:

e Section C.2 corresponds to non-orthogonal training data. We also include testing loss plots.

e Section C.3 corresponds to training the hidden-layer weights of a two-layer neural network with

ReLU activation functions and non-orthogonal inputs.

5 Conclusion

Unstable and chaotic behavior is frequently observed when training deep neural networks with

large-order step-sizes. Motivated by this, we presented a fine-grained theoretical analysis of a
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cubic-map based dynamical system. We show that the gradient descent dynamics is fully captured
by this dynamical system, when training the hidden layers of a two-layer neural networks with
quadratic activation functions with orthogonal training data. Our analysis shows that for this
class of models, as the step-size of the gradient descent increases, the gradient descent trajectory
has five distinct phases (from being monotonic to chaotic and eventually divergent). We also
provide empirical evidence that show similar behavior occurs for generic non-orthogonal data. We
empirically examine the impact of training in the different phases, on the generalization error, and
observe that training in the phases of periodicity and chaos provides the highest test accuracy.

Immediate future works include: (i) developing a theoretical characterization of the training
dynamics with generic non-orthogonal training data, which involves undertaking non-trivial bifur-
cation analysis of interacting dynamical systems, (ii) moving beyond quadratic activation functions
and two-layer neural networks, and (iii) developing tight generalization bounds when training with
large-order step-sizes.

Overall, our contributions make concrete steps towards developing a fine-grained understanding
of the gradient descent dynamics when training neural networks with iterative first-order optimiza-
tion algorithms with large step-sizes.
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A Proofs of Main Results

A.1 Proofs of results in Section 2

We first present several technical results required to prove our main results.

Lemma 4. Let f(x) be a polynomial. If all the roots of f'(x) are real and distinct, then we have

(@) 3 <f”(x)>2 I
Sf(x) = - = <0 forall x eI with f'(x) # 0.
W= 2\ w7
Proof. See, e.g., the proof of Proposition 11.2 in Devaney (1989). |

Lemma 5. Suppose we are given a real-valued continuous function f(x) : R — R and a bounded
closed interval I C R with xo € I. Define x := f*)(xq). If the sequence {xr}72, is monotonic,
then one of the following holds.

o (i) {zp}i2y € 1, i.e., there exists x; ¢ I for some t.
o (ii) {x1}52 C I, and limy_,oo ) (20) exists and is a fived point of f(z) in I.

Proof. If (i) holds, then the conclusion is true. When (i) does not hold, then {x}32, € I. Since
this sequence is monotonic and included in a bounded closed interval, we know its limit exists and
is in I. Moreover, we have

i i g T
A e = g men = B o) = 7 20,
where the last equality holds since f is continuous. Clearly lim;_,.. x; is a fixed point of f. [

The following lemma characterizes the basic properties of the cubic function f, defined in (2.1).

Lemma 6. Suppose a > 0. Then f,(z) has the following properties.

16



e (i) The local minimum and mazimum of fqo(z) are at z =1 and z = 1522 respectively, and

1-2a (2a —1)(2a® +7a —4)  4a® + 124 — 15a + 4
a 1 = — 5 = = .
fa(1) = —a f"( 3 ) 27 27

o (ii) fa(z) is monotonically increasing on [—a,522], monotonically decreasing on [2522,1],

and monotonically increasing on [1,2].

e (iii) For any —a < z < 2, we have —a < f,(z) < max {fa (1_32“) ,2}. Moreover, f, (1_32“) <
2 if and only if a < 2.

Proof. Note that we have

fi(z)=322+2(a—2)2+(1—2a) = (2 —1)(32 4+ 2a — 1). (A1)

a

which implies 1 and 1_—32“ are critical points of f,(z). Moreover, by f/(z) = 6z 4+ 2a — 4 we know

/(1) > 0 and f7/(152%) < 0. Hence, they are local minimum and maximum respectively. The rest
of (i) is true by calculation. (ii) is true by noticing the expression of f/(z) in (A.1). (iii) is a direct
conclusion of (i) and (ii) since for —a < z < 2 we have

—a=nin {1, £(-0) < fo(2) < max {1, () )}

By (i) and some calculation we know

f<1—2a> 5 4a® +12a® — 15a — 50  (2a + 5)?(a — 2)
a — = =

3 27 27
This proves the rest of (iii). [

Lemma 7. Suppose 2v/2 — 2 < a < 1. Define five subintervals of [—a,2] as follows.

7 [ 2—a—+vVa?+4a [2—(1—\/&2—1—4& O]
1= |—a, ) )

I, —
2 2 2

7 [2—a+\/a2—|—4a 2]
, 45 = ; .

—a+Va?+4a
2

2
I3 =1[0,0.25], I = !0.25, 5

Then we have
o (i) fa(l1) €I = Iz, fo(ls) =1 Ula, fo(l5) = [3U I U 5.
o (ii) fa(l2) C I3, fo(I3) C I>.

Proof. We first prove (i). By Lemma 6 we know f,(z) is increasing on I;, achieving its local
minimum at z = 1 on Iy, increasing on I5, then we know

2—a—\/a2+4a>

fa(l1) = | fa(—a), fa <

5 = [—a,O] =L UlI.

2

fa(I4) = fa(1)¢max{fa(0'25)afa (2 —a+t Ve’ +4a> }] = [_aa 0] =L UlD.

fully) = | o (2 - a2+4a> ,fa<2>] — (0.2 = LU L UL,
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This completes the proof of (i).

To prove (ii), observe that when a € (2v/2 — 2, 1] we have 2= V2a2+4“ < 122% < 0. By Lemma

6 we know the local maximum of f, over Iy = [2_“_7 VQ"ZH“, 0} is achieved at 1_32‘1, this together
with the fact that f,(0) = f, (2_“_7 V2“2H“) = 0 implies
1-2a 4a3 +12a% — 15a + 4
fa(I2) = [fa(o),fa< 3 >] = [0, > ] C 10,0.25],

where the last subset inclusion is true since
(4a® + 124 — 15a + 4)' = 12a* 4 24a — 15 > 0, Va € (2v2 — 2,1].
This implies when a € (2v/2 — 2, 1],

4o’ +12¢° —15a+4 (4o’ +12a° —15a+ Do _ 5 _ o0
97 27 27

On the other hand, we know from Lemma 6 that on I3 = [0,0.25](C [152%,1]) f, is decreasing.
Hence,

7 9 2—a—+va?+4a
fa(IS) = [fa(025)afa(0)] = _70/—’_770 g 70 :IQ-
16 16 2
where the last subset inclusion is true since
7 9 2—a—+Va2+14
Fa(0.25) = — a4 L 5 ZTOT VTR G 92,1,
16 16 2
This completes the proof of (ii). [ |

See Figure 5(a) for a visualization of the subintervals I3, ..., I5 for a = 1 and an example of the
orbit on it.

Lemma 8. Suppose 0 < a <1 and —a < zyg < 2. Then we have
o (i) —a <z <2 for any t, and f, does not have a period-2 point on [—a,2].

o (ii) If zy is chosen from [—a,2] uniformly at random, then limy_,o 2z = 0 almost surely.
Moreover, if 0 < a < 2v/2 — 2, then almost surely |zi1| < |z| for all t. If 2¢/2 —2 < a < 2,
then almost surely {|z|};2, has catpults.

Proof. The boundedness of each iterate (i.e., z; € [—a,2]) can be proved by using simple induction
and Lemma 6, 0 < a < 1, and —a < zp < 2. To prove the rest of (i), by (2.1) we know a period-2
point is a solution of

F&(2) = 2, folz) # 2

which are equivalent to

9a(2)9a(29a(2)) = 1,2 ¢ {~a,0,2}. (A.2)
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Figure 5: From left to right: cubic function fi(z) with different regions diveded by subintervals
and a trajectory of {zi}?zo, cubic function fi2(z) with two period-2 point, cubic function fi¢(2)
with a period-3 point, and cubic function f51(z) with a diverging orbit. We have the cubic curve
and the identical mapping line as the solid curves. We use four colored dashed lines in Figure 5(a)
to represent the boundaries that are orthogonal to the endpoints of Is and I4 defined in Lemma 7
respectively. The triangle markers represent some terms of a certain orbit, in which horizontal and
vertical dotted lines visualize the transitioning trajectory between consecutive terms in an orbit.

Hence it suffices to prove (A.2) do not have a solution. Define

We have

We have

Observe that

24+ a-1)z4+(1—-a)>(1—-a)-

ha(2) = ga(2) —1=(24+a)(z —2) <0, Vz € (—a,2).

9a(2)9a(29a(2)) —

a(z)ha(zga( )) + ha(29a(2))

ha(294(2))) + (2 + a + zha(2))(z — 2 4 zhe(2))
ha(29a(2))) + ha(2) + (2(2 = 2) + 2(2 + a) ) ha(2) + 2215 (2)
204(2)) + 2%ha(2) + 222 + (a — 2)z + 2).
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ha(29a(2)) + 2%ha(2) + 222 + (a — 2)2 4 2

=(294(2) + a)(2ga(2) — 2) + 22 (2 + a)(z — 2) + 2% + (a — 2)z + 2
=224+ (a—2)z2+1-2a)°+ (a—2)2(z* + (a — 2)2 + 1 — 2a) — 2a

+22(z4a)(z—2)+ 22+ (a—2)z+ 2

=25+ (20 — 4)2° + (a* — 8a + 7)2* — (4a® — 12a + 8)2% + (5a® — 10a + 7)2>

—(2a* —6a+4)z +2 — 2a

=4 (a-1z+1-a)2*+ (a—3)22 + (3-3a)2> + (20 — 2)2 + 2).

(a—1)2 _ B3+a)(l—a)
4 4
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The equalities hold if and only if z =0, a = 1. We also have
A4 (a—-3)24(B3-3a)22+ (20 —2)2+2>0, Vz € {0,1,2}
A (a—3)22 4 (3-3a)22 4 (20— 2)z + 2

= >,vz¢ {0,1,2}.

1
—2(z—1)(z — 2 L
2(z—=1)(z )<a+z+z+22_32+2

For different z we can verify the following inequalities via basic algebra or Young’s inequality:

1 1
—1(z—2)<0 B i E 1+2+ = 0 N 1,2).
2(z—1)(2—2) < ,<a+z+z+zz_32+2>< + +2+_0'25< , z € (1,2)
1
—1)(z—2)>0 ot i B 0+14+1+0>0 N4 0,1).
z2(z—=1)(z—2) >0, <a+z+z+z2_gz+2>> +1+1+4+0>0, z€(0,1)
1 1
Z(Z*l)(2*2)<0, <G+Z+z+22_32+2><111+2<0, VZE(*CL,O).
Thus we may conclude that
A (a—3)22 4 (3-3a)2°+ (20 —2)24+2> 0, Vz € (—a,2). (A.6)

By (A.3), (A.4), (A.5), (A.6), we know g4(2)ga(294(2)) —1 # 01if 2z ¢ {—a,0,2}. Hence f, does not
have a period-2 point on [—a, 2].
To prove the first part in (i) (the limit converges to 0 almost surely), we will prove

(1) tlim zt € {—a,0,2}, (2) The set S such that the orbit with zy € S has measure 0. (A.7)
—00
We now consider two cases — a € (0,2v/2 — 2] and a € (2v2 — 2,1].
Case 1: a € (0,2v2 — 2]. Note that we have

9a(20] = 17 + (a = 2)z + 1 = 2a] < max (Iga(=a)l,19a(2)],lga (1= 5) 1) = 1,

2
where the last equality holds since go(—a) = g4(2) = 1 and [go (1 - %) | = ‘3%44“ < 1 for any
a € (0,2v/2 — 2]. Hence, we know
2t1] = |fa(20) = [2t9a(20)| < 2], V2t € [—a,2] (A.8)

Hence limy_, o |2¢| exists.
Jim |z = lim [zg0] = Hm [2]]ga(2)]
Hence, we know
lim |z =0, or lim |z| # 0, lim |gq(2:)| = 1.
t—o0 t—o0 t—o00
If limy o0 |2¢| # 0, then we have two subcases
e Sub-case 1: limy_,o 2; exists. We can verify that
tlgglo ot tlglolo Sani fa(tliglo 2)

and thus lim;_,~ 2 is one of the fixed points of f,(z) € {—a,0,2}.
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e Sub-case 2: limy_, 2; does not exist. Since lim; o |2¢| exists, we know there exists an
infinite subsequence (denoted as A;) of {z}72, with some limit ¢ and the complement of the
sequence, as another infinite subsequence (denoted as Az), has limit —c for some constant
¢ > 0. Hence, we can pick a sequence of the subscripts k1 < ko < ... < k;, < ... such that
Zkys ey Zhy s - Delong to Ay and 2,41, ..., 2k, 41, ... belong to As. Moreover, we have

c=lim 2z, = — lim 25,41 = — lim 2,94(2k;,) = —¢ga(c)
71— 00 1—00 71— 00
This implies that g,(c) = —1, i.e.,
A+ (a—2)c+2—2a=0.

From its discriminant (a —2)% —4(2—2a) = a®>+4a—4 < 0 for a € (0,2v/2— 2] where equality
holds only at 2v/2 — 2, we know @ = 2v/2 — 2 and thus ¢ = 2 — v/2. However, we can apply
the similar trick and pick another sequence k; < ko < ... < ky, < ... such that 2 e B r o
belong to As and By g1 B belong to A;. This implies

—c= lim Zg, = — lim 21 =~ lim zg,90(2x,) = —(—¢)ga(—c)
i—00 i—00 i—00
which gives
& —(a—2)c+2—2a=0.
This contradicts with a = 2v/2 — 2 and ¢ = 2 — v/2. This means case 2 does not exist.

Hence, we know |z is decreasing (not necessarily strictly) and lim; o z; € {—a, 0, 2}.
Case 2: a € (22 — 2,1]. We divide the interval [—a, 2] into the following five parts:

s [ 2—a—+va?+4a [2—a—\/a2+4a 0]
1= |—a, 5 5

7I2:

2 2
I [2—a+\/a2+4a2
, 15 = ’

2 —a+ Va2 +4a
2

I3 =1[0,0.25], I, = [0.25, 5

Recall that by Lemma 7 we have:

folh) =1 Uls, fo(I2) C I3, fo(I3) C 1o, fo(ls) = 11U I, fo(ls) =13 U 14U Is.

We have the following conclusion. Observe that f, is continuous, and

2—a—+va?+4a
2

2—a++Va?+4a )
2 )

21— 2= folzu) —zn=2(a+a) (2 —2) >0, Vz e I} = [—a,

241 — 2t = fa(zt) — 2 = zt(zt + a)(zt — 2) < 0, Vz: € I5 = [

We know if the sequence {z}{2, visits I5, by Lemma 5 we know either lim; ,o, 2; = 2 or there
exists M > 0 such that z; ¢ I5 for any t > M. Then if the sequence visits I; then by Lemma 5
either lims_,o 2; = —a or there exists M > M > 0 such that z¢ € Io U I3 for any t > M, since
fa(l1) € [1UIy and f,(IoUIs) C I;UI3. Hence, the proof is reduced to the case when zy € Iy U I3.
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9—a—/atda
%70_25 .

For the case when zy € I U I3 = The key observation is to show that in this

interval
|2t42| < [2¢]- (A.9)
Recall that by Lemma 7 (ii) we have
fa(I2) C I3, fo(I3) C L. (A.10)

To prove (A.9), we know it holds when z; = 0. When z; # 0, by (A.10) we know féz)(zt) and z
have the same sign provided z; € I, U I3 = [27“77 V2‘12+4“, 0.25] This together with

F&(2) = fa(2)9a(fa(2)) = 29a(2)9a(29a(2))

implies that g4(2)ga(294(2)) > 0 when z € [2*“77 W,O) U (0,0.25]. Thus we know

2t+2| = |2t9a(2t) 9a(2t9a(2t))| = |2¢|9a(2t) ga(2t9a(2t))-

Thus to prove (A.9) it suffices to show g4(2)ga(2g4(2)) — 1 < 0, which is true by combining (A.3),
(A.4), (A.5), and (A.6). This completes the proof of (1) in (A.7). To prove (2) in (A.7), we first
notice that f,(2) — 2z = z(z + a)(z — 2) > 0 for any z € (—a,0), and thus z;41 > 2z for any z
near —a. Hence, lim; .o 2; = —a if and only if there exists ¢ such that z; = —a. This implies that
fét)(zo) = —a for some ¢. Similarly, f,(z) — z < 0 for any z € (0,2), which implies z;y; < 2z for
any z; near 2. Hence, limy_,o, 2 = 2 if and only if zg = 2. Define

S={J I (-a)u{2}
n=0

where fé_n)(—a) denotes the preimage of —a under fé"). Clearly, each preimage is a finite set, and
thus S is countable. Hence, we know as long as zy € [—a, 2]\S, we have lim;_, o, z; = 0. Since S is
a countable set and zy is chosen uniformly at random, we know lim;_,~ z: = 0 almost surely.

For the rest of (ii), we have already proved in (A.8) that {|z:|};2, is decreasing when 0 < a <
2v/2 — 2. To see {|z|}22, has catapults when 21/2 — 2 < a < 1, we consider the following intervals

2 — va?+4a—4
a+ vac+4a ’0‘25}] C I

J]_ = [—CL, 0] = I]_ UIZ, JQ — [O’mln{ 2

where we have a2 + 4a — 4 > 0 for a > 2v/2 — 2 so J, is well-defined. Notice that

2—a++Va2+4a—4
=

0<z<
i 2

ga(z) < —1, 2> 0.
Hence we know for any z; € Jo, we will have

|2e41] = 2t9a(20)| > [24]. (A.11)

On the other hand, notice that 0 is in the orbit if and only if 2y ¢ Sy, where Sy is defined as

So=J £™0)
n=0
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where f,"(z) denotes the set of preimage of z under fén). Note that each preimage is finite and
thus Sy is countable. Hence, we know almost surely the orbit will not contain 0, and recall that
by Lemma (7) (ii) and lim;_,o z; = 0, we know there are infinitely many ¢ such that ¢t € Jy, and
thus (A.11) holds for infinitely many ¢ almost surely. By definition 2, we know {|z;|} has catapults
almost surely. |

The following theorem indicates that, f, is chaotic provided that a > a, where a, € (1,2)
Lemma 9. Suppose 1 < a <2 and —a < zg < 2. Then we have
o (i) —a <z <2 foranyt, and fo(z) has a period-2 point on [0, 1].

o (ii) There exists a. € (1,2) such that for any a € (ax,2), fq is Li-Yorke chaotic, and for any
a € (1,a4), fo is not Li-Yorke chaotic.

o (iii) If there exists an asymptotically stable orbit and zy is chosen from [—a, 2] uniformly at
random, then the orbit of zg is asymptotically periodic almost surely.

Proof. The boundedness of z; is a direct result of Lemma 6 (iii). To prove the rest of (i), we notice
that for a € (1, 2]

9a(0)9a(09a(0)) = (1 = 20)* > 1, ga(1)ga(19a(1)) = —a < ~1.

By continuity of g,(zg4(2)) we know there exists a point zg € (0,1) such that g,(z094(20)) = 1.
This indicates that f®)(z0) = 209a(2094(20)) = 2o but clearly f,(z0) # 20 since (0,1) does not
contain any fixed point of f,.

To prove (ii), notice that

1-2x1 5 1—-2x2
WY 5 o (22),

By continuity of f, (1_2“) (with respect to a) there exists ¢ € (1,2) such that

3
— 4C C — 62 C —
. (1 32 ) e 1)(227+7 9 _ A12)

Moreover we have

1-—-2¢ 1—-2c 1—-2c
cl— = — —_—, c _— :]_ .
fe(=c) c< 3 f( 3 > > 5

Hence by continuity of f.(z), we can pick zg € (—c, 1320) such that f.(zp) = 1320. We have

o<y < ;20 — fu(z0). (A.13)

By (A.12), (A.13), and Lemma 6 (i), we have
1) =12 (F5) = 20 = ~c <0 (A1)
felio) = =55 < 1= £1) = [ (z0). (A.15)
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Combining (A.13), (A.14), (A.15) we can easily verify that

B (20) < 20 < folz0) < 2 (20).

By Theorem B.1 (i.e., Theorem 1 in Li and Yorke (1975)), we know f is Li-Yorke chaotic. Moreover,
for any a € (c, 2], we know

i (1—32a>  (2a—1)(2a®* +Ta—4) _ (2¢—1)(2¢* + 7c — 4) _ <1—32c> _ 1

27 27
which together with f,(0) =0 < 1 implies we can pick yy such that

1—2a

<y0 <0, falyo) =1.

Similarly, we have

1—2a 1—2a
fa(_a):_a< < Yo, fa< 3 >>1>y0
which implies we can pick zg such that
1—2a
—a<xy < 3 fa(z0) = yo.

Now we know

(o) < w0 < falzo) < f1P(20).

By Theorem B.1 (i.e., Theorem 1 in Li and Yorke (1975)), we know f, is Li-Yorke chaotic. Hence,
we know ¢ defined in (A.12) satisfies that for any a € (¢, 2], f, is Li-Yorke chaotic. Hence, we know

a, = inf {a: fp is Li-Yorke chaotic for any b € [a, 2].}
a€(1,2)
where the set is not empty, since we have proven c belongs to the above set. This completes the
proof of (ii).

To prove (iii), we notice that if f,(z) has an asymptotically stable periodic orbit, by Theorem
B.2 (i.e., Theorem 2.7 in Singer (1978)) and the fact that f,(x) has negative Schwarzian derivative
at non-critical points (Lemma 4) and we know there exists a critical point ¢ of f,(z) such that the
orbit of ¢ converges to this asymptotically stable orbit. Notice that by Lemma 6 we know ¢ = 1
or % ¢ = 1 can be excluded since f,(1) = —a, and —a is an unstable period-1 point. Hence,
we know ¢ = % is asymptotically periodic. By Theorems B.3 and B.4 (i.e., Theorem B and
Corollary in Nusse (1987)), we know almost surely zy will not converge to any periodic orbit if z

is chosen from [—a, 2] uniformly at random. This completes the proof.
[

Remarks:

e See Figure 5(b) for a pair of period-2 points when a = 1.2, and Figure 5(c) for a period-3 orbit
when a = 1.6. The triangle markers denote the periodic points.

e By Theorem B.2 (i.e., Theorem 2.7 in Singer (1978)) and the fact that —a is an unstable period-1
point we know f,(z) has at most one asymptotically stable periodic orbit.
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Lemma 10. Suppose a > 2. zy is chosen from [—a,2] uniformly at random. Then lim;_,o |2¢| =
400 almost surely.

Proof. Notice that by Lemma 6 we know

=2, Ya > 2,

; 1—2a\  4a®+12a%> — 15a+ 4 - (4a® 4+ 12a% — 15a + 4)]4=2
“\ 3 B 27 27

where the inequality holds since 4a® 4 12a? — 15a + 4 is increasing on (2, 00). Moreover, we have

fa(z) —z=12z2(z+a)(z—2) >0, Vz € (2,00).

Hence we know for the initialization at the critical point zg = 1732‘1, we have z; > 2, and the whole

sequence is increasing. On the other hand, all fixed points of f,(z) are no greater than 2, we know
z¢ will diverge to +o00. For another critical point zg = 1 we know its orbit converges to the periodic
orbit of zgp = —a, which is an unstable period-1 point. Hence, we know from Theorem B.2 (i.e.,
Theorem 2.7 in Singer (1978)) that there does not exist an asymptotically stable periodic orbit,
otherwise the orbit of one critical point must converge to it. Hence, by Theorems B.3 and B.4 (i.e.,
Theorem B and Corollary in Nusse (1987)) we know lim;_,o |2¢:| = +00 almost surely provided zp
uniformly chosen from (—a,2), i.e., almost all points in [—a, 2] converge to the absorbing boundary
point 4oo. [

A.2 Proofs of results in Section 3

Proof of Theorem 3.1. Define

W = et aXTul?, =yt £ nimm X
To prove (i), we observe that
Vug(w; X) = (¢ +7(X Tw)X
Let weights at time ¢ be w®). Thus, the gradient descent takes the form
wD = w® —p(g(w®; X) — y)(c+ X T X = w® —pe®a® X,
Simple calculation gives

()12
@ _ (@)
e = > B (A.16)

and
oD = (1 =y || X2 e®)a®) = (1 — ke®)al?).
Hence
a&UZ

2y

—

1
(t+1) _ () — = E+1)y2 _ (N2 _ N2
e e o <(a )* — (') > = ((1 ke') 1)

which together with (A.16) implies

k™D = oe® (e® 4 Br) (,ie(t) _ 2) © re®
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By definition of ¢ and z in (3.2) we know a = Bk and z = ke(. We know (i) holds.
To compute the largest eigenvalue of the Hessain matrix (i.e., the sharpness defined in EoS
literature) of the loss in (ii), we notice that the gradient of the loss function takes the form

Vi(w) = (9(w; X) = y) Vuwg(w; X).
Hence
V2(w) = Vug(w; X)Vug(w; X) T + (g(w; X) = y)Vig(w; X) = (® +7¢) XX T,
where we overload the notation and define
a=c+vX w, e=g(w; X)—
The sharpness is given by

3zt + 2a
Amax (V2w ®)) = ()2 +7eD) || X|* = (3ye® + 29y + A) | X > = = no

Proof of Theorem 38.2. The gradient descent takes the form

tH1) _ (¢ K% (¢ RS Y
w )—w()—%gv&(w()) EZ:: (X)X,

Similarly to (A.16), for each error term e (X;) we have

o (X:))2
) = I g, (A7)

and

o (X)) = v X w4+ (X))
=y (XT ®_1 Z “(x )XTX) co(Xi)

—a®W(x;) — I§ e x Do (X)X X;

We overload the notation and set

X = (X1, Xn) | #(X) = (FH(X1), 0, #(X0)) T, Vo € {aP, e a, B}

We can obtain

aD(X) = a®(X) - IxxT (04(0;)()3 —7B8(X) ®a® (X)) : (A.18)



where ® denotes the Hadamard product.
As XXT = diag(||X1]|?, ..., | Xn|*), we can rewrite (A.18) as the following non-interacting
version for each data point:

2
_ n HéXnZH (Oz(t)(Xi)g - QVﬂ(XZ)Oé(t)<XZ)>

12

n

a(X;) = (X;)

This together with (A.17) implies

= 5 (@102~ (@O(x)?)

_ <_2W||Xill2€<t> (1 LI o (X,->)2> (e00x0) + (X))

n n?

e (X;) — e (X))

—rin (X:)e® (X)) </<;n(Xi)e(t) (X;) - 2) (e(t) (X;) + 5()@)

()

By definition of z; 7 and a; we know

2 =200 4 a) (5 - 2) + 27 = fa (o).

7 7
The sharpness is given by

V() = 3 (Vug(w®; X Tug(u®; X0 T + (9w X;) — 3) Vaglw?; X))

=1

-3 ((@®(x:))? + 70 (X)) X, XT
" =1
1 n
= D 3y (X5) + 29y + (X)) X X
=1

Therefore we know

3z£t) + 2a;

V2(w)X; = 1(?rye(t) (X3) + 2vys + (X)) | X3]|> X5 = X;, foralll<i<n.
n

£

. . . . 3 2 (t)
which means we find n eigenvalues and eigenvectors pairs <;al, X 1> s s (%, Xn). Note

that sz(w(t)) is a sum of n rank-1 matrices, and we have found n orthogonal eigenvalues. Hence
3z§t)+2ai
n

we know )\max(vzﬁ(w(t))) = maxj<i<n . This completes the proof. [ |

Proof of Theorem 3.3. Define

2 n
o N Wy xT
Al _\/ﬁdnE e XX .

j=1
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Note that we have

O [ L N T (0y2 2 Tm) 2 Oy Ty
i=1

This implies that the gradient descent update takes the form

t+1) _ yr(t 77n @) pr)y _ 71t 2n - (t) T t t
Ul >_U(>_5ij (U®) = u® - Z X;x] U0 = ([_A())U()_

= \/>dn
Also we have
(t+1) L (T WD) T ()2
€; j ﬁ Z ( X (Xj L ) )
b T () (DN T 0 (N T
=25 <U (UEDT _y®u®) )X

and

n

2 2 "
Ut U T 7 - N o) X, x| uOwo)T [ 1 n Ze(t) x.xT|.
J J<*g
vmdn = J v/mdn — J

Hence we know

(t+1) . (t)
j 3

( XT AOADAMTADX; —2xTAOTOU")T Xj>

\Fd
1 4n ) T T 4n T T
~md (md2n2< DA XU U)X, - e 11 X U0 (U)X

4?1 X0, 4n || X; H o, .
_< md?n? (63) \/>dn (ej +y]>’

where the second equality uses XX T = diag(]|X1]?, ..., | X.||*). By definition of zgt) and a; we
know

t+l) fal( Z(t))

Hence we know the training dynamics of this model can be captured by the cubic map as well. B

B Auxiliary results

Theorem B.1 (Theorem 1 in Li and Yorke (1975)). Let I be a compact interval and let f : I — I
be continuous. Assume there is a point a € I for which the points b = f(a), ¢ = fP(a) and

d = f®(a) satisfy
d<a<b<c(ord>a>b>c).

Then f is Li-Yorke chaotic.
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Theorem B.2 (Theorem 2.7 in Singer (1978)). Let I be a compact interval and let f: 1 — 1 be a
three times continuously differentiable function. If the Schwarzian derivative of f satisfies

" 1" 2
Sf(z) = ff/((;)) - % (J}/((jf))> <0 forallx € I with f'(z) # 0.

Then the stable set of every asymptotically stable orbit of f contains a critical point of f.

Theorem B.3 (Theorem B in Nusse (1987)). Let I be an interval and let f : I — I be a three
times continuously differentiable function having at least one aperiodic point on I and satisfying:

e (i) f has a nonpositive Schwarzian derivative, i.e.,

e 3 ar 2 '

Sf(x) = J}’((x)) —5 <§/((x))> <0 forallx eI with f'(z) # 0.

e (ii) The set of points, whose orbits do not converge to an (or the) absorbing boundary point(s)
of I for f is a nonempty compact set.

e (iii) The orbit of each critical point for f converges to an asymptotically stable periodic orbit of
f or to an (or the) absorbing boundary point(s) of I for f.

e (iv) The fized points of f®) are isolated.

Then we have

e (1) The set of points whose orbits do not converge to an asymptotically stable periodic orbit of f
or to an (or the) absorbing boundary point(s) of I for f has Lebesgue measure 0;

e (2) There exists a positive integer p such that almost every point x in I is asymptotically periodic
with fP)(z) = z, provided that f(I) is bounded.

Theorem B.4 (Corollary in Nusse (1987)). Assume that f : R — R is a polynomial function
having at least one aperiodic point and satisfying the following conditions:

e (i) The orbit of each critical point of f converges to an asymptotically stable periodic orbit of f
or to an (or the) absorbing boundary point(s) for f;
e (ii) Fach critical point of f is real.

Then f satisfies the assumptions (i)-(iv) of Theorem B.3.

C Experimental investigations
Here, we provide additional experimental results.

C.1 Additional experiments for the orthogonal case

For this section, we follow the same experimental setup as described in Section 4.1. Only the
hidden-layer width is changed. Specifically, in Figures 6 and 7 we plot the training loss, sharpness
of training loss and the trajectory-averaging training in various phases.
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Figure 6: Hidden-layer width =5, with orthogonal data points. Rows from top to bottom represent
different levels of noise — mean-zero normal distribution with variance 0,0.25,1. The vertical axes
are in log scale for the training loss curves. The second column is about the sharpness of the
training loss functions.
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C.2 Non-orthogonal data

We next investigate the case when orthogonality condition does not hold. The setup is the same
as described in Section 4.1 except that n = 5000 and each entry of the data matrix X € R™*¢
is now sampled from a standard normal distribution. We also generate 500 data points from the
same distribution for testing. Note that our theory in this work is only applicable for orthogonal
data. hence, for these experiments with non-orthogonal data, we first tune the step-size to be as
large as possible, say Nmax, so that the training does not diverge and then run the experiments for
%nmax with ¢ = 0, ...,4. Hence, the step-sizes for loss and sharpness curves 0, 1,2, 3,4 are chosen
to be 10, 20, 30, 40, 50 for m = 5,10 and 12,24, 36,48, 60 for m = 25.

In Figures 8, 9 and 10 we plot the training loss and the testing loss (with and without ergodic
trajectory averaging) in log scale. Notably different phases (including the periodic and catapult
phases) characterized theoretically for the case of orthogonal data, also appear to be present for
the non-orthogonal case. We also make the following intriguing conclusions:

e As a general trend, training roughly in the catapult phase and predicting without doing the
ergodic trajectory averaging appears to have the best test error performance.

e In some cases (especially the one with high noise variance), when testing after training in the
periodic phase, the test error goes down rapidly in the initial few iterations. Correspondingly,
ergodic trajectory averaging after training in the periodic phase, helps to obtain better test error
decay compared to ergodic trajectory averaging after training in the catapult phase. However, as
mentioned in the previous point, training roughly in the catapult phase and predicting without
doing the ergodic trajectory averaging performs the best.

e Asdiscussed in Lim et al. (2022), in various cases, artificially infusing control chaos help to obtain
better test accuracy. Given our empirical observations and the results in Lim et al. (2022), it is
interesting to design controlled chaos infusion in gradient descent and perform ergodic training
averaging to obtain stable and improved test error performance.

Obtaining theoretical results corroborating the above-mentioned observations is challenging
future work.
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Figure 8: Hidden-layer width=5, with non-orthogonal data points. Rows from top to bottom
represent different levels of noise — mean-zero normal distribution with variance 0,0.25,1. The
vertical axes are in log scale for loss curves.
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Figure 9: Hidden-layer width=10, with non-orthogonal data points. Rows from top to bottom
represent different levels of noise — mean-zero normal distribution with variance 0,0.25,1. The
vertical axes are in log scale for loss curves.
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Figure 10:

Hidden-layer width=25, with non-orthogonal data points. Rows from top to bottom
represent different levels of noise — mean-zero normal distribution with variance 0,0.25,1. The
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vertical axes are in log scale for loss curves.
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C.3 Two-layer Neural Network with ReLU

While our main focus in this work is for quadratic activation functions, it is also instructive to
examine the dynamics with other activation function, in particular the ReLLU activation. Hence,
we follow the experimental setup from Section C.2, except that the activation function is now ReLU
and repeat our experiments. For this case, the step-sizes manually chosen to be 60, 120, 180, 240, 300
for loss/sharpness curves 0, 1,2, 3,4, respectively.
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Figure 11: Hidden-layer width=5 with ReLU activation. Rows from top to bottom represent
different levels of noise — mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes
are in log scale for loss curves. The last column is about the sharpness of the training loss functions.

From Figures 11 and 12, (in particular from the sharpness plots), we observe various non-
monotonic patterns, roughly including periodic and chaotic patterns. Obtaining a precise theo-
retical characterization of the training dynamics for this setting is extremely interesting as future

work.
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Figure 12: Hidden-layer width=10 with ReLU activation. Rows from top to bottom represent
different levels of noise — mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes
are in log scale for loss curves. The last column is about the sharpness of the training loss functions.
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