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ADAPTIVE AND NON-ADAPTIVE MINIMAX RATES FOR WEIGHTED
LAPLACIAN-EIGENMAP BASED NONPARAMETRIC REGRESSION

ZHAOYANG SHI, KRISHNAKUMAR BALASUBRAMANIAN, AND WOLFGANG POLONIK

Abstract. We show both adaptive and non-adaptive minimax rates of convergence for a
family of weighted Laplacian-Eigenmap based nonparametric regression methods, when the
true regression function belongs to a Sobolev space and the sampling density is bounded
from above and below. The adaptation methodology is based on extensions of Lepski’s
method and is over both the smoothness parameter (s ∈ N+) and the norm parameter
(M > 0) determining the constraints on the Sobolev space. Our results extend the non-
adaptive result in [GBT23], established for a specific normalized graph Laplacian, to a wide
class of weighted Laplacian matrices used in practice, including the unnormalized Laplacian
and random walk Laplacian.

1. Introduction

Consider the following regression model,

Yi = f(Xi) + εi, i = 1, . . . , n, (1.1)

where f : X → R is the true regression function, Xi
i.i.d.∼ g, where g is a density on X ⊂ Rd,

and εi
i.i.d.∼ N(0, 1) is the noise (independent of the Xi’s). The goal is to estimate the regres-

sion function f given pairs of observations (X1, Y1), . . . , (Xn, Yn). Our main contribution in
this work is to develop non-adaptive and adaptive estimators that achieve minimax optimal
estimation rates, when f lies in Sobolev spaces.

The estimators we study are based on performing principal components regression us-
ing the estimated eigenfunctions of a family of weighted Graph Laplacian operators. To
this end, various versions of Graph Laplacian matrices have been considered in the litera-
ture. Recently, [HHOS22] proposed a unifying framework by describing a family of Graph
Laplacian matrices, parametrized by w ∈ R3; see (2.1) and (2.2) for details. This captures
Laplacian matrices used widely in practice, including the normalized, unnormalized and the
random walk Laplacian.

[GBT23] analyzed principal components regression specifically using unnormalized graph
Laplacian matrices constructed over ϵ-graphs, and established non-adaptive minimax rates
when f lies in Sobolev spaces. In this paper, we first extend this result to the entire family of
weighted Laplacian matrices from (2.1) and (2.2); Theorem 3.1. These results are established
by assuming a sampling density bounded from above and below and a true regression function
belonging to a Sobolev space.

Note that technically, the weighted Laplacian matrices correspond to a family of weighted
Sobolev spaces which all become equivalent under the above-mentioned boundedness as-
sumption on the sampling density. However, the parameters of the corresponding Sobolev
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spaces, in particular the smoothness parameter (s ∈ N+) and the norm parameter (M > 0)
determining the constraints on the Sobolev space, both change on w.

While the minimax rate optimal non-adaptive estimator depends on the knowledge of the
smoothness and norm parameters of the true regression function, these parameters are un-
known in practice. Tuning parameters, such as ϵ, the graph radius (or the bandwidth for the
kernel) and K, the number of eigenvectors considered, require knowledge of the smoothness
and the norm parameters. Hence, in order to apply the Laplacian-based regression method-
ology in practice, we develop an adaptive estimator, based on Lepski’s method, and show in
Theorem 3.2 that the developed estimator achieves minimax rates (up to log factors) without
requiring the knowledge of either the smoothness or the norm parameters.

The main technical contributions we make in this work towards establishing the aforemen-
tioned both adaptive and non-adaptive results include the following:

• As a part of the proofs of our main results in Theorem 3.1, we rigorously prove
the idea roughly outlined by [HHOS22] on showing the convergence of the discrete
weighted graph Laplacian matrices to their continuum counterparts (in appropriately
well-defined sense) by leveraging the concentration result established by [GG02] for
kernel density estimators.

• We generalize the convergence property of the eigenvalues of the Laplacian matrices
in [CT22] to the weighted Laplacian matrices by providing an analogous bound for
the eigenvalues combined with Weyl’s law.

• We formulate a simultaneous two-parameter Lepski’s procedure and obtain the adap-
tive minimax rate (see Theorem 3.2) through deriving a high-order-moment-based
concentration inequality of the weighted Sobolev semi-norm.

Our contributions not only highlight the significance of utilizing the weighted graph Lapla-
cians for nonparametric regression but also establish a solid statistical foundation for this
method, offering a robust framework that underpins the reliability and effectiveness of this
approach.

1.1. Related works. Graph Laplacians are widely used in many data science problems for
feature learning and spectral clustering [Wei99, SM00, NJW01, VL07], extracting heat kernel
signatures for shape analysis [SOG09, ARAC15, DWW21], reinforcement learning [MM07,
WTN19] and dimensionality reduction [BN03, CL06], among other applications. There is
an ever-growing literature on further applications of graph Laplacian in data science topic,
and we also refer to [BNS06, WSST15, CGLS16] for more discussions.

As mentioned above, we consider the application of the weighted graph Laplacian for
achieving minimax optimal rates in nonparametric regression. Other works focusing on this
problem (including the semi-supervised setting) include [GBT21] and [GBT23] using un-
normalized Laplacian based on the Laplacian eigenmaps [BN03], [BCH03] with Laplacian
smoothing, [Ric84] adopting spectral series regression on the Sobolev spaces, [TMT22] ap-
plying the graph Poly-Laplacians (see Remark 3.4 for specific comparison to this method)
and [HBB+22] using topological data analysis. We also refer to [ZGL03], [ZS11], [LI16],
[DFH17] and [GTM20] for related analysis in the context of regression problems.

In recent years, there has been a great deal of progress on obtaining theoretical rates of
convergence in the context of Laplacian operator estimation and related eigenvalue and/or
eigenfunction estimation. Early work on consistency of graph Laplacians focused on point-
wise consistency results for ϵ-graphs, see [BN05, HAVL05, GK06, HAL07] and references



WEIGHTED LAPLACIAN-EIGENMAP BASED NONPARAMETRIC REGRESSION 3

therein for more details. For fixed neighborhood size ϵ, [vLBB08] and [RBDV10] considered
spectral convergence of graph Laplacians. Furthermore, [TS18] established conditions on
connectivity for the above spectral convergence with no specific error estimates. Later on,
the convergence of Laplacian matrices to Laplacian operators has been considered where,
for instance, unnormalized, random walk Laplacians and k-NN graph based Laplacians are
considered; e.g. see [Shi15, TGHS20, CT22]. There, rates of convergences of Laplacian eigen-
values and eigenvectors to population counterparts with explicit error estimates are derived.
Following the above literature, [HHOS22] developed a framework for extending the above
convergence results to a general Laplacian family, the weighted Laplacians (see below), and
presented some heuristic asymptotic analysis.

To the best of our knowledge, the only work that considers adaptivity in the context of
Laplacian estimation is [CGM16]. They use Lepski’s method for adaptive estimation of the
unnormalized Laplace-Beltrami operators, focusing on bandwidth parameters. Also, they
adopt a more flexible version of Lepski’s method introduced in [LM16] that involves certain
multiplicative coefficients introduced in the variance and bias terms to develop the method.
Therefore, their proof technique is to consider the trade-off between the bounds on the
approximation error and the variance of Laplacian estimators. However, in this paper, we
apply Lepski’s method in the context of regression problem by using weighted Laplacians
instead of just the unnormalized Laplacians (as in [CGM16]). Additionally, besides the
bandwidth parameter, our method is also adaptive to the smoothness parameter and the
norm parameter of the Sobolev space under consideration, i.e., in our work, we use Lepski’s
method for simultaneous adaptation to the unknown parameters of the function class under
consideration.

2. Preliminaries

In this section, we first describe the data-based weighted graph Laplacian matrices, and
the corresponding nonparametric regression estimator. We then introduce the associated
limiting operators and the weighted Sobolev spaces.

2.1. Weighted graph Laplacian matrices. Given i.i.d data X1, . . . , Xn from a distribu-
tion G on X ⊆ Rd with the density g, consider a graph G with vertex set {X1, . . . , Xn} and
adjacency matrix W̃ given by

w̃ϵ
i,j :=

1

nϵd
η

(

∥Xi −Xj∥
ϵ

)

, i, j = 1, . . . , n, (2.1)

where ∥·∥ denotes the standard Euclidean norm. Here η ≥ 0 is a kernel function with support
[0, 1], and ε is the bandwidth parameter. In other words, G is constructed by placing an
edge Xi ∼ Xj, when ∥Xi−Xj∥ ≤ ϵ, and this edge is given the weight w̃ϵ

i,j. The term (nϵd)−1

is a convenient normalization factor. The degree matrix is then given by a diagonal matrix
D̃ with the i-th diagonal element as

d̃i :=
n
∑

j=1

w̃ϵ
i,j, i = 1, . . . , n,

which can also be thought of as the kernel density estimator (KDE) of the density g at Xi.
The weighted graph Laplacian matrices are a family of graph Laplacians consisting of

various types of normalizations characterized by a parameter w = (p, q, r) ∈ R3 constructed
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as follows. First define a re-weighted adjacency matrix W with (i, j)-th element as

wϵ
i,j :=

w̃ϵ
i,j

d̃
1− q

2
i d̃

1− q
2

j

, i, j = 1, . . . , n,

so that the corresponding diagonal degree matrix D as entries

di :=
n
∑

j=1

wϵ
i,j, i = 1, . . . , n.

Then, the weighted graph Laplacian after re-weighting is defined in [HHOS22] as follows: for
a tuple w = (p, q, r) ∈ R3,

Lw,n,ϵ :=

⎧

⎪

⎨

⎪

⎩

1

ϵ2
D

1−p
q−1 (D −W )D− r

q−1 , if q ̸= 1,

1

ϵ2
(D −W ), if q = 1,

(2.2)

where 1/ϵ2 is also a normalization factor. For u ∈ Rn, the i-th coordinate of the vector
Lw,n,ϵu is given by

(Lw,n,ϵu)i =
1

ϵ2

n
∑

j=1

d
1−p
q−1

i wϵ
i,j

(

d
− r

q−1

i ui − d
− r

q−1

j uj

)

. (2.3)

The above weighted graph Laplacian (2.2) generalizes many commonly used graph Lapla-
cian. For (p, q, r) = (1, 2, 0), it recovers the unnormalized graph Laplacian Lu; if (p, q, r) =
(3/2, 2, 1/2), it gives the normalized graph Laplacian Ln; if (p, q, r) = (2, 2, 0), it corresponds
to a non-symmetric matrix but can be interpreted as a transition probability of a random
walk on a graph denoted by Lr:

Lu := D −W,

Ln := D−1/2(D −W )D1/2,

Lr := D−1(D −W ),

While the main focus on ϵ-graphs, we highlight that the above formulation also capu-
tures the limits of graph constructed based on the k-nearest neighbor graphs. In particular,
when (p, q, r) = (1, 1 − 2/d, 0), one can call the related normalization as the near k-NN
normalization; see [CT22] and [HHOS22] for details.

Note that the weighted Laplacian matrix Lw,n,ϵ is actually not self-adjoint with respect
to the Euclidean inner product ⟨·, ·⟩ since it is in general not symmetric. However, it is
self-adjoint with respect to the following weighted inner product ⟨·, ·⟩gp−r :

⟨·, ·⟩gp−r :=

{

⟨·, ·⟩
D

p−1−r
q−1

if q ̸= 1,

⟨·, ·⟩ if q = 1,

where for a given a symmetric matrix A ∈ Rn×n and vectors u, v ∈ Rn, define

⟨u, v⟩A := uTAv.

We also define the normalized weighted inner product: ⟨·, ·⟩w,n := n−1⟨·, ·⟩gp−r and the
normalized Euclidean inner product: ⟨·, ·⟩n := n−1⟨·, ·⟩ and denote by ∥ · ∥w,n and ∥ · ∥n their
respective corresponding norms. Here, our estimation results are measure in ∥ · ∥w,n and
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under our assumptions in Section 3.1, it can be shown to be equivalent to the classic norm
∥ · ∥n.

2.2. Weighted Laplacian-Eigenmap based nonparametric regression. Following the
ideas in [BN03] and [GBT23], we propose the following principal components regression with
the weighted Laplacian eigenmaps (PCR-WLE) algorithm:

(1) For a given parameter ϵ > 0 and a kernel function η, construct the ϵ-graph according
to Section 2.1.

(2) Construct the weighted Laplacian matrix given by (2.2) and take its eigendecompo-
sition Lw,n,ϵ =

∑n
i=1 λiviv

T
i with respect to ⟨·, ·⟩w,n, where (λi, vi) are the eigenpairs

with eigenvalues 0 = λ1 ≤ . . . ≤ λn in an ascending order and eigenvectors normalized
to satisfy ∥vi∥w,n = 1.

(3) Project the response vector Y = (Y1, . . . , Yn)T onto the space spanned by the first K
eigenvectors, i.e., denote by VK ∈ Rn×K the matrix with j-th column as VK,j = vj
for j = 1, . . . , K and define

f̂ := VKV
T
KY,

as the estimator.

The entries of the vector f̂ are the in-sample values of the estimator of the regression
function f . [GBT23] considered the special case of the above approach for the case when
(p, q, r) = (1, 2, 0) corresponding to the unnormalized graph Laplacian. Here, we consider
the entire family of graph Laplaicans for various choices of the parameters (p, q, r), the
generalization from [HHOS22].

2.3. Weighted Laplacians and weighted Sobolev spaces. [HHOS22] presented a heuris-
tic framework for the convergence of the weighted graph Laplacian Lw,n,ϵ defined in (2.2) to
the following weighted Laplace-Beltrami operators, in the large sample limit, in terms of the
eigenvalues and eigenvectors/eigenfunctions:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Lwu := −
1

2gp
div

(

gq∇
(

u

gr

))

, in X ,

gq
∂

∂n

(

u

gr

)

= 0, on ∂X .

(2.4)

Special cases of this convergence, including convergences of Lu, Ln, have been studied in
[Shi15, TGHS20, CT22] as mentioned before in Section 1.1. Although our focus is not directly
on the convergence of the weighted Laplacians but on regression problems, we digress slightly
to make the following remark. The proof arguments developed in our paper, in the context of
regression rates, can be applied to show the convergence of the weighted Laplacians, thereby
rigorously proving the heuristic idea in [HHOS22]. This could be accomplished by using
the concentration properties of kernel density estimators from [GG02] when the domain is
has no boundary, like we do in the context of regression rates. For domains with boundary
is well-known that the convergence of the Laplacian matrices to the Laplacian operators is
problematic at the boundary [BQWZ12].

The weighted Laplacian operators are a generalization of the classical Laplacian operator
with different values of w = (p, q, r). Similar to the fact that the Laplacian operator is linked
with the Sobolev space, the weighted Laplacian operators in (2.4) share a close connection
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with the following so-called weighted Sobolev spaces; see [Tri83] for a general introduction.
Define the weighted L2 space for ℓ > 0 on X with a density g as

L2(X , gℓ) :=

{

u :

∫

X
|u(x)|2g(x)ℓdx < ∞

}

,

with inner product

⟨u, v⟩gℓ :=
∫

X
u(x)v(x)g(x)ℓdx.

Then, for w := (p, q, r) ∈ R3 and s ∈ N+, we define the weighted Sobolev space as:

Hs(X , g) :=

{

u

gr
∈ L2(X , gp+r) : ∥u∥Hs(X ,g) < ∞

}

,

where the weighted Sobolev norm ∥u∥Hs(X ,g) is

∥u∥2Hs(X ,g) :=
s
∑

j=1

|u|2Hj(X ,g) +

∥

∥

∥

∥

u

gr

∥

∥

∥

∥

2

L2(X ,gp+r)

,

with the j-th order semi-norm | · |Hj(X ,g) defined as

|u|Hj(X ,g) :=
∑

|α|=j

∥

∥Dα
(

ug−r
)∥

∥

L2(X ,gp)

and using multi-index notation with x = (x(1), . . . , x(d)) ∈ Rd, we have that Dαf(x) :=
∂|α|f/∂(x(1))α1 . . . ∂(x(d))αd and |α| = α1 + . . . + αd. When g is uniform or r = 0 and
g is bounded from above and below, the weighted Sobolev space Hs(X , g) becomes (or is
equivalent to) the classic Sobolev space Hs(X ). However, when f/gr is s-times differentiable
but f is not, the weighted Sobolev space differs from the classic Sobolev space. See [Eva22]
for more details regarding Sobolev spaces. For M > 0, the class of all functions u such that
∥u∥Hs(X ,g) ≤ M is a weighted Sobolev ball Hs(X , g;M) of radius M.

Furthermore, we say a function u ∈ Hs(X , g) belongs to the zero-trace weighted Sobolev
space Hs

0(X , g) if there exists a sequence u1g−r, . . . , umg−r of C∞
c (X ) functions such that

lim
m→∞

∥um − u∥Hs(X ,g) = 0,

where C∞
c (X ) stands for the C∞ functions with compact support contained in X .

Similar to the weighted Laplacian matrix Lw,n,ϵ, the weighted Laplacian operators (2.4)
are self-adjoint with respect to the following weighted inner product ([HHOS22]):

⟨u, v⟩gp−r :=

∫

X
u(x)v(x)gp−r(x)dx.

Note the following connection between the weighted norms and inner products:
∥

∥

∥

∥

u

gr

∥

∥

∥

∥

2

L2(X ,gp+r)

= ∥u∥2L2(X ,gp−r) = ⟨u, u⟩gp−r .

A simple example showing the dependency of the choice M on p, q, r is as follows. Suppose
that u/gr is the constant function equal to 1, say, and take s = 1. Then, we have

∥u∥2H1(X ,g) =

∫

X
g(x)p+rdx.
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Clearly, the power p+r of the density function g determines the size of the weighted Sobolev
ball, and thus M . In other words, say for example, assuming g ≥ 1 for simplicity, larger
configurations of p + r will result in large weighted Sobolev norm, thus requiring a large
norm parameter M . For generic u/gr, the situation is more intricate and depends on the
geomtry of u and g and choices of p+ r.

3. Main results

We now present our main results on adaptive and non-adaptive rates for estimating the
regression function f as in (1.1) under some smoothness assumptions. Before that, we recall
that the minimax estimation error over Hs(X ;M), a standard Sobolev ball of radius M , is
given by

inf
f̂

sup
f∈Hs(X ;M)

∥f̂ − f∥2n ≍ M2(M2n)−
2s

2s+d ,

with high probability [GKKW02, Was06, Tsy08]. Moreover, there are other methods that
can achieve the above minimax rate such as kernel smoothing, local polynomial regression,
thin-plate splines, etc. In this context, [GBT23] showed that PCR-WLE method with the
unnormalized Laplacian1 Lu achieves the minimax rate, provided that n−1/2 ! M ! ns/d

under appropriate assumptions, where for two real-valued quantities, A,B, the notation
A ! B means that there exists a constant C > 0 not depending on f , M or n such that
A ≤ CB and A ≍ B stands for A ! B and B ! A.

3.1. Assumptions. We now list the major assumptions that are needed for our theoretical
results.

(A1) The distribution G is supported on X , which is an open, connected, and bounded
subset of Rd with Lipschitz boundary.

(A2) The distribution G has a density g on X such that

0 < gmin ≤ g(x) ≤ gmax < ∞, for all x ∈ X ,

for some gmin, gmax > 0. Additionally, g is Lipschitz on X with Lipschitz constant
Lg > 0.

(A3) The kernel η is a non-negative, monotonically non-decreasing function supported on
the interval [0, 1] and its restriction on [0, 1] is Lipschitz and for convenience, we
assume η(1/2) > 0 and define

σ0 :=

∫

Rm

η(∥x∥)dx, σ1 :=
1

d

∫

Rm

∥y∥2η(∥y∥)dy.

Without loss of generality, we will assume σ0 = 1 from now on.
(A4) The kernel η satisfies a kernel VC-type condition as follows. Let

K :=

{

y → η

(

x− y

ϵ

)

: ϵ > 0, x ∈ R

}

be the collection of kernel functions indexed by x and ϵ. For a density ρ, let the
L2(X , ρ)-covering number N(ϵ,K , ∥ · ∥L2(X ,ρ)) of K be the smallest number of

1This procedure is refered to as PCR-LE in [GBT23].
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L2(X , ρ)-balls of radius ϵ needed to cover K . With that we say that η satisfies
the kernel VC-type condition if there exist constants A, ν > 0 such that

sup
ρ

N(ζ ,K , ∥ · ∥L2(X ,ρ)) ≤
(

A

ζ

)ν

, (3.1)

See Remark 3.2 for some examples.

Assumptions 3.1 and 3.1 are mild assumption on the density function, which are also made
in [GBT23]. In particular 3.1 is important for us, as it gives us the norm equivalence between
the various families of weighted Sobolev spaces. Assumption 3.1 is a standard normalization
condition made on the smoothing kernel, also made in [GBT23]. Assumption 3.1 is not used
in [GBT23]. It is used here because the general family of weighted Laplacian matrices that
we work with involve kernel density estimation normalization, with which the normalization
in (2.2) will not tend to either infinity or zero. Also note that in general condition (3.1)
involves the L2(X , ρ)-norm of an envelope function η0 for K , i.e. of a function η0 ≤ h for
all h ∈ K . Since, by our assumptions, η is bounded, we can use the maximum of η as
an envelope, for which the L2(X , ρ)-norm obviously does not depend on ρ and can thus be
absorbed by the constant A.

3.2. Non-adaptive rates. In the following, we present the non-adaptive minimax optimal
rate of convergence of the PCR-WLE estimator in Section 2.2 for s = 1 and s > 1 sepa-
rately. These rates are non-adaptive as the choice of K and ϵ depends on unknown problem
parameters, the smoothness parameter s and the norm parameter M .

Theorem 3.1 (Non-adaptive minimax rate of PCR-WLE algorithm). Assume 3.1-3.1.

(a) For s ∈ N+\{1}, assume f ∈ Hs
0(X , g;M), f ∈ H1(X , g;M) and g ∈ Cs−1(X ).

Suppose there exist constants c0, C0 > 0 such that

c0

(

(

logn

n

) 1
d

∨ (M2n)−
1

2(s−1)+d

)

≤ ϵ ≤ C0K
− 1

d ,

and √

| log ϵ|
nϵd

→ 0, (3.2)

where

K = min
{

⌊(M2n)
d

2s+d ⌋ ∨ 1, n
}

. (3.3)

Then, there exist constants c, C > 0 not depending on f,M or n such that for n large
enough and any 0 < δ < 1, we have:

∥f̂ − f∥2w,n ≤ C
{(

δ−1M2(M2n)−
2s

2s+d ∧ 1
)

∨ n−1
}

,

with probability at least 1− δ − Cne−cnϵd − e−K.
(b) For s = 1, assume f ∈ H1(X , g;M). Suppose there exist constants c0, C0 > 0 such

that

c0

(

log n

n

)
1
d

≤ ϵ ≤ C0K
− 1

d ,

and (3.2), where K is given in (3.3) for s = 1. Then, the assertion in part (a) also
holds for s = 1.
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Remark 3.1. Notably, the above theorems do not require the assumption that s > d/2. As
we mentioned before in Section 2.2, this condition is commonly appeared in the literature as
in the sub-critical regime, i.e., s ≤ d/2, the (weighted) Sobolev space Hs is not a Reproducing
Kernel Hilbert Space (RKHS) and cannot be continuously embedded into the space of contin-
uous functions C0(X ). Theorem 3.1 highlights the point that PCR-WLE algorithm obtains
the minimax optimal rate when n−1/2 ! M ! ns/d and the error is measured by the weighted
empirical norm ∥ · ∥w,n.

Remark 3.2. The kernel VC-type condition was first proposed in [GG02]. A simple sufficient
condition for this condition to hold is that η is of bounded variation; see [NP87] or [GN21].
Clearly, many common kernels are of this type, including Gaussian, Epanechnikov and cosine
kernels.

Remark 3.3. For practical consideration, there are two tuning parameters: the graph radius
(the bandwidth for the kernel η) ϵ and the number of eigenvalues K. The lower bound for ϵ
makes sure that with this smallest radius, the resulting weighted graph will still be connected
with high probability and the upper bound for ϵ ensures the eigenvalue of the weighted graph
Laplacian (2.2) to be of the same order as its continuum version, the eigenvalue of the
weighted Laplacian operator (2.4) (Weyl’s law). The asymptotic assumption on ϵ is from the
concentration of the KDE. The condition on K is set to trade-off bias and variance. Both ϵ
and K depend on the true smoothness parameter s ∈ N+.

3.3. Adaptive rates via Lepski’s method. Despite the minimax optimality of the PCR-
WLE algorithm shown in Section 3.2, the main practical difficulties are the choice of several
tuning parameters including the bandwidth parameter (or the graph radius) ϵ and the num-
ber of eigenvalues K, because optimal choices depend on the unknown true smoothness
parameter s of the regression function f in the model 1.1. Moreover, K also relies on the
bound of the weighted Sobolev norm M . This naturally brings about the issue of adaptation,
which we address using Lepski’s method. Note that, as we are concerned with in-sample
estimation error, other techniques like cross-validation are not directly applicable to set the
tuning parameters.

Since its introduction in [Lep91], Lepski’s method has been widely used for adaptive
estimation and testing in various statistical contexts; e.g. see [Bir01, CLW16, BLT18, BLY21,
LM16]. In the following, we consider Lepski’s method on the product space of the smoothness
parameter s ∈ N+ and the constraint on the weighted Sobolev norm M ∈ R+.

Recall that s and M denote the true smoothness parameter and the norm parameter,
respectively for the weighted Sobolev norm of f . Here, we actually take M as the minimum
over all bounds of the weighted Sobolev norm. We start by picking smin, smax ∈ N+; here
we can set smin = 1 under no availability of further information2 regarding the knowledge
of s. The goal is that smax is large enough that s ∈ N+ satisfies s ∈ [smin, smax]. Similarly,
we pick Mmin,Mmax satisfying 0 < Mmin < Mmax < ∞, where Mmin and Mmax are small
and large enough respectively such that M ∈ [Mmin,Mmax]. Next, define the grid B ×D :=
{(sj,Mj)}Nl

j=1 given by:

B := [smin, smax] ∩ N+ = {smin =: s1 < s2 < . . . < sNl
:= smax}, (3.4)

2If there is additional information, like s > 10, one can pick smin = 10. Hence, we present out result with
a generic smin.
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and

D := [Mmin,Mmax] = {Mmin =: M1 < M2 < . . . < MNl
:= Mmax},

where Nl ≍ logn.
For any pair (s̃, M̃) in the above grid, let f̂s̃,M̃ be the PCR-WLE estimator in Section 2.2

corresponding to the parameters s̃ and M̃ . We define the Lepski’s estimator as

f̂adapt := f̂ŝ,M̂ ,

where ŝ is given by

ŝ := max{s̃ ∈ B : ∥f̂s̃,M̃ − f̂s̃′,M̃ ′∥w,n ≤ c0M̃
′((M̃ ′2n/ logn)−

s̃′

2s̃′+d , ∀s̃′ ≤ s̃, s̃′ ∈ B},

and M̂ is the corresponding couple of ŝ in the grid, where c0 > 0 is some finite constant.
Here, we formulate the above simultaneous Lepski’s method by coupling the smoothness
parameter and the norm parameter and only maximize through the smoothness parameter
instead of dealing with a joint maximization, which is not needed for our purpose of showing
the adaptive minimax rate in the following result as our focus is its convergence rate in n.

The following result presents a near minimax optimal rate of convergence of the Lepski’s
estimator f̂adapt up to a logarithmic factor in n.

Theorem 3.2. Assume 3.1-3.1 and g ∈ Cs−1(X ). Also, assume f ∈ H1(X , g;M) ∩
Hs

0(X , g;M) and fg := f/gr is M-Lipschitz, i.e., ∥fg(x) − fg(x′)∥ ≤ M∥x − x′∥ for any
x, x′ ∈ X . Furthermore, assume that (for large enough n) we have s ∈ [smin, smax] and
M ∈ [Mmin,Mmax]. Then, under the minimax optimal setting in Theorem 3.1 for M , i.e.,
n−1/2 ! M ! ns/d, the estimator f̂adapt satisfies: For n large enough and any δ ∈ (0, 1), there
exists some constant C > 0 such that

∥f̂adapt − f∥2w,n ≤ Cδ−1M2(M2n/ logn)−
2s

2s+d ,

with probability at least

1− δ log−
2s

(2s+d) n− Cne−Cnϵd log2 n− 16Cc−4
0 n−1 log

2− 2smin
(2smin+d) n− e−⌊M2

minn⌋
d

(2s+d)
log2 n.

Remark 3.4. [TMT22] proposed a graph poly-Laplacian regularization approach, where in-
teger powers of the Laplacian matrices are used as regularization in a least-squares context.
They showed that the proposed method achieves rate of convergence of order n−s/(d+4s). While
the rate is not optimal, in comparison to the [GBT23] their estimator does not require the
knowledge of the norm parameter M to achieve the derived rate (although they require the
knowledge of s). In comparison to both the above works, our result in Theorem 3.2 achieves
the optimal rate, up to log factors, without requiring the knowledge of either s or M .

Remark 3.5. As a part of our proof, a better concentration inequality for the non-adaptive
PCR-WLE estimator f̂ is required compared to Theorem 3.1, for which the assumption that
fg is Lipschitz is required. As also discussed in [GBT23, see below Theorem 1], it remains
open whether a weaker assumption or even the weighted Sobolev condition ∥∇fg∥L2 < ∞
alone might be sufficient establish the required concentration result for developing adaptive
procedures.
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4. PROOF

4.1. Proof of Theorem 3.1. In this section, we will prove both Theorem 3.1 for s = 1 and
s > 1 together. We first present and prove some auxiliary lemmas. We will denote by Bx(r)
a closed Euclidean ball with midpoint x and radius r ≥ 0.

Define the weighted Sobolev seminorm ⟨Lw,ϵf, f⟩gp−r given by the following non-local op-
erator:

Lw,ϵf(x) :=
1

ϵd+2

∫

X
g(x)1−p η

(∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
(g(x)−rf(x)− g(z)−rf(z))g(z)dz,

where according to (2.3), Lw,ϵ can be viewed as a population counterpart of the discrete
graph weighted Laplacian Lw,n,ϵ. As in [GBT23], we also call it a ‘non-local’ version. Note
that the above non-local weighted Sobolev seminorm and non-local operator generalize the
definitions in [GBT23] as the latter belong to a special case when (p, q, r) = (1, 2, 0). The
following Lemmas 4.1-4.6 therefore extend their counterparts in [GBT23] to the weighted
Laplacians and the weighted Sobolev seminorm. Note that in our proofs, we also highlight
and fix several important typos and errors that appeared in [GBT23]. Despite the errors,
the final results in [GBT23] remain true.

Lemma 4.1. For f ∈ H1(X , g;M), we have

⟨Lw,ϵf, f⟩gp−r ! M2.

Proof of Lemma 4.1. Following the idea of [GBT21, Proof of Lemma 1], take Ω as an arbi-
trary bounded open set such that Bx(c0) ⊆ Ω for all x ∈ X for some c0 > 0 and we can
assume that f ∈ H1(Ω, g) and ∥f∥H1(Ω,g) ! ∥f∥H1(X ,g) without loss of generality due to the
existence of an extension operator E : H1(X , g) → H1(Ω, g) such that Ef satisfies these
properties, see Theorem 1 in Chapter 5.4 in [Eva22]. Also, since C∞(Ω) is dense in H1(Ω, g)
and the integral in Lemma 4.1 is continuous in H1(Ω, g), we can assume fg := f/gr ∈ C∞(Ω)
so that

fg(x
′)− fg(x) =

∫ 1

0

∇fg(x+ t(x′ − x))T (x′ − x)dt.

Then, we have by symmetry in the first step:

2⟨Lw,ϵf, f⟩gp−r

=
1

ϵd+2

∫

X

∫

X

η
(

∥x−y∥
ϵ

)

g(x)1−q/2g(y)1−q/2

∣

∣

∣

∣

f(x)

g(x)r
−

f(y)

g(y)r

∣

∣

∣

∣

2

g(x)g(y)dxdy

=
1

ϵd+2

∫

X

∫

X

η
(

∥x−y∥
ϵ

)

g(x)1−q/2g(y)1−q/2

(
∫ 1

0

∇fg(y + t(x− y))T (x− y)dt

)2

g(x)g(y)dxdy

≤
1

ϵd+2

∫

X

∫

X

∫ 1

0

η
(

∥x−y∥
ϵ

)

g(x)1−q/2g(y)1−q/2

(

∇fg(y + t(x− y))T (x− y)
)2

g(x)g(y)dtdxdy

≤
∫

X

∫

B0(1)

∫ 1

0

(

∇fg(y + ϵtz)T z
)2 η(∥z∥)

g(y + ϵz)1−q/2g(y)1−q/2
g(y + ϵz)g(y)dtdzdy,

with (x− y)/ϵ = z
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!

∫

X

∫

B0(1)

∫ 1

0

(

∇fg(y + ϵtz)T z
)2
η(∥z∥)g(y + ϵtz)qdtdzdy

≤
∫

Ω

∫

B0(1)

∫ 1

0

(

∇fg(ỹ)
T z
)2
η(∥z∥)g(ỹ)qdtdzdỹ, ỹ = y + ϵtz ∈ Ω. (4.1)

Since we have
(

∇fg(ỹ)T z
)2

=
(

∑d
i=1(∇fg(ỹ))(i)z(i)

)2

and η(∥z∥) is invariant with respect to

the rotation, it yields that
∫

B0(1)

(

∇fg(ỹ)
T z
)2
η(∥z∥)dz =

d
∑

i,j=1

(∇fg(ỹ))
(i)(∇fg(ỹ))

(j)

∫

B0(1)

z(i)z(j)η(∥z∥)dz

=
d
∑

i=1

(

(∇fg(ỹ))
(i)
)2
∫

B0(1)

(

z(i)
)2
η(∥z∥)dz

= σ1

∥

∥

∥

∥

∇
(

f(ỹ)

g(ỹ)r

)∥

∥

∥

∥

2

. (4.2)

Plugging (4.2) in (4.1), we conclude

2⟨Lw,ϵf, f⟩gp−r ! σ1M
2.

This finishes the proof. "

Note that the proof of Lemma 4.1 also utilized the heuristic arguments given in [HHOS22]
while we provide a rigorous proof here.

Lemma 4.2. Suppose fg ∈ L2(U , gp+r;M) for a Borel set U ⊆ X . Then, there exists a
constant C which does not depend on f or M such that

∥Lw,ϵf∥L2(U ,gp+r) ≤
C

ϵ2
∥fg∥L2(U ,gp+r).

Proof. By Cauchy-Schwarz inequality, we have

|Lw,ϵf(x)|2 =
1

ϵ2(d+2)

⎛

⎝

∫

U
g(x)1−p

η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
(g(x)−rf(x)− g(z)−rf(z))g(z)dz

⎞

⎠

2

!
1

ϵ2(d+2)
g(x)2(1−p)

∫

U

η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
(fg(x)− fg(z))

2dz ·
∫

X

η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
dz

!
2σ0
ϵ4+d

g(x)2(q−p)

∫

U
η

(

∥x− z∥
ϵ

)

(|fg(x)|2 + |fg(z)|2)dz.

Then, we have

∥Lw,ϵf∥2L2(U ,gp+r) =

∫

U
gp−r(x)|Lw,ϵf(x)|2dx

!
2

ϵ4+d

∫

U

∫

U
g(x)2(q−p)+p−r(x)η

(

∥x− z∥
ϵ

)

(|fg(x)|2 + |fg(z)|2)dzdx

!
2

ϵ4+d

∫

U

∫

U
η

(

∥x− z∥
ϵ

)

(|fg(x)|2 + |fg(z)|2)dzdx
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!
4

ϵ4+d

∫

U

∫

U
η

(

∥x− z∥
ϵ

)

|fg(x)|2dzdx

≤
4

ϵ4

∫

U
|g(x)p+r(x)fg(x)|2dx

!
4

ϵ4
∥fg∥2L2(U,gp+r)

"

Lemma 4.3. Suppose fg ∈ L2(U , gp+r;M) for a Borel set U ⊆ X . Then, there exists a
constant C > 0 such that

Ew,ϵ(f ;U) ≤
C

ϵ2
∥fg∥2L2(U ,gp+r),

where we define the Dirichlet energy for the set U as

Ew,ϵ(f,U) :=
1

ϵd+2

∫

U

∫

U
(g(x)−rf(x)− g(z)−rf(z))2

η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
g(x)g(z)dxdz.

Proof. Note that

Ew,ϵ(f ;U) =
1

ϵd+2

∫

U

∫

U
(g(x)−rf(x)− g(z)−rf(z))2

η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
g(x)g(z)dxdz

≤
2

ϵd+2

∫

U

∫

U
(|g(x)−rf(x)|2 + |g(z)−rf(z)|2)

η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
g(x)g(z)dxdz

=
4

ϵd+2

∫

U

∫

U
|g(x)−rf(x)|2η

(

∥x− z∥
ϵ

)

g(x)q/2g(z)q/2dxdz

!
4

ϵd+2

∫

U

∫

U
|g(x)−rf(x)|2η

(

∥x− z∥
ϵ

)

g(x)p+rdxdz

!
4

ϵ2

∫

U
|g(x)−rf(x)|2g(x)p+rdx.

"

We denote by Xtϵ a subset of X such that for any x ∈ Xtϵ, Bx(tϵ) ∈ X consisting of points
sufficiently far away from the boundary and ∂tϵX by its complement within X consisting of
points close enough to the boundary.

Lemma 4.4. For f ∈ H1(X , g;M)∩Hs
0(X , g;M) with s ∈ N+ and g ∈ Cs−1(X ), there exist

constants C1, C2 > 0 such that

(1) If s is odd, then we have with t = (s− 1)/2:

∥Lt
w,ϵf − σt

1Lt
wf∥L2(Xtϵ,gp+r) ≤ C1Mϵ.

(2) If s is even, then we have with t = (s− 2)/2:

∥Lt
w,ϵf − σt

1Lt
wf∥L2(Xtϵ,gp+r) ≤ C2Mϵ2.
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Proof. Without loss of generality, we assume both g and f are C∞(X ) due to the fact that
C∞(X ) is dense in both Hs(X , g) and Cs−1(X ) and the norm in the statements is continuous
with respect to ∥ · ∥Hs(X ,g) and ∥ · ∥Cs−1(X ).

Actually, we claim the following stronger result: for t < s/2 and every x ∈ Xtϵ,

Lt
w,ϵf(x) = σt

1Lwf(x) +

⌊(s−1)/2⌋−t
∑

j=1

r2(j+t)(x)ϵ
2j + rs(x)ϵ

s−2t, (4.3)

for some functions rj such that

∥rj∥Hs−j(Xtϵ,g) ≤ C∥g∥tCs−1(X )M. (4.4)

Note that the dependence of the functions rj on t is suppressed in the notation.
The key idea underlying the proof of (4.3) is to consider the following Taylor expansion.

For an s-times differentiable function F : X → R and x ∈ X , define the following operator
dsx:

(dsxF )(z) :=
∑

|α|=s

DαF (x)zα.

Also, define dsF :=
∑

|α|=sD
αF . Then, for φ ∈ Cs(X ) and some h > 0, z ∈ Xh, x ∈ Bz(h),

the Taylor expansion at z is given as:

φ(x) = φ(z) +
s−1
∑

j=1

1

j!
(djxφ)(x− z) +Rs(x, z;φ).

Here, we note that (djxφ)(z) is a polynomial of degree j and we have for any y ∈ R:

(djxφ)(yz) = yj(djxφ)(z).

The remainder term Rj(x, z;φ) is

Rj(x, z;φ) :=
1

(j − 1)!

∫ 1

0

(1− θ)j−1(djz+θ(x−z)φ)(x− z)dθ,

such that for any x∗ ∈ B0(1),

sup
x∈Xh

|Rj(x, x+ hx∗;φ)| ≤ Chj∥φ∥Cj(X ),

and
∫

Xh

|Rj(z + θhx, z;φ)|2dz ≤ h2j

∫

Xh

∫ 1

0

|(djz+θhxφ)(z)|
2dθdz ≤ h2j∥djφ∥2L2(X ).

Now, we apply the above Taylor expansion on the function fg(x) := f(x)/g(x)r up to order
s and the function gq/2(x) up to order S in Lw,ϵf(x), where S = 1 if s = 1 and otherwise
S = s− 1 and obtain:

Lw,ϵf(x) =
1

ϵd+2

s−1
∑

j1=1

S−1
∑

j2=0

1

j1!j2!

∫

X
g(x)q/2−pη

(

∥x− z∥
ϵ

)

(dj1x fg)(x− z)(dj2x g
q/2)(z − x)dz

+
1

ϵd+2

s−1
∑

j=1

1

j!

∫

X
g(x)q/2−pη

(

∥x− z∥
ϵ

)

(dj1x fg)(x− z)RS(x, z; g
q/2)dz
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+
1

ϵd+2

∫

X
g(x)p/2−pη

(

∥x− z∥
ϵ

)

Rs(x, z; fg)g(z)
q/2dz.

Now, with the transformation y = (z − x)/ϵ, we have

Lw,ϵf(x) = −
1

ϵ2

s−1
∑

j1=1

S−1
∑

j2=0

ϵj1+j2

j1!j2!

∫

B0(1)

g(x)q/2−pη (∥y∥) (dj1x fg)(y)(dj2x gq/2)(y)dy

−
1

ϵ2

s−1
∑

j=1

ϵj

j!

∫

B0(1)

g(x)q/2−pη (∥y∥) (dj1x fg)(y)RS(x, ϵy + x; gq/2)dy

+
1

ϵ2

∫

B0(1)

g(x)p/2−pη (∥y∥)Rs(x, ϵy + x; fg)g(ϵy + x)q/2dy

=: L1(x) + L2(x) + L3(x).

We will now prove (4.3) by induction on t, and throughout this proof, with a slight abuse of
notation, the functions rj in (4.3) may vary from line to line depending on t at the induction
step but they will always satisfy the condition (4.4) as we are only interested in the bounds.

Firstly, we start with L1(x). If s = 1, we can see L1(x) = 0. Therefore, in the following,
we only focus on s ≥ 2. Now, we define

lj1,j2(x) :=

∫

B0(1)

g(x)q/2−pη(∥y∥)(dj1x fg)(y)(dj2x gq/2)(y)dy,

such that

L1(x) = −
1

ϵ2

s−1
∑

j1=1

S−1
∑

j2=0

ϵj1+j2

j1!j2!
lj1,j2(x).

Since (djxfg)(y) is a polynomial of degree j, lj1,j2 actually depends on the sum j1 + j2 and
dj1x d

j2
x is an order j1 + j2 multivariate monomial. Therefore, when j1 + j2 is odd, we have

lj1,j2(x) = 0.

Then, when s = 2, we have j1+j2 = 1 and L1(x) = 0. As for s ≥ 3, we notice that the lowest
order term of L11(x) is from j1 + j2 = 2, which means either j1 = 1, j2 = 1 or j1 = 2, j2 = 0.
We have

l1,1(x) =

∫

B0(1)

g(x)q/2−pη(∥y∥)(d1xfg)(y)(d1xgq/2)(y)dy

=
d
∑

i1=1,i2=1

g(x)q/2−p(Dfg(x))
(i1)(Dgq/2(x))(i2)

∫

B0(1)

∥y∥2η(∥y∥)dy,

and
1

2
l2,0(x) =

1

2

∫

B0(1)

g(x)q/2−pη(∥y∥)(d2xfg)(y)(d2xgq/2)(y)dy

=
1

2

d
∑

i=1

g(x)q/2−p((Dfg(x))
(i))2g(x)q/2

∫

B0(1)

∥y∥2η(∥y∥)dy.
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Therefore, we have by definition:

Lwf(x) = −
1

2g(x)p

(

∇g(x)q ·∇
(

f(x)

g(x)r

)

+ g(x)q∆

(

f(x)

g(x)r

))

,

and

−(l1,1(x) +
1

2
l2,0(x)) = σ1Lwf(x).

This is exactly the leading term. We remark here that in [GBT23, Section D.2], the negative
sign is missing, which does not actually give the Laplacian operator by the leading term.
Now, it remains to bound the higher order terms with j1 + j2 > 2. We will show that

L1(x) = σ1Lw +
⌊(s−1)/2⌋−1
∑

j=1

r2(j+1)(x)ϵ
2j + rs(x)ϵ

s−2.

It suffices to show for j1+ j2 > 2, lj1,j2 satisfies (4.4) for j = min{j1+ j2−2, s−2}. Through
the multi-index notation, we write that

lj1,j2(x) = g(x)q/2−p
∑

|α1|=j1,|α2|=j2

Dα1fg(x)D
α2gq/2(x)

∫

B0(1)

yα1yα2η(∥y∥)dy,

where |
∫

B0(1)
yα1yα2η(∥y∥)dy| < ∞ for all α1,α2. Then, by Hölder’s inequality, we have for

|α1| = j1, |α2| = j2,

∥g(x)q/2−pDα1fgD
α2gq/2∥Hs−(j+2)(X ,g) ! ∥Dα1fg∥Hs−(j+2)(X ,g)∥g(x)q/2−pDα2gq/2∥Cs−(j+2)(X )

! ∥Dα1fg∥Hs−j1 (X ,g)∥Dα2gq/2∥Cs−(j2+1)(X )

≤ M∥g∥Cs−1 .

Summing over all |α1| = j1 and |α2| = j2, we obtain that lj1,j2 satisfies (4.4).
Next, as for L2(x), note that if s = 1, L2(x) = 0. We want to show that for s ≥ 2,

∥L2∥L2(Xϵ,gp+r) ≤ Cϵs−2M∥g∥Cs−1(X ).

Clearly, if s = 1, L2(x) = 0. Now, for s ≥ 2, we have S = s−1 and since |Rs−1(x, x+ ϵx∗)| ≤
Cϵs−1∥g∥Cs−1(X ) for any x∗ ∈ B0(1) and djx(·) is a j-homogeneous function, we have

|L2(x)| ≤
s−1
∑

j=1

ϵj−2

j!

∫

B0(1)

g(x)q/2−pη (∥y∥) |(dj1x fg)(y)| · |RS(x, ϵy + x; gq/2)|dy

≤ Cϵs−2∥g∥Cs−1(X )

s−1
∑

j=1

1

j!

∫

B0(1)

g(x)q/2−pη (∥y∥) |(dj1x fg)(y)|dy.

Moreover, we have by Cauchy–Schwarz inequality,
∫

Xϵ
g(x)p+r

(
∫

B0(1)

g(x)q/2−pη (∥y∥) |(dj1x fg)(y)|dy
)2

dx

≤
∫

Xϵ
g(x)q−p+r

(
∫

B0(1)

η (∥y∥) |(dj1x fg)(y)|2dy
)(

∫

B0(1)

η(∥y∥)dy
)

dx

≤ σ0

∫

B0(1)

∫

Xϵ
g(x)q−p+rη(∥y∥)((djfg)(x))2dxdy
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! σ2
0

∫

Xϵ
g(x)p+r((djfg)(x))

2dx

= σ2
0∥djfg∥2L2(Xϵ,gp+r),

where in the last step, we use the fact that |djxf(y)| ≤ |djf(x)| for all y ∈ B0(1). Therefore,
it yields that

∫

Xϵ
g(x)p+r|L2(x)|2dx

≤ C
(

ϵs−2∥g∥Cs−1(X )

)2
s−1
∑

j=1

∫

Xϵ
g(x)p+r

(

1

j!

∫

B0(1)

g(x)q/2−pη (∥y∥) |(dj1x fg)(y)|dy
)2

dx

≤ C
(

ϵs−2∥g∥Cs−1(X )

)2
s−1
∑

j=1

∥djfg∥2L2(Xϵ,gp+r).

We obtain the desired bound.
Finally, similar to L2(x), we obtain the same bound for L3(x). Combining the obtained

bounds for L1(x)− L3(x), we obtain (4.3) for t = 1.
Now, we perform the induction step. Assuming the bound (4.3) holds up to some t < s/2,

we want to show it also holds for t + 1, with t + 1 < s/2. For convenience, we introduce
the following notation: for any 1 ≤ j ≤ l ≤ s, denote by rj,l(x) = r(s−l)+j(x). Note again
that the functions rj,l implicitly depend on t at the induction step thus they may vary in
the below arguments from line to line. For a function r ∈ H l(Xtϵ, g;C∥g∥tCs−1(X )M) for some
l ≤ s, if l ≤ 2, we have by the inductive hypothesis that for any x ∈ X(t+1)ϵ,

Lw,ϵr(x) = rll(x)ϵ
l−2.

On the other hand, if 2 < l ≤ s, then by the inductive hypothesis, it holds that for any
x ∈ X(t+1)ϵ,

Lw,ϵr(x) = σ1Lwr(x) +
⌊(l−1)/2⌋−1
∑

j=1

r2j+2,l(x)ϵ
2j + rl,l(x)ϵ

l−2. (4.5)

Then, we have

Lt+1
w,ϵ f(x) = (Lw,ϵ ◦ Lt

w,ϵf)(x)

= σt
1Lw,ϵLt

wf(x) +
⌊(s−1)/2⌋−k
∑

j=1

Lw,ϵr2(j+t)(x)ϵ
2j + Lw,ϵrs(x)ϵ

s−2t. (4.6)

In the following, we will bound these terms on the right-hand side individually. First of all,
since Lt

wf ∈ Hs−2t(X , g;C∥g∥tCs−1(X )M), applying (4.5) yields

Lw,ϵLt
wf(x) = σ1Lt+1

w f(x) +
⌊(s−2t−1)/2⌋−1

∑

j=1

r2j+2,s−2t(x)ϵ
2j + rs−2t,s−2t(x)ϵ

s−2t−2

= σ1Lt+1
w f(x) +

⌊(s−1)/2⌋−(t+1)
∑

j=1

r2(t+1+j)(x)ϵ
2j + rs(x)ϵ

s−2(t+1), (4.7)

where we apply the fact mentioned before that rj,l(x) = r(s−l)+j(x).
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Next, suppose j < ⌊(s− 1)/2⌋ − t. We apply (4.5) and obtain

Lw,ϵr2(j+t)(x) = σ1Lwr2(j+t)(x) +
⌊(s−2j−2t−1)/2⌋−1

∑

i=1

r2i+2,s−2(j+t)(x)ϵ
2i

+ rs−2(j+t),s−2(j+t)(x)ϵ
s−2(j+t)−2

= r2(j+t+1)(x) +
⌊(s−1)/2⌋−(j+t+1)

∑

i=1

r2(i+j+t+1)(x)ϵ
2i + rs(x)ϵ

s−2(j+t+1),

where we use the fact that rj,l(x) = r(s−l)+j(x) and σ1Lwr2(j+t)(x) = r2,s−2(j+t)(x) = r2(j+t+1)(x).
Therefore, we have

Lw,ϵr2(j+t)(x)ϵ
2j = r2(j+t+1)(x)ϵ

2j +
⌊(s−1)/2⌋−(k+1)

∑

m=1

r2(m+t+1)(x)ϵ
2m + rs(x)ϵ

s−2(k+1), (4.8)

where the last equality is by changing the variable m = i + j. Moreover, when j = ⌊(s −
1)/2⌋ − t, we have 2(j + t) = 2⌊(s− 1)/2⌋ and we simply calculate that

Lw,ϵr2(j+t)(x)ϵ
2j = rs−2(j+t)

s−2(j+t)(x)ϵ
s−2(j+k)ϵ2j = rs(x)ϵ

s−2(k+1). (4.9)

Finally, according to (4.5), we have

Lw,ϵrs(x)ϵ
s−2t = rs(x)ϵ

s−2(t+1). (4.10)

Combining (4.7)-(4.10) with (4.6), we obtain the proof for t+ 1.
"

Recall that we write X = Xtϵ ⊔ ∂Xtϵ, where for any x ∈ Xtϵ, Bx(tϵ) ⊂ X and ∂tϵX as its
complement within X consisting of points ‘close’ to the boundary.

Lemma 4.5. For f ∈ Hs
0(X , g;M) and t > 0 such that 2t < s, there exists a constant c > 0

not depending on M or f such that for all ϵ < c,

∥Lt
w,ϵf∥2L2(∂tϵX ,gp+r) ! ϵ2(s−2t)M2.

Proof. Note that according to Lemma 4.2, we have

∥Lt
w,ϵf∥2L2(∂tϵX ,gp+r) !

1

ϵ4
∥Lt−1

w,ϵ f∥2L2(∂tϵX ,gp+r) ! . . . !
1

ϵ4t
∥fg∥2L2(∂tϵX ,gp+r).

Therefore, it suffices to show for all ϵ < c,

∥fg∥2L2(∂tϵX ,gp+r) ! ϵ2s∥f∥2Hs(X ,g). (4.11)

In order to deal with fg near the boundary, we will take a similar procedure used in [GBT23,
Proof of Lemma 5] and [Leo17, Theorem 18.1] as follows. With loss of generality, we take
t = 1 as one can view ϵ < c/t for proving for the general case.

Step I: Local patch. We assume that for some c0 > 0 and a Lipschitz mapping φ :
Rd−1 → [−c0, c0] and since f ∈ Hs

0(X , g;M), without loss of generality, we can assume that
fg ∈ C∞

c (Uψ(c0)) with

Uψ(c0) := {y ∈ Q(0, c0) : ψ(y
(−d)) ≤ y(d)},
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where Q(0, c0) is the d-dimensional hypercube of side length c0 centered at 0. Now, following
step 1 in [GBT23, Proof of Lemma 5] by replacing f as fg, we have

|fg(y)|2 ! ϵ2(s−1)

(

∫ y(d)

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|dz

)2

! ϵ2s−1

∫ y(d)

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dz.

Then, we obtain:
∫

Vψ(ϵ)

g(y)p+r|fg(y)|2dy !

∫

Qd−1(c0)

∫ ψ(y(−d))+ϵ

ψ(y(−d))

|fg(y(−d), y(d))|2dy(d)dy(−d)

! ϵ2s−1

∫

Qd−1(c0)

∫ ψ(y(−d))+ϵ

ψ(y(−d))

∫ y(d)

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dzdy(d)dy(−d),

(4.12)

where Qd−1(0, c0) is the d-1 dimensional hypercube of side length c0 centered at 0. Also, by
changing the integration order, it yields that
∫ ψ(y(−d))+ϵ

ψ(y(−d))

∫ y(d)

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dzdy(d) ! ϵ

∫ ψ(y(−d))+ϵ

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dz

! ϵ

∫ c0

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dz. (4.13)

Combining (4.12) and (4.13), we obtain:
∫

Vψ(ϵ)

g(y)p+r|fg(y)|2dy ! ϵ2s
∫

Qd−1(c0)

∫ c0

ψ(y(−d))

g(y(−d), z)q|(Dsfg(y
(−d), z))(d)|2dzdy(−d)

! ϵ2s∥f∥2Hs(Uψ(c0),g)
.

Step 2: Rigid motion of local patch Now suppose at a point x0 ∈ ∂X , there exits a rigid
motion T : Rd → Rd such that T (x0) = 0, and a number C0 such that we have all C0ϵ ≤ c0,

T (QT (x0, c0) ∩ ∂ϵX ) ⊆ Vψ(C0ϵ) and T (QT (x0, c0) ∩ X ) = Uψ(c0), (4.14)

where QT (x0, c0) is a hypercube in Rd of side length c0 centered at x0 (not necessar-
ily coordinate-axis-aligned). Let vg(y) := fg(T−1(y)) and v(y) := f(T−1(y)) for all y ∈
Uψ(c0). Then, if fg ∈ C∞

c (X ), we have vg ∈ C∞
c (Uψ(c0)) such that ∥vg∥2Hs(Uψ(c0))

=

∥fg∥2Hs(QT (x0,c0))∩X . Therefore, according to Step 1, we have
∫

Vψ(C0ϵ)

g(x)p+r|vg(y)|2dy ! ϵ2s∥v∥2Hs(Uψ(c0)),g
.

Then, it yields that
∫

QT (x0,c0)∩∂ϵX
gp+r(x)|fg(x)|2dx

=

∫

T (QT (x0,c0)∩∂ϵX )

gp+r(y)|vg(y)|2dx
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!

∫

Vψ(C0ϵ)

g(x)p+r|vg(y)|2dy

! ϵ2s∥v∥2Hs(Uψ(c0),g)

! ϵ2s∥f∥2Hs(QT (x0,c0)∩∂ϵX ,g) ! ϵ2s∥f∥2Hs(X ,g).

Step 3: Lipschitz domain. Now we arrive at the last step where we shall deal with the case:
X is assumed to be an open, bounded subset of Rd with Lipschitz boundary. Again, following
the procedure in [GBT23, Proof of Lemma 5]. In this case, for every x0 ∈ ∂X , there exists
a rigid motion Tx0 : Rd → Rd such that Tx0(x0) = 0, a number c0(x0), a Lipshitz mapping
ψx0 : R

d−1 → [−c0(x0), c0(x0)] and a number C0(x0) satisfying for all C0(x0)ϵ ≤ c0(x0), (4.14)
holds for replacing c0, C0, T,ψ by c0(x0), C0(x0), Tx0 ,ψx0 respectively. Therefore, by Step 2,
we have

∫

QTx0
(x0,c0(x0))∩∂ϵX

gp+r(x)|fg(x)|2dx !x0 ϵ
2s∥f∥2Hs(X ,g).

Although the constant in the last bound depends on x0, by compactness assumption, there ex-
ists a finite subset (denoted by x0,1, . . . , x0,N ) of the collection of hypercubes {QTx0

(x0, c0(x0)/2) :
x0 ∈ ∂X} which covers ∂X . Then, by taking the minimum of all constants with respect to
x0,1, . . . , x0,N , we can conclude that

∂ϵ(X ) ⊆
N
⋃

i=1

QTx0,i
(x0,i, c0(x0,i)).

Consequently, we have
∫

∂X
gp+r(x)|fg(x)|2dx !

N
∑

i=1

∫

QTx0,i
(x0,i,c0(x0,i))∩∂ϵX

gp+r(x)|fg(x)|2dx ! ϵ2s∥f∥2Hs(X ,g).

Therefore, we proved the desired result (4.11). "

The following result presents a higher order version of Lemma 4.1 for s > 1 and the
non-local weighted Sobolev seminorm, ⟨Ls

w,ϵf, f⟩gp−r .

Lemma 4.6. For f ∈ H1(X , g;M) ∩Hs
0(X , g;M) with s ∈ N+\{1}, we have

⟨Ls
w,ϵf, f⟩gp−r ! M2.

Proof of Lemma 4.6. Note here that we fix the assumption that f ∈ H1(X , g;M) besides
f ∈ Hs

0(X , g;M), which is missing in the statement of [GBT23, Theorem 3]. In general,
it is not true for X ̸= Rd that H1

0(X , g;M) = H1(X , g;M). Based on Lemma 4.1, we will
prove Lemma 4.6 in a recursive way for s > 1. Recall that Lw,ϵ is self-adjoint with respect to
the weighted inner product, meaning ⟨Lw,ϵf1, f2⟩gp−r = ⟨f1, Lw,ϵf2⟩gp−r for any f1/gr, f2/gr ∈
L2(X , gp+r). Also recall the definition of the Dirichlet energy given in Lemma 4.3, which can
be stated as Ew,ϵ(f,X ) = 2⟨Lw,ϵf, f⟩gp−r .

Following the procedure in [GBT23] 3, when s = 2t+1 for t ≥ 1, by using self-adjointness,
we have

⟨Ls
w,ϵf, f⟩gp−r = ⟨Lt+1

w,ϵ f, L
t
w,ϵf⟩gp−r =

1

2
Ew,ϵ(L

t
w,ϵf,X ).

3We remark here that the factor 2 is missing in [GBT23, Section D.4].
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We divide the Dirichlet energy into two parts:

Ew,ϵ(L
t
w,ϵf,X )

=
1

ϵd+2

∫

Xtϵ

∫

Xtϵ

(g(x)−rf(x)− g(z)−rf(z))2
η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
g(x)g(z)dxdz

+
1

ϵd+2

∫

∂tϵX

∫

∂tϵX
(g(x)−rf(x)− g(z)−rf(z))2

η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
g(x)g(z)dxdz

=: Ew,ϵ(L
t
w,ϵf,Xtϵ) + Ew,ϵ(L

t
w,ϵf, ∂tϵX ),

where Xtϵ and ∂Xtϵ have been introduced right before Lemma 4.4 (∂Xtϵ ⊂ X consists of
points tϵ-close to the boundary of X , and Xtϵ = X \ ∂Xtϵ).

By Jensen’s inequality, we have

Ew,ϵ(L
t
w,ϵf,Xtϵ) ≤ 3σ2t

1 Ew,ϵ

(

σt
1L

t
wf,Xtϵ

)

+
6

ϵd+2

∫

Xtϵ

∫

Xtϵ

(

g(x)−rLt
w,ϵf(x)− g(z)−rσt

1L
t
wf(z)

)2

η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
g(x)g(z)dxdz.

By definition (2.4), we have Lt
wf ∈ H1(X , g;C∥g∥tCs−1(X )M) for some constant C > 0, an

application of Lemma 4.1 shows Ew,ϵ (σt
1L

t
wf,Xtϵ) ! M2. We then focus on the second term

on the right-hand side of the above inequality. According to Lemma 4.4, we obtain:

1

ϵd+2

∫

Xtϵ

∫

Xtϵ

(

g(x)−rLt
w,ϵf(x)− g(z)−rσt

1Lt
wf(z)

)2
η
(

∥x−z∥
ϵ

)

g(x)1−q/2g(z)1−q/2
g(x)g(z)dxdz

!
1

ϵd+2

∫

Xtϵ

∫

Xtϵ

g(x)p+r
(

g(x)−rLt
w,ϵf(x)− g(x)−rσt

1Lt
wf(x)

)2
η

(

∥x− z∥
ϵ

)

dxdz

!
1

ϵ2

∫

Xtϵ

g(x)p−r
(

Lt
w,ϵf(x)− σt

1Lt
wf(x)

)2
dx

! M2.

Furthermore, near the boundary, according to Lemma 4.3 and Lemma 4.5, it yields that

Ew,ϵ(L
t
w,ϵf, ∂tϵX ) !

1

ϵ2
∥Lt

w,ϵf∥L2(∂tϵX ,gp+r) ! M2.

Putting all pieces above together, we obtain the proof for the case when s is odd and
t := (s−1)/2. Similar arguments can be applied to the case when s is even and t := (s−2)/2.
Therefore, combining all above together, we obtain for all integer s > 1:

⟨Ls
w,ϵf, f⟩gp−r ! M2.

"

We are now in the position to prove the main results of Section 3.2.

Proof of Theorem 3.1. By Cauchy-Schwarz inequality, we have: for all s ∈ N+:

∥f̂ − f∥2w,n ≤ 2(∥Ef̂ − f |2w,n + ∥f̂ − Ef̂∥2w,n).



22 ZHAOYANG SHI, KRISHNAKUMAR BALASUBRAMANIAN, AND WOLFGANG POLONIK

Then, according to PCR-WLE algorithm in Section 2.2, we obtain

∥Ef̂ − f∥2w,n =
n
∑

k=K+1

⟨vk, f⟩2w,n ≤
⟨Ls

w,n,ϵf, f⟩w,n

λsK+1

, (4.15)

and

∥f̂ − Ef̂∥2w,n =
K
∑

k=1

⟨vk, ε⟩2w,n.

Since ⟨vk, ε⟩w,n is normally distributed with 0 mean and variance:

Var⟨vk, ε⟩w,n =
1

n2
vTk D

2(p−1−r)
q−1 vk, (4.16)

where ⟨vk, vk⟩w,n = 1
nv

T
k D

p−1−r
q−1 vk = 1. Note that ⟨vk/

√
n, vk/

√
n⟩gp−r = 1, then we have

min
vk/

√
n∈Rn

1

n
vTk D

p−1−r
q−1 D

p−1−r
q−1 vk (4.17)

is the smallest eigenvalue of the matrix D
p−1−r
q−1 with respect to the inner product ⟨·, ·⟩gp−r . As

D is a diagonal matrix with the (i, i)-element as di, according to Section A.1, it is bounded
from below, say by a constant C > 0, almost surly for n large enough. Then, combining
(4.16) and (4.17), we have:

∥f̂ − Ef̂∥2w,n =
1

n

K
∑

k=1

(
√
n⟨vk, ϵ⟩w,n)

2,

with
√
n⟨vk, ϵ⟩w,n being normal with mean 0 and variance

Var(
√
n⟨vk, ϵ⟩w,n) ≥ C > 0.

According to an exponential inequality for chi-square distributions from [LM00], we obtain:

P

(

∥f̂ − Ef̂∥2w,n ≥
CK

n
+ 2

√
K

n

√
t + 2

t

n

)

≤ e−t. (4.18)

With (4.15) and (4.18), it yields

∥f̂ − f∥2w,n ≤
⟨Ls

w,n,ϵf, f⟩w,n

λsK+1

+
CK

n
, (4.19)

with probability at least 1 − e−K if 1 ≤ K ≤ n. Then, it remains to bound the empiri-
cal weighted Sobolev seminorm ⟨Ls

w,n,ϵf, f⟩w,n and the graph weighted Laplacian eigenvalue
λsK+1.

We will first focus on ⟨Ls
w,n,ϵf, f⟩w,n for s = 1. By definition (2.3), we have by symmetry:

E⟨Lw,n,ϵf, f⟩w,n =
1

2
E

⎛

⎝

1

ϵd+2
|d

− r
q−1

i f(Xi)− d
− r

q−1

j f(Xj)|2d
1−p
q−1

i

η
(

∥Xi−Xj∥
ϵ

)

d̃1−q/2
i d̃1−q/2

j

⎞

⎠ . (4.20)

We would like to point out here that the normalization factor ϵ−(d+2) is motivated by the fact

that a factor of ϵ−d is needed to scale η
(

∥Xi−Xj∥
ϵ

)

and the remaining factor, ϵ−2, stabilized

the squared differences of d
− r

q−1

i under the expectation.
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According to Section A.1 and by conditioning on Xi and the law of iterated expectation,
we have for n large enough,
∣

∣

∣

∣

∣

E

(

1
ϵd+2 |d

− r
q−1

i f(Xi)− d
− r

q−1

j f(Xj)|2d
1−p
q−1

i

η

(

∥Xi−Xj∥

ϵ

)

d̃
1−q/2
i d̃

1−q/2
j

)

− 2⟨Lw,ϵf, f⟩gp−r

∣

∣

∣

∣

∣

! ∆(n, ϵ, η, g) + ϵ,

(4.21)

where

∆(n, ϵ, η, g) :=
1

n
gmax +

η(0)

nϵd
+

n− 1

n

(

√

| log ϵ|
nϵd

+ ϵ
)

→ 0 as n → ∞.

Combining (4.20), (4.21) and Lemma 4.1, we obtain:

E⟨Lw,n,ϵf, f⟩w,n ! M2 +∆(n, ϵ, η, g) + ϵ.

Consequently, by Markov’s inequality, we have: for any δ ∈ (0, 1),

⟨Lw,n,ϵf, f⟩w,n !
1

δ

(

M2 +∆(n, ϵ, η, g) + ϵ
)

, (4.22)

with probability at least 1−δ. Note that the above bound on the expected weighted Sobolev
seminorm generalizes the results in [GBT23] to the weighted Laplacians by some properties
of KDE.

Next, we proceed to the higher order case when s > 1 for ⟨Ls
w,n,ϵf, f⟩w,n. We define the

following difference operator:

Djf(x) = (d
− r

q−1
· f(x)− d

− r
q−1

j f(Xj))d
1−p
q−1
· wϵ

·,j,

where d· and wϵ
·,j are defined by replacing Xi by x in both di and wϵ

i,j. Furthermore, let
Djf(x) := (Dj1f ◦ . . .◦Djsf)(x), where j = (j1, . . . , js) ∈ [n]s := {1, . . . , n}s. Denote by (n)s

the sub-collection of vectors in [n]s with no repeated indices and let by ij := (i, j1, . . . , js).
Following the idea of [GBT23, Proof of Lemma 3], we decompose the weighted Sobolev

seminorm into a U-statistic, which is an unbiased estimator of the non-local Sobolev semi-
norm ⟨Ls

w,ϵf, f⟩gp−r , and a pure bias term:

⟨Ls
w,n,ϵf, f⟩w,n =

1

n

n
∑

i=1

d
p−1−r
q−1

i Ls
w,n,ϵf(Xi) · f(Xi)

=
1

nϵ2s

∑

ij∈(n)s+1

d
p−1−r
q−1

i Djf(Xi) · f(Xi)

+
1

nϵ2s

∑

ij∈[n]s+1\(n)s+1

d
p−1−r
q−1

i Djf(Xi) · f(Xi)

=: I1 + I2. (4.23)

Note that there are errors in [GBT23, Proof of Lemma 3] when bounding both EI1 and
EI2. Specifically, in [GBT23, Lemma D.3], there should not be a δ appearing in Equation
D.4 by Markov’s inequality and the power of ϵ should be 2s+ d. Although their final result
is correct, we will fix these errors in the following proof. Now, determined by whether all ij
are distinct, the empirical weighted Sobolev seminorm can be divided into two parts, I1 and
I2. The first one involves all distinct indices where we make approximation by the so-called
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non-local weighted sobolev norm ⟨Ls
w,ϵf, f⟩gp−r ; the second part focuses on the case where

not all ij are distinct and use the fact that it is related to a connected subgraph.
As for I1 from (4.23), we have

EI1 =
1

nϵ2s
n!

(n− s− 1)!
E

(

d
p−1−r
q−1

i Djf(Xi) · f(Xi)

)

=
1

nϵ2s
n!

(n− s− 1)!
E⟨Djf(Xi), f(Xi)⟩gp−r ,

where the operator Dj is iterated for s different times due to the fact that ij are all distinct.
For each iteration, say s = 1, we have

E⟨Djf(Xi), f(Xi)⟩gp−r

=
ϵ2

2n
E

⎛

⎝

1

ϵd+2
|d

− r
q−1

i f(Xi)− d
− r

q−1

j f(Xj)|2d
1−p
q−1

i

η
(

∥Xi−Xj∥
ϵ

)

d̃1−q/2
i d̃1−q/2

j

⎞

⎠ . (4.24)

Then, plugging (4.21) in (4.24), we obtain
∣

∣

∣

∣

E⟨Djf(Xi), f(Xi)⟩gp−r −
ϵ2

n
⟨Lw,ϵf, f⟩gp−r

∣

∣

∣

∣

!
ϵ2

2n
(∆(n, ϵ, η, g) + ϵ).

After s times iteration, it yields that
∣

∣

∣

∣

E⟨Djf(Xi), f(Xi)⟩gp−r −
ϵ2s

ns
⟨Ls

w,ϵf, f⟩gp−r

∣

∣

∣

∣

!
ϵ2s

2sns
(∆(n, ϵ, η, g) + ϵ).

Putting all above results back in EI1, we conclude that for n large enough,
∣

∣

∣

∣

EI1 −
n!

ns+1(n− s− 1)!
⟨Ls

w,ϵf, f⟩gp−r

∣

∣

∣

∣

!
n!

ns+1(n− s− 1)!
(∆(n, ϵ, η, g) + ϵ). (4.25)

The Stirling’s formula shows

lim
n→∞

n!

ns+1(n− s− 1)!
= 1.

Therefore, by (4.25), we have for n large enough,

EI1 ! ⟨Ls
w,ϵf, f⟩gp−r + (∆(n, ϵ, η, g) + ϵ).

According to Lemma 4.6, it yields that

EI1 ! M2 + (∆(n, ϵ, η, g) + ϵ). (4.26)

We next shift our attention to I2 in (4.23):

1

nϵ2s

∑

ij∈[n]s+1\(n)s+1

d
p−1−r
q−1

i Djf(Xi) · (f(Xi)− f(Xj1)).

For ij not all distinctive, if they contains a total of (k+1) distinct indices for example for
1 ≤ k ≤ s− 1, we have by symmetry:

∑

ij∈[n]s+1\(n)s+1

d
p−1−r
q−1

i Djf(Xi) · f(Xi) =
1

2
·

∑

ij∈[n]s+1\(n)s+1

d
p−1−r
q−1

i Djf(Xi) · (f(Xi)− f(Xj1)).
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Observe that in order for

d
p−1−r
q−1

i |Djf(Xi)| · |f(Xi)− f(Xj1)|

to be non-zero, it must be the case that the graph Gn,ϵ(Xij) which is the subgraph induced
by the vertices Xi, Xj1, . . . , Xjs is complete. Since we have:

Dijf(x) = Di(Djf(x))

= Di

(

(d
− r

q−1
· f(x)− d

− r
q−1

j f(Xj))d
1−p
q−1
· wϵ

·,j

)

= (d
− r

q−1
· Djf(x)− d

− r
q−1

i Djf(Xi))d
1−p
q−1
· wϵ

·,i,

then

|Dj1j2f(Xi)| ≤
(

d
− r

q−1

i |Dj2f(Xi)|+ d
− r

q−1

j1 |Dj2f(Xj1)|
)

d
1−p
q−1

i wϵ
i,j1.

Repeating the above computation and by induction, it yields that for s ≥ 2,

|Djf(Xi)| ≤ (s− 1)d
− (s−1)r

q−1

max /mind
(s−1)(1−p)

q−1

max /min (wϵ
max)

s−1
∑

j∈ij\{js}

|Djsf(Xj)|,

where dmax := max
i=1,...,n

di, dmin := min
i=1,...,n

di, wmax := max
i,j=1,...,n

wi,j and dmax /min means it is dmax

if −(s− 1)r/(d− 1) (respectively (s− 1)(1− p)/(q− 1)) are positive and it is dmin otherwise.
According to Section A.1, we have for n large enough, dmax is bounded from above and

dmin is bounded from below a.s. and

wmax !
1

nϵd
,

almost surely.
Consequently, it yields that

d
p−1−r
q−1

i |Djf(Xi)| · |f(Xi)− f(Xj1)|

= d
p−1−r
q−1

i |Djf(Xi)| · |f(Xi)− f(Xj1)| · 1{Gn,ϵ(Xij) is connected}

!
1

(nϵd)s−1

∑

j∈ij\{js}

(

d
p−1−r
q−1

i |Djsf(Xj)| · |f(Xi)− f(Xj1)| · 1{Gn,ϵ(Xij) is connected}

)

=
ϵ2

nsϵd(s−1)

∑

j∈ij\{js}

(

1

ϵd+2
d

p−1−r
q−1

i |d
− r

q−1

j f(Xj)− d
− r

q−1

js f(Xjs)|d
1−p
q−1

j

η
(

∥Xj−Xjs∥
ϵ

)

d̃1−q/2
j d̃1−q/2

js

|f(Xi)− f(Xj1)|1{Gn,ϵ(Xij) is connected}

)

, (4.27)

where we again assign ϵd+2 as a normalization factor into the expectation as (4.20).
Now, note that for j = i in the summand on the right-hand side of (4.27), we have

according to Section A.1:

E

(

1

ϵd+2
d
− r

q−1

i |d
− r

q−1

i f(Xi)− d
− r

q−1

js f(Xjs)|
η
(

∥Xi−Xjs∥
ϵ

)

d̃1−q/2
i d̃1−q/2

js

|f(Xi)− f(Xj1)|
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1{Gn,ϵ(Xij) is connected}

)

! E

⎛

⎝

⎛

⎝

1

ϵd+2
|d

− r
q−1

i f(Xi)− d
− r

q−1

js f(Xjs)|
η
(

∥Xi−Xjs∥
ϵ

)

d̃1−q/2
i d̃1−q/2

js

|d
− r

q−1

i f(Xi)− d
− r

q−1

j1 f(Xj1)|

+ (∆(n, ϵ, η, g) + ϵ)

)

1{Gn,ϵ(Xij) is connected}

)

! E

⎛

⎝

⎛

⎝

1

ϵd+2
|d

− r
q−1

i f(Xi)− d
− r

q−1

js f(Xjs)|2
η
(

∥Xi−Xjs∥
ϵ

)

d̃1−q/2
i d̃1−q/2

js

+ (∆(n, ϵ, η, g) + ϵ)

⎞

⎠

1{Gn,ϵ(Xij) is connected}

)

, (4.28)

where the last inequality is by Cauchy–Schwarz inequality and X1, . . . , Xn being i.i.d. data.
Then, by integrating out all indices in j not equal to i or js, it yields that

E

⎛

⎝

⎛

⎝

1

ϵd+2
|d

− r
q−1

i f(Xi)− d
− r

q−1

js f(Xjs)|2
η
(

∥Xi−Xjs∥
ϵ

)

d̃1−q/2
i d̃1−q/2

js

+ (∆(n, ϵ, η, g) + ϵ)

⎞

⎠

1{Gn,ϵ(Xij) is connected}

)

!
(

CϵdgmaxVd

)k−1
E

⎛

⎝

⎛

⎝

1

ϵd+2
|d

− r
q−1

i f(Xi)− d
− r

q−1

js f(Xjs)|2
η
(

∥Xi−Xjs∥
ϵ

)

d̃1−q/2
i d̃1−q/2

js

+ (∆(n, ϵ, η, g) + ϵ)

))

. (4.29)

Therefore, according to (4.28), (4.29), (4.21) and Lemma 4.1, we obtain

E

(

1

ϵd+2
d
− r

q−1

i |d
− r

q−1

i f(Xi)− d
− r

q−1

js f(Xjs)|
η
(

∥Xi−Xjs∥
ϵ

)

d̃1−q/2
i d̃1−q/2

js

|f(Xi)− f(Xj1)|

1{Gn,ϵ(Xij) is connected}

)

! ϵd(k−1)
(

M2 +∆(n, ϵ, η, g) + ϵ
)

. (4.30)

Applying a similar approach to all j ̸= js and plugging (4.30) in (4.27) and (4.23), we have

EI2 !
1

nϵ2s
1

nsϵd(s−1)

s−1
∑

k=1

ϵd(k−1)
(

M2 +∆(n, ϵ, η, g)
)

nk+1
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!
ϵ2

nϵ2s
(

M2 +∆(n, ϵ, η, g) + ϵ
)

s−1
∑

k=1

(nϵd)k

(nϵd)s
n.

Note that the above sum is bounded from above when k = s− 1 by the assumption nϵd ≥ 1.
Finally, we conclude that

EI2 !
ϵ2

nϵ2s+d

(

M2 +∆(n, ϵ, η, g) + ϵ
)

. (4.31)

Finally, combining (4.23), (4.26) and (4.31), we obtain:

E⟨Ls
w,n,ϵf, f⟩w,n ! M2 + (∆(n, ϵ, η, g) + ϵ) +

ϵ2

nϵ2s+d

(

M2 +∆(n, ϵ, η, g) + ϵ
)

! M2 + (∆(n, ϵ, η, g) + ϵ),

where the last step is by the assumption that ϵ # n−1/(2(s−1)+d). By Markov’s inequality, we
have for any δ ∈ (0, 1),

⟨Ls
w,n,ϵf, f⟩w,n !

1

δ

(

M2 + (∆(n, ϵ, η, g) + ϵ
)

, (4.32)

with probability at least 1 − 2δ. This bound can be considered as a higher order variant of
(4.22) for s > 1.

Now, recall the bound (4.19). We have bounded the empirical weighted Sobolev seminorm
by (4.22) and (4.32). It remains to bound the eigenvalues λK+1.

According to Lemma A.1, we have:

λk = λk(Lw,n,ϵ) # λk(Lw) ∧ ϵ2, for all 2 ≤ k ≤ n, (4.33)

with probability at least 1− Cne−cnϵd for some constants C, c > 0.
For s = 1, combining (4.19), (4.22) and (4.33), we have with probability at least 1 − δ −

Cne−cnϵd − e−K and n large enough:

∥f̂ − f∥2w,n !
M2

δ (λK+1(Lw) ∧ ϵ2)
+

K

n
.

Furthermore, based on the assumption ϵ ! K−1/d and Proposition A.6, the above inequality
becomes:

∥f̂ − f∥2w,n !
M2

δ
(K + 1)−2/d +

K

n
. (4.34)

By balancing the two terms on the right-hand side, we pick K = ⌊M2n⌋d/(2+d). Then, it
yields that

∥f̂ − f∥2w,n !
1

δ
M2(M2n)−2/(2+d). (4.35)

If M2 < n−1, we can take K = 1 and obtain from (4.34) that:

∥f̂ − f∥2w,n !
1

nδ
.
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If M > n1/d, we take K = n and in this case, we actually have f̂(Xi) = Yi for i = 1, . . . , n
and

∥f̂ − f∥2w,n =
1

n

n
∑

i=1

ε2i ! C,

with probability at least 1− e−n for some constant C. Combining all above cases depending
on choices of K, it yields that bound in Theorem 3.1 .

For s > 1, the proof follows in a similar way by considering (4.32) instead of (4.22). "

4.2. Proof of Theorem 3.2.

Proof of Theorem 3.2. Recall the construction of the estimator based on Lepski’s procedure:
f̂adapt = f̂ŝ,M̂ with ŝ, M̂ given in Section 3.3. Let the event Ej be that ŝ = sj and suppose
s = si for the true smooth parameter.

First of all, it suffices to consider M ∈ D by realizing that if M ∈ (Mj−1,Mj), then
f ∈ Hs(X , g;M) with Hs(X , g;Mj−1) ⊂ Hs(X , g;M) ⊂ Hs(X , g;Mj). Now, we also suppose
M = Mi correspondingly and consider bounding the sum:

Nl
∑

j=1

(

∥f̂sj − f∥2w,nM
−2
i (M2

i n/ logn)
2si/(2si+d)1Ej

)

,

conditional on the event that the sample points X1, . . . , Xn satisfy (4.19) and (4.33) with
K = ⌊M2

i n⌋d/(2si+d). These two statements hold with probability at least 1 − Cne−Cnϵd −
e−⌊M2

i n⌋
d/(2si+d)

. As we will see, the fact that this sum does not explode, relies on the fact
that the probabilities of the sets Ej get small as n → ∞.

First, note that by Cauchy-Schwarz inequality, we have
Nl
∑

j=i

(

∥f̂sj − f∥2w,nM
−2
i (M2

i n/ logn)
2si/(2si+d)1Ej

)

≤
Nl
∑

j=i

(

∥f̂sj − f̂si + f̂sj − f∥2w,nM
−2
i (M2

i n/ logn)
2si/(2si+d)1Ej

)

≤
Nl
∑

j=i

(

2c201Ej + 2
(

∥f̂si − f∥2w,nM
−2
i (M2

i n/ logn)
2si/(2si+d)1Ej

))

≤ 2c20 + 2
(

∥f̂si − f∥2w,nM
−2
i (M2

i n/ logn)
2si/(2si+d)

)

.

Therefore, according to Theorem 3.1, we have: for any δ ∈ (0, 1),

Nl
∑

j=i

(

∥f̂sj − f∥2w,nM
−2
i (M2

i n/ logn)
2si/(2si+d)1Ej

)

!
1

δ
,

with probability at least 1− δ log−2si/(2si+d) n− Cne−Cnϵd − e−⌊M2
i n⌋

d/(2si+d)
.

Next, we consider the other part when j < i:
i−1
∑

j=1

(

∥f̂sj − f∥2w,nM
−2
i (M2

i n/ logn)
2si/(2si+d)1Ej

)

. (4.36)
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By the definition, on the event Ej, there exists s′ ∈ B with s′ < si such that ∥f̂si− f̂s′∥w,n >
c0M ′−2(M ′2n/ logn)−s′/(2s′+d). This means ∥f̂si−f̂s′∥2w,nM

′−2(M ′2n/ log n)2s
′/(2s′+d) > c20. By

triangle inequality, this implies we have either ∥f̂si −f∥2w,nM
′−2(M ′2n/ log n)2s

′/(2s′+d) > c20/4

or ∥f̂s′ − f∥2w,nM
′−2(M ′2n/ logn)2s

′/(2s′+d) > c20/4. Then, we have

P(Ej) ≤
i−1
∑

l=1

(

P

(

∥f̂si − f∥2w,nM
−2
l (M2

l n/ logn)
2sl/(2sl+d) > c20/4

)

+P

(

∥f̂sl − f∥2w,nM
−2
l (M2

l n/ logn)
2sl/(2sl+d) > c20/4

))

. (4.37)

Since l < i, we have f ∈ Hsi(X , g;Ml) ⊂ Hsl(X , g;Ml) for all l < i. Therefore, it suffices to
focus on the concentration inequality of f̂sl to f , i.e., bounding

P

(

∥f̂sl − f∥2w,nM
−2
l (M2

l n/ log n)
2sl/(2sl+d) > c20/4

)

. (4.38)

Note that the key problem here is the rate of convergence of ∥f̂sj −f∥2w,n in (4.36) does not
match the rate (n/ logn)2si/(2si+d) given there. However, this can be dealt with by controlling
the probability of the event Ej. The strategy here is we need a better concentration inequality
than what has been proven previously as (4.32) otherwise the probability of the event Ej
will not decay to 0. Observe that the concentration (4.32): for n large enough and with
probability smaller than 1− 2δ,

⟨Ls
w,n,ϵf, f⟩w,n ! δ−1M2,

is from the application of Markov’s inequality with

E⟨Ls
w,n,ϵf, f⟩w,n ! M2,

for n large enough. While bounding the first moment gives a concentration inequality with
probability 1−2δ, establishing a higher moment bound, e.g. the second moment, would result
in a better concentration inequality with higher probability similar to [GBT21, Proposition
1], which fits in our proof technique.

Starting with s = 1 and similar to (4.21), we have: for n large enough,

Var⟨Lw,n,ϵf, f⟩w,n

!Var

⎛

⎝

1

2

1

n2ϵd+2

n
∑

i,j=1

(g(Xi)
−rf(Xi)− g(Xj)

−rf(Xj))
2g(Xi)

1−p
η
(

∥Xi−Xj∥
ϵ

)

g(Xi)1−q/2g(Xj)1−q/2

⎞

⎠ .

(4.39)

For i, j ∈ 1, . . . , n, let

Vij := (g(Xi)
−rf(Xi)− g(Xj)

−rf(Xj))
2g(Xi)

1−p
η
(

∥Xi−Xj∥
ϵ

)

g(Xi)1−q/2g(Xj)1−q/2
.

We have:

Var

⎛

⎝

n
∑

i,j=1

(g(Xi)
−rf(Xi)− g(Xj)

−rf(Xj))
2g(Xi)

1−p
η
(

∥Xi−Xj∥
ϵ

)

g(Xi)1−q/2g(Xj)1−q/2

⎞

⎠
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=
n
∑

i,j=1

n
∑

l,m=1

Cov(Vij , Vlm).

Now, consider the following four scenarios depending on the cardinality of {i, j, l,m}.
• If |{i, j, l,m}| = 4, since Vij and Vlm are independent, we have Cov(Vij, Vlm) = 0.
• If |{i, j, l,m}| = 3, without loss of generality, say i = l, we have by Lipschitz condition,

Cov(Vij, Vim) ≤ E[VijVim]

! ϵ2d+4M4.

• If |{i, j, l,m}| = 2, without loss of generality, say i = l and j = m, similarly, we
obtain

Cov(Vij, Vij) ≤ EV 2
ij

! ϵd+4M4.

• If |{i, j, l,m}| = 1, we have Vij = Vlm = 0.

Plugging the above results in (4.39), it yields that for n large enough,

Var⟨Lw,n,ϵf, f⟩w,n !
1

4n4ϵ2d+4

(

n3ϵ2d+4M4 + n2ϵd+4M4
)

! n−1M4,

where the last step follows by the assumption that nϵd ≥ 1. Then, by Markov’s inequality,
we obtain: for any δ ∈ (0, 1),

P

(

|⟨Lw,n,ϵf, f⟩w,n − E⟨Lw,n,ϵf, f⟩w,n| ≥
1

δ
M2

)

!
δ2

n
. (4.40)

Combining (4.40) and (4.22), we conclude that for n large enough,

⟨Lw,n,ϵf, f⟩w,n !
1

δ
M2

holds with probability not less than 1 − δ
n2 . Furthermore, following a similar argument in

Lemma 4.6, one can show the above high-probability bound also holds for the case s > 1.
Thus, under the additional Lipschitz assumption that |fg(x) − fg(x′)| ≤ M∥x − x′∥, we
establish a better bound for the empirical weighted Sobolev seminorm: for all s ∈ N+ and n
large enough,

⟨Ls
w,n,ϵf, f⟩w,n !

1

δ
M2,

with probability at least 1− C δ2

n .
Conditional on the event that the sample points X1, . . . , Xn satisfy (4.19) and (4.33) with

K = ⌊M2n⌋d/(2s+d), following the proof of Theorem 3.1 to obtain (4.35) by using the better
concentration inequality we derived above instead, we have for n large enough,

∥f̂ − f∥2w,n !
1

δ
M2(M2n)−2s/(2s+d),

with probability at least 1−Cδ2n−1−Cne−Cnϵd − e−⌊M2n⌋d/(2s+d)
under the minimax optimal

setting for M .
Now, returning to our mission (4.38), by setting δ−1 = c20/4 · log

2sl/(2sl+d) n, we have:

P

(

∥f̂sl − f∥2w,nM
−2
l (M2

l n/ logn)
2sl/(2sl+d) > c20/4

)



WEIGHTED LAPLACIAN-EIGENMAP BASED NONPARAMETRIC REGRESSION 31

≤ 16Cc−4
0 n−1 log−2sl/(2sl+d) n+ Cne−Cnϵd + e−⌊M2

minn⌋
d/(2s+d)

.

With (4.37), we obtain:

P(Ej) ≤ 16Cc−4
0 n−1 log1−2smin/(2smin+d) n+ Cne−Cnϵd logn + e−⌊M2

minn⌋
d/(2s+d)

log n.

Combining the above result with (4.36) and noting that on E c
j , 1Ej = 0, it yields that

i−1
∑

j=1

(

∥f̂sj − f∥2w,nM
−2
i (M2

i n/ logn)
2si/(2si+d)1Ej

)

!
1

δ
,

with probability at least

1−δ log−2si/(2si+d) n−16Cc−4
0 n−1 log2−2smin/(2smin+d) n−Cne−Cnϵd log2 n−e−⌊M2

minn⌋
d/(2s+d)

log2 n.

"

5. Conclusion

In this work, we provide adaptive and non-adaptive rates of convergence, in Theorem 3.1
and 3.2 respectively, for estimating a true regression function lying belonging to the Sobolev
space. Our estimators are based on performing principal components regression based on the
eigenvectors of the weighted graph Laplacian matrix, and using Lepski’s method for deriving
the adaptive results. Our contributions expand upon the non-adaptive outcome outlined
in [GBT23], which was originally established for a particular normalized graph Laplacian.
This extension encompasses a broad spectrum of weighted Laplacian matrices commonly
employed in practical applications, including the unnormalized Laplacian and the random
walk Laplacian among them.

Future works include (i) relaxing the assumption that the density g is bounded from below,
(ii) developing confidence intervals for the estimators by establishing asymptotic normality
results and developing related bootstrap procedures, and (iii) developing estimators that are
instance-optimal in the sense of [HL02], i.e., estimators that achieve the best possible rate
for a given combination of the true regression function f and the sampling density g by
adaptively picking the parameters p, q and r in the weighted graph Laplacian matrix.
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Science Foundation via grant NSF-DMS-2053918.
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Appendix A. Auxiliary results

In the subsequent two sections, we introduce some important properties of KDE and
eigenvalues of the weighted Laplacian matrices Lw,n,ϵ and the weighted Laplacian operators
Lw used in the previous proof respectively.

A.1. Property of kernel density estimation. Consider a Kernel density estimator (KDE)
on X :

gn(x) :=
1

nϵd

n
∑

j=1

η

(

∥x−Xj∥
ϵ

)

,

where η is a kernel function.
In [GG02], it has been proven that the above KDE satisfies the following almost sure

convergence:

∥gn(x)− Egn(x)∥∞ = Oa.s.

(
√

| log ϵ|
nϵd

)

,

given the assumption that the kernel η satisfies the kernel VC-type condition 3.1 and see
Remark 3.2 for more details.

As for the bias, it is well-known that there exists a boundary effect on KDE due to the
fact that (with probability 1) all the samples lie in the support of the density. However,
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when we are far enough away from the boundary such that Bx(ϵ) ⊂ X , we have

|Egn(x)− g(x)| =
∣

∣

∣

∣

∫

X

1

ϵd
η

(

∥x− y∥
ϵ

)

g(y)dy − g(x)

∣

∣

∣

∣

≤
∫

∥z∥≤1

η(∥z∥)|g(x+ ϵz)− g(x)|dz

! ϵ

∫

Rd

∥z∥η(∥z∥)dz ! ϵ,

where the last step is by the assumption that g is Lipschitz. As a result, for such values of
x,

∥gn(x)− g(x)∥∞ = Oa.s.

(
√

| log ϵ|
nϵd

+ ϵ

)

.

When x is near the boundary, i.e., Bx(ϵ) ̸⊂ X , we have Xi ∈ Bx(ϵ) with probability less
than Cϵ for some constant C > 0. Then:

Egn(x) ≤ gmax

∫

∥z∥≤1

η(∥z∥)dz < ∞,

and

Egn(x) =

∫

{∥z∥≤1}∩{x+ϵz∈X}
η(∥z∥)g(x+ ϵz)dz ≥ gmin

∫

{∥z∥≤1}∩{x+ϵz∈X}
η(∥z∥)dz > 0,

under the assumption 3.1 on X . Therefore, we have for all x ∈ X , gn(x) is bounded from
above and below a.s. for n large enough.

By conditioning on Xi and the law of total probability, we have for all i ∈ [n] and Bϵ(Xi) ∈
X ,

∆−(n, ϵ, η, g) ≤ gn(Xi)− g(Xi) ≤ ∆+(n, ϵ, η, g),

almost surely with

∆−(n, ϵ, η, g) := −
1

n
gmax +

η(0)

nϵd
−

n− 1

n
∆(n, ϵ),

∆+(n, ϵ, η, g) := −
1

n
gmin +

η(0)

nϵd
+

n− 1

n
∆(n, ϵ),

and

∆(n, ϵ) :=

√

| log ϵ|
nϵd

+ ϵ.

Since we are seeking a high-probability bound in Theorems 3.1, it is not necessarily required
to have an exact estimation near the boundary, which happens with probability of the order
ϵ. However, various approaches including data reflection, transformations, boundary kernels
and local likelihood, have been proposed for boundary correction.

A.2. Property of eigenvalues. In this section, we focus on introducing some results on
the eigenvalues of the weighted Laplacian Ln,w,ϵ and the weighted Laplacian operator Lw

based on analysis in [CT22, GBT21].
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A.2.1. Transportation Distance Between Measures. For a probability measure G defined on
X and a map T : X → X , denote by T♯G the push-forward of G by T , i.e., the measure such
that for any Borel subset U ⊆ X , it holds that

T♯G(U) := G(T−1(U)).

When T♯G is taken as the empirical measure of G denoted by Gn, T is called the transporta-
tion map between G and Gn and we define the ∞-transportation distance between G and
Gn as

d∞(G,Gn) := inf
T :T♯G=Gn

∥T − Id∥L∞(G), (A.1)

where Id is the identity mapping. We denote by T̃ the optimal ∞-optimal transport map
(∞-OT map) between G and Gn, i.e„ the map that achieves the infimum (A.1).

Now, following [GBT21], let

δ̃ := max{n−1/d, Cϵ},

where C > 0 is some constant not depending on n and we also let θ > 0 be some constant
not depending on n. We present the following result from [GBT21].

Proposition A.1 (cf. Proposition 3 of [GBT21]). Under the assumptions 3.1 and 3.1, with
probability greater than 1 − Cne−Cnθ2δ̃d , there exists a probability measure G̃n with density
g̃n such that

d∞(Gn, G̃n) ≤ C δ̃,

and such that

∥g − g̃n∥∞ ≤ C(θ + δ̃),

where C > 0 is some constant not depending on n.

A.2.2. Discretization And Interpolation Maps. The key procedure adopted in [CT22] is to
construct two maps: a discretization map P̃ : L2(G) → L2(G̃n) and an interpolation map
Ĩ : L2(G̃n) → L2(G), that are "almost" isometries.

For Xi, i = 1, . . . , n, define

Ũi := T̃−1({Xi}).

Then, we define the contractive discretization map P̃ : L2(G) → L2(G̃n) by

(P̃f)(Xi) := n ·
∫

Ũi

f(x)g̃n(x)dx.

Moreover, the interpolation map Ĩ : L2(G̃n) → L2(G) is given by

Ĩu := Λϵ−2δ̃(P̃
∗u).

Here, P̃∗ = u ◦ T̃ is the adjoint of P̃n, i.e.,

(P̃∗u)(x) =
n
∑

j=1

u(xi)1x∈Ui,
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and Λϵ−2δ̃ is a kernel smoothing operator with respect to a kernel K (defined below) with

the bandwidth ϵ− 2δ̃. The kernel K is defined by

K(x, y) :=
1

ϵd
ζ

(

∥x− y∥
ϵ

)

,

where

ζ(t) :=
1

σ1

∫ ∞

t

η(s)sds.

Then, define the operator Λh, for h > 0, by

Λhf(x) :=
1

τ(x)

∫

X
K(x, y)f(y)g(y)dy,

where τ(x) :=
∫

X K(x, y)g(y)dy is a normalization factor.
Furthermore, we define the Dirichlet energies:

bw,ϵ(u) := ⟨Lw,n,ϵu, u⟩gp−r ,

and

Dw(f) :=

⎧

⎨

⎩

∫

X
∥∇fg(x)∥2g(x)qdx if f ∈ H1(X , g),

∞ o.w.

Clearly, when w = (p, q, r) = (1, 2, 0), the above Dirichlet energies become the ones associ-
ated with the unnormalized Laplacian, i.e., w = (p, q, r) = (1, 2, 0):

bϵ(u) := ⟨(D̃ − W̃ )u, u⟩,
and

D2(f) :=

⎧

⎨

⎩

∫

X
∥∇f(x)∥2g(x)2dx if f ∈ H1(X ),

∞ o.w.

The following two propositions from [GBT21], whose proof is based on Proposition A.1,
shows the fact that discretization map P̃ and interpolation map Ĩ are almost isometries.

Proposition A.2 (cf. Proposition 4 of [GBT21]). With probability at least 1−Cne−Cnθ2δ̃d ,
we have for any f ∈ L2(X ),

bϵ(P̃f) ≤ C(1 + C(θ + δ̃))

(

1 + C
δ̃

ϵ

)

σ1 ·D2(f),

and for any u ∈ L2(Gn),

σ1D2(Ĩu) ≤ C(1 + C(θ + δ̃))

(

1 + C
δ̃

ϵ

)

· bϵ(u).

Proposition A.3 (cf. Proposition 5 of [GBT21]). With probability at least 1−Cne−Cnθ2δ̃d ,
we have for any f ∈ L2(X ),

∣

∣

∣

∣

∥f∥2L2(G) − ∥P̃f∥2L2(Gn)

∣

∣

∣

∣

≤ C δ̃∥f∥L2(G)

√

D2(f) + C(θ + δ̃)∥f∥2L2(G),
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and for any u ∈ L2(Gn),
∣

∣

∣

∣

∥u∥2L2(Gn) − ∥Ĩu∥2L2(G)

∣

∣

∣

∣

≤ Cϵ∥u∥L2(Gn)

√

bϵ(u) + C(θ + δ̃)∥u∥2L2(Gn).

Now, as we consider the Dirichlet energies bw,ϵ(u) and Dw(f) for the weighted Laplacian.
Note that by the boundedness assumption of the density g, we have there exist constants
C > 0 and C ′ > 0 such that

C ′
∫

X
∥∇fg(x)∥2g(x)qdx ≤

∫

X
∥∇fg(x)∥2g(x)2dx ≤ C

∫

X
∥∇fg(x)∥2g(x)qdx.

Also, with transformation v := D−r/(q−1)u for q ̸= 1, we have

⟨Lw,n,ϵu, u⟩gp−r = ⟨(D −W )v, v⟩.

This also holds for q = 1 by definition (2.2). According to Section A.1, we obtain that there
exist constants C > 0 and C ′ > 0 such that for large n, almost surely,

C ′bw,ϵ(u) ≤ bϵ(u) ≤ Cbw,ϵ(u).

Consequently, following the proof in [GBT21], we present the following propositions par-
allelling Proposition A.2 and A.3 associated with the weighted case.

Proposition A.4. With probability at least 1−Cne−Cnθ2δ̃d , we have for any f ∈ L2(X , gp−r),

bϵ(P̃f) ≤ C(1 + C(θ + δ̃))

(

1 + C
δ̃

ϵ

)

σ1 ·D2(f),

and for any u ∈ L2(Gn),

σ1D2(Ĩu) ≤ C(1 + C(θ + δ̃))

(

1 + C
δ̃

ϵ

)

· bϵ(u),

where C > 0 is some constant not depending on n or f .

Proposition A.5. With probability at least 1−Cne−Cnθ2δ̃d , we have for any f ∈ L2(X , gp−r),
∣

∣

∣

∣

∥f∥2L2(X ,gp−r) − ∥P̃f∥2w,n

∣

∣

∣

∣

≤ C δ̃∥f∥L2(X ,gp−r)

√

Dw(f) + C(θ + δ̃)∥f∥2L2(X ,gp−r) +∆(n, ϵ, η, g) + ϵ,

and for any u ∈ L2(Gn),
∣

∣

∣

∣

∥u∥2w,n − ∥Ĩu∥2L2(X ,gp−r)

∣

∣

∣

∣

≤ Cϵ∥u∥w,n

√

bw,ϵ(u) + C(θ + δ̃)∥u∥2w,n +∆(n, ϵ, η, g) + ϵ,

where C > 0 is some constant not depending on n or f and

∆(n, ϵ, η, g) =
1

n
gmax +

η(0)

nϵd
+

n− 1

n
∆(n, ϵ),

∆(n, ϵ) :=

√

| log ϵ|
nϵd

+ ϵ.

Also, we state the following Weyl’s law whose proof follows [DSST20, Lemma 7.10].
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Proposition A.6 (Weyl’s law). There exist constants C,C ′ > 0 such that

C ′l2/d ≤ λl(Lw) ≤ Cl2/d,

for all l ≥ 2.

Therefore, by following [GBT21, Proof of Lemma 2] except that we replace Propositions
A.2 and A.3 by Propositions A.4 and A.5, we obtain the following bound for the eigenvalues.

Lemma A.1. Under the assumptions 3.1 and 3.1, there exist constant C,C ′ > 0 and N > 0
such that for n ≥ N and C(logn/n)1/d ≤ ϵ ≤ C, with probability larger than 1 − Cne−Cnϵd,
it holds that

C ′ min{l2/d, ϵ−2} ≤ λl(Lw,n,ϵ) ≤ Cmin{l2/d, ϵ−2},
for all 2 ≤ l ≤ n.
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