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Abstract

We develop minimax optimal estimators for non-
parametric regression methods when the true re-
gression function lies in an Lo-fractional Sobolev
space with order s € (0, 1). This function class is
a Hilbert space lying between the space of square-
integrable functions and the first-order Sobolev
space consisting of differentiable functions. It con-
tains fractional power functions, piecewise con-
stant or piecewise polynomial functions and bump
function as canonical examples. We construct an
estimator based on performing Principal Compo-
nent Regression using Fractional Laplacian Eigen-
maps and show that the in-sample mean-squared es-
timation error of this estimator is of order nﬁfﬁ,
where d is the dimension, s is the order parameter
and n is the number of observations. We next prove
a minimax lower bound of the same order, thereby
establishing that no other estimator can improve
upon the proposed estimator, up to context factors.
We also provide preliminary empirical results vali-
dating the practical performance of the developed
estimators.

1 INTRODUCTION

Laplacian based nonparametric regression is a widely used
approach in machine learning that leverages the Laplacian
Eigenmaps algorithm to perform regression tasks without
relying on explicit parametric models. The nonparametric
nature of the approach makes it flexible and adaptable to
data generating processes without imposing strict assump-
tions about the functional form of the relationship between
the response and the covariates. Existing theoretical studies
of this approach are restricted to establishing minimax rates
of convergence and adaptivity properties when the true re-
gression function lies in Sobolev spaces; see Section [L.T for

details. Such spaces are inherently smooth in nature and ex-
clude important function classes in nonparametric statistics,
such as piecewise constant or piecewise polynomial func-
tions, bump functions and other such nonsmooth function
classes.

In this work, using the framework of fractional Laplacians,
we propose a novel approach called Principal Component
Regression using Fractional Laplacian Eigenmaps (PCR-
FLE) for nonsmooth and nonparametric regression. The
PCR-FLE algorithm generalizes the PCR-LE algorithm
by Green et al. [2023]] and the PCR-WLE algorithm by [Shi
et al. [2024], and is designed to naturally handle the case
when the true regression function lies in an Ly-fractional
Sobolev space H*(X) (see Definition . Specifically,
consider the following regression model, Y; = f(X;) + ¢;,
fori = 1,...,n, where f : X — R, f € H*(X) for

iid.

s € (0,1), X; '~ g, where g is a density on X C RY,
andg; = N (0,1) is the noise (independent of the X’s).
The goal is to estimate the regression function f given
pairs of observations (X1, Y1), ..., (X,, Ys). The proposed
PCR-FLE algorithm proceeds by estimating the eigenvalues
and the eigenfunction of the fractional Laplacian operator
(see (6)) based on the eigenvalues and the eigenvectors of
the e-graph constructed from the samples {X; }?_,, and pro-
jecting the response vector onto the top-K eigenvectors.

For this procedure, we make the following technical contri-
butions in this work:

e In Theorem we establish upper bounds for the
in-sample mean-squared estimation error for the PCR-
FLE algorithm, when the true regression function
lies in H*(X), for s € (0,1) that hold with high-
probability. As a part of the proof of our main results
in Theorem we derive a concentration inequality
of the discrete fractional Sobolev seminorm/energy to
its continuum, which serves as an important quantity
for other fractional Laplacian based machine learning
algorithms.
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* In Theorem [3.9] we provide a minimax lower bound
for integrated mean-squared estimation error when the
truth is in H*(X), for s € (0, 1), suggesting that the
matching upper bounds in Theorem are optimal.
To the best of our knowledge, this is the first minimax
optimality lower bounds result under random design
over fractional Sobolev spaces.

We provide preliminary simulations of the proposed ap-
proach validating the performance of PCR-FLE algorithm
in estimating various nonsmooth functions in Section [.
Our contributions underscore the importance of employing
fractional graph Laplacians in nonsmooth nonparametric
regression and lay a strong statistical groundwork for this
technique.

1.1 LITERATURE REVIEW

Graph Laplacians find extensive use in various data science
applications, including feature learning and spectral clus-
tering [Weiss, (1999, |Shi and Malik; 2000, Ng et al., 2001,
von Luxburg, [2007]. They are employed for tasks such as
extracting heat kernel signatures for shape analysis [[Sun
et al., 2009, |Andreux et al., 2015, [Dunson et al., [2021],
reinforcement learning [Mahadevan and Maggioni, 2007,
Wu et al.| 2019], and dimensionality reduction [Belkin and
Niyogi,|2003}|Coifman and Lafon,[2006], among others. Ad-
ditional discussions can be found in works by Belkin et al.
[2006], Wang et al. [2015], |Chun et al.|[2016], Hacquard
et al. [2022].

Several papers in the recent past have focused on obtaining
theoretical rates of convergence in the context of Laplacian
operator estimation and related eigenvalue and/or eigen-
function estimation. Pointwise consistency under e-graphs
have been studied by |Belkin and Niyogi| [2005]], |Hein et al.
[2005], |Giné and Koltchinskii [2006], Hein et al. [2007];
see references therein for more related works. Furthermore,
Trillos and Slepcev [2018] derives consistency properties
of spectral clustering methods through studying the above
spectral convergence with no specific error estimates. Fol-
lowing them, Shi|[2015], Trillos et al. [2020], (Calder and
Trillos| [2022] derived rates of convergences of Laplacian
eigenvalues and eigenvectors to population counterparts
with explicit error estimates under both e-graphs and k-
NN graph. Recently, [Hoffmann et al.| [2022] developed a
framework for extending the above convergence results to a
general Laplacian family, the weighted Laplacians and Shi
et al.|[2024] provided additional theoretical results on the
convergence of the weighted Laplacians. Green et al.|[2021]
considered Laplacian smoothing estimation and showed its
minimax optimal rates in low-dimensional space. |Green
et al. [2023] proposed the principal components regression
with the Laplacian eigenmaps (PCR-LE) algorithm that
achieves minimax optimal rates of nonparametric regression
under uniform design. The PCR-LE algorithm was later

generalized by Shi et al. [2024] to the weighted Laplacians
that include other commonly applied Laplacians such as
the normalized Laplacian and the random walk Laplacian.
Moreover, from a methodological perspective, Rice|[|[1984]
investigated spectral series regression on Sobolev spaces,
and (Trillos et al. [2022] applied the graph Poly-Laplacian
smoothing to the regression problem.

The literature on both theoretical analysis and statistical
applications fractional (graph) Laplacians is still in its in-
fancy. Antil et al. [2021] extended the standard diffusion
maps algorithm to the fractional setting that involve the
use of a non-local kernel. Fractional Laplacian regulariza-
tion was applied in|Antil et al.|[2020] to study tomographic
reconstruction. [Dunlop et al. [2020] studied large graph
limits of semi-supervised learning problems via powers of
graph Laplacian, including fractional Laplacians and pro-
vided their consistency guarantee in terms of I"-convergence.
Building on this, semi-supervised learning with finite labels
was explored in|Weihs and Thorpe [2023] via minimizing
the fractional Sobolev seminorm/energy and consistency
of such approach was provided through showing the I'-
convergence.

There is an extensive literature on nonparametric statistics
on estimating piecewise constant or polynomial functions;
see, for example, Chaudhuri et al.|[1994],|Donoho [1997],
Scott and Nowak|[2006], Tibshirani/ [2014] and references
therein for a sampling of such work. While most of this work
focuses on the one or two dimensional setting, (Chatterjee
and Goswami [2021] recently considered the multivariate
setting and established adaptive rates. Many of these con-
tributions either consider fixed (lattice-based) designs or
axis-aligned partitions. Under appropriate boundary con-
ditions on the shape of the partition cells (not necessarily
axis-aligned), piecewise constant or polynomial functions
belong to fractional Sobolev spaces. Furthermore, rates of
estimation in the case of Holder and Lipschitz functions
are well-studied [Gyorfi et al., 2002, [Tsybakov, |[2008]. In
particular, Holder functions on bounded domains (which
is typically needed in statistical estimation contexts) be-
long to fractional Sobolev spaces. The inclusion in the other
direction is more complicated, and we refer to Rybalko
[2023] for the state-of-the art results in one-dimension. Esti-
mating functions with bounded variation, in both one and
multidimensional settings is also considered in the litera-
ture; see, for example, Mammen and Van De Geer|[[1997],
Koenker and Mizera [2004], [Sadhanala et al.|[2016], Hiitter:
and Rigollet|[2016], Sadhanala et al.|[2017] and references
therein for some representative works. In particular, a recent
work by |Hu et al.|[2022] considered the random design set-
ting in the multivariate case and established minimax rates.
More technical details regarding the relationship between
function spaces of bounded variation and fractional Sobolev
spaces are provided in Section



2 PRELIMINARIES AND
METHODOLOGY

2.1 LAPLACIAN MATRICES BASED ON
e-NEIGHBORHOOD GRAPHS

Fori.i.d data X7, ..., X,, from a distribution G suported on
X C R? with the density g, the e-neighborhood graph is
defined by setting the vertex set as { X1, ..., X, } and the
adjacency matrix with weights:

X —X; o
w;j ::7]<|Z€J”> 1|\X1‘*Xj|\§67 z,g:l,...,n,
(D

where || -|| denotes the standard Euclidean norm. Here n > 0
is a non-increasing kernel function and € is the bandwidth
parameter.

The adjacency matrix is then W = (wf ;)i j=1,..» and
the degree matrix D = (d;;); j=1,...» is then given by a
diagonal matrix with the ¢-th diagonal element as d; :=

" w¢ . fori=1,...,n. The associated (unnormalized)
J=1 "1,
graph Laplacian is a matrix on the e-graph defined as:
1
Ln,e = W( - W)7 (2)

where 1/(ne?*2) is a scaling factor to ensure a stable limit.
For v € R"™, the ¢-th coordinate of the vector L,, cu is given
by

I & .
i=1

It is well known that the (unnormalized) graph Laplacian
(2) is self-adjoint with respect to the Euclidean inner prod-
uct (-, -). We denote by the scaled Euclidean inner product
{-,*)p :=n~1(-,-) and write its corresponding scaled norm
as |- .

While we restrict our attention here to the unnormalized
graph Laplacian, other forms of the graph Laplacians are
also widely used in machine learning tasks; some examples
include the normalized Laplacian, the random walk Lapla-
cian and a larger family of the weighted graph Laplacians
[Hoffmann et al., 2022, |Shi et al.,2024]] (which includes the
normalized Laplacian and random walk Laplacian as special
cases). It is possible to extend the procedure proposed in this
paper to the class of weighted graph Laplacians, as done in
Shi et al. [2024]]. We leave a detailed analysis of the merits
of such an extension for future work.

2.2 PRINCIPAL COMPONENT REGRESSION VIA
FRACTIONAL LAPLACIAN-EIGENMAP

The eigenmap was first proposed in Belkin and Niyogi
[2003] to deal with nonlinear dimensionality reduction and

data representation. Recently, |Green et al.|[2023]], Shi et al.
[2024] established minimax optimal rates of nonparametric
regression via eigenmap on the (weighted) Laplacian. Here,
we propose the following principal components regression
with the fractional Laplacian eigenmaps (PCR-FLE) algo-
rithm based on the fractional Laplacian matrix Ly, . for
0<s<1:

(1) For a given parameter ¢ > 0 and a kernel function 7,
construct the e-graph according to Section [2.1

(2) Compute the fractional Laplacian matrix L, . based on
[2) via its eigen-decomposition L3 . = Y7, Ajv;v]
where ()\;, v;) are the eigenpairs with eigenvalues 0 =
A1 < ... < A\, in an ascending order and eigenvectors
normalized to satisfy ||v;||, = 1,fori=1,...,n.

(3) Project the response vector Y = (Y7,...,Y,)T onto
the space spanned by the first K eigenvectors, i.e.,
denote by Vi € R™*K the matrix with j-th column as
Vi, =v;forj=1,..., K and define

f=VkViLY, )
as the estimator.

We remark here that the entries of the vector f are the in-
sample values of the estimator of the regression function f.
Intuitively speaking, PCR-FLE algorithm can be regarded as
a PCR variant by substituting the sample covariance matrix
with the fractional Laplacian matrix Ly, ., for 0 < s < 1.
The spotlight of PCR-FLE, however, lies in its capacity
to learn nonsmooth functions by the fractional Laplacian
compared to the sample covariance matrix or the (weighted)

Laplacian.

2.3 FRACTIONAL LAPLACIAN OPERATOR AND
FRACTIONAL SOBOLEYV SPACES

In this section, we introduce the function space that we con-
sider for our analysis, the fractional Sobolev space, which
includes many nonsmooth functions that are of interest in
practice.

Definition 2.1. For any 0 < s < 1, the Ly-fractional
Sobolev space H®(X) is defined as:
u(@) —u(y)®
ue L3(X :/ |7da:dy<oo},
{ P Jexx To—al#

where L(X) := {u: [, v?(z)dz < co}.

Consequently, the fractional Sobolev space is an intermedi-
ary space between L?(X') and the first-order Sobolev space
H'(X) (consisting of differentiable functions) with the frac-
tional Sobolev seminorm:

ju(z) — u(y)? )é
U|gs = ———"dzd ,
el (/H o —glares 4o



and the fractional Sobolev norm:

3
ullir o= ([ W@+ oy )
X

For M > 0and 0 < s < 1, the class of all functions u

such that ||u|| s (xy < M is called a fractional Sobolev ball
denoted by H*(X'; M) of radius M.

The above definition of the fractional Sobolev space H*(X')
is also linked with the following spectrally defined fractional
Sobolev space:

HE(X) = {u €L’(X): ) A} < oo} N6))
=1

where a; = (u, ¢;), for i > 1 and {(A;, ¢;)}52, are the
eigenpairs of the Laplace—Beltrami operator £ such that for
1> 1:

.. 0

£¢i = Al(]ﬁz with 7(}% = O, on 8X7
On

where n stands for the outer normal vector and Lu =
—div(Vu). Note also that the continuum limit of (2) corre-
sponds to L as long as g is uniform. In this discussion, we
stick to the case of uniform g for simplicity and remark that
the connection holds for a general class of densities.

It has been emphasized in Dunlop et al.| [2020] that
H(X) — H(X )El The above representation of the frac-
tional Sobolev space is more related to the spectral se-
ries regression (see Rice|[[1984], (Green et al. [2023]) and
semi-supervised learning for missing labels (see(Weihs and
Thorpe [2023]]).

Moreover, the fractional Sobolev space H*(X) is natu-
rally related to the fractional Laplacian operator £° for
0 < s < 1. Readers are referred to | Di Nezza et al. [2012]
for more details. Here, given a function v in the Schwartz
space of rapidly decaying C'S° (X )E] functions, the fractional
Laplacian is defined as

Liu(x) = cmSP.V./ u(z) — uly) 6)

ra ||z =yl

where ‘P.V. stands for the Cauchy Principle Value and
Cn.s 1= 822°T((d+25)/2)/T(1 — s).IDi Nezza et al. [2012,
Proposition 3.6] show the following relationship between
their norms:

|ulFs (may = 265 S 1£°]1 72 ga)-

We end this section by providing some examples of
nonsmooth functions that are of interest in nonparametric
statistics while not covered by the integer-indexed Sobolev

' stands for continuous embedding.
2the function v is compactly supported on X

space.

Example 1: Power functions. It has to be noted that
the Sobolev space H*(X) for s € N not only requires
the functions to be s-times (weakly) differentiable but the
derivatives have to be square-integrable as well. Let’s con-
sider the following function:

fi(z) = |2

n (—1,1). Obviously, f; is not (weakly) differentiable at
0. Furthermore, note that fol 22Dy = 0o, for 0 < a <
1/2. Therefore, it doesn’t belong to any integer-indexed
Sobolev space when 0 < o < 1. However, let us consider

O<ac<l, )

Ul = Jylof? e
|films(—1,1)) = </ / |m— 1425 dwdy) ,

for0 < a < 1and 0 < s < 1. Note that the singularity is at
x = y. Furthermore, we have |2|* — |y|* ~ a|y|* 1 (z —y)
as x — y for y # 0 and fol 2~ Pdx < oo for p < 1. Hence,
the fractional Sobolev seminorm | f1|ge((—1,1)) < oo, for
0 <s<1land1/2 < a < 1. In summary, the function
hence belongs to the fractional Sobolev space H*((—1, 1))
for0 <s<lwhenl/2<a<1.

Example 2. Piecewise constant functions. Now, consider
the following function on [0, 1]:

o [Lo<Es12
N0, 1/2 < < 1

Clearly, on the same support, foc(z) = foc(y) for 0 <
x,y < 1/20r1/2 < z,y < 1. It then suffices to only
consider the following integral:

3l 1
. rdy,
/o /é lz — g2

for0) < s < 1. As fol x~Pdx < oo for p < 1, it is finite
for 0 < s < 1/2. Then, the fractional Sobolev seminorm is
finite for 0 < s < 1/2, which implies f,,.(z) belongs to the
fractional Sobolev space H*([0,1]) for 0 < s < 1/2.

A generalization of the above example is the piecewise con-
stant functions or blocks (see Donoho and Johnstone|[|[1994]
for more details) denoted by f>(x), where the function is
constant on multiple intervals that form a partition of X'. For
instance,

1, O0<z<1

0.5, 1<z<2
= - 8
fa(m) 9 2<w<3 (8)

—2.5, 3<x<5h.
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Figure 1: Examples of functions that lie in a Fractional Sobolev spaces. The function f1, f2, f3 and f4 are as defined in (7),

@), @) and respectively.

The piecewise constant functions/blocks belong to the
fractional Sobolev space H*(X) for 0 < s < 1/2.

Example 3. Piecewise polynomial functions. The piece-
wise polynomial functions extend the blocks above by
putting a polynomial function with degree at most » > 0 on
each interval partition of the support X'. Furthermore, since
we are considering nonsmooth functions, discontinuities at
the boundaries of each interval are allowed here. According
to the boundedness of the fractional Sobolev seminorms of
the power functions f;(z) and the blocks fo(z), the piece-
wise polynomial functions belong to the fractional Sobolev
space H*(X) for0 < s < 1/2 and all » € N when X is
considered to be an open, connected and bounded subset of
R (see Section [3.1). For example,

0<zx<1
202 +2, 1<z<?2
—z+2, 2<z<3
0.223 — 2z — 4,

€z,

f3(z)

3 <ax<h.

In general dimension d > 1, the above arguments can be
generalized to imply that the piecewise polynomial func-
tions (including the piecewise constant functions) belong
to the fractional Sobolev space when each partition of the
support X is connected and bounded and the boundary of
each partition is a lower dimensional space, which allows

non-axis aligned partitions.

Example 4: Bumps functions The (multiple) bumps are
functions that decay fast from each peak of the bumps. In
signal processing, the bumps with polynomial decay or ex-
ponential decay are commonly considered. For example,

10)

where K ([t|) := (1 + [¢t|)~*, and {tj,hj,wj}j:l are pa-
rameters that ¢; are the locations of each peak and h; are
the peak values. Due to the polynomial/exponential decay,
the bumps f4 () also belong to the fractional Sobolev space
H*(X) for 0 < s < 1/2 when X is considered to be an
open, connected and bounded subset of R (see Section m

We emphasize that the the nonsmooth functions presented
above (including their extensions in R?) are representa-
tive of spatially variable functions arising in imaging, spec-
troscopy and other signal processing applications that are of
considerable practical importance. We refer to Donoho and
Johnstone [[1994], Boudraa et al.|[2004], [Liu et al.|[2016],
Sardy et al. [2000, 2001] for additional exposition of the
examples.



2.4 RELATIONSHIP TO OTHER FUNCTION
CLASSES

First note that according to the definition of the fractional
Sobolev space (i.e., Definition , bounded Holder func-
tions of order @ > 0 on bounded domains belong to the
fractional Sobolev space for 0 < s < (a A 1).

Hu et al. [2022] considered nonparametric estimation with
general measure-based bounded total variation class, with
finite L, norms. For this class, they developed minimax es-
timators. In particular, the total variation norm was with
respect to the Ly norm of the weak derivatives. More-
over, [Fang et al.| [2021] investigated a similar class: the
bounded variation in the sense of Hardy-Krause. The frac-
tional Sobolev space that we focus on in this work are set
to be a subspace of Lo space, the corresponding norms are
function-value based and do not require weak derivatives to
exist. Furthermore, the class of fractional Sobolev spaces
can be considered with respect any L, space for p > 1 (see
Di Nezza et al.|[2012] for the definition). In general, both
bounded variation functional space and fractional Sobolev
space can characterise nonsmooth functions. When special-
izing in the indicator functions, the bounded variation func-
tional space only contains such functions with locally finite
perimeter for the support. The exact inclusion relationships
between the spaces of bounded variation functions (with re-
spect to the weak derivatives) and L, or Lo based fractional
Sobolev spaces are not well-explored in the literature, to the
best of our knowledge.

Rockova and Rousseau|[2021] studied Bayesian estimators
when the truth lies in the set of locally Holder functions with
finite L., norm. When considering the bounded support X,
locally Holder functions belong to the fractional Sobolev
space. However, in general, the Holder functions include
functions that may not even be in L; or Lo. Imaizumi and
Fukumizu [2019] applied deep neural networks to learn
a class of nonsmooth functions that are piecewise Holder.
Similar to locally Holder functions, when considering the
bounded support &X', bounded piecewise Holder functions
belong to the fractional Sobolev space while in general, the
former one allows functions not necessarily in L; or L.

Intuitively speaking, when characterising nonsmooth func-
tions, compared to the aforementioned functional spaces,
the fractional Sobolev space tends to allow ‘worse’ local
non-smoothness while requiring ‘better’ global smoothness
(in Ly or Lo).

3 THEORETICAL RESULTS

Before stating our assumptions and results, we introduce
some conventions. For two real-valued quantities, A, B, the
notation A < B means that there exists a constant C' > 0
not depending on f, M orn suchthat A < CBand A < B

stands for A < B and B < A. Also, applying the scaled Eu-
clidean norm || - ||, or the corresponding scaled dot-product
(-,)n to a function f, is to be understood as applying it
to the vector in-sample evaluations (f(X1),..., f(X,)) of
the function.

3.1 ASSUMPTIONS

We list the following major assumptions needed for the
sampling distribution/density and the kernel 7.

(A1) The distribution G is supported on X', which is an open,
connected, and bounded subset of R? with Lipschitz
boundary.

(A2) The distribution G has a density g on X such that
0 < gmin < 9(2) < gmax < 00, forallz € X,

for some gyin, gmax > 0. Additionally, g is Lipschitz
on X with Lipschitz constant L, > 0.

(A3) The kernel 7 is a non-negative, monotonically non-
decreasing function supported on the interval [0, 1] and
its restriction on [0, 1] is Lipschitz and for convenience,
we assume 7(1/2) > 0 and define

1
woi= [ el o= 5 [ lulPadluiba.
RrR™ R™

Without loss of generality, we will assume o9 = 1
from now on.

Assumptions (A1) and (A2) are mild and standard assump-
tions on the density function in the field of graph Laplacians,
which are also made in|Green et al. [2023], |Shi et al. [2024],
Trillos et al. [2020]. Assumption (A3) is a standard normal-
ization condition made on the smoothing kernel; see [Trillos
et al.|[2020] for more details. The requirement that 7 is com-
pactly supported is purely due to our proof technique. While
it is in principle possible to generalize it for non-compact
kernels as long as the tails decay relatively fast including the
Gaussian kernel, that would require obtaining error bounds
on extra terms on the tail, which is beyond the scope of this

paper.

3.2 ESTIMATION ERROR OF PCR-FLE
ALGORITHM

Theorem 3.1. Let Assumptions (Al)-(A3) hold, and fur-
ther assume f € H*(X; M) for 0 < s < 1 and M > 0.
Suppose there exist constants cy, Cy > 0 such that

1
1 a 1
co<°g”) <e< Gk,
n

with

K:min{L(MQn)ﬁJ v1,n}. 11



Then, there exist constants ¢, C > 0 not depending on f, M
or n such that for n large enough, the estimator f defined

in @) satisfies:
If = fI12 < C{(M>(M?n)~ =5 A1) vt}

. .7 d+4
with probability at least 1 — Cn?e="¢""" — Cne™" —
Cne—cned _ e—K

Remark 3.2. Theorems [3.1| implies that the PCR-FLE
algorithm achieves an upper bound of rates n—2/(25+d)
with respect to the fractional Sobolev spaces H®(X') for
0 < s < 1 with high probability, provided that n='/2 <
M < n®/4. Recall that the minimax optimal rates for the
integer-valued Sobolev space H°(X) (s € N, ) is given
by M2(M2n)725ﬁ in [Gyorfi et al.| [2002], Wasserman
[2006], |Tsybakov| [2008]. While allowing s — 17, it is
consistent with the above rates for the first-order Sobolev
space H!(X).

Remark 3.3. Under a fixed-design setup (i.e., a regular
lattice/grid), |Chatterjee and Goswami [2021] considered
optimal regression tree (ORT) and showed that the finite
sample risk of ORT is always bounded by C(r)k# for
some constant C(r) > 0 and N = c? for some grid size
¢ > 0 when the regression function is piecewise polynomial
of degree r on some reasonably regular axis-aligned rect-
angular partition of the domain with at most k rectangles.
While such piecewise polynomial regression function be-
longs to the fractional Sobolev space, our bound in Theorem
[3-1]is valid for a larger family of nonsmooth functions and
allows random design set-up.

Remark 3.4. A phase transition in the fractional Sobolev
space H*(X') was discussed inDunlop et al.|[2020, Lemma
4] that the regularity of the fractional Sobolev space depends
ons < d/2ors > d/2(whens < d/2, H°(X) cannot even
embed continuously into the space of continuous functions
Cco (X)). However, it should be noted that Theorem|3.1 does
not require the condition s > d/2 regardless of the phase
transition.

Remark 3.5. The lower bound for € makes sure that with
this smallest radius, the resulting graph will still be con-
nected with high probability and the upper bound for ¢
ensures the eigenvalue of the graph Laplacian to be of the
same order as its continuum version, the eigenvalue of the
Laplacian operator (Weyl’s law). The condition on K is set
to trade-off bias and variance.

Remark 3.6. For computing the eigen-decomposition, we
can leverage efficient sparse eigen-decomposition algo-
rithms (e.g., Lanczos or randomized SVD) that scale nearly
linearly in n for sparse graphs. This is so, because we only
require computing the top-K eigenvectors of the graph
Laplacian, where £k < n with K = O(nﬁ), where
d/(2s + d) does not explode in higher dimensions, and the

e-neighborhood graph constructed is sparse by design. More-
over, in the context of other similar problems like graph-
based semi-supervised learning, conjugate-gradient based
methods have been proven useful in obtaining speedups for
large but sparse graphs. See |Sharma and Jones|[2023] for
details.

Remark 3.7. |Antil et al. [2020] considered nonparametric
regression via fractional Laplacian regularization. However,
no convergence rates of any kind were investigated there.
On the other hand, it has been discussed and emphasized
in Green et al.|[2021,|2023] that Laplacian regularization
usually achieves worse minimax rates of convergence espe-
cially in high-dimensional space R? compared to Laplacian
eigenmaps.

Remark 3.8. Although our current theoretical analysis as-
sumes homoscedastic Gaussian noise, the PCR-FLE algo-
rithm could be extended to heteroscedastic noise models
with minimal changes to the proof. This would require re-
placing the standard chi-squared concentration with concen-
tration inequalities for quadratic forms with non-constant
variance (e.g., using Bernstein-type inequalities). We expect
the upper bound to remain of the same order under mild
regularity assumptions on the noise variance function.

3.3 LOWER BOUND AND MINIMAX
OPTIMALITY

For an estimator fnz define its integrated mean-squared esti-
mation error as E|| f,, — f[|? := [,.(fn(2) — f(x))?g(z)dz.
The following theorem establishes a minimax lower bound
in the integrated mean-squred estimation error for estimat-
ing functions in H*(X, M).

Theorem 3.9. Suppose f € H*(X; M) for 0 < s < 1 and
the density g is uniform on X. Then, there exists a constant
C1 > 0 independent of M,n such that n~ T4 is a lower
minimax rate of convergence. In particular,

E|f. — fII?
liminfinf  sup M

— >, > 0.
n—o0  f. feHs(X,M) MZs+dn~ Zs+d

The above result allows random design set-up compared to
the existing works such as|Chatterjee and Goswami [2021].
The proof involves generalizing the arguments in|Gyorfi et al.
[2002, Proof of Theorem 3.2] to handle the non-smoothness
in fractional Sobolev spaces.

Remark 3.10. Combing with Theorem 3.1} Theorem 3.9
etablishes the minimax optimality of the proposed PCR-FLE
algorithm. That is, no other estimator can perform better
than the PCR-FLE method, up to constant factors.



4 NUMERICAL EXPERIMENTS

In this section, we empirically demonstrate the performance
of the PCR-FLE algorithm in Section [2.2]for learning nons-
mooth regression functions. Particularly, in our experiments,
we stick to considering those functions that are of practical
importance as introduced in Section[2.3] For simplicity, we
set the design distribution G as the uniform distribution and
examine the piecewise polynomial (including piecewise con-
stant/the blocks) functions as the true regression function.
For the construction of graph Laplacian, we pick a truncated
Gaussian kernel. Unless otherwise stated, all tuning param-
eters are set as the optimal values according to grid search
and each experiment is averaged over 200 repetitions.

Estimation. We now consider the mean squared error of
the PCR-FLE estimation on the nonsmooth functions: the
piecewise constant function and the piecewise polynomial
function (f2(z) and f3(x) respectively in Figure[I). Due to
relatively rapid rate of convergence, the sample size n is set
to vary from 500 to 1000.

In Figure |2 (log-log scale), we show the in-sample mean
squared errors of both estimators as a function of the sample
size n. We see that both estimators have mean squared error
converging to 0 roughly at our theoretical rate in Theorem
3.1| while this provides a high probability upper bound. In
Figure 3 and Figure [ (in Section[A), we present the fitted
regression function by PCR-FLE, visually.

S DISCUSSION

We proposed and analyzed the PCR-FLE algorithm for per-
forming nonparametric regression when the true function
lies in the Lo-fractional Sobolev space, H*(X, M). The
approach is computational efficient and it involves comput-
ing the top-K eigenvalues and eigenvectors of size n X n
graph Laplacian matrix. Under a random design setting, we
established minimax rates of convergence of order nf%zﬁ s
where 7 is the number of observations. There are several
avenues for future works:

* Our current results require knowledge of s and M in
setting the bandwidth parameter e and the number of
eigenvalues K. It is interesting to develop estimators
that are adaptive to the choice of s and M, by extending
the recent results in|Shi et al. [2024].

* It is interesting to go beyond Ls-fractional Sobolev
spaces and consider L;-fractional Sobolev spaces
which allow for richer class of nonsmooth true func-
tions.
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Figure 3: The red line shows the true regression function. The blue line shows the average of the regression fit by PCR-FLE
estimation condition on a generation of uniform sample on [0, 5]: n = 100 (top) and n = 1000 (bottom). See FigureE(in
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A ADDITIONAL EXPERIMENTAL RESULTS
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Figure 4: The red line shows the true regression function. The blue line shows the expectation of the regression function
estimated by PCR-FLE: n = 100 (left) and n = 1000 (right).



B PSEUDOCODE OF THE PCR-FLE ALGORITHM

Algorithm 1 PCR-FLE: Principal Component Regression via Fractional Laplacian Eigenmaps

Require: Data {(X;,Y;)}" ,, bandwidth € > 0, fractional order s € (0, 1), number of components K, kernel function n

Ensure: Estimated regression values f € R™
1: Construct e-neighborhood graph:

2: fori =1tondo

3: forj=1tondo

4: lf”Xl —Xj” < ¢ then

5: wij < 0 ([1Xi — X;ll/¢)
6: else

7: Wij < 0

3: end if

9: end for

10: end for

—_

W o+ (wij), D;; Zj Wij, and Ln)6 — W%H(D — W)

: Eigen-decomposition:

: Compute eigenpairs (A;, v;) of Ly, ¢t A1 < -+ < Ag with the corresponding eigenvectors vy, . . ., Uk
: Project response onto top-K eigenvectors:

: Form Vi = [vy,...,vg] € RW*K

: Compute projection: f =VgVL5Y

: return f

e e
~N N B WD




C PROOF OF THEOREM

In this section, we will prove Theorem 3.1} To this end, we first present some auxiliary lemmas. In the following, C' stands
for positive constants that may change from line to line but do not depend on n or M.

Lemma C.1 (Weyl's Law). Suppose Assumptions|3.1|and|3.1|hold. There exist constants ¢, C' > 0 such that

cki < Ay < Cka, forallk > 1.

Here, Ay, is the k-th eigenvalue of the weighted Laplacian operator L4 in the ascending order, where Lyu 1= — ﬁdiv(g2 Vu).
The Weyl’s law is a standard result in operator analysis. We refer interested readers to |Dunlop et al.|[2020, Lemma 7.10] for
a detailed proof.

Lemma C.2 (Lemma 2 in|Green et al.|[2021])). There exist constants Cy,Co, Cs3, Cy, Cs > 0 such that for n large enough

and C1(log n/n)i < e < Oy, with probability at least 1 — C’gne’c?’”ed, it holds that

Cy (k% /\7"*2) <A < Cj (k% /\7“*2), for2 <k <n.

The above result actually is different from similar results established in|Burago et al. [2015]], Trillos et al. [2020], |Calder and
Trillos [2022], who establish similar results for manifolds without boundary. We refer to (Green et al.|[2023, Appendix D]
for a more detailed discussion.

We are now in the position to prove the main Theorem

Proof of Theorem By Cauchy-Schwarz inequality, we have:
IF = £I7 <20Bf = £12 +1F —EFI7).
Then, according to PCR-FLE algorithm in Section[2.2] we obtain

R = <L1?L efa f>7l
IEf = fI2 = > (o, )2 < 2t (12)
>\K+1
k=K 41

and

K

Hf - Ef”gz = Z<vk75>i7

k=1

where € := (e1,...,e,)7.

Now, note that if K = 0, f = 0 then || f — Ef||2 = 0. We then focus on the case when K > 1. Since (v, €),, is normally
distributed with 0 mean and variance:

1 1
\¢ W = — Var(vg, &) = — 13
ar(vy, £) 3 ar(vg, €) - (13)
as (vg, vi) = n. Then, we obtain:
1w il
I ~EFI2 = = S (a2 £ -3 22,
k=1 k=1

where { Zk}ﬁ(:l are i.i.d. standard normal by the orthonormality of the eigenvectors.

According to an exponential concentration inequality for chi-square distributions from |Laurent and Massart [2000], we have

P <|f—IEf||2 > —+2£xf+2 ) : (14)



With and (14), it yields that

If = fI% <

L3 n
idi I | K )

Ak 11
with probability at least 1 — e ¥ if 1 < K < n. Moreover, when K = 0, holds immediately.

Now, it remains to bound the empirical fractional Sobolev seminorm (L;, . f, f), and the (power of) graph Laplacian
eigenvalue A 11 (A, () for0 < s < 1.

Now, we first focus on the empirical fractional Sobolev seminorm (Lj, . f, f), for 0 < s < 1. Note that Weihs and Thorpe
[2023], Dunlop et al. [2020], Trillos and Slepcev|[2018]] showed the I'-convergence of the above empirical fractional Sobolev
seminorm to its continuum in (5). However, I'-convergence does not fully suffice for our purpose. Instead, we will adapt the
proof procedures applied in|Calder and Trillos [2022], (Green et al. [2021} 2023 for our situation, as we describe next.

First note that according to the eigendecomposition of L,, ., we obtain:

i=1
Now, by Lemma [C.T and Lemma|C.2] we have that
Ai S Ai7
for 1 < ¢ < n with probability at least 1 — Cne=°"". We now focus on the eigenvectors {v; }?_,. For a given eigenvalue
A>00f Ly, assume A = A1 = ... = Ay, for some ¢ and k, where k is multiplicity of A. We then define the eigenvalue
gap of A as:
1
YA = §(|A—Ai\/\|A—Ai+k+1|)~ an

Now, according to Green et al.|[2021, Proof of Theorem 6], we can pick e small enough and constants A, 0, 5 > 0 such that
~ 1
1—A(e\/K+0+6) >3,

where 6 and § are given in|Green et al. [2021} Equation (36), Section D] and A > 0 is defined in|Green et al. [2021, Proof of
Theorem 6] with A > 2. Then, an application of |(Green et al.|[2021}, Theorem 6] yields that for such A = A; (I-th eigenvalue

of L, in the ascending order), with probability at least 1 — Cne*C"GZSd',
CL)\l S UlAl S A)\l, (18)

where a is given in |Green et al. [2021, Proof of Theorem 6] with a~! > 2. Then, we have with probability at least
1 — Cne—cn0?".

N — oA < (a7t = 1) V(A —1))o1A; < Cryp,. (19)
Let S be the subspace of /% spanned by the eigenvectors of L,, . associated to the eigenvalues \;i1,. .., Aiy,. In the
following, we will establish the bound on the eigenfunctions/eigenvectors of A; and A; respectively for j =4+ 1,...,5+ 7.

Denote by Pg the orthogonal projection (with respect to (-, -),,) onto .S and P§- the orthogonal projection onto the orthogonal
complement of S. Let h be the eigenfunction of £, corresponding to the eigenvalue A, i.e., L;h = Ah. Considering
restriction of h on X1,..., X, we have

PgLoh=APgh=A > (hv;)nv;,

GAIAHT, it
where recall that {v; }?:1 are the set of the orthonormal basis of eigenvectors of L,, . with respect to Ay, ..., A,,. Similarly,
we have (again, restrict h on X5, ..., X,):
1
PgLnpch= > X(hvj)nv;.

GAi+1,... it



Combining the two results above, we obtain:
min{[o1A = A, [o1A = Nigria [H Ps Al
< PE gLk = 1Lyl
S ||Ln,5h - Ul»cgh”n»
where o0 is defined in Section[3.1](see Assumption (A3)).
On the other hand, according to and (19), we have

min{‘al/\ - )\i(Ln,w,e)|a |Ul)\ - >\i+r+1(Lw,n,6)|} > 010%\-

Then, we obtain:

1

PEh|., = |h — Pshll, <
| PRl | shl| 10

| Ln,ch — o1Lgh|s. (20)

Now, we divide the above norm || - ||,, into two parts by Cauchy’s inequality:
[Ln,eh — 01Lghlln S || Lnh — 01Lgh|[n,x, + [|Ln,ch — 01Lgh]|n 04

where we write X = X, U 0X,, where for any x € X, B,(¢) C X and 0. X as its complement within X consisting of
points ‘close’ to the boundary. According to |Calder and Trillos [2022, Theorem 3.3], it follows that if hq, ..., hy is an
orthonormal basis for the eigenspace of eigenfunctions of £, with respect to eigenvalue A, then with probability at least

1 — 2kne—Cne™™*
[Ln,chj —o1Lghjllnx. < Ce, 1<j <k,

On the other hand, near the boundary, by setting k = 1 and s = 3 (since all h; at least belongs to C3(X')) in|Green et al.
[2023] Lemma 5], it yields that almost surely,

HLn,ehj||n,6’/\.’6 < 067 1 <j< k‘,
with [|01Lyhj|[n,0x. < Cefor1 < j <since all h; at least belongs to C3(X).
Putting the bounds in the interior and near the boundary together, we conclude: with probability at least 1 — 2kne=Cne’™
||Ln,€hj — O'lﬁghjnn S CG, 1 S j S /{
Now, combining the above result with ([20), it follows that with probability at least 1 — 2kne=Cne™ _ Cne’cnozgd, we
can find an orthonormal set hq, . . ., hg of spanning S such that

1hj = hjlln < Ce.

Here, recall that {h;} ;?:1 is an orthonormal basis for the eigenspace of eigenfunctions of £, with respect to eigenvalue

A =A;and {izj }2?:1 is an orthonormal set spanning S, i.e., the eigenspace of eigenbvectors of L,, . with respect to the
eigenvalue A = );. These two sets of functions/vectors are close in || - ||, norm by Ce. Therefore, with ¢; as the projection
i-th eigenfunction into R™ via the transportation map T defined in |Green et al.| [2021, Proposition 3], we have: with
probability at least 1 — 2kne=Cne’™" _ Cpe—ent®d”

||Ui - ¢iHn < Ce.

Then, plugging the above approximation in with [Weihs and Thorpe| [2023] Proposition 4.21], we obtain:

(Lo efs P =D N (fo)n SN (frve— dn + Y X (frda)n
=1 =1 =1

<C <e+ZAf<f,</>i>i>- @1
=1



Now recall (5). For n large enough (or equivalently € small enough) we have

(Lyefs Fon SCY N (f,60)7 < CMP.
i=1
with probability at least 1 — Cn?e=Cn<"™" _ Cne=C", where we have used above.

Furthermore, according to Lemma @, we have for 0 < s < 1,
(w A r—25) <A< (kT A 7’_25> : 22)

for 1 < k < n (since the case k = 1 can be bounded alone), with probability at least 1 — Cne=Sn<",

Now, we are ready to proceed based on (15):

If = flI7 < ==

Lyofifin | K
( : ) LK
A1 n
with probability at least 1 — e~ X if 1 < K < n. According to and (22)), we have with probability at least 1 —
Cn2e=Cne™ _ One=Cm — Cne=n<" — ¢=K and n large enough:
M? K

F_r2 < el
1f=flI% S e +

1/d

Furthermore, based on the assumption € < K~/ the above inequality becomes:

. K
1 = FI1% S MP(K + 1)~/ 4 —. (23)

By balancing the two terms on the right-hand side, we pick K = | M?n|%/(25+) Then, it yields that
If = fI% S MP(Pn) 2o/ Cot ), 24)
with probability at least 1 — Cn2e=Cm<"™" — One=Cn — COne—cne’ — =K,

If M? < n~1, we can take K = 1 and obtain from that:

: 1
If=fl7 <~
n

If M > n®/?, we take K = n and in this case, we actually have f(Xi) =Y, fori=1,...,nand
1 n
F— flI2 = = 2< 0
IF =11k =52 0et <
with probability at least 1 — e~ for some constant C'. Combining all above cases depending on choices of K, it yields that

bound in Theorem [3.1]
O

D PROOF OF THEOREM 3.9

We will first present an auxiliary lemma below from |Gyorfi et al.|[2002, Lemma 3.2].

Lemma D.1. Letu € R., for | € N, and c be a zero mean random variable taking values in {—1,1}. Moreover, denote by
N the l-dimensional standard normal random variable independent of c. Set

z = cu+ N.
Then the error probability of the Bayes decision for c based on z is

min_P(G(z) # c) = @(—[ul),

G:RI—SR

where ®(-) is the standard normal distribution function.



Proof of Theorem We will mainly modify |Gyorfi et al.|[2002, Proof of Theorem 3.2] for our fractional Sobolev space
H3(X,M),0 < s < 1. According to Assumption (Al) in Section without loss of generality, we can consider
X = (0,1)% Set
((Mz ) 26+d1
.d d
We partition X = (0,1)¢ by rZ cubes denoted by {4, ]}; 1 of side length 7,1 and with centers {a,, j}: ;- Choose a

function ¢ : RY — R such that its support is a subset of [~ 1, 2]%, [ ¢?(2)dz > 0, and ¢ € H*(X;1). Define ¢ : RY — R
by ¢(z) := M - 1(z). It can be readily verified that

]d.

b}

* the support of ¢ is also a subset of [~ 3, &
o [Y*(x)dz = M? - [¢?(z)dz > 0;
. € H* (X, M).

The class of regression functions is indexed by a vector
Cn = (Cn1ye s Cppd)

consisting of =1 components so that ‘worst regression function” will depend on the sample size n. Let C,, represent the set
of all such vectors. Then, for each vector ¢, = (¢p1,...,¢p %dl) € Cy, it corresponds to a function

f(c”) Z Cn ﬂ/)n J

where v, ;(z) = r;, Y (rp(x — an ;). Then, if x,y € A, ; for some ¢, it holds that

F) (@) = F @) = leniP[ni(@) = Yni@)? = 102 [0 (@ = ani)) = D(raly — ana))|*.

Moreover, by definition,

// [ (r, (x — an,i)) —Y(rp(y — a”’i))|2’ridd$dy < M?2.

[ (2 — y)|[>o+4

It implies

(CW) (Cn)

IIw - y||25+ T
Ifz e A,;andy € A, ; fori # j,i.e., x and y are in two disjoint supports, we can apply Jensen’s inequality:

7 ) = @) <35 (@) = SN @+ () = S @) + £ @) = @)

where 7,y are on the line between z, y such that Z is on the boundary of A, ; and ¥ is on the boundary of A, ; and
flen)(z) = fe)(g) = 0 (because 1y, ;(Z) = 1y,;(§) = 0). Then, we also have

) (@) — S ()] 2
// o gprd W=

Together, it shows that f(°»)(z) € H*(X; M).

Then, the minimix lower bound can be derived by showing the following lower bound:

25
liminfinf  sup ]\; El f, — fII*> > Cy > 0.

n—roo f” f(rn) cn€Cp

Let fn be an arbitrary estimate. Denote by fmp the projection of fn onto {1, ; }:

d

Frw = Z Cn,j¥n,i(2),
=1



where

P fAn‘j fo (@) j(2)d
v Ja, , ¥n j(@)dz

Then, we have:

1fo = £ 2 N fp = 2
d

zz/ (o — e g)202;()d
j=1"Ani

Tn . 1
= /1/)2(x)dx : Z(Cn,j - Cn,j)2r25+d'
=1 "

Let &, ; be 1if é, ; > 0 and —1 otherwise. Noting that |é,, ; — ¢, j| > |én,; — Cn.j|/2, We obtain:

d

~ 1 Tn ~ 1
o= £ 2 [ W @e 33 (ns = ni i
i=1 "

d
T
. I
> /W(@dw " Z 1z, j#cn,
n j:1

d
M2 . 1 Tn
0 [P Y e, e
n

n =1

Hence, it suffices to prove

lim inf inf sup a Z (Cn,j # cnyj) > 0.
n '7

n—o0 én ¢,

Now we randomize ¢,,. Let €y, 1, .. ., €, -4 be a sequence of i.i.d. random variables independent of everything else such that
1
P(le = 1) = ]P(le = —1) = 5
Letc, = (cp1,. .-, Cn,rg)- Then, it holds that
d d

Tn Tn

1
lim inf inf — Y P(e, i) f— P(c, n
1m1n1nbupr Z (€n,j # Cnj) 1n Z (cn,j # Cnj)-

n—oo Cp C.
n j=1

Here, we can view ¢, ; as a dec151on on ¢, ; based on D,, = {(X,,Y;)}?,. Its error is minimal for the Bayes decision €, ;,
which is 1 if P(c,, ; = 1|D,,) > and 1 otherwise. Then, it yields that

d d
Tn

lIlf 72]? an #Cn] Zidz CTL,j#ény]‘)
cn Tp n

= ]P)(Cn,l ?’é Cn,l)
= E (P(le 7& én,1|X17 . 7Xn)) .

Note that for X; € A, 1,

Yti = Cn,lwn,l(Xi) + &;.



Therefore, according to Lemma the error probability of the Bayes decision ¢,, ; above satisfies:

Pcny # Cnal X1, Xn) =@ [ = | ) w2, (X)) |
=1

where ®(-) is the standard normal distribution function. Since x — ®(—+/x) is convex, applying Jensen’s inequality yields
that

E (]P(Cn,l 7& én,1|X1a ceey Xn)) =

We then obtain the proof for the desired bound. O
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