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Abstract
The Gromov-Wasserstein (GW) distance quantifies discrepancy between metric measure
spaces and provides a natural framework for aligning heterogeneous datasets. Alas, as
exact computation of GW alignment is NP hard, entropic regularization provides an avenue
towards a computationally tractable proxy. Leveraging a recently derived variational
representation for the quadratic entropic GW (EGW) distance, this work derives the
first efficient algorithms for solving the EGW problem subject to formal, non-asymptotic
convergence guarantees. To that end, we derive smoothness and convexity properties of
the objective in this variational problem, which enables its resolution by the accelerated
gradient method. Our algorithms employs Sinkhorn’s fixed point iterations to compute
an approximate gradient, which we model as an inexact oracle. We furnish convergence
rates towards local and even global solutions (the latter holds under a precise quantitative
condition on the regularization parameter), characterize the effects of gradient inexactness,
and prove that stationary points of the EGW problem converge towards a stationary
point of the unregularized GW problem, in the limit of vanishing regularization. We
provide numerical experiments that validate our theory and empirically demonstrate the
state-of-the-art empirical performance of our algorithm.
Keywords: Algorithms, convergence rate, global guarantees, Gromov-Wasserstein dis-
tances, entropic regularization, inexact gradient methods.

1 Introduction

The Gromov-Wasserstein (GW) distance compares probability distributions that are sup-
ported on possibly distinct metric spaces by aligning them with one another. Given two
metric measure (mm) spaces (X0, d0, µ0) and (X1, d1, µ1), the (p, q)-GW distance between
them is

Dp,q(µ0, µ1) := inf
π∈Π(µ0,µ1)

(∫
X0×X1

∫
X0×X1

∣∣dq0(x, x′)− dq1(y, y
′)
∣∣p dπ ⊗ π(x, y, x′, y′)) 1

p

, (1)
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where Π(µ0, µ1) is the set of couplings between µ0 and µ1. This approach, proposed in Mémoli
(2011), is an optimal transport (OT) based Lp-relaxation of the classical Gromov-Hausdorff
distance between metric spaces. The GW distance defines a metric on the space of all mm
spaces modulo measure preserving isometries.1 From an applied standpoint, a solution to
the GW problem between two heterogeneous datasets yields not only a quantification of
discrepancy, but also an optimal alignment π⋆ between them. As such, alignment methods
inspired by the GW problem have been proposed for many applications, encompassing
single-cell genomics (Blumberg et al., 2020; Demetci et al., 2022), alignment of language
models (Alvarez-Melis and Jaakkola, 2018), shape matching (Mémoli, 2009; Koehl et al.,
2023), graph matching (Xu et al., 2019b,a), heterogeneous domain adaptation (Yan et al.,
2018), and generative modeling (Bunne et al., 2019).

Exact computation of the GW distance is a quadratic assignment problem, which is
known to be NP-complete (Commander, 2005). To remedy this, various computationally
tractable reformulations of the distance have been proposed. We postpone full discussion of
such methods to Section 1.2 and focus here on the entropic GW (EGW) distance (Peyré
et al., 2016; Solomon et al., 2016)

Sεp,q(µ0, µ1) := inf
π∈Π(µ0,µ1)

∫∫ ∣∣dq0(x, x′)− dq1(y, y
′)
∣∣p dπ ⊗ π(x, y, x′, y′) + εDKL(π∥µ0 ⊗ µ1),

which is at the center of this work. Entropic regularization by means of the Kullback-Leibler
(KL) divergence above transforms the linear Kantorovich OT problem (Kantorovich, 1942)
into a strictly convex one and enables directly solving it using Sinkhorn’s algorithm (Cuturi,
2013). Although the EGW problem is, in general, not convex, Solomon et al. (2016) propose
to solve it via an iterative approach with Sinkhorn iterations. This method is known to
converge to a stationary point of a tight (albeit non-convex) relaxation of the EGW problem,
but this is an asymptotic statement and the overall computational complexity is unknown.
Similar limitations apply for the popular mirror descent-based approach from Peyré et al.
(2016). To the best of our knowledge, there is currently no known algorithm for computing
the EGW distance subject to non-asymptotic convergence rate bounds, let alone global
optimality guarantees. Further, these methods do not account for the error incurred by using
Sinkhorn iterations, nor do they address the behaviour of the solutions they obtain in the
limit of vanishing regularization.

The goal of this work is to close the aforementioned computational gaps, targeting algo-
rithms with non-asymptotic guarantees, accounting for inexactness in Sinkhorn’s algorithm,
characterizing convexity regimes of the EGW problem, and establishing convergence of
stationary points to the EGW problem to stationary points of the GW problem as ε ↓ 0. All
of these will be achieved as a consequence of a new stability analysis of the EGW variational
representation from Zhang et al. (2022a).

1. Two mm spaces (X0, d0, µ0) and (X1, d1, µ1) are isomorphic if there exists an isometry T : X0 → X1 for
which µ0 ◦T−1 = µ1 as measures. The quotient space is then the one induced by this equivalence relation.
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1.1 Contributions

Theorem 1 in Zhang et al. (2022a) shows that the EGW distance with quadratic cost between
the Euclidean mm spaces (Rd0 , ∥ · ∥, µ0) and (Rd1 , ∥ · ∥, µ1) can be written as:

Sε2,2(µ0, µ1) = Cµ0,µ1 + inf
A∈DM

{
32∥A∥2F + OTA,ε(µ0, µ1)

}
, (2)

where Cµ0,µ1 is a constant that depends only on the moments of the marginals, DM ⊂ Rd0×d1

is a compact rectangle, and OTA,ε(µ0, µ1) is an EOT problem with a particular cost function
that depends on the auxiliary variable A. This representation connects EGW to the well-
understood EOT problem, thereby unlocking powerful tools for analysis. To exploit this
connection for new computational advancements, we begin by analyzing the stability of the
objective in (2) in A and derive its first and second-order Fréchet derivatives. This, in turn,
enables us to derive its convexity and smoothness properties and devise new algorithms for
solving the EGW problem, subject to formal convergence guarantees.

The Fréchet derivatives of the objective function from (2) in A reveal that this problem
falls under the paradigm of smooth constrained optimization. Indeed, the derivatives imply,
respectively, upper and lower bounds on the top and bottom eigenvalues of the Hessian matrix
of the objective; L-smoothness then follows from the mean value inequality. By further
requiring positive semidefiniteness of the Hessian we obtain a sharp and primitive sufficient
condition on ε under which (2) becomes convex. These regularity properties are used to lift
the accelerated first-order methods for smooth (non-convex) optimization (Ghadimi and Lan,
2016) and convex programming with an inexact oracle (d’Aspremont, 2008) to the EGW
problem. This yields the first algorithms with non-asymptotic convergence guarantees toward
global or local EGW solutions, depending on whether the problem is convex or not (e.g.,
under the aforementioned condition). Our algorithms compute not only the EGW cost, but
also provide an approximate optimizer—namely a coupling, which serves as the alignment
scheme that achieves the said cost.

Specifically, our method iteratively solves the optimization problem in the space of
auxiliary matrices A ∈ Rd0×d1 , with each iterate calling the Sinkhorn algorithm to obtain an
approximate solution (viz. the inexact oracle) to the corresponding EOT problem. The time
complexity of the Sinkhorn algorithm governs the overall runtime, which is therefore O(N2),
for µ0 and µ1 as distributions on N points. This presents a significant speedup to the O(N3)
runtime of popular iterative algorithms from Peyré et al. (2016); Solomon et al. (2016). Under
certain low-rank assumptions on the cost matrix, Scetbon et al. (2022) recently showed the
mirror descent approach from Peyré et al. (2016) can be sped up to run in O(N2) time,
which is comparable to our method. Nevertheless, our algorithms are coupled with formal
convergence guarantees, non-asymptotic error bounds, and global optimality claims under
the said convexity condition, while no such assurances are available for other methods.

As the derivative of the objective from (2) depends on the optimal coupling for a particular
EOT problem, we also account for the error incurred by solving this problem numerically (e.g.
via Sinkhorn iterations). In particular, we characterize how well the output of a standard
implementation of Sinkhorn’s algorithm approximates the true EOT coupling. This effect
was not analyzed before, as existing literature focused on approximating the unregularized
OT cost, while treating the KL divergence term as a bias.
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The EGW distance serves as a proxy to unregularized GW, which renders the vanishing
regularization parameter regime, namely ε ↓ 0, of central importance. We show that
stationary points of the variational EGW problem converge (possibly along a subsequence) to
a stationary point of the variational GW problem as ε ↓ 0. Only convergence to a stationary
point can be guaranteed in the limit since the underlying variational problem may fail to
be convex when ε is small. Nonetheless, this is the first result that provides stationarity
guarantees for limiting solutions, which clarifies how the local solutions obtained using our
algorithm approximate local solutions to the unregularized problem.

1.2 Literature review

The computational intractability of the GW problem in (1) has inspired several reformulations
that aim to alleviate this issue. The sliced GW distance (Vayer et al., 2020) attempts to
reduce the computational burden by considering the average of GW distances between
one-dimensional projections of the marginals. However, unlike OT in one dimension, the
GW problem does not have a known simple solution even in one dimension (Beinert et al.,
2022). Another approach is to relax the strict marginal constraints by optimizing over the
weights of one of the marginals as in semi-relaxed GW (Vincent-Cuaz et al., 2022) or by using
f -divergence penalties; this leads to the unbalanced GW distance (Séjourné et al., 2021),
which lends itself well for convex/conic relaxations. A variant that directly optimizes over
bi-directional Monge maps between the mm spaces was considered in Zhang et al. (2022b).
The fused GW distance (Vayer et al., 2019) enables comparing both feature and structural
properties of structured data. Although most of these relaxations can be shown to converge
to the GW distance (in terms of function values) under certain regimes, they involve solving
non-convex problems, which limits their utility for numerical resolution of the GW problem.
The recent work of Chen et al. (2023) proposes a semidefinite relaxation of the GW problem
along with a certificate of optimality which, upon obtaining a solution to the relaxed problem,
establishes if it is optimal for the original problem.

While these methods offer certain advantages, it is the approach based on entropic
regularization (Peyré et al., 2016; Solomon et al., 2016) that is most frequently used in
application. A low-rank variant of the EGW problem was proposed in Scetbon et al. (2022),
where the distance distortion cost is only optimized over coupling admitting a certain low-rank
structure. They arrive at a linear time algorithm for this problem by adapting the mirror
descent method of Peyré et al. (2016). As an intermediate step of their analysis, they show
that if µ0 and µ1 are supported on N distinct points, then the O(N3) complexity of mirror
descent (see, e.g., Remark 1 in Peyré et al. 2016) can be reduced to O(N2) by assuming
that the matrices of pairwise costs admit a low-rank decomposition (without imposing any
structure on the couplings). This decomposition holds, for instance, when the cost is the
squared Euclidean distance and the sample size dominates the ambient dimension. Although
mirror descent seems to solve the EGW problem quite well in practice, formal guarantees
concerning convergence rates or local optimality are lacking.

Other related work explores structural properties of GW distances, on which some of
our findings also reflect. The existence of Monge maps for the GW problem was studied in
Dumont et al. (2022) and they show that optimal couplings are induced by a bimap (viz.
two-way map) under general conditions. Delon et al. (2022) focused on the GW distance
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between Gaussian distributions, deriving upper and lower bounds on the optimal cost. A
closed-form expression under the Gaussian setting was derived in Le et al. (2022) for the
EGW distance with inner product cost.

As we establish stability results for the EGW problem by utilizing its connection to
the EOT problem with a parametrized cost, we mention that different notions of stability
for EOT have been studied. For instance, Ghosal et al. (2022) concerns stability of the
EOT cost for varying marginals, cost function, and regularization parameter. The related
works (Carlier and Laborde, 2020; Eckstein and Nutz, 2022; Nutz and Wiesel, 2023) concern
stability of the EOT cost and related objects for weakly convergent marginal distributions.

1.3 Organization

This paper is organized as follows. In Section 2 we compile background material on EOT
and the EGW problems. In Section 3, we describe the smoothness and convexity of the
variational EGW problem. In Section 4, we analyze and test two algorithms for solving the
EGW problem. We compile the proofs for Sections 3 and 4 in Section 5. Section 6 contains
some concluding remarks.

1.4 Notation

Denote by P(Rd) the collection of all Borel probability measures on Rd, and by Pp(Rd) the
set of all µ ∈ P(Rd) with finite p-th moment (p > 0). The pushforward of µ ∈ P(Rd0)
through a measurable map T : Rd0 → Rd1 is denoted by T♯µ := µ ◦ T−1. The Frobenius
inner product on Rd0×d1 is defined by ⟨A,B⟩F = tr (A⊺B); the associated norm is denoted
by ∥ · ∥F . For a nonemtpy set S ⊂ Rd, C(S) is the set of continuous functions on S. We
adopt the shorthands a ∧ b = min{a, b} and a ∨ b = max{a, b}.

2 Background and Preliminaries

We first establish notation and review standard definitions and results underpinning our
analysis of the EGW distance.

2.1 Entropic Optimal Transport

Entropic regularization transforms the linear OT problem into a strictly convex one. Given
distributions µi ∈ P(Rdi), i = 0, 1, and a Borel cost function c : Rd0 × Rd1 → R that is
bounded from below on spt(µ0)×spt(µ1), the primal EOT problem is obtained by regularizing
the standard OT problem via the Kullback-Leibler (KL) divergence,

OTε(µ0, µ1) = inf
π∈Π(µ0,µ1)

∫
c dπ + εDKL(π∥µ0 ⊗ µ1),

where ε > 0 is a regularization parameter and

DKL(µ0∥µ1) =

{∫
log
(
dµ0

dµ1

)
dµ0, if µ0 ≪ µ1,

+∞, otherwise.
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Classical OT is obtained from the above by setting ε = 0. When c ∈ L1(µ0 ⊗ µ1), EOT
admits the following dual formulation,

OTε(µ0, µ1) = sup
(φ0,φ1)∈L1(µ0)×L1(µ1)

∫
φ0dµ0 +

∫
φ1dµ1 − ε

∫
e
φ0⊕φ1−c

ε dµ0 ⊗ µ1 + ε,

where φ0 ⊕ φ1(x, y) = φ0(x) + φ1(y). For ε > 0, the set of solutions to the dual problem
coincides with the set of solutions to the so-called Schrödinger system,∫

e
φ0(x)+φ1(·)−c(x,·)

ε dµ1 = 1, µ0-a.e. x ∈ Rd0 ,∫
e
φ0(·)+φ1(y)−c(·,y)

ε dµ0 = 1, µ1-a.e. y ∈ Rd1 ,

(3)

for (φ0, φ1) ∈ L1(µ0)× L1(µ1). A pair (φ0, φ1) ∈ L1(µ0)× L1(µ1) solving (3) is known to
be a.s. unique up to additive constants in the sense that any other solution (φ̄0, φ̄1) satisfies
φ̄0 = φ0 + a µ0-a.s. and φ̄1 = φ1 − a µ1-a.s. for some a ∈ R. Moreover, the unique EOT
coupling πε is characterized by

dπε
dµ0 ⊗ µ1

(x, y) = e
φ0(x)+φ1(y)−c(x,y)

ε , (4)

and, under some additional conditions on the cost and marginals which hold throughout this
paper, (3) admits a pair of continuous solutions which is unique up to additive constants and
satisfies the system at all points (x, y) ∈ Rd0 × Rd1 . We call such continuous solutions EOT
potentials. The reader is referred to Nutz (2021) for a comprehensive overview of EOT.

2.2 Entropic Gromov-Wasserstein Distance

This work studies stability and computational aspects of the entropically regularized GW
distance under the quadratic cost. By analogy to OT, EGW serves as a proxy of the standard
(p, q)-GW distance, which quantifies discrepancy between complete and separable mm spaces
(X0, d0, µ0) and (X1, d1, µ1) as (Mémoli, 2011; Sturm, 2012)

Dp,q(µ0, µ1) := inf
π∈Π(µ0,µ1)

∥Γq∥Lp(π⊗π),

where Γq(x, y, x
′, y′) =

∣∣dq0(x, x′)− dq1(y, y
′)
∣∣ is the distance distortion cost. This definition is

the Lp-relaxation of the Gromov-Hausdorff distance between metric spaces,2 and gives rise
to a metric on the collection of all isomorphism classes of mm spaces with finite pq-size, i.e.,
such that

∫
d(x, x′)pq dµ⊗ µ(x, x′) <∞.

From here on out, we instantiate the mm spaces as the Euclidean spaces (Rdi , ∥ · ∥, µi),
for i = 0, 1, and focus on the EGW distance for the quadratic cost.

2. The Gromov-Hausdorff distance between (X0, d0) and (X1, d1) is given by 1
2
infR∈R(X0,X1) ∥Γ1∥L∞(R),

where R(X0,X1) is the collection of all correspondence sets of X0 and X1, i.e., subsets R ⊂ X0 ×X1 such
that the coordinate projection maps are surjective when restricted to R. The correspondence set can be
thought of as spt(π) in the GW formulation.
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Quadratic Cost The quadratic EGW distance, which corresponds to the p = q = 2 case,
is defined as

Sε(µ0, µ1) = inf
π∈Π(µ0,µ1)

∫ ∣∣∥x− x′∥2 − ∥y − y′∥2∣∣2 dπ⊗π(x, y, x′, y′)+εDKL(π∥µ0⊗µ1). (5)

One readily verifies that, like the standard GW distance, EGW is invariant to isometric
actions on the marginal spaces such as orthogonal rotations and translations. In addition,
note that Sε(µ0, µ1) = εS1(µ

ε
0, µ

ε
1), where µεi = (ε−1/4 Id)♯µi. In general, (5) is a non-convex

quadratic program. Non-convexity can easily be discerned from the representation (6).

When µ0, µ1 are centered, which we may assume without loss of generality, the EGW
distance decomposes3 as (cf. Section 5.3 in Zhang et al. 2022a)

Sε(µ0, µ1) = S1(µ0, µ1) + S2ε(µ0, µ1), (6)

where

S1(µ0, µ1)=

∫
∥x−x′∥4dµ0⊗µ0(x, x′)+

∫
∥y−y′∥4dµ1⊗µ1(y, y′)−4

∫
∥x∥2∥y∥2dµ0⊗µ1(x, y),

S2ε(µ0, µ1)= inf
π∈Π(µ0,µ1)

∫
−4∥x∥2∥y∥2dπ(x, y)−8

∑
1≤i≤d0
1≤j≤d1

(∫
xiyj dπ(x, y)

)2

+εDKL(π∥µ0⊗µ1).

Evidently, S1 depends only on the moments of the marginal distributions µ0, µ1, while S2ε
captures the dependence on the coupling. A key observation in Zhang et al. (2022a) is that
S2ε admits a variational form that ties it to the well understood EOT problem.

Lemma 1 (EGW duality; Theorem 1 in Zhang et al. 2022a). Fix ε > 0, (µ0, µ1) ∈
P4(Rd0)× P4(Rd1), and let Mµ0,µ1

:=
√
M2(µ0)M2(µ1). Then, for any M ≥Mµ0,µ1 ,

S2ε(µ0, µ1) = inf
A∈DM

32∥A∥2F + OTA,ε(µ0, µ1), (7)

where DM := {A ∈ Rd0×d1 : ∥A∥F ≤M/2} and OTA,ε(µ0, µ1) is the EOT problem with the
cost function cA : (x, y) ∈ Rd0 × Rd1 7→ −4∥x∥2∥y∥2 − 32x⊺Ay and regularization parameter
ε. Moreover, the infimum is achieved at some A⋆ ∈ DMµ0,µ1

.

An analogous result holds in the unregularized (ε = 0) case, see Corollary 1 in Zhang et al.
(2022a). The proof of Theorem 1 in Zhang et al. (2022a) demonstrates that if µ0 and µ1 are
centered and π⋆ is optimal for the original EGW formulation, then A⋆ = 1

2

∫
xy⊺ dπ⋆(x, y)

is optimal for (7) and π⋆ = πA⋆ , where πA⋆ is the unique EOT coupling for OTA⋆,ε(µ0, µ1).
It follows from Jensen’s inequality and the Cauchy-Schwarz inequality that A⋆ ∈ DM .
Corollary 4 ahead expands on this connection by establishing a one-to-one correspondence
between solutions of Sε and S2ε and shows that all solutions of (7) lie in DM .

Although (7) illustrates a connection between the EGW and EOT problems, the outer
minimization over DM necessitates studying EOT with a parametrized cost function cA.

3. A similar decomposition holds for the inner product cost, obtained by replacing the squared Euclidean
distances in Equation (5) by inner products. As such, all results derived in this manuscript apply to the
inner product cost with minor modifications.
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3 Stability of Entropic Gromov-Wasserstein Distances

We analyze the stability of the EGW problems with respect to (w.r.t.) the matrix A
appearing in the dual formulation (7). Specifically, we characterize the first and second
derivatives of the objective function whose optimization defines S2ε. These, in turn, elucidates
its smoothness and convexity properties. Our stability analysis is later used to (i) gain
insight into the structure of optimal couplings for the EGW problem; and (ii) devise novel
approaches for computing the EGW distance with formal convergence guarantees.

Throughout this section, we restrict attention to compactly supported distributions, as
some of the technical details do not directly translate to the unbounded setting (e.g., the
proof of Lemma 18). For a Fréchet differentiable map F : U → V between normed vector
spaces U and V ,4 we denote the derivative of F at the point u ∈ U evaluated at v ∈ V by
DF[u](v).

Fix compactly supported distributions (µ0, µ1) ∈ P(Rd0)× P(Rd1) and some ε > 0. Let

Φ : A ∈ Rd0×d1 7→ 32∥A∥2F + OTA,ε(µ0, µ1)

denote the objective in (7). We first characterize the derivatives of Φ and then prove that
this map is weakly convex and L-smooth.5

Proposition 2 (First and second derivatives). The map Φ : A ∈ Rd0×d1 7→ 32∥A∥2F +
OTA,ε(µ0, µ1) is smooth, coercive, and has first and second-order Fréchet derivatives at
A ∈ Rd0×d1 given by

DΦ[A](B) = 64 tr(A⊺B)− 32

∫
x⊺By dπA(x, y),

D2Φ[A](B,C) = 64 tr(B⊺C) + 32ε−1

∫
x⊺By

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y),

where B,C ∈ Rd0×d1 , πA is the unique EOT coupling for OTA,ε(µ0, µ1), and
(
hA,C
0 , hA,C

1

)
is the unique (up to additive constants) pair of functions in C(spt(µ0))×C(spt(µ1)) satisfying∫ (

hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
e
φA0 (x)+φA1 (y)−cA(x,y)

ε dµ1(y) = 0, ∀x ∈ spt(µ0),∫ (
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
e
φA0 (x)+φA1 (y)−cA(x,y)

ε dµ0(x) = 0, ∀ y ∈ spt(µ1).

(8)

Here, (φA
0 , φ

A
1 ) is any pair of EOT potentials for OTA,ε(µ0, µ1).

Proposition 2 essentially follows from the implicit mapping theorem, which enables
us to compute the Fréchet derivative of the EOT potentials for OT(·),ε(µ0, µ1) using the
Schrödinger system (3). The derivative of OT(·),ε(µ0, µ1), which is a simple function of the

4. A map F : U → V is Fréchet differentiable at u ∈ U if there exists a bounded linear operator A : U → V
for which F (u+ h) = F (u) +Ah+ o(h) as h → 0. If such an A exists, it is called the Fréchet derivative
to F at u.

5. A function f : Rd → R is ρ-weakly convex if f + ρ
2
∥ · ∥2 is convex; f is L-smooth if its gradient is

L-Lipschitz, i.e., ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, for all x, y ∈ Rd.

8
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EOT potentials, is then readily obtained. By differentiating the Frobenius norm, this further
yields the derivative of Φ. See Section 5.1 for details.

The following remark clarifies that the first and second Fréchet derivatives of Φ can be
identified with the gradient and Hessian of a function on Rd0d1 . Recall that the Frobenius
inner product, ⟨A,B⟩F = tr (A⊺B) =

∑
1≤i≤d0
1≤j≤d1

AijBij , is simply the Euclidean inner

product between the vectorized matrices A,B ∈ Rd0×d1 .

Remark 3 (Interpreting derivatives as gradient/Hessian). The first derivative of Φ from
Proposition 2 can be written as

DΦ[A](B) =

〈
64A− 32

∫
xy⊺ dπA(x, y),B

〉
F

.

Recall that if f is a continuously differentiable function f on Rd, its directional derivative
at x along the direction y is Df[x](y) = ⟨∇f(x), y⟩, for x, y ∈ Rd. By analogy, we may
think of DΦ[A] as 64A− 32

∫
xy⊺ dπA(x, y). This perspective is utilized in Section 4 when

studying computational guarantees for the EGW distance, as it is simpler to view iterates as
matrices rather than abstract linear operators. By the same token, the second derivative of Φ
at A ∈ Rd0×d1 is a bilinear form on Rd0×d1 and hence can be identified with a d0d1 × d0d1
matrix by analogy with the Hessian.

As a direct corollary to Proposition 2, we provide an (implicit) characterization of the
stationary points of Φ and connect its minimizers to solutions of Sε. Details are provided in
Section 5.2.

Corollary 4 (Stationary points and correspondence between Sε and S2ε).

(i) A matrix A∈Rd0×d1 is a stationary point of Φ if and only if A = 1
2

∫
xy⊺ dπA(x, y). As

Φ is coercive, all minimizers of Φ are stationary points and hence contained in DMµ0,µ1
.

(ii) If µ0 and µ1 are centered, then a given matrix A minimizes Φ if and only if πA is optimal
for Sε and satisfies 1

2

∫
xy⊺ dπA(x, y) = A.

(iii) Suppose µ0 and µ1 are centered. If Sε admits a unique optimal coupling π⋆, then Φ admits
a unique minimizer A⋆ and π⋆ = πA⋆. Conversely, if Φ admits a unique minimizer A⋆,
then πA⋆ is a unique optimal coupling for Sε.

Although the second derivative of Φ involves the implicitly defined functions (hA,C
0 , hA,C

1 ),
its maximal and minimal eigenvalues admit the following explicit bounds.

Corollary 5 (Hessian eigenvalue bounds). The following hold for any A ∈ Rd0×d1:

(i) The minimal eigenvalue of D2Φ[A] satisfies

λmin

(
D2Φ[A]

)
= 64 + ε−1 inf

∥C∥F=1

∫ [(
hA,C
0 (x) + hA,C

1 (y)
)2
− 322(x⊺Cy)2

]
dπA(x, y)

≥ 64− 322ε−1 sup
∥C∥F=1

VarπA
(X⊺CY ),

where the variance term admits the uniform bound sup
∥C∥F=1

VarπA
(X⊺CY )≤

√
M4(µ0)M4(µ1).

9
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(ii) The maximal eigenvalue of D2Φ[A] satisfies λmax

(
D2Φ[A]

)
≤ 64.

Corollary 5 follows from Proposition 2 by considering the variational form of the maximal
and minimal eigenvalues; see Section 5.3 for details. We note that, in general, the variance
bound in Item (i) is sharp up to constants in arbitrary dimensions. For example, it is attained
up to a factor of 2 by µ0 = 1

2 (δ0 + δa) and µ1 = 1
2 (δ0 + δb) for a ∈ Rd0 and b ∈ Rd1 ; see

Appendix A for the full variance computation.

Armed with the eigenvalue bounds, we now state the main result of this section addressing
convexity and smoothness of Φ.

Theorem 6 (Convexity and L-smoothness). The map Φ is weakly convex with parameter at
most 322ε−1

√
M4(µ0)M4(µ1)− 64 and, if

√
M4(µ0)M4(µ1) <

ε
16 , then it is strictly convex

and admits a unique minimizer. Moreover, for any M > 0, Φ is L-smooth on DM with

L = max
A∈DM

λmax

(
D2Φ[A]

)
∨
(
− λmin

(
D2Φ[A]

) )
≤ 64 ∨

(
322ε−1

√
M4(µ0)M4(µ1)− 64

)
.

Theorem 6 shows that Φ is amenable to optimization by accelerated gradient methods
with step size L and establishes sufficient conditions to guarantee convergence of these
algorithms to a global minimizer (i.e., convexity of Φ). In general, optimal EGW couplings
may not be unique. Theorem 6 provides sufficient conditions for uniqueness of solutions
to both (7) and the EGW problem by the connection discussed in Corollary 4 when the
marginals are centered. When the optimal EGW coupling is unique, symmetries in the
marginal spaces result in certain structural properties for the optimal A⋆ in (7). The following
remark expands on these connections.

Remark 7 (Symmetries and uniqueness of couplings). Fix ε > 0 and a pair of centered
distributions (µ0, µ1) ∈ P4(Rd0)×P4(Rd1). Assume that Φ admits a unique minimizer A⋆

and let πA⋆ be the associated EOT/EGW coupling (e.g., under the conditions of Theorem 6,
given that µ0, µ1 are compactly supported). If, for i = 0, 1, µi is invariant under the action
of the orthogonal transformation Ui : Rdi → Rdi in the sense that (Ui)♯µi = µi it follows that
(U0, U1)♯πA⋆ is also an optimal EGW coupling, whence (U0, U1)♯πA⋆ = πA⋆ by uniqueness.
Thus, by Corollary 4, U⊺

0A
⋆U1 = A⋆ where Ui is the matrix associated with Ui, for i = 0, 1.

The previous equality holds for any pair of orthogonal transformations leaving the marginals
invariant, so the rows of A⋆ are left eigenvectors of U1 with eigenvalue 1 and its columns are
right eigenvectors of U⊺

0 with eigenvalue 1 for every Ui such that (Ui)♯µi = µi. Thus, we see
that symmetries of the marginals dictate the structure of A⋆. For example, if µ1 = (− Id)♯µ1,
we have that A⋆ = −A⋆, so A⋆ = 0.

4 Computational Guarantees

Building on the stability theory from Section 3, we now study computation of the EGW
problem. The goal is to compute the distance between two discrete distributions µ0 ∈ P(Rd0)
and µ1 ∈ P(Rd1) supported on N0 and N1 atoms (x(i))N0

i=1 and (y(j))N1
j=1, respectively. In

light of the decomposition (6), we focus on S2ε, which is given by a smooth optimization
problem whose convexity depends on the value of ε (cf. Section 3). Throughout, we
adopt the perspective of Remark 3 and treat DΦ[A], for A ∈ Rd0×d1 , as the matrix 64A−
32
∫
xy⊺ dπA(x, y).

10
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4.1 Inexact Oracle Methods

As these problems are already d0d1-dimensional and computing the second Fréchet derivative
of Φ may be infeasible (in particular, it requires solving (8)), we focus on first-order methods.
Given the regularity of the S2ε optimization problem, standard out-of-the-box numerical
routines are likely to yield good results in practice. However, to provide meaningful formal
guarantees one must account for the fact that evaluation of Φ and its gradient, for A ∈ DM ,
requires computing the corresponding EOT plan, which often entails an approximation.
Indeed, an explicit characterizations of the EOT plan between arbitrary distributions is
unknown and algorithms typically rely on a fast numerical proxy of the coupling. We model
this under the scope of gradient methods with inexact gradient oracles (d’Aspremont, 2008;
Devolder et al., 2014; Dvurechensky, 2017).

For a fixed ε > 0 and µ0, µ1 as above, our goal is thus to solve

min
A∈DM

32∥A∥2F + OTA,ε(µ0, µ1),

where M > Mµ0,µ1 , which guarantees that all the optimizers are within the optimization
domain (cf. Corollary 4). As we are in the discrete setting, the EOT coupling πA for
OTA,ε(µ0, µ1), A ∈ DM , is represented by ΠA ∈ RN0×N1 , where ΠA

ij = πA(x(i), y(j)). The
inexact oracle paradigm assumes that, for any A ∈ DM , we have access to a δ-oracle
approximation Π̃A of ΠA with ∥Π̃A − ΠA∥∞ < δ. Such oracles can be obtained, for
instance, by numerical resolution of the EOT problem. To this end, Sinkhorn’s algorithm
(Sinkhorn, 1967; Cuturi, 2013) serves as the canonical approach.

Proposition 8 (Inexact oracle via Sinkhorn iterations). Fix δ > 0. Then, Sinkhorn’s
algorithm (Algorithm 3) returns an (eδ − 1)-oracle approximation Π̃A of ΠA in at most k̃
iterations, where k̃ depends only on µ0, µ1,A, δ, and ε, and is given explicitly in (28).

The proof of Proposition 8 follows by combining a number of known results. Complete
details can be found in Appendix B. To our knowledge, the majority of the literature
concerning the use of Sinkhorn’s algorithm for EOT focuses on approximating unregularized
OT and treats the KL divergence term as a bias. Here we quantify the accuracy of estimating
the true EOT plan, which may be of an independent interest.

With these preparations, we first discuss the case where Φ is known to be convex on DM .

4.2 Convex Case

Assume that Φ is convex on DM , e.g., under the setting of Theorem 6. As convexity implies
that the minimal eigenvalue of D2Φ[A] is positive for any A ∈ DM , Theorem 6 further yields
that Φ is 64-smooth. With that, we can the apply inexact oracle first-order method from
d’Aspremont (2008). To describe the approach, assume that we are given a δ-oracle Π̃A for
the EOT plan ΠA for OTA,ε(µ0, µ1), and define the corresponding gradient approximation

D̃Φ[A] = 64A− 32
∑

1≤i≤N0
1≤j≤N1

x(i)(y(j))⊺Π̃A
ij . (9)

We now present the algorithm and follow it with formal convergence guarantees.

11
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Algorithm 1 Fast gradient method with inexact oracle

Fix L = 64 and let αk = k+1
2 , and τk = 2

k+3
1: k ← 0
2: A0 ← 0
3: G0 ← D̃Φ[A0]

4: W0 ← α0G0

5: while stopping condition is not met do
6: Bk ← min

(
1, M

2∥Ak−L−1Gk∥F

)
(Ak − L−1Gk)

7: Ck ← −min
(
1, M

2∥L−1Wk∥F

)
L−1Wk

8: Ak+1 ← τkCk + (1− τk)Bk

9: Gk+1 ← D̃Φ[Ak+1]

10: Wk+1 ←Wk + αk+1Gk+1

11: k ← k + 1

12: return Bk

The multiplication operations in Algorithm 1 are applied entrywise and it is understood
that min(1,M/0) = 1. Due to inexactness, stopping conditions based on insufficient progress
of functions values or setting a threshold on the norm of the gradient require care. A condition
based on the number of iterations is discussed in Remark 10.

We now provide formal convergence guarantees for Algorithm 1.

Theorem 9 (Fast convergence rates). Assume that Φ is convex and L-smooth on DM and
that Π̃A is a δ-oracle for ΠA. Then, the iterates Bk in Algorithm 1 with D̃Φ[Ak] given by
(9) satisfy

Φ(Bk)− Φ(B⋆) ≤
2L∥B⋆∥2F

(k + 1)(k + 2)
+ 3δ′, (10)

where B⋆ is a global minimizer of Φ and δ′ = 32Mδ
∑

1≤i≤N0
1≤j≤N1

∥∥x(i)∥∥∥∥y(j)∥∥. Moreover, for

any η > 3δ′, Algorithm 1 requires at most

k =

−3

2
+

1

2

√
1 +

8L∥B⋆∥2F
η − 3δ′

 ≤
⌈
−3

2
+

1

2

√
1 +

128M2

η − 3δ′

⌉
(11)

iterations to achieve an η-approximate solution.

The proof of Theorem 9, given in Section 5.5, follows from Theorem 2.2 in d’Aspremont
(2008) after casting our problem as an instance of their setting. Some implications of
Theorem 9 are discussed in the following remark.

Remark 10 (Optimal rates and stopping conditions). First, consider the convergence rate
of the function values in (10). The first term on the right-hand side exhibits the optimal
complexity bound for smooth constrained optimization of O(1/k2) (cf., e.g., Nesterov 2003).
The second term accounts for the underlying oracle error. Notably, the progress of the
optimization procedure and the oracle error are completely decoupled in this bound.

12
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Next, we describe a stopping condition based on the number of iterations. Observe that
all terms involved in the upper bound in (11) are explicit as soon as a desired precision η is
chosen since the oracle error δ can be fixed according to Proposition 8. Consequently, (11)
can be used as an explicit stopping condition for Algorithm 1.

4.3 General Case

We now discuss an optimization procedure which does not require convexity of the objective.
This accounts for the fact that outside the sufficient conditions of Theorem 6, convexity of Φ
is generally unknown. However, the same result shows that Φ is L-smooth with L = 64 ∨(
322ε−1

√
M4(µ0)M4(µ1)− 64

)
and OT(·),ε is L′-smooth with L′ = 322ε−1

√
M4(µ0)M4(µ1).

Hence, we adapt the smooth non-convex optimization routine of Ghadimi and Lan (2016)
to account for our inexact oracle. Notably, their method adapts to the convexity of Φ as
described in Theorem 11.

We now present the algorithm and describe its convergence rate.

Algorithm 2 Adaptive gradient method with inexact oracle

Given C0 ∈ DM , fix the step sequences βk = 1
2L , γk = k

4L , and τk = 2
k+2 .

1: k ← 1
2: A1 ← C0

3: G1 ← D̃Φ[A1]

4: while stopping condition is not met do
5: Bk ← min

(
1, M

2∥Ak−βkGk∥F

)
(Ak − βkGk)

6: Ck ← min
(
1, M

2∥Ck−1−γkGk∥F

)
(Ck−1 − γkGk)

7: Bk ← M
2 sign(Ak − βkGk)min

(
2
M |Ak − βkGk| , 1

)
8: Ck ← M

2 sign(Ck−1 − γkGk)min
(

2
M |Ck−1 − γkGk| , 1

)
9: Ak+1 ← τkCk + (1− τk)Bk

10: Gk+1 ← D̃Φ[Ak+1]

11: k ← k + 1

12: return Bk

Unlike Algorithm 1, which can be initialized at any fixed A0, the starting point in
Algorithm 2 should be chosen according to some selection rule that avoids initializing at a
stationary point (e.g., random initialization). Indeed, if A1 is set to a stationary point of
Φ, then DΦ[A1] = 0 and, consequently D̃Φ[A1] ≈ 0 (given that the approximate gradient is
reasonably accurate), which may result in premature and undesirable termination. Clearly,
this is not a concern for Algorithm 1 since it assumes convexity of Φ, whereby any stationary
point is a global optimum.

The following result follows by adapting the proofs of Theorem 2 and Corollary 2
in Ghadimi and Lan (2016). For completeness, we provide a self-contained argument in
Appendix C along with a discussion of how this problem fits in the framework of Ghadimi
and Lan (2016).
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Theorem 11 (Adaptive convergence rate). Assume that Φ is L-smooth on DM and that
Π̃A is a δ-oracle for ΠA. Then, the iterates Ak,Bk in Algorithm 2 with D̃Φ[Ak] given by
(9) satisfy

1. If Φ is non-convex and OT(·),ε(µ0, µ1) is L′-smooth, then

min
1≤i≤k

∥∥β−1
i (Bi−Ai)

∥∥2
F
≤ 96L2

k(k+1)(k+2)
∥C0 −B⋆∥2F +

24LL′

k

(
∥B⋆∥2F +

5M2

16

)
+ 8Lδ′,

where B⋆ is a global minimizer of Φ, and δ′ = 32Mδ
∑

1≤i≤N0
1≤j≤N1

∥∥x(i)∥∥∥∥y(j)∥∥.
2. If Φ is convex, then

min
1≤i≤k

∥∥β−1
i (Bi −Ai)

∥∥2
F
≤ 96L2

k(k + 1)(k + 2)
∥C0 −B⋆∥2F + 8Lδ′.

To better motivate this result, we show that when
∥∥β−1

k (Bk −Ak)
∥∥
F

is small, DΦ[Ak]

is approximately stationary.

Corollary 12 (Approximate stationarity). Let Ak,Bk be iterates from Algorithm 2 and
assume that Bk ∈ int(DM ). Then,

∥DΦ[Ak]∥F < 32δ
∑

1≤i≤N0
1≤j≤N1

∥x(i)∥∥y(j)∥+
∥∥β−1

k (Bk −Ak)
∥∥
F
.

The proof of Corollary 12 follows from the δ-oracle assumption and the fact that when
Bk is an interior point of DM , we have Bk = Ak − βkGk. See Section 5.6 for the full
details. When Bk is not an interior point of DM , the interpretation of ∥β−1

k (Bk −Ak)∥F is
less straightforward. However, as all stationary points of Φ are contained in DMµ0,µ1

, it is
expected that Algorithm 2 will converge to an interior point when M > Mµ0,µ1 . By analogy
with Remark 10, when all iterates are interior points Algorithm 2 yields a bound on the total
number of iterations required to achieve an approximate stationary point.

The following remark addresses the distinctions between the convex and non-convex
settings in Theorem 11.

Remark 13 (Adaptivity of Algorithm 2). As in Theorem 9, the convergence rates in
Theorem 11 are decoupled into a term related to the progress of the optimization procedure
and a term related to the oracle error.

In the case where Φ is non-convex, the dominant term in the optimization error is
O(1/k), which coincides with the best known rates for solving general unconstrained nonlinear
programs (Ghadimi and Lan, 2016). On the other hand, when Φ is convex, the rate of
convergence improves to O(1/k3) which essentially matches the best known rates for the norm
of the gradient in the unconstrained accelerated gradient method applied to a convex L-smooth
function (see Theorem 6 in Shi et al. (2021) and Theorem 3.1 in Chen et al. (2022)6). This
adaptivity is beneficial, as Φ may be convex beyond the conditions derived in Theorem 6.

6. More precisely, Chen et al. (2022) show that the iterates (yi)
k
i=1 generated by the accelerated gradient

method applied to a convex L-smooth function f are such that min0≤i≤k ∥∇f(yi)∥2 = o(1/k3).
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An empirical comparison of Algorithms 1 and 2 in the convex setting is included in
Section 4.5. In particular, Algorithm 1 is seen to outperform Algorithm 2 in terms of average
runtime despite having the same per iteration complexity when the inexact gradient is
computed using standard Sinkhorn iterations.

Remark 14 (Computational complexity of Algorithms 1 and 2). As Sinkhorn’s algorithm
is known to have a complexity of O(N0N1) (cf. e.g. Scetbon et al. 2022), the gradient
approximation (9) can be computed in O(N0N1) time. It follows that Algorithms 1 and 2
admit a computational complexity of O(N0N1).

4.4 Approximating Unregularized Gromov-Wasserstein Distances

The EGW distance can approximate unregularized GW to an arbitrary precision, with error
|Sε(µ0, µ1)− S0(µ0, µ1)| = O

(
ε log

(
1
ε

))
as ε ↓ 0 (see Proposition 1 in Zhang et al. (2022a)).

It is therefore natural to ask if the proposed algorithms can be used to approximate the
unregularized GW distance between finitely supported marginals. Note, however, that for
ε > 0 sufficiently small, Φ may fail to be convex (see Theorem 6), whence Algorithm 2 may
only converge to an approximate stationary point of Φ. As such, it is not guaranteed that
itself Sε(µ0, µ1) (i.e., the global minimum of the entropic problem) can be approximated to
within a desired accuracy. Nevertheless, we show that these approximate stationary points
can be used to capture a notion of local optimality for S20(µ0, µ1), keeping in mind that
the quadratic GW distance decomposes as S0(µ0, µ1) = S1(µ0, µ1) + S20(µ0, µ1) for centered
distributions (see Corollary 1 in Zhang et al. (2022a)).

As opposed to EOT, optimal solutions to unregularized OT may fail to be unique, which
entails that Φ0 := 32∥ · ∥2F + OT(·),0(µ0, µ1) may be non-differentiable. Remarkably, the
following analogue of Corollary 4 on stationary points still holds.

Proposition 15 (Optimality conditions for Φ0). Let (µ0, µ1) ∈ P(Rd0)×P(Rd1) be compactly
supported. If Ā is a local minimizer of Φ0, then there exists a solution π̄ to OTĀ,0(µ0, µ1)

with Ā = 1
2

∫
xy⊺dπ̄(x, y) ∈ DM for any M > Mµ0,µ1. If Ā is globally optimal and µ0, µ1

are centered, then π̄ solves S0(µ0, µ1).

The proof of Proposition 15, which will appear in Section 5.7, follows similar lines to the
proofs provided in the regularized case with the caveat that Φ0 is merely locally Lipschitz.
To adapt these results, we characterize the Clarke subdifferential of Φ0 (Clarke, 1975).

Proposition 15 shows that any minimizer, Ā0 ∈ DM , of Φ0 satisfies an analogous criterion
to the stationary points, Āε ∈ DM , of Φε := 32∥ · ∥2F +OT(·),ε(µ0, µ1) for ε > 0 (namely, that
Āε =

1
2

∫
xy⊺dπ̄ε(x, y) for some π̄ε solving OTĀε,0(µ0, µ1) for ε ≥ 0). As noted previously,

when ε is small, we can only guarantee that Algorithm 2 will converge to an approximate
stationary point, A⋆

ε ∈ DM , satisfying ∥D(Φε)[A⋆
ε ]
∥F = ∥64A⋆

ε − 32
∫
xy⊺dπ⋆ε(x, y)∥F ≤ δ,

for some δ > 0, where π⋆ε solves OTA⋆
ε ,ε(µ0, µ1). We now show that the limit points of A⋆

ε, as
ε ↓ 0, are approximately stationary for Φ0. Furthermore, if the matrices along the sequence
are globally/locally optimal (in an appropriate sense), we show that global/local optimality
is inherited at the limit.

Theorem 16 (Convergence of approximate stationary points). Let (µ0, µ1) ∈ P(Rd0)×P(Rd1)
be compactly supported and fix δ ≥ 0. For ε > 0, let A⋆

ε ∈ DM be such that ∥D(Φε)[A⋆
ε ]
∥F ≤ δ

and let A⋆
0 be a cluster point of (A⋆

ε)ε>0 (as ε ↓ 0). Then,
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1. ∥64A⋆
0 − 32

∫
xy⊺dπA⋆

0
∥F ≤ δ, where πA⋆

0
is a solution of OTA⋆

0,0
(µ0, µ1).

2. if A⋆
ε is a global minimizer of Φε for all ε > 0 sufficiently small, then A⋆

0 minimizes Φ0.

3. if, up to a subsequence εn ↓ 0 along which A⋆
εn → A⋆

0, A
⋆
εn minimizes Φεn on a ball of

fixed radius r > 0 centred at A⋆
0, then A⋆

0 is a local minimizer of Φ0.

Recall that DM is compact such that a cluster point A⋆
0 always exists in Theorem 16.

In light of Proposition 15, these limit points can be thought of as approximate stationary
points for Φ0. This enables approximating local solutions to the unregularized variational
GW problem by stationary points obtained using Algorithm 2 for small ε. The proof of
Theorem 16 uses the notion of Γ-convergence (see e.g. Braides 2014) to show that the
solutions of OTA⋆

ε ,ε(µ0, µ1) converge to a solution of OTA⋆
0,0

(µ0, µ1) up to a subsequence and
that the local/global minimizers of Φε admit local/global minimizers of Φ0 as cluster points,
see Section 5.8 for details.

4.5 Numerical Experiments

We conclude this section with some experiments that empirically validate the rates obtained
in Theorems 9 and 11 and the computational complexity discussed in Remark 14. All
experiments were performed on a desktop computer with 16 GB of RAM and an Intel i5-
10600k CPU using the Python programming language. The considered marginal distributions
described below, µ0, µ1 were randomly generated.

Convergence rates. Figure 1 (a) presents an example of applying Algorithm 1 to a
convex Φ, where the marginals are µ0 = 0.4δ−1.4 + 0.6δ1.2 and µ1 = 0.4δ−1.01 + 0.6δ1.31,
with ε chosen large enough to guarantee convexity. The theoretical rate of O(k−2) from
Theorem 9 on the optimality gap Φ(Bk)− Φ(B⋆) is seen to hold.7 Figure 1 (b) illustrates
the progress of Algorithm 2 applied to a non-convex Φ, for µ0 = 1

3 (δ0.3 + δ−0.8 + δ−0.5)
and µ1 = 1

3

(
δ(0.1,0.6) + δ(−0.5,0.3) + δ(0.4,−0.3)

)
, with ε = 0.07 which makes Φ non-convex.

The O(k−1) rate for min1≤i≤k

∥∥β−1
i (Bi−Ai)

∥∥2
F

in the non-convex case from Theorem 11
is well reflected in this example. Figure 1 (c) shows that Algorithm 2 can match the
theoretical rate of O(k−3) in the convex regime when initialized in a region of local convexity.
In this example, the generated marginals are µ0 = 1

5 (δ−0.1 + δ−0.2 + δ0.2 + δ−0.3 + δ0.3) and
µ1 = 1

5 (δ0.2 + δ−0.3 + δ0.3 + δ−0.4 + δ0.4) and ε = 0.03. The stopping condition used in all
these example is ∥Gk∥F < 5 × 10−8 and the approximate gradient (9) is computed using
the standard implementation of Sinkhorn’s algorithm from the Python Optimal Transport
package (Flamary et al., 2021).

Time complexity. To study the time complexity of Algorithms 1 and 2, we first choose the di-
mension d ∈ {1, 16, 64, 128} and let µ0, µ1 ∈ P(Rd) be supported on N ∈ {16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384} samples of a mean-zero normal distribution with standard
deviation 0.05 for µ0 and 0.1 for µ1. The weights are chosen uniformly at random from [0, 1)
and normalized so as to sum to 1. This procedure is repeated to generate a collection of
pairs of random distributions {(µ0,i, µ1,i)}50i=1. In the sequel, a single experiment refers to the

7. The plot shows the approximate gap Φ(Bk) − Φ(B̄⋆), where B̄⋆ is the iterate attaining the minimal
objective value.
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Figure 1: The top row compiles plots of Φ for the different examples described in the text.
The bottom row consists of plots tracking the progress of the iterates. In (b) and (c),
Algorithm 2 is initialized at C0 = (1, 1)× 10−5 and C0 = 1× 10−5, respectively.

process of timing the computation of Sε(µ0,i, µ1,i) for some fixed d,N and all i = 1, . . . , 50.
For practical reasons, we choose to abort an experiment before all 50 EGW distances have
been computed if the total runtime for this experiment exceeds 1 hour. The average runtime
is then computed among all completed calculations in a single experiment.

The convex case: First, ε is chosen as 1.05 × 16
√
M4(µ0)M4(µ1) so as to guarantee

convexity of Φ for each instance by Theorem 6 and M is set to
√
M2(µ0)M2(µ1) + 10−5.

Figure 2 presents the average runtime of both algorithms in this setting with the stopping
condition ∥Gk∥F < 10−6. We compare the performance of our methods with the two
implementations of the O(N2) mirror descent algorithm provided in Scetbon et al. (2022).8

The first implementation includes certain algorithmic tweaks when d2 ≪ N , whereas the
second only requires d ≪ N to achieve the quadratic complexity. Our implementation of
the mirror descent algorithm is based on the code provided in Scetbon et al. (2022) with
some small modifications (e.g., EOT couplings are computed using Sinkhorn’s algorithm
from the Python Optimal Transport package (Flamary et al., 2021) and some extraneous
logging features are removed) the algorithm is run until the generated couplings differ by less
than 10−6 under the Frobenius norm. We note that the first version of the mirror descent
algorithm encounters “out of memory” errors for N = 16384.

8. We do not compare with the original implementation of mirror descent Peyré et al. (2016) or the iterative
algorithm from Solomon et al. (2016) due to their much slower O(N3) runtime.
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Figure 2: The various plots compile the average runtime of Algorithms 1 and 2, and two
versions of the mirror descent algorithm in the convex regime for different combinations of d
and N .

The plots show that the four algorithms perform similarly on the considered examples,
and empirically validate the O(N2) computational complexity from Remark 14. To verify
that the algorithms all converge to solutions with similar objective values, we evaluate the
relative error9 between all pairs of algorithms for each d,N . The largest relative error we
observe is 3.3× 10−6 for d = 1 and, for the other choices of d, is at most 7.9× 10−13. We
conclude that the values obtained are in good agreement.

The non-convex case: To evaluate the performance of Algorithm 2 when convexity is
unknown, we set ε to violate the condition of Theorem 6, but still be large enough so as
to avoid numerical errors. If errors in running Algorithm 2 or the mirror descent methods
occur, we double ε until all algorithms converge without errors. The initial point C0 for
Algorithm 2 is taken as the matrix of all ones scaled by min{M, 1} × 10−5. We consider
two ways of choosing the smoothness parameter L, which effectively dictates the rate of

9. Relative error is measured by maxi∈C(d,N)

∣∣SA1
ε (µ0,i, µ1,i) − SA2

ε (µ0,i, µ1,i)
∣∣/(SA1

ε (µ0,i, µ1,i) ∧
SA2
ε (µ0,i, µ1,i)

)
, where SA1

ε (µ0,i, µ1,i) and SA2
ε (µ0,i, µ1,i) denote the objective values achieved by the

first and second algorithm of the pair, and C(d,N) is the collection of completed runs from a given
experiment.
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Figure 3: The various plots compile the average runtime of Algorithm 2 with the two methods
for choosing L, and two versions of the mirror descent algorithm in the non-convex regime
for different combinations of d and N .

convergence. The first is to set L equals to the theoretical upper bound from Theorem 6,
i.e., L = 64 ∨

(
322ε−1

√
M4(µ0)M4(µ1)− 64

)
. As this choice may be too conservative in

practice, we also consider setting L via a line search. Namely, we fix a value for L (e.g., the
theoretical upper bound or an arbitrary value) and check if the algorithm converges for a
given choice of d,N, µ0,i, µ1,i. If so, we multiply L by 0.99 and repeat this procedure until
the algorithm no longer converges. For each d and N , we choose the value of L that attains
the fastest convergence, and repeat this procedure for 5 pairs of distributions. For Algorithm
2 with the choice of L that comes from the theoretical bound and the two versions of mirror
descent we follow the same methodology as in the convex case, i.e., averaging over 50 pairs
and stopping an experiment after 1 hour. The average runtimes of all methods are reported
in Figure 3. The restriction to 5 runs in the line search case is only out of convenience and
we note that all algorithms yield similar results if we restrict to 5 runs throughout.

The plots again validate the O(N2) time complexity for all four approaches. However,
we see that choosing L in Algorithm 2 according to the theoretical upper bound may
indeed be too conservative, as it results in a 10× or larger slowdown compared to the other
methods. By setting L via the line search, on the other hand, Algorithm 2 and mirror descent
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exhibit similar performance. This suggests that the longer runtime of Algorithm 2 with the
theoretical L value can be attributed to this being an overly conservative choice as opposed
to a fundamental limitation of this method. Optimization routines that update L at each
iteration have been proposed in Tseng (2008); Becker et al. (2011); Nesterov (2013), but
require solving an additional EOT problem at each step for our application. As such, these
approaches may reduce the number of iterations required for convergence, at the cost of
increasing the per iteration complexity.

Real-world data. We next assess the performance of our algorithms on real-world data
from the Fashion-MNIST dataset (Xiao et al., 2017). Since the ground truth EGW value
is unknown, we test the performance of the algorithm in capturing the invariance of the
EGW distance to isometries. As the EGW distance generally does not nullify between
isomorphic mm spaces,10 we consider a centered/debiased version, inspired by debiased EOT
(also known as Sinkhorn divergence, Feydy et al., 2018; Genevay et al., 2018). Define the
debiased quadratic EGW distance between (µ0, µ1) ∈ P(Rd0)× P(Rd1) as

S̄ε(µ0, µ1) := Sε(µ0, µ1)−
1

2

(
Sε(µ0, µ0) + Sε(µ1, µ1)

)
.

The recentering guarantees that S̄ε nullifies whenever (Rd0 , ∥ · ∥, µ0) and (Rd1 , ∥ · ∥, µ1) are
isomorphic, as desired.

Having that, our experiment consists of comparing a fixed image from the Fashion MNIST
dataset to rotated versions of itself and other images from the dataset, by computing the
debiased EGW distance between them. By doing so, we empirically validate that computation
of S̄ε using Algorithm 2 is invariant to isometric transformations on a real-world dataset.
Precisely, we pad the 28× 28 pixel images from the dataset with zeros on all sides such that
the effective image size is 40× 40 pixels (this guarantees that no nonzero pixels are lost upon
rotation) and treat these padded images as probability distributions on a 40 × 40 grid of
points in R2 with weights proportional to the pixel intensity value. We then compare these
distributions using S̄ε upon removing the points with zero mass from each distribution, the
values thus obtained are included in Figure 4.

We note that rotating an image by an angle which is not a multiple of 90◦ does not
correspond to an isometric action on R2, as it requires interpolating the pixel back onto the
40× 40 grid of points. Nevertheless, we see from Figure 4, that the images subject to random
rotations and the unrotated images achieve similar values of S̄ε relative to the fixed reference
image. The discrepancy between these two values can be thought of as a quantification of the
distortion to the image structure caused by the interpolation procedure. When the rotation
is a multiple of 90◦, we see that the values obtained are identical, as no interpolation is
performed on the image.

Figure 4 marks in red values corresponding to images that are closest to the reference
image in the debiased EGW distance. These images have a notable structural similarity to
the reference in their overall shape and/or features (e.g., pleats on the dress). We also observe
that quite naturally the images with largest discrepancy are those of shoes, which have a

10. Indeed, DKL(π∥µ0 ⊗ µ1) ≥ 0 with equality if and only if π = µ0 ⊗ µ1 whereas the integral of the distance
distortion cost vanishes if and only if the coupling is induced by some isometry T : Rd0 → Rd1 . By
Corollary 4, an optimal coupling π⋆ for Sε(µ0, µ1) is equivalent to µ0⊗µ1 (in the sense that π⋆ ≪ µ0⊗µ1

and µ0 ⊗ µ1 ≪ π⋆), so π⋆ cannot be induced by an isometry unless µ0, µ1 are supported on one point.
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Figure 4: We compare the image on the left to the images on the right using debiased EGW
with ε = 0.1 as a figure of merit. The corresponding value of S̄ε is included on top of the
corresponding images. The images are presented in groups of three, where the leftmost image
in the group is the original image, the middle image is obtained via a random rotation of the
original image, and the rightmost image is a rotation by a multiple of 90◦. Distance values
smaller than 5× 10−3 are in red.

distinct structure, and the plaid shirt which has a different pattern. Interestingly, between
these two extremes, there are images which have comparable values, but are structurally
dissimilar (for instance the images in the center column except for the plaid shirt and the
sandal). This behaviour demonstrates that the debiased EGW distance does not simply
compare the shapes of the images, but rather takes into account the intricate interplay
between the intensity values of the images.

5 Proofs

5.1 Proof of Proposition 2

We first fix some notation. Let Si = spt(µi) for i = 0, 1 and define the Banach spaces

E =

{
(f0, f1) ∈ C(S0)× C(S1) :

∫
f0dµ0 = 0

}
,

F =

{
(f0, f1) ∈ C(S0)× C(S1) :

∫
f0dµ0 =

∫
f1dµ1

}
.
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Consider the map Υ : Rd0×d1 × E→ C(S0)× C(S1) given by

Υ : (A, φ0, φ1) 7→

(∫
e
φ0(·)+φ1(y)−cA(·,y)

ε dµ1(y)− 1,

∫
e
φ0(x)+φ1(·)−cA(x,·)

ε dµ0(x)− 1

)
.

For fixed A ∈ Rd0×d1 , the solution to the equation Υ(A, ·, ·) = 0 is the unique pair of EOT
potentials (φA

0 , φ
A
1 ) for µ0, µ1 with the cost cA satisfying the normalization from E. Observe

that, by compactness of S0 and S1, the potentials are bounded.

The following lemmas verify the conditions to apply the implicit mapping theorem to Υ
in order to obtain the Fréchet derivative of the map A ∈ Rd0×d1 7→ (φA

0 , φ
A
1 ). Given that

OTA,ε(µ0, µ1) =
∫
φA
0 dµ0 +

∫
φA
1 dµ1, the derivative of the map A 7→ OTA,ε(µ0, µ1) and

that of Φ itself will readily follow.

Lemma 17. The map Υ is smooth with first derivative at (A, φ0, φ1) ∈ Rd0×d1 ×E given by,

DΥ[A,φ0,φ1](B, h0, h1) = ε−1

(∫
(h0(·) + h1(y) + 32(·)⊺By)e

φ0(·)+φ1(y)−cA(·,y)
ε dµ1(y),∫

(h0(x) + h1(·) + 32x⊺B(·))e
φ0(x)+φ1(·)−cA(x,·)

ε dµ0(x)

)
,

where (B, h0, h1) ∈ Rd0×d1 × E.

The proof of this result is straightforward, but included in Appendix D.1 for completeness.
Now, define ξA := εDΥ[A,φA

0 ,φA
1 ](0, ·, ·) and let πA be the EOT coupling for OTA,ε(µ0, µ1).

Note that for any (h0, h1) ∈ E, we have ξA(h0, h1) ∈ F, which follows by recalling that
dπA

dµ0⊗µ1
(x, y) = e

φA0 (x)+φA1 (y)−cA(x,y)

ε and observing∫ (
ξA(h0, h1)

)
1
dµ0 =

∫
h0dµ0 +

∫
h1dπA =

∫
h0dµ0 +

∫
h1dµ1∫ (

ξA(h0, h1)
)
2
dµ1 =

∫
h0dπA +

∫
h1dµ1 =

∫
h0dµ0 +

∫
h1dµ1.

We next prove that ξA is an isomorphism between E and F by following the proof of
Proposition 3.1 in Carlier and Laborde (2020).

Lemma 18. The map ξA is an isomorphism between E and F.

Proof Observe that ξA extends naturally to a map on L2(µ0) × L2(µ1) and admits the
representation

ξA : (f0, f1) ∈ L2(µ0)× L2(µ1) 7→ (f0, f1) + L(f0, f1) ∈ L2(µ0)× L2(µ1),

where

L(f0, f1) =
(∫

f1(y)e
φA0 (·)+φA1 (y)−cA(·,y)

ε dµ1(y),

∫
f0(x)e

φA0 (x)+φA1 (·)−cA(x,·)
ε dµ0(x)

)
.
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Lemma 33 in Appendix D.2 demonstrates that L is a compact linear self-map of L2(µ0)×
L2(µ1).

We first show that ξA is injective on E := {(f0, f1) ∈ L2(µ0) × L2(µ1) :
∫
f0dµ0 = 0}.

Suppose that (f̄0, f̄1) satisfies ξA(f̄0, f̄1) = 0. Multiplying (ξA(f̄0, f̄1))1 by f̄0 and (ξA(f̄0, f̄1))2
by f̄1, we have ∫ (

f̄20 (·) + f̄0(·)f̄1(y)
)
e
φA0 (·)+φA1 (y)−cA(·,y)

ε dµ1(y) = 0,∫ (
f̄0(x)f1(·) + f̄21 (·)

)
e
φA0 (x)+φA1 (·)−cA(x,·)

ε dµ0(x) = 0,

and summing these equations gives
∫
(f̄0 + f̄1)

2dπA = 0. As πA is equivalent to µ0 ⊗ µ1, we
have f̄0 + f̄1 = 0 µ0 ⊗ µ1-a.e., which further implies that (f̄0, f̄1) = (a,−a) µ0 ⊗ µ1-a.e. for
some a ∈ R. Consequently, ker(ξA) is 1-dimensional and ξA is injective on E.

Next, we show that ξA is onto F := {(f0, f1) ∈ L2(µ0) × L2(µ1) :
∫
f0dµ0 =

∫
f1dµ1}.

As in the lead-up to this lemma, ξA(E) ⊂ F . By the Fredholm alternative (cf. Theorem 6.6
in Brézis (2011)), (Id+L)(L2(µ0)× L2(µ1)) has codimension 1 and, as F has codimension 1,
we must have ξA(E) = F .

As such, for any (g0, g1) ∈ F ⊂ F , there exists (h0, h1) ∈ E for which

ξA(h0, h1) = (h0, h1) + L(h0, h1) = (g0, g1).

As L(h0, h1) ∈ C(S0)×C(S1), (h0, h1) = (g0, g1)−L(h0, h1) ∈ C(S0)×C(S1) with
∫
h0dµ0 = 0,

and thus (h0, h1) ∈ E. This implies that ξA(E) ⊃ F and from before we have ξA(E) ⊂ F,
yielding ξA(E) = F. We have shown that ξA : E → F is a continuous linear bijection and
hence an isomorphism by the open mapping theorem (cf. Corollary 2.7 in Brézis 2011).

We now apply the implicit mapping theorem to obtain the Fréchet derivative of (φ(·)
0 , φ

(·)
1 ).

Lemma 19. The map A ∈ Rd0×d1 7→ (φA
0 , φ

A
1 ) ∈ E is smooth with Fréchet derivative

D
(
φ
(·)
0 , φ

(·)
1

)
[A]

(B) = −
(
hA,B
0 , hA,B

1

)
,

where
(
hA,B
0 , hA,B

1

)
∈ E satisfies∫ (

hA,B
0 (x) + hA,B

1 (y)− 32x⊺By
)
e
φA0 (x)+φA1 (y)−cA(x,y)

ε dµ1(y) = 0, ∀x ∈ spt(µ0),∫ (
hA,B
0 (x) + hA,B

1 (y)− 32x⊺By
)
e
φA0 (x)+φA1 (y)−cA(x,y)

ε dµ0(x) = 0, ∀ y ∈ spt(µ1),

(12)

with (φA
0 , φ

A
1 ) being any pair of EOT potentials for (µ0, µ1) with the cost cA.

Proof Fix A ∈ Rd0×d1 with corresponding EOT potentials
(
φA
0 , φ

A
1

)
. For notational conve-

nience, define the shorthands D1ΥA = DΥ[A,φA
0 ,φA

1 ](·, 0, 0) and D2ΥA = DΥ[A,φA
0 ,φA

1 ](0, ·, ·)
(cf. Lemma 17). By Lemma 18, D2ΥA is an isomorphism and we may invoke the implicit
mapping theorem (cf. Theorem 5.14 in Bonnans and Shapiro 2013). This implies that there

23



Rioux, Goldfeld, and Kato

exists an open neighborhood U ⊂ Rd0×d1 of A and a smooth map g : U → E for which
Υ
(
B, g(B)

)
= 0 for every B ∈ U and

Dg[A](B) = −(D2ΥA)−1 (D1ΥA(B)) ,

i.e., −Dg[A](B) solves (12). By construction, g(B) = (φB
0 , φ

B
1 ) and by repeating this process

at any A ∈ Rd0×d1 , differentiability of the potentials is extended to the entire space Rd0×d1 .

Given the dual form of the EOT cost, Lemma 19 suffices to prove Proposition 2.
Proof of Proposition 2 As OTA,ε(µ0, µ1) =

∫
φA
0 dµ0 +

∫
φA
1 dµ1, Lemma 19 implies that

OT(·),ε(µ0, µ1) is smooth with first derivative at A ∈ Rd0×d1 given by

D
(
OT(·),ε(µ0, µ1)

)
[A]

(B) = −
∫
hA,B
0 dµ0 −

∫
hA,B
1 dµ1,

where B ∈ Rd0×d1 . Integrating the first equation in (12) w.r.t. µ0 while using dπA
µ0⊗µ1

(x, y) =

e
φA0 (x)+φA1 (y)−cA(x,y)

ε , yields∫ (
hA,B
0 (x) + hA,B

1 (y)
)
dπA(x, y) =

∫
hA,B
0 dµ0 +

∫
hA,B
1 dµ1 = 32

∫
x⊺By dπA(x, y),

(13)
whence

D
(
OT(·),ε(µ0, µ1)

)
[A]

(B) = −32
∫
x⊺By dπA(x, y).

As ∥A∥2F = tr(A⊺A), we have D
(
32∥ · ∥2F

)
[A]

(B) = 64tr(A⊺B), which together with the
display above yields

DΦ[A](B) = 64 tr(A⊺B)− 32

∫
x⊺By dπA(x, y),

as desired.

For the second-order derivative, recall from (4) that dπA
dµ0⊗µ1

(x, y) = e
φA0 (x)+φA1 (y)−cA(x,y)

ε .
As in the proof of Lemma 17, as the map

A ∈ Rd0×d1 7→
(
(x, y) ∈ S0 × S1 7→ φA

0 (x) + φA
1 (y)− cA(x, y)

)
∈ C(S0 × S1)

is differentiable at A ∈ Rd0×d1 with derivative

C ∈ Rd0×d1 7→
(
(x, y) ∈ S0 × S1 7→ −

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
))
∈ C(S0 × S1),

the expansion

dπA+C

dµ0 ⊗ µ1
(x, y)− dπA

dµ0 ⊗ µ1
(x, y) = −ε−1zA,C(x, y)

dπA
dµ0 ⊗ µ1

(x, y) +RC(x, y),
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holds uniformly over (x, y) ∈ S0×S1, where RC(x, y) = o(C) as ∥C∥F → 0 and zA,C(x, y) =

hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy. Thus,

sup
∥B∥F=1

∣∣∫ x⊺By dπA+C(x, y)−
∫
x⊺By dπA(x, y)− ε−1

∫
x⊺ByzA,C(x, y)dπA(x, y)

∣∣
∥C∥F

= sup
∥B∥F=1

∣∣∣∣∫ x⊺By∥C∥−1
F RC(x, y)dµ0 ⊗ µ1(x, y)

∣∣∣∣
≤ sup

(x,y)∈S1×S2

∥x∥∥y∥
∫
∥C∥−1

F |RC(x, y)| dµ0 ⊗ µ1(x, y).

As RC(x, y) = o(C), this final term converges to 0 as ∥C∥F → 0, so

D2
(
OT(·),ε(µ0, µ1)

)
[A]

(B,C) = 32ε−1

∫
x⊺By

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y).

As D
(
32∥ · ∥2F

)
[A]

(B) = 64tr(A⊺B), D2
(
32∥ · ∥2F

)
[A]

(B,C) = 64tr(C⊺B). Altogether,

D2Φ[A](B,C) = 64 tr(B⊺C) + 32ε−1

∫
x⊺By

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y).

Coercivity of Φ is due to nonnegativity of the KL divergence along with the Cauchy-Schwarz
inequality,

OTA,ε(µ0, µ1) = inf
π∈Π(µ0,µ1)

{∫
−4∥x∥2∥y∥2 − 32x⊺Ay dπ(x, y) + εDKL(π∥µ0 ⊗ µ1)

}
,

≥ inf
π∈Π(µ0,µ1)

{∫
−4∥x∥2∥y∥2 − 32∥A∥F ∥x∥∥y∥dπ(x, y)

}
≥ −4

√
M4(µ0)M4(µ1)− 32∥A∥F

√
M2(µ0)M2(µ1),

such that Φ(A) = 32∥A∥2F + OTA,ε(µ0, µ1)→ +∞ as ∥A∥F →∞.

5.2 Proof of Corollary 4

Item (i). The expression for the stationary points follows immediately from Proposition 2.
To see that all stationary points are elements of DMµ0,µ1

, observe that if A is a stationary
point, then

∥A∥F =
1

2

∥∥∥∥∫ xy⊺ dπA(x, y)

∥∥∥∥ ≤ 1

2

∫
∥x∥∥y∥dπA(x, y) ≤ 1

2

√
M2(µ0)M2(µ1),

where the first inequality is due to Jensen’s inequality, and the second is due to the Cauchy-
Schwarz inequality.

Item (ii). As discussed in Section 2.2, if π⋆ is optimal for Sε then 1
2

∫
xy⊺ dπ⋆(x, y)

minimizes Φ. On the other hand, if A minimizes Φ, then we have A = 1
2

∫
xy⊺ dπA and
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hence

S2ε(µ0, µ1) = 8

∥∥∥∥∫ xy⊺ dπA(x, y)

∥∥∥∥2
F

− 4

∫
∥x∥2∥y∥2dπA(x, y)

− 32

〈
1

2

∫
xy⊺ dπA,

∫
xy⊺ dπA

〉
F

+ εDKL(πA||µ0 ⊗ µ1)

= −4
∫
∥x∥2∥y∥2dπA(x,y) − 8

∥∥∥∥∫ xy⊺ dπA(x, y)

∥∥∥∥2
F

+ εDKL(πA||µ0 ⊗ µ1).

By (6),

Sε(µ0, µ1) = Sε(µ0, µ1) + S2ε(µ0, µ1)

=

∫ ∣∣∥x− x′∥2 − ∥y − y′∥2∣∣2 + 2∥x− x′∥2∥y − y′∥2dπA ⊗ πA(x, y, x′, y′)

− 4

∫
∥x∥2∥y∥2dµ0 ⊗ µ1(x, y)− 4

∫
∥x∥2∥y∥2dπA(x, y)

− 8

∥∥∥∥∫ xy⊺ dπA(x, y)

∥∥∥∥2
F

+ εDKL(πA||µ0 ⊗ µ1).

(14)

As ∥x− x′∥2∥y − y′∥2 =
(
∥x∥2 − 2x⊺x′ + ∥x′∥2

) (
∥y∥2 − 2y⊺y′ + ∥y′∥2

)
, we have∫

∥x− x′∥2∥y − y′∥2dπA ⊗ πA(x, y, x′, y′)

= 2

∫
∥x∥2∥y∥2dµ0 ⊗ µ1(x, y) + 2

∫
∥x∥2∥y∥2dπA(x, y)

+ 4

∫
x⊺x′y⊺y′ dπA ⊗ πA(x, y, x′, y′),

which, together with (14) yields

Sε(µ0, µ1) =

∫ ∣∣∥x− x′∥2 − ∥y − y′∥2∣∣2 dπA ⊗ πA(x, y, x′, y′) + εDKL(πA||µ0 ⊗ µ1),

proving optimality of πA.
Item (iii). Suppose Sε admits a unique optimal coupling. If two matrices A and B

minimize Φ, then πA = πB by uniqueness, so A = 1
2

∫
xy⊺ dπA(x, y) = 1

2

∫
xy⊺ dπB(x, y) =

B. Conversely, suppose Φ admits a unique minimizer A⋆. If π is optimal for Sε, then π
solves the EOT problem OTA⋆,ε(µ0, µ1), so π = πA⋆ .

5.3 Proof of Corollary 5

We first prove Item (i). The minimal eigenvalue of D2Φ[A] is given in variational form as

inf
∥C∥F=1

D2Φ[A](C,C)

= inf
∥C∥F=1

{
64∥C∥2F + 32ε−1

∫
x⊺Cy

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y)

}
≥ 64 + 32ε−1 inf

∥C∥F=1

{∫
x⊺Cy

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y)

}
,

26



Entropic Gromov-Wasserstein Distances: Stability and Algorithms

using the formula for D2Φ[A] from Proposition 2. Recall that (hA,C
0 , hA,C

1 ) satisfy∫ (
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
e
φA0 (x)+φA1 (y)−cA(x,y)

ε dµ1(y) = 0, ∀x ∈ spt(µ0),∫ (
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
e
φA0 (x)+φA1 (y)−cA(x,y)

ε dµ0(x) = 0, ∀ y ∈ spt(µ1),

such that, multiplying the top equation by hA,C
0 and integrating w.r.t. µ0 and performing

the same operations on the lower equation with hA,C
1 and µ1 respectively,∫ [(

hA,C
0 (x)

)2
+ hA,C

1 (y)hA,C
0 (x)− 32x⊺CyhA,C

0 (x)

]
dπA(x, y) = 0,∫ [

hA,C
0 (x)hA,C

1 (y) +
(
hA,C
1 (y)

)2
− 32x⊺CyhA,C

1 (y)

]
dπA(x, y) = 0.

Summing these equations gives

32

∫
x⊺Cy

(
hA,C
0 (x) + hA,C

1 (y)
)
dπA(x, y) =

∫ (
hA,C
0 (x) + hA,C

1 (y)
)2
dπA(x, y),

such that

32

∫
x⊺Cy

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y)

=

∫ (
hA,C
0 (x) + hA,C

1 (y)
)2
dπA(x, y)− 322

∫
(x⊺Cy)2dπA(x, y),

which proves the first part of Item (i). It remains to show that∫ (
hA,C
0 (x) + hA,C

1 (y)
)2
dπA(x, y)− 322

∫
(x⊺Cy)2dπA(x, y) ≥ −322VarπA

[X⊺CY ].

By Jensen’s inequality, we have∫ (
hA,C
0 (x) + hA,C

1 (y)
)2
dπA(x, y) ≥

(∫
hA,C
0 (x) + hA,C

1 (y)dπA(x, y)

)2

= 322
(∫

x⊺Cy dπA(x, y)

)2

,

where the equality follows from (13), proving the desired inequality.
To prove the uniform bound on the variance in Item (i), observe that

sup
∥C∥F=1

VarπA
[X⊺CY ] ≤ sup

∥C∥F=1
EπA

[(X⊺CY )2]

≤ sup
∥C∥F=1

∥C∥2F
∫
∥x∥2∥y∥2dπA(x, y),

≤
√
M4(µ0)M4(µ1)
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where the final two inequalities follow from the Cauchy-Schwarz inequality.
We now prove the upper bound on the maximum eigenvalue of D2Φ[A] from Item (ii)

again using its variational characterization,

λmax

(
D2Φ[A]

)
= sup

∥C∥F=1
D2Φ[A](C,C) = 64 + λmax

(
D2OT(·),ε(µ0, µ1)[A]

)
.

Observe that OTA,ε(µ0, µ1) = infπ∈Π(µ0,µ1) g(A, π, µ0, µ1, ε), where g depends on A only
through the term 32tr(A⊺

∫
xy⊺ dπ(x, y)) which is linear in A. It follows from, e.g., Proposi-

tion 2.1.2 in Hiriart-Urruty and Lemaréchal (2004) that OT(·),ε(µ0, µ1) is concave. As such,
λmax

(
D2OT(·),ε(µ0, µ1)[A]

)
≤ 0, so λmax

(
D2Φ[A]

)
≤ 64.

5.4 Proof of Theorem 6

We first discuss the convexity properties of Φ. By Corollary 5, λmin

(
D2Φ[A] +

ρ
2∥A∥

2
F

)
≥

64 − 322ε−1
√
M4(µ0)M4(µ1) + ρ for any A ∈ Rd0×d1 and ρ ≥ 0. When this lower bound

is nonnegative, Φ is ρ-weakly convex on Rd0×d1 by definition; recall Section 3. It follows
that Φ is always ρ-weakly convex for ρ = 322ε−1

√
M4(µ0)M4(µ1) − 64. Moreover, if√

M4(µ0)M4(µ1) <
ε
16 , then λmin

(
D2Φ[A]

)
> 0 such that Φ is strictly convex.

L-smoothness of Φ follows from the mean value inequality (see e.g. Example 2 p. 356 in
Apostol 1974)

∥DΦ[A] −DΦ[B]∥F ≤ sup
C∈[A,B]

sup
∥E∥F=1

∣∣D2Φ[C] (A−B,E)
∣∣ ,

≤ sup
C∈[A,B]

(∣∣λmin

(
D2Φ[C]

)∣∣ ∨ ∣∣λmax

(
D2Φ[C]

)∣∣) ∥A−B∥F ,

for any A,B ∈ Rd0×d1 , where [A,B] denotes the line segment connecting A and B. The
claimed result then follows by noting that, for any A,B ∈ DM , [A,B] ⊂ DM by convexity
and the supremum over DM is achieved by compactness and the fact that the objective
is continuous. Indeed, the maps λmax(·), λmin(·) are continuous on the space of symmetric
matrices, and D2Φ[·] is continuous as Φ is smooth.

5.5 Proof of Theorem 9

In this section, we show that Theorem 2.2 in d’Aspremont (2008) on the convergence rate of
Algorithm 1 is applicable in our setting. We particularize their result to a fixed prox-function
d = 1

2∥ · ∥
2
F which is smooth and 1-strongly convex.

First, we justify the expressions for the iterates Bk,Ck in Algorithm 1, which are defined
in d’Aspremont (2008) as the proximal operators

Bk = argmin
V ∈DM

{
tr
(
G⊺

kV
)
+
L

2
∥V −Ak∥2F

}
,

Ck = argmin
V ∈DM

{
tr
(
W ⊺

k V
)
+
L

2
∥V ∥2F

}
.

Rearranging terms, both problems can be written, equivalently, as

argmin
V ∈DM

{
∥V −U∥2F

}
, (15)
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for U = Ak − L−1Gk and U = −L−1Wk for the Bk and Ck iterations respectively. The
solution of (15) is given by V = U if V = U ∈ DM , and M

2 U/∥U∥F otherwise.
Next, we show that our notion of δ-oracle yields a δ′-approximate gradient in the sense

of Equation (2.3) in d’Aspremont (2008). Precisely, we prove that∣∣∣tr((D̃Φ[A] −DΦ[A]

)⊺
(B −C)

)∣∣∣ ≤ δ′, (16)

for any A,B,C ∈ DM . By the Cauchy-Schwarz inequality,∣∣∣tr((D̃Φ[A] −DΦ[A]

)⊺
(B −C)

)∣∣∣ ≤M ∥∥∥D̃Φ[A] −DΦ[A]

∥∥∥
F
.

Recall that
D̃Φ[A] −DΦ[A] = 32

∑
1≤i≤N0
1≤j≤N1

x(i)
(
y(j)
)⊺ (

Π̃A
ij −ΠA

ij

)
,

where
∥∥∥Π̃A −ΠA

∥∥∥
∞
< δ uniformly in A ∈ DM by the δ-oracle assumption such that

∥∥∥D̃Φ[A] −DΦ[A]

∥∥∥
F
≤ 32

∥∥∥Π̃A −ΠA
∥∥∥
∞

∑
1≤i≤N0
1≤j≤N1

∥∥∥x(i) (y(j))⊺∥∥∥
F
< 32δ

∑
1≤i≤N0
1≤j≤N1

∥∥∥x(i)∥∥∥∥∥∥y(j)∥∥∥ .
(17)

Combining the displayed equations yields∣∣∣tr((D̃Φ[A] −DΦ[A]

)⊺
(B −C)

)∣∣∣ ≤ 32Mδ
∑

1≤i≤N0
1≤j≤N1

∥∥∥x(i)∥∥∥∥∥∥y(j)∥∥∥ = δ′,

proving (16).
With these preparations Theorem 9 follows from Theorem 2.2 in d’Aspremont (2008) and

the discussion following its proof, noting that
∑k

i=0
i+1
2 = (k+1)(k+2)

4 .

5.6 Proof of Corollary 12

As Ak,Bk be iterates from Algorithm 2 with Bk ∈ int(DM ) such that Bk = Ak − βkD̃Φ[Ak]

by definition. By the triangle inequality,

∥DΦ[Ak]∥F ≤ ∥DΦ[Ak]−D̃Φ[Ak]∥F+∥D̃Φ[Ak]∥F = ∥DΦ[Ak]−D̃Φ[Ak]∥F+∥β
−1
k (Bk −Ak) ∥F .

(17) further yields

∥DΦ[Ak] − D̃Φ[Ak]∥F < 32δ
∑

1≤i≤N0
1≤j≤N1

∥x(i)∥∥y(j)∥,

proving the claim.
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5.7 Proof of Proposition 15

Let Si = spt(µi) for i = 0, 1. Recall that S0, S1 are compact by assumption. The proof of
Proposition 15 follows by verifying optimality conditions for minimizing locally Lipschitz
functions using the Clarke subdifferential (Clarke, 1990). To this end, we first verify that the
objective Φ0 is locally Lipschitz and prove several auxiliary results to characterize the Clarke
subdifferential ∂Φ0, recalling that the Clarke subdifferential of a locally Lipschitz function
f : Rd0×d1 → R at a point A ∈ Rd0×d1 is given by (cf. e.g. Theorem 2.5.1 in Clarke 1990)

∂f(x) = conv
({

lim
n→∞

Df[An] : U ̸∋ An → A
})

, (18)

where conv(A) denotes the convex hull of the set A, U ⊂ Rd0×d1 denotes a set of full measure
on which f is differentiable, the existence of which is guaranteed by Rademacher’s theorem,
and we tacitly restrict this definition to convergent sequences of derivatives.

Lemma 20. The function A ∈ Rd0×d1 7→ Φ0(A) is locally Lipschitz continuous and coercive.

Proof We start by proving that Φ0 is locally Lipschitz. Fix a compact set K ⊂ Rd0×d1 and
observe that, for any A,A′ ∈K,∣∣∥A∥2F − ∥A′∥2F

∣∣ = ∣∣∥A∥F − ∥A′∥F
∣∣ (∥A∥F + ∥A′∥F

)
≤ 2 sup

K
∥ · ∥F ∥A−A′∥F ,

due to the reverse triangle inequality. This shows that ∥ · ∥2F is locally Lipschitz. As for
OT(·),0(µ0, µ1), let πA, πA′ be solutions of OTA,0(µ0, µ1),OTA′,0(µ0, µ1) respectively, then

OTA,0(µ0, µ1)−OTA′,0(µ0, µ1) ≥
∫
cAdπA−

∫
cA′dπA = −32

〈
A−A′,

∫
xy⊺dπA(x, y)

〉
F

,

(19)
and similarly OTA,0(µ0, µ1)− OTA′,0(µ0, µ1) ≤ −32⟨A−A′,

∫
xy⊺dπA′(x, y)⟩F . Thus,∣∣OTA,0(µ0, µ1)− OTA′,0(µ0, µ1)

∣∣ ≤ 16M∥A−A′∥F ,

recalling that, for any π ∈ Π(µ0, µ1),
∫
xy⊺dπ ∈ DM . This proves that Φ0 is locally Lipschitz.

Coercivity follows by adapting the proof of Proposition 2.

By Lemma 20 and Rademacher’s theorem, Φ0 is differentiable almost everywhere on
Rd0×d1 . As the squared Frobenius norm is smooth, we study differentiability of OTA,0(µ0, µ1).
To simplify notation, let Π⋆

A,0 denote the set of optimal solutions to OTA,0(µ0, µ1).

Lemma 21. The function A ∈ Rd0×d1 7→ −OTA,0(µ0, µ1) is convex; its subdifferential11 at
A contains

{
32
∫
xy⊺dπ : π ∈ Π⋆

A,0

}
.

Proof As OT(·),0(µ0, µ1) is the infimum of a family of affine functions, it is concave (see
Theorem 5.5 in Rockafellar 1997). The second claim follows directly from (19).

With Lemma 21, it is easy to classify the points at which OT(·),0(µ0, µ1) is differentiable.

11. The subdifferential of a convex function f : Rd0×d1 7→ R at A consists of all Ξ ∈ Rd0×d1 for which
f(A′)− f(A) ≥ ⟨A′ −A,Ξ⟩F for every A′ ∈ Rd0×d1 .
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Lemma 22. −OT(·),0(µ0, µ1) is differentiable at A with derivative −D(OT(·),0(µ0, µ1))[A] =
32
∫
xy⊺dπ(x, y) for any π ∈ Π⋆

A,0 if and only if all couplings in Π⋆
A,0 admit the same

cross-correlation matrix.

Proof We recall that a convex function is differentiable at A precisely when its subdifferential
at A is a singleton, see Theorem 25.1 in Rockafellar (1997). If the proposed condition on the
cross-correlation matrices fails, Lemma 22 implies that the subdifferential is not a singleton,
so differentiability fails.

To prove the other direction, assume that all couplings in Π⋆
A,0 admit the same cross-

correlation matrix. Fix a sequence Hn ∈ Rd0×d1\{0} with ∥Hn∥F ↓ 0. From (19), we have,
for any πA+Hn ∈ Π⋆

A+Hn,0
and πA ∈ Π⋆

A,0,

∥Hn∥−1
F

∣∣∣∣OTA+Hn,0(µ0, µ1)− OTA,0(µ0, µ1) + 32

〈
Hn,

∫
xy⊺dπA(x, y)

〉
F

∣∣∣∣
≤ 32

∥∥∥∥∫ xy⊺dπA+Hn(x, y)−
∫
xy⊺dπA(x, y)

∥∥∥∥
F

,

As cA+Hn converges uniformly to cA on S0 × S1, for any subsequence n′ of n there exists a
further subsequence n′′ along which πA+Hn′′

w→ π ∈ Π⋆
A,0 by Theorem 5.20 in Villani (2008).

Since (x, y) ∈ S0 × S1 7→ xiyj is continuous and bounded for any 1 ≤ i ≤ d0, 1 ≤ j ≤ d1,∥∥∫ xy⊺dπA+Hn′′ (x, y)−
∫
xy⊺dπ(x, y)

∥∥
F
=
∥∥∫ xy⊺dπA+Hn′′ (x, y)−

∫
xy⊺dπA(x, y)

∥∥
F
→ 0.

As this limit is independent of the choice of subsequence by assumption, it holds along the
original sequence Hn such that D

(
OT(·),0(µ0, µ1)

)
[A]

= −32
∫
xy⊺dπA(x, y).

Those auxiliary results lead to finding the Clarke subdifferential ∂Φ0, as given below.

Lemma 23. The Clarke subdifferential of Φ0 at A ∈ Rd0×d1 is given by

∂Φ0(A) =

{
64A− 32

∫
xy⊺dπ : π ∈ Π⋆

A,0

}
.

Proof We first characterize the Clarke subdifferential of OT(·),0(µ0, µ1) at A. By Propositions
2.2.7 and 2.3.1 in Clarke (1990) along with Lemma 21,

∂
(
OT(·),0(µ0, µ1)

)
(A) ⊃

{
−32

∫
xy⊺dπ(x, y) : π ∈ Π⋆

A,0

}
. (20)

As Lemma 22 establishes the set U ⊂ Rd0×d1 on which Φ0 is differentiable, we study the
Clarke subdifferential of Φ0 through the lens of (18). Observe that if U ̸∋ An → A and
πAn ∈ Π⋆

An,0
, then πAn

w→ πA ∈ Π⋆
A,0 as in the proof of Lemma 22 (up to a subsequence).

Moreover,

lim
n→∞

D
(
OT(·),0(µ0, µ1)

)
[An]

= lim
n→∞

−32
∫
xy⊺dπAn(x, y) = −32

∫
xy⊺dπA(x, y)

along this subsequence. Thus, if A′
n ̸∈ U converges to A and limn→∞D

(
OT(·),0(µ0, µ1)

)
[A′
n]

exists, then the limit is given by −32
∫
xy⊺dπ(x, y) for some π ∈ Π⋆

A,0. It is easy to see that
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Π⋆
A,0 is convex, so (20) and (18) together imply that

∂
(
OT(·),0(µ0, µ1)

)
(A) =

{
−32

∫
xy⊺dπ(x, y) : π ∈ Π⋆

A,0

}
.

Conclude by applying the subdifferential sum rule (Corollary 1 on p. 39 of Clarke 1990).

Proof of Proposition 15 By Proposition 2.3.2 in Clarke (1990), if Φ0 attains a local mini-
mum at A⋆, then 0 ∈ ∂Φ0(A

⋆), i.e., there exists π ∈ Π⋆
A⋆,0 for which A⋆ = 1

2

∫
xy⊺dπ(x, y)

by Lemma 23. The second result on optimality for the original GW problem follows directly
from the proof of Corollary 4.

5.8 Proof of Theorem 16

Throughout, let Xi ⊂ Rdi be a closed ball with finite radius r > 0 for which spt(µi) ⊂ Xi

for i = 0, 1. By the Bolzano-Weierstrass theorem, A⋆
ε admits a limit point A⋆

0 as ε ↓ 0. Let
εk ↓ 0 be a sequence along which A⋆

εk
→ A⋆

0 and define

Fk : π ∈ P(X0 ×X1) 7→

{∫
cA⋆

εk
dπ + εkDKL(π∥µ0 ⊗ µ1), if π ∈ Π(µ0, µ1),

+∞, otherwise,

F : π ∈ P(X0 ×X1) 7→

{∫
cA⋆

0
dπ, if π ∈ Π(µ0, µ1),

+∞, otherwise.

Throughout, we endow P(X0 × X1) with the topology induced by the weak convergence
of probability measures which is metrized by the 2-Wasserstein distance, W2, for instance;
(P(X0 ×X1),W2) is notably a separable metric space, see Theorem 6.18 in Villani (2008).

We first show that Fk Γ-converges to F according to Definition 2.3 in Braides (2014). To
this end, we show that

F (π) ≤ lim inf
k→∞

Fk(πk), for every πk
w→ π. (21)

and exhibit a sequence πk
w→ π satisfying

F (π) ≥ lim sup
k→∞

Fk(πk). (22)

To prove (21), first assume that π ∈ Π(µ0, µ1). Then, if πk
w→ π, Fk(πk) ≥

∫
cA⋆

εk
dπk, by

nonnegativity of the KL divergence. As cA⋆
εk

converges to cA⋆
0

uniformly on X0 × X1 and
cA⋆

0
is continuous and bounded,∣∣∣∣∫ cA⋆

εk
dπk −

∫
cA⋆

0
dπ

∣∣∣∣ ≤ ∣∣∣∣∫ cA⋆
εk
− cA⋆

0
dπk

∣∣∣∣+ ∣∣∣∣∫ cA⋆
0
dπ −

∫
cA⋆

0
dπk

∣∣∣∣→ 0. (23)

This shows that, if π ∈ Π(µ0, µ1), then

lim inf
k→∞

Fk(πk) ≥ lim
k→∞

∫
cA⋆

εk
dπk = F (π).
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If π ̸∈ Π(µ0, µ1), then πk ̸∈ Π(µ0, µ1) for all k sufficiently large as Π(µ0, µ1) is compact
for the weak convergence on P(X0 ×X1) (cf. e.g. the proof of Theorem 1.4 in Santambrogio
2015) so the bound holds vacuously, proving (21).

As for (22), if π ̸∈ Π(µ0, µ1), then there is nothing to show. For π ∈ Π(µ0, µ1), we
consider a block approximation; cf. Carlier et al. (2017); Genevay et al. (2019). First, for
i = 0, 1, partition Rdi by hypercubes of length ℓ > 0,

{Hi,q,ℓ = [k1ℓ, (q1 + 1)ℓ)× · · · × [qdiℓ, (qdi + 1)ℓ) : q = (q1, . . . , qdi) ∈ Zdi},

and define the block approximation, πℓ, of π by

πℓ =
∑

(q,q′)∈Zd0×Zd1

πℓ|H0,q,ℓ×H1,q′,ℓ ,

πℓ|H0,q,ℓ×H1,q′,ℓ =
π(H0,q,ℓ ×H1,q′,ℓ)

µ0 ⊗ µ1(H0,q,ℓ ×H1,q′,ℓ)
(µ0|H0,q,ℓ

⊗ µ1|H1,q′,ℓ),

for every (q, q′) ∈ Zd0 × Zd1 with the convention 0
0 = 0. Here, µ0|H0,q,ℓ

(A) = µ0(A ∩H0,q,ℓ)
and similarly for the other restrictions. Of note is that πℓ ≪ µ0⊗ µ1 and that πℓ ∈ Π(µ0, µ1)
(see the discussion surrounding Definition 1 in Genevay et al. 2019).

Lemma 24. The block approximation πℓ of π converges weakly to π as ℓ ↓ 0.

Proof Let Q =
{
(q, q′) ∈ Zd0 × Zd1 : π(H0,q,ℓ ×H1,q′,ℓ) > 0

}
and γ =

∑
(q,q′)∈Q π(H0,q,ℓ ×

H1,q′,ℓ)γq,q′ where γq,q′ is any coupling of the measures
(

π|H0,q,ℓ×H1,q′,ℓ
π(H0,q,ℓ×H1,q′,ℓ)

,
πℓ|H0,q,ℓ×H1,q′,ℓ
πℓ(H0,q,ℓ×H1,q′,ℓ)

)
with support in H0,q,ℓ ×H1,q′,ℓ (the closure of H0,q,ℓ × H1,q′,ℓ). As πℓ(H0,q,ℓ ×H1,q′,ℓ) =
π(H0,q,ℓ ×H1,q′,ℓ) by construction, it is readily seen that γ ∈ Π(π, πℓ). Thus,

W2
2(π, πℓ) ≤

∫
∥x− y∥2dγ(x, y) =

∑
(q,q′)∈Q

π(H0,q,ℓ ×H1,q′,ℓ)

∫
∥x− y∥2dγq,q′(x, y)

≤ (d0 + d1)ℓ
2,

noting that diam(H0,q,ℓ ×H1,q′,ℓ) =
√
d0 + d1ℓ is the diameter of a hypercube in Rd0+d1 of

length ℓ. Conclude that W2(π, πℓ)→ 0 as ℓ ↓ 0 such that πℓ
w→ π.

Setting ℓk = εk, Lemma 24 yields

lim
k→∞

∫
cA⋆

εk
dπεk =

∫
cA⋆

0
dπ,

by a simple adaption of (23). It remains to show that limk→∞ εkDKL(πεk∥µ0 ⊗ µ1) = 0 such
that

lim
k→∞

Fk(πεk)→ F (π).

Lemma 25. The block approximation πℓ of π satisfies εkDKL(πεk∥µ0 ⊗ µ1)→ 0 as k →∞.
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Proof As π(H0,q,ℓ ×H1,q′,ℓ) ≤ 1,

DKL(π
ℓ∥µ0 ⊗ µ1) =

∑
(q,q′)∈Zd0×Zd1

∫
log

(
π
(
H0,q,ℓ ×H1,q′,ℓ

)
µ0 ⊗ µ1(H0,q,ℓ ×H1,q′,ℓ)

)
dπℓ|H0,q,ℓ×H1,q′,ℓ

≤
∑

(q,q′)∈Zd0×Zd1

∫
− log(µ0(H0,q,ℓ))− log(µ1(H1,q′,ℓ))dπℓ|H0,q,ℓ×H1,q′,ℓ

=
∑

(q,q′)∈Zd0×Zd1

(
− log(µ0(H0,q,ℓ))− log(µ1(H1,q′,ℓ))

)
π(H0,q,ℓ ×H1,q′,ℓ)

= −
∑
q∈Zd0

log(µ0(H0,q,ℓ))µ0(H0,q,ℓ)−
∑

q′∈Zd1

log(µ1(H1,q′,ℓ))µ1(H1,q′,ℓ).

(24)
Observe that

−
∑
q∈Zd0

log(µ0(H0,q,ℓ))µ0(H0,q,ℓ)

= −
∫

log

(
µ0(H0,q,ℓ)

ℓd0
1H0,q,ℓ

)
µ0(H0,q,ℓ)

ℓd0
1H0,q,ℓ

dλ− d0 log(ℓ),

where λ denotes the Lebesgue measure. The first term on the last line is the differen-
tial entropy of a probability distribution supported on X0,ℓ = ∪q∈IH0,q,ℓ, where I ={
q ∈ Zd0 : H0,q,ℓ ∩ X0 ̸= ∅

}
. This quantity is maximized among all probability distribu-

tions supported on X0,ℓ which are absolutely continuous w.r.t. the Lebesgue measure by the
uniform distribution on X0,ℓ with value d0 log(λ(X0,ℓ)). With this and (24), we obtain

DKL(π
ℓ∥µ0 ⊗ µ1) ≤ d0 log

(
λ(X0,ℓ)

ℓ

)
+ d1 log

(
λ(X1,ℓ)

ℓ

)
.

Conclude that

0 ≤ εkDKL(πεk∥µ0 ⊗ µ1) ≤ εk
(
d0 log

(
λ(X0,εk)

εk

)
+ d1 log

(
λ(X1,εk)

εk

))
→ 0,

as λ(Xi,εk) ≥ λ(Xi) > 0 for i = 0, 1.

With this, we have shown that Fk Γ-converges to F . Now, let πεk minimize Fk. As
Π(µ0, µ1) is compact, πεk admits a cluster point π0 which minimizes F by Theorem 2.1 in
Braides (2014). Thus, π0 is an optimal solution of OTA⋆

0
(µ0, µ1) and, along the subsequence

where πεk
w→ π0,∥∥∥∥64A⋆

0 − 32

∫
xy⊺dπ0

∥∥∥∥
F

= lim
k→∞

∥∥∥∥64A⋆
εk
− 32

∫
xy⊺dπεk

∥∥∥∥
F

≤ δ.

This concludes the proof of the first result.
For the results pertaining to local/global optimality, let εk ↓ 0 be arbitrary and define

Gk : A ∈ Rd0×d1 7→

{
Φεk , if A ∈ DM ,

+∞, otherwise,
, G : A ∈ Rd0×d1 7→

{
Φ0, if A ∈ DM ,

+∞, otherwise.
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We now show that Gk Γ-converges to G. Observe that, for any Ak → A ∈ DM ,

Φεk(Ak) = 32∥Ak∥2F + OTAk,εk(µ0, µ1) ≥ 32∥Ak∥2F + OTAk,0(µ0, µ1),

where the inequality is due to nonnegativity of the KL divergence. As cAk
→ cA uniformly,

32∥Ak∥2F +OTAk,0(µ0, µ1)→ 32∥A∥2F +OTA,0(µ0, µ1) = Φ0(A). If A ̸∈ DM , then Ak ̸∈ DM

for every k sufficiently large, so the lim inf condition (21) holds.
For the lim sup condition (22), if A ̸∈ DM , then the bound is vacuous. If A ∈ DM , then

let πA be an optimal solution of OTA,0(µ0, µ1) and πεk be the block approximation of πA
with ℓ = εk. Then,

0 ≤ OTA,εk(µ0, µ1)− OTA,0(µ0, µ1) ≤
∫
cAdπεk + εkDKL(πεk∥µ0 ⊗ µ1)−

∫
cAdπA.

We have shown previously that the rightmost term converges to 0 as k →∞, so Φεk(A)→
Φ0(A), such that Gk Γ-converges to G. By Theorem 2.1 in Braides (2014), any cluster point
of a sequence of minizers of Gk minimizes G, proving the claim.

Finally, consider the case where (Aεk)k∈N satisfies the conditions of part 3 of Theorem 16,
i.e., Aεk → A⋆ and Aεk minimizes Φεk on a closed ball of fixed radius r > 0 centred at
A⋆, say B⋆

r . A simple adaptation of the previous arguments yields that Gk restricted to B⋆
r

Γ-converges to G restricted to B⋆
r . As such, A⋆ minimizes Φ0 over B⋆

r and is thus locally
minimal for Φ0.

6 Concluding Remarks

This work studied efficient computation of the quadratic EGW alignment problem between
Euclidean spaces subject to non-asymptotic convergence guarantees. Despite the availability
of various heuristic methods for computing EGW, formal guarantees beyond asymptotic
convergence to a stationary point were absent until now. To develop our algorithms, we
leveraged the variational form of the EGW distance that ties it to the well-understood
EOT problem with a certain parametrized cost function. By analyzing the stability of the
variational problem, its convexity and smoothness properties were established, which led
to two new efficient algorithms for computing the EGW distance. The complexity of our
algorithms agree with the best known complexity of O(N2) for computing the quadratic
EGW distance directly, but unlike previous approaches, our methods are subject to non-
asymptotic convergence rate guarantees to global/local solutions in the convex/non-convex
regime. As the first derivative of the objective function depends on the solution to an EOT
problem which must be solved numerically, we quantify both the error incurred by Sinkhorn’s
algorithm and the resulting effect on the convergence of both algorithms. Moreover, we
establish a suitable notion of convergence of solutions to the variational EGW problem to
those of the variational GW problem in the limit of vanishing regularization. Below, we
discuss possible extensions and future research direction stemming from this work.

Algorithmic improvements. The stability analysis of the variational problem lays the
groundwork for solving the EGW problem via smooth optimization methods. Consequently,
improvements or alternatives to the proposed accelerated gradient methods are of great
practical interest. For instance, marked improvements can be attained by analyzing the
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tradeoff between the per iteration cost associated with updating the step size parameter and
the resulting decrease in the number of iterations required for convergence. Similarly, estab-
lishing sharper bounds on the eigenvalues of the Hessian would improve our characterization
of the smoothness and convexity properties of the objective.

Expanding duality theory. To the best of our knowledge, the current duality theory for
the EGW problem is limited to the quadratic and inner product costs over Euclidean spaces.
As the present work makes heavy use of this duality theory, we anticipate that these results
could be extended to the EGW problem with other costs and/or spaces once an adequate
duality theory has been established. Non-Euclidean spaces are not only of theoretical, but
also of practical interest under the GW paradigm as they allow comparing/aligning important
examples such as manifold or graph data.
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Appendix A. Sharpness of variance bound from Corollary 5

Let µ0 = 1
2 (δ0 + δa) and µ1 = 1

2 (δ0 + δb) for a ∈ Rd0 and b ∈ Rd1 . In this case, any coupling
π ∈ Π(µ0, µ1) is of the form π00δ(0,0)+π0bδ(0,b)+πa0δ(a,0)+πabδ(a,b) with the constraint that
π00 = πab and π0b = πa0 =

1
2 − πab. For any A ∈ DM , OTA,ε(µ0, µ1) is given by

inf
π∈Π(µ0,µ1)

{∫
−4∥x∥2∥y∥2 − 32x⊺Ay dπ(x, y) + εDKL(π∥µ0 ⊗ µ1)

}
= inf

πab∈(0,1/2)

{
−πab(4∥a∥2∥b∥2 + 32a⊺Ab) + 2επab log(4πab) + (1− 2πab) ε log (2− 4πab)

}
,

the objective is a sum of convex functions and the first-order optimality condition reads

4∥a∥2∥b∥2 + 32a⊺Ab = 2ε log(4πab)− 2ε log(2− 4πab) ⇐⇒ πab =
ez

2 (1 + ez)
,

for z =
(
2∥a∥2∥b∥2 + 16a⊺Ab

)
/ε. Let π⋆ be the corresponding EOT coupling for OTA,ε(µ0, µ1).

For any C ∈ Rd0×d1 ,

Varπ⋆ [X
⊺CY ] = π⋆ab(1− π⋆ab)(a⊺Cb)2 ≤ π⋆ab(1− π⋆ab)∥C∥2F ∥a∥2∥b∥2,

with equality for C = Cab⊺ with C ∈ R. Hence,

sup
∥C∥F=1

{Varπ⋆ [X⊺CY ]} = π⋆ab(1− π⋆ab)∥a∥2∥b∥2,

which can be made arbitrarily close to 1
4∥a∥

2∥b∥2 for fixed a, b by choosing A ∈ DM and
ε > 0 as to make z sufficiently large. On the other hand,

√
M4(µ0)M4(µ1) =

1
2∥a∥

2∥b∥2,
such that the variance bound in Corollary 5 is tight up to a constant factor.

Appendix B. Sinkhorn’s Algorithm as an inexact oracle

Given µ0 =
∑N0

i=1 aiδx(i) ∈ P(Rd0) and µ1 =
∑N1

j=1 bjδy(j) ∈ P(Rd1), let a, b denote the
corresponding (positive) probability vectors. Fix an underlying cost function c : Rd0 ×Rd1 →

R and ε > 0, and let K ∈ RN0×N1 with Kij = e−
c(x(i),y(j))

ε . Consider the standard
implementation of Sinkhorn’s algorithm (cf. e.g. Cuturi 2013; Flamary et al. 2021).

In Algorithm 3 and the remainder of this section, the division of two vectors is understood
componentwise. The stopping condition is based only on one of the marginal constraints, as
Πk1N1 = a by construction.

The following definitions enable describing the convergence properties of Algorithm 3; we
follow the approach of Franklin and Lorenz (1989) with only minor modifications. Let Rd

+

denote the set of vectors with positive entries and, for x, y ∈ Rd
+, let

dH(x, y) = log max
1≤i,j≤d

xiyj
yixj

,

denote Hilbert’s projective metric12 on Rd
+. By definition,

dH(x, y) = dH(x/y,1d), (25)

12. dH(x, y) = 0 if and only if x = αy for α > 0, dH is symmetric and satisfies the triangle inequality.
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Algorithm 3 Sinkhorn Algorithm
1: Fix a threshold γ and a maximum iteration number kmax.
2: u0 ← 1N0/N0

3: k ← 1
4: repeat
5: vk ← b/(K⊺uk−1)
6: uk ← a/(Kvk)
7: Πk ← diag(uk)Kdiag(vk)
8: k ← k + 1
9: until ∥(Πk)⊺1N0 − b∥2 < γ or k > kmax

10: return Πk

for any x, y ∈ Rd
+ and, setting x = ew, y = ez componentwise,

dH(x, y) = log max
1≤i,j≤d

ewi+zj−wj−zi ,

= max
1≤i,j≤d

wi + zj − wj − zi,

= max
1≤i≤d

(log xi − log yi)− min
1≤i≤d

(log xi − log yi),

= max
1≤i≤d

log

(
xi
yi

)
− min

1≤i≤d
log

(
xi
yi

)
.

(26)

It was proved in Birkhoff (1957); Samelson (1957) that multiplication with a positive matrix
is a strict contraction w.r.t. dH . Precisely,

dH(Ax,Ay) ≤ λ(A)dH(x, y), (27)

for any A ∈ Rd′×d
+ and x, y ∈ Rd

+, where

λ(A) =

√
η(A)− 1√
η(A) + 1

< 1, η(A) = max
1≤i,j≤d′
1≤k,l≤d

AikAjl

AjkAil
.

Of note is that λ(A) = λ(A⊺). Let

E = {A ∈ RN0×N1
+ : A = diag(x)Kdiag(y) for some x ∈ RN0

+ , y ∈ RN1
+ },

and observe that if A,B ∈ E, there exists xA,B ∈ RN0
+ , yA,B ∈ RN1

+ for which A =
diag(xA,B)Bdiag(yA,B). In this setting, let d : E × E 7→ [0,∞) be such that

d(A,B) = dH(xA,B,1N0) + dH(yA,B,1N1),

then d is a metric on E. As the EOT coupling Π⋆ satisfies

Π⋆
ij

aibj
= e

φ(x(i))+ψ(y(j))−c(x(i),y(j))
ε ,
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where (φ,ψ) is any pair of EOT potentials, Π⋆ = diag(u⋆)Kdiag(v⋆) ∈ E for

u⋆i = aie
φ(x(i))

ε , v⋆j = bje
ψ(y(j))

ε .

Note that u⋆ = a/(Kv⋆) and v⋆ = b/(K⊺u⋆).
In the sequel, we analyze the convergence of Πk to Π⋆ under d. The following result

translates bounds on d(Πk,Π⋆) to bounds on ∥Πk −Π⋆∥∞.

Lemma 26. Fix δ > 0. If d(Πk,Π⋆) ≤ δ, it follows that ∥Πk −Π⋆∥∞ ≤ eδ − 1.

Proof By Lemma 3 in Franklin and Lorenz (1989), whenever d(Πk,Π⋆) ≤ δ it holds that

e−δ − 1 ≤
Π⋆

ij

Πk
ij

− 1 ≤ eδ − 1,

for every 1 ≤ i ≤ N0, 1 ≤ j ≤ N1. As such,

|Π⋆
ij −Πk

ij | ≤ Πk
ij

(
(1− e−δ) ∨ (eδ − 1)

)
≤ (1− e−δ) ∨ (eδ − 1) = eδ − 1,

yielding ∥Π⋆ −Πk∥∞ ≤ eδ − 1.

The number of iterations required to achieve d(Πk,Π⋆) ≤ δ can be bounded as follows.

Proposition 27. Let Πk be given by Algorithm 3 and fix δ > 0. Then, if

k ≥ 1 +
1

2 log (λ(K))
log

(
δ(1− λ(K))

dH((Π1)⊺1N0 , b)

)
,

it follows that d(Πk,Π⋆) ≤ δ.

The proof of Proposition 27 follows immediately from Lemma 29 ahead. We first prove
an auxiliary lemma.

Lemma 28. For k ≥ 1, the iterates uk, vk of Algorithm 3 satisfy

dH(uk+1, u
⋆) ≤ λ(K)2dH(uk, u

⋆), dH(vk+1, v
⋆) ≤ λ(K)2dH(vk, v

⋆),

dH(uk, u
⋆) ≤ dH(uk, uk+1)

1− λ(K)2
, dH(vk, v

⋆) ≤ dH(vk, vk+1)

1− λ(K)2
.

Proof To prove the first claim, we have by (27) that

dH(uk+1, u
⋆) = dH (a/(Kvk+1), a/(Kv⋆)) = dH(Kv⋆,Kvk+1) ≤ λ(K)dH(vk+1, v

⋆).

It follows similarly that dH(vk+1, v
⋆) ≤ λ(K)dH(uk, u

⋆). Combining these bounds,

dH(uk+1, u
⋆) ≤ λ(K)2dH(uk, u

⋆), dH(vk+1, v
⋆) ≤ λ(K)2dH(vk, v

⋆),

which proves the first claim. Applying the triangle inequality yields

dH(uk, u
⋆) ≤ dH(uk+1, u

⋆) + dH(uk, uk+1) ≤ λ(K)2dH(uk, u
⋆) + dH(uk, uk+1),
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such that (1− λ(K)2)dH(uk, u
⋆) ≤ dH(uk, uk+1) which proves the second claim; the same

argument holds for the iterates vk.

Lemma 29 translates the bound from Lemma 28 to a bound on d(Πk,Π⋆). We introduce
the notation ⊙ to denote the componentwise product of vectors.

Lemma 29. For k ≥ 2, d(Πk,Π⋆) ≤ λ(K)2(k−1)

1−λ(K) dH((Π1)⊺1N0 , b).

Proof As Πk = diag(uk)Kdiag(vk) and Π⋆ = diag(u⋆)Kdiag(v⋆),

d(Πk,Π⋆) = dH(uk, u
⋆) + dH(vk, v

⋆)

≤ λ(K)2(k−1)(1 + λ(K))dH(v1, v
⋆)

≤ λ(K)2(k−1)

1− λ(K)
dH(v1, v2),

where both inequalities follow from Lemma 28 and its proof. Finally,

dH(v1, v2) = dH

(
v1,

b

K⊺u1

)
= dH (v1 ⊙K⊺u1, b) = dH((Π1)⊺1N0 , b).

Now, we demonstrate why the termination condition based on the 2-norm endows us
with a δ′-oracle approximation and provide a bound on the number of iterations required
to achieve it. Theorem 1 in Dvurechensky et al. (2018) proves that there exists k̄ ≤ 1 + R

γ
satisfying

∥uk̄ ⊙Kvk̄+1 − a∥1 + ∥(Πk)⊺1N0 − b∥1 ≤ γ,

for R = −2 log
(
e−∥C∥∞/εmin1≤i≤N0

1≤j≤N1

ai ∧ bj
)

. This gives a bound on the maximal number

of iterations to achieve the 2-norm termination condition via the standard inequality ∥ · ∥2 ≤
∥ · ∥1. We clarify that the analysis in Dvurechensky et al. (2018) is for a slightly different
implementation of Sinkhorn’s algorithm. First, running Algorithm 3 is tantamount to running
their algorithm with reversed marginals. Next, one iteration of Algorithm 3 corresponds to
two iterations in their analysis. Finally, their approach uses 1N0 rather than 1N0/N0 for the
initialization. This difference is innocuous for achieving the termination condition, as the
iterates are identical up to multiplying vk by N0 and dividing uk by N0; Πk is invariant this
operation.

We now bound dH in terms of the Euclidean distance with the aim of controlling d(Πk,Π⋆)
by ∥(Πk)⊺1N0 − b∥2.

Lemma 30. Let r, s ∈ Rd
+ be arbitrary, then

dH(s, r) ≤ (r−1
i⋆ + s−1

i⋆
)∥r − s∥2,

where i∗ ∈ argmax1≤i≤d
si
ri

and i∗ ∈ argmin1≤i≤d
si
ri

.
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Proof We have by (26) that

dH(s, r) = max
1≤i≤N0

log

(
si
ri

)
− min

1≤i≤N0

log

(
si
ri

)
.

Observe that 1− ri
si
≤ log

(
si
ri

)
≤ si

ri
− 1, as follows the inequalities x

1+x ≤ log(1 + x) ≤ x for
x > −1. Whence,

dH(s, r) ≤ r−1
i⋆ (si⋆ − ri⋆)− s−1

i⋆
(si⋆ − ri⋆)

≤
(
r−1
i⋆ + s−1

i⋆

)
∥s− r∥2 .

Note that the bound in Lemma 30 is symmetric in the sense that interchanging s and r does
not modify the constant. This can be seen by noting that argmax1≤i≤d

si
ri

= argmin1≤i≤d
ri
si

and argmin1≤i≤d
si
ri

= argmax1≤i≤d
ri
si

. By combining Lemmas 29 and 30 we arrive at the
desired result.

Proposition 31. Let b = min1≤i≤N1 bi and set 0 < γ < b. Then, for k ≥ 1,

d(Πk,Π⋆) ≤
(
(Πk)⊺1N0

)−1

i⋆
+ b−1

i⋆

1− λ(K)
∥(Πk)⊺1N0 − b∥

where i∗ ∈ argmax1≤i≤N1

((Πk)⊺1N0)i
bi

and i∗ ∈ argmin1≤i≤N1

((Π1)⊺1N0)i
bi

. Further, there

exists k̄ ≤ 1 + R
γ for which ∥Πk̄⊺1N0 − b∥ ≤ γ and d(Πk̄,Π⋆) ≤ (b−γ)−1+b−1

1−λ(K) γ. In particular,
setting

γ = ᾱb for ᾱ =
δ(1− λ(K)) + 2−

√
δ2(1− λ(K))2 + 4

2
∈ (0, 1),

it holds that d(Πk,Π⋆) = δ.

Proof From the proof of Lemma 29,

d(Πk,Π⋆) ≤ (1 + λ(K))dH(vk, v
⋆) ≤ dH(vk, vk+1)

1− λ(K)
=

dH((Πk)⊺1N0 , b)

1− λ(K)
,

where the final inequality and equality stem from Lemma 28 and its proof. Applying
Lemma 30 proves the first claim.

As for the second claim, it is clear from the discussion preceding Lemma 30 that
∥(Πk̄)⊺1N0 − b∥ ≤ γ for some k̄ ≤ 1 + R

γ . Now, let w = (Πk̄)⊺1N0 and observe that
∥w − b∥∞ ≤ ∥w − b∥ ≤ γ such that bi − γ ≤ wi ≤ bi + γ for i = 1, . . . , N1. Hence
w−1
i ≤ (bi − γ)−1 ≤ (b − γ)−1 as γ < b. Applying this bound to the previous inequality

proves the claim.
For the final claim, observe that ᾱ solves the equation 2α−α2

1−α = δ(1−λ(K)) for α ∈ (0, 1)

(indeed, δ(1 − λ(K)) <
√
δ2(1− λ(K))2 + 4 < δ(1− λ(K)) + 2). Setting γ = ᾱb in the

previously derived bound on d(Πk,Π⋆) gives

d(Πk,Π⋆) ≤ (1− ᾱ)−1 + 1

1− λ(K)
ᾱ =

2ᾱ− ᾱ2

(1− ᾱ)(1− λ(K))
= δ.
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The proof of Proposition 8 follows by combining Propositions 27 and 31; the maximal
number of iterations for Algorithm 3 to output a matrix Π̃ satisfying d(Π̃,Π⋆) ≤ δ is

k̃ =min

{
1 +

1

2 log (λ(K))
log

(
δ(1− λ(K))

dH((Π1)⊺1N0 , b)

)
,

1− 4b−1

δ(1− λ(K)) + 2−
√
δ2(1− λ(K))2 + 4

log

(
e−∥C∥∞/ε min

1≤i≤N0
1≤j≤N1

ai ∧ bj

)}
,

(28)

which corresponds to an (eδ − 1)-oracle for the entropic transport plan in light of Lemma 26.

Appendix C. Convergence of Algorithm 2

In what follows, we slightly adapt the proof of Theorem 2 in Ghadimi and Lan (2016) to
conform to the inexact setting. We first clarify that they treat the composite problem

inf
x∈Rd

f(x) + g(x) +Q(x),

where f is L′-smooth and non-convex, g is L′′-smooth and convex, and Q is non-smooth and
convex with a bounded domain. Hence f + g is L = L′+L′′ smooth and possibly non-convex.

Our problem conforms to this setting (up to vectorization) with f = OT(·),ε(µ0, µ1),
g = 32∥ · ∥2F , and Q = IDM , the indicator function of the set DM , defined by

IDM (A) =

{
0, if A ∈ DM ,

+∞, otherwise.

When Φ is convex, we set f = 0 and g = Φ hence L′ = 0, L = L′′.
As Φ is L-smooth, by Lemma 5 in Ghadimi and Lan (2016),

Φ(Bk) ≤ Φ(Ak) + tr
(
DΦ⊺

[Ak]
(Bk −Ak)

)
+
L

2
∥Bk −Ak∥2F , (29)

and for any H ∈ Rd0×d1 , letting L′ denote the Lipschitz constant of OT(·),ε(µ0, µ1), the same
result yields

Φ(Ak)− ((1− τk)Φ(Bk−1) + τkΦ(H))

= τk (Φ(Ak)− Φ(H)) + (1− τk) (Φ(Ak)− Φ(Bk−1))

≤ τk
(
tr
(
DΦ⊺

[Ak]
(Ak −H)

)
+
L′

2
∥H −Ak∥2F

)
+ (1− τk)

(
tr
(
DΦ⊺

[Ak]
(Ak −Bk−1)

)
+
L′

2
∥Bk−1 −Ak∥2F

)
= tr

(
DΦ⊺

[Ak]
(Ak − τkH − (1− τk)Bk−1)

)
+
L′τk
2
∥H −Ak∥2F +

L′(1− τk)
2

∥Bk −Ak∥2F︸ ︷︷ ︸
τ2k∥Bk−1−Ck−1∥2F

,

(30)
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recalling the update Ak = τkCk−1 + (1− τk)Bk−1.
Denote the subdifferential of IDM at A ∈ Rd0×d1 by

∂IDM (A) :=
{
P ∈Rd0×d1 : IDM (X)−IDM (A) ≥ tr (P ⊺(X−A)) , for every X ∈Rd0×d1

}
.

As Ck is optimal for the problem argminV ∈Rd0×d1

{
1

2γk
∥V − (Ck−1 − γkGk) ∥2F + IDM (V )

}
,

there exists P ∈ ∂IDM (Ck) for which Gk + P + 1
γk
(Ck − Ck+1) = 0 (see Theorem 23.8,

Theorem 25.1, and p. 264 in Rockafellar 1997). Thus, for any U ∈ Rd0×d1 ,

tr ((Gk + P )⊺(Ck −U)) =
1

γk
tr ((Ck −Ck−1)

⊺(U −Ck))

=
1

2γk

(
∥Ck−1 −U∥2F − ∥Ck −U∥2F − ∥Ck −Ck−1∥2F

)
,

where the final line follows from some simple algebra. As P ∈ ∂IDM (Ck), tr(P ⊺(Ck−U)) ≥
IDM (Ck)− IDM (U) = −IDM (U), whence

tr
(
G⊺

k(Ck −U)
)
≤ IDM (U) +

1

2γk

(
∥Ck−1 −U∥2F − ∥Ck −U∥2F − ∥Ck −Ck−1∥2F

)
. (31)

By the same steps applied to the other subproblem with Bk and Ak taking the place of
Ck and Ck−1 respectively,

tr
(
G⊺

k(Bk −U)
)
≤ IDM (U) +

1

2βk

(
∥Ak −U∥2F − ∥Bk −U∥2F − ∥Bk −Ak∥2F

)
.

Setting U = τkCk + (1− τk)Bk−1 ∈ DM (by convexity) in the previous display, bounding
−∥Bk − U∥2F above by 0, and recalling that Ak = τkCk−1 + (1 − τk)Bk−1 such that
Ak −U = τk(Ck−1 −Ck),

tr
(
G⊺

k(Bk − τkCk + (1− τk)Bk−1)
)
≤ 1

2βk

(
τ2k∥Ck −Ck−1∥2F − ∥Bk −Ak∥2F

)
.

Combining with (31) upon scaling by τk,

tr
(
G⊺

k(Bk − τkU + (1− τk)Bk−1)
)
≤ τkIDM (U) +

1

2βk

(
τ2k∥Ck −Ck−1∥2F − ∥Bk −Ak∥2F

)
,

+
τk
2γk

(
∥Ck−1 −U∥2F − ∥Ck −U∥2F − ∥Ck −Ck−1∥2F

)
,

by the choice of τk, βk, γk, we have that τ2k
βk
− τk

γk
≤ 0 such that

tr
(
G⊺

k(Bk − τkU + (1− τk)Bk−1)
)
≤ τkIDM (U) +

τk
2γk

(
∥Ck−1 −U∥2F − ∥Ck −U∥2F

)
− 1

2βk
∥Bk −Ak∥2F .
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Combining the equation above with (29) and (30) and setting H = U ∈ DM (otherwise the
bound is vacuous),

Φ(Bk)−Φ(H)≤ (1−τk) (Φ(Bk−1)−Φ(H))+tr
(
DΦ⊺

[Ak]
(Bk−τkH−(1−τk)Bk−1)

)
+
L′τk
2
∥H−Ak∥2F +

L′(1−τk)
2

τ2k ∥Bk−1−Ck−1∥2F +
L

2
∥Bk−Ak∥2F

≤ (1−τk) (Φ(Bk−1)− Φ(H))+δ′+
τk
2γk

(
∥Ck−1−H∥2F −∥Ck−H∥2F

)
+
L′τk
2
∥H−Ak∥2F +

L′(1−τk)
2

τ2k ∥Bk−1−Ck−1∥2F +

(
L

2
− 1

2βk

)
∥Bk−Ak∥2F ,

where the inequality follows from the δ-oracle which implies the bound (cf. (16))

sup
Y ,Z∈DM

{∣∣tr (Gk −DΦ[Ak])
⊺(Y −Z)

)∣∣} ≤ δ′,
observing that Bk, τkH + (1− τk)Bk−1 ∈ DM by convexity (τk ∈ (0, 1]).

Applying Lemma 1 in Ghadimi and Lan (2016) yields, for Ai =
2

i(i+1) ,

Φ(Bk)− Φ(H)

Ak
≤

k∑
i=1

A−1
i

(
δ′ +

τi
2γi

(
∥Ci−1 −H∥2F − ∥Ci −H∥2F

)
+
L′τi
2
∥H −Ai∥2

+
L′(1− τi)

2
τ2i ∥Bi−1 −Ci−1∥2F +

(
L

2
− 1

2βi

)
∥Bi −Ai∥2

)
≤
∥C0 −H∥2F

2γ1
+

k∑
i=1

A−1
i

(
δ′ +

L′τi
2
∥H −Ai∥2

+
L′(1− τi)

2
τ2i ∥Bi−1 −Ci−1∥2F +

(
L

2
− 1

2βi

)
∥Bi −Ai∥2

)
.

By convexity of ∥ · ∥2F ,

∥H −Ai∥2F + τi(1− τi)∥Bi−1 −Ci−1∥2F
≤ 2

(
∥H∥2F + ∥Ai∥2F + τi(1− τi)

(
∥Bi−1∥2F + ∥Ci−1∥2F

))
≤ 2

(
∥H∥2F + (1− τi)∥Bi−1∥2F + τi∥Ci−1∥2F + τi(1− τi)

(
∥Bi−1∥2F + ∥Ci−1∥2F

))
≤ 2

(
∥H∥2F + (1 + τi(1− τi))max

DM
∥ · ∥2F

)
≤ 2

(
∥H∥2F +

5

16
M2

)
,

observing that τi ∈ (0, 1] hence τi(1− τi) ≤ 1
4 . Thus, for H = B⋆, a global minimizer of Φ,

Φ(Bk)− Φ(B⋆)

Ak
+

k∑
i=1

1− Lβi
2Aiβi

∥Bi −Ai∥2F ≤
∥C0 −B⋆∥2F

2γ1

+
k∑

i=1

A−1
i

(
δ′+L′τi

(
∥B⋆∥2F +

5

16
M2

))
.
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By construction,
∑k

i=1A
−1
i L′τi =

L′
Ak

, and Φ(Bk)− Φ(B⋆) ≥ 0. It follows that

k
min
i=1

∥∥β−1
i (Bi −Ai)

∥∥2
F

≤ 2

(
k∑

i=1

βi (1− Lβi)
Ai

)−1(
∥C0 −B⋆∥2F

2γ1
+

k∑
i=1

A−1
i δ′ +

L′

Ak

(
∥B⋆∥2F +

5

16
M2d20d

2
1

))
.

As βi = L
2 , γ1 = 1

4L , and Ai =
2

i(i+1) ,
∑k

i=1
βi(1−Lβi)

Ai
= 1

4L

∑k
i=1A

−1
i = k(k+1)(k+2)

24L , so

k
min
i=1

∥∥β−1
i (Bi−Ai)

∥∥2
F
≤ 96L2

k(k+1)(k+2)
∥C0−B⋆∥2F + 8Lδ′ +

24LL′

N

(
∥B⋆∥2F +

5M2

16

)
.

This proves the claimed result in the non-convex setting.
In the convex regime, recall from the prior discussion that we may set L′ = 0 in the

previous display, proving the claim.

Appendix D. Additional Results

D.1 Proof of Lemma 17

The proof of Lemma 17 follows from the following lemma coupled with the chain rule for
Fréchet differentiable maps.

Lemma 32. Let µi ∈ P(Rdi), for i = 0, 1, be compactly supported with spt(µi) = Si. Then,
the map f ∈ C(S0 × S1) 7→

(∫
ef(·,y)dµ1(y),

∫
ef(x,·)dµ0(x)

)
∈ C(S0)× C(S1) is smooth with

first derivative at f ∈ C(S0 × S1) given by

h ∈ C(S0 × S1) 7→
(∫

h(·, y)ef(·,y)dµ1(y),
∫
h(x, ·)ef(x,·)dµ0(x)

)
∈ C(S0)× C(S1).

Proof First, we show that the map f ∈ C(S0×S1) 7→ ef ∈ C(S0×S1) is Fréchet differentiable
with D(e(·))[f ](h) = hef . Fix f ∈ C(S0 × S1) and consider

lim
h∈C(S0×S1)

∥h∥∞,S0×S1→0

∥∥ef+h − ef − hef
∥∥
∞,S0×S1

∥h∥∞,S0×S1

≤ ∥ef∥∞,S0×S1 lim
h∈C(S0×S1)

∥h∥∞,S0×S1→0

∥∥eh − 1− h
∥∥
∞,S0×S1

∥h∥∞,S0×S1

.

Fix arbitrary (x, y) ∈ S0 × S1. By a Taylor expansion,

eh(x,y) = 1 + h(x, y) +
1

2
eξ(x,y)h2(x, y),

where |ξ(x, y)| ∈ [0, |h(x, y)|] i.e. ∥ξ∥∞,S0×S1 ≤ ∥h∥∞,S0×S1 . That is,

lim
h∈C(S0×S1)

∥h∥∞,S0×S1→0

∥∥eh − 1− h
∥∥
∞,S0×S1

∥h∥∞,S0×S1

≤ lim
h∈C(S0×S1)

∥h∥∞,S0×S1→0

1

2
e∥ξ∥∞,S0×S1∥h∥∞,S0×S1 = 0.
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On the other hand, the derivative of f ∈ C(S0 × S1) 7→
∫
f(x, y)dµ1(y) ∈ C(S0) at any

point is given by h ∈ C(S0 × S1) 7→
∫
h(x, y)dµ1(y) ∈ C(S0). The claimed expression for the

first derivative then follows by the chain rule. The derivatives of this map can be computed
to arbitrary order inductively by the prior argument.

Proof of Lemma 17 Observe that the map (A, φ0, φ1) ∈ Rd0×d1 × E 7→ φ0 ⊕ φ1 − cA ∈
C(S0 × S1) is smooth with first derivative at (A, φ0, φ1) ∈ Rd0×d1 × E given by

(B, h0, h1) ∈ Rd0×d1 × E 7→ h0 ⊕ h1 + 32x⊺By ∈ C(S0 × S1).

The result then follows from Lemma 32 by applying the chain rule.

D.2 Compactness of L

Lemma 33 (Example 2 in Yosida 1995). Let ε > 0, µ0 ∈ P(Rd0), µ1 ∈ P(Rd1), and
A ∈ Rd0×d1 be arbitrary and let (φA

0 , φ
A
1 ) be EOT potentials for OTA,ε(µ0, µ1). Then, the

map L : L2(µ0)× L2(µ1) 7→ L2(µ0)× L2(µ1) defined by

L(f0, f1) =
(∫

f1(y)e
φA0 (x)+φA1 (y)−cA(x,y)

ε dµ1(y),

∫
f0(x)e

φA0 (x)+φA1 (y)−cA(x,y)

ε dµ0(x)

)
,

is compact.

Proof For simplicity, we prove only that

L2 : f ∈ L2(µ0) 7→
∫
f(x)ξ(x, ·)dµ0(x) ∈ L2(µ1),

is a compact operator for ξ : (x, y) ∈ Rd0 × Rd1 7→ e
φA0 (x)+φA1 (y)−cA(x,y)

ε . For any y ∈ Rd1

and f ∈ L2(µ0), |L2(f)(y)|2 ≤ ∥f∥2L2(µ0)

∫
|ξ(·, y)|2dµ0, as ξ(·, y) is bounded on spt(µ0) this

operator is well-defined.
Let fn be a bounded sequence in L2(µ0). By the Eberlein-Šmulian theorem (Yosida,

1995, p. 141), up to passing to a subsequence, fn converges weakly to f ∈ L2(µ0). For fixed
y ∈ Rd1 , ξ(·, y) ∈ L2(µ0), hence L2(fn)(y) → L2(f)(y) and it follows from the dominated
convergence theorem that, for any g ∈ L2(µ1),

∫
L2(fn)gdµ1 →

∫
L2(f)gdµ1 such that

L2(fn)→ L2(f) weakly in L2(µ1). Also, by dominated convergence,

∥L2(fn)∥2L2(µ1)
=

∫
L2(fn)2dµ1 →

∫
L2(f)2dµ1 = ∥L2(f)∥2L2(µ1)

,

such that L2(fn) → L2(f) strongly in L2(µ1). As fn was an arbitrary bounded sequence
in L2(µ0) and L2(fn) → L2(f) strongly in L2(µ1) up to a subsequence, L2 is a compact
operator.
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