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Abstract
Scientific and engineering applications are of-
ten heterogeneous, making it beneficial to ac-
count for latent clusters or sub-populations when
learning low-dimensional subspaces in super-
vised learning, and vice versa. In this paper,
we combine the concept of subspace clustering
with model-based sufficient dimension reduction
and thus generalize the sufficient dimension re-
duction framework from homogeneous regres-
sion setting to heterogeneous data applications.
In particular, we propose the mixture of princi-
pal fitted components (mixPFC) model, a novel
framework that simultaneously achieves cluster-
ing, subspace estimation, and variable selection,
providing a unified solution for high-dimensional
heterogeneous data analysis. We develop a group
Lasso penalized expectation-maximization (EM)
algorithm and obtain its non-asymptotic conver-
gence rate. Through extensive simulation stud-
ies, mixPFC demonstrates superior performance
compared to existing methods across various set-
tings. Applications to real world datasets fur-
ther highlight its effectiveness and practical ad-
vantages.

1. Introduction
Reducing high-dimensional data to a low-dimensional rep-
resentation is one of the most important steps in multivari-
ate statistics and various applied sciences. Typically, this is
achieved by projecting data onto a single low-dimensional
subspace. Among unsupervised dimension reduction meth-
ods, principal component analysis (PCA) is probably the
most popular one. However, when applied in the context of
regressing a univariate response Y on p-dimensional pre-
dictor X, PCA faces three critical limitations: data hetero-
geneity, loss of information on regression, and the curse of
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dimensionality. First, real-world data often lie in a union
of multiple subspaces with unknown membership, reflect-
ing underlying latent sub-populations. Second, PCA, as
an unsupervised method, equates variation with informa-
tion and thus disregards the specific relationship between
Y and X. Third, in the high-dimensional setting where p is
much larger than the sample size n, the subspace estimated
by PCA can be highly unreliable, or even orthogonal to the
true subspace (Baik & Silverstein, 2006; Paul, 2007).

Addressing the challenges of heterogeneity and high di-
mensionality is crucial for statistical and machine learn-
ing methods. Subspace clustering is a family of pow-
erful methods for clustering the data into multiple sub-
spaces(Vidal, 2011; Soltanolkotabi & Candés, 2012). Most
subspace clustering methods generalize PCA and factor
analysis from a single subspace to a union of multiple sub-
spaces (Agarwal & Mustafa, 2004; Vidal et al., 2005; Yan
& Pollefeys, 2006; Tron & Vidal, 2007; Favaro et al., 2011;
Elhamifar & Vidal, 2013). However, like PCA, these meth-
ods ignore the response, leading to inevitable loss of regres-
sion relevant information. Furthermore, subspace cluster-
ing methods often assume clean observations with small
random noise (Kanatani, 2001; Vidal et al., 2005), mean-
ing data points are expected to lie nearly exactly within a
subspace. When the observations are subject to significant
random errors, these methods frequently fail to accurately
identify clusters.

Conversely, sufficient dimension reduction (SDR) provides
a supervised framework by projecting X onto a low-
dimensional subspace while preserving all relevant regres-
sion information. Formally, we have

Y ⊥⊥ X | PSX, (1)

where PS is the projection matrix onto S . The intersec-
tion of all the subspaces satisfying (1) is called the central
subspace. Recent advances in deep learning-based SDR
methods (Banijamali et al., 2018; Liang et al., 2022; Kapla
et al., 2022; Huang et al., 2024; Chen et al., 2024) have
demonstrated the potential to capture complex nonlinear
structures in high-dimensional data.

While SDR guarantees regression sufficiency (Li, 1991;
Cook & Forzani, 2008), it overlooks the heterogeneous
nature of scientific and engineering applications. Incor-
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porating heterogeneity into SDR has the potential to en-
hance dimension reduction by uncovering latent subpopu-
lations. Motivated by this, we integrate the subspace clus-
tering concept with model-based SDR.

Contributions. In this paper, we propose a novel mixture
of principal fitted component (mixPFC) model, designed
for simultaneous clustering, variable selection, and dimen-
sion reduction. It has the following major contributions.

• Supervised Subspace Clustering: By extending
subspace clustering into a supervised framework,
mixPFC identifies subspaces that preserve regression
information, addressing both heterogeneity and pre-
dictive accuracy. This contrasts sharply with unsuper-
vised approaches (Elhamifar & Vidal, 2013; Ji et al.,
2017; Cai et al., 2022). Leveraging response informa-
tion, mixPFC allows for exact overlap between sub-
spaces, overcoming limitations of classical methods
that require separation conditions (e.g., minimal angle
condition in Soltanolkotabi & Candés (2012)). Build-
ing upon SDR, mixPFC targets central subspaces
rather than subspaces where X resides. This ensures
the low-dimensional representation of X preserves all
the information relevant to regression. Moreover, un-
like most subspace clustering methods that separate
clustering from subspace estimation, mixPFC per-
forms both tasks jointly in a unified framework.

• High-Dimensional Estimation: We develop a group
penalized expectation-maximization (EM) algorithm
for the mixPFC model. Extending SDR to high di-
mensions is a challenging and nascent research area
(Lin et al., 2018; 2019; Tan et al., 2018; 2020; Zeng
et al., 2024). Existing approaches often require in-
verting p × p matrices or estimating parameters in a
p2-dimensional space, which poses scalability chal-
lenges. Our model, designed to estimate multiple
heterogeneous subspaces in different unknown sub-
populations, is much more complicated. To address
this challenge, we formulate the subspace estima-
tion as a convex optimization over an approximately
p-dimensional parameter space. We further incor-
porate a group Lasso penalty (Yuan & Lin, 2006)
for coordinate-independent variable selection (Chen
et al., 2010).

• Theoretical Guarantees: We establish theoretical re-
sults for the proposed group penalized EM algorithm.
While classical EM theories only guaranteed asymp-
totic convergence to a fixed point, we derive a non-
asymptotic result that mixPFC converges geometri-
cally to a fixed point that is within statistical preci-
sion of the unknown true parameter. This stronger
type of guarantee has emerged only recently (Balakr-

ishnan et al., 2017). Unlike many existing proofs in
high-dimensional EM algorithms, our analysis does
not require sample splitting (Kwon et al., 2019) and
allows a relatively general model. Specifically, we
derive a non-asymptotic convergence rate for a two-
mixture principal fitted components model with un-
known mixing proportions and without restrictions on
the minimum angle between subspaces.

2. Mixture of Principal Fitted Components
We extend the framework of sufficient dimension reduction
by introducing a latent variable to model heterogeneity in
data. In particular, we consider univariate (continuous or
discrete) response Y ∈ R, multivariate predictor X ∈ Rp,
and a latent categorical variable W ∈ {1, 2, . . . ,K}. We
aim to estimate K subspaces Sw, w = 1, . . . ,K , such that

Y ⊥⊥ X | (PSw
X,W = w),

Pr(W | Y,X) = Pr(W | Y,PSX)
(2)

where S =
∑K
w=1 Sw ⊆ Rp offers the usual SDR as seen

in the literature and each PSw is the projection matrix onto
Sw to capture the relationship between Y and X within
cluster w. Let β ∈ Rp×d denote a basis matrix of S .
Then, the projected data βTX contains all relevant infor-
mation in X to be combined with response information Y
for clustering data into K clusters. When W is observable,
the smallest space Sw is known as the conditional central
subspace, and is a building block for studying the partial
central subspace (Chiaromonte et al., 2002). However, our
problem is much more challenging becauseW is latent and
has to be inferred from data. Moreover, unlike existing par-
tial/conditional central subspace methods, we further incor-
porate variable selection for high-dimensional studies.

We propose the mixPFC model, as a generative mixture of
principal fitted components (PFC),

X | (Y,W = w) ∼ N(µw + Γwf(Y ),∆),

Pr(W = w) = πw, w = 1, . . . ,K,
(3)

where µw ∈ Rp is the center of each cluster, Γw ∈ Rp×q
is the coefficient matrix that represents the relationship be-
tween Y and X in each cluster, f(·) = (f1(·), . . . , fq(·))T :
R 7→ Rq is a set of pre-specified fitting functions that in-
troduces non-linear relationships, ∆ ∈ Rp×p is symmetric
positive definite matrix, and πw > 0 is the mixture proba-
bilities with

∑K
w=1 πw = 1.

The mixPFC model unifies and generalizes many model-
based clustering and model-based SDR approaches. When
K = 1, the mixPFC reduces to the PFC model (Cook &
Forzani, 2008), which further reduces to the probabilis-
tic principal component analysis (PCA) model (Tipping &
Bishop, 1999) by restricting ∆ = σ2Ip and replacing f(Y )
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Figure 1. The mixPFC model enhances subspace clustering by
considering how the response (solid line) changes as the predictor
varies within each cluster: linear response effects in the first mix-
ture and non-linear in the second.

as latent variables ν ∼ N(0, Iq). Therefore, our mixPFC,
by allowing general covariance structures and incorporat-
ing response information, is a supervised generalization of
the probabilistic PCA. On the other hand, if we completely
remove the effect of the response Γwf(Y ), the mixPFC be-
comes the Gaussian mixture model (GMM) (McLachlan
et al., 2019; Cai et al., 2019). If we further have ∆ = σ2Ip,
mixPFC is a model-based interpretation of K-means clus-
tering (Forgy, 1965; MacQueen et al., 1967). When Y is
categorical, the mixPFC model reduces to the mixture dis-
criminant analysis model (Hastie & Tibshirani, 1996; Fra-
ley & Raftery, 2002).

The mixPFC can also be viewed as an extension of sub-
space clustering. Figure 1 demonstrates the advantage of
mixPFC over subspace clustering. In subspace clustering,
we have a fully unsupervised problem on X, but in mixPFC
we further have the response Y to guide our clustering,
which can be very informative. Consequently, subspace
clustering requires a minimal angle condition for identifia-
bility (Soltanolkotabi & Candés, 2012), but in mixPFC we
allow non-overlap, partial overlap, and complete overlap
between Sj and Sk for any (j, k). With the response Y ,
even when Sj = Sk, we can still have Γj ̸= Γk to ensure
cluster identifiability, although span(Γj) = span(Γk). A
more concrete demonstration is given in Figure 2, where we
have conducted two toy example simulations based on the
proposed model (3). The first toy example in Figure 2 (a)
has S1 = S2, but the response Y has different relationships
with X in the two clusters. The subspace clustering would
completely fail to identify the subspace or to cluster data
while mixPFC works well and produces near perfect sub-
space estimation and clustering results. In Figure 2 (b), we
have another simulation where S1 ⊥ S2, which is an ideal
setup for subspace clustering methods. We applied our pro-
posed method and two popular subspace clustering meth-
ods: random sample consensus (RANSAC, Tron & Vidal
(2007)) and sparse subspace clustering (SSC, Elhamifar &
Vidal (2013)). The clustering errors by subspace clustering
methods, 8.4% (SSC) and 13.0% (RANSAC), are reduced
by mixPFC to 3% thanks to the additional response super-

vision.

Finally, the following proposition identifies the key param-
eter for fitting mixPFC.

Proposition 2.1. Under model (3), the smallest subspaces
satisfying (2) are Sw = span(∆−1Γw), w = 1, . . . ,K .
Consequently, dw = dim(Sw) = rank(Γw) and d =

dim(
∑K
w=1 Sw) ≤

∑K
w=1 dw.

The rank of Γw ∈ Rp×q , dw, could be smaller than q,
the number of functions in f . Our model-based SDR ap-
proach for handling heterogeneity in data is now rigorously
connected to the central subspace notion in general (2).
Based on the maximum likelihood estimation (MLE) for
PFC model parameters (Cook & Forzani, 2008), we derive
the MLE for Sw and, more importantly, a penalized EM
algorithm for high-dimensional data.

3. Group-Penalized EM Algorithm
Let {(Xi, Yi)}ni=1 be n independent data points from
mixPFC (3), θ = (∆, πw,µw,Sw, w = 1, . . . ,K) be the
set of unknown model parameters. In low dimensions, all
the parameters can be estimated by the EM algorithm.

The EM algorithm aims to maximize the log-likelihood
of X | Y over θ, by iteratively alternating between an
Expectation-step (E-step) and a Maximization-step (M-
step). The conditional log-likelihood of X | Y is

l(θ) =
n∑
i=1

log

(
K∑
w=1

πwN(Xi | µw + Γwfi,∆)

)
,

where fi = f(Yi) andN(· | µ,∆) is the probability density
function of a multivariate normal distribution with mean µ
and covariance ∆. In the E-step, we compute the expecta-
tion of the log-likelihood function of θ with respect to the
conditional distribution of W given {(Xi, Yi)}ni=1:

Q(θ|θ̂(t)) =
n∑
i=1

K∑
w=1

γiw(θ̂
(t))[log(πw)

+ log(N(Xi | µw + Γwfi,∆))],

(4)

where γiw(θ̂(t)) = Pr(Wi = w | θ̂(t),Xi, Yi). Assuming
the cluster means µw are equal, the estimated probability
γiw(θ̂

(t)) is given by

γiw(θ̂
(t))−1 =

∑
j ̸=w

π̂
(t)
j

π̂
(t)
w

exp{(Xi − 1/2[(Γ̂
(t)
j + Γ̂(t)

w )fi])
T

(∆̂(t))−1(Γ̂
(t)
j − Γ̂(t)

w )fi}+ 1

Then, in the M-step, we update θ̂(t+1) =

argmaxθ Q(θ|θ̂(t)) by maximizing (4).
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( b) T o y E x a m pl e 2

Fi g ur e 2. T w o t o y si m ul ati o n e x a m pl es, wit h p = 6 a n d t w o mi xt ur es of si z e n 1 = n 2 = 2 0 0 . T h e pr o p os e d mi x P F C m et h o d w or ks w ell
i n b ot h e xtr e m es of s et u ps: ( a) S u bs p a c es c oi n ci d e, i. e, S 1 = S 2 , b ut mi xt ur es ar e w ell-s e p ar at e d b y r es p o ns e v ari a bilit y. I n t his c as e,
s u bs p a c e cl ust eri n g c o m pl et el y f ails. ( b) S u bs p a c es ort h o g o n al t o e a c h ot h er, i. e, S 1 ⊥ S 2 . F or b ot h e x a m pl es, w e pl ot t h e r es p o ns e
v ers us t h e esti m at e d li n e ar r e d u cti o ns of t h e pr e di ct ors b as e d o n t h e mi x P F C m et h o d.

T h e a b o v e st a n d ar d E M al g orit h m is i nf e asi bl e f or hi g h-
di m e nsi o n al pr o bl e ms. T h e i n v ers e of p × p c o v ari a n c e
m atri x ∆ s er v es as t h e c or n erst o n e of t h e E M al g orit h m.
I n hi g h di m e nsi o ns, it is i m pr a cti c al t o us e ∆ − 1 r e p e at-
e dl y i n t h e E M u p d at es. H o w e v er, it c a n b e s e e n t h at t h e

pr o b a biliti es γ i w (θ
( t ) ) ar e e v al u at e d o n t h e li n e ar f u n cti o n

of X i : X T
i (∆ ( t ) ) − 1 (Γ

( t )
j − Γ

( t )
w ). B y Pr o p ositi o n 2. 1 ,

∆ − 1 (Γ j − Γ w ) is c o nt ai n e d i n t h e c e ntr al s u bs p a c e. H e n c e,
t h er e is n o l oss of i nf or m ati o n t o first pr oj e ct X i o nt o t h e
c e ntr al s u bs p a c e S a n d t h e n c al c ul at e t h e pr o b a bilit y b as e d
o n r e d u c e d pr e di ct ors, a v oi di n g t h e p × p m atri x i n v ersi o n
∆ − 1 . S p e ci fi c all y, gi v e n a b asis m atri x β ∈ R p × d of S ,
w e f o c us o n t h e r e d u c e d pr e di ct ors β T X = β T Γ w f (Y ) +
β T ϵ ∈ R d . T his is a mi xt ur e li n e ar r e gr essi o n pr o bl e m
Z = A w f (Y ) + ξ , w h er e Z = β T X , A w = β T Γ w , a n d
ξ ∼ N ( 0, ∆ ∗ ) wit h ∆ ∗ = β T ∆ β ∈ R d × d . T h e n t h e
u p d ati n g e q u ati o n f or t h e pr o b a biliti es c a n b e si m pli fi e d t o

γ i w (θ
( t ) ) − 1 =

j ≠ w

π
( t )
j

π
( t )
w

e x p (Z
( t )
i −

1

2
[(A

( t )
j

+ A ( t )
w )fi )])

T (( ∆ ∗ ) ( t ) ) − 1 A
( t )
j − A ( t )

w fi + 1 .

( 5)

Gi v e n β , t h e cl os e d-f or m u p d at es f or ∆ ∗ , A w , a n d π w ar e
str ai g htf or w ar d t o d eri v e. T h e m ost c h all e n gi n g p art r e-
m ai ni n g is h o w t o o bt ai n a n a c c ur at e esti m at or of t h e c e n-
tr al s u bs p a c e.

F or hi g h- di m e nsi o n al pr e di ct ors, w e c o nsi d er t h e f oll o wi n g
gr o u p wis e p e n ali z e d esti m ati o n of t h e b asis m atri x of e a c h
s u bs p a c e β w . First of all, w e r e c o g ni z e t h at s p a n( β w ) ≡
s p a n( ∆ − 1 Γ w ) = s p a n( Σ − 1

w U w ), w h er e Σ w = c o v ( X |
W = w ) ∈ R p × p a n d U w = c o v ( X , f (Y ) | W = w ) ∈
R p × q ar e t h e c o v ari a n c e m atri c es. T h e it er ati v e s a m pl e es-

ti m at es i n E M u p d at es ar e c o m p ut e d as

Σ ( t )
w =

1

n

n

i = 1

γ i w (θ
( t ) )(X i − µ ( t )

w )(X i − µ ( t )
w ) T ,

U ( t )
w =

1

n

n

i = 1

γ i w (θ
( t ) )(X i − µ ( t )

w )(fi − f ) T .

w h er e µ
( t )
w = ( i γ i w (θ

( t ) )) − 1
i γ i w (θ

( t ) )X i a n d f =
1 / n i fi . T h e n w e s ol v e t h e c o n v e x o pti mi z ati o n pr o b-
l e m,

B ( t )
w = ar g mi n

B w ∈ R p × q

1

2
tr( B T

w Σ ( t )
w B w )

− tr{ ( U ( t )
w ) T B w } + λ ∥ B w ∥ 2 ,1 ,

( 6)

w h er e λ > 0 is t u ni n g p ar a m et er a n d t h e L 2 ,1 p e n alt y
∥ B w ∥ 2 ,1 =

p
i = 1 (

q
j = 1 (B w ) 2

i j )
1 / 2 is c o or di n at e-

i n d e p e n d e nt (C h e n et al. , 2 0 1 0 ). T h e pr o bl e m i n (6 ) is c o n-
v e x. We d e v el o p a gr o u p wis e c o or di n at e d es c e nt al g orit h m
t o s ol v e it ef fi ci e ntl y. N ot e t h at B w ∈ R p × q ’s ar e n at ur all y
r a n k d e fi ci e nt, wit h q ≥ d w . T h er ef or e, at t h e c o n v er g e n c e
of t h e p e n ali z e d E M al g orit h m 1 , w e us e t h e s p a n of t h e
t o p-d w l eft si n g ul ar v e ct ors of B w t o b e t h e s u bs p a c e esti-
m at es S w .

As s h o w n i n t h e ori gi n al P F C p a p er ( C o o k & F or z a ni ,
2 0 0 8 ), s u bs p a c e esti m ati o n r e m ai ns c o nsist e nt u n d er mis-
s p e ci fi c ati o n of f (Y ), pr o vi d e d f (Y ) is s uf fi ci e ntl y c orr e-
l at e d wit h t h e tr u e f u n cti o n. O ur mi x P F C m o d el i n h er-
its t his pr o p ert y, e ns uri n g v ali dit y a cr oss a br o a d cl ass of
f u n cti o ns. I n pr a cti c e, p ol y n o mi als or s pli n es ar e st a n d ar d
c h oi c es. T h e i niti ali z ati o n m et h o d, s el e cti o n of K , al o n g
wit h mi x P F C-I S O — a n alt er n ati v e al g orit h m t ail or e d f or
is otr o pi c c o v ari a n c e m atri c es —is d et ail e d i n S e cti o n B of
t h e a p p e n di x. T h e c o d e is a v ail a bl e o n Git H u b at h t t p s :
/ / g i t h u b . c o m / l e i y a n - l y / m i x P F C .
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Algorithm 1 Penalized EM algorithm for mixture PFC

Input: Data {(Xi, Yi)}ni=1, fitting function f(·)
Initialize γ̂iw(θ0) and center fi
repeat

E-Step: γiw(θ̂(t)) =
π̂
(t)
w

π̂
(t)
w +

∑
j ̸=w π̂

(t)
j exp{(Z(t)

i − 1
2 [(Â

(t)
j + Â

(t)
w )fi)])T ((∆̂∗)(t))−1(Â

(t)
j − Â

(t)
w )fi}

M-Step: B̂(t+1)
w = argminBw

1
2 tr(B

T
wΣ̂

(t)
w Bw)− tr{(Û(t)

w )TBw}+ λ∥Bw∥2,1
π̂
(t+1)
w = 1/n

∑n
i=1 γiw(θ̂

(t)), µ̂(t+1)
w = 1/

∑n
i=1[γiw(θ̂

(t))]
∑n
i=1 γiw(θ̂

(t))Xi

until converge
Output: π̂w, Ŝw

4. Theory
4.1. Preliminary

We begin this section with some notations. For num-
bers a and b, a ∨ b and a ∧ b means max{a, b} and
min{a, b}. For an integer n, [n] denotes the set {1, . . . , n}.
For a vector x = (x1, . . . , xp)

T , ∥x∥1 =
∑p
i=1 |xi|,

and ∥x∥2 =
√∑p

i=1 x
2
i . For a matrix A = (aij),

σmin(A) and σmax(A) represent the smallest and largest
singular values of A, SA denote the column space of
A. The Frobenius norm, and spectral norm of A are de-
fined as ∥A∥F =

√
tr(ATA), ∥A∥2 = σmax(A). The

Frobenius inner product between two matrices A and B
is ⟨A,B⟩F = tr(ATB). For matrices A and B with
same column rank d, the distance between subspaces is
D(SA,SB) = ∥PA − PB∥F /

√
2d. For a set A ⊆

{1, . . . , p}, Ac and |A| denote its complement and car-
dinality. For two sequences of positive numbers {an}
and {bn}, an ≲ bn or an = O(bn) means an/bn ≤
C < ∞, and an = o(bn) means that an/bn → 0 as
n → ∞. Let Spq−1 be the unit sphere. For a positive
integer s < p/(3q), let L(s) = {u ∈ Rpq : ∥uS̃c

1
∥1 ≤

(
√
sq + 2q

√
3s)∥uS̃1

∥2 +
√
sq∥u∥2, for some S̃1 ⊂

[pq] with |S̃1| = 3sq} and Lp(s) = L(s)1:p = {u1:p :
u ∈ L(s)}. For a matrix A ∈ Rp×q , define ∥A∥F,s =
supu∈Rp×q,vec(u)∈L(s)∩Spq−1⟨A,u⟩F .

We conduct the theoretical analysis under the assumption
that Yi is fixed, f(·) is known, and µw = 0. We focus
on the case where K = 2, a common assumption in high-
dimensional EM algorithm analysis (Cai et al., 2019; Wang
et al., 2024). We further assume that ∆ = σ2Ip with σ
known. Treating the covariance matrix as a known param-
eter is also standard in theoretical studies of simpler models
such as mixture linear regression (Klusowski et al., 2019;
Wang et al., 2024) and the Gaussian mixture model (Xu
et al., 2016; Cai et al., 2019). Without loss of generality,
we set σ2 = 1. Under these assumptions, we re-define the
parameter as θ = (π1,Γ1,Γ2), since π2 = 1 − π1 and
Sw = span(Γw), w = 1, 2. With this setup, we analyze

the theoretical properties of a simplified version of Algo-
rithm 1, which is detailed in Algorithm 4 in the appendix.
Let θ∗ denote the true value of θ, and θ̂(t) represent the
estimate of θ at the t-th iteration. The true parameter space
is defined as

Θ∗ = {θ∗ :π∗
1 ∈ (cπ, 1− cπ), ∥ vec(Γ∗

w)∥0 ≤ sq,

∥B∗
w∥F ≤Ma, ∥Γ∗

w∥F ≤Mb, w = 1, 2},

where each condition has a natural interpretation. The con-
dition π∗

1 ∈ (cπ, 1 − cπ) ensures each latent cluster has
a sufficiently large sample size. The sparsity condition
∥ vec(Γ∗

w)∥0 ≤ sq reflects group sparsity structure, and
∥Γ∗

w∥F ≤ Mb are used in the literature on mixture linear
regression (Yi & Caramanis, 2015; Wang et al., 2024). The
parameter B∗

w is the true solution to the optimization prob-
lem (6), and is defined later in the text.

Since σ2 = 1 and K = 2, the conditional probability
Pr(Wi = 1|θ,Xi, Yi) is simplified as

γi1(θ)
−1 = (1/π1 − 1) exp{[Xi − 1/2(Γ2 + Γ1)fi]

T

(Γ2 − Γ1)fi}+ 1,

and let γi2(θ) = Pr(Wi = 2|θ,Xi, Yi) = 1− γi1(θ). The
following quantities are used repeatedly in the theoretical
analysis:

π̂w(θ) =
1

n

n∑
i=1

γiw(θ), πw(θ) = E[π̂w(θ)],

Ûw(θ) =
1

n

n∑
i=1

γiw(θ)Xif
T
i , Uw(θ) = E[Ûw(θ)],

Σ̂w(θ) =
1

n

n∑
i=1

γiw(θ)XiX
T
i , Σw(θ) = E[Σ̂w(θ)],

where the expectation is with respect to Xi, i = 1, 2 . . . , n.
We define B∗

w = (Σ∗
w)

−1U∗
w, where Σ∗

w = Σw(θ
∗)

and U∗
w = Uw(θ

∗). Let β̂(t)
w and β∗

w represent top-
dw left singular vectors of B̂

(t)
w and B∗

w. Then we have
Sw = Sβ∗

w
. Let Mn(θ) = {π̂w(θ), Ûw(θ), Σ̂w(θ), w =
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1, 2} represent the sample-based estimates and M(θ) =
{πw(θ),Uw(θ),Σw(θ), w = 1, 2} be the popula-
tion counterpart. To quantify the differences be-
tween two sets of parameters, we introduce a distance
dF (M(θ1),M(θ2)), defined as

max
w=1,2

{|πw(θ1)− πw(θ2)| ∨ ∥Uw(θ1)−Uw(θ2)∥F

∨ ∥(Σw(θ1)−Σw(θ2))B
∗
w∥F }.

Let Ω =

√
tr[(Γ∗

2 − Γ∗
1)Σ̂f (Γ∗

2 − Γ∗
1)
T ] denote the sig-

nal strength of the mixture PFC model, where Σ̂f =
1/n

∑n
i=1 fif

T
i . We define the contraction basin Bcon(θ

∗)
as the set:

Bcon(θ
∗) ={θ : πw ∈ (c0, 1− c0), ∥Γw − Γ∗

w∥F ≤ CbΩ,

(1− Cd)Ω
2 ≤ | tr(δw(Γ)Σ̂f (Γ2 − Γ1)

T )|
≤ (1 + Cd)Ω

2,

vec(Γw − Γ∗
w) ∈ L(s), w = 1, 2},

where c0 ≤ cπ and δw(Γ) = Γ∗
w − (Γ2 + Γ1)/2. The

contraction basin requires that θ is not far away from the
true parameter θ∗. Under the conditions shown later, an
initialization θ̂(0) within the contraction basin guarantees
that all subsequent estimators θ̂(t) remain in the contraction
basin throughout the iterative process.

4.2. Main Results

We need some technical conditions before stating the theo-
retical results.

(C1) The singular values of Σ̂f = 1/n
∑n
i=1 fif

T
i satisfy

that M1 ≤ σmin(Σ̂f ) ≤ σmax(Σ̂f ) ≤ M2, and M3 ≤
min1≤i≤n ∥fi∥2 ≤ max1≤i≤n ∥fi∥2 ≤M4.

(C2) The initialization θ(0) satisfies that dF (θ(0),θ∗) ∨
∥B(0)

1 − B∗
1∥F ∨ ∥B(0)

2 − B∗
2∥F < rΩ, and

vec(Γ
(0)
w − Γ∗

w) ∈ L(s), with r < |c0 − cπ|/Ω ∧
Cb ∧ 1

a (
√
Cd − 1/(4

√
M1) +

b2

4a2 − b
2a ), a2 =

2M
3/2
2 /

√
M1, b = 2

√
M2 + [M2 +

√
M2/2]/

√
M1.

(C3) There exists a sufficiently large constant M5 >
0, which does not depend on n, p, s, such that
σdw(B

∗
w) ≥M5 ≥

√
sq3(log n)2 log p/n.

(C4) Ω ≥ C1(c0, Cb,Mb,Mi; i = 1, . . . , 4) for a constant
that is only depends on c0, Mb, Cb, and Mi, i =
1, . . . , 4, and Cb < C2(M2) for a constant only de-
pends on M2.

(C5) n > C3sq
3 log(p) for a sufficiently large constant C3.

Condition (C1) is mild since fi is a q-dimensional vector,
where q is a small fixed number that does not grow with n
and p. Condition (C2) ensures the initialization lies within
the contraction basin, which guarantees the estimates pro-
duced at each step of the EM algorithm stay in the con-
traction basin. It is a common condition in mixture mod-
els (Cai et al., 2019; Wang et al., 2024). Condition (C3)
requires that the nonzero singular values of B∗

w are suf-
ficiently separated from zero. This is a standard assump-
tion in the theoretical analysis of high dimensional SDR
problems (Zeng et al., 2024). Condition (C4) has two re-
quirements. The first one is that the signal strength is
larger than a constant that does not depend on n and p
such that the two mixtures are distinguishable. This as-
sumption is widely used in mixture linear model (Zhang
et al., 2020; Wang et al., 2024). The second is that, for
the parameters Γw within the contraction basin, the dis-
tance ∥Γw−Γ∗

w∥F is bounded by the signal strength multi-
plied by a universal constant independent of n and p. Con-
dition (C5) is a common assumption in high dimensions
on the relationship among n, p, s to guarantee consistent
estimation (Meinshausen & Yu, 2009; Cai et al., 2019).
Specifically, it implies that the restrictive eigenvalue con-
dition infu∈Lp(s)∩Sp−1 |uT 1

n

∑n
i=1 XiX

T
i u| > τ1 holds

with high probability for a positive constant τ1.

Next, we state the main result for the subspace es-
timation error of mixPFC in Theorem 4.1, with
its proof provided in Section C in the appendix.

Theorem 4.1. Under conditions (C1)-(C5), there exists a constant 0 < κ < 1/2, such that B̂(t)
w satisfies, with probability

at least 1− o(1),

∥B̂(t)
w −B∗

w∥F ≲ κt(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F )︸ ︷︷ ︸

computational error

+

√
sq3(log n)2 log p

n︸ ︷︷ ︸
statistical error

.

Consequently, for t ≥ (− log κ)−1 log{n(dF (θ̂(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )},

∥B̂(t)
w −B∗

w∥F ,D(S
β̂

(t)
w
,Sβ∗

w
) ≲

√
sq3(log n)2 log p

n
.
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Theorem 4.1 is the first theoretical result in high-
dimensional heterogeneous SDR. Compared to the high-
dimensional PFC result in Zeng et al. (2024), our con-
vergence rate is slower by a factor of log n, reflecting the
added complexity of unknown cluster labels. Importantly,
Theorem 4.1 holds under unequal proportions and arbitrary
subspace angles, making it highly non-trivial. Even in low-
dimensional settings, existing EM theory often requires ad-
ditional assumptions such as equal proportions (Gaussian
mixtures (Xu et al., 2016)), or symmetric coefficients (mix-
tures of linear regression (Zhu et al., 2017)). Additionally,
our analysis does not rely on sample splitting, a common
technique in the literature (Yi et al., 2014; Yi & Carama-
nis, 2015; Zhang et al., 2020) that divides the data into
many batches and uses a new batch of samples in each
iteration to make random samples and current parameter
estimates independent. Sample splitting, while theoreti-
cally convenient, is suboptimal in practice as it decreases
estimation efficiency and is rarely used in real-world ap-
plications. Recent work by Wang et al. (2024) derived a
rate of

√
s(log n)2 log p/n without data splitting for mix-

ture of linear regression. However, the mixture of PFC is
inherently more complex. Our rate is slower by a factor
of q3/2 due to the dependence on the q-dimensional vec-
tor f(Y ). Similarly, compared to Gaussian mixture model
(Cai et al., 2019), the convergence rate is slower by a factor
of q3/2 log n due to the involvement of γiw in Σw(θ) and
function f(Y ).

Starting with an initial value within the contraction basin,
Theorem 4.1 shows that the proposed algorithm converges
to the true parameters at a rate containing both computa-
tional and statistical errors. The computational error, ex-
pressed as κt(dF (θ̂(0),θ∗) ∨ ∥B̂(0)

1 − B∗
1∥F ∨ ∥B̂(0)

2 −
B∗

2∥F ), diminishes exponentially as t → ∞ since 0 <
κ < 1/2. The statistical error,

√
sq3(log n)2 log p/n, rep-

resents the irreducible estimation error and persists regard-
less of the number of EM iterations. For sufficiently large
t ≥ (− log κ)−1 log{n(dF (θ̂(0),θ∗) ∨ ∥B̂(0)

1 − B∗
1∥F ∨

∥B̂(0)
2 − B∗

2∥F )}, the computation error becomes negligi-
ble relative to the statistical error. Beyond this step, addi-
tional iterations do not improve the estimators. Notably,
since this threshold grows only logarithmically with n, the
Algorithm 1 achieves accurate estimation in practice within
a limited number of iterations.

The computational cost per EM iteration is O(nKpq +
nK3q3 + KTpnq + nKp2), where T denotes the num-
ber of iterations to solve the penalized optimization prob-
lem (6). Given that q is a small number that does not
grow with n, p,K, the overall complexity of Algorithm 1
is O(log(n)(nK3 +KTnp+Knp2)) with the dominated
termO(log(n)Knp2) from covariance estimation. This re-
mains tractable even for large K or p.

5. Numerical Results
5.1. Simulations

We compare the mixPFC and mixPFC-ISO against ex-
isting methods in clustering accuracy, subspace estima-
tion, and variable selection. Since no existing method si-
multaneously classifies the data and estimates subspaces,
we evaluate our methods against subspace clustering ap-
proaches for clustering error rates and high-dimensional
SDR methods for subspace estimation and variable selec-
tion. The subspace clustering methods considered include
LSA (Yan & Pollefeys, 2006), SSC (Elhamifar & Vidal,
2013), LRSC (Favaro et al., 2011), GPCA (Vidal et al.,
2005), and RANSAC (Tron & Vidal, 2007). GPCA is ap-
plied only to the important variables due to computational
constraints. Additionally, K-means and hierarchical clus-
tering, are included and applied to both X and X◦Y , where
the i-th row of X◦Y is defined as Yi×Xi. For variable se-
lection and subspace estimation accuracy, we include Las-
soSIR (Lin et al., 2019), SEAS-SIR, and SEAS-PFC (Zeng
et al., 2024). Clustering results are presented in this section,
with subspace estimation and variable selection results pro-
vided in Section A of the appendix.

We consider four settings for central subspaces, denoted
as models M1-M4, to examine different configurations of
mixtures. Models M1-M3 have K = 2 mixtures with dif-
ferent degrees of overlap between two subspaces. Specifi-
cally, the subspaces are identical in M1, orthogonal in M2,
and oblique in M3. Model M4 randomly generates multi-
ple subspaces (K > 2), which tend to be nearly orthogonal
to each other sine s = 10. The dimension dw of each sub-
space is 1 for M1 and M2, and 2 for M3 and M4. The
active set is defined as Aw = {1, . . . , 6} for M1-M3, and
Aw = {1, . . . , 10} for M4. Across all models, we set
µw = 0, f(Y ) = (Y, |Y |)T , and πw = 1/K. After the
basis matrices βw of central subspaces are generated ac-
cording to M1-M4 (parameters provided in Section A of
the appendix), we set Γw = ∆βwηw, where ηw ∈ Rdw×q

links the central subspace and function f(Y ). Imbalanced
clusters and non-linear functions are also examined in Sec-
tion A of the appendix.

The sample size is fixed at n = 200K with p =
1000, and for each simulation setting, 100 independent
datasets are generated. To explore the influence of differ-
ent covariance structures, we examine four configurations:
0.1Ip, Ip,AR(0.3),AR(0.5), where AR(r) represents the
auto-regressive covariance structure (∆)ij = r|i−j| for
i, j = 1, . . . , p.

Table 1 summarizes clustering error rates. As expected,
mixPFC achieves substantially lower error rates than all
subspace clustering methods across most model settings.
When K = 2, mixPFC has error rates of around 10%
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across all settings, dropping below 5% in certain cases.
Notably, mixPFC-ISO demonstrates superior performance
with even lower error rates for model M2. For M2 with
∆ = 0.1Ip, subspace clustering methods exhibit compara-
ble or slightly lower error rates. This is likely due to favor-
able conditions for subspace clustering methods, where the
subspaces are orthogonal and the random errors are mini-
mal. When K > 2, error rates remain impressively low,
under 3% for K = 3, probably due to enhanced signal
strength from setting s = 10. When K = 5, error rates
rise to around 15%, likely due to the increased difficulty in
generating high-quality initial values for larger K.

5.2. Real Data Analysis

The Australian Institute of Sport (AIS) dataset, available in
the R package dr, contains lean body mass data for 102
male and 100 female athletes. The objective is to investi-
gate the relationship between lean body mass and 8 predic-
tors, including height, weight, and red cell count. Given
that body composition varies between males and females
(Bredella, 2017), the AIS data likely includes two distinct
subpopulations. Figure 3 (a) shows summary plots for
males and females when sex is observed, highlighting dis-
tinct fitted lines for each group. Figure 3 (b) demonstrates
that mixPFC effectively identifies the two subpopulations,
achieving an error rate of 0.074.
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Figure 3. Summary plots for the AIS dataset. (a) Fitted lines for
males and females when the sex variable is observed, illustrate
distinct subpopulation trends. (b) Results from mixPFC, which
accurately identifies the two subpopulations with an error rate of
0.074.
The Cancer Cell Line Encyclopedia (CCLE) dataset con-
tains 8-point dose-response curves for 24 chemical com-
pounds across over 400 cell lines, with 18,926 gene ex-
pression features for each cell line, accessible at https:
//sites.broadinstitute.org/ccle. Due to in-
consistencies in cell lines across compounds, we focus on
two popular cancer treatments: Nutlin-3 (n = 480) and
AZD6244 (n = 479). Following (Wang et al., 2024; Li
et al., 2019), we use the logarithm of the area under the
dose-response curve as the response, representing drug sen-
sitivity. The top p = 500 genes with the highest absolute
correlations with the responses are selected for analysis.
Given the inherent complexity of cancer, the CCLE data is

expected to be heterogeneous.

The dataset is randomly partitioned into 80% training and
20% testing samples, with 100 repetitions. Table 2 reports
the prediction mean squared errors (PMSE) and the number
of selected variables ŝ for each method, with the number of
clusters set to 3 and 5 for Nutlin-3 and AZD6244 when
using mixPFC. For both compounds, mixPFC significantly
reduces prediction error compared to homogeneous meth-
ods, suggesting heterogeneity in the data. Notably, mixPFC
does not select more variables than Lasso and the three ho-
mogeneous SDR methods.

Figure 4 shows summary plots of the response against re-
duced predictors projected onto each subspace for Nutlin.
Within each cluster, the response exhibits approximately
linear relationships with the projected predictors. The lack
of clear patterns when points are projected onto subspaces
outside their cluster further highlights the heterogeneity of
data. The plot for AZD6244 and additional real data anal-
ysis are provided in Section A in the appendix.
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Figure 4. The scatter-plot of the response Y versus β̂T
wX for the

drug Nutlin. The solid line is fitted using samples in the given
cluster.

6. Discussion
In this work, we proposed a mixture of PFC model, which
combines subspace clustering with SDR methods to han-
dle heterogeneous and high-dimensional data. An efficient
group Lasso penalized EM algorithm has been developed
to simultaneously perform clustering, subspace estimation,
and variable selection. Theoretical analysis revealed an
encouraging non-asymptotic convergence rate, offering in-
sight into the empirical success of the algorithm.

A key aspect of our theoretical framework is its devel-
opment for K = 2 cluster scenario. Generalizing theo-
ries for multi-cluster EM algorithms remains an important
yet challenging direction. Recent advances focus on low-
dimensional settings (Yan et al., 2017; Tian et al., 2024),
and to the best of our knowledge, no general theory exists
for high-dimensional multi-cluster EM. Addressing this
open question likely requires fundamentally new tools to
handle complex parameter spaces and interactions between
K subspaces.

Further discussion and potential extensions are provided in
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Table 1. Averages and standard errors of clustering error rates with n = 200K, p = 1000.

mixPFC-ISO mixPFC RANSAC LSA LRSC SSC GPCA K-means X K-means X ◦ Y hclust X hclust X ◦ Y
M1: K = 2,∆ = 0.1Ip, Ip,AR(0.3),AR(0.5)

5.0 (0.8) 3.4 (0.7) 48 (0.1) 44.6 (0.2) 47.8 (0.2) 47.9 (0.1) 47.9 (0.1) 44.2 (0.2) 20.2 (0.3) 45.8 (0.2) 14 (0.2)
12.1 (1.0) 10.3 (1.1) 48.1 (0.2) 47.9 (0.2) 48 (0.2) 48 (0.1) 48.1 (0.1) 45.2 (0.2) 29.1 (0.4) 48.1 (0.2) 38.2 (0.5)

6.0 (0.6) 48.0 (0.2) 47.6 (0.2) 48.0 (0.2) 47.9 (0.1) 48.2 (0.1) 44.7 (0.1) 23.1 (0.3) 47 (0.2) 23.9 (0.3)
4.7 (0.4) 47.9 (0.2) 47.0 (0.2) 47.8 (0.2) 48.2 (0.1) 48.0 (0.1) 44.5 (0.2) 21.6 (0.3) 46.6 (0.2) 18.3 (0.3)

M2: K = 2,∆ = 0.1Ip, Ip,AR(0.3),AR(0.5)
9.9 (1.5) 16.4 (2.0) 28.3 (1.2) 4.9 (0.1) 48.1 (0.1) 11.7 (0.2) 48 (0.1) 47.6 (0.2) 27.5 (0.3) 46.9 (0.2) 19.1 (0.3)
13.9 (0.8) 16.3 (1.4) 47.6 (0.2) 43.5 (0.3) 47.7 (0.2) 47.2 (0.2) 48.2 (0.1) 47.5 (0.2) 36.5 (0.3) 47.4 (0.2) 46.2 (0.3)

11.5 (0.9) 46.2 (0.3) 31.2 (0.4) 48.3 (0.1) 44.9 (0.3) 48.2 (0.1) 37 (0.4) 32.2 (0.3) 44.2 (0.3) 42.6 (0.5)
11.4 (0.9) 43.4 (0.6) 21.5 (0.3) 48.0 (0.1) 43.5 (0.4) 48.0 (0.2) 33.9 (0.2) 31.1 (0.3) 40.2 (0.3) 34.9 (0.5)

M3: K = 2,∆ = 0.1Ip, Ip,AR(0.3),AR(0.5)
5.9 (1.1) 3.6 (1.2) 39.7 (0.7) 40.0 (0.8) 47.5 (0.2) 13.2 (0.2) 47.8 (0.2) 44.6 (0.2) 22.3 (0.3) 44.5 (0.4) 15.1 (0.2)
11.1 (1.5) 8.4 (1.4) 47.8 (0.2) 47.7 (0.2) 48.0 (0.1) 48.0 (0.1) 47.9 (0.2) 45.9 (0.2) 30.6 (0.4) 47.9 (0.1) 41.2 (0.4)

7.2 (1.4) 47.8 (0.2) 47.3 (0.2) 47.8 (0.2) 47.5 (0.2) 47.9 (0.2) 47.2 (0.1) 24.8 (0.3) 47.9 (0.1) 26.3 (0.3)
4 (0.9) 47.0 (0.2) 47.2 (0.1) 48.1 (0.1) 47.7 (0.2) 47.8 (0.2) 46.7 (0.1) 24.1 (0.3) 47.7 (0.2) 21.1 (0.3)

M4: K = 3,∆ = 0.1Ip, Ip,AR(0.3),AR(0.5)
0 (0) 0 (0) 44.1 (1) 25.4 (0.5) 18.2 (0.6) 6.5 (0.1) 63.3 (0.1) 58.3 (0.2) 52.1 (0.2) 59.4 (0.4) 29.4 (0.3)

3.7 (0.1) 2.9 (0.1) 62.3 (0.2) 57.2 (0.2) 64 (0.1) 60.5 (0.3) 63.4 (0.1) 62.8 (0.2) 53.3 (0.2) 68.8 (0.3) 53.7 (0.4)
2.5 (0.1) 59.8 (0.3) 56.1 (0.3) 64 (0.1) 57.5 (0.3) 63.4 (0.1) 61.8 (0.2) 50.1 (0.3) 66 (0.3) 46.6 (0.4)
2.2 (0.1) 56.9 (0.3) 54.1 (0.2) 64 (0.1) 59.6 (0.3) 63.7 (0.1) 62.8 (0.2) 47.8 (0.3) 63.3 (0.3) 42.3 (0.5)

M4: K = 5,∆ = 0.1Ip, Ip,AR(0.3),AR(0.5)
0.4 (0.3) 0.2 (0.2) 50.1 (0.7) 38.8 (0.6) 32.6 (0.8) 13.8 (0.2) 74.1 (0.2) 63.4 (0.2) 46.5 (0.4) 64.8 (0.2) 25.5 (0.2)
14.0 (1.2) 10.2 (1.6) 75.2 (0.1) 66.7 (0.2) 76.9 (0.1) 75.3 (0.1) 76 (0.1) 65.7 (0.1) 54.3 (0.4) 75.6 (0.1) 71.5 (0.3)

15.7 (2.0) 73.6 (0.2) 65.1 (0.2) 76.8 (0.1) 74.6 (0.1) 76 (0.1) 62.7 (0.1) 53.7 (0.3) 72.8 (0.1) 66.1 (0.3)
24.4 (2.2) 72.4 (0.2) 65 (0.2) 77 (0.1) 75.8 (0.1) 76.1 (0.1) 63.1 (0.2) 55.4 (0.2) 71.1 (0.1) 62 (0.3)

Table 2. The averages of the prediction errors, the sparsity level ŝ,
and the corresponding standard errors based on 100 replicates.

Nutlin-3
mixPFC SEAS-SIR SEAS-PFC LassoSIR Lasso

PMSE×100 8.9(0.4) 18.7 (0.4) 18.8 (0.4) 18.2 (0.3) 17.6 (0.3)
ŝ 31.5(2.5) 48.3 (1.3) 33.3 (1.8) 32 (0.9) 39.1 (1.1)

AZD6244
PMSE×100 45.6 (1.7) 108.8 (2.2) 107.1 (2.2) 83.2 (1.6) 77.6 (1.5)

ŝ 77.8 (3.2) 78.3 (1.6) 58.8 (1.5) 66.8 (0.7) 78.6 (0.7)

Section G in the appendix.
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This appendix provides additional numerical results, implementation details, and technical proofs supporting the theoretical
analysis. Section A presents detailed results from the numerical studies. Section B outlines implementation specifics,
including the initialization method, selection of the number of clusters, and the mixPFC-ISO algorithm. The theoretical
analysis of Theorem 4.1 relies on two key lemmas, with ancillary results provided in Section F. The proofs of the two key
lemmas are detailed in Sections D and E, while Section C contains the full proof of the theorem. We discuss potential
extensions in Section G.

A. Additional Numerical Results
A.1. Simulations

The parameters for M1-M4 in the simulation section are generated as follows.

(M1) The non-zero coefficients of β1 are β1i = 2.3, i = 1, . . . 6, and then set β2 = −β1.

(M2) The non-zero coefficients of β1 and β2 are β1i = 2.3, 1 ≤ i ≤ 6, and β2i = 2.3 for i = 1, 3, 5, β2i = −2.3 for
i = 2, 4, 6.

(M3) The basis matrices β1 and β2 have two columns. The non-zero rows of β1 and β2 are

(β1)
T
1:6· =

(
2.3 2.3 2.3 2.3 2.3 2.3
2.3 −2.3 2.3 −2.3 2.3 −2.3

)
,

(β2)
T
1:6· =

(
2.3 −2.3 −2.3 −2.3 −2.3 −2.3
2.3 2.3 −2.3 2.3 −2.3 2.3

)
.

(M4) The basis matrices βw, w = 1, . . . ,K have two columns. For each cluster w, the non-zero elements are generated as

(βw)ij ∼ Unif([−2.5,−2.1] ∪ [2.1, 2.5]), i ≤ 10, j = 1, 2, w = 1, 2, . . . ,K.

We consider four scenarios of simulations as described in Table A.3. The clustering error rates for S1 and S4 are presented
in the main paper. The error rates for scenarios S2 and S3 are summarized in Table A.4&A.5.

To assess the subspace estimation and variable selection accuracy, we define the following criteria: the distance be-
tween estimated and actual subspaces is defined as Dw = D(Sβw ,Sβ̂w

) = ∥Pβw − Pβ̂w
∥F /

√
2dw, w = 1, . . . ,K;

error rate ER is the fraction of incorrectly classified samples; true positive rate (TPR) and false positive rate (FPR)
are defined as TPRw = |Âw

⋂
Aw|/|Aw| and TPRw = |Âw

⋂
Ac
w|/|Ac

w|. When K > 2, instead of reporting
each Dw, TPRw and FPRw, we calculate the average subspace distance D =

∑K
w=1 Dw/K, average TPR and FPR

TPR =
∑K
w=1 TPRw /K and FPR =

∑K
w=1 FPRw /K, and TPR and FPR of the union of selected variables across all

clusters T̃PR = |(
⋃
Âw)

⋂
(
⋃
Aw)|/|(

⋃
Aw)| and F̃PR = |(

⋃
Âw)

⋂
(
⋃

Ac
w)|/|(

⋃
Ac
w)|.

Table A.6&A.7 summarize variable selection and subspace estimation results for scenario S1&S4 with covariance ∆ = I
and AR(0.3). The corresponding results for ∆ = 0.1I and AR(0.5) are provided in Table A.8&A.9. Results for S2 and
S3 can be found in Table A.10-A.11 and Table A.12-A.13, respectively. Under scenario S1, mixPFC demonstrates strong
performance, effectively identifying the important variables and accurately estimating central subspaces. It achieves true
positive rates TPRw greater than 95%, false positive rates FPRw below 1%, and subspace estimation errors Dw around 0.3
when ∆ = I and AR(0.3). However, as variables correlation increases (∆ = AR(0.5)), mixPFC shows reduced accuracy
in subspace estimation with Dw increasing to approximately 0.5, though it remains effective in variable selection. When
the covariance matrix contains small elements (∆ = 0.1I), mixPFC performance declines in both variable selection and
subspace estimation. This reduction occurs because estimating Sw = ∆−1SΓw

becomes challenging when all elements
of ∆ have small magnitude. In such cases, mixPFC-ISO, which assumes isotropic errors, outperforms mixPFC when
∆ = 0.1I and I.

In the unbalanced clusters scenario S2, subspace estimation errors are smaller for clusters with more samples, while variable
selection and error rates remain consistent with S1. In scenario S3, featuring a nonlinear fitting function, both mixPFC
and mixPFC-ISO perform poorly in variable selection and subspace estimation for model M3. Even SEAS-PFC using true
clusters offers little improvement. However, the error rates remain well controlled. The performance under M1 and M2 is
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similar to S1. In the multi-cluster setting S4, the mixPFC shows 10% - 20% reduction in TPRw for each cluster compared
to S1. But, the union of selected variables typically includes all the important variables.

When compared with LassoSIR, SEAS-SIR, and SEAS-PFC fitted on estimated clusters, mixPFC has similar TPRw and
FPRw but larger subspace estimation errors. This is likely because the algorithm incorporates some misleading information
from other clusters through γiw. Among the high-dimensional SDR methods, SEAS-SIR and SEAS-PFC consistently
outperformed LassoSIR. Therefore, it is recommended to refit with SEAS-PFC after classifying the data using mixPFC.
Notably, fitting with true clusters offers only marginal improvements—typically just a few percentage points—over using
clusters estimated by mixPFC.

Table A.3. Parameters settings of four sets of simulations. The linking matrices ηw = (1, 0.3) for M1 and M2, and ηw = I for M3 and
M4.

Scenario Model π Y f(Y )

S1 M1-M3 (0.5, 0.5) Unif(−1, 1) (Y, |Y |)T

S2 M1-M3 (0.7, 0.3) Unif(−1, 1) (Y, |Y |)T

S3 M1-M3 (0.5, 0.5) Unif(0, 2) (Y 2/3, Y 3/6)T

S4 M4 K = 3, 5 (1/K, . . . , 1/K) Unif(−1, 1) (Y, |Y |)T

Table A.4. Averages and standard errors of clustering error rates for scenario S2 with n = 400, p = 1000,K = 2.

Method mixPFC-ISO mixPFC RANSAC LSA LRSC SSC GPCA K-means X K-means X ◦ Y hclust X hclust X ◦ Y
M1: n = 400, p = 1000,∆ = 0.1I, I,AR(0.3),AR(0.5)

ER(%) 7.7 (1.3) 3.1 (0.7) 40.8 (0.5) 48.1 (0.1) 47.7 (0.2) 47.4 (0.2) 47.3 (0.2) 48.7 (0.1) 33.1 (0.6) 46.1 (0.3) 10.3 (0.5)
13.1 (1.3) 7.2 (0.6) 48 (0.2) 41.2 (0.4) 42.5 (0.4) 47.9 (0.1) 47.4 (0.2) 48.6 (0.1) 42.7 (0.7) 43 (0.5) 27.8 (0.9)

6.9 (0.9) 46.4 (0.3) 44.5 (0.3) 47.8 (0.1) 47.7 (0.2) 45 (0.4) 48.5 (0.1) 35.9 (0.7) 46.5 (0.3) 18.8 (0.8)
4.4 (0.5) 43.8 (0.4) 45.5 (0.3) 48 (0.1) 48 (0.1) 44.9 (0.4) 48.7 (0.1) 35.2 (0.6) 45.9 (0.3) 13.5 (0.5)

M2: n = 400, p = 1000,∆ = 0.1I, I,AR(0.3),AR(0.5)
ER(%) 12.9 (1.7) 14.4 (1.9) 29.9 (1.1) 5.4 (0.1) 47.6 (0.2) 11.3 (0.2) 47 (0.2) 48.3 (0.1) 41.7 (0.3) 45.3 (0.3) 13.9 (0.6)

13.2 (0.5) 14.4 (1.3) 47.4 (0.2) 40.6 (0.5) 39.5 (0.5) 46.9 (0.2) 47.9 (0.2) 48.3 (0.1) 45.9 (0.6) 40.8 (0.6) 30.7 (0.4)
10 (0.7) 44.8 (0.4) 33.6 (0.3) 48.1 (0.2) 46.1 (0.3) 44.2 (0.4) 46.5 (0.2) 45.6 (0.2) 47.2 (0.2) 29.9 (0.7)
9.4 (0.8) 40.8 (0.7) 24.4 (0.2) 47.9 (0.2) 46.2 (0.3) 44 (0.4) 44.2 (0.2) 44.4 (0.3) 48 (0.2) 31.8 (1.2)

M3: n = 400, p = 1000,∆ = 0.1I, I,AR(0.3),AR(0.5)
ER(%) 8.0 (1.2) 2.1 (0.9) 37.8 (0.8) 46.1 (0.3) 46.8 (0.2) 14.4 (0.5) 47.1 (0.2) 45.1 (0.2) 35.7 (0.5) 43 (0.5) 11.7 (0.5)

10.9 (1.2) 3.3 (0.7) 47.9 (0.2) 45.8 (0.3) 39.4 (0.3) 47.6 (0.2) 46.9 (0.2) 46.8 (0.2) 44.4 (0.7) 41.8 (0.6) 29.7 (0.8)
3.9 (1) 45.6 (0.3) 46.9 (0.2) 48.1 (0.1) 47.7 (0.2) 44 (0.4) 48 (0.1) 39.3 (0.5) 46.7 (0.2) 20 (0.8)
4.8 (1) 42.4 (0.4) 46.6 (0.2) 48.2 (0.2) 48.1 (0.2) 44.4 (0.4) 48.2 (0.1) 38.2 (0.4) 46.6 (0.2) 14.7 (0.5)

Table A.5. Averages and standard errors of clustering error rates for scenario S3 with n = 400, p = 1000,K = 2.

Method mixPFC-ISO mixPFC RANSAC LSA LRSC SSC GPCA K-means X K-means X ◦ Y hclust X hclust X ◦ Y
M1: n = 400, p = 1000,∆ = 0.1Ip, Ip,AR(0.3),AR(0.5)

ER(%) 6.1 (0.8) 3.8 (0.1) 47.7 (0.2) 42.7 (0.2) 48.3 (0.1) 47.9 (0.2) 48 (0.2) 39.9 (0.2) 39.6 (0.2) 42.5 (0.3) 35.8 (0.2)
14.2 (0.5) 14.3 (0.8) 48 (0.2) 47.8 (0.2) 47.9 (0.1) 47.9 (0.2) 47.9 (0.2) 44 (0.2) 43.6 (0.3) 47.9 (0.2) 45.4 (0.3)

9.1 (0.5) 47.9 (0.1) 47 (0.2) 48.2 (0.1) 48.1 (0.2) 48.1 (0.2) 41 (0.2) 40.9 (0.2) 47.6 (0.2) 40.6 (0.3)
7.8 (0.6) 48 (0.1) 44.3 (0.3) 48.1 (0.1) 48 (0.1) 48.2 (0.1) 40.6 (0.1) 39.6 (0.2) 46.3 (0.2) 37.7 (0.2)

M2: n = 400, p = 1000,∆ = 0.1Ip, Ip,AR(0.3),AR(0.5)
ER(%) 6.9 (0.8) 11.1 (1.6) 40 (0.8) 18.7 (1.2) 48.1 (0.2) 16.9 (0.2) 48.2 (0.1) 46.7 (0.2) 40.4 (0.2) 45.3 (0.4) 38.1 (0.2)

21.7 (0.7) 19.9 (0.9) 48 (0.2) 47.9 (0.2) 48 (0.1) 47.9 (0.2) 47.8 (0.2) 47.7 (0.2) 45.2 (0.3) 48 (0.2) 47.2 (0.2)
17.6 (0.8) 47.5 (0.2) 42 (0.2) 47.9 (0.2) 47.6 (0.2) 48.1 (0.1) 46.3 (0.3) 40.8 (0.2) 47.5 (0.2) 47 (0.2)
16.7 (0.7) 46.3 (0.2) 38.4 (0.2) 47.8 (0.2) 46.8 (0.2) 47.9 (0.2) 41.4 (0.4) 39.6 (0.2) 44.3 (0.3) 44.9 (0.3)

M3: n = 400, p = 1000,∆ = 0.1Ip, Ip,AR(0.3),AR(0.5)
ER(%) 17.9 (1.8) 22.6 (2.2) 33.1 (1.1) 11.1 (0.2) 47.6 (0.2) 12.6 (0.2) 48.1 (0.2) 39.9 (0.1) 39.8 (0.2) 39.7 (0.3) 35.2 (0.2)

20 (1.2) 13.8 (1.1) 47.6 (0.2) 46.5 (0.2) 47.9 (0.2) 47.3 (0.2) 47.8 (0.2) 42.9 (0.2) 42.1 (0.3) 47.7 (0.2) 43.9 (0.3)
13.1 (1.2) 47.7 (0.2) 45.5 (0.2) 48.1 (0.1) 47.5 (0.2) 48.1 (0.2) 44 (0.2) 40.2 (0.3) 47.5 (0.2) 42.6 (0.3)
11.5 (1.1) 47.2 (0.3) 44.2 (0.2) 48 (0.2) 46.9 (0.2) 48.1 (0.2) 44.8 (0.2) 39 (0.2) 47.4 (0.2) 39.4 (0.3)
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Table A.6. Simulations results for scenario S1 with n = 400, p = 1000,K = 2. The table reports averages and standard errors of TPR,
FPR, and subspace distance for each cluster.

Method ∆ = I ∆ = AR(0.3)

TPRw(%) FPRw(%) Dw × 100 TPRw(%) FPRw(%) Dw × 100

M1
mixPFC 95, 96.7 (1.7, 1.4) 2, 1.6 (0.6, 0.5) 30, 29.4 (2.2, 2.1) 98.7, 98.3 (0.7, 1) 0.2, 0.4 (0.2, 0.3) 35, 35 (1.4, 1.4)
mixPFC-ISO 100, 100 (0, 0) 0.4, 0.4 (0, 0) 6.3, 6.4 (0.2, 0.2)
LassoSIRt 100, 100 (0, 0) 1.5, 1.7 (0.1, 0.1) 30.6, 31.7 (1, 1) 99.5, 99.7 (0.3, 0.2) 1.3, 1.1 (0.1, 0.1) 41.2, 41.1 (1.2, 1.1)
LassoSIRm 94.7, 96 (1.8, 1.5) 2.3, 2 (0.4, 0.3) 38.2, 37 (2.1, 2.1) 98.5, 97.7 (0.8, 1.1) 1.2, 1.2 (0.2, 0.2) 41.2, 41 (1.5, 1.4)
SEAS-SIRt 100, 100 (0, 0) 0.5, 0.6 (0.1, 0.1) 7.5, 7.5 (0.4, 0.3) 100, 100 (0, 0) 0.1, 0.1 (0, 0) 13.9, 14.5 (0.3, 0.4)
SEAS-SIRm 99.1, 99.5 (0.5, 0.4) 0.7, 0.8 (0.1, 0.2) 10.7, 10.6 (1.3, 1.3) 99.8, 99.3 (0.2, 0.5) 0.2, 0.2 (0.1, 0.1) 15, 15.8 (0.6, 1)
SEAS-PFCt 100, 100 (0, 0) 1.2, 1.4 (0.2, 0.2) 8, 8 (0.4, 0.4) 100, 100 (0, 0) 0.2, 0.2 (0, 0) 13.5, 14.2 (0.3, 0.4)
SEAS-PFCm 96.7, 96.8 (1.5, 1.4) 1.2, 1.6 (0.4, 0.3) 14.9, 13.9 (2.4, 2) 99.8, 99.7 (0.2, 0.3) 0.3, 0.5 (0.1, 0.2) 15.1, 15.7 (1, 1.2)

M2
mixPFC 95.3, 94.5 (1.4, 1.5) 0.7, 0.8 (0.1, 0.1) 31.7, 31.8 (1.9, 1.9) 98.8, 100 (0.5, 0) 0, 1.3 (0, 0.1) 37.3, 24.1 (1.4, 0.9)
mixPFC-ISO 98.7, 98.8 (0.8, 0.6) 0.5, 0.8 (0.1, 0.2) 9.2, 10 (1.3, 1.6)
LassoSIRt 100, 100 (0, 0) 1.5, 1.3 (0.1, 0.1) 30.6, 29.8 (1, 1) 99.5, 100 (0.3, 0) 1.3, 2.4 (0.1, 0.2) 41.2, 29.9 (1.2, 1)
LassoSIRm 92.5, 91.7 (1.7, 1.9) 1.7, 1.8 (0.2, 0.2) 40.9, 39.2 (2.1, 2.1) 97, 99 (1.1, 0.5) 1.1, 2.4 (0.1, 0.2) 43.5, 32.1 (1.5, 1.3)
SEAS-SIRt 100, 100 (0, 0) 0.5, 0.6 (0.1, 0.1) 7.5, 7.8 (0.4, 0.3) 100, 100 (0, 0) 0.1, 1.8 (0, 0.1) 13.9, 30.9 (0.3, 0.5)
SEAS-SIRm 93.8, 92.7 (1.6, 1.7) 0.4, 0.5 (0.1, 0.1) 19.4, 19.2 (2.4, 2.4) 98.2, 97.3 (0.8, 1.1) 0.1, 1.8 (0, 0.2) 18, 33.8 (1.3, 1.1)
SEAS-PFCt 100, 100 (0, 0) 1.2, 1.3 (0.2, 0.2) 8, 8.1 (0.4, 0.3) 100, 100 (0, 0) 0.2, 0.9 (0, 0.1) 13.5, 28.4 (0.3, 0.5)
SEAS-PFCm 92.8, 92.3 (1.7, 1.7) 1.1, 0.9 (0.2, 0.2) 19.6, 19.6 (2.4, 2.4) 97.5, 97.7 (1.1, 1) 0.2, 1 (0, 0.1) 17.7, 30.9 (1.4, 1.1)

M3
mixPFC 94.2, 94.3 (1.7, 1.6) 0.2, 0.1 (0.1, 0.1) 29.5, 29.6 (2.2, 2.1) 96.8, 98.5 (0.9, 0.6) 0.3, 0.4 (0.2, 0.1) 30, 35.7 (1.7, 1.4)
mixPFC-ISO 98.8, 97.2 (1, 1.6) 0.7, 0.7 (0.1, 0.2) 21.4, 22.1 (1.7, 2)
LassoSIRt 100, 100 (0, 0) 6.6, 6.6 (0.2, 0.2) 51.1, 50.5 (0.8, 0.9) 99.8, 100 (0.2, 0) 9.8, 8.4 (0.2, 0.2) 69.3, 68.5 (0.5, 0.5)
LassoSIRm 94.8, 96.3 (1.5, 1.2) 7.6, 7.2 (0.3, 0.3) 59, 57.4 (1.4, 1.5) 98.3, 98.7 (0.6, 0.6) 9.3, 8.1 (0.2, 0.2) 71, 70.3 (0.7, 0.7)
SEAS-SIRt 100, 100 (0, 0) 2.2, 2 (0.3, 0.3) 9.8, 9.6 (0.3, 0.3) 100, 100 (0, 0) 0.2, 0.3 (0, 0) 18, 31.2 (0.4, 0.3)
SEAS-SIRm 94.1, 92.6 (1.5, 1.7) 1.4, 2.2 (0.2, 0.3) 21.8, 23.2 (2.3, 2.4) 95.3, 95 (1.6, 1.6) 0.1, 0.2 (0, 0) 26.7, 37.7 (2, 1.6)
SEAS-PFCt 100, 100 (0, 0) 1.5, 1.9 (0.2, 0.3) 9.1, 9.7 (0.3, 0.3) 100, 100 (0, 0) 0.2, 0.3 (0, 0) 17.7, 30.8 (0.4, 0.3)
SEAS-PFCm 91.5, 89.2 (1.9, 2.2) 1.2, 1.3 (0.2, 0.2) 22.4, 23.6 (2.5, 2.6) 94.3, 93 (1.7, 1.9) 0.2, 0.2 (0.1, 0) 26.7, 37.6 (2, 1.6)

Table A.7. Simulations results for scenario S4 with n = 400K, p = 1000,K = 3, 5. The table reports averages and standard errors of
TPR, FPR, and subspace distance, calculated as the mean values across K clusters.

Method ∆ = I ∆ = AR(0.3)

TPR(%) FPR(%) T̃PR(%) F̃PR(%) D × 100 TPR(%) FPR(%) T̃PR(%) F̃PR(%) D × 100

M4 K = 3
mixPFC 99.6 (0.1) 0 (0) 100 (0) 0 (0) 27.2 (0.4) 86.7 (0.8) 0.3 (0.1) 100 (0) 1 (0.2) 45.5 (0.6)
mixPFC-ISO 100 (0) 0 (0) 100 (0) 0.1 (0) 14.7 (0.2)
LassoSIRt 100 (0) 6.1 (0.1) 100 (0) 17.3 (0.3) 53.1 (0.4) 99.4 (0.1) 6 (0.1) 100 (0) 17 (0.2) 61.2 (0.3)
LassoSIRm 100 (0) 6.1 (0.1) 100 (0) 17.2 (0.3) 52.9 (0.4) 99.4 (0.2) 6.1 (0.1) 100 (0) 17.4 (0.3) 61.7 (0.3)
SEAS-SIRt 100 (0) 2.5 (0.1) 100 (0) 7.5 (0.4) 11.3 (0.2) 92 (0.6) 0.3 (0.1) 100 (0) 0.9 (0.2) 43.8 (0.7)
SEAS-SIRm 100 (0) 2.3 (0.1) 100 (0) 6.7 (0.4) 12.1 (0.2) 90.4 (0.6) 0.3 (0.1) 100 (0) 0.8 (0.2) 45.4 (0.7)
SEAS-PFCt 100 (0) 1 (0.1) 100 (0) 3 (0.3) 9.7 (0.2) 90.3 (0.8) 0.1 (0) 100 (0) 0.3 (0) 44 (0.8)
SEAS-PFCm 100 (0) 0.8 (0.1) 100 (0) 2.4 (0.3) 10.5 (0.2) 89.4 (0.8) 0.1 (0) 100 (0) 0.3 (0) 45.6 (0.8)

M4 K = 5
mixPFC 98 (0.4) 0.1 (0) 100 (0) 0.4 (0.1) 32.3 (1) 88 (0.7) 0.8 (0.1) 100 (0) 4 (0.4) 50 (1.2)
mixPFC-ISO 97.2 (0.6) 0.2 (0) 100 (0) 0.9 (0.2) 25.6 (1.4)
LassoSIRt 100 (0) 6.1 (0.1) 100 (0) 27 (0.3) 53.6 (0.3) 99.8 (0.1) 6.2 (0.1) 100 (0) 27.4 (0.4) 62.5 (0.3)
LassoSIRm 98.3 (0.5) 6.3 (0.1) 100 (0) 27.6 (0.5) 57.5 (1.1) 93.7 (1) 6.8 (0.2) 99.8 (0.1) 29.6 (0.6) 69.9 (1.2)
SEAS-SIRt 100 (0) 2.5 (0.1) 100 (0) 11.8 (0.6) 11.4 (0.2) 94.6 (0.4) 0.4 (0) 100 (0) 1.8 (0.2) 42.9 (0.5)
SEAS-SIRm 99.3 (0.2) 2.6 (0.1) 100 (0) 12.2 (0.5) 17.3 (1.3) 88.6 (0.8) 0.8 (0.1) 100 (0) 3.8 (0.5) 50.3 (1.1)
SEAS-PFCt 100 (0) 1.2 (0.1) 100 (0) 5.9 (0.4) 9.6 (0.2) 91.8 (0.5) 0.3 (0) 100 (0) 1.2 (0.1) 44.3 (0.5)
SEAS-PFCm 98.7 (0.3) 1.1 (0.1) 100 (0) 5.4 (0.4) 15.5 (1.3) 86.3 (0.9) 0.5 (0.1) 100 (0) 2.5 (0.5) 50.9 (1)
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Table A.8. Simulations results for scenario S1 with n = 400, p = 1000,K = 2. The table reports averages and standard errors of TPR,
FPR, and subspace distance for each cluster.

Method ∆ = 0.1I ∆ = AR(0.5)

TPRw(%) FPRw(%) Dw × 100 TPRw(%) FPRw(%) Dw × 100

M1
mixPFC 97.5, 98 (0.9, 0.7) 0, 0 (0, 0) 39, 39.2 (1.2, 1.3) 96.3, 96.5 (1.1, 0.8) 0.9, 1.1 (0.1, 0.3) 50.3, 48.3 (1.3, 1.2)
mixPFC-ISO 100, 100 (0, 0) 0.1, 0.1 (0, 0) 1.7, 1.6 (0.1, 0.1)
LassoSIRt 98.8, 99.5 (0.4, 0.3) 0.8, 0.9 (0.1, 0.1) 43.9, 44.8 (1.2, 1.1) 96.2, 95.3 (0.7, 0.8) 1.1, 1 (0.1, 0.1) 52.8, 51.7 (1.2, 1.2)
LassoSIRm 98, 98.5 (0.7, 0.7) 0.8, 0.9 (0.1, 0.1) 45.2, 45.5 (1.3, 1.3) 96, 94.5 (0.8, 1.2) 1, 1.2 (0.1, 0.2) 51.7, 52.8 (1.2, 1.4)
SEAS-SIRt 100, 100 (0, 0) 0.1, 0.1 (0, 0) 2.7, 2.5 (0.2, 0.2) 100, 100 (0, 0) 1.1, 1 (0.1, 0.1) 19.7, 19.7 (0.4, 0.4)
SEAS-SIRm 100, 100 (0, 0) 0.1, 0.2 (0, 0.1) 2.9, 3 (0.2, 0.2) 99.8, 99.8 (0.2, 0.2) 0.8, 1 (0.1, 0.2) 20.5, 20.6 (0.6, 0.8)
SEAS-PFCt 100, 100 (0, 0) 0, 0 (0, 0) 2.8, 2.4 (0.2, 0.2) 100, 100 (0, 0) 0.1, 0.1 (0, 0) 19.8, 19.5 (0.5, 0.4)
SEAS-PFCm 100, 100 (0, 0) 0.2, 0 (0.1, 0) 3, 3.1 (0.3, 0.3) 100, 99.2 (0, 0.6) 0.1, 0.3 (0, 0.2) 20.5, 20.6 (0.6, 1)

M2
mixPFC 87.8, 87.5 (1.8, 1.9) 0.2, 0.2 (0.1, 0.1) 50.6, 49.4 (1.5, 1.7) 95.5, 100 (1, 0) 0.8, 2.6 (0.1, 0.2) 54.2, 34.1 (1.6, 1)
mixPFC-ISO 100, 99.8 (0, 0.2) 0.2, 0.2 (0, 0) 9.8, 10.3 (2, 2.1)
LassoSIRt 98.8, 99.3 (0.4, 0.3) 0.8, 1.1 (0.1, 0.1) 44.3, 45.1 (1.2, 1.2) 96.3, 97.7 (0.7, 0.6) 1.1, 3.8 (0.1, 0.2) 52.9, 40.4 (1.2, 1.1)
LassoSIRm 84.7, 84.7 (2.3, 2.3) 1.2, 1.1 (0.1, 0.1) 57.2, 55 (1.9, 1.7) 91.7, 96.3 (1.4, 0.9) 1, 4 (0.1, 0.2) 55.3, 43.7 (1.4, 1.4)
SEAS-SIRt 100, 100 (0, 0) 0.1, 0.1 (0, 0) 2.9, 2.6 (0.2, 0.1) 100, 89.5 (0, 1.3) 1.1, 2.5 (0.1, 0.2) 19.7, 63.8 (0.4, 0.5)
SEAS-SIRm 86.3, 86.2 (2.2, 2.2) 0.1, 0.1 (0, 0) 23.1, 23.1 (3.1, 3.1) 99, 89.8 (0.5, 1.5) 0.8, 2.4 (0.1, 0.2) 23.6, 65.1 (1.2, 0.6)
SEAS-PFCt 100, 100 (0, 0) 0, 0 (0, 0) 2.8, 2.6 (0.2, 0.2) 100, 95.7 (0, 0.9) 0.1, 1.9 (0, 0.2) 19.8, 59.3 (0.5, 0.5)
SEAS-PFCm 85.5, 85.3 (2.3, 2.3) 0, 0 (0, 0) 23.3, 23.1 (3.1, 3.1) 98.2, 92 (0.7, 1.4) 0.1, 1.7 (0, 0.2) 23.8, 60.6 (1.3, 0.6)

M3
mixPFC 92.3, 92.5 (2, 1.9) 0, 0.3 (0, 0.1) 39.2, 37.9 (1.8, 1.9) 96.7, 97.5 (1.1, 0.8) 0.5, 0.9 (0.1, 0.3) 40.5, 50.1 (1.2, 1.2)
mixPFC-ISO 100, 100 (0, 0) 0.4, 0.4 (0, 0) 10.8, 10.7 (1.5, 1.5)
LassoSIRt 100, 100 (0, 0) 4.5, 4.8 (0.2, 0.2) 57.3, 58.5 (0.8, 0.8) 98.7, 98.5 (0.5, 0.5) 8.8, 6.4 (0.2, 0.3) 77.9, 75.3 (0.4, 0.4)
LassoSIRm 95.5, 95.3 (1.7, 1.7) 4.6, 4.7 (0.2, 0.2) 59.8, 60.1 (1.3, 1.2) 96.5, 98.2 (0.9, 0.7) 9.1, 6.8 (0.2, 0.3) 78.5, 76 (0.5, 0.4)
SEAS-SIRt 100, 100 (0, 0) 0, 0 (0, 0) 3.8, 3.6 (0.2, 0.2) 100, 87.5 (0, 1.3) 0.8, 0.6 (0.1, 0.2) 34.3, 53.4 (0.6, 0.9)
SEAS-SIRm 95.2, 96 (1.7, 1.5) 0, 0 (0, 0) 9.9, 9.7 (2.1, 2) 99.5, 89 (0.3, 1.3) 0.7, 0.8 (0.1, 0.2) 36.6, 53.3 (1, 0.9)
SEAS-PFCt 100, 100 (0, 0) 0, 0 (0, 0) 3, 2.9 (0.1, 0.1) 100, 83 (0, 1.5) 0.1, 0.1 (0, 0) 33.1, 54.1 (0.5, 0.9)
SEAS-PFCm 94.8, 94.7 (1.8, 1.8) 0, 0 (0, 0) 9.2, 9.1 (2.1, 2.2) 98.3, 86.3 (1, 1.6) 0.1, 0.2 (0, 0.1) 35.7, 53.2 (1.1, 1)

Table A.9. Simulations results for scenario S4 with n = 400K∗, p = 1000,K = 3, 5. The table reports averages and standard errors of
TPR, FPR, and subspace distance, calculated as the mean values across K clusters.

Method ∆ = 0.1I ∆ = AR(0.5)

TPR(%) FPR(%) T̃PR(%) F̃PR(%) D × 100 TPR(%) FPR(%) T̃PR(%) F̃PR(%) D × 100

M4 K∗ = 3
mixPFC 65.9 (0.9) 0 (0) 93.5 (0.8) 0 (0) 62.9 (0.7) 77.9 (0.7) 0.7 (0.1) 99.7 (0.2) 2 (0.2) 57 (0.5)
mixPFC-ISO 100 (0) 0.1 (0) 100 (0) 0.3 (0) 3.3 (0.1)
LassoSIRt 98.7 (0.2) 4.4 (0.1) 100 (0) 12.7 (0.3) 68 (0.3) 96.5 (0.3) 6.1 (0.1) 100 (0) 17.3 (0.3) 70.2 (0.3)
LassoSIRm 98.8 (0.2) 4.5 (0.1) 100 (0) 12.9 (0.3) 68.2 (0.4) 96.4 (0.3) 6.1 (0.1) 100 (0) 17.2 (0.3) 70.2 (0.3)
SEAS-SIRt 99.9 (0) 0 (0) 100 (0) 0 (0) 12.5 (0.5) 76.4 (0.5) 0.6 (0) 100 (0) 1.7 (0.1) 61.8 (0.2)
SEAS-SIRm 100 (0) 0 (0) 100 (0) 0 (0) 12 (0.4) 75.3 (0.5) 0.5 (0) 100 (0) 1.5 (0.1) 62.2 (0.2)
SEAS-PFCt 100 (0) 0 (0) 100 (0) 0 (0) 9.1 (0.3) 72 (0.4) 0 (0) 100 (0) 0.1 (0) 61.9 (0.1)
SEAS-PFCm 100 (0) 0 (0) 100 (0) 0 (0) 8.9 (0.3) 72.4 (0.5) 0 (0) 100 (0) 0.1 (0) 61.9 (0.1)

M4 K∗ = 5
mixPFC 65.7 (0.8) 0 (0) 97.8 (0.4) 0 (0) 64.6 (0.7) 76.8 (0.7) 1 (0.1) 100 (0) 5.1 (0.4) 65.6 (0.9)
mixPFC-ISO 100 (0) 0.1 (0) 100 (0) 0.6 (0) 3.8 (0.4)
LassoSIRt 98.9 (0.1) 4.4 (0.1) 100 (0) 19.9 (0.3) 67.7 (0.3) 97.5 (0.2) 6.1 (0.1) 100 (0) 27.1 (0.4) 70.7 (0.2)
LassoSIRm 98.8 (0.2) 4.4 (0.1) 100 (0) 20.3 (0.3) 68 (0.3) 84.8 (1.4) 6.5 (0.1) 99.9 (0.1) 28.5 (0.5) 80.1 (0.9)
SEAS-SIRt 99.9 (0) 0 (0) 100 (0) 0 (0) 10 (0.3) 80.3 (0.4) 0.4 (0) 100 (0) 1.7 (0.1) 62.8 (0.1)
SEAS-SIRm 99.8 (0.1) 0 (0) 100 (0) 0 (0) 10.4 (0.4) 74.6 (0.8) 0.8 (0.1) 100 (0) 4 (0.5) 68.1 (0.7)
SEAS-PFCt 100 (0) 0 (0) 100 (0) 0 (0) 7.4 (0.3) 77.3 (0.3) 0 (0) 100 (0) 0.2 (0) 61.5 (0.1)
SEAS-PFCm 99.9 (0.1) 0 (0) 100 (0) 0 (0) 7.7 (0.3) 74.5 (0.7) 0.8 (0.1) 100 (0) 3.7 (0.7) 67 (0.6)
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Table A.10. Simulations results for scenario S2 with n = 400, p = 1000,K = 2. The table reports averages and standard errors of
TPR, FPR, and subspace distance for each cluster.

Method ∆ = 0.1I ∆ = I

TPR(%) FPR(%) D × 100 TPR(%) FPR(%) D × 100

M1
mixPFC 97.8, 97.3 (0.7, 0.9) 0, 0 (0, 0) 35.6, 35.9 (1.3, 1.4) 98.2, 98.8 (1, 0.6) 0.5, 1 (0.1, 0.3) 23.7, 23.9 (1.5, 1.6)
mixPFC-ISO 100, 100 (0, 0) 0.2, 0.3 (0, 0) 1.9, 1.9 (0.1, 0.1) 100, 99.8 (0, 0.2) 0.8, 0.8 (0.2, 0.2) 8, 8.5 (0.8, 0.9)
LassoSIRt 100, 96.3 (0, 0.7) 0.8, 0.8 (0.1, 0.1) 37.3, 52 (1.2, 1.3) 100, 100 (0, 0) 1.5, 1.4 (0.1, 0.1) 24.9, 41.1 (0.9, 1.2)
LassoSIRm 97, 98.2 (0.9, 0.7) 0.9, 0.8 (0.1, 0.1) 45.1, 47.4 (1.7, 1.7) 98.8, 98.8 (0.6, 0.7) 1.7, 1.6 (0.2, 0.2) 36.1, 37 (1.7, 1.9)
SEAS-SIRt 100, 100 (0, 0) 0, 0.1 (0, 0) 2.1, 3.3 (0.1, 0.2) 100, 100 (0, 0) 1.5, 0.4 (0.2, 0.1) 6.1, 9.8 (0.2, 0.4)
SEAS-SIRm 100, 100 (0, 0) 0.1, 0.1 (0.1, 0) 2.8, 3.1 (0.2, 0.2) 99.8, 99.3 (0.2, 0.7) 1, 1.2 (0.2, 0.2) 9.4, 10.2 (0.7, 1.1)
SEAS-PFCt 100, 100 (0, 0) 0, 0 (0, 0) 2, 3 (0.1, 0.2) 100, 100 (0, 0) 1.4, 0.8 (0.3, 0.1) 6.4, 9.1 (0.3, 0.3)
SEAS-PFCm 100, 100 (0, 0) 0.1, 0.1 (0.1, 0) 2.7, 3.4 (0.2, 0.5) 98.7, 98.2 (1.1, 1.3) 0.9, 1.1 (0.2, 0.2) 9.9, 10.8 (1.3, 1.5)

M2
mixPFC 89.8, 89 (1.7, 1.6) 0.2, 0.3 (0.1, 0.1) 43.4, 50.8 (1.9, 1.6) 97.2, 96 (0.9, 1.3) 0.9, 0.9 (0.1, 0.1) 26.6, 37 (1.9, 1.9)
mixPFC-ISO 100, 97.5 (0, 1.1) 0.4, 0.3 (0.1, 0) 9.6, 17.1 (1.7, 2.9) 100, 98.7 (0, 0.8) 0.2, 1.8 (0, 0.3) 6.4, 13.3 (0.7, 1.5)
LassoSIRt 100, 96.5 (0, 0.7) 0.8, 0.8 (0.1, 0.1) 37.2, 53.4 (1.2, 1.3) 100, 100 (0, 0) 1.5, 1.4 (0.1, 0.1) 24.9, 41.3 (0.9, 1.3)
LassoSIRm 89.2, 83.7 (1.9, 2.2) 0.9, 0.9 (0.1, 0.1) 47.5, 61 (2, 1.6) 95.7, 92.2 (1.3, 1.7) 1.7, 1.7 (0.2, 0.1) 34, 53.5 (2, 2)
SEAS-SIRt 100, 100 (0, 0) 0, 0.1 (0, 0) 2.1, 3.5 (0.1, 0.2) 100, 100 (0, 0) 1.5, 0.6 (0.2, 0.1) 6.1, 10.4 (0.2, 0.4)
SEAS-SIRm 90.3, 87.7 (1.9, 2.2) 0, 0 (0, 0) 20.2, 21.5 (3, 3) 97.3, 93.9 (0.7, 1.5) 1.4, 0.4 (0.3, 0.1) 16.7, 22.2 (2.2, 2.3)
SEAS-PFCt 100, 100 (0, 0) 0, 0 (0, 0) 2, 3.2 (0.1, 0.2) 100, 100 (0, 0) 1.4, 0.8 (0.3, 0.1) 6.4, 9.8 (0.3, 0.4)
SEAS-PFCm 89.8, 87 (1.9, 2.2) 0, 0 (0, 0) 19.9, 21.5 (2.9, 3) 95.7, 92 (1.2, 1.9) 1, 0.7 (0.2, 0.1) 17.8, 23.5 (2.3, 2.5)

M3
mixPFC 96.3, 93.2 (1.2, 1.2) 0.1, 0.1 (0.1, 0) 35.9, 40.1 (1.4, 1.8) 98.8, 96.8 (0.4, 1.2) 0.1, 0.2 (0.1, 0.1) 19.4, 27 (1.4, 1.4)
mixPFC-ISO 100, 100 (0, 0) 0.5, 0.6 (0.1, 0) 10.9, 14.3 (1.3, 1.6) 100, 92.7 (0, 2.5) 0.4, 1.7 (0.1, 0.1) 17.1, 31.7 (1.3, 2.3)
LassoSIRt 100, 99.3 (0, 0.3) 4.2, 4 (0.2, 0.1) 48.8, 69.1 (0.8, 0.7) 100, 100 (0, 0) 7.4, 5.2 (0.2, 0.1) 42.5, 63.1 (0.8, 0.8)
LassoSIRm 98.5, 98.3 (0.8, 0.6) 4.6, 4.2 (0.2, 0.2) 51.8, 70.5 (1.3, 1) 98.8, 99.5 (0.6, 0.3) 7.5, 5.6 (0.2, 0.2) 45.9, 65 (1.2, 0.9)
SEAS-SIRt 100, 100 (0, 0) 0, 0.4 (0, 0.1) 3, 4.7 (0.2, 0.3) 100, 100 (0, 0) 2, 1.1 (0.2, 0.1) 7.8, 12.9 (0.2, 0.3)
SEAS-SIRm 99.3, 97.3 (0.5, 1.2) 0, 0.3 (0, 0.1) 6.7, 8.8 (1.3, 1.6) 99.2, 98 (0.5, 0.8) 1.6, 1.1 (0.2, 0.1) 12.3, 18.3 (1.5, 1.6)
SEAS-PFCt 100, 100 (0, 0) 0, 0 (0, 0) 2.3, 3.7 (0.1, 0.2) 100, 100 (0, 0) 1.5, 0.8 (0.3, 0.1) 7.5, 11.3 (0.3, 0.3)
SEAS-PFCm 98.2, 97.2 (1.1, 1.2) 0.1, 0 (0.1, 0) 7, 8.3 (1.7, 1.7) 97.5, 97 (1.2, 1.1) 1.1, 0.7 (0.2, 0.1) 12.7, 17.1 (1.7, 1.6)

Table A.11. Simulations results for scenario S2 with n = 400, p = 1000,K = 2. The table reports averages and standard errors of
TPR, FPR, and subspace distance for each cluster.

Method ∆ = AR(0.3) ∆ = AR(0.5)

TPR(%) FPR(%) D × 100 TPR(%) FPR(%) D × 100

M1
mixPFC 96, 98 (1.4, 0.9) 0.1, 0 (0, 0) 35.7, 34 (1.6, 1.3) 96.2, 95 (0.8, 1.1) 0.8, 0.7 (0.1, 0.1) 46.2, 44.4 (1.4, 1.4)
LassoSIRt 100, 97 (0, 0.6) 1.2, 1.2 (0.1, 0.1) 33.2, 50.3 (1.1, 1.4) 99.7, 91.3 (0.2, 1) 0.9, 0.9 (0.1, 0.1) 40.7, 60.9 (1.2, 1.1)
LassoSIRm 97.3, 98.8 (0.9, 0.5) 1.2, 1.5 (0.1, 0.2) 48.3, 44.9 (2, 1.8) 95.5, 94.8 (0.8, 0.8) 0.9, 0.7 (0.1, 0.1) 52.8, 50.2 (1.7, 1.7)
SEAS-SIRt 100, 100 (0, 0) 1.2, 0.5 (0.2, 0.1) 13.5, 15.5 (0.3, 0.4) 100, 100 (0, 0) 0.3, 0.1 (0, 0) 18.8, 19.8 (0.2, 0.4)
SEAS-SIRm 100, 100 (0, 0) 0.9, 1.2 (0.2, 0.2) 15.9, 15.1 (0.6, 0.4) 100, 100 (0, 0) 0.2, 0.2 (0, 0) 19.5, 20.1 (0.3, 0.5)
SEAS-PFCt 100, 100 (0, 0) 0.1, 0.8 (0, 0.1) 13.4, 14.9 (0.3, 0.4) 100, 100 (0, 0) 0.1, 0.1 (0, 0) 18.7, 19.7 (0.2, 0.4)
SEAS-PFCm 99.3, 100 (0.7, 0) 0.4, 0.3 (0.1, 0.1) 16.3, 15.8 (1, 1.1) 100, 100 (0, 0) 0.1, 0.1 (0, 0) 19.4, 20.1 (0.3, 0.4)

M2
mixPFC 98.5, 99.8 (0.8, 0.2) 0, 1.4 (0, 0.2) 32.4, 32 (1.3, 1) 96.3, 97.3 (1.1, 0.9) 0.5, 3 (0, 0.2) 41, 47.5 (1.3, 1.2)
LassoSIRt 100, 100 (0, 0) 1.2, 2.3 (0.1, 0.1) 33.2, 42.2 (1.1, 1.1) 99.7, 88.8 (0.2, 1.1) 0.9, 3.4 (0.1, 0.1) 40.8, 61.4 (1.2, 1.2)
LassoSIRm 97.7, 97.8 (1, 1) 1, 2 (0.1, 0.1) 35.2, 48.7 (1.3, 1.4) 95.8, 85.7 (1.3, 1.5) 1.1, 3 (0.1, 0.1) 45.9, 64.5 (1.6, 1.2)
SEAS-SIRt 100, 100 (0, 0) 1.2, 1.4 (0.2, 0.1) 13.5, 38.1 (0.3, 0.5) 100, 74.7 (0, 1.4) 0.3, 1.2 (0, 0.1) 19, 69.9 (0.2, 0.5)
SEAS-SIRm 99.3, 97.8 (0.3, 0.8) 1.7, 1.1 (0.3, 0.1) 16.2, 41.3 (0.9, 1) 99.7, 74.2 (0.2, 1.5) 0.2, 1.2 (0, 0.1) 20.6, 71.3 (0.6, 0.6)
SEAS-PFCt 100, 100 (0, 0) 0.1, 0.8 (0, 0.1) 13.4, 33.4 (0.3, 0.5) 100, 85.2 (0, 1.4) 0.1, 1.2 (0, 0.1) 18.9, 64.9 (0.2, 0.7)
SEAS-PFCm 99.3, 97.8 (0.3, 1) 0.1, 0.8 (0, 0.1) 16, 36 (1, 1) 99.3, 83.3 (0.3, 1.7) 0.1, 1.2 (0, 0.1) 20.8, 66 (0.6, 0.7)

M3
mixPFC 98.8, 98.5 (0.5, 0.8) 0.3, 0.1 (0.2, 0.1) 25.1, 36.6 (1.5, 1.1) 96.2, 95.7 (1.4, 1.1) 0.1, 0.8 (0, 0.2) 37, 54.3 (1.5, 1)
LassoSIRt 100, 99.3 (0, 0.3) 12.1, 5.6 (0.2, 0.1) 62.8, 75.9 (0.5, 0.4) 99.8, 95.2 (0.2, 0.8) 10.9, 4.9 (0.3, 0.1) 74.1, 80.2 (0.3, 0.4)
LassoSIRm 98.2, 98.3 (0.9, 0.6) 12, 5.8 (0.2, 0.2) 64.8, 76.5 (0.8, 0.5) 97.2, 93.8 (1.1, 1) 11, 5.1 (0.3, 0.2) 75.3, 80.6 (0.6, 0.5)
SEAS-SIRt 100, 99.8 (0, 0.2) 0.6, 0.8 (0.2, 0.1) 18.3, 33.1 (0.4, 0.4) 100, 86 (0, 1.3) 0.4, 0.1 (0, 0) 32.7, 54.5 (0.5, 0.9)
SEAS-SIRm 97.3, 96.7 (1.2, 1.3) 1.1, 1 (0.3, 0.1) 22.6, 36.1 (1.4, 1.2) 97.5, 84.3 (1, 1.5) 0.3, 0.1 (0, 0) 36.5, 56.1 (1.2, 1)
SEAS-PFCt 100, 99.2 (0, 0.5) 0.1, 0.7 (0, 0.1) 17.6, 32.5 (0.3, 0.6) 100, 83.8 (0, 1.4) 0.1, 0.1 (0, 0) 32, 54.6 (0.5, 0.9)
SEAS-PFCm 96.8, 95.3 (1.4, 1.6) 0.1, 0.8 (0, 0.1) 21.7, 36.3 (1.5, 1.3) 96.5, 81.8 (1.4, 1.6) 0.1, 0.1 (0, 0) 35.8, 56.3 (1.3, 1)
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Table A.12. Simulations results for scenario S3 with n = 400, p = 1000,K = 2. The table reports averages and standard errors of
TPR, FPR, and subspace distance for each cluster.

Method ∆ = 0.1I ∆ = I

TPR(%) FPR(%) D × 100 TPR(%) FPR(%) D × 100

M1
mixPFC 96.8, 95.8 (1.2, 1.4) 0, 0 (0, 0) 38, 37.7 (1.3, 1.4) 95.7, 95.7 (1.6, 1.7) 1.4, 1.3 (0.3, 0.3) 37.8, 36 (1.9, 2)
mixPFC-ISO 100, 100 (0, 0) 0.6, 0.6 (0, 0) 2.6, 2.7 (0.1, 0.1) 99.7, 99.7 (0.3, 0.3) 1.4, 1.5 (0.1, 0.2) 13.2, 13.5 (1, 1.1)
LassoSIRt 100, 99.5 (0, 0.3) 1, 1.2 (0.1, 0.1) 38.1, 43.8 (1.1, 1.3) 100, 100 (0, 0) 2.5, 2.6 (0.2, 0.2) 36.5, 40.8 (1.2, 1.2)
LassoSIRm 99.7, 99.7 (0.2, 0.2) 1.2, 0.9 (0.1, 0.1) 43.1, 39.5 (1.2, 1.2) 96.7, 96.2 (1.6, 1.7) 3.1, 3.3 (0.3, 0.3) 45.8, 45.3 (1.8, 1.9)
SEAS-SIRt 100, 100 (0, 0) 0, 0 (0, 0) 3.6, 3.7 (0.2, 0.2) 100, 100 (0, 0) 0.9, 1.1 (0.1, 0.2) 11.1, 13.2 (0.4, 0.4)
SEAS-SIRm 100, 100 (0, 0) 0, 0 (0, 0) 3.8, 3.9 (0.2, 0.2) 98.1, 98.3 (1.3, 1.2) 1.6, 1.6 (0.2, 0.2) 17.1, 16 (1.3, 1.4)
SEAS-PFCt 100, 100 (0, 0) 0.2, 0.3 (0, 0.1) 3.4, 3.5 (0.2, 0.2) 100, 100 (0, 0) 0.9, 1.1 (0.2, 0.2) 10.8, 12.9 (0.4, 0.4)
SEAS-PFCm 100, 100 (0, 0) 0.3, 0.3 (0.1, 0) 3.7, 3.5 (0.2, 0.2) 97, 96.8 (1.7, 1.6) 1.6, 1.7 (0.3, 0.3) 19.5, 18.1 (1.8, 1.9)

M2
mixPFC 91.7, 90.5 (1.6, 1.7) 0.8, 0.6 (0.3, 0.4) 42.7, 45.9 (1.8, 1.9) 95.3, 95 (1.6, 1.4) 1.1, 1.7 (0.2, 0.2) 36, 39.8 (1.7, 1.7)
mixPFC-ISO 100, 99.5 (0, 0.5) 4.4, 0.8 (1.4, 0) 8.5, 7 (2.1, 1.5) 98.3, 97.7 (0.8, 0.9) 1.7, 2.5 (0.2, 0.4) 16.9, 19.3 (1.5, 2)
LassoSIRt 100, 99.7 (0, 0.2) 1, 1.2 (0.1, 0.1) 37.2, 43 (1.1, 1.3) 100, 100 (0, 0) 2.5, 2.6 (0.2, 0.2) 36.5, 40.1 (1.2, 1.4)
LassoSIRm 92.8, 92.3 (1.7, 1.6) 1.4, 1.7 (0.2, 0.2) 46.1, 49.8 (2, 1.9) 95.8, 95.7 (1.3, 1.4) 2.8, 2.8 (0.2, 0.2) 47.1, 48.9 (1.5, 1.5)
SEAS-SIRt 100, 100 (0, 0) 0, 0 (0, 0) 3.6, 3.8 (0.2, 0.2) 100, 100 (0, 0) 0.9, 1.1 (0.1, 0.2) 11.1, 12.9 (0.4, 0.4)
SEAS-SIRm 94.3, 95.8 (1.5, 1.3) 0.1, 0 (0, 0) 14.5, 14 (2.5, 2.4) 97, 96.8 (1.2, 1.2) 1, 1.1 (0.1, 0.2) 20.7, 22.2 (1.7, 1.6)
SEAS-PFCt 100, 100 (0, 0) 0.2, 0.3 (0, 0.1) 3.3, 3.6 (0.2, 0.2) 100, 100 (0, 0) 0.9, 0.9 (0.2, 0.2) 10.8, 12.3 (0.4, 0.5)
SEAS-PFCm 92.3, 94.7 (1.9, 1.5) 0.2, 0.3 (0.1, 0.1) 14.8, 14 (2.6, 2.4) 96.3, 95.7 (1.3, 1.5) 0.9, 1.2 (0.2, 0.2) 21.1, 22.7 (1.7, 1.8)

M3
mixPFC 40.7, 42.5 (1.4, 1.1) 2.6, 4.5 (0.7, 0.9) 80.3, 81 (0.8, 0.9) 49.7, 49.2 (1.2, 1.1) 2, 2.2 (0.2, 0.2) 73.7, 74 (0.4, 0.5)
mixPFC-ISO 82.8, 84.3 (2.1, 2) 1.1, 0.9 (0.3, 0.1) 48.8, 48.7 (2.4, 2.2) 54, 53.6 (1.4, 1.5) 4.6, 4.1 (0.2, 0.1) 73.2, 73 (0.6, 0.6)
LassoSIRt 98.7, 99.8 (0.6, 0.2) 8.3, 8.3 (0.2, 0.3) 67.6, 67.3 (0.9, 1) 69, 67 (1.5, 1.5) 10.1, 10.5 (0.2, 0.1) 73.5, 73.9 (0.3, 0.3)
LassoSIRm 69.5, 70 (3.2, 3.3) 9.9, 9.3 (0.3, 0.2) 81.6, 80.1 (1.2, 1.3) 59, 60.8 (1.3, 1.8) 10.5, 10.9 (0.2, 0.2) 76.3, 76.4 (0.7, 0.7)
SEAS-SIRt 94.7, 95.8 (1.4, 1.2) 0, 0 (0, 0) 42.9, 40.2 (1.5, 1.5) 56.2, 56.2 (1.2, 1.1) 1.7, 1.8 (0.3, 0.3) 70.7, 70.6 (0.1, 0.1)
SEAS-SIRm 68.3, 67.7 (2.9, 3) 0.5, 0.3 (0.2, 0.1) 65.4, 65.2 (1.7, 1.7) 53.1, 53.3 (1.2, 1.2) 2.5, 1.5 (0.3, 0.2) 71.9, 71.6 (0.5, 0.4)
SEAS-PFCt 50, 50 (0, 0) 0, 0 (0, 0) 70.7, 70.7 (0, 0) 51, 52 (0.5, 0.5) 1.4, 2.5 (0.2, 0.3) 70.8, 70.8 (0, 0)
SEAS-PFCm 43.7, 44.7 (0.9, 0.9) 0.2, 0.5 (0.1, 0.2) 75.3, 75.7 (0.6, 0.7) 48.7, 49.2 (0.8, 0.9) 1.8, 1.7 (0.3, 0.3) 72.3, 72.4 (0.5, 0.5)

Table A.13. Simulations results for scenario S3 with n = 400, p = 1000,K = 2. The table reports averages and standard errors of
TPR, FPR, and subspace distance for each cluster.

Method ∆ = AR(0.3) ∆ = AR(0.5)

TPR(%) FPR(%) D × 100 TPR(%) FPR(%) D × 100

M1
mixPFC 96.7, 96.5 (1.1, 1.1) 0.5, 0.6 (0.2, 0.2) 35.1, 36.9 (1.6, 1.7) 92.2, 91.3 (1.5, 1.9) 0.4, 0.3 (0.3, 0.2) 49.4, 49.1 (1.5, 1.5)
LassoSIRt 99.7, 99.7 (0.2, 0.2) 1.7, 2 (0.1, 0.2) 41.6, 45.5 (1.2, 1.4) 99, 97.3 (0.4, 0.7) 1.2, 1.4 (0.1, 0.1) 47.1, 53.7 (1.3, 1.2)
LassoSIRm 99, 98.5 (0.6, 0.7) 1.9, 1.9 (0.2, 0.2) 43.9, 45.5 (1.5, 1.5) 94.8, 94.7 (1.2, 1.4) 1.4, 1.4 (0.2, 0.2) 53.3, 52.3 (1.4, 1.4)
SEAS-SIRt 100, 100 (0, 0) 1, 1 (0.2, 0.2) 15, 15 (0.4, 0.4) 100, 100 (0, 0) 0.2, 0.3 (0, 0) 20, 20.9 (0.4, 0.6)
SEAS-SIRm 99.8, 100 (0.2, 0) 1.2, 1.2 (0.2, 0.2) 16.3, 15.7 (0.6, 0.5) 99, 99.2 (0.6, 0.8) 0.3, 0.4 (0.1, 0.1) 22.3, 23 (1.1, 1.1)
SEAS-PFCt 100, 100 (0, 0) 1.5, 1.9 (0.2, 0.3) 14.7, 15.3 (0.4, 0.4) 100, 99.8 (0, 0.2) 0.2, 0.2 (0, 0) 20, 20.9 (0.4, 0.6)
SEAS-PFCm 100, 100 (0, 0) 1.9, 2 (0.3, 0.3) 16.2, 16.8 (0.7, 0.8) 98.7, 98.7 (0.7, 1) 0.4, 0.5 (0.2, 0.2) 22.7, 23.7 (1.2, 1.3)

M2
mixPFC 94.2, 99 (1.5, 0.5) 0.1, 2.3 (0.1, 0.3) 42.3, 36.6 (1.5, 1.3) 72.7, 94 (1.6, 1.5) 0.1, 4.5 (0.1, 0.6) 64.2, 52 (1.1, 1.5)
LassoSIRt 99.7, 100 (0.2, 0) 1.7, 4.9 (0.1, 0.2) 41.6, 47.9 (1.2, 1.3) 99.2, 86 (0.4, 1.2) 1.3, 6.6 (0.1, 0.2) 47.5, 70.6 (1.3, 1.2)
LassoSIRm 94.8, 98 (1.2, 0.7) 1.6, 4.9 (0.2, 0.2) 51.3, 51.9 (1.4, 1.2) 88.5, 85.7 (1.2, 1.4) 1.2, 6.7 (0.1, 0.2) 60.4, 71.5 (1.3, 1.3)
SEAS-SIRt 100, 99.5 (0, 0.3) 1, 2.3 (0.2, 0.2) 15, 41.1 (0.4, 0.8) 100, 66.8 (0, 1.5) 0.2, 1.4 (0, 0.2) 20, 73.4 (0.4, 0.5)
SEAS-SIRm 98.7, 96.7 (0.7, 1.1) 1.5, 2.3 (0.2, 0.2) 22.5, 46.1 (1.4, 1) 97.3, 71.3 (0.8, 1.5) 0.1, 2 (0, 0.2) 31.1, 72.3 (1.4, 0.5)
SEAS-PFCt 100, 99.7 (0, 0.3) 1.5, 0.9 (0.2, 0.1) 14.7, 36 (0.4, 0.7) 100, 73.8 (0, 1.7) 0.2, 1 (0, 0.1) 20, 69.7 (0.5, 0.5)
SEAS-PFCm 98.8, 97 (0.6, 1.1) 0.6, 1.4 (0.2, 0.2) 22.1, 42.1 (1.4, 1.1) 96.7, 71.8 (1.1, 1.5) 0.1, 1.2 (0, 0.2) 31.3, 70.6 (1.5, 0.5)

M3
mixPFC 50.5, 50.7 (1.2, 1.1) 0.5, 1.3 (0.1, 0.2) 72.6, 74 (0.4, 0.6) 53.5, 54.3 (1.3, 1.3) 0.3, 1 (0.2, 0.2) 72.3, 73.6 (0.5, 0.5)
LassoSIRt 78.2, 73.5 (1.6, 1.5) 9.6, 9.5 (0.2, 0.2) 74.2, 73.9 (0.3, 0.3) 78.5, 77 (1.4, 1.4) 8.7, 9 (0.2, 0.2) 75.4, 74.1 (0.3, 0.2)
LassoSIRm 71.8, 70 (1.9, 1.7) 10, 10.2 (0.2, 0.2) 76.5, 76.7 (0.7, 0.7) 75.8, 75 (1.9, 1.4) 9.2, 9.4 (0.2, 0.2) 77.7, 76.2 (0.7, 0.6)
SEAS-SIRt 91.5, 80.2 (1.3, 1.2) 0.6, 1.3 (0.1, 0.2) 59.5, 65.7 (1.2, 0.6) 93, 84.2 (1, 0.8) 0.2, 0.5 (0.1, 0.1) 62.9, 65.7 (1.1, 0.7)
SEAS-SIRm 82.6, 74.3 (1.9, 1.6) 0.5, 1 (0.1, 0.2) 67.9, 69.2 (0.9, 0.6) 87.4, 81.3 (1.6, 1.4) 0.5, 0.4 (0.1, 0.1) 69.5, 68.4 (0.8, 0.7)
SEAS-PFCt 89.7, 76.3 (1.5, 1.2) 0.4, 0.7 (0.1, 0.2) 53.9, 61.7 (1.4, 0.8) 93.3, 83.2 (1, 0.6) 0.1, 0.1 (0, 0) 55.1, 63.2 (1.2, 0.7)
SEAS-PFCm 80.3, 70.5 (2.1, 1.8) 0.3, 0.8 (0.1, 0.2) 64.4, 68.1 (1.2, 0.9) 85.7, 80 (2, 1.3) 0.1, 0.4 (0, 0.1) 64.9, 67.5 (1.2, 0.9)

18



Heterogeneous Sufficient Dimension Reduction and Subspace Clustering

A.2. Real Data Analysis

For the CCLE data, we evaluate the performance of mixPFC across K = 2, 3, . . . , 10. Table A.14 summarizes PMSE
and the number of selected variables ŝ (total number of unique variables selected across all clusters) for different K under
mixPFC.

For mixPFC, the prediction error decreases as the number of clusters K increases. However, the reduction becomes less
pronounced beyond K = 3 for Nutlin-3 and K = 5 and AZD6244. For both responses, mixPFC achieves a significant
reduction in prediction error compared to homogeneous methods (Table 2), suggesting heterogeneity in the data. The num-
ber of selected variables ŝ initially increases and then stabilizes as the number of clustersK grows, indicating that different
clusters select different variables. Notably, mixPFC does not select more variables than Lasso and the three homogeneous
SDR methods, even for large K. These findings suggest that over-specification of K does not significantly impact the pre-
diction performance of mixPFC. However, over-specification of K increases computational cost and introduces variability
in parameter estimation. Using the tuning method described in Section B of the appendix, the average selected K is 3 for
both Nutlin-3 and AZD6244.

Summary plots of the response versus the reduced predictors projected onto each subspace are shown in Figure A.5 for
AZD6244. These plots reveal approximately linear relationships between the response and projected predictors within
each cluster for both drugs. Notably, the points in cluster 1 form a vertical band when projected onto subspaces Ŝw, w =
2, 3, 4, 5. This pattern coincides with the example in Figure 2 (b) and suggests the first subspace is orthogonal to the
remaining subspaces.

Table A.14. The averages of the prediction errors, the sparsity level ŝ, and the corresponding standard errors based on 100 replicates.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
Nutlin-3

PMSE×100 11.9 (0.4) 8.9 (0.4) 8.3 (0.3) 8.4 (0.3) 7.7 (0.3) 7.84 (0.4) 7.36 (0.3) 6.9 (0.3) 6.9 (0.3)
ŝ 16.5 (1.2) 31.5 (2.5) 45.2 (2.7) 52.3 (2.7) 53.9 (2.7) 53.7 (2.6) 52.6 (2.2) 58.2 (2.4) 59.5 (2.1)

AZD6244
PMSE×100 66.4 (1.5) 58.7 (2.0) 62.2 (2.3) 45.6 (1.7) 41.6 (1.2) 36.7 (1) 33.5 (1.0) 32.0 (1.0) 34.7 (1.2)

ŝ 21.6 (0.6) 53.4 (2.5) 62.2 (2.3) 77.8 (3.2) 77.4 (3.1) 74.1 (2.8) 65.1 (2.7) 67.5 (2.4) 70.6 (2.3)

B. Implementation Details
B.1. Initialization and Tuning K

Initialization. To implement the proposed mixPFC algorithm, it is critical to obtain reliable initial values for γiw. Classical
distance-based clustering algorithms, like K-means and hierarchical clustering, often produce low-quality initial values.
Similarly, subspace clustering methods also fail for the high-dimensional mixture of PFC. In the Gaussian mixture model, it
is recommended to initialize EM with short runs of EM, where the algorithm is stopped early rather than run to convergence
(Biernacki et al., 2003). Given that existing methods are not designed for the model (3), we propose a similar initialization
procedure that runs the mixPFC algorithm on transformed data with an early stopping criterion to generate initial estimates
of γiw. In high-dimensional settings, we transform the original data into a lower-dimensional space by applying distance
correlation (dcor) screening (Li et al., 2012) followed by principal component analysis (PCA). Specifically, we first select
u× ⌊n log n⌋ variables using dcor and then project the data onto the first v principal components of the selected variables.
Based on simulation results in Table A.15, we recommend setting u = 2 and v = 10.

Selection of number of clusters K. The gap statistic (Tibshirani et al., 2001) is a popular technique for selecting the
optimal number of clusters for many clustering algorithms. Here, we adapt this approach to enhance its suitability for the
mixture model 3. Let Qw represent the orthogonal complement of βw, Gw denote the indices of observations in cluster w
and nw = |Gw|. Then define

Dw =
∑

i,i′∈Gw

∥QT
wXi −QT

wXi′∥2, VK =
K∑
w=1

1

2nw
Dw.

The gap statistic is
Gapn(K) = E∗

n[log(VK)]− log(VK),
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Figure A.5. The scatter-plot of the response Y versus β̂T
wX for the drug AZD6244. The solid line is fitted using samples in the given

cluster.

Table A.15. Error rates averaged over 20 datasets generated under model scenario S1 using M1-M3. First, we use dcor to select u ×
⌊N log(N)⌋ variables and then apply PCA to project the data onto v dimension space spanned by principal components.

M1 M2 M3

v = 5 v = 10 v = 15 v = 5 v = 10 v = 15 v = 5 v = 10 v = 15

∆ = 0.1I mixPFC
u = 1 5.7 2.2 6.3 25.2 27.1 30.0 8.4 3.0 7.3
u = 2 13.6 4.0 4.5 29.2 31.6 35.0 11.0 11.9 13.5
u = 3 15.8 13.2 4.5 30.1 38.6 38.1 7.3 7.5 10.5

∆ = 0.1I mixPFC-ISO
u = 1 23.8 25.0 24.9 6.7 9.0 11.3 20.6 24.3 19.2
u = 2 24.7 22.1 34.5 11.1 11.3 17.3 18.7 19.8 24.5
u = 3 30.5 28.2 18.7 9.1 21.9 9.2 27.3 22.3 17.2

∆ = I mixPFC
u = 1 14.3 10.7 10.8 27.3 37.4 43.5 9.9 7.3 9.0
u = 2 20.1 14.4 11.9 31.6 38.5 41.3 13.9 9.9 8.7
u = 3 16.1 16.5 18.7 31.8 42.7 45.9 11.9 13.8 20.7

∆ = I mixPFC-ISO
u = 1 17.3 13.0 11.4 9.4 12.0 15.3 13.9 19.7 17.6
u = 2 18.8 15.0 11.5 15.3 10.2 12.6 24.8 22.1 13.3
u = 3 15.0 15.4 17.6 12.2 14.4 13.2 14.7 19.5 8.3

∆ = AR(0.3) mixPFC
u = 1 21.0 12.3 14.4 27.0 31.2 38.8 12.9 12.3 11.4
u = 2 13.9 15.5 12.5 23.2 34.3 41.4 20.5 19.1 14.9
u = 3 22.5 18.9 14.3 29.4 40.9 36.5 26.3 28.4 23.5
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where E∗
n denotes the expectation under a sample of size n from a reference distribution. We estimate E∗

n[log(VK)] by an
average of B copies log(V ∗

K), which is computed from samples drawn from uniform reference distribution. However, in
high dimensions, the gap statistic becomes computationally expensive as it requires calculating VK for B data samples. In
practice, we find that bypassing the expectation calculation and directly using VK yields effective results. Let K∗ denote
the true number of clusters. To illustrate, we use models M1 (K∗ = 2) and M4 (K∗ = 3, 5), with an identity covariance
matrix as defined in the simulation section, to generate high-dimensional data. Notably, the two subspaces are identical
in model M1. Figure A.6 presents a representative plot of the within-cluster dispersion VK , calculated using the mixPFC
Algorithm 1, as a function of the number of clusters. The error measure VK decreases monotonically as the number of
clusters K increases, but begins to rise once K exceeds the true number of clusters K∗. Based on this finding, we propose
to select the smallest K such that

max(VK)− VK ≥ ρ(max(VK)−min(VK)),

where ρ ∈ (0, 1) is specified to avoid overestimating K. Table A.16 presents the selected K for models M1 and M4
across four different covariance matrices. The proposed selection method works well in most cases, with the exception of
K∗ = 5 under AR(0.3) and AR(0.5). The reason is inaccuracies in subspace estimation affect VK , which depends on the
orthogonal complement of central subspaces.

K* = 2 K* = 3 K* = 5

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
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Figure A.6. Within-cluster dispersion VK for K = 1, 2, . . . 10.

Table A.16. The average selected number of clusters over 100 repetitions, using statistic VK . The standard errors are in parentheses and
Kmax = 10.

K∗ 0.1I I AR(0.3) AR(0.5)

K∗ = 2 2 (0) 2 (0) 2 (0) 2.1(0)
K∗ = 3 3.1 (0) 3 (0) 2.7 (0) 2.9 (0.1)
K∗ = 5 5 (0) 4.8 (0) 3.7 (0.1) 3.1 (0.2)

B.2. Implementation of mixPFC

For the mixPFC algorithm 1, the tuning parameter λ(t) could either be fixed or vary across iterations. In theoretical analysis,
to show statistical convergence results, we set λ(t+1) = κλ(t) + Cλ

√
q3(log n)2 log p/n, where 0 < κ < 1/2 and Cλ is a

positive constant. Note λ(t) is at the order of
√
q3(log n)2 log p/n when t is large. Therefore, in practice, we fix λ(t) = λ

and tune λ with cross-validated distance correlation (Székely et al., 2007). For fixed λ(t) = λ, the penalized EM algorithm
maximizes

ℓ(θ)− λ
K∑
w=1

∥Bw∥2,1, (7)

where ℓ(θ) is the log-likelihood of X|Y . The following lemma shows the convergence of Algorithm 1.
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Lemma B.1. If we set λ(t) = λ for all t, the objective function from (7) evaluated at θ̂(t+1) is guaranteed to be no less
than the objective function from (7) evaluated at θ̂(t). That is, the sequence of iterates {θ̂(t)}∞t=1 generated by Algorithm 1
monotonically increase the value of the objective function from (7).

Proof. Recall that the conditional log-likelihood is

ℓ(θ;X, Y ) =
n∑
i=1

log[
K∑
w=1

πwN(Xi | µw + Γwηwf(Yi),∆)].

The penalized EM algorithm can be viewed as two alternating maximization steps. Consider the following function:

F (q, θ) := Eq[log(L(θ;X, Y,W ))] +H(q)− λ
K∑
w=1

∥Bw∥2,1,

where q = (q1, . . . , qK) is an arbitrary probability density over the unobserved variable W and H(q) = −
∑
i qi log(qi) is

the entropy of distribution q. It is easy to show

F (q, θ) = ℓ(θ;X, Y )−DKL(q∥pW |X,Y (·|X, Y, θ))− λ
K∑
w=1

∥Bw∥2,1,

where DKL is the Kullback-Leibler (KL) divergence. The KL divergence between two distributions is non-negative and is
zero when the two distributions are identical. Therefore, the E-step is to choose q to maximize F (q, θ):

q̂(t+1) = argmax
q

F (q, θ̂(t)) = pW |X,Y (·|X, Y, θ̂(t)),

which is given by the updating function of γiw. In M-step, we maximize F over θ:

θ̂(t+1) = argmax
θ

F (q̂(t),θ)

= argmax
θ

Eq̂(t) [log(L(θ;X, Y,W ))]− λ
K∑
w=1

∥Bw∥2,1

= argmax
θ

Q(θ|θ̂(t))− λ

K∑
w=1

∥Bw∥2,1,

which is the same as the penalized M-step. Through this coordinate ascent strategy, the update θ̂(t+1) makes the value of
the penalized log-likelihood function converge monotonically. Combining this result with the convergence (Lemma H.1,
Zeng et al. (2024)) of the group-wise coordinate descent algorithm 2, we know Algorithm 1 converges when λ(t) = λ.

Recall that in Algorithm 1 in the main paper. We update B̂t+1
w by solving:

argmin
Bw∈Rp×q

1

2
tr(BT

wΣ̂
(t)
w Bw)− tr{(Û(t)

w )TBw}+ λ∥Bw∥2,1.

This optimization is solved by the group-wise coordinate descent algorithm proposed in Mai et al. (2019). For ease of
presentation, we remove the subscript w in Bw, Σ̂

(t)
w and Û

(t)
w . The algorithm is presented in Algorithm 2.

Tuning λ. For two random vectors T ∈ Rp and Z ∈ Rq , the distance correlation dcor(T,Z) ∈ [0, 1] measures the
dependence between the two random vectors (Székely et al., 2007). In particular, dcor(T,Z) = 0 if and only if T and
Z are independent. Given observed samples T̃ ∈ Rn×p and Z̃ ∈ Rn×q , the sample distance correlation is denoted as
d̂cor(T̃, Z̃). Under the usual SDR model, Sheng & Yin (2016) showed that the distance covariance between Y and βTX
is maximized at the central subspace over β ∈ Rp×d such that βTΣβ = Id. Therefore, Zeng et al. (2024) recommended
selecting λ by maximizing d̂cor(Ỹ , X̃β̂), where Ỹ ∈ Rn and X̃ ∈ Rn×p represent the observed response vector and
predictor matrix. For the mixture SDR model, we adjust for the sample membership γiw and select λ by maximizing
d̂cor(DwỸ ,DwX̃β̂w), where Dw is a diagonal matrix with diagonal elements γiw(θ̂).
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Algorithm 2 Group-wise coordinate descent algorithm

Input: Σ̂(t) = (σ̂ij) ∈ Rp×p, Û(t) = (ûjl) ∈ Rp×q

Initialize each row of B(0) as B
(0)
j = (b

(0)
j1 , . . . ,b

(0)
jq )

T = 0 ∈ Rq, j = 1, . . . , p and calculate the auxiliary vector

h
(0)
1 = (h

(0)
11 , . . . , h

(0)
1q )

T ∈ Rq as h(0)1l =
û1l −

∑
j′ ̸=1 σ̂j′1bj′l

σ̂11
, l = 1, . . . , q

repeat
for j = 1 to p do

Based on h
(r−1)
j in the previous step, update B

(r)
j as

B
(r)
j = h

(r−1)
j

(
1− λ

σ̂jj∥h(r−1)
j ∥2

)
+

Based on B
(r)
1 , . . . ,B

(r)
j−1,B

(r−1)
j+1 , . . . ,B

(r−1)
p , update the auxiliary vector h(r−1)

j as

h
(r−1)
jl =

ûjl − (
∑
j′<j σ̂j′jb

(r)
j′l +

∑
j′>j σ̂j′jb

(r−1)
j′l )

σ̂jj
, l = 1, . . . , q

end for
until converge
Output: B(r)

B.3. Implementation of mixPFC-ISO

When ∆ = σ2I, there is no need to compute the inverse of the p×p covariance matrix. Instead, we only need to estimate σ2.
Under this simplification, the parameters of mixture of PFC model (3) reduces to θ = (σ2, πw,µw,Sw, w = 1, . . . ,K).
In the E-step, the estimated probability is calculated by

γ̂iw(θ̂
(t)) =

π̂
(t)
w

π̂
(t)
w +

∑
j ̸=w π̂

(t)
j exp{1/(σ̂2)(t)(Xi − 1

2 [(Γ̂
(t)
j + Γ̂

(t)
w )fi])T (Γ̂

(t)
j − Γ̂

(t)
w )fi}

.

In the M-step, the most important part is the updating formula of Γw. Let C(t)
w =

∑
i γiw(θ̂

(t)), Dw be a diagonal matrix
with diagonal elements γiw(θ̂(t)), Xw ∈ Rn×p be the centered data matrix with rows (Xi − µ̂

(t)
w )T , F ∈ Rn×q with

rows (fi − f)T . Through straightforward calculation, the MLE of Sw is the span of eigenvectors of Σ̂(t)
fit,w corresponding

to the largest dw eigenvalues, where Σ̂
(t)
fit,w = XTwDwPFDwXw/Cw, PF = F(FTDwF)−1F and dw is the dimension of

subspace Sw. Let Φ̂(t)
w = (ϕ̂

(t)
1 , . . . , ϕ̂

(t)
dw

) be the eigenvectors corresponding to the largest dw eigenvalues of Σ̂(t)
fit,w. Then,

we have
Γ̂(t)
w = Φ̂(t)

w (Φ̂(t)
w )TXTwDwF(FTDwF)−1.

To update σ2, we maximize Q function over σ2, while letting other parameters fixed,

(σ̂2)(t) =
1

np

K∑
w=1

C(t)
w

[
tr(Σ̂w)− tr(P

Φ̂
(t)
w
Σ̂fit,w)

]
,

where Σ̂
(t)
w = XTwDwXw/n. In high dimensions, it is challenging to accurately estimate the eigenvectors of Σ̂(t)

fit,w. To

address this issue, we promote sparsity by finding the sparse eigenvectors of Σ̂(t)
fit,w. Several algorithms have been proposed

to compute sparse eigenvectors (d’Aspremont et al., 2007; Zou et al., 2006; Witten et al., 2009; Journée et al., 2010). We
adopt the variable projection method proposed by Erichson et al. (2020) for its computational efficiency and robustness in
high dimensions. The algorithm, mixPFC-ISO, and corresponding convergence analysis are provided in the supplement.

To obtain sparse estimates Φ̂(t)
w , We adopt the variable projection method proposed by Erichson et al. (2020) for its com-
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putational efficiency and robustness in high dimensions. Specifically, we solve the following problem

(A∗, Φ̂(t)
w ) = argmin

A,Φw

1

2
∥Σ̂(t)

fit,w − Σ̂
(t)
fit,wΦwA

T ∥2F + α(t)ξ(Φw), subject to ATA = I,

where α(t) is a tuning parameter, and ξ is a sparsity-inducing penalty function such as Lasso or elastic net. For fixed
α(t) = α, the penalized EM algorithm 3 for mixPFC with isotonic errors maximizes

ℓ(θ)− α
K∑
w=1

ξ(Φw). (8)

The following result guarantees the convergence of Algorithm 3.

Lemma B.2. If we set α(t) = α for all t, the objective function from (8) evaluated at θ̂(t+1) is guaranteed to be no less
than the objective function from (8) evaluated at θ̂(t). That is, the sequence of iterates {θ̂(t)}∞t=1 generated by Algorithm 3
monotonically increase the value of the objective function from (8).

Proof. The conditional log-likelihood is

ℓ(θ;X, Y ) =

n∑
i=1

log[

K∑
w=1

πwN(Xi | µw + Γwηwf(Yi), σ
2I)].

The penalized EM algorithm can be viewed as two alternating maximization steps. Consider the following function:

F (q, θ) := Eq[log(L(θ;X, Y,W ))] +H(q)− α
K∑
w=1

ξ(Ψw),

where q = (q1, . . . , qK) is an arbitrary probability density over the unobserved variable W . It is easy to show

F (q, θ) = ℓ(θ;X, Y )−DKL(q∥pW |X,Y (·|X, Y, θ))− α
K∑
w=1

ξ(Ψw),

where DKL is the Kullback-Leibler (KL) divergence. The KL divergence between two distributions is non-negative and is
zero when the two distributions are identical. Therefore, the E-step is to choose q to maximize F (q, θ):

q̂(t+1) = argmax
q

F (q, θ̂(t)) = pW |X,Y (·|X, Y, θ̂(t)),

which is given by the updating function of γiw. In M-step, we maximize F over θ:

θ̂(t+1) = argmax
θ

F (q̂(t),θ)

= argmax
θ

Eq̂(t) [log(L(θ;X, Y,W ))]− α
K∑
w=1

ξ(Ψw)

= argmax
θ

Q(θ|θ̂(t))− α
K∑
w=1

ξ(Ψw).

Through this coordinate ascent strategy, the update θ̂(t+1) makes the value of the penalized log-likelihood function con-
verge monotonically. Combining this result with the convergence of the variable projection algorithm solving the penalized
Q-function (Erichson et al., 2020), we know Algorithm 3 converges when α(t) = α.
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Algorithm 3 Penalized EM algorithm for mixture PFC with isotonic errors

Input: Data {(Xi, Yi)}ni=1, fitting function f
Initialize γ̂iw(θ0)
repeat

E-Step: γ̂(t)iw =
π̂
(t)
w

π̂
(t)
w +

∑
j ̸=w π̂

(t)
j exp{1/(σ̂2)(t)(Xi − 1

2 [(Γ̂
(t)
j + Γ̂

(t)
w )fi])T (Γ̂

(t)
j − Γ̂

(t)
w )fi}

M-Step:
Σ̂

(t)
fit,w = XTwDwPFDwXw/n, PF = F(FTDwF)−1F

(A∗, Φ̂(t)
w ) = argmax

A,Φw

−1

2
∥Σ̂(t)

fit,w − Σ̂
(t)
fit,wΦwA

T ∥2F − α(t)ξ(Φw), subject to ATA = I

Γ̂
(t+1)
w = Φ̂

(t)
w (Φ̂

(t)
w )TXTwDwF(FTDwF)−1

(σ̂2)(t+1) = 1
np

∑K
w=1 C

(t)
w

[
tr(Σ̂w)− tr(P

Φ̂
(t)
w
Σ̂fit,w)

]
π̂
(t+1)
w = 1

n

∑n
i=1 γ̂

(t)
iw

µ̂
(t+1)
w = 1∑

i γiw(θ̂(t))

∑
γiw(θ̂

(t))Xi

until converge
Output: π̂w, Γ̂w

C. Proof of Theorem 1
From this section onward, we focus on the theoretical properties of a simplified version (Algorithm 4) of the mixPFC
algorithm presented in the main paper.

Recall the five conditions are:

(C1) The singular values of Σ̂f = 1
n

∑n
i=1 fif

T
i satisfy that M1 ≤ σmin(Σ̂f ) ≤ σmax(Σ̂f ) ≤ M2, and M3 ≤

min1≤i≤n ∥fi∥2 ≤ max1≤i≤n ∥fi∥2 ≤M4.

(C2) The initialization θ(0) satisfies that dF (θ(0),θ∗)∨∥B(0)
1 −B∗

1∥F ∨∥B(0)
2 −B∗

2∥F < rΩ, and vec(Γ
(0)
w −Γ∗

w) ∈ L(s),
with r < |c0 − cπ|/Ω ∧ Cb ∧ 1

a (
√
Cd − 1/(4

√
M1) +

b2

4a2 − b
2a ), a

2 =
2M

3/2
2√
M1

, b = 2
√
M2 +

2M2+
√
M2

2
√
M1

.

(C3) There exists a sufficiently large constant M5 > 0, which does not depend on n, p, s, such that σd(B∗
w) ≥ M5 ≥√

sq3(log n)2 log p/n.

(C4) Ω =

√
tr[(Γ∗

2 − Γ∗
1)Σ̂f (Γ∗

2 − Γ∗
1)
T ] ≥ C(c0, Cb,Mb,Mi; i = 1, . . . , 4), which is a constant that is only depends on

c0, Mb, Cb, and Mi, i = 1, . . . , 4.

(C5) n > C3sq
3 log(p) for a sufficiently large constant C3.

Before the proof, we review some definitions and present properties about Σ∗
w and U∗

w. The parameter of interest is
θ = {π1,Γ1,Γ2}. Let θ∗ be the true value of θ, and θ̂(t) be the estimate of θ at the t-th iteration. The true parameter
space we consider is

Θ∗ = {θ∗ : π∗
1 ∈ (cπ, 1− cπ), ∥ vec(Γ∗

w)∥0 ≤ sq, ∥B∗
w∥F ≤Ma, ∥Γ∗

w∥F ≤Mb, w = 1, 2},

and the constriction basin Bcon(θ
∗) is

Bcon(θ
∗) ={θ : πw ∈ (c0, 1− c0), ∥Γw − Γ∗

w∥F ≤ CbΩ,

(1− Cd)Ω
2 ≤ | tr(δw(Γ)Σ̂f (Γ2 − Γ1)

T )| ≤ (1 + Cd)Ω
2,

vec(Γw − Γ∗
w) ∈ L(s), w = 1, 2},

where Ω is the signal strength, c0 ≤ cπ , and δw(Γ) = Γ∗
w − (Γ2 + Γ1)/2. We define

L(s) = {u ∈ Rpq : ∥uS̃c
1
∥1 ≤ (

√
sq + 2q

√
3s)∥uS̃1

∥2 +
√
sq∥u∥2,

for some S̃1 ⊂ [pq] with |S̃1| = 3sq.}
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Algorithm 4 Penalized EM algorithm for mixture PFC (simplified version for theoretical analysis)

Input: Data (Xi,Yi), fitting function f , d1, d2

Initial value π̂(0)
w , Γ̂

(0)
w ,Σ

(0)
w ,U

(0)
w , and B̂(0)

w = argmin
Bw

1

2
tr(BT

wΣ̂
(0)
w Bw)− tr{(Û(0)

w )TBw}+λ(0)∥Bw∥2,1, where the

initial tuning parameter is

λ(0) = C1
dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F√
s

+ Cλ

√
q3(log n)2 log p

n

repeat
E-Step:

γ̂iw(θ̂
(t)) =

π̂
(t)
w

π̂
(t)
w +

∑
w′ ̸=w π̂

(t)
j exp{[(σ̂2)(t)]−1(Xi − 1

2 [(Γ̂
(t)
w′ + Γ̂

(t)
w )f(Yi)])T (Γ̂

(t)
w′ − Γ̂

(t)
w )f(Yi)}

M-Step:

π̂
(t+1)
w = 1

n

∑n
i=1 γ̂iw(θ̂

(t)), Σ̂(t+1)
w =

1

n

n∑
i=1

γiw(θ̂
(t))XiXi, Û(t+1)

w =
1

n

n∑
i=1

γiw(θ̂
(t))Xif(Yi)

T

B̂(t+1)
w = argmin

Bw

1

2
tr(BT

wΣ̂
(t+1)
w Bw)−tr{(Û(t+1)

w )TBw}+λ(t+1)∥Bw∥2,1, λ(t+1) = κλ(t)+Cλ

√
q3(log n)2 log p

n

Compute β̂(t+1)
w , the top-d left singular vectors of B̂(t+1)

w and then update according to

Γ̂(t+1)
w = P

β̂
(t+1)
w

Û(t+1)
w [π̂(t+1)

w Σ̂f ]
−1

(σ̂2)(t+1) =
1

np

2∑
w=1

(
n∑
i=1

γ̂iw)(θ̂
(t))[tr(Σ̂(t+1)

w )− tr(P
Γ̂

(t+1)
w

Σ̂fit,w)]

until converge
Output: π̂w, Γ̂w, η̂w

Let M(θ) = {πw(θ),Uw(θ),Σw(θ), w = 1, 2}. Note that ∥ vec(Γ∗)∥0 ≤ sq implies ∥ vec(B∗)∥0 ≤ sq. Define

π̂w(θ) =
1

n

n∑
i=1

γiw(θ), πw(θ) = E[π̂w(θ)]

Ûw(θ) =
1

n

n∑
i=1

γiw(θ)Xif
T
i , Uw(θ) = E[Ûw(θ)]

Σ̂w(θ) =
1

n

n∑
i=1

γiw(θ)XiX
T
i , Σw(θ) = E[Σ̂w(θ)].

By definition,

π̂(t+1)
w = π̂w(θ̂

(t)), π(t+1)
w = E[π̂(t+1)

w ] = E[π̂w(θ̂
(t))] = πw(θ̂

(t))

Û(t+1)
w = Ûw(θ̂

(t)), U(t+1)
w = E[Û(t+1)

w ] = E[Ûw(θ̂
(t))] = Uw(θ̂

(t))

Σ̂(t+1)
w = Σ̂w(θ̂

(t)), Σ(t+1)
w = E[Σ̂(t+1)

w ] = E[Σ̂w(θ̂
(t))] = Σw(θ̂

(t)).

Note that

πw(θ
∗) = E[

1

n

n∑
i=1

γiw(θ
∗)] = E[

1

n

n∑
i=1

P (Wi = w|Xi, Yi)] = P (Wi = w|Xi, Yi) = π∗
w.
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We have

U∗
w = U1(θ

∗) =
1

n

n∑
i=1

E[γiw(θ
∗)Xi]f

T
i

=
1

n

n∑
i=1

E[EW |X[I(Wi = w)Xi]]f
T
i =

1

n

n∑
i=1

EW,X[I(Wi = w)Xi]f
T
i

=
1

n

n∑
i=1

EW [I(Wi = w)EX|W=w[Xi]]f
T
i =

1

n

n∑
i=1

π∗
wΓ

∗
wfif

T
i = π∗

wΓ
∗
wΣ̂f ,

where Σ̂f =
1
n

∑n
i=1 fif

T
i . Similarly,

Σ∗
w = Σw(θ

∗) =
1

n

n∑
i=1

E[γiw(θ
∗)XiX

T
i ]

=
1

n

n∑
i=1

EW [I(Wi = w) EX|W=w[XiX
T
i ]] =

1

n

n∑
i=1

EW [I(Wi = w)(Ip + Γ∗
wfif

T
i (Γ

∗
w)
T )]

=
1

n

n∑
i=1

(π∗
wIp) + π∗

wΓ
∗
wΣ̂f (Γ

∗
w)
T = π∗

wIp + π∗
wΓ

∗
wΣ̂f (Γ

∗
w)
T .

Let B∗
w = (Σ∗

w)
−1U∗

w, β∗
w be the top-d left singular vectors. Then span(β∗

w) = span(Γ∗
w). We further have Γ∗

w =

PΓ∗
w
U∗
w(π

∗
wΣ̂f )

−1 = Pβ∗
w
U∗
w(π

∗
wΣ̂f )

−1.

Since σmin(Γ
∗
w) ≥ 0, σmin(Ip + Γ∗

wΣ̂f (Γ
∗
w)
T ) ≥ 1, we can bound the 2-norm as following

∥B∗
w∥2 = ∥[π∗

wIp + π∗
wΓ

∗
wΣ̂f (Γ

∗
w)
T ]−1π∗

wΓ
∗
wΣ̂f∥2

= ∥[Ip + Γ∗
wΣ̂f (Γ

∗
w)
T ]−1Γ∗

wΣ̂f∥2
≤ ∥[Ip + Γ∗

wΣ̂f (Γ
∗
w)
T ]−1∥2 · ∥Γ∗

wΣ̂f∥2
≤ ∥Γ∗

w∥F · ∥Σ̂f∥2 ≤MbM2.

Define dF,s(M(θ1),M(θ2)) and d2(M(θ1),M(θ2)) as

max
w=1,2

{|πw(θ1)− πw(θ2)| ∨ ∥Uw(θ1)−Uw(θ2)∥F,s ∨ ∥(Σw(θ1)−Σw(θ2))B
∗
w∥F,s},

max
w=1,2

{|πw(θ1)− πw(θ2)| ∨ ∥Uw(θ1)−Uw(θ2)∥F ∨ ∥(Σw(θ1)−Σw(θ2))B
∗
w∥F },

where ∥A∥F,s = supu∈Rp×q,∥u∥F=1,vec(u)∈L(s)⟨A,u⟩F . The proof of Theorem 4.1 is based on the following two lemmas.

Lemma C.1. Under conditions (C1) and (C4), if θ ∈ Bcon(θ
∗), for some 0 < κ0 <

1
2∨(256C0q/τ0)∨8C0

,

dF (M(θ),M(θ∗)) ≤ κ0(dF (θ,θ
∗) ∨ ∥B1 −B∗

1∥F ∨ ∥B2 −B∗
2∥F ),

where dF (θ,θ∗) = {|π1 − π∗
1 | ∨ ∥Γ1 − Γ∗

1∥F ∨ ∥Γ2 − Γ∗
2∥F }

Lemma C.2. Suppose θ∗ ∈ Θ∗, under condition (C1) and (C5), there exists a constantCcon > 0, such that with probability
at least 1− o(1),

sup
θ∈Bcon(θ∗)

dF,s(Mn(θ),M(θ)) ≤ Ccon

√
sq3(log n)2 log p

n
.

The proof of these two lemmas is quite involved and is presented in Sections D and E. We first establish a concentration
result for the estimator B̂w in Section C.1 before proving Theorem 4.1 in Section C.2.
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C.1. Concentration of the estimator B̂w

Lemma C.3. Suppose that θ∗ ∈ Θ∗ and vec(B̂
(0)
w ) ∈ Bcon(θ

∗). Let

λ(t+1) ≥ 4Ccon

√
q3(log n)2 log p

n
+ 4κ0(

dF (θ̂
(t),θ∗) ∨ ∥B̂(t)

1 −B∗
1∥F ∨ ∥B̂(t)

1 −B∗
2∥F√

s
),

for κ0 defined before and some constant Ccon and B̂
(t+1)
w solved by

B̂(t+1)
w = argmin

Bw

1

2
tr(BT

wΣ̂
(t+1)
w Bw)− tr{(Û(t+1)

w )TBw}+ λ(t+1)∥Bw∥2,1.

With probability at least 1− o(1), we have

vec(B̂(t+1)
w −B∗

w) ∈ L(s),

and

∥B̂(t+1)
w −B∗

w∥F ≤ 4

τ0
dF,s(Mn(θ̂

(t)),M(θ∗)) +
2

τ0
λ(t+1)(

√
3sq + 2

√
sq + 2

√
3sq2).

Proof. Recall that
L(s) = {u ∈ Rpq : ∥uS̃c

1
∥1 ≤ (

√
sq + 2q

√
3s)∥uS̃1

∥2 +
√
sq∥u∥2,

for some S̃1 ⊂ [pq] with |S̃1| = 3sq.}

Consider

B̂(t+1)
w = argmin

Bw

1

2
tr(BT

wΣ̂
(t+1)
w Bw)− tr{(Û(t+1)

w )TBw}+ λ(t+1)∥Bw∥2,1.

For simplicity, we let w = 1 in the following. To show

vec(B̂
(t+1)
1 −B∗

1) ∈ L(s),

we note that

λ(t+1)(∥B̂(t+1)
1 ∥2,1 − ∥B∗

1∥2,1)

≤ 1

2
tr((B∗

1)
T Σ̂

(t+1)
1 B∗

1)−
1

2
tr((B̂

(t+1)
1 )T Σ̂

(t+1)
1 B̂

(t+1)
1 )− tr((Û

(t+1)
1 )TB∗

1) + tr((Û
(t+1)
1 )T B̂

(t+1)
1 ))

≤ tr((B∗
1 − B̂

(t+1)
1 )T Σ̂

(t+1)
1 B∗

1)−
1

2
tr((B∗

1 − B̂
(t+1)
1 )T Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 ))−

tr((Û
(t+1)
1 )T (B∗

1 − B̂
(t+1)
1 )),

where we use

1

2
tr((B∗

1 − B̂
(t+1)
1 )T Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 ))

=
1

2
tr((B∗

1)
T Σ̂

(t+1)
1 B∗

1) +
1

2
tr((B̂

(t+1)
1 )T Σ̂

(t+1)
1 B̂

(t+1)
1 )− tr((B∗

1)
T Σ̂

(t+1)
1 B̂

(t+1)
1 ).

Since Σ̂
(t+1)
1 is symmetric semi-positive definite, we have

tr((B∗
1 − B̂

(t+1)
1 )T Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 ))

= vec(B∗
1 − B̂

(t+1)
1 )T vec(Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 ))

= vec(B∗
1 − B̂

(t+1)
1 )T (Iq ⊗ Σ̂

(t+1)
1 ) vec(B∗

1 − B̂
(t+1)
1 ) ≥ 0.
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Using the fact that Σ∗
1B

∗
1 −U∗

1 = 0, we have

λ(t+1)(∥B̂(t+1)
1 ∥2,1 − ∥B∗

1∥2,1)

≤ tr((B∗
1 − B̂

(t+1)
1 )T Σ̂

(t+1)
1 B∗

1)− tr((Û
(t+1)
1 )T (B∗

1 − B̂
(t+1)
1 ))

= tr((B∗
1 − B̂

(t+1)
1 )T (Σ̂

(t+1)
1 B∗

1 − Û
(t+1)
1 )

= ⟨B∗
1 − B̂

(t+1)
1 , Σ̂

(t+1)
1 B∗

1 − Û
(t+1)
1 ⟩F

= ⟨B∗
1 − B̂

(t+1)
1 , (Σ̂

(t+1)
1 −Σ

(t+1)
1 )B∗

1 +Σ
(t+1)
1 B∗

1 −U
(t+1)
1 − (Û

(t+1)
1 −U

(t+1)
1 )⟩F

= ⟨B∗
1 − B̂

(t+1)
1 , (Σ̂

(t+1)
1 −Σ

(t+1)
1 )B∗

1 − (Û
(t+1)
1 −U

(t+1)
1 )⟩F+

⟨B∗
1 − B̂

(t+1)
1 ,Σ

(t+1)
1 B∗

1 −U
(t+1)
1 ⟩F

= ⟨B∗
1 − B̂

(t+1)
1 , (Σ̂

(t+1)
1 −Σ

(t+1)
1 )B∗

1 − (Û
(t+1)
1 −U

(t+1)
1 )⟩F+

⟨B∗
1 − B̂

(t+1)
1 , (Σ

(t+1)
1 −Σ∗

1)B
∗
1 +Σ∗

1B
∗
1 −U∗

1 − (U
(t+1)
1 −U∗

1)⟩F
= ⟨B∗

1 − B̂
(t+1)
1 , (Σ̂

(t+1)
1 −Σ

(t+1)
1 )B∗

1 − (Û
(t+1)
1 −U

(t+1)
1 )⟩F︸ ︷︷ ︸

(i)

+

⟨B∗
1 − B̂

(t+1)
1 , (Σ

(t+1)
1 −Σ∗

1)B
∗
1 − (U

(t+1)
1 −U∗

1)⟩F︸ ︷︷ ︸
(ii)

+

⟨B∗
1 − B̂

(t+1)
1 ,Σ∗

1B
∗
1 −U∗

1⟩F︸ ︷︷ ︸
=0

.

Let u(t+1) = B̂
(t+1)
1 −B∗

1. For a matrix A ∈ Rp×q and a set S ∈ [p], AS ∈ R|S|×q is the submatrix where rows are in
set S . Occasionally, we use the same notation AS to represent its 0-extended version A′ ∈ Rp×q such that A

′

Sc = 0 and
A

′

S = AS . Then
∥B̂(t+1)

1 ∥2,1 − ∥B∗
1∥2,1 = ∥B∗

1 + u(t+1)∥2,1 − ∥B∗
1∥2,1

= ∥B∗
1 + u

(t+1)
S + u

(t+1)
Sc ∥2,1 − ∥B∗

1∥2,1
≥ ∥B∗

1 + u
(t+1)
Sc ∥2,1 − ∥u(t+1)

S ∥2,1 − ∥B∗
1∥2,1

= ∥B∗
1∥2,1 + ∥u(t+1)

Sc ∥2,1 − ∥u(t+1)
S ∥2,1 − ∥B∗

1∥2,1
= ∥u(t+1)

Sc ∥2,1 − ∥u(t+1)
S ∥2,1.

Therefore
λ(t+1)(∥u(t+1)

Sc ∥2,1 − ∥u(t+1)
S ∥2,1) ≤ (i) + (ii) + (iii).

For a vector x ∈ Rq , we have ∥x∥2 ≤ ∥x∥1 ≤ √
q∥x∥2. Then,

p∑
i=1

√√√√ q∑
j=1

u2ij ≤
p∑
i=1

q∑
j=1

|uij | ≤
√
q

p∑
i=1

√√√√ q∑
j=1

u2ij .

Let S1 = {S,S + p, . . . ,S + qp}, where S + p means the set of indices in S adds p. Then

∥u(t+1)
Sc ∥2,1 =

∑
i∈Sc

√√√√ q∑
j=1

(u
(t+1)
ij )2 ≥ 1

√
q

∑
i∈Sc

q∑
j=1

|u(t+1)
ij | = 1

√
q
∥ vec(u(t+1))Sc

1
∥1.

And

∥u(t+1)
S ∥2,1 =

∑
i∈S

√√√√ q∑
j=1

(u
(t+1)
ij )2 ≤

∑
i∈S

q∑
j=1

|u(t+1)
ij | = ∥ vec(u(t+1))S1∥1.

Thus, we have

λ(t+1)(
1
√
q
∥ vec(u(t+1))Sc

1
∥1 − ∥ vec(u(t+1))S1

∥1) ≤ λ(t+1)(∥u(t+1)
Sc ∥2,1 − ∥u(t+1)

S ∥2,1) ≤ (i) + (ii) + (iii).

29



Heterogeneous Sufficient Dimension Reduction and Subspace Clustering

Recall that

(i) = ⟨B∗
1 − B̂

(t+1)
1 , (Σ̂

(t+1)
1 −Σ

(t+1)
1 )B∗

1 − (Û
(t+1)
1 −U

(t+1)
1 )⟩F

= vec(B∗
1 − B̂

(t+1)
1 )T vec((Σ̂

(t+1)
1 −Σ

(t+1)
1 )B∗

1)− vec(B∗
1 − B̂

(t+1)
1 )T vec(Û

(t+1)
1 −U

(t+1)
1 ).

We want to bound ℓ2 norm of vec((Σ̂(t+1)
1 −Σ

(t+1)
1 )B∗

1) and vec(Û
(t+1)
1 −U

(t+1)
1 ). Let S̃1 be a set of size 3sq, which

contains S1 and the largest sq coefficients of Û(t+1)
1 −U

(t+1)
1 and the largest sq coefficients of (Σ̂(t+1)

1 −Σ
(t+1)
1 )B∗

1. We
have

| vec(B∗
1 − B̂

(t+1)
1 )T vec(Û

(t+1)
1 −U

(t+1)
1 )|

≤ | vec((Û(t+1)
1 −U

(t+1)
1 )S̃1

)T vec((B∗
1 − B̂

(t+1)
1 )S̃1

)|+

| vec((Û(t+1)
1 −U

(t+1)
1 )S̃c

1
)T vec((B∗

1 − B̂
(t+1)
1 )S̃c

1
)|

≤ ∥ vec((Û(t+1)
1 −U

(t+1)
1 )S̃1

)∥2 · ∥ vec((B∗
1 − B̂

(t+1)
1 )S̃1

)∥2+

∥ vec((Û(t+1)
1 −U

(t+1)
1 )S̃c

1
)∥∞ · ∥ vec((B∗

1 − B̂
(t+1)
1 )S̃c

1
)∥1.

By the definition, we have
∥A∥F,s = sup

µ∈Rp×q

vec(µ)∈L(s)∩Spq−1

⟨vec(A), vec(µ)⟩.

Let v ∈ Rpq such that vS̃1
= vec(A)S̃1

and vS̃c
1
= 0. To define L(s), we want vectors u that ∥uS̃c

1
∥1 is bounded. Clearly

v ∈ L(s) since ∥vS̃c
1
∥1 = 0. Then

∥A∥F,s ≥
1

∥v∥2
⟨vec(A),v⟩ = 1

∥v∥2
∥v∥22 = ∥v∥2 = ∥ vec(A)S̃1

∥2.

Thus, ∥ vec((Û(t+1)
1 − U

(t+1)
1 )S̃1

)∥2 ≤ ∥Û(t+1)
1 − U

(t+1)
1 )S̃1

∥F,s. By the definition of S̃1, ∥ vec((Û(t+1)
1 −

U
(t+1)
1 )S̃c

1
)∥∞ ≤ ∥ vec((Û(t+1)

1 −U
(t+1)
1 )S̃1

)∥2/
√
sq ≤ ∥Û(t+1)

1 −U
(t+1)
1 )S̃1

∥F,s/
√
sq. Therefore,

| vec(B∗
1 − B̂

(t+1)
1 )T vec(Û

(t+1)
1 −U

(t+1)
1 )|

≤ ∥Û(t+1)
1 −U

(t+1)
1 ∥F,s · ∥ vec(u(t+1))S̃1

∥2 +
1

√
sq

∥Û(t+1)
1 −U

(t+1)
1 ∥F,s · ∥ vec(u(t+1))S̃c

1
∥1.

Similarly, we have

vec(B∗
1 − B̂

(t+1)
1 )T vec((Σ̂

(t+1)
1 −Σ

(t+1)
1 )B∗

1)

≤ ∥ vec((Σ̂(t+1)
1 −Σ

(t+1)
1 )B∗

1)S̃1
∥2 · ∥ vec((B∗

1 − B̂
(t+1)
1 )S̃1

)∥2+

∥ vec((Σ̂(t+1)
1 −Σ

(t+1)
1 )B∗

1)S̃c
1
)∥∞ · ∥ vec((B∗

1 − B̂
(t+1)
1 )S̃c

1
)∥1.

≤ ∥(Σ̂(t+1)
1 −Σ

(t+1)
1 )B∗

1∥F,s · ∥ vec(u(t+1))S̃1
∥2 +

1
√
sq

∥(Σ̂(t+1)
1 −Σ

(t+1)
1 )B∗

1∥F,s · ∥ vec(u(t+1))S̃c
1
∥1.

Therefore,

|(i)| ≤ 2Ccon

√
sq3(log n)2 log p

n
∥ vec(u(t+1))S̃1

∥2 + 2Ccon

√
sq3(log n)2 log p

n

1
√
sq

∥ vec(u(t+1))S̃c
1
∥1.

Using Lemma C.1, we have

|(ii)| ≤ (∥(Σ(t+1)
1 −Σ∗

1)B
∗
1∥F + ∥U(t+1)

1 −U∗
1∥F )∥B∗

1 − B̂
(t+1)
1 ∥F

= (∥(Σ1(θ̂
(t))−Σ∗

1)B
∗
1∥F + ∥U1(θ̂

(t))−U∗
1∥F )∥B∗

1 − B̂
(t+1)
1 ∥F

≤ 2κ0
dF (θ̂

(t),θ∗) ∨ ∥B̂(t)
1 −B∗

1∥F√
sq

√
sq∥B∗

1 − B̂
(t+1)
1 ∥F

= 2κ0
dF (θ̂

(t),θ∗) ∨ ∥B̂(t)
1 −B∗

1∥F√
sq

√
sq∥ vec(u(t+1))∥2.
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Combine the bound for terms (i) and (ii), we have

λ(t+1)(
1
√
q
∥ vec(u(t+1))Sc

1
∥1 − ∥ vec(u(t+1))S1∥1)

≤ 2Ccon

√
sq3(log n)2 log p

n

1
√
sq

√
sq∥ vec(u(t+1))S̃1

∥2+

2Ccon

√
sq3(log n)2 log p

n

1
√
sq

∥ vec(u(t+1))S̃c
1
∥1+

2κ0
dF (θ̂

(t),θ∗) ∨ ∥B̂(t)
1 −B∗

1∥F√
sq

√
sq∥ vec(u(t+1))∥2.

Let

λ(t+1) ≥ 2
√
q

(
2Ccon

√
q2(log n)2 log p

n
+ 2κ0

dF (θ̂
(t),θ∗) ∨ ∥B̂(t)

1 −B∗
1∥F√

sq

)
.

Then
1
√
q
∥ vec(u(t+1))Sc

1
∥1 − ∥ vec(u(t+1))S1

∥1

≤
√
sq

2
√
q
∥ vec(u(t+1))S̃1

∥2 +
1

2
√
q
∥ vec(u(t+1))S̃c

1
∥1 +

√
sq

2
√
q
∥ vec(u(t+1))∥2

=

√
s

2
∥ vec(u(t+1))S̃1

∥2 +
1

2
√
q
∥ vec(u(t+1))S̃c

1
∥1 +

√
s

2
∥ vec(u(t+1))∥2,

which implies

1

2
√
q
∥ vec(u(t+1))S̃c

1
∥1 ≤

√
s

2
∥ vec(u(t+1))S̃1

∥2 +
√
s

2
∥ vec(u(t+1))∥2 + ∥ vec(u(t+1))S̃1

∥1,

where we use S1 ⊂ S̃1. Using ∥ vec(u(t+1))S̃1
∥1 ≤

√
3sq∥ vec(u(t+1))S̃1

∥2, we have

∥ vec(u(t+1))S̃c
1
∥1 ≤ (

√
sq + 2q

√
3s)∥ vec(u(t+1))S̃1

∥2 +
√
sq∥ vec(u(t+1))∥2.

Now, we focus on the second result. Let w = 1. Recall that

λ(t+1)(∥B̂(t+1)
1 ∥2,1 − ∥B∗

1∥2,1)

≤ tr((B∗
1 − B̂

(t+1)
1 )T Σ̂

(t+1)
1 B∗

1)−
1

2
tr((B∗

1 − B̂
(t+1)
1 )T Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 ))−

tr((Û
(t+1)
1 )T (B∗

1 − B̂
(t+1)
1 )

= ⟨B∗
1 − B̂

(t+1)
1 , Σ̂

(t+1)
1 B∗

1⟩F − 1

2
⟨B∗

1 − B̂
(t+1)
1 , Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 )⟩F − ⟨Û(t+1)

1 ,B∗
1 − B̂

(t+1)
1 ⟩F .

It follows that

|⟨B∗
1 − B̂

(t+1)
1 , Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 )⟩F | ≤ 2 |⟨B∗

1 − B̂
(t+1)
1 , Σ̂

(t+1)
1 B∗

1 − Û
(t+1)
1 ⟩F |︸ ︷︷ ︸

(I)

+

2λ(t+1)(
∣∣∣∥B̂(t+1)

1 ∥2,1 − ∥B∗
1∥2,1

∣∣∣︸ ︷︷ ︸
(II)

).
(9)
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Recall that Σ∗
1B

∗
1 −U∗

1 = 0. For term (I), since vec(B∗
1 − B̂

(t+1)
1 )/∥ vec(B∗

1 − B̂
(t+1)
1 )∥2 ∈ L(s) ∩ Spq−1, we have

|⟨B∗
1 − B̂

(t+1)
1 , Σ̂

(t+1)
1 B∗

1 − Û
(t+1)
1 ⟩F |

= |⟨B∗
1 − B̂

(t+1)
1 , Σ̂

(t+1)
1 B∗

1 −Σ∗
1B

∗
1 +Σ∗

1B
∗
1 −U∗

1 +U∗
1 − Û

(t+1)
1 ⟩F |

= |⟨B∗
1 − B̂

(t+1)
1 , Σ̂

(t+1)
1 B∗

1 −Σ∗
1B

∗
1⟩F + ⟨B∗

1 − B̂
(t+1)
1 ,U∗

1 − Û
(t+1)
1 ⟩F + ⟨B∗

1 − B̂
(t+1)
1 ,Σ∗

1B
∗
1 −U∗

1⟩F |

≤ ∥B∗
1 − B̂

(t+1)
1 ∥F (∥Σ̂(t+1)

1 B∗
1 −Σ∗

1B
∗
1∥F,s + ∥Û(t+1)

1 −U∗
1∥F,s)

≤ 2∥B∗
1 − B̂

(t+1)
1 ∥F dF,s(Mn(θ̂

(t)),M(θ∗)),

where we use the definitions of ∥ · ∥F,s norm and dF,s. In the last inequality, we use the fact

Mn(θ̂
(t)) = {π̂w(θ̂(t)), Ûw(θ̂

(t)), Σ̂w(θ̂
(t)), w = 1, 2} = {π̂(t+1)

w , Û(t+1)
w , Σ̂(t+1)

w , w = 1, 2}.

For term (II), using reverse triangle inequality,

∣∣∣∥B̂(t+1)
1 ∥2,1 − ∥B∗

1∥2,1
∣∣∣ =∣∣∣ p∑

j=1

√√√√ q∑
k=1

(B̂
(t+1)
1,jk )2 −

p∑
j=1

√√√√ q∑
k=1

(B∗
1,jk)

2
∣∣∣

≤
p∑
j=1

√√√√ q∑
k=1

(B̂
(t+1)
1,jk −B∗

1,jk)
2 =

p∑
j=1

q∑
k=1

|B̂(t+1)
1,jk −B∗

1,jk|

≤ ∥ vec(B̂(t+1)
1 −B∗

1)∥1
= ∥ vec(B̂(t+1)

1 −B∗
1)S̃1

∥1 + ∥ vec(B̂(t+1)
1 −B∗

1)S̃c
1
∥1

≤
√
3sq∥ vec(B̂(t+1)

1 −B∗
1)S̃1

∥2 + (
√
sq + 2

√
3sq2)∥ vec(B̂(t+1)

1 −B∗
1)S̃1

∥2+
√
sq∥ vec(B̂(t+1)

1 −B∗
1)∥2

≤ (
√

3sq + 2
√
sq + 2

√
3sq2)∥B̂(t+1)

1 −B∗
1∥F .

For the right hand side of (9), we have

|⟨B∗
1 − B̂

(t+1)
1 , Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 )⟩F | = | vec(B∗

1 − B̂
(t+1)
1 )T vec(Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 ))|

= | vec(B∗
1 − B̂

(t+1)
1 )T (Iq ⊗ Σ̂

(t+1)
1 ) vec(B∗

1 − B̂
(t+1)
1 )|

=
∣∣∣ q∑
k=1

(B∗
1,k − B̂

(t+1)
1,k )T Σ̂

(t+1)
1 (B∗

1,k − B̂
(t+1)
1,k )

∣∣∣,
where B∗

1,k and B̂
(t+1)
1,k represent the k-th column of B∗

1 and B̂
(t+1)
1 . Recall that

Σ̂
(t+1)
1 =

1

n

n∑
i=1

γ1,θ̂(t)(Xi, Yi)XiX
T
i .

By Lemma C.2, we know that

| 1
n

n∑
i=1

γ1,θ̂(t)(Xi, Yi)− E[π̂
(t+1)
1 ]| = O(

√
sq3(log n)2 log p

n
),

with probability at least 1 − o(1). Thus, 1
n

∑n
i=1 γ1,θ̂(t)(Xi, Yi) > τ1 for some positive constant τ1 with probability at
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least 1− o(1). Define the set N = {i : γ1,θ̂(t)(Xi, Yi) > τ1/2}. Then by Lemma F.2,

(B∗
1,k − B̂

(t+1)
1,k )T Σ̂

(t+1)
1 (B∗

1,k − B̂
(t+1)
1,k )

≥ ∥B∗
1,k − B̂

(t+1)
1,k ∥22 inf

u∈Lp(s)∩Sp−1
uT

1

n

n∑
i=1

γ1,θ̂(t)(Xi, Yi)XiX
T
i u

≥ ∥B∗
1,k − B̂

(t+1)
1,k ∥22 inf

u∈Lp(s)∩Sp−1
uT

1

n

∑
i∈N

γ1,θ̂(t)(Xi, Yi)XiX
T
i u

≥ ∥B∗
1,k − B̂

(t+1)
1,k ∥22 · τ1/2 · τ.

Then

|⟨B∗
1 − B̂

(t+1)
1 , Σ̂

(t+1)
1 (B∗

1 − B̂
(t+1)
1 )⟩F | ≥

q∑
k=1

∥ vec(B∗
1,k − B̂

(t+1)
1,k )∥22 · τ1/2 · τ = ∥ vec(B̂(t+1)

1 −B∗
1)∥22τ0,

where τ0 = τ1/2 · τ . Combing the above results, we have

τ0∥B̂(t+1)
1 −B∗

1∥2F ≤ 4∥B̂(t+1)
1 −B∗

1∥F dF,s(Mn(θ
(t)),M(θ∗))+

2λ(t+1)(
√
3sq + 2

√
sq + 2

√
3sq2)∥B̂(t+1)

1 −B∗
1∥F .

Hence,

∥B̂(t+1)
1 −B∗

1∥F ≤ 4

τ0
dF,s(Mn(θ̂

(t)),M(θ∗)) +
2

τ0
λ(t+1)(

√
3sq + 2

√
sq + 2

√
3sq2).

C.2. Proof of Theorem

Theorem C.4. Under conditions (C1)-(C5), there exists a constant 0 < κ < 1/2, such that B̂(t)
w satisfies, with probability

at least 1− o(1),

∥B̂(t)
w −B∗

w∥F = O

(
κt(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F ) +
√
sq3(log n)2 log p

n

)
.

Consequently, for t ≥ (− log κ)−1 log{n(dF (θ̂(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )},

∥B̂(t)
w −B∗

w∥F , ∥D(S
β̂

(t)
w
,Sβ∗

w
)∥F = O

(√
sq3(log n)2 log p

n

)
.

Proof. We update λ(t) by

λ(t) = κλ(t−1) + Cλ

√
q3(log n)2 log p

n
,

λ(0) = C1
dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F√
s

+ Cλ

√
q3(log n)2 log p

n
,

where C1 = τ0/(32C0q). Thus, we have

λ(t) = κtC1
dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F√
s

+
1− κt+1

1− κ
Cλ

√
q3(log n)2 log p

n
.

Let κ = (1 ∨ 128C0q
τ0

∨ 4C0)κ0, since 0 < κ0 <
1

2∨(256C0q/τ0)∨8C0
, we have 0 < κ < 1/2. Then define

C∗ =

[(
2κ2 − 4κ+ 2

2κ2 − 5κ+ 2
· (C0 +

4C0q

τ0
+

64C0q

τ0(1− κ)
)

)
∨ 1− κ

1− 2κ

]
Ccon,

Cλ = 4Ccon +
4κ0
1− κ

C∗.

We claim
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(i) κ ≥ κ0, C1κ ≥ 4κ0, and ( 4C0q
τ0

+ C0)κ0 +
16C0q
τ0

κC1 ≤ κ.

(ii) κ0

1−κC
∗ + Ccon ≤ C∗, ( 4C0q

τ0
+ C0)Ccon +

16C0q
τ0(1−κ)Cλ ≤ C∗.

The first two inequalities in (I) can be seen from the definition of κ and C1. For the third, we have

(
4C0q

τ0
+ C0)κ0 +

16C0q

τ0
κC1 = (

4C0q

τ0
+ C0)κ0 +

1

2
κ ≤ 1

32
κ+

1

4
κ+

1

2
κ ≤ κ.

For the first inequality in (ii), it is equivalent to Ccon ≤ 1−κ−κ0

1−κ C∗. Since κ0 ≤ κ,

1− κ− κ0
1− κ

C∗ ≥ 1− 2κ

1− κ
C∗ ≥ Ccon,

where in the last inequality we use the definition of C∗. For the second inequality in (ii), we have

(
4C0q

τ0
+ C0)Ccon +

16C0q

τ0(1− κ)
Cλ = (

4C0q

τ0
+ C0)Ccon +

16C0q

τ0(1− κ)
[4Ccon +

4κ0
1− κ

C∗]

=

[
4C0q

τ0
+ C0 +

64C0q

τ0(1− κ)

]
Ccon +

64C0qκ0
τ0(1− κ)2

C∗.

Use the second inequality in (i),
64C0qκ0

τ0
=

2κ0
C1

≤ κ

2
.

Then

(
4C0q

τ0
+ C0)Ccon +

16C0q

τ0(1− κ)
Cλ ≤

[
4C0q

τ0
+ C0 +

64C0q

τ0(1− κ)

]
Ccon +

κ

2(1− κ)2
C∗

≤ 2κ2 − 5κ+ 2

2κ2 − 4κ+ 2
C∗ +

κ

2(1− κ)2
C∗ = C∗.

Next, we use induction to show the following results

λ(t+1) ≥ 4Ccon

√
q3(log n)2 log p

n
+ 4κ0(

dF (θ̂
(t),θ∗) ∨ ∥B̂(t)

1 −B∗
1∥F ∨ ∥B̂(t)

1 −B∗
2∥F√

s
),

dF (θ̂
(t+1),θ∗) ∨ ∥B̂(t+1)

1 −B∗
1∥F ∨ ∥B̂(t+1)

1 −B∗
2∥F ≤

κt+1(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

1 −B∗
2∥F ) +

1− κt+2

1− κ
C∗

√
sq3(log n)2 log p

n
,

dF (θ̂
(t+1),θ∗) ∨ ∥B̂(t+1)

1 −B∗
1∥F ∨ ∥B̂(t+1)

1 −B∗
2∥F ≤ rΩ, vec(Γ̂(t+1)

w − Γ∗
w) ∈ L(s).

It is easy to verify that dF,s satisfies the triangle inequality. Then using Lemma C.1 and C.2

dF,s(Mn(θ̂
(0)),M(θ∗)) ≤ dF,s(M(θ̂(0)),M(θ∗)) + dF,s(Mn(θ̂

(0)),M(θ̂(0)))

≤ κ0(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

1 −B∗
2∥F )+

Ccon

√
sq3(log n)2 log p

n

≤ κ(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

1 −B∗
2∥F )+

1− κ2

1− κ
C∗

√
sq3(log n)2 log p

n
,
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where we use κ0 ≤ κ and Ccon ≤ κ0

1−κC
∗ + Ccon ≤ C∗ ≤ (1 + κ)C∗. For λ(1), we have

λ(1) = κλ(0) + Cλ

√
q3(log n)2 log p

n

= κC1
dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F√
s

+ (1 + κ)Cλ

√
q3(log n)2 log p

n

≥ 4Ccon

√
q3(log n)2 log p

n
+ 4κ0

dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F√

s
,

since (1 + κ)Cλ ≥ 4Ccon and C1κ ≥ 4κ0.

Note that
√
3sq + 2

√
sq + 2

√
3sq2 ≤ 8

√
sq2. By Lemma C.3, we have

∥B̂(1)
1 −B∗

1∥F

≤ 4

τ0
dF,s(Mn(θ̂

(0)),M(θ∗)) +
2

τ0
λ(1)(

√
3sq + 2

√
sq + 2

√
3sq2)

≤ 4

τ0

[
κ0(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
1 −B∗

2∥F ) + Ccon

√
sq3(log n)2 log p

n

]
+

16

τ0

√
sq2

[
κC1

dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F√

s
+ (1 + κ)Cλ

√
q3(log n)2 log p

n

]

≤ [
4

τ0
κ0 +

16

τ0
qκC1](dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )+

[
4

τ0
Ccon +

16

τ0
q(1 + κ)Cλ]

√
sq3(log n)2 log p

n

≤ κ(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F ) +

1− κ2

1− κ
C∗

√
sq3(log n)2 log p

n
.

By results in (i), 4q
τ0
κ0+

16q
τ0
κC1 ≤ κ. To show 4q

τ0
Ccon +

16q
τ0

(1+κ)Cλ ≤ (1+κ)C∗, it is equivalent to show 4q
τ0
Ccon/(1+

κ) + 16q
τ0
Cλ ≤ C∗. Since 1/(1 + κ) < 1 < 1/(1− κ), the result holds by applying second inequality in (ii).

Let β̂(t)
1 be the top-d left singular vectors of B̂(t)

1 . For matrix A ∈ Rp×q ,

∥Pβ∗
1
A∥F,s = sup

u∈Rp×q

vec(u)∈L(s)∩Spq−1

⟨Pβ∗
1
A,u⟩F = sup

u∈Rp×q

vec(u)∈L(s)∩Spq−1

⟨Pβ∗
1
u,A⟩F

≤ ∥Pβ∗
1
u∥F ∥A∥F,s ≤

√
d∥A∥F,s,

where we use the fact that vec(Pβ∗
1
A) ∈ L(s). If vec(A) ∈ L(s),

∥A∥F,s = sup
u∈Rp×q

vec(u)∈L(s)∩Spq−1

⟨A,u⟩F ≥ ⟨A,A/∥A∥F ⟩F = ∥A∥F .

Then, we have

∥Γ̂(1)
1 − Γ∗

1∥F = ∥P
β̂

(1)
1

Û1(θ̂
(0))[π̂1(θ̂

(0))Σ̂f ]
−1 −Pβ∗

1
U∗

1[π
∗
1Σ̂f ]

−1∥F

≤ ∥P
β̂

(1)
1

Û1(θ̂
(0))[π̂1(θ̂

(0))Σ̂f ]
−1 −Pβ∗

1
Û1(θ̂

(0))[π̂1(θ̂
(0))Σ̂f ]

−1∥F,s+

∥Pβ∗
1
Û1(θ̂

(0))[π̂1(θ̂
(0))Σ̂f ]

−1 −Pβ∗
1
U∗

1[π
∗
1Σ̂f ]

−1∥F,s

≤ ∥P
β̂

(1)
1

−Pβ∗
1
∥F · ∥Û1(θ̂

(0))
1

π̂1(θ̂(0))
Σ̂−1

f ∥F,s+
√
d∥Û1(θ̂

(0))[π̂1(θ̂
(0))Σ̂f ]

−1 −U∗
1[π

∗
1Σ̂f ]

−1∥F,s.
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By condition (C3), we have ∥B̂(1)
1 − B∗

1∥2 ≤ ∥B̂(1)
1 − B∗

1∥F ≤ κ(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 − B∗
1∥F ∨ ∥B̂(0)

2 − B∗
2∥F ) +

1
(1−κ)M5

C∗σd(B
∗
1) := C ′. For the first term in the last equality, by Lemma F.4, we have

∥P
β̂

(1)
1

−Pβ∗
1
∥F ≤ Cβ∥B̂(1)

1 −B∗
1∥F ,

where Cβ =
√
2d(4σ1(B

∗) + 2C ′)/σ2
d(B

∗
1). Note that Û1(θ̂

(0)) = 1
n

∑n
i=1 γ1,θ̂(0)(Xi, Yi)Xif

T
i and 0 ≤

γ1,θ̂(0)(Xi, Yi) ≤ 1. According to Lemma F.3,

∥Û1(θ̂
(0))Σ̂−1

f ∥F,s ≤
1

M1
∥Û1(θ̂

(0))∥F,s ≤M/M1,

with probability at least 1− o(1). For the second inequality,

∥Û1(θ̂
(0))[π̂1(θ̂

(0))Σ̂f ]
−1 −U∗

1[π
∗
1Σ̂f ]

−1∥F,s

≤ 1

M1
∥Û1(θ̂

(0))[π̂1(θ̂
(0))]−1 −U∗

1(π
∗
1)

−1∥F,s

≤ 1

M1
∥Û1(θ̂

(0))−U∗
1∥F,s[π̂1(θ̂(0))]−1 +

1

M1
∥U∗

1∥F · |[π̂1(θ̂(0))]−1 − (π∗
1)

−1|

≤ 1

M1
∥Û1(θ̂

(0))−U∗
1∥F,s[π̂1(θ̂(0))]−1 +

MbM2

M1
· |[π̂1(θ̂(0))]−1 − (π∗

1)
−1|.

Then, there exists a positive constant C0, such that

∥Γ̂(1)
1 − Γ∗

1∥F ≤ C0[∥B̂(1)
1 −B∗

1∥F + dF,s(Mn(θ̂
(0)),M(θ∗))].

Without loss of generality, we assume C0 ≥ 1. Therefore, we have

dF (θ̂
(1),θ∗) ∨ ∥B̂(1)

1 −B∗
1∥F ∨ ∥B̂(1)

2 −B∗
2∥F

≤ (C0
4

τ0
+ C0)dF,s(Mn(θ̂

(0)),M(θ∗)) + C0
2

τ0
λ(1)(

√
3sq + 2

√
sq + 2

√
3sq2)

≤ C0(
4

τ0
+ 1)

[
κ0(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
1 −B∗

2∥F ) + Ccon

√
sq3(log n)2 log p

n

]
+

16C0

τ0

√
sq2

[
κC1

dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F√

s
+ (1 + κ)Cλ

√
q3(log n)2 log p

n

]

≤ [C0(
4

τ0
+ 1)κ0 +

16C0

τ0
qκC1](dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )+

[C0(
4

τ0
+ 1)Ccon +

16C0

τ0
q(1 + κ)Cλ]

√
q3(log n)2 log p

n

≤ κ(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F ) +

1− κ2

1− κ
C∗

√
q3(log n)2 log p

n
.

By results in (i), ( 4C0q
τ0

+ C0)κ0 + 16C0q
τ0

κC1 ≤ κ. To show ( 4C0q
τ0

+ C0)Ccon +
16C0q
τ0

(1 + κ)Cλ ≤ (1 + κ)C∗, it is
equivalent to show ( 4C0q

τ0
+ C0)Ccon/(1 + κ) + 16C0q

τ0
Cλ ≤ C∗. Since 1/(1 + κ) < 1 < 1/(1 − κ), the result holds by

applying second inequality in (ii).

In addition, since dF (θ(0),θ∗) ∨ ∥B(0)
1 −B∗

1∥F ∨ ∥B(0)
2 −B∗

2∥F < rΩ,

dF (θ̂
(1),θ∗) ∨ ∥B̂(1)

1 −B∗
1∥F ∨ ∥B̂(1)

2 −B∗
2∥F

≤ κ(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F ) +

1− κ2

1− κ
C∗

√
q3(log n)2 log p

n

≤ κrΩ+ (1 + κ)C∗

√
q3(log n)2 log p

n
≤ rΩ,
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since rΩ > 1+κ
1−κC

∗
√

q3(log n)2 log p
n when n is sufficiently large. Then by Lemma F.5, θ̂(1) ∈ Bcon(θ

∗).

Next, we assume the following holds for t-th step,

λ(t) ≥ 4Ccon

√
q3(log n)2 log p

n
+ 4κ0(

dF (θ̂
(t−1),θ∗) ∨ ∥B̂(t−1)

1 −B∗
1∥F ∨ ∥B̂(t−1)

1 −B∗
2∥F√

s
),

dF (θ̂
(t),θ∗) ∨ ∥B̂(t)

1 −B∗
1∥F ∨ ∥B̂(t)

2 −B∗
2∥F ≤ κt(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )+

1− κt+1

1− κ
C∗

√
sq3(log n)2 log p

n
,

dF (θ̂
(t),θ∗) ∨ ∥B̂(t)

1 −B∗
1∥F ∨ ∥B̂(t)

2 −B∗
2∥F ≤ rΩ, vec(Γ̂(t)

w − Γ∗
w) ∈ L(s).

By Lemma F.5, θ̂(t) ∈ Bcon(θ
∗). Then

4Ccon

√
q3(log n)2 log p

n
+ 4κ0(

dF (θ̂
(t),θ∗) ∨ ∥B̂(t)

1 −B∗
1∥F ∨ ∥B̂(t)

1 −B∗
2∥F√

s
)

≤ 4Ccon

√
q3(log n)2 log p

n
+

4κ0√
s

(
κt(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )+

1− κt+1

1− κ
C∗

√
sq3(log n)2 log p

n

)

≤ 4κ0κ
t (dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )√
s

+

(4Ccon + 4κ0
1− κt+1

1− κ
C∗)

√
q3(log n)2 log p

n

≤ κt+1C1
(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )√
s

+
1− κt+2

1− κ
Cλ

√
q3(log n)2 log p

n

= λ(t+1).

Use (i), 4κ0 ≤ C1κ. By the definition of Cλ,

1− κt+2

1− κ
Cλ =

1− κt+2

1− κ︸ ︷︷ ︸
>1

(4Ccon +
4κ0
1− κ

C∗) ≥ 4Ccon +
4κ0
1− κ

1− κt+1

1− κ
C∗

≥ 4Ccon + 4κ0
1− κt+1

1− κ
C∗.

Then note that

dF,s(Mn(θ̂
(t)),M(θ∗))

≤ dF,s(M(θ̂(t)),M(θ∗)) + dF,s(Mn(θ̂
(t)),M(θ̂(t)))

≤ κ0(dF (θ̂
(t),θ∗) ∨ ∥B̂(t)

1 −B∗
1∥F ∨ ∥B̂(t)

1 −B∗
2∥F ) + Ccon

√
sq3(log n)2 log p

n

≤ κ0

[
κt(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F ) +
1− κt+1

1− κ
C∗

√
sq3(log n)2 log p

n

]
+

Ccon

√
sq3(log n)2 log p

n

≤ κt+1(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F ) +

1− κt+2

1− κ
C∗

√
sq3(log n)2 log p

n
,
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since κ0 ≤ κ and κ0 1−κt+1

1−κ C∗ + Ccon ≤ 1−κt+2

1−κ C∗. Then by Lemma C.3,

∥B̂(t+1)
1 −B∗

1∥F

≤ 4

τ0
dF,s(Mn(θ̂

(t)),M(θ∗)) +
16q

τ0

√
sλ(t+1)

≤ 4

τ0

{
κ0

[
κt(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F ) +
1− κt+1

1− κ
C∗

√
sq3(log n)2 log p

n

]
+

Ccon

√
sq3(log n)2 log p

n

}
+

16q

τ0

√
s

[
κt+1C1

(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F )√

s
+

1− κt+2

1− κ
Cλ

√
q3(log n)2 log p

n

]

≤ [
4

τ0
κ0 +

16

τ0
qκC1]κ

t(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F )+

[
4

τ0
Ccon +

4

τ0
κ0

1− κt+1

1− κ
C∗ +

16q

τ0

1− κt+2

1− κ
Cλ]

√
sq3(log n)2 log p

n

≤ κt+1(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F ) +

1− κt+2

1− κ
C∗

√
sq3(log n)2 log p

n
.

In the last inequality, we use ( 4
τ0
C0q + C0)κ0 +

16
τ0
C0qκC1 ≤ κ, and

(
4C0q

τ0
+ C0)Ccon + (

4C0q

τ0
+ C0)κ0

1− κt+1

1− κ
C∗ +

16C0q

τ0

1− κt+2

1− κ
Cλ ≤ 1− κt+2

1− κ
C∗

⇐⇒ (
4C0q

τ0
+ C0)Ccon + (

1

32
κ+

1

4
κ)

1− κt+1

1− κ
C∗ +

16C0q

τ0

1− κt+2

1− κ
Cλ ≤ 1− κt+2

1− κ
C∗

⇐⇒ (
4C0q

τ0
+ C0)Ccon +

16C0q

τ0

1− κt+2

1− κ
Cλ ≤ 1− κt+2

1− κ
C∗ − 9

32
κ
1− κt+1

1− κ
C∗,

where the right-hand side is greater than C∗ and thus the inequality holds due to (ii). Using the same argument,

∥Γ̂(t+1)
1 − Γ∗

1∥F ≤ C0[∥B̂(t+1)
1 −B∗

1∥F + dF,s(Mn(θ̂
(t)),M(θ∗))].

Therefore,

dF (θ̂
(t+1),θ∗) ∨ ∥B̂(t+1)

1 −B∗
1∥F ∨ ∥B̂(t+1)

2 −B∗
2∥F

≤ (
4C0

τ0
+ C0)dF,s(Mn(θ̂

(t)),M(θ∗)) +
16C0q

τ0

√
sλ(t+1)

≤ (
4C0

τ0
+ C0)

{
κ0

[
κt(dF (θ̂

(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )+

1− κt+1

1− κ
C∗

√
sq3(log n)2 log p

n

]
+ Ccon

√
sq3(log n)2 log p

n

}
+

16C0q

τ0

√
s

[
κt+1C1

(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F )√

s
+

1− κt+2

1− κ
Cλ

√
q3(log n)2 log p

n

]

≤ [(
4C0

τ0
+ C0)κ0 +

16C0q

τ0
κC1]κ

t(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F )+

[(
4C0

τ0
+ C0)Ccon + (

4C0

τ0
+ C0)κ0

1− κt+1

1− κ
C∗ +

16C0q

τ0

1− κt+2

1− κ
Cλ]

√
sq3(log n)2 log p

n

≤ κt+1(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F ) +

1− κt+2

1− κ
C∗

√
sq3(log n)2 log p

n
.
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Further, since 1−κt+2

1+κ ≤ 1− κt+1 and rΩ > 1+κ
1−κC

∗
√

q3(log n)2 log p
n when n is sufficiently large,

dF (θ̂
(t+1),θ∗) ∨ ∥B̂(t+1)

1 −B∗
1∥F ∨ ∥B̂(t+1)

2 −B∗
2∥F

≤ κt+1(dF (θ̂
(0),θ∗) ∨ ∥B̂(0)

1 −B∗
1∥F ∨ ∥B̂(0)

2 −B∗
2∥F ) +

1− κt+2

1− κ
C∗

√
sq3(log n)2 log p

n

≤ κt+1rΩ+
1− κt+2

1− κ
C∗

√
sq3(log n)2 log p

n
≤ κt+1rΩ+

1− κt+2

1 + κ
rΩ ≤ rΩ.

When t ≥ (− log κ)−1 log{n(dF (θ̂(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )},

κt ≤ κ− logκ{n(dF (θ̂(0),θ∗)∨∥B̂(0)
1 −B∗

1∥F∨∥B̂(0)
2 −B∗

2∥F )}

≤ 1

n(dF (θ̂(0),θ∗) ∨ ∥B̂(0)
1 −B∗

1∥F ∨ ∥B̂(0)
2 −B∗

2∥F )
.

which implies

∥B̂(t)
w −B∗

w∥F = O

(√
sq3(log n)2 log p

n

)
.

With Lemma F.4,

D(S
β̂

(t)
w
,Sβ∗

w
) =

∥P
β̂

(t)
w

−Pβ∗
w
∥F

√
2d

≤ Cβ/
√
2d∥B̂(t)

w −B∗
w∥F = O

(√
sq3(log n)2 log p

n

)
.

D. Proof of Lemma C.1
D.1. Contraction of weights

In this section, we show |π1(θ)− π1(θ
∗)| ≤ κ0(dF (θ,θ

∗) ∨ ∥B1 −B∗
1∥F ∨ ∥B2 −B∗

2∥F ). By definition,

π1(θ)− π1(θ
∗) = E[

1

n

n∑
i=1

(γ1,θ(Xi, Yi)− γ1,θ∗(Xi, Yi))].
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When Yi is fixed, we can not further simplify the above. Thus, for given i, we bound |E[γ1,θ(Xi, Yi) − γ1,θ∗(Xi, Yi)]|.
Let ξT = (π1, vec(Γ2 − Γ1)

T , vec(Γ2 + Γ1)
T ),∆ξ = ξ − ξ∗, ξu = ξ∗ + u∆ξ. Then ξ0 = ξ∗, ξ1 = ξ. Then∣∣∣E[γ1,θ(Xi, Yi)− γ1,θ∗(Xi, Yi)]
∣∣∣

=
∣∣∣E{∫ 1

0

⟨∂γ1,ξ(Xi, Yi)

∂ξ

∣∣∣
ξ=ξu

,
∂ξu
∂u

⟩du
}∣∣∣

≤
∣∣∣E{∫ 1

0

⟨∂γ1,ξ(Xi, Yi)

∂π1

∣∣∣
ξ=ξu

,∆π1
⟩du
}∣∣∣+∣∣∣E{∫ 1

0

⟨ ∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)

∣∣∣
ξ=ξu

,∆Γ2−Γ1
⟩du
}∣∣∣+∣∣∣E{∫ 1

0

⟨ ∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)

∣∣∣
ξ=ξu

,∆Γ2+Γ1
⟩du
}∣∣∣

≤
∫ 1

0

⟨E[∂γ1,ξ(Xi, Yi)

∂π1
]
∣∣∣
ξ=ξu

, (π1 − π∗
1)⟩du+

∫ 1

0

⟨E[ ∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
]
∣∣∣
ξ=ξu

,∆Γ2−Γ1⟩du+∫ 1

0

⟨E[ ∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)
]
∣∣∣
ξ=ξu

,∆Γ2+Γ1
⟩du

≤ sup
ξ∈Bcon(θ∗)

|E[∂γ1,ξ(Xi, Yi)

∂π1
]| · |π1 − π∗

1 |︸ ︷︷ ︸
(I)

+

sup
ξ∈Bcon(θ∗)

∥E[ ∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
]∥2 · ∥Γ2 − Γ1 − Γ∗

2 + Γ∗
1∥F︸ ︷︷ ︸

(II)

+

sup
ξ∈Bcon(θ∗)

∥E[ ∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)
]∥2 · ∥Γ2 + Γ1 − Γ∗

2 − Γ∗
1∥F︸ ︷︷ ︸

(III)

.

Thus, we bound the three terms in the last inequality. Recall that

γ1,ξ(Xi, Yi) =
π1

π1 + (1− π1) exp{[Xi − 1
2 (Γ2 + Γ1)fi]T (Γ2 − Γ1)fi}

.

We can decompose Xi as the sum of two independent random variables, Xi ∼d Z + ψfi, where Z ∼ N(0, Ip) and is
independent of fi and Wi, P (ψ = Γ∗

1) = π∗
1 and P (ψ = Γ∗

2) = 1− π∗
1 . Let δ(Γ) = ψ − (Γ2 + Γ1)/2. Then

Xi −
1

2
(Γ2 + Γ1)fi ∼d Z+ψfi −

1

2
(Γ2 + Γ1)fi ∼d Z+ δ(Γ)fi.

Therefore, we can write

γ1,ξ(Xi, Yi) =
π1

π1 + (1− π1) exp{(Z+ δ(Γ)fi)T (Γ2 − Γ1)fi}
.

By calculation, we have

∂γ1,ξ(Xi, Yi)

∂π1
=

exp{(Z+ δ(Γ)fi)
T (Γ2 − Γ1)fi}

(π1 + (1− π1) exp{(Z+ δ(Γ)fi)T (Γ2 − Γ1)fi})2

∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
= −π1(1− π1)

exp{(Z+ δ(Γ)fi)
T (Γ2 − Γ1)fi} · fi ⊗ (Z+ δ(Γ)fi)

(π1 + (1− π1) exp{(Z+ δ(Γ)fi)T (Γ2 − Γ1)fi})2

∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)
= π1(1− π1)

exp{(Z+ δ(Γ)fi)
T (Γ2 − Γ1)fi} · 1

2 fi ⊗ (Γ2 − Γ1)fi

(π1 + (1− π1) exp{(Z+ δ(Γ)fi)T (Γ2 − Γ1)fi})2
.

Let T1 = (Γ2 − Γ1)fi and T2 = δ(Γ)fi. Let Hi be an orthonormal matrix whose first row is TT
1 /∥T1∥2. Then

HiT1 = ∥T1∥2e1, where e1 is the basis vector in the Euclidean space whose first entry is 1 and zero otherwise. Then

fTi (Γ2 − Γ1)
TZ = TT

1 Z = TT
1 H

T
i HiZ = TT

1 H
T
i V = V1∥T1∥2, (10)
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where V1 is the first coordinate of V = HiZ ∼ N(0, Ip) and is a standard normal distribution. Then

E[
∂γ1,ξ(Xi, Yi)

∂π1
] = E[

exp(TT
1 (Z+T2)

(π1 + (1− π1) exp{TT
1 (Z+T2)})2

]

= E[
exp(∥T1∥2Z1 +TT

1 T2))

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

],

where Z1 is a standard normal distribution. Note that

|TT
1 T2| = |fTi (Γ2 − Γ1)

T δ(Γ)fi| ≥ c| tr(δ(Γ)Σ̂f (Γ2 − Γ1)
T )| ≥ c1Ω

2,

where c1 = c(1− Cd). Similarly, we can show |TT
1 T2| ≤ c2Ω

2.

Recall that Ω =

√
tr[(Γ∗

2 − Γ∗
1)Σ̂f (Γ∗

2 − Γ∗
1)
T ] = ∥Σ̂1/2

f (Γ∗
2 − Γ∗

1)
T ∥F . We have

Ω2 = vec((Γ∗
2 − Γ∗

1)
T )T vec(Σ̂f (Γ

∗
2 − Γ∗

1)
T )

= vec((Γ∗
2 − Γ∗

1)
T )T (Ip ⊗ Σ̂f ) vec((Γ

∗
2 − Γ∗

1)
T ),

which implies
Ω2/M2 ≤ ∥Γ∗

2 − Γ∗
1∥2F ≤ Ω2/M1.

Then, when 2
√
M2Cb < 1,√

TT
1 T1 =

√
fTi (Γ2 − Γ1)T (Γ2 − Γ1)fi =

√
tr[(Γ2 − Γ1)fifTi (Γ2 − Γ1)T ]

≥ c

√
tr[(Γ2 − Γ1)Σ̂f (Γ2 − Γ1)T ] = c∥Σ̂1/2

f (Γ2 − Γ1)
T ∥F

≥ c
∣∣∣∥Σ̂1/2

f (Γ∗
2 − Γ∗

1)
T ∥F − ∥Σ̂1/2

f (Γ2 − Γ∗
2 − Γ1 + Γ∗

1)∥F
∣∣∣

≥ c(Ω− 2
√
M2CbΩ) ≥ c3Ω,

for some constant c3 that depends on M2 and Cb. Similarly, we can show
√

TT
1 T1 ≤ c4Ω. Define events

Ei = {|∥T1∥2Z1| ≤
c1
2
Ω2}.

On the event Ei, |∥T1∥2Z1 +TT
1 T2| ≥ |TT

1 T2| − |T1∥2Z1| ≥ c1Ω
2/2. Using the tail probability of normal distribution,

we obtain

P (Eci ) ≤ 2 exp(− c21Ω
4

8∥T1∥22
) ≤ 2 exp(−c

2
1Ω

2

8c24
).

Then

E[
∂γ1,ξ(Xi, Yi)

∂π1
]

= E[
exp(∥T1∥2Z1 +TT

1 T2)

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

]

= E[
exp(∥T1∥2Z1 +TT

1 T2)

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

∣∣∣Ei]P (Ei)+
E

exp(∥T1∥2Z1 +TT
1 T2)

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

∣∣∣Eci ]P (Eci )
≤ 1

min{π2
1 , (1− π1)2}

exp(−c1Ω
2

2
) +

1

2min{π2
1 , (1− π1)2}

exp(−c
2
1Ω

2

8c24
)

≤ 1

c20
exp(−c1Ω

2

2
) +

1

2c20
exp(−c

2
1Ω

2

8c24
)

≤ 2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2). (11)
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We proceed to bound (II). Note that

− 1

π1(1− π1)

∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)

=
exp{(Z+ δ(Γ)fi)

T (Γ2 − Γ1)fi}
(π1 + (1− π1) exp{(Z+ δ(Γ)fi)T (Γ2 − Γ1)fi})2

fi ⊗ (Z+ δ(Γ)fi)

=
∂γ1,ξ(Xi, Yi)

∂π1
fi ⊗ Z︸ ︷︷ ︸

(II.i)

+
∂γ1,ξ(Xi, Yi)

∂π1
fi ⊗ δ(Γ)fi︸ ︷︷ ︸

(II.ii)

.

By definition of Hi,

fi ⊗ Z = fiI1 ⊗HT
i HiZ = (fi ⊗HT

i )(HiZ) = (fi ⊗HT
i )V.

For the first term, we have

E

[
∂γ1,ξ(Xi, Yi)

∂π1
fi ⊗ Z

]
= E

[
(fi ⊗HT

i )
exp(∥T1∥2V1 +TT

1 T2))

(π1 + (1− π1) exp{∥T1∥2V1 +TT
1 T2)})2

V

]
= (fi ⊗HT

i ) E

[
exp(∥T1∥2V1 +TT

1 T2))

(π1 + (1− π1) exp{∥T1∥2V1 +TT
1 T2)})2

V1e1

]
,

where the last inequality uses the fact that V1 and Vj are independent for any 1 < j ≤ p and E[Vj ] = 0. Then

∣∣∣E [ exp(∥T1∥2V1 +TT
1 T2))

(π1 + (1− π1) exp{∥T1∥2V1 +TT
1 T2)})2

V1

]∣∣∣
=
∣∣∣E [ exp(∥T1∥2Z1 +TT

1 T2))

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

(∥T1∥2Z1 +TT
1 T2 −TT

1 T2)

]
1

∥T1∥2

∣∣∣
≤
∣∣∣E [ exp(∥T1∥2Z1 +TT

1 T2))

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

(∥T1∥2Z1 +TT
1 T2)

∣∣∣Ei]P (Ei) 1

∥T1∥2

∣∣∣+∣∣∣E [ exp(∥T1∥2Z1 +TT
1 T2))

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

(∥T1∥2Z1 +TT
1 T2)

∣∣∣Eci ]P (Eci ) 1

∥T1∥2

∣∣∣+∣∣∣E [ exp(∥T1∥2Z1 +TT
1 T2))

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

TT
1 T2

]
1

∥T1∥2

∣∣∣
For the first term in the last equality, using the fact that on the event Ei, |∥T1∥2Z1 +TT

1 T2| ≥ c1Ω
2/2, it is bounded by

2

min{π2
1 , (1− π1)2}

exp(−3c1Ω
2

8
)

1

c3Ω
.

The second term is bounded by
1

min{π2
1 , (1− π1)2}

exp(−c
2
1Ω

2

8c24
)

1

c3Ω
.

For the third term, we have∣∣∣E [ exp(∥T1∥2Z1 +TT
1 T2))

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

TT
1 T2

]
1

∥T1∥2

∣∣∣
≤

2∑
w=1

π∗
w E

[
exp(∥T1∥2Z1 +TT

1 T2))

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

∣∣∣Wi = w

]
|TT

1 T2|
∥T1∥2

≤ 2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2)c2Ω/c3.
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Since (fi ⊗HT
i )e1 = vec(HT

i e1f
T
i ) = vec(T1/∥T1∥2fTi ), it follows that,

∥E[(II.i)]∥2 ≤ ∥(fi ⊗HT
i )e1∥2

[
2

min{π2
1 , (1− π1)2}

exp(−3c1Ω
2

8
)

1

c3Ω
+

1

min{π2
1 , (1− π1)2}

exp(−c
2
1Ω

2

8c24
)

1

c3Ω
+

2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2)c2Ω/c3

]
≤ ∥ vec(T1/∥T1∥2fTi )∥2(

2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

)Ω2)

≤ ∥fi∥2(
2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

)Ω2)

≤M4(
2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

)Ω2). (12)

We proceed to bound (II.ii). Note that

∥Γ∗
1 −

Γ2 + Γ1

2
∥F = ∥Γ

∗
1

2
− Γ1

2
+

Γ∗
1

2
− Γ2

2
∥F ≤ 1

2
∥Γ∗

1 − Γ1∥F +
1

2
∥Γ∗

1 − Γ2∥F

≤ 1

2
CbΩ+

1

2
∥Γ∗

2 − Γ2 + Γ∗
1 − Γ∗

2∥F

≤ 1

2
CbΩ+

1

2
CbΩ+

1

2
√
M1

Ω = (Cb +
1

2
√
M1

)Ω,

and similarly ∥Γ∗
2 − Γ2+Γ1

2 ∥F ≤ (Cb +
1

2
√
M1

)Ω. Therefore ∥δ(Γ)fi∥22
∣∣∣Wi ≤M2

4 (Cb +
1

2
√
M1

)2Ω2. By the definition of
Kronecker product,

∥fi ⊗ δ(Γ)fi∥22
∣∣∣Wi =

q∑
j=1

f2ij∥δ(Γ)fi∥22
∣∣∣Wi ≤M4

4 (Cb +
1

2
√
M1

)2Ω2,

where fij is the j-th element of fi. Then

∥E[(II.ii)]∥2 = ∥E[∂γ1,ξ(Xi, Yi)

∂π1
fi ⊗ δ(Γ)fi]∥2

≤ 2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2)M2
4 (Cb +

1

2
√
M1

)Ω.

Therefore,

∥E[ ∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
]∥2 ≤ π1(1− π1)(∥E[(II.i)]∥2 + ∥E[(II.ii)]∥2)

≤ M4

4
(

2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

)Ω2)+

1

2c20
M2

4 (Cb +
1

2
√
M1

)Ω exp(−(
c1
2

∧ c21
8c24

)Ω2)

≤ c5 exp(−(
3c1
8

∧ c21
8c24

)Ω2), (13)

where c5 = max{M4

4 ( 2
c20c3Ω

∨ 2c2Ω
c20c3

), 1
2c20
M2

4 (Cb +
1

2
√
M1

)Ω} .

For the term (III), note that

∥fi ⊗T1∥22 =

q∑
j=1

fij∥T1∥22 = ∥fi∥22 · ∥T1∥22 ≤M2
4 c

2
4Ω

2.
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Then, we have

∥E[ ∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)
]∥2

= ∥E[π1(1− π1)
exp{(Z+ δ(Γ)fi)

T (Γ2 − Γ1)fi} · 1
2 fi ⊗ (Γ2 − Γ1)fi

(π1 + (1− π1) exp{(Z+ δ(Γ)fi)T (Γ2 − Γ1)fi})2
]∥2

=
π1(1− π1)

2
E[
∂γ1,ξ(Xi, Yi)

∂π1
]∥fi ⊗T1∥2

≤ 1

8

2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2)M4c4Ω

=
M4c4Ω

4c20
exp(−(

c1
2

∧ c21
8c24

)Ω2). (14)

Combing results in (11), (13) and (14), we have

∣∣∣E[γ1,θ(Xi, Yi)− γ1,θ∗(Xi, Yi)]
∣∣∣ ≤ κπ(dF (θ,θ

∗) ∨ ∥B1 −B∗
1∥F ∨ ∥B2 −B∗

2∥F ), (15)

where κπ = ( 2
c20

+ c5 +
M4c4Ω
4c20

) exp(−( 3c18 ∧ c21
8c24

)Ω2).

D.2. Contraction of matrices Uw

We aim to show

∥U1(θ)−U1(θ
∗)∥F ≤ κU(dF (θ,θ

∗) ∨ ∥B1 −B∗
1∥F ∨ ∥B2 −B∗

2∥F ).

By definition,

Uw(θ)−Uw(θ) = E(
1

n

n∑
i=1

{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]Xif
T
i }).

When Yi is fixed, Xi are not identically distributed. Thus, we bound the expectation of given i. Let ξ = (π1, vec(Γ2 −
Γ1), vec(Γ2+Γ1)),∆ξ = ξ−ξ∗, ξu = ξ∗+u∆ξ. Then ξ0 = ξ∗, ξ1 = ξ. Define the Jacobian matrix J = ∂f/∂x ∈ Rm×n

as Jij = ∂fi/∂xj , where x = (x1, . . . , xn)
T and f = (f1, . . . , fm)T . Then

vec(E{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]Xif
T
i })

= E

{∫ 1

0

∂ vec(γ1,ξ(Xi, Yi)Xif
T
i )

∂ vec(ξ)

∣∣∣
ξ=ξu

∂ vec(ξu)

∂u
du

}
= E

{∫ 1

0

∂ vec(γ1,ξ(Xi, Yi)Xif
T
i )

∂π1

∣∣∣
ξ=ξu

∆π1du

}
+

E

{∫ 1

0

∂ vec(γ1,ξ(Xi, Yi)Xif
T
i )

∂ vec(Γ2 − Γ1)

∣∣∣
ξ=ξu

∆Γ2−Γ1
du

}
+

E

{∫ 1

0

∂ vec(γ1,ξ(Xi, Yi)Xif
T
i )

∂ vec(Γ2 + Γ1)

∣∣∣
ξ=ξu

∆Γ2+Γ1
du

}
.
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Therefore,

∥E{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]Xif
T
i }∥F

≤ √
q∥E{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]Xif

T
i }∥2

≤ √
q∥ sup

ξ∈Bcon(θ∗)

E

(
∂ vec(γ1,ξ(Xi, Yi)Xif

T
i )

∂π1

)
∆π1

∥2+

√
q∥ sup

ξ∈Bcon(θ∗)

E

(
∂ vec(γ1,ξ(Xi, Yi)Xif

T
i )

∂ vec(Γ2 − Γ1)

)
∆Γ2−Γ1∥2+

√
q∥ sup

ξ∈Bcon(θ∗)

E

(
∂ vec(γ1,ξ(Xi, Yi)Xif

T
i )

∂ vec(Γ2 + Γ1)

)
∆Γ2+Γ1

∥2

≤ √
q sup
ξ∈Bcon(θ∗)

∥E
(
∂γ1,ξ(Xi, Yi)

∂π1
vecT (Xif

T
i )

)
∥2|π1 − π∗

1 |︸ ︷︷ ︸
(I)

+

√
q sup
ξ∈Bcon(θ∗)

∥E
(
∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
vecT (Xif

T
i )

)
∥2∥Γ1 − Γ∗

1 − Γ2 + Γ∗
2∥F︸ ︷︷ ︸

(II)

+

√
q sup
ξ∈Bcon(θ∗)

∥E
(
∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)
vecT (Xif

T
i )

)
∥2∥Γ1 − Γ∗

1 + Γ2 − Γ∗
2∥F︸ ︷︷ ︸

(III)

.

Note that vec(Xif
T
i ) = vec[(Z+ψfi)f

T
i ] = (fi ⊗ Ip)(Z+ψfi). For the second term (II), we have

− 1

π1(1− π1)

∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
vecT (Xif

T
i )

=
exp((Z+ δ(Γ)fi)

T ((Γ2 − Γ1)fi)

{π1 + (1− π1) exp((Z+ δ(Γ)fi)T ((Γ2 − Γ1)fi)}2
· (fi ⊗ Ip)(Z+ δ(Γ)fi) vec

T (Xif
T
i )

=
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)(Z+ δ(Γ)fi) (Z+ψfi)

T
(fTi ⊗ Ip)

=
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)ZZ

T (fTi ⊗ Ip)︸ ︷︷ ︸
(II.i)

+
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)Zf

T
i ψ

T (fTi ⊗ Ip)︸ ︷︷ ︸
(II.ii)

+

∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)δ(Γ)fiZ

T (fTi ⊗ Ip)︸ ︷︷ ︸
(II.iii)

+
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)δ(Γ)fif

T
i ψ

T (fTi ⊗ Ip)︸ ︷︷ ︸
(II.iv)

.

Recall that T1 = (Γ2 − Γ1)fi, T2 = δ(Γ)fi, Hi is an orthonormal matrix whose first row is TT
1 /∥T1∥2, V = HiZ ∼
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N(0, Ip). For the first term, we have

E[(II.i)]

= (fi ⊗ Ip) E[
∂γ1,ξ(Xi, Yi)

∂π1
ZZT ](fTi ⊗ Ip)

= (fi ⊗ Ip)H
T
i E[

∂γ1,ξ(Xi, Yi)

∂π1
HiZZ

THT
i ](f

T
i ⊗ Ip)Hi

= (fi ⊗ Ip)H
T
i E[

∂γ1,ξ(Xi, Yi)

∂π1
VVT ](fTi ⊗ Ip)Hi

= (fi ⊗ Ip)H
T
i E[

exp(∥T1∥2V1 +TT
1 T2))

(π1 + (1− π1) exp{∥T1∥2V1 +TT
1 T2)})2

VVT ](fTi ⊗ Ip)Hi (by(10))

= (fi ⊗ Ip)H
T
i E[

exp(∥T1∥2V1 +TT
1 T2))

(π1 + (1− π1) exp{∥T1∥2V1 +TT
1 T2)})2

(V 2
1 − 1)]︸ ︷︷ ︸

(II.i.a)

e1e
T
1 (f

T
i ⊗ Ip)Hi+

(fi ⊗ Ip)H
T
i E[

exp(∥T1∥2V1 +TT
1 T2))

(π1 + (1− π1) exp{∥T1∥2V1 +TT
1 T2)})2

]︸ ︷︷ ︸
(II.i.b)

Ip(f
T
i ⊗ Ip)Hi.

Recall that the event Ei = {|∥T1∥2Z1| ≤ c1
2 Ω

2} and on the event Ei, |∥T1∥2Z1 + TT
1 T2| ≥ |TT

1 T2| − |T1∥2Z1| ≥
c1Ω

2/2. Let t = ∥T1∥2Z1 +TT
1 T2, g(t) = exp(t)

(π1+(1−π1) exp{t})2 . Then

|E[(II.i.a)]|

=
∣∣∣E[ exp(∥T1∥2Z1 +TT

1 T2)

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

(Z2
1 − 1)]

∣∣∣
≤
∣∣∣E[g(t)(Z2

1 − 1)|Ei]P (Ei)
∣∣∣+∣∣∣E[g(Z1)(Z

2
1 − 1)|Eci ]P (Eci )

∣∣∣
=
∣∣∣E[g(t)( (∥T1∥2Z1 +TT

1 T2)
2 − 2TT

1 T2(∥T1∥2Z1 +TT
1 T2) + (TT

1 T2)
2 − ∥T1∥22

∥T1∥22
)|Ei]P (Ei)

∣∣∣+∣∣∣E[g(t)( (∥T1∥2Z1 +TT
1 T2)

2 − 2TT
1 T2(∥T1∥2Z1 +TT

1 T2) + (TT
1 T2)

2 − ∥T1∥22
∥T1∥22

)|Eci ]P (Eci )
∣∣∣

≤ 1

∥T1∥22

{∣∣∣E[g(t)t2|Ei]∣∣∣+∣∣∣E[g(t)(∥T1∥22 − (TT
1 T2)

2)|Ei]
∣∣∣+∣∣∣E[g(t) · 2TT

1 T2t|Ei]
∣∣∣}+

1

∥T1∥22

{∣∣∣E[g(t)t2|Eci ]∣∣∣+∣∣∣E[g(t)(∥T1∥22 − (TT
1 T2)

2)|Ei]
∣∣∣+∣∣∣E[g(t) · 2TT

1 T2t|Ei]
∣∣∣}P (Eci )+

≤ 1

c23Ω
2

{
4

min{π2
1 , (1− π1)2}

exp(−c1
4
Ω2) + (c24 + c22)Ω

2 2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2) +

2c2Ω
2 2

min{π2
1 , (1− π1)2}

exp(−3c1
8

Ω2)

}
+

1

c23Ω
2

{
4

min{π2
1 , (1− π1)2}

+
(c24 + c22)Ω

2

4π1(1− π1)
+

c2Ω
2

min{π2
1 , (1− π1)2}

}
2 exp(−c

2
1Ω

2

8c24
)

≤ 4 + 2(c22 + c24)Ω
2 + 4c2Ω

2

c23c
2
0Ω

2
exp(−(

c1
4

∧ c21
8c24

)Ω2) +
8 + (c22 + c24)Ω

2 + 2c2Ω
2

c23c
2
0Ω

2
exp(−c

2
1Ω

2

8c24
).

Let c5 =
4+2(c22+c

2
4)Ω

2+4c2Ω
2

c23c
2
0Ω

2 +
8+(c22+c

2
4)Ω

2+2c2Ω
2

c23c
2
0Ω

2 . We have

|E[(II.i.a)]| ≤ c5 exp(−(
c1
4

∧ c21
8c24

)Ω2). (16)
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The term (II.i.b) can be bounded same as (11),

|E[(II.i.b)]| ≤ 2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2). (17)

Then we bound the spectral norm of E[(II.i)],

∥E[(II.i)]∥2
≤ ∥(fi ⊗ Ip)H

T
i e1e

T
1 (f

T
i ⊗ Ip)Hi∥2 · |E[(II.i.a)]|+

∥(fi ⊗ Ip)H
T
i Ip(f

T
i ⊗ Ip)Hi∥2 · |E[(II.i.b)]|

≤M2
4 |E[(II.i.a)]|+M2

4 |E[(II.i.a)]|

≤M2
4 c5 exp(−(

c1
4

∧ c21
8c24

)Ω2) +M2
4

2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2)

≤M2
4 (c5 +

2

c20
) exp(−(

c1
4

∧ c21
8c24

)Ω2). (18)

The other three terms are easier to bound. Note that

E[(II.ii)] = (fi ⊗ Ip) E[
∂γ1,ξ(Xi, Yi)

∂π1
ZfTi ψ

T ](fTi ⊗ Ip)

= (fi ⊗ Ip)H
T
i E[

∂γ1,ξ(Xi, Yi)

∂π1
V1e1f

T
i ψ

T ](fTi ⊗ Ip).

Using the similar technique in (12), we have

∥E[
∂γ1,ξ(Xi, Yi)

∂π1
V1e1f

T
i ψ

T ]∥2 ≤ |E[
∂γ1,ξ(Xi, Yi)

∂π1
V1|M4Mb

≤M4Mb(
2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

).

Therefore,

∥E[(II.ii)]∥2

≤ ∥(fi ⊗ Ip)H
T
i ∥2 · ∥E[

∂γ1,ξ(Xi, Yi)

∂π1
V1e1f

T
i ψ

T ]∥2 · ∥(fTi ⊗ Ip)∥2

≤M3
4Mb(

2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

). (19)

We proceed to bound (II.iii),

E[(II.iii)] = (fi ⊗ Ip) E[
∂γ1,ξ(Xi, Yi)

∂π1
δ(Γ)fiZ

T ](fTi ⊗ Ip)

= (fi ⊗ Ip) E[
∂γ1,ξ(Xi, Yi)

∂π1
δ(Γ)fie

T
1 V1]Hi(f

T
i ⊗ Ip).

Using the similar technique in (12) and ∥δ(Γ)fi∥22 ≤M2
4 (Cb +

1
2
√
M1

)2Ω2, we have

∥E[∂γ1,ξ(Xi, Yi)

∂π1
δ(Γ)fie

T
1 V1]∥2 ≤M4(Cb +

1

2
√
M1

)(
2

c20c3
∨ 2c2Ω

2

c20c3
) exp(−(

3c1
8

∧ c21
8c24

).

Therefore,

∥E[(II.iii)]∥2

≤ ∥(fi ⊗ Ip)∥2 · ∥E[
∂γ1,ξ(Xi, Yi)

∂π1
δ(Γ)fie

T
1 V1]∥2 · ∥Hi(f

T
i ⊗ Ip)∥2

≤M3
4 (Cb +

1

2
√
M1

)(
2

c20c3
∨ 2c2Ω

2

c20c3
) exp(−(

3c1
8

∧ c21
8c24

). (20)
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Finally, we bound (II.iv),

∥E[(II.iv)]∥2

= ∥(fi ⊗ Ip) E[
∂γ1,ξ(Xi, Yi)

∂π1
· δ(Γ)fifTi ψT ](fTi ⊗ Ip)∥2

≤M4
4Mb(Cb +

1

2
√
M1

)Ω
2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2). (21)

Combing results (18), (19), (20), and (21), we have

∥E
[
∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
vecT (Xif

T
i )

]
∥2

≤ π1(1− π1)(∥E[(II.i)]∥2 + ∥E[(II.ii)]∥2 + ∥E[(II.iii)]∥2 + ∥E[(II.iv)]∥2)

≤ 1

4

{
M2

4 (c5 +
2

c20
) exp(−(

c1
4

∧ c21
8c24

)Ω2) +M3
4Mb(

2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

) +

M3
4 (Cb +

1

2
√
M1

)(
2

c20c3
∨ 2c2Ω

2

c20c3
) exp(−(

3c1
8

∧ c21
8c24

)+

M4
4Mb(Cb +

1

2
√
M1

)Ω
2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2)

}
≤ c6 exp(−(

c1
4

∧ c21
8c24

)Ω2), (22)

where c6 = 1
4

{
M2

4 (c5 +
2
c20
) +M3

4Mb(
2

c20c3Ω
∨ 2c2Ω

c20c3
) +M3

4 (Cb +
1

2
√
M1

)( 2
c20c3

∨ 2c2Ω
2

c20c3
)+

M4
4Mb(Cb +

1
2
√
M1

)Ω 2
c20

}
.

Next, we bound the first term (I),

∥E
[
∂γ1,ξ(Xi, Yi)

∂π1
vecT (Xif

T
i )

]
∥2

= ∥E
[
∂γ1,ξ(Xi, Yi)

∂π1
(fi ⊗ Ip)(Z+ψfi)

]
∥2

≤ ∥(fi ⊗ Ip) E

[
∂γ1,ξ(Xi, Yi)

∂π1
Z

]
∥2︸ ︷︷ ︸

(I.i)

+ ∥(fi ⊗ Ip) E

[
∂γ1,ξ(Xi, Yi)

∂π1
ψfi

]
∥2︸ ︷︷ ︸

(I.ii)

.

Similarly to (12), we have

(I.i) = ∥(fi ⊗ Ip)H
T
i E

[
∂γ1,ξ(Xi, Yi)

∂π1
V

]
∥2

= ∥(fi ⊗ Ip)H
T
i e1 E

[
exp(∥T1∥2V1 +TT

1 T2))

(π1 + (1− π1) exp{∥T1∥2V1 +TT
1 T2)})2

V1

]
∥2

≤M4(
2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

)Ω2). (23)

According to (11),

(I.ii) ≤M2
4Mb

2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2). (24)
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Therefore,

∥E
[
∂γ1,ξ(Xi, Yi)

∂π1
vecT (Xif

T
i )

]
∥2

≤M4(
2

c20c3Ω
∨ 2c2Ω

c20c3
) exp(−(

3c1
8

∧ c21
8c24

)Ω2) +M2
4Mb

2

c20
exp(−(

c1
2

∧ c21
8c24

)Ω2)

≤ c7 exp(−(
3c1
8

∧ c21
8c24

)Ω2), (25)

where c7 =M4(
2

c20c3Ω
∨ 2c2Ω

c20c3
) +M2

4Mb
2
c20

.

For the third term, using (25) and the fact that ∥fi ⊗ (Γ2 − Γ1)fi∥2 ≤M4c4Ω,

∥E
[
∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)
vecT (Xif

T
i )

]
∥2

= ∥π1(1− π1)

2
fi ⊗ (Γ2 − Γ1)fi E[

∂γ1,ξ(Xi, Yi)

∂π1
vecT (Xif

T
i )]∥2

≤ 1

8
∥fi ⊗ (Γ2 − Γ1)fi∥2 · ∥E[

∂γ1,ξ(Xi, Yi)

∂π1
vecT (Xif

T
i )]∥2

≤ M4c4Ω

8
c7 exp(−(

3c1
8

∧ c21
8c24

)Ω2). (26)

Combining results (22), (25) and (26), we have

∥E{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]Xif
T
i }∥F

≤ √
qdF (θ,θ

∗)

{
c6 exp(−(

c1
4

∧ c21
8c24

)Ω2) + c7 exp(−(
3c1
8

∧ c21
8c24

)Ω2)+

M4c4Ω

8
c7 exp(−(

3c1
8

∧ c21
8c24

)Ω2)

}
≤ √

qdF (θ,θ
∗)[c6 + c7 +

M4c4Ω

8
c7] exp(−(

3c1
8

∧ c21
8c24

)Ω2)

≤ κU(dF (θ,θ
∗) ∨ ∥B1 −B∗

1∥F ∨ ∥B2 −B∗
2∥F ). (27)

where κU =
√
q[c6 + c7 +

M4c4Ω
8 c7] exp(−( 3c18 ∧ c21

8c24
)Ω2).

D.3. Contraction of covariance matrices

We aim to show

∥[Σ1(θ)−Σ1(θ
∗)]B∗

1∥F ≤ κΣ(dF (θ,θ
∗) ∨ ∥B1 −B∗

1∥F ∨ ∥B2 −B∗
2∥F ).

By definition,

[Σ1(θ)−Σ1(θ
∗)]B∗

1 = E(
1

n

n∑
i=1

{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]XiX
T
i B

∗
1}).
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Using the same argument as before, we obtain

∥E{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]XiX
T
i B

∗
1}∥F

≤ √
q∥E{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]XiX

T
i B

∗
1}∥2

≤ √
q∥ sup

ξ∈Bcon(θ∗)

E

(
∂ vec(γ1,ξ(Xi, Yi)XiX

T
i B

∗
1)

∂π1

)
∆π1

∥2+

√
q∥ sup

ξ∈Bcon(θ∗)

E

(
∂ vec(γ1,ξ(Xi, Yi)XiX

T
i B

∗
1)

∂ vec(Γ2 − Γ1)

)
∆Γ2−Γ1

∥2+

√
q∥ sup

ξ∈Bcon(θ∗)

E

(
∂ vec(γ1,ξ(Xi, Yi)XiX

T
i B

∗
1)

∂ vec(Γ2 + Γ1)

)
∆Γ2+Γ1

∥2

≤ √
q sup
ξ∈Bcon(θ∗)

∥E
(
∂γ1,ξ(Xi, Yi)

∂π1
vecT (XiX

T
i B

∗
1)

)
∥2|π1 − π∗

1 |︸ ︷︷ ︸
(I)

+

√
q sup
ξ∈Bcon(θ∗)

∥E
(
∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
vecT (XiX

T
i B

∗
1)

)
∥2∥Γ1 − Γ∗

1 − Γ2 + Γ∗
2∥F︸ ︷︷ ︸

(II)

+

√
q sup
ξ∈Bcon(θ∗)

∥E
(
∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)
vecT (XiX

T
i B

∗
1)

)
∥2∥Γ1 − Γ∗

1 + Γ2 − Γ∗
2∥F︸ ︷︷ ︸

(III)

.

We focus on the second term (II). Note that vec(XiX
T
i B

∗
1) = [(XT

i B
∗
1)
T ⊗ Ip]Xi. Then,

− 1

π1(1− π1)

∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
vecT (XiX

T
i B

∗
1)

=
exp((Z+ δ(Γ)fi)

T ((Γ2 − Γ1)fi)

{π1 + (1− π1) exp((Z+ δ(Γ)fi)T ((Γ2 − Γ1)fi)}2
· (fi ⊗ Ip)(Z+ δ(Γ)fi) vec

T (XiX
T
i B

∗
1)

=
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)(Z+ δ(Γ)fi) (Z+ψfi)

T
((Z+ψfi)

TB∗
1 ⊗ Ip). (28)

We can decompose the last line into a sum of 8 terms. The term involves three Z is the most complicated one. We consider

∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)ZZ

T (ZTB∗
1 ⊗ Ip).

Recall that Hi is an orthonormal matrix whose first row is TT
1 /∥T1∥2. We further require that B∗

1,1: ∈ span(Hi,1:,Hi,2:),
B∗

1,2: ∈ span(Hi,1:,Hi,2:,Hi,3:), . . . , B∗
1,q: ∈ span(Hi,1:, . . . ,Hi,(q+1):), where Aj: is the j-th row of matrix A. Thus

there exists a matrix Λ ∈ Rp×q such that B∗
1 = HT

i Λ. Then

ZTB∗
1 = (HT

i HiZ)
TB∗

1 = ZTHT
i HiH

T
i Λ = VTΛ

= (
2∑
j=1

λj1Vj ,
3∑
j=1

λj2Vj , . . . ,

q+1∑
j=1

λjqVj) := MT ,
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where λjk is the (j, k)-th element of Λ and Vj is the j-th element of V. When j > k+1, λjk = 0 and ∥Λ∥F = ∥B∗
1∥F ≤√

d∥B∗
1∥2 =

√
dMbM2. Therefore,

∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)ZZ

T (ZTB∗
1 ⊗ Ip)

=
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)H

T
i VVTHi(M

T ⊗ Ip)

=
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)H

T
i VVT (MT ⊗HiIp)

=
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)H

T
i VVT (M1Hi,M2Hi, . . . ,MqHi),

where Mj is the j-th element of M. Therefore, we have

E[
∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)ZZ

T (ZTB∗
1 ⊗ Ip)]

= (fi ⊗ Ip)H
T
i E[

∂γ1,ξ(Xi, Yi)

∂π1
VVT (M1Hi,M2Hi, . . . ,MqHi)]

= (fi ⊗ Ip)H
T
i E[

exp(∥T1∥2V1 +TT
1 T2))

(π1 + (1− π1) exp{∥T1∥2V1 +TT
1 T2)})2︸ ︷︷ ︸

g(V1)

VVT (M1Hi,M2Hi, . . . ,MqHi)].

Note that
E[g(V1)VVTMk]

= E(g(V1)


λ1kV

3
1

λ1kV1V
2
2

. . .
λ1kV1V

2
p

+



λ2kV1V
2
2 λ3kV1V

2
3 · · · λ(k+1)kV1V

2
k+1 0

λ2kV1V
2
2 λ1kV

3
2

λ3kV1V
2
3 λ1kV

3
3

...
. . .

λ(k+1)kV1V
2
k+1 λ(k+1)kV

3
k+1

0 0


).

Therefore, for each k, the matrix E[g(V1)VVTMk] can be written as the sum of a diagonal matrix and a matrix with 2k
non-zero elements. Then, the p× pq matrix E[g(V1)VVT (M1Hi,
M2Hi, . . . ,MqHi)] can be written as the sum of two block matrices (E[J1] + E[J2]), where each block has size p × p.
In the first matrix E[J1], the k-th block is DkHi, where Dk is a diagonal matrix. And in the second matrix E[J2],
the k-th block is AkHi, where Ak is a matrix that only has 2k non-zero elements. Since ∥E[J2]∥2 ≤ ∥E[J2]∥F =
∥E[(A1Hi, . . . ,AqHi)]∥F = ∥E[(A1, . . . ,Aq)]∥F , each element of E[Ak] only involve E[g(V1)V1], which can be
bounded with the same argument used in (12). The total number of non-zeros elements in E[(A1, . . . ,Aq)] is q(1 + q).
Then we have

∥E[J2]∥2 ≤ c8q(1 + q) exp(−(
3c1
8

∧ c21
8c24

)Ω2), (29)

where c8 is some positive constant.

Next, we bound ∥E[J1]∥2. Since each block of J1 is a diagonal matrix D1 times the orthonormal matrix Hi, rows of J1 are
orthogonal. Then we can construct its SVD E[J1] = FDKT in the following way. Let F ∈ Rp×p be the identity matrix,
D is a diagonal matrix that elements are ℓ2 norm of rows of J1, and KT is normalized E[J1] where each row is divided
by its ℓ2 norm. Therefore, ∥E[J1]∥2 equals to the largest ℓ2 norm of rows E[J1]. It is easy to see rows of E[J1] and rows
of E[(D1, . . . ,D2)] have same ℓ2 norm. Thus, we only need to bound the largest ℓ2 norm of E[(D1, . . . ,D2)]. Each row
of E[(D1, . . . ,D2)] has q non-zero elements, which contain either E[g(V1)V1] or E[g(V1)V 3

1 ]. Since E[g(V1)V1] can be
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bounded similar to (12). We focus on bounding E[g(V1)V
3
1 ]. Recall that the event Ei = {|∥T1∥2Z1| ≤ c1

2 Ω
2} and on the

event Ei, |∥T1∥2Z1 +TT
1 T2| ≥ |TT

1 T2| − |T1∥2Z1| ≥ c1Ω
2/2. Let t = ∥T1∥2Z1 +TT

1 T2, h(t) = exp(t)
(π1+(1−π1) exp{t})2 .

Then
|E[g(V1)V 3

1 ]|

=
∣∣∣E[ exp(∥T1∥2Z1 +TT

1 T2)

(π1 + (1− π1) exp{∥T1∥2Z1 +TT
1 T2)})2

Z3
1 ]
∣∣∣

=
∣∣∣E[h(t) (∥T1∥2Z1 +TT

1 T2)
3 − 3(TT

1 T2)
2∥T1∥2Z1 − 3∥T1∥22TT

1 T2Z
2
1 − (TT

1 T2)
3

∥T1∥32
]
∣∣∣

≤ 1

∥T1∥32

∣∣∣E[h(t)(∥T1∥2Z1 +TT
1 T2)

3]
∣∣∣+ 3

∥T1∥22

∣∣∣E[h(t)(TT
1 T2)

2Z1]
∣∣∣

3

∥T1∥2

∣∣∣E[h(t)TT
1 T2Z

2
1

∣∣∣+ 1

∥T1∥32

∣∣∣E[h(t)(TT
1 T2)

3].

The second, third, and fourth terms can be bounded similarly as (12), (16) and (11). For some positive constant c9, we have

3

∥T1∥22

∣∣∣E[h(t)(TT
1 T2)

2Z1]
∣∣∣+ 3

∥T1∥2

∣∣∣E[h(t)TT
1 T2Z

2
1

∣∣∣+ 1

∥T1∥32

∣∣∣E[h(t)(TT
1 T2)

3]

≤ c9 exp(−(
c1
4

∧ c21
8c24

)Ω2).

Using Lemma F.1,

1

∥T1∥32

∣∣∣E[h(t)(∥T1∥2Z1 +TT
1 T2)

3]
∣∣∣

≤ 1

c33Ω
3

{∣∣∣E[ exp(t)

(π1 + (1− π1) exp{t})2
t3|Ei]P (Ei)

∣∣∣+∣∣∣E[ exp(t)

(π1 + (1− π1) exp{t})2
t3|Eci ]P (Eci )

∣∣∣}
≤ 1

c33Ω
3

{
8

min{π2
1 , (1− π1)2}

exp(−c1Ω
2

8
) +

4

min{π2
1 , (1− π1)2}

exp(−c
2
1Ω

2

8c24
)

}
≤ 8

c20c
3
3Ω

3
exp(−c1Ω

2

8
) +

4

c20c
3
3Ω

3
exp(−c

2
1Ω

2

8c24
) ≤ 8

c20c
3
3Ω

3
exp(−(

c1
8

∧ c21
8c24

)Ω2).

Combining the above results, we have

|E[g(V1)V 3
1 ]| ≤ (c9 +

8

c20c
3
3Ω

3
) exp(−(

c1
8

∧ c21
8c24

)Ω2).

Therefore, the 2-norm of E[J1] (the largest ℓ2 norm of rows of J1) is bounded by

∥E[J1]∥2 ≤ c10q exp(−(
c1
8

∧ c21
8c24

)Ω2). (30)

Combing results (29) and (30),

∥E[∂γ1,ξ(Xi, Yi)

∂π1
· (fi ⊗ Ip)ZZ

T (ZTB∗
1 ⊗ Ip)]∥2 ≤M4[c8q(1 + q) + c10q] exp(−(

c1
8

∧ c21
8c24

)Ω2).

The other 7 terms in (28) involve Z at most twice and therefore can be bounded with the same technique in (11), (12), and
(16). Therefore, we have

∥E
(
∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 − Γ1)
vecT (XiX

T
i B

∗
1)

)
∥2 ≤ c11q

2 exp(−(
c1
8

∧ c21
8c24

)Ω2), (31)

for some constant c11.
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For the first term (I),
∂γ1,ξ(Xi, Yi)

∂π1
vecT (XiX

T
i B

∗
1) =

∂γ1,ξ(Xi, Yi)

∂π1
XT
i [(X

T
i B

∗
1)⊗ Ip]

=
∂γ1,ξ(Xi, Yi)

∂π1
(Z+ψfi)

T
((Z+ψfi)

TB∗
1 ⊗ Ip),

and the third term (III)

∂γ1,ξ(Xi, Yi)

∂ vec(Γ2 + Γ1)
vecT (XiX

T
i B

∗
1)

=
π1(1− π1)

2

∂γ1,ξ(Xi, Yi)

∂π1
(fi ⊗ (Γ2 − Γ1)fi) vec

T (XiX
T
i B

∗
1)

=
π1(1− π1)

2

∂γ1,ξ(Xi, Yi)

∂π1
(fi ⊗ (Γ2 − Γ1)fi) (Z+ψfi)

T
((Z+ψfi)

TB∗
1 ⊗ Ip).

We see that both terms only have ZZT and thus can be bounded similarly to (11), (12), and (16). Finally, for some positive
constant c12 we obtain

∥E{[γ1,ξ(Xi, Yi)− γ1,ξ∗(Xi, Yi)]XiX
T
i B

∗
1}∥F ≤ √

qq2c12 exp(−(
c1
8

∧ c21
8c24

)Ω2)dF (θ,θ
∗)

≤ κΣ(dF (θ,θ
∗) ∨ ∥B1 −B∗

1∥F ∨ ∥B2 −B∗
2∥F ), (32)

where κΣ =
√
qq2c12 exp(−( c18 ∧ c21

8c24
)Ω2).

E. Proof of Lemma C.2
E.1. Covering number of L(s)

We state two lemmas that are used later.

Lemma E.1 (Rudelson & Zhou (2012), Lemma 11). Let u1, . . . ,uM ∈ Rpq . Let y ∈ conv(u1, . . . ,uM ). There exists a
set L ∈ [M ] such that

|L| ≤ m =
4maxj∈[M ] ∥uj∥22

ε2

and a vector y′ ∈ conv(uj , j ∈ L) such that
∥y′ − y∥2 ≤ ε.

Lemma E.2 (Rudelson & Zhou (2012), Lemma 21). Let u, θ,x ∈ Rpq be vectors such that ∥θ∥2 = 1, ⟨x, θ⟩ ̸= 0, and u
is not parallel to x. Define ϕ : R → R by:

ϕ(λ) =
⟨x+ λu, θ⟩
∥x+ λu∥2

.

Assume ϕ(λ) has a local maximum at 0, then

⟨x+ u,θ⟩
⟨x, θ⟩

≥ 1− ∥u∥2
∥x∥2

.

Next, we show the following lemma

Lemma E.3. Let 0 < s < 1/3p, and d = 26883sq3, then

L(s) ∩ Spq−1 ⊂ 2 conv(
⋃

|J|≤d

EJ(pq) ∩ Spq−1), (33)

where conv denotes the convex hull and EJ(pq) = span(ej : j ∈ J).
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Proof. The proof is analogous to that for Lemma 13 of Rudelson & Zhou (2012) with some modifications. We assume
d < pq, otherwise the lemma is trivially true. For a vector u ∈ Rpq , let T denote the indices of the 3sq largest absolute
coefficients of u. Then ∥uT c∥1 ≤ ∥uS̃c

1
∥1. We decompose a vector u ∈ L(s) ∩ Spq−1 as

u = uT + uT c ∈ uT + [(
√
sq + 2q

√
3s)∥uS̃1

∥2 +
√
sq∥u∥2] · absconv(ej : j ∈ T c),

where absconv denotes the absolutely convex hull. Since

∥uT c∥22 ≤ ∥uT c∥1∥uT c∥∞ ≤ ∥uS̃c
1
∥1

∥uT ∥1
3sq

≤ [(
√
sq + 2q

√
3s)∥uS̃1

∥2 +
√
sq∥u∥2]

∥uT ∥2√
3sq

≤ [(
√
sq + 2q

√
3s)∥uT ∥2 +

√
sq∥u∥2]

∥uT ∥2√
3sq

= [(
√
3/3 + 2

√
q)∥uT ∥2 +

√
3/3∥u∥2]∥uT ∥2,

we have
1 = ∥u∥22 = ∥uT ∥22 + ∥uT c∥22 ≤ (1 +

√
3/3 + 2

√
q)︸ ︷︷ ︸

a2

∥uT ∥22 +
√
3/3︸ ︷︷ ︸
b

∥uT ∥2.

Let ∥uT ∥2 = x. We are interested in finding a range of x that satisfies a2x2 + bx ≥ 1, which is equivalent to (ax +

b/(2a))2 ≥ b2/(4a2) + 1. Then we have ∥uT ∥2 ≥
√
4a2+b2−b

2a2

Define
V = {uT + [(

√
sq + 2q

√
3s)∥uS̃1

∥2 +
√
sq∥u∥2] · absconv(ej : j ∈ T c) : u ∈ L(s) ∩ Spq−1}.

We have L(s)∩Spq−1 ⊂ V ⊂ L(s) and V is compact. Therefore, V contains a base of L(s), that is, for any y ∈ L(s)/{0},
there exists λ > 0 such that λy ∈ V . For any nonzero vector v ∈ Rpq , we define

F (v) =
v

∥v∥2
.

Then function F is continuous on L(s)/{0} and V . Thus,

L(s) ∩ Spq−1 = F (L(s)/{0}) = F (V).

By duality, inclusion (33) can be derived by showing the supremum of any linear functional over the left side of (33) does
not exceed the supremum over the right side of it. Since L(s)∩Spq−1 = F (V), it is enough to show that for any θ ∈ Spq−1,
there exists z′ ∈ Rpq/{0} such that supp(z′) ≤ d and F (z′) satisfies that

max
v∈V

⟨F (v),θ⟩ ≤ 2⟨F (z′), θ⟩. (34)

For a given θ, we construct a d-sparse vector z′ that satisfies (34). Let z = argmaxv∈V⟨F (v),θ⟩. By the definition of V ,
there exists a set I ∈ [pq] such that |I| = 3sq and for some ηj ∈ {1,−1},

z = zI + [(
√
sq + 2q

√
3s)∥zS̃1

∥2 +
√
sq∥z∥2]

∑
j∈Ic

αjηjej ,

where αj ∈ [0, 1],
∑
j∈Ic αj ≤ 1 and ∥zI∥2 ≥

√
4a2+b2−b

2a2 . If αi = 1 for some i ∈ Ic, then αj = 0 for j ∈ Ic/{i} and z
is a sparse vector with supp(z) ≤ 3sq + 1. Let z′ = z. Clearly, (33) holds with d = 3sq + 1. In the following, we assume
αi ∈ [0, 1), ∀i ∈ Ic. To use lemma E.1, denote epq+1 = 0, ηpq+1 = 1 and set

αpq+1 = 1−
∑
j∈Ic

αj .
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Then y := zIc ∈ conv(u1, . . . ,u|M|), where uj = [(
√
sq + 2q

√
3s)∥zS̃1

∥2 +
√
sq∥z∥2] · ηjej , j ∈ M = {j ∈

Ic ∪ {pq + 1} : αj > 0}. We define αpq+1 because the sum of coefficients must equal 1 in convex combinations.
According to lemma E.1, there exists a set J ′ ⊂ M such that

|J ′| ≤ m :=
4maxj∈M ∥uj∥22

ε2

=
4maxj∈M[(

√
sq + 2q

√
3s)∥zS̃1

∥2 +
√
sq∥z∥2]2∥ej∥22

ε2

≤ 4
sq + 12sq2 + 4sq

√
3q + sq + 2sq + 4sq

√
3q

ε2

= 4
4sq + 8sq

√
3q + 12sq2

ε2
=

16sq + 32sq
√
3q + 48sq2

ε2

≤ 120sq2

ε2
,

and a vector y′ ∈ conv(uj , j ∈ J ′)

y′ = [(
√
sq + 2q

√
3s)∥zS̃1

∥2 +
√
sq∥z∥2]

∑
j∈J ′

βjηjej

such that
∑
j∈J ′ βj = 1 and ∥y − y′∥2 ≤ ε. Set z′ = zI + y′. Then z′ ∈ EJ , where J = (I ∪ J ′) ∩ [pq] and

|J | ≤ |I|+ |J ′| ≤ 3sq +m. We have

∥z− z′∥2 = ∥z− zI − y′∥2 = ∥zIc − y′∥2 = ∥y − y′∥2 ≤ ε.

For {βj : j ∈ J ′} as above, we extend it to {βj : j ∈ Ic ∪ {pq + 1}} by setting βj = 0 if j ∈ Ic ∪ {pq + 1}/{J ′} and
write

z′ = zI + [(
√
sq + 2q

√
3s)∥zS̃1

∥2 +
√
sq∥z∥2]

∑
j∈Ic∪{pq+1}

βjηjej ,

where βj ∈ [0, 1] and
∑
j∈Ic∪{pq+1} βj = 1. If z = z′, then (34) holds naturally

max
v∈V

⟨F (v),θ⟩ = ⟨F (z), θ⟩ ≤ 2⟨F (z′),θ⟩ = 2⟨F (z), θ⟩,

and d = 3sq +m. Otherwise, for some λ to be specified, consider the vector

z+ λ(z′ − z) = zI + [(
√
sq + 2q

√
3s)∥zS̃1

∥2 +
√
sq∥z∥2]

∑
j∈Ic∪{pq+1}

[(1− λ)αj + λβj ]ηjej .

We have
∑
j∈Ic∪{pq+1}[(1−λ)αj+λβj ] = 1. There exists δ0 > 0 such that ∀j ∈ Ic∪{pq+1}, (1−λ)αj+λβj ∈ [0, 1]

if |λ| < δ0 since

• This condition holds by continuity for all j such that αj ∈ (0, 1).

• If αj = 0 for some j, then βj = 0 by definition of M.

Therefore, we have
∑
j∈Ic [(1−λ)αj+λβj ] ≤ 1, which implies z+λ(z′−z) ∈ V . Now consider function ϕ : (−δ0, δ0) →

R,

ϕ(λ) = ⟨F (z+ λ(z′ − z)), θ⟩ = ⟨z+ λ(z′ − z), θ⟩
∥z+ λ(z′ − z)∥2

.

Since z = argmaxv∈V⟨F (v),θ⟩, ϕ(λ) attains a local maximum at 0. According to lemma E.2,

⟨z′,θ⟩
⟨z, θ⟩

=
⟨z+ (z′ − z), θ⟩

⟨z, θ⟩
≥ 1− ∥z′ − z∥2

∥z∥2
=

∥z∥2 − ∥z′ − z∥2
∥z∥2

.
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It follows that
⟨F (z′), θ⟩
⟨F (z), θ⟩

=
⟨z′/∥z′∥2,θ⟩
⟨z/∥z∥2,θ⟩

=
∥z∥2
∥z′∥2

· ⟨z
′,θ⟩

⟨z, θ⟩
≥ ∥z∥2

∥z′∥2
· ∥z∥2 − ∥z′ − z∥2

∥z∥2

≥ ∥z∥2
∥z∥2 + ∥z′ − z∥2

· ∥z∥2 − ∥z′ − z∥2
∥z∥2

=
∥z∥2 − ∥z′ − z∥2
∥z∥2 + ∥z′ − z∥2

≥ ∥z∥2 − ε

∥z∥2 + ε
= 1− 2ε

∥z∥2 + ε
.

We know ∥z∥2 ≥ ∥zI∥2 ≥
√
4a2+b2−b

2a2 , where a2 = 1 +
√
3/3 + 2

√
q and b =

√
3/3. Let ε =

√
4a2+b2−b

6a2 , we have

⟨F (z′),θ⟩
⟨F (z), θ⟩

≥ 1

2
.

Therefore, we construct a sparse vector z′ such that (34) holds. To derive d, we have

m ≤ 120sq2

ε2
.

Note that

ε2 =
4a2 + 2b2 − 2b

√
4a2 + b2

36a4

=
4(1 +

√
3/3 + 2

√
q) + 2/3− 2

√
3/3
√

4(1 +
√
3/3 + 2

√
q) + 1/3

36(1 +
√
3/3 + 2

√
q)2

=
x+ 2/3− 2

√
3/3
√
x+ 1/3

9x2
,

where x = 4(1 +
√
3/3 + 2

√
q). Since q ≥ 1, x ≥ 4(3 +

√
3/3). By the derivative

d

dx
(x+ 2/3− 2

√
3/3
√
x+ 1/3) = 1− 1√

3x+ 1
> 0, when x > 4(3 +

√
3/3).

Substitute x = 14 into the numerator

ε2 >
10

9x2
>

1

x2
=

1

16(1 +
√
3/3 + 2

√
q)2

>
1

16× 14q
=

1

224q
.

Then, we have

m ≤ 120sq2

ε2
< 26880sq3.

Let Mnet be the cardinality of a 1/2-net of L(s) ∩ Spq−1. We want to bound Mnet, which will be used in the later proof.
With lemma E.3 and using the same argument in Rudelson & Zhou (2012)[Section H.1], we have

Mnet ≤ (1 + 2/(
1

2
))d ·

(
pq

d

)
≤ 5d(

epq

d
)d = exp(d log(

5epq

d
)),

Let Cd = 26883,

log(Mnet) ≤ d log(
5epq

d
) = Cdsq

3 log(
5epq

Cdsq3
) = Cdsq

3[log(
p

sq2
) + log(

5e

Cd
)] ≤ Cnetsq

3 log(
p

sq2
),

for some Cnet > 0, when p > csq2 for sufficiently large c. If we want to eliminate log 5e/Cd, log( p
sq2 ) ≥ log 5e/Cd. That

is the reason we require p > csq2.
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E.2. Concentration of the matrices Uw

Recall that Û1(θ) =
1
n

∑n
i=1 γ1,θ(Xi, Yi)Xif

T
i ,U1(θ) =

1
n

∑n
i=1 E[γ1,θ(Xi, Yi)Xi]f

T
i . We want to bound

WU = sup
θ∈Bcon(θ∗)

∥Û1(θ)−U1(θ)∥F,s.

By definition, we have

WU = sup
vec(u)∈L(s)∩Spq−1

sup
θ∈Bcon(θ∗)

⟨ 1
n

n∑
i=1

γ1,θ(Xi, Yi)Xif
T
i − 1

n

n∑
i=1

E[γ1,θ(Xi, Yi)Xi]f
T
i ,u⟩F

= sup
vec(u)∈L(s)∩Spq−1

sup
θ∈Bcon(θ∗)

⟨ 1
n

n∑
i=1

(γ1,θ(Xi, Yi)Xi − E[γ1,θ(Xi, Yi)Xi]) f
T
i ,u⟩F .

Define

WU
u = sup

θ∈Bcon(θ∗)

⟨ 1
n

n∑
i=1

(γ1,θ(Xi, Yi)Xi − E[γ1,θ(Xi, Yi)Xi]) f
T
i ,u⟩F .

Then WU = supvec(u)∈L(s)∩Spq−1 WU
u . We use an ε-net argument. The first step is approximation. Let

vec(u1), . . . , vec(uMnet) be a 1/2-net of L(s) ∩ Spq−1. This means that for any v ∈ L(s) ∩ Spq−1, there is some in-
dex j ∈ [Mnet] such that ∥v − uj∥F ≤ 1/2. We have

WU
v ≤WU

uj
+ |WU

uj
−WU

v |

≤ max
j∈[Mnet]

WU
uj

+WU∥uj − v∥F

≤ max
j∈[Mnet]

WU
uj

+
1

2
WU.

ThenWU = supvW
U
v ≤ maxj∈[Mnet]W

U
uj

+1/2WU, which impliesWU ≤ 2maxj∈[Mnet]W
U
uj

. Then in the second step,
we bound the tail of WU

uj
for fixed j. And the third step is union bound, where use the covering number of L(s) ∩ Spq−1.

Let {ϵi}ni=1 be i.i.d. Rademacher variables. Recall that

γ1,θ(Xi, Yi) =
π1

π1 + (1− π1) exp{(Xi − 1/2(Γ2 + Γ1)fi)
T (Γ2 − Γ1)fi︸ ︷︷ ︸

Cθ,Y (Xi)

}

=
π1

π1 + (1− π1) exp(Cθ,Y (Xi))
.
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Then according to Lemma S.5 in Wang et al. (2024) and Hölder’s inequality, we have

E[exp(λWU
uj
)]

= E[exp(λ sup
θ∈Bcon(θ∗)

⟨ 1
n

n∑
i=1

(γ1,θ(Xi, Yi)Xi − E[γ1,θ(Xi, Yi)Xi]) f
T
i ,uj⟩F )]

= E[exp(
λ

n
sup

θ∈Bcon(θ∗)

n∑
i=1

⟨(γ1,θ(Xi, Yi)Xi − E[γ1,θ(Xi, Yi)Xi]) f
T
i ,uj⟩F )]

≤ E[exp(
2λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨γ1,θ(Xi, Yi)Xif
T
i ,uj⟩F

∣∣∣)]
= E[exp(

2λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

{
ϵi(

π1
π1 + (1− π1) exp(Cθ,Y (Xi))

− π1)⟨Xif
T
i ,uj⟩F + ϵiπ1⟨Xif

T
i ,uj⟩F

}∣∣∣)]
≤ E[exp(

4λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi(
π1

π1 + (1− π1) exp(Cθ,Y (Xi))
− π1)⟨Xif

T
i ,uj⟩F

∣∣∣)]1/2︸ ︷︷ ︸
(I)

·

E[exp(
4λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵiπ1⟨Xif
T
i ,uj⟩F

∣∣∣)]1/2︸ ︷︷ ︸
(II)

.

To bound (I), we use lemma C.1 in Cai et al. (2019). The function ψ(x) = π1

π1+(1−π1) exp(x)
− π1 is Lipschitz with

constant 1−π1

π1
≤ 1−c0

c0
and ψ(0) = 0. Since Yi, fi are fixed, Cθ,Y (Xi) is a function defined for random variable Xi. Let

Γ∗ = π∗
1Γ

∗
1 +(1−π∗

1)Γ
∗
2, and Zi = Xi−Γ∗fi be the centered random variable. Note that Zi ∼ π∗

1N(Γ∗
1fi−Γ∗fi, Ip)+

(1− π∗
1)N(Γ∗

2fi − Γ∗fi, Ip).
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Therefore

(I)2

≤ E[exp(
8λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵiCθ,Y (Xi)⟨Xif
T
i ,uj⟩F

∣∣∣)]
= E[exp(

8λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi[(Xi − 1/2(Γ2 + Γ1)fi)
T (Γ2 − Γ1)fi]⟨Xif

T
i ,uj⟩F

∣∣∣)]
= E[exp(

8λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Xi − 1/2(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨Xif
T
i ,uj⟩F

∣∣∣)]
= E[exp(

8λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi + Γ∗fi − 1/2(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨(Zi + Γ∗fi)f
T
i ,uj⟩F

∣∣∣)]
≤ E[exp(

32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi, (Γ2 − Γ1)fi⟩⟨ZifTi ,uj⟩F
∣∣∣)]1/4︸ ︷︷ ︸

(iv)

·

E[exp(
32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Γ∗fi − 1/2(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨ZifTi ,uj⟩F
∣∣∣)]1/4︸ ︷︷ ︸

(i)

·

E[exp(
32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi, (Γ2 − Γ1)fi⟩⟨Γ∗fif
T
i ,uj⟩F

∣∣∣)]1/4︸ ︷︷ ︸
(ii)

·

E[exp(
32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Γ∗fi − 1/2(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨Γ∗fif
T
i ,uj⟩F

∣∣∣)]1/4︸ ︷︷ ︸
(iii)

.

Note that
∥Γ2 − Γ1∥F = ∥Γ2 − Γ∗

2 − (Γ1 − Γ∗
1) + Γ∗

2 − Γ∗
1∥F

≤ ∥Γ2 − Γ∗
2∥F + ∥Γ1 − Γ∗

1∥F + ∥Γ∗
2∥F + ∥Γ∗

1∥F
≤ 2CbΩ+ 2Mb.

(35)

We can bound ∥Γ2+Γ1∥F with same quantity. Therefore, ∥(Γ∗
1)
T (Γ1−Γ2)∥2 ≤Mb(2CbΩ+2Mb) = 2CbMbΩ+2M2

b .
We like to bound

∥(Γ∗
1 −

Γ2 + Γ1

2
)T (Γ2 − Γ1)∥2 ≤ ∥Γ∗

1 −
Γ2 + Γ1

2
∥F ∥Γ2 − Γ1∥2

≤ (∥Γ∗
1∥F + ∥Γ2 + Γ1

2
∥F )(2CbΩ+ 2Mb)

≤ 2(CbΩ+ 2Mb)(CbΩ+Mb)

= 2C2
bΩ

2 + 6CbMbΩ+ 4M2
b .

We know that ∥A∥2 = maxx,y x
TAy/(∥x∥2∥y∥2) For (i), we have∣∣∣ sup

θ∈Bcon(θ∗)

⟨Γ∗fi − 1/2(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩
∣∣∣

≤ sup
θ∈Bcon(θ∗)

∣∣∣π∗
1⟨(Γ∗

1 − 1/2(Γ2 + Γ1))fi, (Γ2 − Γ1)fi⟩
∣∣∣+

sup
θ∈Bcon(θ∗)

∣∣∣(1− π∗
1)⟨(Γ∗

2 − 1/2(Γ2 + Γ1))fi, (Γ2 − Γ1)fi⟩
∣∣∣

≤ sup
θ∈Bcon(θ∗)

∣∣∣∥fi∥22(2C2
bΩ

2 + 6CbMbΩ+ 4M2
b )
∣∣∣.
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Let C̃11 = (2C2
bΩ

2 + 6CbMbΩ+ 4M2
b )maxi ∥fi∥22. Therefore,

(i)4

= E[exp(
32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Γ∗fi − 1/2(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨ZifTi ,uj⟩F
∣∣∣)]

≤ E[exp(
32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

⟨Γ∗fi − 1/2(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩
∣∣∣︸ ︷︷ ︸

≤C̃11

·
∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨ZifTi ,uj⟩F
∣∣∣)]

≤ E[exp(
32λ

n

1− c0
c0

C̃11·
∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨ZifTi ,uj⟩F
∣∣∣)].

Let that

Z̃i|(Wi = w) = ⟨ZifTi ,uj⟩F |(Wi = w) = vec(uj)
T (fi ⊗ Ip)Zi|(Wi = w).

Since Zi|(Wi = w) ∼ N(Γ∗
wfi − Γ∗fi, Ip), var(Z̃i|(Wi = w)) = ∥ vec(uj)T (fi ⊗ Ip)∥22 ≤M2

4 . Therefore ∥ϵiZ̃i|(Wi =

w)∥ψ2 = ∥Z̃i|(Wi = w)∥ψ2 ≤ CM4. Since ϵi is independent of Zi, E[ϵiZ̃i|(Wi = w)] = 0. Then, by equation (5.12) in
Vershynin (2010), the moment generating function of ϵiZ̃i|(Wi = w) is

E[exp(tϵiZ̃i|(Wi = w))] ≤ exp(CM2
4 t

2).

Then, we have

E[exp(
32λ

n

1− c0
c0

C̃11·
∣∣∣ n∑
i=1

ϵi⟨ZifTi ,uj⟩F
∣∣∣)]

= E[max

{
exp(

32λ

n

1− c0
c0

C̃11 ·
n∑
i=1

ϵi⟨ZifTi ,uj⟩F , exp(
32λ

n

1− c0
c0

C̃11 · −
n∑
i=1

ϵi⟨ZifTi ,uj⟩F

}
]

= E[max

{
exp(

32λ

n

1− c0
c0

C̃11 ·
n∑
i=1

ϵiZ̃i), exp(−
32λ

n

1− c0
c0

C̃11 ·
n∑
i=1

ϵiZ̃i)

}
]

≤ E[exp(
32λ

n

1− c0
c0

C̃11 ·
n∑
i=1

ϵiZ̃i)] + E[exp(−32λ

n

1− c0
c0

C̃11 ·
n∑
i=1

ϵiZ̃i)]

≤ 2 exp(
λ2

n

322(1− c0)
2

c20
C̃2

11CM
2
4 ) = 2 exp(

λ2

n
4C11),

where C11 = 322/4CM2
4
(1−c0)2
c20

C̃2
11. Then

(i) ≤ E[exp(
32λ

n

1− c0
c0

C̃11·
∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨ZifTi ,uj⟩F
∣∣∣)]1/4 ≤ 21/4 exp(

λ2

n
C11). (36)

When θ ∈ Bcon(θ
∗), vec(Γw − Γ∗

w) ∈ L(s), which implies vec(Γw) = vec(Γ∗
w) + vec(uw), vec(uw) ∈ L(s). Next, we

bound the second term (ii). Note that

|⟨Γ∗fif
T
i ,uj⟩F | = | vec(uj)T vec(Γ∗fifi)| ≤ ∥ vec(uj)∥2 · ∥ vec(Γ∗fif

T
i )∥2

= ∥(fifTi ⊗ Ip) vec(Γ
∗)∥2 ≤ ∥fifTi ∥2 · ∥ vec(Γ∗)∥2

≤Mb∥fi∥22 ≤Mbmax
i

∥fi∥22.
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Then

(ii)4 = E[exp(
32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi, (Γ2 − Γ1)fi⟩⟨Γ∗fif
T
i ,uj⟩F

∣∣∣)]
≤ E[exp(

32λ

n

1− c0
c0

Mbmax
i

∥fi∥22 · sup
θ∈Bcon(θ∗)

∣∣∣ n∑
i=1

ϵi⟨Zi, (Γ2 − Γ1)fi⟩
∣∣∣)]

≤ E[exp(
64λ

n

1− c0
c0

Mbmax
i

∥fi∥22 · sup
θ∈Bcon(θ∗)

∣∣∣ n∑
i=1

ϵi⟨Zi, (Γ∗
2 + u2)fi⟩

∣∣∣)]1/2·
E[exp(

64λ

n

1− c0
c0

Mbmax
i

∥fi∥22 · sup
θ∈Bcon(θ∗)

∣∣∣ n∑
i=1

ϵi⟨Zi, (Γ∗
1 + u1)fi⟩

∣∣∣)]1/2·
≤ E[exp(

128λ

n

1− c0
c0

Mbmax
i

∥fi∥22·
∣∣∣ n∑
i=1

ϵi⟨Zi,Γ∗
2fi⟩
∣∣∣)]1/4︸ ︷︷ ︸

(ii.1)

·

E[exp(
128λ

n

1− c0
c0

Mbmax
i

∥fi∥22 · sup
vec(u2)∈L(s)

∣∣∣ n∑
i=1

ϵi⟨Zi,u2fi⟩
∣∣∣)]1/4︸ ︷︷ ︸

(ii.2)

·

E[exp(
128λ

n

1− c0
c0

Mbmax
i

∥fi∥22·
∣∣∣ n∑
i=1

ϵi⟨Zi,Γ∗
1fi⟩
∣∣∣)]1/4︸ ︷︷ ︸

(ii.3)

·

E[exp(
128λ

n

1− c0
c0

Mbmax
i

∥fi∥22 · sup
vec(u1)∈L(s)

∣∣∣ n∑
i=1

ϵi⟨Zi,u1fi⟩
∣∣∣)]1/4︸ ︷︷ ︸

(ii.4)

.

We first focus on the term (ii.4)

E[exp(
128λ

n

1− c0
c0

Mbmax
i

∥fi∥22 · sup
vec(u1)∈L(s)

∣∣∣ n∑
i=1

ϵi⟨Zi,u1fi⟩
∣∣∣)].

Again, we use the ϵ-net argument. Let vec(ũ1), . . . , vec(ũMnet) be a 1/2-net of L(s) ∩ Spq−1.

sup
vec(u1)∈L(s)

∣∣∣ n∑
i=1

ϵi⟨Zi,u1fi⟩
∣∣∣ = sup

vec(u1)∈L(s)

∥u1∥F
∣∣∣ n∑
i=1

ϵi⟨Zi,u1/∥u1∥2fi⟩
∣∣∣

≤ sup
vec(u1)∈L(s)

∥u1∥F sup
vec(ũ)∈L(s)∩Spq−1

∣∣∣ n∑
i=1

ϵi⟨Zi, ũfi⟩
∣∣∣

≤ 2 sup
vec(u1)∈L(s)

∥u1∥F max
j∈[Mnet]

∣∣∣ n∑
i=1

ϵi⟨Zi, ũjfi⟩
∣∣∣

≤ 2CbΩ max
j∈[Mnet]

∣∣∣ n∑
i=1

ϵi⟨Zi, ũjfi⟩
∣∣∣,
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where in the last equality we use vec(u1) = vec(Γ1)− vec(Γ∗
1) and ∥Γ1 − Γ∗

1∥F ≤ CbΩ. Then

E[exp(
128λ

n

1− c0
c0

Mbmax
i

∥fi∥22 · sup
vec(u1)∈L(s)

∣∣∣ n∑
i=1

ϵi⟨Zi,u1fi⟩
∣∣∣)]

≤ E[exp(
256λ

n

1− c0
c0

Mbmax
i

∥fi∥22CbΩ · max
j∈[Mnet]

∣∣∣ n∑
i=1

ϵi⟨Zi, ũjfi⟩
∣∣∣)]

≤
∑

j∈[Mnet]

E[exp(
256λ

n

1− c0
c0

Mbmax
i

∥fi∥22CbΩ·
∣∣∣ n∑
i=1

ϵi⟨Zi, ũjfi⟩
∣∣∣)]

=
∑

j∈[Mnet]

E[exp(
λ

n
256

1− c0
c0

Mbmax
i

∥fi∥22CbΩ︸ ︷︷ ︸
C̃12

·
∣∣∣ n∑
i=1

ϵiZ̃i

∣∣∣)],
where Z̃i = ⟨Zi, ũjfi⟩. Since E[ϵiZ̃i|(Wi = w)] = 0 and var[Z̃i|(Wi = w)] ≤ ∥fi∥22, E[exp(tϵiZ̃i|(Wi = w))] ≤
exp(CM2

4 t
2). Therefore, we have

(ii.4)4 ≤
∑

j∈[Mnet]

E[exp(
λ

n
C̃12·

∣∣∣ n∑
i=1

ϵiZ̃i

∣∣∣)]
=

∑
j∈[Mnet]

E[max

{
exp(

λ

n
C̃12 ·

n∑
i=1

Z̃i), exp(
λ

n
C̃12 · −

n∑
i=1

ϵiZ̃i)

}
]

≤
∑

j∈[Mnet]

E[exp(
λ

n
C̃12 ·

n∑
i=1

ϵiZ̃i)] +
∑

j∈[Mnet]

E[exp(
λ

n
C̃12 · −

n∑
i=1

ϵiZ̃i)]

≤ 2Mnet

n∏
i=1

exp(
λ2

n2
C̃2

12CM
2
4 ) = 2Mnet exp(C̃

2
12CM

2
4︸ ︷︷ ︸

4C̄12

λ2

n
)

≤ 2 exp(4C̄12
λ2

n
+ Cnetsq

3 log(
p

sq2
)).

Let Z̃i = ⟨Zi,Γ∗
1fi⟩. Then E[ϵiZ̃i|(Wi = w)] = 0, var[Z̃i|(Wi = w)] ≤M2

b ∥fi∥22. With same the argument,

(ii.3)4 = E[exp(
128λ

n

1− c0
c0

Mbmax
i

∥fi∥22·
∣∣∣ n∑
i=1

ϵi⟨Zi,Γ∗
1fi⟩
∣∣∣)]

≤ E[exp(
128λ

n

1− c0
c0

Mbmax
i

∥fi∥22 ·
n∑
i=1

ϵiZ̃i)] + E[exp(
128λ

n

1− c0
c0

Mbmax
i

∥fi∥22 · −
n∑
i=1

ϵiZ̃i)]

≤ 2 exp(
λ2

n

1282(1− c0)
2

c20
CM4

bM
4
4︸ ︷︷ ︸

4Ĉ12

).

Then we have

(ii.3) · (ii.4) ≤
√
2 exp((C̄12 + Ĉ12)

λ2

n
+ Cnet/4sq

3 log(
p

sq2
)).

With the same argument, we can derive a similar bound for (ii.1) · (ii.2). Then, for some positive constant C12,

(ii) ≤ 21/4 exp(C12
λ2

n
+ Cnet/8sq

3 log(
p

sq2
)). (37)

Recall that for a bounded random variable X ∈ [a, b] almost surely with E[X] = 0, E[exp(tX)] ≤ exp(t2(b − a)2/8)
for any t ∈ R. From earlier derivation, we have |⟨Γ∗fif

T
i ,uj⟩F | ≤ Mbmaxi ∥fi∥22. Thus, E[ϵi⟨Γ∗fif

T
i ,uj⟩F ] = 0 and
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ϵi⟨Γ∗fif
T
i ,uj⟩F ∈ [−Mbmaxi ∥fi∥22,Mbmaxi ∥fi∥22], which implies

E[exp(tϵi⟨Γ∗fif
T
i ,uj⟩F )] ≤ exp(

t2M2
b (maxi ∥fi∥22)2

2
), ∀t ∈ R.

For (iii), we have

(iii)4

= E[exp(
32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Γ∗fi − 1/2(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨Γ∗fif
T
i ,uj⟩F

∣∣∣)]
≤ E[exp(

32λ

n

1− c0
c0

C̃11 · sup
θ∈Bcon(θ∗)

∣∣∣ n∑
i=1

ϵi⟨Γ∗fif
T
i ,uj⟩F

∣∣∣)]
≤ E[exp(

32λ

n

1− c0
c0

C̃11 ·
n∑
i=1

ϵi⟨Γ∗fif
T
i ,uj⟩F )] + E[exp(

32λ

n

1− c0
c0

C̃11 · −
n∑
i=1

ϵi⟨Γ∗fif
T
i ,uj⟩F )]

≤ 2 exp(
λ2

n

512(1− c0)
2

c20
C̃2

11M
2
bM

4
4︸ ︷︷ ︸

4C13

).

Thus

(iii) ≤ 21/4 exp(
λ2

n
C13). (38)

Recall that vec(Γw−Γ∗
w) ∈ L(s). There exist uw ∈ Rp×q such that vec(Γw) = vec(Γ∗

w)+vec(uw) and vec(uw) ∈ L(s).
Then we proceed to bound

(iv)4 = E[exp(
32λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi, (Γ2 − Γ1)fi⟩⟨ZifTi ,uj⟩F
∣∣∣)]

≤ E[exp(
64λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi,Γ2fi⟩⟨ZifTi ,uj⟩F
∣∣∣)]1/2·

E[exp(
64λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi,Γ1fi⟩⟨ZifTi ,uj⟩F
∣∣∣)]1/2

≤ E[exp(
128λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi,Γ∗
2fi⟩⟨ZifTi ,uj⟩F

∣∣∣)]1/4︸ ︷︷ ︸
(iv.1)

·

E[exp(
128λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi,u2fi⟩⟨ZifTi ,uj⟩F
∣∣∣)]1/4︸ ︷︷ ︸

(iv.2)

·

E[exp(
128λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi,Γ∗
1fi⟩⟨ZifTi ,uj⟩F

∣∣∣)]1/4︸ ︷︷ ︸
(iv.3)

·

E[exp(
128λ

n

1− c0
c0

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi,u1fi⟩⟨ZifTi ,uj⟩F
∣∣∣)]1/4︸ ︷︷ ︸

(iv.4)

.
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For (iv.4), define

W̃u := sup
vec(ũ)∈L(s)∩Spq−1

n∑
i=1

ϵi⟨Zi, ũfi⟩⟨ZifTi ,uj⟩F

= sup
vec(ũ)∈L(s)∩Spq−1

⟨vec(ũ), (
n∑
i=1

ϵi vec(Zif
T
i ) vec(Zif

T
i )

T ), vec(uj)⟩,

where we use
⟨Zi, ũfi⟩ = fTi ũ

TZi = tr(fTi ũ
TZi) = ⟨ũ,ZifTi ⟩F = ⟨vec(ũ), vec(ZifTi )⟩.

Let

W̃ũ,u = ⟨vec(ũ), (
n∑
i=1

ϵi vec(Zif
T
i ) vec(Zif

T
i )

T ), vec(uj)⟩,

and {ũ1, . . . , ũMnet} be a 1/2-net of of L(s) ∩ Spq−1. For any v ∈ L(s) ∩ Spq−1, let ũk be one of the closest point in the
1/2-cover. Then by definition,

v − ũk
∥v − ũk∥

∈ L(s) ∩ Spq−1, ∥v − ũk∥2 ≤ 1

2
.

Therefore,

W̃v,u ≤ W̃ũk,u + |W̃ũk,u − W̃v,u|

≤ max
k∈[Mnet]

W̃ũk,u + |⟨vec(ũk − v)/∥ũk − v∥2, (
n∑
i=1

ϵi vec(Zif
T
i ) vec(Zif

T
i )

T ), vec(uj)⟩∥ũk − v∥2

≤ max
k∈[Mnet]

W̃ũk,u + W̃u
1

2
,

which implies W̃u ≤ 2maxk∈[Mnet] W̃ũk,u. Then

sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi,u1fi⟩⟨ZifTi ,uj⟩F

= sup
vec(u1)∈L(s)

∥u1∥F
n∑
i=1

ϵi⟨Zi,u1/∥u1∥F fi⟩⟨ZifTi ,uj⟩F

≤ CbΩ · W̃u ≤ 2CbΩ · max
k∈[Mnet]

W̃ũk,u,

where we use supθ∈Bcon(θ∗) ∥u1∥F = ∥ vec(Γ1 − Γ∗
1)∥2 ≤ CbΩ. Then

(iv.4)4 ≤ E[exp(
128λ

n

1− c0
c0

∣∣∣2CbΩ · max
k∈[Mnet]

W̃ũk,u

∣∣∣)]
≤

∑
k∈[Mnet]

E[exp(
128λ

n

1− c0
c0

2CbΩ ·
n∑
i=1

ϵi⟨Zi, ũkfi⟩⟨ZifTi ,uj⟩F )]+

∑
k∈[Mnet]

E[exp(
128λ

n

1− c0
c0

2CbΩ · −
n∑
i=1

ϵi⟨Zi, ũkfi⟩⟨ZifTi ,uj⟩F )].

To bound ϵi⟨Zi, ũkfi⟩⟨ZifTi ,uj⟩F for fixed ũk and uj , we use lemma D.2 in Wang et al. (2015) that states the product of
two sub-Gaussian random variables is a sub-exponential random variable. Let ∥·∥ψ1

and ∥·∥ψ2
denote the sub-exponential

and sub-Gaussian norm. Note that ⟨Zi, ũkfi⟩|(Wi = w) and ⟨ZifTi ,uj⟩F |(Wi = w) are normal distributions with zero
mean and variance less than or equal to ∥fi∥22. For X ∼ N(0, σ2), ∥X∥ψ2 ≤ Cψ2σ. For some Cψ > 0, we have

∥ϵi⟨Zi, ũkfi⟩⟨ZifTi ,uj⟩F |(Wi = w)∥ψ1
= ∥⟨Zi, ũkfi⟩⟨ZifTi ,uj⟩F |(Wi = w)∥ψ1

≤ Cψ1
max{∥⟨Zi, ũkfi⟩|(Wi = w)∥2ψ2

, ∥⟨ZifTi ,uj⟩F |(Wi = w)∥2ψ2
}

≤ Cψ1
(C2

ψ2
max
i

∥fi∥22 + C
′2
ψ2

max
i

∥fi∥22)

≤ CψM
2
4 .
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Note that E[ϵi⟨Zi, ũkfi⟩⟨ZifTi ,uj⟩F |(Wi = w)] = 0 since ϵi is Rademacher random variable independent of Zi. Accord-
ing to Lemma 5.15 in Vershynin (2010), we obtain

E[exp(
128λ

n

1− c0
c0

2CbΩ · ϵi⟨Zi, ũkfi⟩⟨ZifTi ,uj⟩F )] ≤ exp(C
1282λ2

n2
(1− c0)

2

c20
4C2

bΩ
2M4

4 ),

when

|128λ
n

1− c0
c0

2CbΩ| ≤
C ′

Cψmaxi ∥fi∥22
.

Then

(iv.4)4 ≤ 2
∑

k∈[Mnet]

exp(
λ2

n
4C

1282(1− c0)
2

c20
C2
bΩ

2M4
4︸ ︷︷ ︸

4C̃14

)

≤ 2 exp(
λ2

n
4C̃14)Mnet ≤ 2 exp(

λ2

n
4C̃14 + Cnetsq

3 log(
p

sq2
)).

For term (iv.3), using Lemma D.2 (Wang et al., 2015) and Lemma 5.15 (Vershynin, 2010) again, for some positive constant
C, we have

E[exp(
128λ

n

1− c0
c0

· ϵi⟨Zi,Γ∗
1fi⟩⟨ZifTi ,uj⟩F )] ≤ exp(

λ2

n2
C),

when
|128λ
n

1− c0
c0

| ≤ c

C ′(1 +Mb)maxi ∥fi∥22
.

Therefore,

(iv.3)4 ≤ 2 exp(
λ2

n
4C̄14).

We can bound

(iv.3) · (iv.4) ≤
√
2 exp((C̃14 + C̄14)

λ2

n
+ Cnet/4sq

3 p

sq2
).

The analysis of (iv.1) · (iv.2) is similar to (iv.3) · (iv.4) and we have

(iv) ≤ 21/4 exp(C14
λ2

n
+ Cnet/8sq

3 p

sq2
). (39)

Combing (36), (37), (38), and (39), the bound for (I) is

(I) ≤ [(i) · (ii) · (iii) · (iv)]1/2 ≤
√
2 exp(CI

λ2

n
+ Cnet/8sq

3 p

sq2
), (40)

where CI = (C11 +C12 +C13 +C14)/2. It remains to bound (II). Using the same argument, for some positive constant
CII , we have

(II)2 = E[exp(
2λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵiπ1⟨Xif
T
i ,uj⟩F

∣∣∣)]
= E[exp(

4λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵiπ1⟨ZifTi ,uj⟩F
∣∣∣)]1/2·

E[exp(
4λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵiπ1⟨Γ∗fif
T
i ,uj⟩F

∣∣∣)]1/2
≤ 2 exp(

λ2

n
2CII),

which implies

(II) ≤
√
2 exp(

λ2

n
CII). (41)
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Combining the results (40) and (41), we obtain

E[exp(λWU
uj
)] ≤ (I) · (II) ≤ 2 exp(

λ2

n
CU + Cnet/8sq

3 log(
p

sq2
)),

where CU = CI + CII . Thus,

E[exp(λWU) ≤ E[exp(2λ max
j∈[Mnet]

WU
uj
)]] ≤

∑
j∈[Mnet]

E[exp(2λWU
uj
)]

≤ 2Mnet exp(
4λ2

n
CU + Cnet/8sq

3 log(
p

sq2
)) ≤ 2 exp(

4λ2

n
CU + 2Cnetsq

3 log(
p

sq2
))

≤ 2 exp(
4λ2

n
CU + 2Cnetsq

3 log(p)).

Using the Chernoff bounds, we have

P ( sup
θ∈Bcon(θ∗)

∥Û1(θ)−U1(θ)∥F,s > t) = P (WU > t)

≤ exp(−λt) E[exp(λWU)] ≤ 2 exp(
4λ2

n
CU + 2Cnetsq

3 log(p)− λt).

Let λ =
√
nsq3 log(p)/CU, t = (2Cnet + 5)

√
CUsq3 log(p)/n. Then

P (WU > t) ≤ 2 exp(−sq3 log(p)) ≤ 2 exp(− log(p)) = o(1).

Recall that we require ∣∣∣128λ
n

1− c0
c0

∣∣∣ =∣∣∣128
√
sq3 log(p)

nCU

1− c0
c0

∣∣∣ ≤ C ′.

Therefore as long as n ≥ C ′′sq3 log(p) for a sufficiently large C ′′, we have with probability at least 1− o(1),

sup
θ∈Bcon(θ∗)

∥Û1(θ)−U1(θ)∥F,s ≲
√
sq3 log(p)

n
. (42)

Note that we can get a sharper bound when sq2 = o(p),

sup
θ∈Bcon(θ∗)

∥Û1(θ)−U1(θ)∥F,s ≲

√
sq3 log( p

sq2 )

n
.

E.3. Concentration of the weights πw

We proceed to bound supθ∈Bcon(θ∗) |π̂1(θ)− π1(θ)|. Recall that

π̂1 =
1

n

n∑
i=1

γ1,θ(Xi, Yi), π1(θ) =
1

n
E[γ1,θ(Xi, Yi)],

and

γ1,θ(Xi, Yi) =
π1

π1 + (1− π1) exp{(Xi − 1/2(Γ2 + Γ1)fi)
T (Γ2 − Γ1)fi︸ ︷︷ ︸

Cθ,Y (Xi)

}
.
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Let Wπ = supθ∈Bcon(θ∗) |π̂1(θ)− π1(θ)|. We have

E[exp(λW π)]

= E[exp(
λ

n
sup

θ∈Bcon(θ∗)

∣∣∣ n∑
i=1

{
π1

π1 + (1− π1) exp(Cθ,Y (Xi))
− E[γ1,θ(Xi, Yi)]

}∣∣∣)]
≤ E[exp(

λ

n
sup

θ∈Bcon(θ∗)

n∑
i=1

{
π1

π1 + (1− π1) exp(Cθ,Y (Xi))
− E[γ1,θ(Xi, Yi)]

}
)]︸ ︷︷ ︸

(I)

+

E[exp(
λ

n
sup

θ∈Bcon(θ∗)

n∑
i=1

−
{

π1
π1 + (1− π1) exp(Cθ,Y (Xi))

− E[γ1,θ(Xi, Yi)]

}
)]︸ ︷︷ ︸

(II)

.

Apply Lemma S.5 in Wang et al. (2024) to (I),

(I) ≤ E[exp(
2λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi
π1

π1 + (1− π1) exp(Cθ,Y (Xi))

∣∣∣)]
≤ E[exp(

4λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi

{
π1

π1 + (1− π1) exp(Cθ,Y (Xi))
− π1

}∣∣∣)]1/2︸ ︷︷ ︸
(i)

·

E[exp(
4λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵiπ1

∣∣∣)]1/2︸ ︷︷ ︸
(ii)

.

Note that ψ(x) = π1

π1+(1−π1)ex
− π1 is Lipschitz with constant 1−w

w ≤ 1−c0
c0

and ψ(0) = 0. By Lemma C.1 (Cai et al.,
2019) with g(·) = 1, we have

(i)2 ≤ E[exp(
8λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi(Xi − 1/2(Γ2 + Γ1)fi)
T (Γ2 − Γ1)fi

∣∣∣)]
≤ E[exp(

16λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Zi, (Γ2 − Γ1)fi⟩
∣∣∣)]1/2︸ ︷︷ ︸

(i.1)

·

E[exp(
16λ

n

∣∣∣ sup
θ∈Bcon(θ∗)

n∑
i=1

ϵi⟨Γ∗fi −
1

2
(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩

∣∣∣)]1/2︸ ︷︷ ︸
(i.2)

.

Terms (i.1) and (i.2) can be bounded similarly to (37) and (38). We have

(i.1) ≤
√
2 exp(2C11

λ2

n
+ Cnet/2sq

3 log(
p

sq2
)),

(i.2) ≤
√
2 exp(2C12

λ2

n
).

Term (ii) can be bounded easily using properties of sub-Gaussian random variables,

(ii) ≤
√
2 exp(C13

λ2

n
).

Thus

(I) ≤ (i) · (ii) ≤ 2 exp(CI
λ2

n
+ Cnet/4sq

3 log(
p

sq2
)),
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where CI = C11 + C12 + C13. Term (II) can be bounded similarly. Combining the results, we have

E[exp(λW π)] ≤ 4 exp(Cπ
λ2

n
+ Cnetsq

3 log(
p

sq2
).

Using the same Chernoff approach as before, we have

P ( sup
θ∈Bcon(θ∗)

|π̂1(θ)− π1(θ)| > t) = P (Wπ > t) ≤ 4 exp(Cπ
λ2

n
+ Cnetsq

3 log(p)− λt).

Let λ =
√
nsq3 log(p)/Cπ , t = (Cnet + 2)

√
Cπsq3 log(p)/n. Then

P (WU > t) ≤ 4 exp(−sq3 log(p)) ≤ 4 exp(− log(p)) = o(1).

Therefore, as long as n > C ′sq3 log(p) for a sufficiently large C ′, we have with probability at least 1− o(1),

sup
θ∈Bcon(θ∗)

|π̂1(θ)− π1(θ)| ≲
√
sq3 log(p)

n
. (43)

Still when sq2 = o(p), we have the following sharper bound

sup
θ∈Bcon(θ∗)

|π̂1(θ)− π1(θ)| ≲

√
sq3 log( p

sq2 )

n
.

E.4. Concentration of covariance matrices

Last, we study the concentration of Σw. Recall that

Σ̂w(θ) =
1

n

n∑
i=1

γ1,θ(Xi, Yi)XiX
T
i , Σw(θ) =

1

n

n∑
i=1

E[γ1,θ(Xi, Yi)XiX
T
i ].

Directly applying Lemma C.1 (Cai et al., 2019) converts the problem into bounding the product of three sub-Gaussian
random variables. While it is well known the product of two sub-Gaussian variables is sub-exponential, the product of
three or more sub-Gaussian random variables is not necessarily sub-exponential. Therefore, we must use another method
than the one used in the concentration of Uw. We use tail bound for unbounded random processes given in Theorem 4
Adamczak (2008).

Let WΣ = supθ∈Bcon(θ∗) ∥(Σ̂1(θ)−Σ1(θ))B
∗
1∥F,s. By definition, we have

WΣ = sup
vec(u)∈L(s)∩Spq−1

sup
θ∈Bcon(θ∗)

⟨ 1
n

n∑
i=1

{γ1,θ(Xi, Yi)XiX
T
i − E[γ1,θ(Xi, Yi)XiX

T
i ]}B∗

1,u⟩F .

Let

WΣ
u = sup

θ∈Bcon(θ∗)

⟨ 1
n

n∑
i=1

{γ1,θ(Xi, Yi)XiX
T
i − E[γ1,θ(Xi, Yi)XiX

T
i ]}B∗

1,u⟩F .

Then WΣ = supvec(u)∈L(s)∩Spq−1 WΣ
u . Let vec(u1), . . . , vec(uMnet) denotes the 1/2-net of L(s) ∩ Spq−1. For any

v ∈ L(s) ∩ Spq−1, let uj be one of the closest point in the 1/2-cover. Then by definition,

v − uj
∥v − uj∥

∈ L(s) ∩ Spq−1, ∥v − uj∥2 ≤ 1

2
.

Therefore,

WΣ
v ≤WΣ

uj
+ |WΣ

uj
−WΣ

v | ≤ max
j∈[Mnet]

WΣ
uj

+
1

2
WΣ
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which implies WΣ ≤ 2maxj∈[Mnet]W
Σ
uj

. We proceed to bound WΣ
uj

for fixed uj ∈ L(s) ∩ Spq−1. To use Theorem 4
(Adamczak, 2008), define

f(Xi, Yi) = γ1,θ(Xi, Yi)⟨XiX
T
i B

∗
1,uj⟩F − E[γ1,θ(Xi, Yi)⟨XiX

T
i B

∗
1,uj⟩F ].

We have

WΣ
uj

≤ 1

n
sup

θ∈Bcon(θ∗)

|
n∑
i=1

f(Xi, Yi)|.

It is clear that for every θ ∈ Bcon(θ
∗) and every i, E[f(Xi, Yi)] = 0. Next we show ⟨XiX

T
i B

∗
1,uj⟩F is sub-exponential.

Note that
⟨XiX

T
i B

∗
1,uj⟩F = vec(uj)

T vec(XiX
T
i B

∗
1) = vec(uj)

T (Iq ⊗XiX
T
i ) vec(B

∗
1)

=

q∑
k=1

uTj,kXiX
T
i B

∗
1,k =

q∑
k=1

⟨Xi,uj,k⟩⟨Xi,B
∗
1,k⟩,

where uj,k and B∗
1,k are the k-th column of uj and B∗

1. Clearly, ⟨Xi,uj,k⟩ and ⟨Xi,B
∗
1,k⟩ are normal. Then

∥⟨Xi,uj,k⟩∥ψ2
≤ ∥⟨Zi,uj,k⟩∥ψ2

+ ∥⟨ψfi,uj,k⟩∥ψ2
≤ C∥uj,k∥2 + C ′,

and similarly
∥⟨Xi,B

∗
1,k⟩∥ψ2

≤ C∥B∗
1,k∥2 + C ′.

Therefore, by Lemma D.2 (Wang et al., 2015)

∥⟨XiX
T
i B

∗
1,uj⟩F ∥ψ1 ≤

q∑
k=1

∥⟨Xi,uj,k⟩⟨Xi,B
∗
1,k⟩∥ψ1

≤
q∑

k=1

C ·max{∥⟨Xi,uj,k⟩∥2ψ2
, ∥⟨Xi,B

∗
1,k⟩∥2ψ2

} ≤ C ′ <∞.

The above results hold for any θ ∈ Bcon(θ
∗). Then

∥ sup
θ∈Bcon(θ∗)

|f(Xi, Yi)|∥ψ1

= ∥ sup
θ∈Bcon(θ∗)

∣∣∣⟨γ1,θ(Xi, Yi)XiX
T
i B

∗
1,uj⟩F

∣∣∣+ sup
θ∈Bcon(θ∗)

∣∣∣E[⟨γ1,θ(Xi, Yi)XiX
T
i ,uj⟩F ]

∣∣∣∥ψ1

≤ ∥ sup
θ∈Bcon(θ∗)

∣∣∣⟨XiX
T
i B

∗
1,uj⟩F

∣∣∣∥ψ1
+ ∥ sup

θ∈Bcon(θ∗)

∣∣∣E[⟨XiX
T
i ,uj⟩F ]

∣∣∣∥ψ1

<∞,

where we use the fact 0 < γ1,θ(Xi, Yi) < 1. We verified the two conditions for Theorem 4 (Adamczak, 2008).

Define truncated function and the remaining parts of f(Xi, Yi) as

f1(Xi, Yi) = f(Xi, Yi)I( sup
θ∈Bcon(θ∗)

|f(Xi, Yi)| ≤ ρ),

f2(Xi, Yi) = f(Xi, Yi)I( sup
θ∈Bcon(θ∗)

|f(Xi, Yi)| > ρ),

where ρ = 8E[maxi supθ∈Bcon(θ∗) |f(Xi, Yi)|]. Let Q = maxi |⟨XiX
T
i B

∗
1,uj⟩F |. Since ⟨XiX

T
i B

∗
1,uj⟩F is sub-

exponential, P (|⟨XiX
T
i B

∗
1,uj⟩F | > x log n) ≤ 2 exp(−cx log n). Then

P (Q > x log n) ≤
n∑
i=1

P (|⟨XiX
T
i B

∗
1,uj⟩F | > x log n) ≤ 2 exp(−cx log n+ log n).
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Therefore, when log n > 1 we have

E[Q] =

∫ ∞

0

P (Q > t)dt =

∫ 2 log n
c

0

P (Q > t)︸ ︷︷ ︸
≤1

dt+

∫ ∞

2 log n
c

P (Q > t)dt

≤ 2 log n

c
+

∫ ∞

2
c

P (Q > t log n)d(t log n)

≤ 2 log n

c
+ 2 log n

∫ ∞

2
c

exp(−(ct− 1) log n)dt

≤ 2 log n

c
+ 2 log n

∫ ∞

2
c

exp(−ct+ 1)dt

=
2 log n

c
+ 2 log n

exp(−1)

c
≤ C log n.

Since the above holds for any θ ∈ Bcon(θ
∗), we have ρ ≤ C log n.

Note that

sup
θ∈Bcon(θ∗)

|
n∑
i=1

f(Xi, Yi)| ≤ sup
θ∈Bcon(θ∗)

|
n∑
i=1

f1(Xi, Yi)− E[f1(Xi, Yi)]|+

sup
θ∈Bcon(θ∗)

|
n∑
i=1

f2(Xi, Yi)− E[f2(Xi, Yi)]|,

where we use the fact that E[f1] + E[f2] = 0. It follows that

E[ sup
θ∈Bcon(θ∗)

|
n∑
i=1

f(Xi, Yi)|] ≤ E[ sup
θ∈Bcon(θ∗)

|
n∑
i=1

f1(Xi, Yi)− E[f1(Xi, Yi)]|]+

2E[ sup
θ∈Bcon(θ∗)

|
n∑
i=1

f2(Xi, Yi)|].

By Markov inequality and definition of f2(Xi, Yi), we have

P (max
k≤n

sup
θ∈Bcon(θ∗)

|
k∑
i=1

f2(Xi, Yi)| > 0)

≤ P (max
i

sup
θ∈Bcon(θ∗)

|f(Xi, Yi)| > ρ) ≤
E[maxi supθ∈Bcon(θ∗) |f(Xi, Yi)|]

ρ
≤ 1

8
,

which means

t0 = inf{t > 0;P (max
k≤n

sup
θ∈Bcon(θ∗)

|
k∑
i=1

f2(Xi, Yi)| > t) ≤ 1

8
} = 0.

Then, by Proposition 6.8 in Ledoux & Talagrand (1991),

E[max
k≤N

sup
θ∈Bcon(θ∗)

|
k∑
i=1

f2(Xi, Yi)|] ≤
1

8
E[max

i
sup

θ∈Bcon(θ∗)

|f2(Xi, Yi)|] ≤ ρ ≤ C log n.

Thus,

E[ sup
θ∈Bcon(θ∗)

| 1
n

n∑
i=1

f2(Xi, Yi)|] ≤ E[max
k≤N

sup
θ∈Bcon(θ∗)

| 1
n

k∑
i=1

f2(Xi, Yi)|] ≤ C2
log n

n
. (44)
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When supθ∈Bcon(θ∗) |f(Xi, Yi)| ≤ ρ, ⟨XiX
T
i B

∗
1,uj⟩F is bounded. We proceed to bound f1, by Lemma S.5 (Wang et al.,

2024) and Lemma C.1 (Cai et al., 2019),

E[ sup
θ∈Bcon(θ∗)

∣∣∣ 1
n

n∑
i=1

f1(Xi, Yi)− E[f1(Xi, Yi)]
∣∣∣]

≤ C E[ sup
θ∈Bcon(θ∗)

∣∣∣ 1
n

n∑
i=1

ϵi⟨Xi −
1

2
(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨XiX

T
i B

∗
1,uj⟩F

∣∣∣]︸ ︷︷ ︸
(I)

+

≤ C ′ E[ sup
θ∈Bcon(θ∗)

∣∣∣ 1
n

n∑
i=1

ϵiπ1⟨XiX
T
i B

∗
1,uj⟩F ]

∣∣∣︸ ︷︷ ︸
(II)

,

where ⟨XiX
T
i B

∗
1,uj⟩F is bounded for all i. Under the condition ⟨XiX

T
i B

∗
1,uj⟩F is bounded, ϵi⟨Xi− 1

2 (Γ2+Γ1)fi, (Γ2−
Γ1)fi⟩⟨XiX

T
i B

∗
1,uj⟩F is sub-exponential for any Γ1 and Γ2. Define set T = {t : tT = (vec(Γ1)

T , vec(Γ2)
T ),Γ1,Γ2 ∈

Bcon(θ
∗)}. Using the argument to derive L(s), we have T ⊂ C conv(

⋃
|J|≤dEJ(2pq) ∩ S2pq−1), where d = Cdsq

3. By
the definition of constriction basin, we have

∥ vec(Γ1)− vec(Γ′
1)∥2 ≤ ∥ vec(Γ1)− vec(Γ∗

1)∥2 + ∥ vec(Γ′
1)− vec(Γ∗

1)∥2 ≤ 2CbΩ.

Therefore,
∥([vec(Γ1)− vec(Γ′

1)]
T , [vec(Γ2)− vec(Γ′

2)]
T )∥2

≤
√
∥ vec(Γ1)− vec(Γ′

1)∥2 + ∥ vec(Γ2)− vec(Γ′
2)∥2

≤ ∥ vec(Γ1)− vec(Γ′
1)∥2 + ∥ vec(Γ2)− vec(Γ′

2)∥2
≤ 4CbΩ.

The diameter of T
D = diam(T ) = sup

s,t∈T
d(s, t) ≤ 4CbΩ,

where d is the ℓ2 distance. Note that

sup
t∈T

1

n

n∑
i=1

E[
∣∣∣ϵi⟨Xi −

1

2
(Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨XiX

T
i B

∗
1,uj⟩F

∣∣∣q]
≤ sup

t∈T

1

n

n∑
i=1

Cqq = Cqq ≤ Cq!eq :=
q!

2
C ′eq−2,

where we use the bound of moments of sub-exponential random variables and Stirling’s approximation. By Corollary 5.2
in Dirksen (2015),

(I) ≤ C3

(
1√
n
γ2(T , d2) +

1

n
γ1(T , d1)

)
+ C4

(
1√
n
+

1

n

)
,

where γ1(T , d1) and γ2(T , d2) are Talagrand functional (see Dirksen (2015) for details). Given t ∈ T , let Kti = ϵi⟨Xi −
1
2 (Γ2 + Γ1)fi, (Γ2 − Γ1)fi⟩⟨XiX

T
i B

∗
1,uj⟩F . Dirksen (2015) define

d1(s, t) = max
i

∥Kti −Ksi∥ψ1 , d2(s, t) =

(
1

n

n∑
i=1

∥Kti −Ksi∥2ψ2

)1/2

.

Consider the two metric spaces (T , ℓ2) and (T , d1). We have d1(s, t) ≤ Cρ∥s− t∥2. Then by Theorem 1.3.6 (Talagrand,
2005), γ1(T , d1) ≤ Cργ1(T , ℓ2). Similar result hold for γ2(T , d2). Therefore,

(I) ≤ C3ρ

(
1√
n
γ2(T , ℓ2) +

1

n
γ1(T , ℓ2)

)
+ C4

(
1√
n
+

1

n

)
. (45)
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By equation (4) (Dirksen, 2015),

γα(T , ℓ2) ≤ Cα

∫ ∞

0

(logN(T , ℓ2, ϵ))1/αdϵ = Cα

∫ D

0

(logN(T , ℓ2, ϵ))1/αdϵ,

where we use log(1) = 0. We know that

N(T , ℓ2, ϵ) ≤
(
1 +

2

ϵ

)d(
2pq

d

)
≤
(
1 +

2

ϵ

)d(
2epq

d

)d
.

Then we have

γ1(T , ℓ2) ≤ C

∫ D

0

logN(T , ℓ2, ϵ)dϵ

≤ C

∫ D

0

sq3 log

(
1 +

2

ϵ

)
+ sq3 log

(
2ep

Cdsq2

)
dϵ

≤ Csq3 log

(
p

sq2

)
≤ Csq3 log p,

when p > C ′sq2 for some constant. Similarly,

γ2(T , ℓ2) ≤ C

∫ D

0

(logN(T , ℓ2, ϵ))1/2dϵ

≤ C

∫ D

0

√
sq3 log

(
1 +

2

ϵ

)
+ sq3 log

(
2ep

Cdsq2

)
dϵ

≤ C
√
sq3 log p.

Then according to (45),

(I) ≤ C1 log n(

√
sq3 log p

n
+
sq3 log p

n
) ≤ C1

√
sq3(log n)2 log p

n
,

when n > sq3 log(p). Combining with (44), we have

E[ sup
θ∈Bcon(θ∗)

| 1
n

n∑
i=1

f(Xi, Yi)|] ≤ C1

√
sq3(log n)2 log p

n
+ C2

log n

n
≤ C

√
sq3(log n)2 log p

n
,

where we use log(n)/n < log(n)/
√
n ≤

√
sq3 log p log(n)/

√
n. To use Theorem 4 (Adamczak, 2008), we need to bound

σ2 := sup
θ∈Bcon(θ∗)

n∑
i=1

E[{ 1
n
f(Xi, Yi)}2] =

1

n2
sup

θ∈Bcon(θ∗)

n∑
i=1

E[{f(Xi, Yi)}2].

Note that
E[{f(Xi, Yi)}2]
= E[{γ1,θ(Xi, Yi)⟨XiX

T
i B

∗
1,uj⟩F − E[γ1,θ(Xi, Yi)⟨XiX

T
i B

∗
1,uj⟩F ]}2]

= E[(γ1,θ(Xi, Yi)⟨XiX
T
i B

∗
1,uj⟩F )2]− E[γ1,θ(Xi, Yi)⟨XiX

T
i B

∗
1,uj⟩F ]2

≤ E[(⟨XiX
T
i B

∗
1,uj⟩F )2] + E[⟨XiX

T
i B

∗
1,uj⟩F ]2 ≤ C,

since ⟨XiX
T
i B

∗
1,uj⟩F is sub-exponential. Then σ2 ≤ C/n. The last term to bound before applying the theorem is

∥maxi supθ∈Bcon(θ∗) |f(Xi, Yi)|∥ψ1
. Use earlier results,

∥max
i

sup
θ∈Bcon(θ∗)

| 1
n
f(Xi, Yi)|∥ψ1

≤ C
1

n
log n∥ sup

θ∈Bcon(θ∗)

|f(Xi, Yi)|∥ψ1

≤ C
log n

n
∥ sup
θ∈Bcon(θ∗)

|⟨XiX
T
i B

∗
1,uj⟩F |∥ψ1

≤ C ′ log n

n
.
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Let W f
uj

= supθ∈Bcon(θ∗) | 1n
∑n
i=1 f(Xi, Yi)|. Then, for 0 < η < 1 and δ > 0, we have the following result

P (W f
uj

≥ (1 + η) E[W f
uj
] + t)

≤ exp

(
− t2

2(1 + δ)σ2

)
+ 3 exp

(
− t

C∥maxi supθ∈Bcon(θ∗) ∥f(Xi, Yi)∥ψ1

)

≤ exp
(
−C5nt

2
)
+ 3 exp

(
−C6nt

log n

)
.

Let t = C7

√
sq3(log n)2 log p

n , where C7 is sufficiently large. Using union bound, we have

P ( max
j∈Mnet

W f
uj

≥ (1 + η) E[W f
uj
] + t)

≤Mnet exp
(
−C5nt

2
)
+ 3Mnet exp

(
−C6nt

log n

)
≤ exp

(
Cnetsq

3 log
p

sq2
− C5nt

2

)
+ 3 exp

(
Cnetsq

3 log
p

sq2
− C6nt

log n

)
≤ exp(− log p) + 3 exp(− log p) =

4

p
,

when n > C8sq
3 log p for sufficiently large C8. This means with probability at least 1− o(1),

max
j∈Mnet

W f
uj

≤ (1 + η) E[W f
uj
] + C7

√
sq3(log n)2 log p

n
≤ C9

√
sq3(log n)2 log p

n
.

Recall that WΣ
uj

≤W f
uj

. Then, with probability at least 1− o(1),

sup
θ∈Bcon(θ∗)

∥(Σ̂1(θ)−Σ1(θ))B
∗
1∥F,s =WΣ ≲

√
sq3(log n)2 log p

n
(46)

F. Ancillary Lemmas
We first present some technical lemmas that are used in the proof.

Lemma F.1. Let f1(t) = et

{w+(1−w)et}2 , f2(t) = tet

{w+(1−w)et}2 , f3(t) =
(t2−b2)et

{w+(1−w)et}2 , and f4(t) = t3et

{w+(1−w)et}2 . Then

f1(t) ≤
1

4min{w2, (1− w)2}
, ∀t ∈ R,

sup
t≥a

f1(t) ≤
1

min{w, 1− w}2
exp(−a), ∀a ≥ 0,

|f2(t)| ≤
1

2min{w2, (1− w)2}
, ∀t ∈ R,

sup
|t|≥a

|f2(t)| ≤
2

min{w, (1− w)}2
exp(−3a/4), ∀a ≥ 0,

|f3(t)| ≤
4 + b2

min{w2, (1− w)2}
∀t ∈ R,

sup
|t|≥a

|f3(t)| ≤
4 + b2

min{w, (1− w)}2
exp(−a/2), ∀a ≥ 0,

|f4(t)| ≤
2

min{w2, (1− w)2}
∀t ∈ R,

sup
|t|≥a

|f4(t)| ≤
8

min{w, (1− w)}2
exp(−a/4), ∀a ≥ 0.
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Proof. We use results (C.1) - (C.6) in supplement of Cai et al. (2019) to prove. Since f1(t) = 1
{we−t/2+(1−w)et/2}2 :=

f̃1(t/2). By (C.1) and (C.2), f1(t) ≤ 1
4min{w2,(1−w)2} , and

sup
t≥a

f1(t) = sup
t/2≥a/2

f̃1(t/2) ≤
1

min{w, 1− w}2
exp(2 · a/2).

Since f2(t) = 2 t/2
{we−t/2+(1−w)et/2}2 := 2f̃2(t/2), using (C.3) and (C.4), we have

|f2(t)| ≤ 2|f̃2(t/2)| ≤ 2
1

4min{w2, (1− w)2}
,

and

sup
t≥a

|f2(t)| = 2 sup
t/2≥a/2

|f̃2(t/2)| ≤
2

min{w, (1− w)}2
exp(−3

2

a

2
),

sup
t≤−a

|f2(t)| = sup
−t≥a

|f2(−t/2)| ≤
2

min{w, (1− w)}2
exp(−3

2

a

2
).

Note that f3(t) = 4 (t/2)2−(b/2)2

{we−t/2+(1−w)et/2}2 := 4f̃3(t/2). Then, by (C.5) and (C.6),

|f3(t)| = 4|f̃3(t/2)| ≤ 4
1 + (b/2)2

min{w2, (1− w)2}
=

4 + b2

min{w2, (1− w)2}
,

and

sup
t≥a

|f3(t)| = 4 sup
t/2≥a/2

|f̃3(t/2)| ≤
4 + b2

min{w, (1− w)}2
exp(−a/2).

Define f̃4(t) = t3

{we−t+(1−w)et}2 . Then f4(t) = 8f̃4(t/2). Note that

|f̃4(t)| =
t3

{we−t + (1− w)et}2
≤ t3

min{w, (1− w)}2(e−t + et)2
≤ 1

4min{w, (1− w)}2
,

which implies

|f4(t)| ≤
2

min{w, (1− w)}2
.

Then note that t3

{we−t+(1−w)et}2 ≤ exp(−a/2) when t ≥ a ≥ 0. Therefore,

sup
t≥a

|f4(t)| = 8 sup
t/2≥a/2

|f̃4(t/2)| ≤
8

min{w, (1− w)}2
exp(−a/4).

Lemma F.2. Let Lp(s) = L(s)1:p. The restrictive eigenvalue condition

inf
u∈Lp(s)∩Sp−1

∣∣∣uT 1

n

n∑
i=1

XiX
T
i u
∣∣∣ > τ0

holds with probability at least 1− o(1) when n > Cs log p for sufficiently large positive constant C.

Proof. Let C(s) = 2 conv(
⋃

|J|≤dEJ(p) ∩ Sp−1), d = Cds. According to Lemma E.3, we have Lp(s) ∩ Spq−1 ⊂ C(s).
We show a stronger conclusion that

inf
u∈C(s)∩Sp−1

∣∣∣uT 1

n

n∑
i=1

XiX
T
i u
∣∣∣ > τ1.
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Since Xi ∼ π∗
1N(Γ∗

1fi,∆) + π∗
2N(Γ∗

2fi,∆), we have

E[Xi] = Γ∗fi, Γ∗ = π∗
1Γ

∗
1 + π2Γ

∗
2,

E[XiX
T
i ] = ∆+ π∗

1Γ
∗
1fif

T
i (Γ

∗
1)
T + π∗

2Γ
∗
2fif

T
i (Γ

∗
2)
T ,

∆Xi
:= cov(Xi) = ∆+ π∗

1Γ
∗
1fif

T
i (Γ

∗
1)
T + π∗

2Γ
∗
2fif

T
i (Γ

∗
2)
T − Γ∗fif

T
i (Γ

∗)T . (47)

For any v ∈ C(s) ∩ Sp−1, Zi = vTXi is mixture of Gaussian and thus sub-Gaussian. Then Z2
i = vTXiX

T
i v is sub-

exponential. Thus, ∥vTXiX
T
i v − E[vTXiX

T
i v]∥ψ1

≤ Ci∥vTXiX
T
i v∥ψ1

:= Li. Let L = maxi Li. By Bernstein’s
inequality (Theorem 2.8.1 in Vershynin (2018)), for t > 0,

P (
∣∣∣ n∑
i=1

{
1

n
vTXiX

T
i v − 1

n
vT E[XiX

T
i ]v

}∣∣∣ ≥ t) ≤ 2 exp(−cmin

{
t2∑n

i=1
1
n2L2

i

,
t

maxi
1
nLi

}
)

≤ 2 exp(−cmin

{
nt2

L2
,
nt

L

}
) ≤ 2 exp(−c1nt2),

where the last inequality holds when t ≤ L and c1 = c/L2. Let ϵ < 1, v1, . . . ,v|J | is an ϵ-net of C(s) ∩ Sp−1. Then
according to Lemma E.3, log |J | ≤ CJ s log p, where CJ is a positive constant. By union bound,

P (
∣∣∣ n∑
i=1

{
1

n
vTj XiX

T
i vj −

1

n
vTj E[XiX

T
i ]vj

}∣∣∣ ≥ t, ∃j ∈ J ) ≤ 2|J | exp(−c1nt2)

≤ 2 exp(CJ s log p− c1nt
2).

Define Ψ = 1/n
∑n
i=1 XiX

T
i . Then, we have for all j ∈ J ,

vTj E[Ψ]vj − t ≤ ∥Ψ1/2vj∥22 ≤ vTj E[Ψ]vj + t,

with probability at least 1− 2 exp(CJ s log p− c1nt
2).

Assume C1 ≤ σmin(∆) ≤ σmax(∆) ≤ C2. For any unit vector v, we have

vTΓ∗
1Σ̂f (Γ

∗
1)
Tv ≤ ∥(Γ∗

1)
Tv∥22M2 ≤ σmax(Γ

∗
1)

2M2 ≤M2
bM2.

Since E[Ψ] = ∆+ π∗
1Γ

∗
1Σ̂f (Γ

∗
1)
T + π∗

2Γ
∗
2Σ̂f (Γ

∗
2)
T ,

C1 ≤ vT E[Ψ]v ≤ C2 +M2M
2
b .

Therefore, √
C1 − t ≤ ∥Ψ1/2vj∥2 ≤

√
C2 +M2M2

b + t.

Then, for any v ∈ C(s) ∩ Sp−1, there exists a vj such that

∥v − vj∥2 ≤ ϵ,
v − vj

∥v − vj∥2
∈ C(s) ∩ Sp−1,

and
∥Ψ1/2vj∥2 − ∥Ψ1/2(v − vj)∥2 ≤ ∥Ψ1/2v∥2 ≤ ∥Ψ1/2vj∥2 + ∥Ψ1/2(v − vj)∥2.

The right-hand side is upper bounded by√
C2 +M2M2

b + t+ ϵ sup
v∈C(s)∩Sp−1

∥Ψ1/2v∥2,

which implies

sup
v∈C(s)∩Sp−1

∥Ψ1/2v∥2 ≤
√
C2 +M2M2

b + t

1− ϵ
.
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Meanwhile, the left-hand side is lower bounded by

∥Ψ1/2vj∥2 − ∥Ψ1/2(v − vj)∥2 ≥
√
C1 − t− ϵ sup

v∈C(s)∩Sp−1

∥Ψ1/2v∥2

≥
√
C1 − t−

ϵ
√
C2 +M2M2

b + t

1− ϵ
,

which means

inf
v∈C(s)∩Sp−1

∥Ψ1/2v∥2 ≥
√
C1 − t−

ϵ
√
C2 +M2M2

b + t

1− ϵ
.

Let C = C2 +M2M
2
b , t = C1/2 and

ϵ ≤
√
C1/2− τ1√

C + C1/2 +
√
C1/2− τ1

.

When 0 < ϵ < 1, 0 < τ1 <
√
C1/2. We have

inf
v∈C(s)∩Sp−1

∥Ψ1/2v∥2 ≥ τ1,

with probability at least 1− 2 exp(CJ s log p− c1nt
2) for 0 < τ1 <

√
C1/2. When n > Cs log p for sufficiently large C,

exp(CJ s log p− c1nt
2) < 2 exp(− log p) = 2/p = o(1).

Lemma F.3. Let U = 1
n

∑n
i=1 Xif

T
i . The following

∥U∥F,s = sup
v∈Rp×q

v∈L(s)∩Spq−1

⟨U,v⟩F ≤M,

holds with probability at least 1− o(1) when n > Csq3 log p for a sufficiently large positive constant C.

Proof. By definition

∥U∥F,s = sup
v∈Rp×q

vec(v)∈L(s)∩Spq−1

⟨ 1
n

n∑
i=1

Xif
T
i ,v⟩F = sup

v∈Rp×q

vec(v)∈L(s)∩Spq−1

1

n

n∑
i=1

vec(v)T (fi ⊗ Ip)Xi.

Note that, for any vec(v) ∈ L(s) ∩ Spq−1 , E[vec(v)T (fi ⊗ Ip)Xi] = vec(v)T (fi ⊗ Ip)Γ
∗fi, where Γ∗ = π∗

1Γ
∗
1 + π2Γ

∗
2.

Since vec(v)T (fi⊗Ip)Xi is sub-Gaussian, we have ∥ vec(v)T (fi⊗Ip)Xi−vec(v)T (fi⊗Ip)Γ
∗fi∥ψ1

≤ C1. By Bernstein’s
inequality (Theorem 2.8.1 in Vershynin (2018)), for t > 0,

P (
∣∣∣ n∑
i=1

{
1

n
vec(v)T (fi ⊗ Ip)Xi − vec(v)T (fi ⊗ Ip)Γ

∗fi

}∣∣∣ ≥ t)

≤ 2 exp(−cmin

{
t2∑n

i=1
1
n2C2

1

,
t

maxi
1
nC1

}
) ≤ 2 exp(−cmin

{
nt2

C2
1

,
nt

C1

}
)

≤ 2 exp(−c1nt2),

where the last inequality holds when t ≤ C1 and c1 = c/C2
1 . Let vec(v1), . . . , vec(vMnet) is an 1/2-net of L(s) ∩ Spq−1.

Then according to Lemma E.3, logMnet ≤ Cnetsq
3 log p, where Cnet is a positive constant. By union bound,

P (
∣∣∣ n∑
i=1

{
1

n
vec(v)T (fi ⊗ Ip)Xi − vec(v)T (fi ⊗ Ip)Γ

∗fi

}∣∣∣ ≥ t, ∃vj ∈ L(s) ∩ Spq−1)

≤ 2Mnet exp(−c1nt2) ≤ 2 exp(Cnetsq
3 log p− c1nt

2).
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Therefore for all vj ∈ L(s) ∩ Spq−1,

⟨ 1
n

n∑
i=1

Xif
T
i ,vj⟩F =

n∑
i=1

1

n
vec(vj)

T (fi ⊗ Ip)Xi

≤
n∑
i=1

1

n
vec(vj)

T (fi ⊗ Ip)Γ
∗fi + t ≤

n∑
i=1

1

n
∥(fi ⊗ Ip)Γ

∗∥2M4 + t

≤M2
4Mb + t.

Then, for any vec(v) ∈ L(s) ∩ Spq−1, there exists a vj such that

∥v − vj∥F ≤ 1

2
,

vec(v − vj)

∥v − vj∥F
∈ L(s) ∩ Spq−1,

and

⟨ 1
n

n∑
i=1

Xif
T
i ,v⟩F ≤ ⟨ 1

n

n∑
i=1

Xif
T
i ,vj⟩F + ⟨ 1

n

n∑
i=1

Xif
T
i ,v − vj⟩F .

Taking supremum of both sides, we have

sup
v∈L(s)∩Spq−1

⟨ 1
n

n∑
i=1

Xif
T
i ,v⟩F ≤ 2(M2

4Mb + t),

with probability at least 1−2 exp(Cnetsq
3 log p−c1nt2). Let t = ( 2Cnetsq

3 log p
nc1

)1/2. When n > Csq3 log p, with probability
at least 1− o(1),

sup
v∈L(s)∩Spq−1

⟨ 1
n

n∑
i=1

Xif
T
i ,v⟩F ≤ 2(M2

4Mb +
2Cnet

c1C
).

Lemma F.4. Suppose that B̂, B∗ ∈ Rp×q with rank(B̂) = rank(B∗) = d. Let β̂, β be the top-d left singular vectors of
B̂, B∗ ∈ Rp×q and σ1 ≥ · · · ≥ σd be the singular values of B∗. Assume ∥B∗ − B̂∥2 ≤ CB . Then

∥Pβ −Pβ̂∥F ≤
√
2d

4σ1 + 2CB
σ2
d

∥B∗ − B̂∥F .

Proof. Let βTβ = MDNT denote the singular value decomposition of βTβ, where M,N ∈ Rd×d and D =

diag(ω1, . . . , ωd). Define the principal angles between the subspaces spanned by β̂ and β as (ϕ1, . . . , ϕd) =

(cos−1 ω1, . . . , cos
−1 ωd), where ω1 ≥ · · · ≥ ωd are the singular values of β̂Tβ. And define sinΦ(β̂,β) =

diag(sinϕ1, . . . , sinϕd). Then according to Theorem 3 (Yu et al., 2015),

∥ sinΦ(β̂,β)∥F ≤ 2(2σ1 + ∥B̂−B∗∥2)min{
√
d∥B̂−B∗∥2, ∥B̂−B∗∥F }

σ2
d

≤ 4σ1 + 2CB
σ2
d

√
d∥B̂−B∗∥F .

Then

∥Pβ −Pβ̂∥F = ∥ββT − β̂β̂T ∥F =

√
tr[(ββT − β̂β̂T )T (ββT − β̂β̂T )]

=

√
tr(ββT + β̂β̂T )− 2 tr(β̂TββT β̂) =

√
2d− 2 tr(MD2MT )

=
√
2

(
d−

d∑
i=1

ω2
i

)1/2

=
√
2

(
d∑
i=1

sin2 ϕi

)1/2

=
√
2∥ sinΦ(β̂,β)∥F

≤
√
2
4σ1 + 2CB

σ2
d

√
d∥B̂−B∗∥F ,
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where we use sin(cos−1 ωi) =
√
1− ω2

i .

Lemma F.5. Let a2 =
2M

3/2
2√
M1

, b = 2
√
M2+

M2+2
√
M2√

M1
. If dF (θ,θ∗)∨∥B1−B∗

1∥F ∨∥B2−B∗
2∥F < rΩ, vec(Γw−Γ∗

w) ∈

L(s), and r < |c0 − cπ|/Ω ∧ Cb ∧ 1
a (
√
Cd − 1/

√
M1 +

b2

4a2 − b
2a ), then θ ∈ Bcon(θ

∗).

Proof. Recall that
Bcon(θ

∗) ={θ : πw ∈ (c0, 1− c0), ∥Γw − Γ∗
w∥F ≤ CbΩ,

(1− Cd)Ω
2 ≤ | tr(δw(Γ)Σ̂f (Γ2 − Γ1)

T )| ≤ (1 + Cd)Ω
2,

vec(Γw − Γ∗
w) ∈ L(s), w = 1, 2},

where δw(Γ) = Γ∗
w − (Γ2 + Γ1)/2, and Ω =

√
tr[(Γ∗

2 − Γ∗
1)Σ̂f (Γ∗

2 − Γ∗
1)
T ].

Since π∗
1 ∈ (cπ, 1 − cπ), when |π1 − π∗

1 | < rΩ < |c0 − cπ|, we have cπ − |c0 − cπ| < π1 < 1 − cπ + |c0 − cπ|. Using
c0 < cπ , π1 ∈ (c0, 1− c0). By definition of r, ∥Γw − Γ∗

w∥F ≤ rΩ ≤ CbΩ.

Note that
|Ω2 − tr(δw(Γ)Σ̂f (Γ2 − Γ1)

T )|

= | tr[(Γ∗
2 − Γ∗

1)Σ̂f (Γ
∗
2 − Γ∗

1)
T ]− tr([Γ∗

w − (Γ2 + Γ1)/2]Σ̂f (Γ2 − Γ1)
T )|

= | tr[Σ̂f{(Γ∗
2 − Γ∗

1)
T (Γ∗

2 − Γ∗
1)− (Γ2 − Γ1)

T (Γ∗
2 − Γ∗

1)}]|+

| tr[Σ̂f{(Γ2 − Γ1)
T (Γ∗

2 − Γ∗
1)− (Γ2 − Γ1)

T [Γ∗
w − (Γ2 + Γ1)/2]}|

= | tr[Σ̂f (Γ
∗
2 − Γ∗

1 − Γ2 + Γ1)
T (Γ∗

2 − Γ∗
1)|︸ ︷︷ ︸

(I)

+

| tr[Σ̂f (Γ2 − Γ1)
T [Γ∗

2 − Γ∗
1 − Γ∗

w − (Γ2 + Γ1)/2]}|︸ ︷︷ ︸
(II)

.

We have
(I) = | vec(Γ∗

2 − Γ∗
1 − Γ2 + Γ1)

T vec[(Γ∗
2 − Γ∗

1)Σ̂f ]

≤ ∥Γ∗
2 − Γ∗

1 − Γ2 + Γ1∥F · ∥(Γ∗
2 − Γ∗

1)Σ̂f∥F
≤ 2rΩ ·

√
M2Ω = 2

√
M2rΩ

2.

Since
∥(Γ2 − Γ1)Σ̂

1/2
f ∥F ≤ ∥(Γ∗

2 − Γ∗
1)Σ̂

1/2
f ∥F + ∥(Γ2 − Γ∗

2 − Γ1 + Γ∗
1)Σ̂

1/2
f ∥F ≤ Ω+ 2

√
M2rΩ,

we have

∥Γ2 − Γ1∥F ≤ 1√
M1

∥(Γ2 − Γ1)Σ̂
1/2
f ∥F ≤ 1 + 2

√
M2r√

M1

Ω.

And
∥Γ2 + Γ1∥F = ∥Γ2 − Γ∗

2 + Γ1 − Γ∗
1 + Γ∗

2 + Γ∗
1∥F ≤ 2rΩ+ 2Mb.

When Ω > 16M2Mb, for w = 1,

(II) = | vec(Γ2 − Γ1)
T vec([Γ∗

2 − 2Γ∗
1 − (Γ2 + Γ1)/2]Σ̂f )|

≤ ∥Γ2 − Γ1∥F · ∥[Γ∗
2 − 2Γ∗

1 − (Γ2 + Γ1)/2]Σ̂f∥F

≤ 1 + 2
√
M2r√

M1

Ω ·M2(3Mb + rΩ+Mb)

≤ 1 + 2
√
M2r√

M1

M2rΩ
2 +

1 + 2
√
M2r√

M1

4M2MbΩ

≤ 1 + 2
√
M2r√

M1

(M2r +
1

4
)Ω2.
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If w = 2,
(II) = | vec(Γ2 − Γ1)

T vec([−Γ∗
1 − (Γ2 + Γ1)/2]Σ̂f )|

≤ ∥Γ2 − Γ1∥F · ∥[Γ∗
1 + (Γ2 + Γ1)/2]Σ̂f∥F

≤ 1 + 2
√
M2r√

M1

Ω ·M2(Mb + rΩ+Mb)

≤ 1 + 2
√
M2r√

M1

(M2r +
1

4
)Ω2.

Let a2 =
2M

3/2
2√
M1

, b = 2
√
M2 + 2M2+

√
M2

2
√
M1

and assume 1/(4
√
M1) < Cd. Then a2r2 + br < Cd − 1/(4

√
M1) when

r < 1
a (
√
Cd − 1/(4

√
M1) +

b2

4a2 − b
2a ). Therefore, we have

|Ω2 − tr(δw(Γ)Σ̂f (Γ2 − Γ1)
T )| ≤ 2

√
M2rΩ

2 +
1 + 2

√
M2r√

M1

(M2r +
1

4
)Ω2

≤

[
2M

3/2
2√
M1

r2 + (2
√
M2 +

2M2 +
√
M2

2
√
M1

)r +
1

4
√
M1

]
Ω2 ≤ CdΩ

2.

G. Additional Discussion
The mixture PFC method is model-based and belongs to the linear heterogeneous SDR method. In contrast, nonlinear
SDR aims to find a vector-valued function g such that Y ⊥⊥ X | g(X). Traditional nonlinear SDR methods often combine
kernel tricks and linear SDR techniques (Wu, 2008; Hsing & Ren, 2009; Li et al., 2011). However, these approaches
have common computational challenges, when computing eigenvectors or inverse of n × n or p × p matrices, making
them infeasible for large-scale high-dimensional data. Deep learning, with its proven success in various domains, offers
promising alternatives for nonlinear SDR. The auto-encoder (Hinton & Salakhutdinov, 2006; Zong et al., 2018) is the most
representative example of deep learning for unsupervised dimension reduction. Recently, several deep SDR methods have
emerged, leveraging the power of deep neural networks to address the above challenges (Banijamali et al., 2018; Liang
et al., 2022; Kapla et al., 2022; Huang et al., 2024; Chen et al., 2024).

We suggest two strategies to extend the linear heterogeneous SDR to nonlinear settings through deep learning. The first
strategy is inspired by Kwon et al. (2024) and addresses semi-supervised scenarios with both labeled data {(Xi, Yi)}ni=1

and unlabeled data {(Xi)
N
i=n+1}. Then model assumes the following structure:

Y ⊥⊥ X | (gw(X),W = w), Pr(W | Y,X) = Pr(W | Y,gw(X))

X | (W̃ = w̃) ∼ N(µw̃,Σw̃), w, w̃ = 1, . . . ,K

Pr(W = w|W̃ = w̃) = πw|w̃.

The key idea is to use the Gaussian mixture model on the unlabeled data to infer the joint distribution of (X, W̃ ) and then
apply any proposed deep SDR method to learn gw. The procedure is as follows.

Step 1: Learn the joint distribution of (X, W̃ ) using GMM fitted to the unlabeled data.

Step 2: Assign labeled data {(Xi, Yi)}ni=1 to the K clusters defined by W̃ using the estimate distribution of W̃ |X.

Step 3: Estimate the nonlinear SDR using any deep SDR method for each cluster.

Step 4: Estimate the transition matrix Π
W |W̃ = (πw|w̃).

The second strategy combines a compression network and an estimation network, similar to the deep auto-encoding Gaus-
sian mixture model (DAGMM) (Zong et al., 2018). The compression network is a supervised auto-encoder (Le et al., 2018),
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designed to perform dimension reduction while preserving the nonlinear SDR structure. The innermost layer incorporates
a supervised loss to ensure the reduced representation g(X) satisfies the conditional independence condition in nonlinear
SDR. Various dependence measures can be used to construct the loss function, such as distance covariance (Székely et al.,
2007), martingale difference divergence (Shao & Zhang, 2014), and generalized martingale difference divergence (Li et al.,
2023). Then the estimation network uses the learned low-dimensional vector g(X) and the response to predict clusters.
Unlike DAGMM, this step employs a supervised clustering model rather than the Gaussian mixture model Zong et al.
(2018). To evaluate the clustering quality of the estimation network, the log-likelihood of the cluster assignments can be
computed. Both strategies highlight the potential of deep learning to effectively extend SDR to nonlinear, heterogeneous,
and high-dimensional settings.
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