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Abstract

Scientific and engineering applications are of-
ten heterogeneous, making it beneficial to ac-
count for latent clusters or sub-populations when
learning low-dimensional subspaces in super-
vised learning, and vice versa. In this paper,
we combine the concept of subspace clustering
with model-based sufficient dimension reduction
and thus generalize the sufficient dimension re-
duction framework from homogeneous regres-
sion setting to heterogeneous data applications.
In particular, we propose the mixture of princi-
pal fitted components (mixPFC) model, a novel
framework that simultaneously achieves cluster-
ing, subspace estimation, and variable selection,
providing a unified solution for high-dimensional
heterogeneous data analysis. We develop a group
Lasso penalized expectation-maximization (EM)
algorithm and obtain its non-asymptotic conver-
gence rate. Through extensive simulation stud-
ies, mixPFC demonstrates superior performance
compared to existing methods across various set-
tings. Applications to real world datasets fur-
ther highlight its effectiveness and practical ad-
vantages.

1. Introduction

Reducing high-dimensional data to a low-dimensional rep-
resentation is one of the most important steps in multivari-
ate statistics and various applied sciences. Typically, this is
achieved by projecting data onto a single low-dimensional
subspace. Among unsupervised dimension reduction meth-
ods, principal component analysis (PCA) is probably the
most popular one. However, when applied in the context of
regressing a univariate response Y on p-dimensional pre-
dictor X, PCA faces three critical limitations: data hetero-
geneity, loss of information on regression, and the curse of

"Department of Statistics, Florida State University, Tallahas-
see, Florida, United States. Correspondence to: Xin Zhang
<henry @stat.fsu.edu>.

Proceedings of the 42™¢ International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

dimensionality. First, real-world data often lie in a union
of multiple subspaces with unknown membership, reflect-
ing underlying latent sub-populations. Second, PCA, as
an unsupervised method, equates variation with informa-
tion and thus disregards the specific relationship between
Y and X. Third, in the high-dimensional setting where p is
much larger than the sample size n, the subspace estimated
by PCA can be highly unreliable, or even orthogonal to the
true subspace (Baik & Silverstein, 2006; Paul, 2007).

Addressing the challenges of heterogeneity and high di-
mensionality is crucial for statistical and machine learn-
ing methods. Subspace clustering is a family of pow-
erful methods for clustering the data into multiple sub-
spaces(Vidal, 2011; Soltanolkotabi & Candés, 2012). Most
subspace clustering methods generalize PCA and factor
analysis from a single subspace to a union of multiple sub-
spaces (Agarwal & Mustafa, 2004; Vidal et al., 2005; Yan
& Pollefeys, 2006; Tron & Vidal, 2007; Favaro et al., 2011;
Elhamifar & Vidal, 2013). However, like PCA, these meth-
ods ignore the response, leading to inevitable loss of regres-
sion relevant information. Furthermore, subspace cluster-
ing methods often assume clean observations with small
random noise (Kanatani, 2001; Vidal et al., 2005), mean-
ing data points are expected to lie nearly exactly within a
subspace. When the observations are subject to significant
random errors, these methods frequently fail to accurately
identify clusters.

Conversely, sufficient dimension reduction (SDR) provides
a supervised framework by projecting X onto a low-
dimensional subspace while preserving all relevant regres-
sion information. Formally, we have

Y 1L X |PsX, (1)

where Pgs is the projection matrix onto S. The intersec-
tion of all the subspaces satisfying (1) is called the central
subspace. Recent advances in deep learning-based SDR
methods (Banijamali et al., 2018; Liang et al., 2022; Kapla
et al., 2022; Huang et al., 2024; Chen et al., 2024) have
demonstrated the potential to capture complex nonlinear
structures in high-dimensional data.

While SDR guarantees regression sufficiency (Li, 1991;
Cook & Forzani, 2008), it overlooks the heterogeneous
nature of scientific and engineering applications. Incor-
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porating heterogeneity into SDR has the potential to en-
hance dimension reduction by uncovering latent subpopu-
lations. Motivated by this, we integrate the subspace clus-
tering concept with model-based SDR.

Contributions. In this paper, we propose a novel mixture
of principal fitted component (mixPFC) model, designed
for simultaneous clustering, variable selection, and dimen-
sion reduction. It has the following major contributions.

e Supervised Subspace Clustering: By extending
subspace clustering into a supervised framework,
mixPFC identifies subspaces that preserve regression
information, addressing both heterogeneity and pre-
dictive accuracy. This contrasts sharply with unsuper-
vised approaches (Elhamifar & Vidal, 2013; Ji et al.,
2017; Cai et al., 2022). Leveraging response informa-
tion, mixPFC allows for exact overlap between sub-
spaces, overcoming limitations of classical methods
that require separation conditions (e.g., minimal angle
condition in Soltanolkotabi & Candés (2012)). Build-
ing upon SDR, mixPFC targets central subspaces
rather than subspaces where X resides. This ensures
the low-dimensional representation of X preserves all
the information relevant to regression. Moreover, un-
like most subspace clustering methods that separate
clustering from subspace estimation, mixPFC per-
forms both tasks jointly in a unified framework.

* High-Dimensional Estimation: We develop a group
penalized expectation-maximization (EM) algorithm
for the mixPFC model. Extending SDR to high di-
mensions is a challenging and nascent research area
(Lin et al., 2018; 2019; Tan et al., 2018; 2020; Zeng
et al., 2024). Existing approaches often require in-
verting p X p matrices or estimating parameters in a
p?-dimensional space, which poses scalability chal-
lenges. Our model, designed to estimate multiple
heterogeneous subspaces in different unknown sub-
populations, is much more complicated. To address
this challenge, we formulate the subspace estima-
tion as a convex optimization over an approximately
p-dimensional parameter space. We further incor-
porate a group Lasso penalty (Yuan & Lin, 2006)
for coordinate-independent variable selection (Chen
etal., 2010).

* Theoretical Guarantees: We establish theoretical re-
sults for the proposed group penalized EM algorithm.
While classical EM theories only guaranteed asymp-
totic convergence to a fixed point, we derive a non-
asymptotic result that mixPFC converges geometri-
cally to a fixed point that is within statistical preci-
sion of the unknown true parameter. This stronger
type of guarantee has emerged only recently (Balakr-

ishnan et al., 2017). Unlike many existing proofs in
high-dimensional EM algorithms, our analysis does
not require sample splitting (Kwon et al., 2019) and
allows a relatively general model. Specifically, we
derive a non-asymptotic convergence rate for a two-
mixture principal fitted components model with un-
known mixing proportions and without restrictions on
the minimum angle between subspaces.

2. Mixture of Principal Fitted Components

We extend the framework of sufficient dimension reduction
by introducing a latent variable to model heterogeneity in
data. In particular, we consider univariate (continuous or
discrete) response Y € R, multivariate predictor X € RP,
and a latent categorical variable W € {1,2,..., K}. We
aim to estimate K subspaces S,,, w = 1,..., K, such that

Y LX|(Ps,X,W=uw), -
Pr(W | Y,X) = Pr(W | Y, PsX)

where S = 25:1 Sw C RP offers the usual SDR as seen
in the literature and each P s is the projection matrix onto
Sw to capture the relationship between Y and X within
cluster w. Let 3 € RP*¢ denote a basis matrix of S.
Then, the projected data 37X contains all relevant infor-
mation in X to be combined with response information Y
for clustering data into K clusters. When W is observable,
the smallest space S,, is known as the conditional central
subspace, and is a building block for studying the partial
central subspace (Chiaromonte et al., 2002). However, our
problem is much more challenging because W is latent and
has to be inferred from data. Moreover, unlike existing par-
tial/conditional central subspace methods, we further incor-
porate variable selection for high-dimensional studies.

We propose the mixPFC model, as a generative mixture of
principal fitted components (PFC),

X[ (Y, W =w) ~N(pw +Tuf(Y),A),

Pr(W =w) =7y, w=1,..., K, ®)
where p,, € RP is the center of each cluster, I', € RP*4
is the coefficient matrix that represents the relationship be-
tween Y and X in each cluster, £(-) = (f1(-),..., fo(:)T :
R — RY is a set of pre-specified fitting functions that in-
troduces non-linear relationships, A € RP*P is symmetric
positive definite matrix, and m,, > 0 is the mixture proba-
bilities with S°5_ 7, = 1.

The mixPFC model unifies and generalizes many model-
based clustering and model-based SDR approaches. When
K = 1, the mixPFC reduces to the PFC model (Cook &
Forzani, 2008), which further reduces to the probabilis-
tic principal component analysis (PCA) model (Tipping &
Bishop, 1999) by restricting A = 021, and replacing (V")
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Mixture of PFC

Subspace Clustering

Figure 1. The mixPFC model enhances subspace clustering by
considering how the response (solid line) changes as the predictor
varies within each cluster: linear response effects in the first mix-
ture and non-linear in the second.

as latent variables v ~ N(0,I,). Therefore, our mixPFC,
by allowing general covariance structures and incorporat-
ing response information, is a supervised generalization of
the probabilistic PCA. On the other hand, if we completely
remove the effect of the response I',,£(Y"), the mixPFC be-
comes the Gaussian mixture model (GMM) (McLachlan
etal., 2019; Cai et al., 2019). If we further have A = 02Ip,
mixPFC is a model-based interpretation of K-means clus-
tering (Forgy, 1965; MacQueen et al., 1967). When Y is
categorical, the mixPFC model reduces to the mixture dis-
criminant analysis model (Hastie & Tibshirani, 1996; Fra-
ley & Raftery, 2002).

The mixPFC can also be viewed as an extension of sub-
space clustering. Figure 1 demonstrates the advantage of
mixPFC over subspace clustering. In subspace clustering,
we have a fully unsupervised problem on X, but in mixPFC
we further have the response Y to guide our clustering,
which can be very informative. Consequently, subspace
clustering requires a minimal angle condition for identifia-
bility (Soltanolkotabi & Candés, 2012), but in mixPFC we
allow non-overlap, partial overlap, and complete overlap
between S; and Sy, for any (j, k). With the response Y,
even when S; = Sy, we can still have I'; # Ty, to ensure
cluster identifiability, although span(I';) = span(I'y). A
more concrete demonstration is given in Figure 2, where we
have conducted two toy example simulations based on the
proposed model (3). The first toy example in Figure 2 (a)
has §; = Sa, but the response Y™ has different relationships
with X in the two clusters. The subspace clustering would
completely fail to identify the subspace or to cluster data
while mixPFC works well and produces near perfect sub-
space estimation and clustering results. In Figure 2 (b), we
have another simulation where S; L S», which is an ideal
setup for subspace clustering methods. We applied our pro-
posed method and two popular subspace clustering meth-
ods: random sample consensus (RANSAC, Tron & Vidal
(2007)) and sparse subspace clustering (SSC, Elhamifar &
Vidal (2013)). The clustering errors by subspace clustering
methods, 8.4% (SSC) and 13.0% (RANSAC), are reduced
by mixPFC to 3% thanks to the additional response super-

vision.

Finally, the following proposition identifies the key param-
eter for fitting mixPFC.

Proposition 2.1. Under model (3), the smallest subspaces
satisfying (2) are S, = span(A~T,), w = 1,..., K.
Consequently, d,, = dim(S,,) = rank(I'y,) and d =

dlm(Zi(:l Sw) S Zf:l d“"

The rank of I',, € RP*4, d,, could be smaller than ¢,
the number of functions in f. Our model-based SDR ap-
proach for handling heterogeneity in data is now rigorously
connected to the central subspace notion in general (2).
Based on the maximum likelihood estimation (MLE) for
PFC model parameters (Cook & Forzani, 2008), we derive
the MLE for S,, and, more importantly, a penalized EM
algorithm for high-dimensional data.

3. Group-Penalized EM Algorithm

Let {(X;,Y;)}~, be n independent data points from
mixPFC (3), 8 = (A, 7y, lw, Sw,w = 1,..., K) be the
set of unknown model parameters. In low dimensions, all
the parameters can be estimated by the EM algorithm.

The EM algorithm aims to maximize the log-likelihood
of X | Y over 6, by iteratively alternating between an
Expectation-step (E-step) and a Maximization-step (M-
step). The conditional log-likelihood of X | Y is

n K
= ZIOg (Z 7"-w]\[()(i | My + wai7 A)) s
=1 w=1

where f; = £(Y;) and N (- | u, A) is the probability density
function of a multivariate normal distribution with mean g
and covariance A. In the E-step, we compute the expecta-
tion of the log-likelihood function of 8 with respect to the
conditional distribution of W given {(X;, Y;)}™

n K
9|9(t) Z Z g( ) )[log(mw) @

i=1w

+lo ? N(X; | p + T, A))],

where 7., (01)) = Pr(W; = w | ), X;,Y;). Assuming
the cluster means p.,, are equal, the estimated probability
Yiw (0®) is given by

~(t)

~, 7'('
Yo (@) = 3" Lo exp{(X; — 1/2(F) + TO)E)T
j#w Tw
(AD)THTY —T)E} +1
Then, in the M-step, we update OC+D

argmax, Q(8|6")) by maximizing (4).
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Predictor Projected onto Sq (=S5)

(a) Toy Example 1

Predictor Projected onto Sq(+ S3)

Response

Predictor Projected onto Sp (= S9)

(b) Toy Example 2

Figure 2. Two toy simulation examples, with p = 6 and two mixtures of size n1 = na = 200. The proposed mixPFC method works well
in both extremes of setups: (a) Subspaces coincide, i.e, S1 = Sa2, but mixtures are well-separated by response variability. In this case,
subspace clustering completely fails. (b) Subspaces orthogonal to each other, i.e, §S; L Sa. For both examples, we plot the response
versus the estimated linear reductions of the predictors based on the mixPFC method.

The above standard EM algorithm is infeasible for high-
dimensional problems. The inverse of p x p covariance
matrix A serves as the cornerstone of the EM algorithm.
In high dimensions, it is impractical to use A~! repeat-
edly in the EM updates. However, it can be seen that the
probabilities v, (6®)) are evaluated on the linear function
of X;: X?(a(‘))_l(f?) — T®). By Proposition 2.1,
A~Y(r;—T,,) is contained in the central subspace. Hence,
there is no loss of information to first project X; onto the
central subspace S and then calculate the probability based
on reduced predictors, avoiding the p x p matrix inversion
A~ Specifically, given a basis matrix 3 € RP*? of S,
we focus on the reduced predictors 37X = BTT,f(Y) +
BTe € RY. This is a mixture linear regression problem
Z=A,f(Y)+ €& where Z = BTX, A, = 87Ty, and
£ ~ N(0,A*) with A* = BTAB € R¥% Then the
updating equation for the probabilities can be simplified to

=~(1)
~ s 1.~
(@)™ =37 iy exp {(ZE-” —5lAf
j#w Tw

()
+AQ)RD (AN (AP ~AD) £ | +1.

Given (3, the closed-form updates for A*, A, and m,, are
straightforward to derive. The most challenging part re-
maining is how to obtain an accurate estimator of the cen-
tral subspace.

For high-dimensional predictors, we consider the following
groupwise penalized estimation of the basis matrix of each
subspace (3,,. First of all, we recognize that span(f3,,) =
span(A~!T,) = span(X,;'U,), where £,, = cov(X |
W =w) e RF*? and Uy, = cov(X,f(Y) | W = w) €
RP*1 are the covariance matrices. The iterative sample es-

timates in EM updates are computed as

— 1 —
() — = - (OOVX, — OV X, — T
X n ;%w(e (X — By)) (X — By))”
0 = 370 (89) (X — Q) (5 DT
g

where il = (32, 7i(8®)) 1 3, 7iw(6®)X; and T =
1/n)", f;. Then we solve the convex optimization prob-
lem,

B®) = argmin 11;:1‘(B$§$)]3w)
B, CRPXa 2 (6)

— tr{(U%)"Bu} + A[Bull2,1,

where A > 0 is tuning parameter and the Ly penalty
IBullz1 = P (I (Bw)?)? is coordinate-
independent (Chen et al., 2010). The problem in (6) is con-
vex. We develop a groupwise coordinate descent algorithm
to solve it efficiently. Note that B,, € RP*’s are naturally
rank deficient, with ¢ > d,,. Therefore, at the convergence
of the penalized EM algorithm 1, we use the span of the
top-d,, left singular vectors of B,, to be the subspace esti-
mates S,

As shown in the original PFC paper (Cook & Forzani,
2008), subspace estimation remains consistent under mis-
specification of f(Y’), provided f(Y) is sufficiently corre-
lated with the true function. Our mixPFC model inher-
its this property, ensuring validity across a broad class of
functions. In practice, polynomials or splines are standard
choices. The initialization method, selection of K, along
with mixPFC-ISO—an alternative algorithm tailored for
isotropic covariance matrices—is detailed in Section B of
the appendix. The code is available on GitHub at https:
//github.com/leiyan—1y/mixPFC.
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Algorithm 1 Penalized EM algorithm for mixture PFC

Input: Data {(X,;,Y;)}? ,, fitting function f(-)
Initialize 7;,,(6") and center f;
repeat

A1)

E-Step: 7iu1(§(t)) = t t
70 4 Zﬁéw J( )exp{(Z( )
M-Step: B = argming %tr(BﬁE( w) —
A = 1/n 0 (00), ) =
until converge
Output: 7, S,

— 3LAY + ALHEIDT(A®) (A
{(U3)7Bu} + AlBullas
/Zz 1[’71w(9(t))] Zi:l 'Yiw(e(t))x

- ;&g))fz}

4. Theory

4.1. Preliminary

We begin this section with some notations. For num-
bers ¢ and b, a V b and ¢ A b means max{a,b} and

min{a, b}. For an integer n, [n] denotes the set {1,...,n}.
For a vector x = (z1,...,2,)7, |x|1 = Y0 |@ils
and [[x|2 = /> i_,z7. For a matrix A = (a;;),

Omin(A) and 0.5 (A) represent the smallest and largest
singular values of A, Sa denote the column space of
A. The Frobenius norm, and spectral norm of A are de-
fined as |A||F = tr(ATA), ||All2 = omax(A). The
Frobenius inner product between two matrices A and B
s (A,B)r = tr(ATB). For matrices A and B with
same column rank d, the distance between subspaces is
D(Sa,SB) |[Pa — Pg|lr/V2d. For a set A C
{1,...,p}, A° and | A| denote its complement and car-
dinality. For two sequences of positive numbers {a,}
and {b,}, ap, < b, or a, = O(b,) means a,/b, <
C < oo, and a, = o(b,) means that a, /b, — 0 as
n — oo. Let SP4~! be the unit sphere. For a positive
integer s < p/(3¢q), let L(s) = {u € RP? : ||u§f|\1 <

(Vsq + 2q\/i§)|\u§1|\2 + /5q(lull2, for some §;  C
[pq] with |S1] = 3sq} and L,(s) = L(s)1p = {ur;p :
u € L(s)}. For a matrix A € RP*Y, define ||Al|ps =
SUPueRr*4,vec(u)eL(s)NSPa—1 <Aa u>F'

We conduct the theoretical analysis under the assumption
that Y; is fixed, f(-) is known, and p,, = 0. We focus
on the case where K = 2, a common assumption in high-
dimensional EM algorithm analysis (Cai et al., 2019; Wang
et al., 2024). We further assume that A = 021p with o
known. Treating the covariance matrix as a known param-
eter is also standard in theoretical studies of simpler models
such as mixture linear regression (Klusowski et al., 2019;
Wang et al., 2024) and the Gaussian mixture model (Xu
et al., 2016; Cai et al., 2019). Without loss of generality,
we set 02 = 1. Under these assumptions, we re-define the
parameter as @ = (m1,I'1,I's), since 719 = 1 — mp and
Sy = span(T'y,),w = 1,2. With this setup, we analyze

the theoretical properties of a simplified version of Algo-
rithm 1, which is detailed in Algorithm 4 in the appendix.
Let 6* denote the true value of 8, and 0] represent the
estimate of @ at the ¢-th iteration. The true parameter space
is defined as

O ={0" 77 € (¢r, 1 — cx), || vee(Ty,) o < sq,
IBLllr < M, [T |lr < My, w = 1,2},

where each condition has a natural interpretation. The con-
dition 77 € (¢r,1 — ¢r) ensures each latent cluster has
a sufficiently large sample size. The sparsity condition
[ vec(IT%)]lo < sq reflects group sparsity structure, and
IT% |l s < M, are used in the literature on mixture linear
regression (Yi & Caramanis, 2015; Wang et al., 2024). The
parameter B, is the true solution to the optimization prob-
lem (6), and is defined later in the text.

Since 02> = 1 and K = 2, the conditional probability
Pr(W; = 110,X,,Y;) is simplified as
7i1(0) ! = (1/m — 1) exp{[X; — 1/2(T2 + T1)fi]"

(T =T} + 1,

and let v,2(0) = Pr(W; = 2/0,X,,Y;) = 1 — ;1(0). The
following quantities are used repeatedly in the theoretical
analysis:

= % Z Yiw(6)
Uw(o) = — Z%w X,f i Uw(e) = E[ﬁw(e)]’

Su(0) =~ Zm(e)xixf, >.,(0) = E[Z,(0)],

where the expectation is with respectto X;,2 = 1,2...,n.
We define B!, = (37)~ lU*w, where ¥ = X,(0%)
and U = U,(0*). Let ﬁw and (37 represent top-
d,, left singular vectors of 1§§5> and B},. Then we have
Suw = Sps. Let My, (8) = {74 (6), U, (6), =,,(8), w =
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1,2} represent the sample-based estimates and M (6) =
{7,(0),U,(0),%,(0),w = 1,2} be the popula-
tion counterpart. To quantify the differences be-
tween two sets of parameters, we introduce a distance
dp(M(61), M(02)), defined as

ﬁfﬂ{é{|7‘t‘w(01) — 7w (02)|V |[Uy(01) — Uy (02)|| 7

v H(Ew(el) - Ew(92))BTu||F}

Let Q = \/tr[(F§ - F*l‘)f)f(l"g —TI'1)T] denote the sig-

nal strength of the mixture PFC model, where f]f =

1/n >0 ££F. We define the contraction basin Beon (6*)

as the set:

Beon(0™) ={0 : 0y € (co,1 — o), ||ITw — Tipllr < Cp2,
(1 C)Q* < | t2(8, (D)8 (T2 — T1)7)|
< (14 Cy)Q2,
vec(T'y, —Ty,) € L(s), w = 1,2},

where ¢y < ¢, and 6,(T') = I}, — (' + I'1)/2. The

contraction basin requires that 6 is not far away from the

true parameter *. Under the conditions shown later, an
initialization #(°) within the contraction basin guarantees

that all subsequent estimators 6® remain in the contraction
basin throughout the iterative process.

4.2. Main Results

We need some technical conditions before stating the theo-
retical results.

(C1) The singular values of S = 1/nY 0 £E7 satisfy
that Ml S Umin(gf) S O'max(if) S M27 and M3 S
ming <<y ||fill2 < maxi<i<p [|fill2 < My.

(C2) The initialization 9(*) satisfies that dz(0©),0*) v
IBY” — Billr v By - Bi|r < rQ and
Vec(l"gl?) —T) € L(s), with r < |cg — ¢ |/Q A
Cy A %(\/Cd—l/(4\/M1)+% — by, a2 =
M /DI, b = 2/ + [ My + /M /2] )/ M.

(C3) There exists a sufficiently large constant My >
0, which does not depend on n,p,s, such that
04, (BL) = M > \/sq3(log n)? log p/n.

(C4) Q > Ci(co, Cy, My, M;;i = 1,...,4) for a constant
that is only depends on ¢y, My, Cp, and M;,i =
1,...,4, and C, < C3(M>) for a constant only de-
pends on M.

(C5) n > C3sq®log(p) for a sufficiently large constant Cs.

Condition (C1) is mild since f; is a g-dimensional vector,
where ¢ is a small fixed number that does not grow with n
and p. Condition (C2) ensures the initialization lies within
the contraction basin, which guarantees the estimates pro-
duced at each step of the EM algorithm stay in the con-
traction basin. It is a common condition in mixture mod-
els (Cai et al., 2019; Wang et al., 2024). Condition (C3)
requires that the nonzero singular values of B, are suf-
ficiently separated from zero. This is a standard assump-
tion in the theoretical analysis of high dimensional SDR
problems (Zeng et al., 2024). Condition (C4) has two re-
quirements. The first one is that the signal strength is
larger than a constant that does not depend on n and p
such that the two mixtures are distinguishable. This as-
sumption is widely used in mixture linear model (Zhang
et al., 2020; Wang et al., 2024). The second is that, for
the parameters I',, within the contraction basin, the dis-
tance ||I",, — '}, || # is bounded by the signal strength multi-
plied by a universal constant independent of n and p. Con-
dition (CS) is a common assumption in high dimensions
on the relationship among n, p, s to guarantee consistent
estimation (Meinshausen & Yu, 2009; Cai et al., 2019).
Specifically, it implies that the restrictive eigenvalue con-
dition infueﬁp(s)mgp—l |HT% Z?:l XZX?H| > 7 holds
with high probability for a positive constant 7;.

Next, we state the main result for the subspace es-
timation error of mixPFC in Theorem 4.1, with
its proof provided in Section C in the appendix.

(

Theorem 4.1. Under conditions (C1)-(C5), there exists a constant 0 < k < 1/2, such that fiuf) satisfies, with probability

at least 1 — o(1),

~ ~ o~ ~ sq3(log n)?lo
IBO — By lr < w(dr(80,0%) v [BO — Bi|lp v [BY) - By|p) +/ L I08n) osp.

n

computational error

statistical error

Consequently, fort > (—logr)~! log{n(dp(g(o), 6*) v ||]A3(10) —Bi|lrV ||]§éo) —Bilr)}

IBY) — B[l D(Sg0, Say) <

sq°(logn)? log p
n
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Theorem 4.1 is the first theoretical result in high-
dimensional heterogeneous SDR. Compared to the high-
dimensional PFC result in Zeng et al. (2024), our con-
vergence rate is slower by a factor of logn, reflecting the
added complexity of unknown cluster labels. Importantly,
Theorem 4.1 holds under unequal proportions and arbitrary
subspace angles, making it highly non-trivial. Even in low-
dimensional settings, existing EM theory often requires ad-
ditional assumptions such as equal proportions (Gaussian
mixtures (Xu et al., 2016)), or symmetric coefficients (mix-
tures of linear regression (Zhu et al., 2017)). Additionally,
our analysis does not rely on sample splitting, a common
technique in the literature (Yi et al., 2014; Yi & Carama-
nis, 2015; Zhang et al., 2020) that divides the data into
many batches and uses a new batch of samples in each
iteration to make random samples and current parameter
estimates independent. Sample splitting, while theoreti-
cally convenient, is suboptimal in practice as it decreases
estimation efficiency and is rarely used in real-world ap-
plications. Recent work by Wang et al. (2024) derived a
rate of 4/s(logn)?logp/n without data splitting for mix-
ture of linear regression. However, the mixture of PFC is
inherently more complex. Our rate is slower by a factor
of ¢3/? due to the dependence on the g-dimensional vec-
tor f(Y'). Similarly, compared to Gaussian mixture model
(Cai et al., 2019), the convergence rate is slower by a factor
of ¢*/%logn due to the involvement of ~;,, in X.,(0) and
function f(Y").

Starting with an initial value within the contraction basin,
Theorem 4.1 shows that the proposed algorithm converges
to the true parameters at a rate containing both computa-
tional and statistical errors. The computational error, ex-
pressed as xt(dp (0, 6%) v |B!” — B[ v |BY —
Bj||r), diminishes exponentially as ¢ — oo since 0 <
K < 1/2. The statistical error, /sq3(log )2 log p/n, rep-
resents the irreducible estimation error and persists regard-
less of the number of EM iterations. For sufficiently large
t > (—logr) " log{n(dr(6©,6) v |BY” - Bf||r v
H]§(20) — Bj||»)}, the computation error becomes negligi-
ble relative to the statistical error. Beyond this step, addi-
tional iterations do not improve the estimators. Notably,
since this threshold grows only logarithmically with n, the
Algorithm 1 achieves accurate estimation in practice within
a limited number of iterations.

The computational cost per EM iteration is O(nKpq +
nK3q¢3 + KTpng + nKp?), where T denotes the num-
ber of iterations to solve the penalized optimization prob-
lem (6). Given that ¢ is a small number that does not
grow with n, p, K, the overall complexity of Algorithm 1
is O(log(n)(nK?® + KTnp + Knp?)) with the dominated
term O (log(n) K np?) from covariance estimation. This re-
mains tractable even for large K or p.

5. Numerical Results
5.1. Simulations

We compare the mixPFC and mixPFC-ISO against ex-
isting methods in clustering accuracy, subspace estima-
tion, and variable selection. Since no existing method si-
multaneously classifies the data and estimates subspaces,
we evaluate our methods against subspace clustering ap-
proaches for clustering error rates and high-dimensional
SDR methods for subspace estimation and variable selec-
tion. The subspace clustering methods considered include
LSA (Yan & Pollefeys, 2006), SSC (Elhamifar & Vidal,
2013), LRSC (Favaro et al., 2011), GPCA (Vidal et al.,
2005), and RANSAC (Tron & Vidal, 2007). GPCA is ap-
plied only to the important variables due to computational
constraints. Additionally, K -means and hierarchical clus-
tering, are included and applied to both X and X oY, where
the i-th row of X oY is defined as Y; x X;. For variable se-
lection and subspace estimation accuracy, we include Las-
soSIR (Lin et al., 2019), SEAS-SIR, and SEAS-PFC (Zeng
etal., 2024). Clustering results are presented in this section,
with subspace estimation and variable selection results pro-
vided in Section A of the appendix.

We consider four settings for central subspaces, denoted
as models M1-M4, to examine different configurations of
mixtures. Models M1-M3 have K = 2 mixtures with dif-
ferent degrees of overlap between two subspaces. Specifi-
cally, the subspaces are identical in M1, orthogonal in M2,
and oblique in M3. Model M4 randomly generates multi-
ple subspaces (K > 2), which tend to be nearly orthogonal
to each other sine s = 10. The dimension d,, of each sub-
space is 1 for M1 and M2, and 2 for M3 and M4. The
active set is defined as A,, = {1,...,6} for M1-M3, and
Ay = {1,...,10} for M4. Across all models, we set
we =0, £(Y) = (V,|Y])7, and 7, = 1/K. After the
basis matrices 3,, of central subspaces are generated ac-
cording to M1-M4 (parameters provided in Section A of
the appendix), we set I',, = A3, 1., Where n,, € R%wxq
links the central subspace and function f(Y"). Imbalanced
clusters and non-linear functions are also examined in Sec-
tion A of the appendix.

The sample size is fixed at n = 200K with p =
1000, and for each simulation setting, 100 independent
datasets are generated. To explore the influence of differ-
ent covariance structures, we examine four configurations:
0.1L,,1,, AR(0.3), AR(0.5), where AR(r) represents the
auto-regressive covariance structure (A);; = rli=il for
i,7=1,...,p.

Table 1 summarizes clustering error rates. As expected,
mixPFC achieves substantially lower error rates than all
subspace clustering methods across most model settings.
When K = 2, mixPFC has error rates of around 10%
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across all settings, dropping below 5% in certain cases.
Notably, mixPFC-ISO demonstrates superior performance
with even lower error rates for model M2. For M2 with
A = 0.1I,, subspace clustering methods exhibit compara-
ble or slightly lower error rates. This is likely due to favor-
able conditions for subspace clustering methods, where the
subspaces are orthogonal and the random errors are mini-
mal. When K > 2, error rates remain impressively low,
under 3% for K = 3, probably due to enhanced signal
strength from setting s = 10. When K = 5, error rates
rise to around 15%, likely due to the increased difficulty in
generating high-quality initial values for larger K.

5.2. Real Data Analysis

The Australian Institute of Sport (AIS) dataset, available in
the R package dr, contains lean body mass data for 102
male and 100 female athletes. The objective is to investi-
gate the relationship between lean body mass and 8 predic-
tors, including height, weight, and red cell count. Given
that body composition varies between males and females
(Bredella, 2017), the AIS data likely includes two distinct
subpopulations. Figure 3 (a) shows summary plots for
males and females when sex is observed, highlighting dis-
tinct fitted lines for each group. Figure 3 (b) demonstrates
that mixPFC effectively identifies the two subpopulations,
achieving an error rate of 0.074.

Loan Body Mass
Lean Body Mass

Lean Body Mass

o T

i

(a) PFC with true sex

(b) mixPFC with estimated sex

Figure 3. Summary plots for the AIS dataset. (a) Fitted lines for
males and females when the sex variable is observed, illustrate
distinct subpopulation trends. (b) Results from mixPFC, which
accurately identifies the two subpopulations with an error rate of
0.074.

The Cancer Cell Line Encyclopedia (CCLE) dataset con-
tains 8-point dose-response curves for 24 chemical com-
pounds across over 400 cell lines, with 18,926 gene ex-
pression features for each cell line, accessible at https:
//sites.broadinstitute.org/ccle. Due to in-
consistencies in cell lines across compounds, we focus on
two popular cancer treatments: Nutlin-3 (n = 480) and
AZD6244 (n = 479). Following (Wang et al., 2024; Li
et al., 2019), we use the logarithm of the area under the
dose-response curve as the response, representing drug sen-
sitivity. The top p = 500 genes with the highest absolute
correlations with the responses are selected for analysis.
Given the inherent complexity of cancer, the CCLE data is

expected to be heterogeneous.

The dataset is randomly partitioned into 80% training and
20% testing samples, with 100 repetitions. Table 2 reports
the prediction mean squared errors (PMSE) and the number
of selected variables s for each method, with the number of
clusters set to 3 and 5 for Nutlin-3 and AZD6244 when
using mixPFC. For both compounds, mixPFC significantly
reduces prediction error compared to homogeneous meth-
ods, suggesting heterogeneity in the data. Notably, mixPFC
does not select more variables than Lasso and the three ho-
mogeneous SDR methods.

Figure 4 shows summary plots of the response against re-
duced predictors projected onto each subspace for Nutlin.
Within each cluster, the response exhibits approximately
linear relationships with the projected predictors. The lack
of clear patterns when points are projected onto subspaces
outside their cluster further highlights the heterogeneity of
data. The plot for AZD6244 and additional real data anal-
ysis are provided in Section A in the appendix.

fix ‘ ‘ NV ‘ " i

Figure 4. The scatter-plot of the response Y versus BUTJ X for the
drug Nutlin. The solid line is fitted using samples in the given
cluster.

6. Discussion

In this work, we proposed a mixture of PFC model, which
combines subspace clustering with SDR methods to han-
dle heterogeneous and high-dimensional data. An efficient
group Lasso penalized EM algorithm has been developed
to simultaneously perform clustering, subspace estimation,
and variable selection. Theoretical analysis revealed an
encouraging non-asymptotic convergence rate, offering in-
sight into the empirical success of the algorithm.

A key aspect of our theoretical framework is its devel-
opment for K = 2 cluster scenario. Generalizing theo-
ries for multi-cluster EM algorithms remains an important
yet challenging direction. Recent advances focus on low-
dimensional settings (Yan et al., 2017; Tian et al., 2024),
and to the best of our knowledge, no general theory exists
for high-dimensional multi-cluster EM. Addressing this
open question likely requires fundamentally new tools to
handle complex parameter spaces and interactions between
K subspaces.

Further discussion and potential extensions are provided in
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Table 1. Averages and standard errors of clustering error rates with n = 200K, p = 1000.

mixPFC-ISO  mixPFC RANSAC LSA LRSC SSC GPCA K-means X K-means X oY  hclust X  hclust X oY
MI: K =2,A =0.11,,,I,, AR(0.3), AR(0.5)
5.0(0.8) 3.4(0.7) 48 (0.1) 44.6(0.2) 47.8(0.2) 47.9(0.1) 47.9(0.1) 44.2(0.2) 20.2 (0.3) 45.8 (0.2) 14 (0.2)
12.1 (1.0) 10.3(1.1) 48.1(0.2) 47.9(0.2) 48(0.2) 48 (0.1) 48.1(0.1) 45.2(0.2) 29.1 (0.4) 48.1(0.2) 38.2(0.5)
6.0(0.6) 48.0(0.2) 47.6(0.2) 48.0(0.2) 47.9(0.1) 482(0.1) 44.7(0.1) 23.1(0.3) 47 (0.2) 23.9(0.3)
47(04) 479(0.2) 47.0(0.2) 47.8(0.2) 482(0.1) 48.0(0.1) 44.5(0.2) 21.6 (0.3) 46.6 (0.2) 18.3 (0.3)
M2: K =2,A =0.11,,,I,, AR(0.3), AR(0.5)
9.9 (1.5) 16.4 (2.0) 28.3(1.2) 4.9(0.1) 48.1(0.1) 11.7(0.2) 48(0.1) 47.6 (0.2) 27.5(0.3) 46.9 (0.2) 19.1 (0.3)
13.9 (0.8) 16.3(1.4) 47.6(0.2) 43.5(0.3) 47.7(0.2) 47.2(0.2) 48.2(0.1) 47.5(0.2) 36.5(0.3) 47.4(0.2) 46.2 (0.3)
11.5(0.9) 46.2(0.3) 31.2(04) 48.3(0.1) 44.9(0.3) 48.2(0.1) 37(0.4) 32.2(0.3) 44.2 (0.3) 42.6 (0.5)
11.4(0.9) 43.4(0.6) 21.5(0.3) 48.0(0.1) 43.5(04) 48.0(0.2) 33.9(0.2) 31.1(0.3) 40.2 (0.3) 34.9(0.5)
M3: K =2,A =0.11,,I,, AR(0.3), AR(0.5)
59(1.1) 3.6(1.2) 39.7(0.7) 40.0(0.8) 47.5(0.2) 13.2(0.2) 47.8(0.2) 44.6(0.2) 22.3(0.3) 44.5 (0.4) 15.1(0.2)
11.1 (1.5) 84(1.4) 47.8(0.2) 47.7(0.2) 48.0(0.1) 48.0(0.1) 47.9(0.2) 459(0.2) 30.6 (0.4) 47.9 (0.1) 41.2 (0.4)
72(1.4) 478(0.2) 47.3(0.2) 47.8(0.2) 475(0.2) 47.9(0.2) 47.2(0.1) 24.8 (0.3) 47.9 (0.1) 26.3 (0.3)
4(09) 47.0(02) 472(0.1) 48.1(0.1) 47.7(02) 47.8(02)  46.7(0.1) 24.1(0.3) 47.7(02)  21.1(0.3)
M4: K =3,A =0.11,,,I,, AR(0.3), AR(0.5)
0 (0) 0(0) 44.1(1) 254(0.5) 182(0.6) 6.5(0.1) 63.3(0.1) 583(0.2) 52.1(0.2) 59.4 (0.4) 29.4(0.3)
3.7 (0.1) 29(0.1) 623(0.2) 57.2(0.2) 64(0.1) 60.5(0.3) 63.4(0.1) 62.8(0.2) 53.3(0.2) 68.8 (0.3) 53.7(0.4)
2.5(0.1) 59.8(0.3) 56.1(0.3) 64(0.1) 57.5(0.3) 63.4(0.1) 61.8(0.2) 50.1 (0.3) 66 (0.3) 46.6 (0.4)
22(0.1) 569(0.3) 54.1(0.2) 64(0.1) 59.6(0.3) 63.7(0.1) 62.8(0.2) 47.8 (0.3) 63.3(0.3) 42.3(0.5)
M4: K =5,A =0.11,,,I,, AR(0.3), AR(0.5)
0.4 (0.3) 02(0.2) 50.1(0.7) 38.8(0.6) 32.6(0.8) 13.8(0.2) 74.1(0.2) 63.4(0.2) 46.5 (0.4) 64.8 (0.2) 25.5(0.2)
14.0 (1.2) 10.2(1.6) 75.2(0.1) 66.7(0.2) 76.9(0.1) 753(0.1) 76(0.1) 65.7 (0.1) 54.3(0.4) 75.6 (0.1) 71.5(0.3)
15.7(2.0) 73.6(0.2) 65.1(0.2) 76.8(0.1) 74.6(0.1) 76(0.1) 62.7 (0.1) 53.7(0.3) 72.8(0.1) 66.1 (0.3)
244(22) 724(02) 65(0.2) 77 (0.1) 75.8(0.1) 76.1(0.1)  63.1(0.2) 55.4(0.2) 71.1(0.1) 62 (0.3)

Table 2. The averages of the prediction errors, the sparsity level 5,
and the corresponding standard errors based on 100 replicates.

Nutlin-3
mixPFC ~ SEAS-SIR  SEAS-PFC  LassoSIR Lasso
PMSE x100  8.9(0.4) 18.7 (0.4) 18.8(0.4) 18.2(0.3) 17.6(0.3)
s 31.5(2.5) 483 (1.3) 33.3(1.8) 32(09) 39.1(1.1)
AZD6244
PMSE x100 45.6(1.7) 108.8(2.2) 107.1(2.2) 83.2(1.6) 77.6(1.5)
s 77.8(3.2) 78.3(1.6) 58.8(1.5) 66.8(0.7) 78.6(0.7)

Section G in the appendix.
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This appendix provides additional numerical results, implementation details, and technical proofs supporting the theoretical
analysis. Section A presents detailed results from the numerical studies. Section B outlines implementation specifics,
including the initialization method, selection of the number of clusters, and the mixPFC-ISO algorithm. The theoretical
analysis of Theorem 4.1 relies on two key lemmas, with ancillary results provided in Section F. The proofs of the two key
lemmas are detailed in Sections D and E, while Section C contains the full proof of the theorem. We discuss potential
extensions in Section G.

A. Additional Numerical Results
A.1. Simulations

The parameters for M1-M4 in the simulation section are generated as follows.

(M1) The non-zero coefficients of 3; are 3y; = 2.3,7 = 1,...6, and then set 3o = — 3.

(M2) The non-zero coefficients of 3; and 35 are B1; = 2.3,1 < i < 6, and By; = 2.3 for: = 1,3,5, By; = —2.3 for
1=2,4,0.

(M3) The basis matrices 31 and 32 have two columns. The non-zero rows of 31 and 35 are

3 )T (23 23 23 23 23 23
V16— \23 —23 23 -23 23 -23)°

(BT, — 23 —-23 —23 —-23 -23 -23
26— \23 23 -—23 23 -23 23 )"

(M4) The basis matrices 3,,,w = 1, ..., K have two columns. For each cluster w, the non-zero elements are generated as

(Bw)ij ~ Unif([-2.5,-2.1] U [2.1,2.5]),i <10,j = 1,2,w = 1,2,..., K.

We consider four scenarios of simulations as described in Table A.3. The clustering error rates for S1 and S4 are presented
in the main paper. The error rates for scenarios S2 and S3 are summarized in Table A.4&A.5.

To assess the subspace estimation and variable selection accuracy, we define the following criteria: the distance be-
tween estimated and actual subspaces is defined as D, = D(Sg,,,S3,) = [[Pg, — Pg llr/v2dw,w = 1,...,K;
error rate ER is the fraction of incorrectly classified samples; true positive rate (TPR) and false positive rate (FPR)
are defined as TPR,, = | Ay, () Awl/|Aw| and TPR,, = | A, [ ASI/IAS]. When K > 2, instead of reporting
each D,,, TPR,, and FPR,,, we calculate the average subspace distance D= 25:1 Dy /K, average TPR and FPR
TPR = Y %_| TPR,, /K and FPR = S_%_ FPR,, /K, and TPR and FPR of the union of selected variables across all

clusters TPR = |(J Aw) (U Aw)I/I(UAw)| and FPR = [(UAw) DU AS) /(U AS)-

Table A.6&A.7 summarize variable selection and subspace estimation results for scenario S1&S4 with covariance A =1
and AR(0.3). The corresponding results for A = 0.1 and AR(0.5) are provided in Table A.8&A.9. Results for S2 and
S3 can be found in Table A.10-A.11 and Table A.12-A.13, respectively. Under scenario S1, mixPFC demonstrates strong
performance, effectively identifying the important variables and accurately estimating central subspaces. It achieves true
positive rates TPR,, greater than 95%, false positive rates FPR,,, below 1%, and subspace estimation errors D,, around 0.3
when A = I and AR(0.3). However, as variables correlation increases (A = AR(0.5)), mixPFC shows reduced accuracy
in subspace estimation with D,, increasing to approximately 0.5, though it remains effective in variable selection. When
the covariance matrix contains small elements (A = 0.1I), mixPFC performance declines in both variable selection and
subspace estimation. This reduction occurs because estimating S,, = A~'Sp, becomes challenging when all elements
of A have small magnitude. In such cases, mixPFC-ISO, which assumes isotropic errors, outperforms mixPFC when
A =0.1Tand I

In the unbalanced clusters scenario S2, subspace estimation errors are smaller for clusters with more samples, while variable
selection and error rates remain consistent with S1. In scenario S3, featuring a nonlinear fitting function, both mixPFC
and mixPFC-ISO perform poorly in variable selection and subspace estimation for model M3. Even SEAS-PFC using true
clusters offers little improvement. However, the error rates remain well controlled. The performance under M1 and M2 is
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similar to S1. In the multi-cluster setting S4, the mixPFC shows 10% - 20% reduction in TPR,, for each cluster compared
to S1. But, the union of selected variables typically includes all the important variables.

When compared with LassoSIR, SEAS-SIR, and SEAS-PFC fitted on estimated clusters, mixPFC has similar TPR,, and
FPR,, but larger subspace estimation errors. This is likely because the algorithm incorporates some misleading information
from other clusters through ~;,,. Among the high-dimensional SDR methods, SEAS-SIR and SEAS-PFC consistently
outperformed LassoSIR. Therefore, it is recommended to refit with SEAS-PFC after classifying the data using mixPFC.
Notably, fitting with true clusters offers only marginal improvements—typically just a few percentage points—over using
clusters estimated by mixPFC.

Table A.3. Parameters settings of four sets of simulations. The linking matrices 1., = (1,0.3) for M1 and M2, and 1., = I for M3 and

M4,
Scenario Model v Y £f(Y)
S1 M1-M3 (0.5,0.5) Unif(—l, 1) (Y, \Y|)T
S2 M1-M3 (0.7, 0.3) Unif(—l7 1) (Y, \Y|)T
S3 M1-M3 (0.5,0.5) Unif(0,2)  (Y?2/3,Y3/6)T
S4 M4K=35 (1/K,...,1/K) Unif(~1,1) v, |Y])T
Table A.4. Averages and standard errors of clustering error rates for scenario S2 with n = 400, p = 1000, K = 2.
Method mixPFC-ISO mixPFC RANSAC LSA LRSC SSC GPCA K-means X K-means X oY  hclust X  hclust X oY
MI: n = 400, p = 1000, A = 0.1, T, AR(0.3), AR(0.5)
ER(%) 7.7 (1.3) 3.1(0.7) 40.8(0.5) 48.1(0.1) 47.7(0.2) 47.4(0.2) 47.3(0.2) 48.7 (0.1) 33.1(0.6) 46.1 (0.3) 10.3 (0.5)
13.1(1.3) 7.2 (0.6) 48 (0.2) 41.2(04) 425(04) 479(0.1) 474(0.2) 48.6 (0.1) 42.7 (0.7) 43 (0.5) 27.8(0.9)
6.9(0.9) 464(03) 445(0.3) 47.8(0.1) 47.7(0.2) 45(0.4) 48.5(0.1) 35.9(0.7) 46.5 (0.3) 18.8 (0.8)
44(0.5) 43.8(04) 455(0.3) 48(0.1) 48 (0.1) 449 04) 48.7 (0.1) 35.2(0.6) 45.9(0.3) 13.5(0.5)
M2: n = 400, p = 1000, A = 0.1, T, AR(0.3), AR(0.5)
ER(%)  129(1.7) 144(19) 299(L.1) 54(0.1) 47.6(02) 11.3(0.2) 47(0.2)  48.3(0.1) 41.7(0.3) 453(0.3)  13.9(0.6)
132(0.5) 14.4(1.3) 474(02) 40.6(0.5 39.5(0.5 46.9(0.2) 47.9(02) 483 (0.1) 45.9 (0.6) 408 (0.6)  30.7 (0.4)
10(0.7) 448 (04) 33.6(03) 48.1(0.2) 46.1(0.3) 442(04) 46.5(0.2) 45.6 (0.2) 472(0.2)  29.9(0.7)
9.4(0.8) 40.8(0.7) 24.4(02) 47.9(02) 462(03) 44(04)  442(0.2) 44.4 (0.3) 48(02)  31.8(1.2)
M3: n = 400, p = 1000, A = 0.1, I, AR(0.3), AR(0.5)
ER(%) 8.0 (1.2) 2.1(0.9) 37.8(0.8) 46.1(0.3) 46.8(0.2) 14.4(0.5 47.1(02) 45.1(0.2) 35.7(0.5) 43 (0.5) 11.7 (0.5)
109(12)  33(0.7) 47.9(0.2) 458(0.3) 39.4(0.3) 47.6(0.2) 469(02) 46.8(0.2) 44.4(0.7) 418(0.6)  29.7(0.8)
3.9(1) 45.6 (0.3) 46.9(0.2) 48.1(0.1) 47.7(0.2) 4404 48 (0.1) 39.3(0.5) 46.7 (0.2) 20 (0.8)
4.8 (1) 42.4(04) 46.6(0.2) 48.2(0.2) 48.1(0.2) 44.4(0.4) 48.2 (0.1) 38.2(0.4) 46.6 (0.2) 14.7 (0.5)
Table A.5. Averages and standard errors of clustering error rates for scenario S3 with n = 400, p = 1000, K = 2.
Method mixPFC-ISO mixPFC  RANSAC LSA LRSC SSC GPCA K-means X K-means X oY  hclust X  hclust X oY
MI: n = 400,p = 1000, A = 0.1T,,I,, AR(0.3), AR(0.5)
ER(%)  6.1(0.8) 3.8(0.1) 47.7(02) 427(0.2) 483(0.1) 47.9(02) 48(02)  39.9(0.2) 39.6 (0.2) 425(03) 358(0.2)
142(0.5) 143(0.8) 48(02) 47.8(0.2) 47.9(0.1) 47.9(0.2) 47.9(0.2)  44(0.2) 43.6 (0.3) 479(02)  454(0.3)
9.1(0.5) 47.9(0.1) 47(0.2) 482(0.1) 48.1(02) 48.1(0.2)  41(0.2) 40.9 (0.2) 47.6(02)  40.6(0.3)
7.8(0.6) 48(0.1) 44.3(0.3) 48.1(0.1) 48(0.1) 482(0.1) 40.6(0.1) 39.6 (0.2) 463(02)  37.7(0.2)
M2: n = 400, p = 1000, A = 0.1L,,1,, AR(0.3), AR(0.5)
ER(%)  69(0.8) 11.1(1.6) 40(0.8) 18.7(1.2) 48.1(0.2) 16.9(0.2) 482(0.1) 46.7(0.2) 40.4 (0.2) 453(04)  38.1(0.2)
21.7(0.7)  19.9(0.9) 48(0.2) 47.9(0.2) 48(0.1) 47.9(02) 47.8(02) 47.7(0.2) 452 (0.3) 48 (0.2) 47.2(0.2)
17.6 (0.8) 47.5(02) 42(02) 47.9(0.2) 47.6(0.2) 48.1(0.1) 463 (0.3) 40.8 (0.2) 475(0.2) 47 (0.2)
16.7(0.7) 463(0.2) 384(0.2) 47.8(0.2) 46.8(0.2) 47.9(0.2) 41.4(0.4) 39.6 (0.2) 443(03)  44.9(0.3)
M3: n = 400, p = 1000, A = 0.1T,, T, AR(0.3), AR(0.5)
ER(%) 17.9(1.8) 22.6(22) 33.1(L.1) 11.1(02) 47.6(02) 12.6(0.2) 48.1(0.2) 39.9(0.1) 39.8 (0.2) 39.7(03)  35.2(0.2)
20 (1.2) 13.8(1.1) 47.6(0.2) 46.5(0.2) 479(0.2) 473(0.2) 47.8(0.2) 42.9(0.2) 42.1(0.3) 47.7 (0.2) 43.9(0.3)
13.1(1.2) 47.7(0.2) 455(0.2) 48.1(0.1) 47.5(0.2) 48.1(0.2) 44 (0.2) 40.2 (0.3) 47.5(0.2) 42.6 (0.3)
11.5(1.1) 47.2(0.3) 442(0.2) 48(0.2) 469(0.2) 48.1(0.2) 44.8 (0.2) 39(0.2) 47.4 (0.2) 39.4(0.3)
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Table A.6. Simulations results for scenario S1 with n = 400, p = 1000, K = 2. The table reports averages and standard errors of TPR,
FPR, and subspace distance for each cluster.

A=1 A = AR(0.3)
Method
TPR., (%) FPR.,, (%) D, x 100 ‘ TPR., (%) FPR,, (%) D, x 100

Ml
mixPFC 95,96.7 (1.7, 1.4) 2,1.6 (0.6, 0.5) 30,29.4 (2.2,2.1) 98.7,98.3(0.7,1) 0.2,0.4(0.2,0.3) 35,35(1.4,1.4)
mixPFC-ISO 100, 100 (0, 0) 0.4,0.4 (0, 0) 6.3,6.4 (0.2,0.2)
LassoSIR? 100, 100 (0, 0) 1.5,1.7 (0.1, 0.1) 30.6,31.7 (1, 1) 99.5,99.7 (0.3,0.2) 1.3,1.1(0.1,0.1) 41.2,41.1(1.2,1.1)
LassoSIR™ 94.7,96 (1.8, 1.5) 2.3,2(0.4,0.3) 38.2,37(2.1,2.1) | 98.5,97.7(0.8,1.1) 1.2,1.2(0.2,0.2) 41.2,41(1.5,1.4)
SEAS-SIR? 100, 100 (0, 0) 0.5,0.6 (0.1, 0.1) 7.5,7.5(0.4,0.3) 100, 100 (0, 0) 0.1,0.1 (0, 0) 13.9, 14.5 (0.3,0.4)
SEAS-SIR™  99.1,99.5(0.5,0.4) 0.7,0.8(0.1,0.2) 10.7,10.6 (1.3,1.3) | 99.8,99.3(0.2,0.5) 0.2,0.2(0.1,0.1) 15,15.8 (0.6, 1)
SEAS-PFC! 100, 100 (0, 0) 1.2,1.4(0.2,0.2) 8,8(0.4,04) 100, 100 (0, 0) 0.2,0.2 (0, 0) 13.5,14.2 (0.3, 0.4)
SEAS-PFC™  96.7,96.8(1.5,14) 1.2,1.6(0.4,0.3) 149,13.9(2.4,2) | 99.8,99.7(0.2,0.3) 0.3,0.5(0.1,0.2) 15.1,15.7(1, 1.2)

M2
mixPFC 95.3,945(14,1.5) 0.7,0.8(0.1,0.1) 31.7,31.8(1.9,1.9) 98.8, 100 (0.5, 0) 0, 1.3(0,0.1) 37.3,24.1(1.4,0.9)
mixPFC-ISO 98.7,98.8 (0.8,0.6) 0.5,0.8(0.1,0.2) 9.2,10(1.3,1.6)
LassoSIR? 100, 100 (0, 0) 1.5,1.3(0.1,0.1) 30.6,29.8 (1, 1) 99.5, 100 (0.3, 0) 1.3,2.4(0.1,0.2) 41.2,299(1.2,1)
LassoSIR™ 92.5,91.7(1.7,19) 1.7,1.8(0.2,0.2) 40.9,39.2 (2.1,2.1) 97,99 (1.1, 0.5) 1.1,2.4 (0.1,0.2) 43.5,32.1(1.5,1.3)
SEAS-SIR! 100, 100 (0, 0) 0.5,0.6 (0.1, 0.1) 7.5,7.8(0.4,0.3) 100, 100 (0, 0) 0.1,1.8(0,0.1) 13.9,30.9 (0.3, 0.5)
SEAS-SIR™  93.8,92.7(1.6,1.7) 0.4,0.5(0.1,0.1) 19.4,19.2(2.4,2.4) | 98.2,97.3(0.8,1.1) 0.1,1.8(0,0.2) 18,33.8 (1.3, 1.1)
SEAS-PEC! 100, 100 (0, 0) 1.2,1.3(0.2,0.2) 8,8.1(0.4,0.3) 100, 100 (0, 0) 0.2,09(0,0.1) 13.5,28.4(0.3,0.5)
SEAS-PFC™ 92.8,92.3(1.7,1.7) 1.1,0.9(0.2,0.2) 19.6,19.6(2.4,2.4) | 97.5,97.7(1.1,1) 0.2,1(0,0.1) 17.7,30.9 (1.4, 1.1)

M3
mixPFC 942,943 (1.7,1.6) 0.2,0.1 (0.1,0.1) 29.5,29.6(2.2,2.1) | 96.8,98.5(0.9,0.6) 0.3,0.4(0.2,0.1) 30,35.7(1.7,1.4)
mixPFC-ISO  98.8,97.2(1,1.6) 0.7,0.7(0.1,0.2) 21.4,22.1(1.7,2)
LassoSIR? 100, 100 (0, 0) 6.6,6.6 (0.2,0.2) 51.1,50.5(0.8,0.9) 99.8, 100 (0.2, 0) 9.8,84(0.2,0.2) 69.3,68.5(0.5,0.5)
LassoSIR™ 94.8,96.3(1.5,1.2) 7.6,7.2(0.3,0.3) 59,57.4(1.4,1.5) | 98.3,98.7(0.6,0.6) 9.3,8.1(0.2,0.2) 71,70.3(0.7,0.7)
SEAS-SIR? 100, 100 (0, 0) 2.2,2(0.3,0.3) 9.8,9.6 (0.3,0.3) 100, 100 (0, 0) 0.2,0.3 (0, 0) 18,31.2(0.4,0.3)
SEAS-SIR™  94.1,92.6(1.5,1.7) 1.4,22(0.2,0.3) 21.8,23.2(2.3,2.4) | 95.3,95 (1.6, 1.6) 0.1,0.2 (0, 0) 26.7,37.7 (2, 1.6)
SEAS-PFC! 100, 100 (0, 0) 1.5,1.9(0.2,0.3) 9.1,9.7 (0.3,0.3) 100, 100 (0, 0) 0.2,0.3 (0, 0) 17.7,30.8 (0.4, 0.3)
SEAS-PFC™ 91.5,89.2(1.9,2.2) 1.2,1.3(0.2,0.2) 22.4,23.6(2.5,2.6) | 94.3,93(1.7,1.9) 0.2,0.2(0.1,0) 26.7,37.6 (2, 1.6)

Table A.7. Simulations results for scenario S4 with n = 400K, p = 1000, K = 3, 5. The table reports averages and standard errors of
TPR, FPR, and subspace distance, calculated as the mean values across K clusters.

Method A=1 A = AR(0.3)
TPR(%) FPR(%) TPR(%) FPR(%) Dx100 | TPR(%) FPR(%) TPR(%) FPR(%) D x 100

M4 K =3

mixPFC 99.6(0.1)  0(0) 100 (0) 0(0) 272(0.4) | 867(0.8) 03(0.1) 100(0)  1(02) 455 (0.6)

mixPFC-ISO 100 (0) 000)  10000) 0.1(0) 14.7(0.2)

LassoSIR' 100(0)  6.1(0.1) 100(0) 17.3(03) 53.1(04) | 99.4(0.1) 6(0.1)  100(0)  17(0.2) 61.2(0.3)

LassoSIR™ 1000)  6.1(0.1) 100(0) 172(0.3) 52.9(0.4) | 99.4(02) 6.1(0.1) 100(0) 17.4(03) 61.7(0.3)

SEAS-SIR'  100(0) 25(0.1) 100(0) 7.5(0.4) 113(0.2) | 92(0.6) 03(0.1) 100(0) 09(02) 43.8(0.7)

SEAS-SIR™  100(0) 23(0.1) 100(0) 6.7(04) 12.1(0.2) | 90.4(0.6) 03(0.1) 100(0) 0.8(02) 454 (0.7)

SEAS-PEC'  100(0)  1(0.1) 100(0)  3(03) 97(0.2) | 90308 0.1(0)  100(00)  03(0)  44(0.8)

SEAS-PFC™  100(0) 0.8(0.1) 100(0) 24(03) 105(0.2) | 89.4(0.8) 0.1(0)  100(0)  03(0) 45.6(0.8)
M4 K =5

mixPFC 98(0.4) 0.1(0) 100(0) 040.1) 323(1) | 8807 08(0.1) 100(00)  4(04)  50(1.2)

mixPFC-ISO  972(0.6) 02(0)  100(0)  0.9(02) 25.6(1.4)

LassoSIR? 1000)  6.1(0.1) 100(0) 27(0.3) 53.6(0.3) | 99.8(0.1) 62(0.1) 100(0) 27.4(04) 62.5(0.3)

LassoSIR™  98.3(0.5) 63(0.1) 100(0) 27.6(0.5 57.5(1.1) | 93.7(1) 68(0.2) 99.8(0.1) 29.6(0.6) 69.9(1.2)

SEAS-SIR®  100(0) 25(0.1) 100(0) 11.8(0.6) 11.4(0.2) | 94.6(0.4) 04(0)  100(0) 1.8(02) 42.9(0.5)

SEAS-SIR™ 993 (0.2) 26(0.1) 100(0) 122(0.5 17.3(1.3) | 88.6(0.8) 0.8(0.1) 100(0) 3.8(0.5) 503 (1.1)

SEAS-PFC'  100(0) 12(0.1) 100(0) 59(04) 9.6(0.2) | 91.8(0.5 03(0)  100(0) 12(0.1) 44.3(0.5)

SEAS-PFC™ 987(0.3) 1.1(0.1) 100(0) 5.4(04) 155(1.3) | 863(0.9) 0.5(0.1) 100(0)  2.5(05  50.9 (1)
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Table A.8. Simulations results for scenario S1 with n = 400, p = 1000, K = 2. The table reports averages and standard errors of TPR,
FPR, and subspace distance for each cluster.

Method A =0.1I A = AR(0.5)
TPR(%) FPR,, (%) Dy x 100 \ TPR(%) FPR,,(%) Dy x 100
M1
mixPEC 97.5, 98 (0.9, 0.7) 0,0 (0, 0) 39,39.2(1.2,1.3) | 96.3,96.5(1.1,0.8) 0.9,1.1(0.1,0.3) 50.3,48.3(1.3,1.2)
mixPFC-ISO 100, 100 (0, 0) 0.1,0.1 (0, 0) 1.7, 1.6 (0.1, 0.1)
LassoSIR'  98.8,99.5(0.4,0.3) 0.8,0.9(0.1,0.1) 43.9,44.8(1.2,1.1) | 96.2,95.3(0.7,0.8) 1.1,1(0.1,0.1) 52.8,51.7 (1.2, 1.2)
LassoSIR™  98,98.5(0.7,0.7) 0.8,0.9(0.1,0.1) 452,455(1.3,1.3) | 96,94.5(0.8,1.2) 1,1.2(0.1,0.2) 51.7,52.8(1.2, 1.4)
SEAS-SIR! 100, 100 (0, 0) 0.1,0.1 (0, 0) 2.7,2.5(0.2,0.2) 100, 100 (0, 0) 1.1, 1(0.1,0.1)  19.7,19.7 (0.4, 0.4)
SEAS-SIR™ 100, 100 (0, 0) 0.1,0.2 (0, 0.1) 2.9,3(0.2,0.2) | 99.8,99.8(0.2,02) 0.8,1(0.1,02) 20.5,20.6 (0.6,0.8)
SEAS-PFC! 100, 100 (0, 0) 0,0 (0, 0) 2.8,2.4(0.2,0.2) 100, 100 (0, 0) 0.1,0.1(0,0) 19.8,19.5 (0.5, 0.4)
SEAS-PFC™ 100, 100 (0, 0) 0.2,0(0.1,0) 3,3.1(0.3,0.3) 100,992 (0,0.6)  0.1,03(0,02)  20.5,20.6 (0.6, 1)
M2
mixPFC 87.8,87.5(1.8,1.9) 02,02 (0.1,0.1) 50.6,49.4(1.5,1.7) | 95.5,100(1,0)  0.8,2.6(0.1,02) 54.2,34.1(1.6,1)
mixPFC-ISO 100, 99.8 (0, 0.2) 0.2,0.2 (0, 0) 9.8,10.3 (2, 2.1)
LassoSIR'  98.8,99.3(0.4,0.3) 0.8, 1.1(0.1,0.1) 44.3,45.1(1.2,1.2) | 96.3,97.7(0.7,0.6) 1.1,3.8(0.1,0.2) 52.9,40.4 (1.2, 1.1)
LassoSIR™  84.7,84.7(2.3,23) 12, 1.1(0.1,0.1) 57.2,55(1.9,1.7) | 91.7,96.3 (1.4,0.9)  1,4(0.1,0.2)  55.3,43.7 (1.4, 1.4)
SEAS-SIR! 100, 100 (0, 0) 0.1,0.1 (0, 0) 2.9,2.6(0.2,0.1) | 100,89.5(0,1.3) 1.1,2.5(0.1,02) 19.7,63.8(0.4,0.5)
SEAS-SIR™  86.3,86.2(2.2,22)  0.1,0.1(0,0)  23.1,23.1(3.1,3.1) | 99,89.8(0.5,1.5) 0.8,2.4(0.1,0.2) 23.6,65.1(1.2,0.6)
SEAS-PFC! 100, 100 (0, 0) 0,0 (0, 0) 2.8,2.6(0.2,02) | 100,957(0,09)  0.1,1.9(0,02) 19.8,59.3(0.5,0.5)
SEAS-PFC™  85.5,85.3 (2.3,2.3) 0,0 (0, 0) 233,23.1(3.1,3.1) | 982,92(0.7,14)  0.1,1.7(0,02) 23.8,60.6 (1.3, 0.6)
M3
mixPFC 92.3,925(2,1.9)  0,03(0,0.1)  39.2,37.9(1.8,1.9) | 96.7,97.5(1.1,0.8) 0.5,0.9 (0.1,0.3) 40.5,50.1 (1.2, 1.2)
mixPFC-ISO 100, 100 (0, 0) 04,04 (0,00 10.8,10.7 (1.5, 1.5)
LassoSIR 100,100 (0,0)  4.5,4.8(0.2,0.2) 57.3,58.5(0.8,0.8) | 98.7,98.5(0.5,0.5) 8.8,6.4(0.2,0.3) 77.9,75.3 (0.4, 0.4)
LassoSIR™  95.5,953(1.7,1.7) 4.6,4.7(0.2,0.2) 59.8,60.1(1.3,1.2) | 96.5,98.2(0.9,0.7) 9.1,6.8(0.2,0.3) 78.5,76 (0.5, 0.4)
SEAS-SIR! 100, 100 (0, 0) 0,0 (0, 0) 3.8,3.6(0.2,02) | 100,87.5(0,1.3) 0.8,0.6(0.1,02) 34.3,53.4(0.6,0.9)
SEAS-SIR™  95.2,96 (1.7, 1.5) 0,0 (0, 0) 9.9,9.7 (2.1,2) 99.5,89 (0.3, 1.3)  0.7,0.8(0.1,0.2)  36.6,53.3 (1, 0.9)
SEAS-PFC* 100, 100 (0, 0) 0,0 (0, 0) 3,2.9(0.1,0.1) 100, 83 (0, 1.5) 0.1,0.1(0,0)  33.1,54.1(0.5,0.9)
SEAS-PFC™  94.8,94.7 (1.8, 1.8) 0,0 (0, 0) 92,9.1(2.1,2.2) | 983,863(1,1.6)  0.1,02(0,0.1)  35.7,53.2(L.1,1)

Table A.9. Simulations results for scenario S4 with n = 400K ™, p = 1000, K = 3, 5. The table reports averages and standard errors of
TPR, FPR, and subspace distance, calculated as the mean values across K clusters.

Method A =011 A = AR(0.5)
TPR(%) FPR(%) TPR(%) FPR(%) Dx100 | TPR(%) FPR(%) TPR(%) FPR(%) D x 100

M4 K* =3

mixPFC 659(0.9) 0(0) 935(0.8) 0(0)  629(0.7) | 77.90.7) 0.7(0.1) 99.7(0.2) 2(02)  57(0.5)

mixPFC-ISO ~ 100(0)  0.1(0)  100(0)  03(0)  3.3(0.1)

LassoSIR'  98.7(0.2) 4.4(0.1) 100(0) 127(03) 68(0.3) | 965(0.3) 6.1(0.1) 100(0) 17.3(0.3) 70.2(0.3)

LassoSIR™ 988 (02) 4.5(0.1) 100(0) 12.9(03) 682(0.4) | 96.4(0.3) 6.1(0.1) 100(0) 17.2(0.3) 70.2(0.3)

SEAS-SIR' 999 (0)  0(0) 100 (0) 000) 125(05) | 76405 06(0)  100(0) 1.7(0.1) 61.8(0.2)

SEAS-SIR™ 100 (0) 0 (0) 100 (0) 0 (0) 12(04) | 75305 050)  10000) 1.5(0.1) 622(0.2)

SEAS-PFC' 100 (0) 0 (0) 100 (0) 0 (0) 9.1(03) | 72(04)  0(0) 100 (0)  0.1(0) 61.9(0.1)

SEAS-PFC™ 100 (0) 0 (0) 100 (0) 0 (0) 89(03) | 72405  0(0) 1000)  0.1(0) 61.9(0.1)
M4 K* =5

mixPFC 657(08) 0(0) 97.8(04)  0(0) 646(0.7) | 76.8(0.7) 1(0.1)  100(0) 5.1(04) 65.6(0.9)

mixPFC-ISO  100(0) 0.1 (0)  100(0)  0.6(0)  3.8(0.4)

LassoSIR! 989 (0.1) 4.4(0.1) 100(0) 19.9(0.3) 67.7(0.3) | 975(02) 6.1(0.1) 100(0) 27.1(0.4) 70.7 (0.2)

LassoSIR™  98.8(02) 4.4(0.1) 100(0) 203(03) 68(0.3) | 84.8(1.4) 65(0.1) 99.9(0.1) 28.5(0.5) 80.1(0.9)

SEAS-SIR®  99.9(0)  0(0) 100 (0) 0 (0) 10(0.3) | 80.3(04) 04(0)  100(00) 1.7(0.1) 628(0.1)

SEAS-SIR™  99.8 (0.1)  0(0) 100 (0) 0(0) 104(04) | 746(0.8) 08(0.1) 100(0)  4(0.5  68.1(0.7)

SEAS-PFC' 100 (0) 0 (0) 100 (0) 0 (0) 7403) | 773(03)  0(0) 1000)  02(0) 61.5(0.1)

SEAS-PFC™ 99.9(0.1)  0(0) 100 (0) 0 (0) 77(03) | 74507 08(0.1) 100(0) 37(0.7)  67(0.6)
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Table A.10. Simulations results for scenario S2 with n = 400, p = 1000, K = 2. The table reports averages and standard errors of
TPR, FPR, and subspace distance for each cluster.

A =0.11I A=1
Method
TPR(%) FPR(%) D x 100 ‘ TPR(%) FPR(%) D x 100

Ml
mixPFC 97.8,97.3 (0.7, 0.9) 0,0 (0, 0) 35.6,359(1.3,1.4) | 98.2,98.8(1,0.6) 0.5,1(0.1,0.3) 23.7,23.9(1.5, 1.6)
mixPFC-ISO 100, 100 (0, 0) 0.2, 0.3 (0,0) 1.9,1.9(0.1,0.1) 100,99.8 (0,0.2)  0.8,0.8 (0.2,0.2) 8,8.5(0.8,0.9)
LassoSIR* 100,96.3(0,0.7)  0.8,0.8(0.1,0.1) 37.3,52(1.2,1.3) 100, 100 (0, 0) 1.5,1.4(0.1,0.1) 249,41.1(0.9,1.2)
LassoSIR™ 97,98.2(0.9,0.7)  0.9,0.8(0.1,0.1) 45.1,47.4(1.7,1.7) | 98.8,98.8(0.6,0.7) 1.7,1.6(0.2,0.2) 36.1,37 (1.7, 1.9)
SEAS-SIR! 100, 100 (0, 0) 0,0.1(0,0) 2.1,3.3(0.1,0.2) 100, 100 (0, 0) 1.5,0.4(0.2,0.1) 6.1,9.8(0.2,0.4)
SEAS-SIR™ 100, 100 (0, 0) 0.1, 0.1 (0.1, 0) 2.8,3.1(0.2,0.2) 99.8,99.3(0.2,0.7) 1,1.2(0.2,0.2) 9.4,10.2 (0.7, 1.1)
SEAS-PEC! 100, 100 (0, 0) 0,0 (0, 0) 2,3(0.1,0.2) 100, 100 (0, 0) 14,0.8(0.3,0.1) 6.4,9.1(0.3,0.3)
SEAS-PFC™ 100, 100 (0, 0) 0.1, 0.1 (0.1, 0) 2.7,3.4(0.2,0.5) 98.7,98.2(1.1,1.3) 0.9,1.1(0.2,0.2) 9.9,10.8(1.3,1.5)

M2

mixPFC
mixPFC-ISO
LassoSIR?
LassoSIR™
SEAS-SIR!
SEAS-SIR™
SEAS-PFC!
SEAS-PEC™

89.8, 89 (1.7, 1.6)
100, 97.5 (0, 1.1)
100, 96.5 (0, 0.7)

89.2,83.7 (1.9, 2.2)

100, 100 (0, 0)
90.3, 87.7 (1.9, 2.2)
100, 100 (0, 0)
89.8,87 (1.9, 2.2)

0.2,0.3 (0.1, 0.1)
0.4, 0.3 (0.1, 0)
0.8, 0.8 (0.1, 0.1)
0.9, 0.9 (0.1, 0.1)

43.4,50.8 (1.9, 1.6)

9.6,17.1 (1.7,2.9)

37.2,53.4 (1.2, 1.3)
475,61 (2, 1.6)

0,0.1 (0, 0) 2.1,3.5(0.1,0.2)
0,0 (0, 0) 20.2,21.5 (3, 3)
0,0 (0, 0) 2,3.2(0.1,0.2)
0,0 (0, 0) 19.9,21.5 (2.9, 3)

97.2,96 (0.9, 1.3)
100, 98.7 (0, 0.8)
100, 100 (0, 0)
95.7,92.2 (1.3, 1.7)
100, 100 (0, 0)
97.3,93.9 (0.7, 1.5)
100, 100 (0, 0)
95.7,92 (1.2, 1.9)

0.9, 0.9 (0.1, 0.1)
0.2, 1.8 (0, 0.3)
1.5, 1.4 (0.1, 0.1)
1.7, 1.7 (0.2, 0.1)
1.5,0.6 (0.2, 0.1)
1.4,0.4 (0.3,0.1)
1.4,0.8 (0.3,0.1)
1,0.7 (0.2,0.1)

26.6,37 (1.9, 1.9)
6.4,13.3 (0.7, 1.5)
24.9,41.3 (0.9, 1.3)
34,53.5(2,2)
6.1,10.4 (0.2, 0.4)
167,222 (2.2,2.3)
6.4,9.8 (0.3, 0.4)
17.8,23.5(2.3,2.5)

mixPFC
mixPFC-ISO
LassoSIR?
LassoSIR™
SEAS-SIR?
SEAS-SIR™
SEAS-PFC!
SEAS-PFC™

96.3,93.2 (1.2, 1.2)
100, 100 (0, 0)
100, 99.3 (0, 0.3)
98.5, 98.3 (0.8, 0.6)
100, 100 (0, 0)
99.3,97.3 (0.5, 1.2)
100, 100 (0, 0)
98.2,97.2 (1.1, 1.2)

M3
35.9,40.1 (1.4, 1.8)
10.9, 14.3 (1.3, 1.6)
48.8, 69.1 (0.8, 0.7)
51.8,70.5(1.3, 1)
3,4.7(02,0.3)
6.7,8.8 (1.3, 1.6)
2.3,3.7(0.1,0.2)
7,83 (1.7, 1.7)

0.1,0.1 (0.1, 0)
0.5, 0.6 (0.1, 0)
4.2,4(0.2,0.1)

4.6,4.2(0.2,0.2)

0,0.4 0, 0.1)

0,0.3 (0,0.1)
0,0 (0, 0)

0.1,0 (0.1, 0)

98.8, 96.8 (0.4, 1.2)
100, 92.7 (0, 2.5)
100, 100 (0, 0)
98.8, 99.5 (0.6, 0.3)
100, 100 (0, 0)
99.2, 98 (0.5, 0.8)
100, 100 (0, 0)
97.5,97 (1.2, 1.1)

0.1,0.2 (0.1, 0.1)
0.4, 1.7 (0.1, 0.1)
74,5.2(0.2,0.1)
7.5,5.6(0.2,0.2)
2,1.1(0.2,0.1)
1.6, 1.1 (0.2,0.1)
1.5,0.8 (0.3, 0.1)
1.1,0.7 (0.2, 0.1)

19.4,27 (1.4, 1.4)
17.1,31.7(1.3,2.3)
42.5,63.1(0.8,0.8)
45.9, 65 (1.2, 0.9)
7.8,12.9 (0.2, 0.3)
12.3, 183 (1.5, 1.6)
7.5,11.3(0.3,0.3)
12.7,17.1 (1.7, 1.6)

Table A.11. Simulations results for scenario S2 with n = 400,p = 1000, K = 2. The table reports averages and standard errors of
TPR, FPR, and subspace distance for each cluster.

Method A = AR(0.3) A = AR(0.5)
TPR(%) FPR(%) D x 100 \ TPR(%) FPR(%) D x 100
Ml
mixPFC 96,98 (1.4, 0.9) 0.1,0 (0, 0) 357,34 (1.6,1.3) | 962,95(08,1.1) 0.8,0.7(0.1,0.1) 46.2,44.4(1.4,1.4)
LassoSIR’ 100,97 (0,0.6)  12,12(0.1,0.1) 332,503 (1.1, 1.4) | 99.7,91.3(0.2,1)  0.9,0.9(0.1,0.1) 40.7,60.9 (1.2, 1.1)
LassoSIR™  97.3,98.8(0.9,0.5) 1.2,1.5(0.1,02)  48.3,44.9(2,1.8) | 95.5,94.8 (0.8,0.8) 0.9,0.7(0.1,0.1) 52.8,50.2 (1.7, 1.7)
SEAS-SIR! 100, 100 (0, 0) 1.2,0.5(02,0.1) 13.5,15.5(0.3,0.4) | 100, 100 (0, 0) 0.3,0.1(0,0)  18.8,19.8 (0.2, 0.4)
SEAS-SIR™ 100, 100 (0, 0) 09,1.2(0.2,02) 159,15.1(0.6,0.4) | 100, 100 (0, 0) 02,02(0,0)  19.5,20.1 (0.3,0.5)
SEAS-PFC! 100, 100 (0, 0) 0.1,0.8(0,0.1)  13.4,14.9(0.3,0.4) | 100, 100 (0, 0) 0.1,0.1(0,0)  18.7,19.7 (0.2, 0.4)
SEAS-PFC™ 993,100 (0.7,0) 04,03 (0.1,0.1) 163,158 (1, L.1) 100, 100 (0, 0) 0.1,0.1(0,0)  19.4,20.1 (0.3, 0.4)
M2
mixPFC 98.5,99.8 (0.8,0.2)  0,1.4(0,0.2) 324,32(1.3,1) | 96.3,97.3(1.1,0.9)  0.5,3(0,0.2) 41,475 (1.3,1.2)
LassoSIR’ 100, 100 (0, 0) 1.2,2.3(0.1,0.1)  33.2,42.2(1.1,1.1) | 99.7,88.8 (0.2, 1.1)  0.9,3.4(0.1,0.1)  40.8, 61.4 (1.2,1.2)
LassoSIR™ 97.7,97.8 (1, 1) 1,2(0.1,0.1)  35.2,487(1.3,14) | 95.8,85.7(1.3,1.5)  1.1,3(0.1,0.1)  45.9,64.5 (1.6, 1.2)
SEAS-SIR! 100, 100 (0, 0) 12,14 (02,0.1) 13.5,38.1(0.3,0.5 | 100,74.7(0,1.4)  03,1.2(0,0.1)  19,69.9 (0.2,0.5)
SEAS-SIR™  99.3,97.8(0.3,0.8) 1.7,1.1(0.3,0.1) 16.2,41.3(0.9,1) | 99.7,74.2(0.2,1.5)  0.2,12(0,0.1)  20.6,71.3 (0.6, 0.6)
SEAS-PFC! 100, 100 (0, 0) 0.1,0.8(0,0.1)  13.4,334(03,05) | 100,852(0,1.4)  0.1,1.2(0,0.1)  18.9,64.9 (0.2,0.7)
SEAS-PFC™ 993,978 (03,1)  0.1,0.8(0,0.1) 16,36 (1, 1) 99.3,833(03,1.7)  0.1,1.2(0,0.1)  20.8, 66 (0.6,0.7)
M3
mixPFC 98.8,98.5(0.5,0.8) 0.3,0.1(0.2,0.1) 25.1,36.6(L5, 1.1) | 96.2,95.7 (1.4,1.1)  0.1,0.8 (0, 0.2) 37,543 (1.5, 1)
LassoSIR’ 100,99.3 (0,0.3)  12.1,5.6 (0.2,0.1) 62.8,75.9 (0.5,0.4) | 99.8,95.2(0.2,0.8) 10.9,4.9 (0.3,0.1) 74.1,80.2 (0.3, 0.4)
LassoSIR™  98.2,98.3(0.9,0.6) 12,5.8(0.2,02) 64.8,76.5(0.8,0.5) | 97.2,93.8 (1.1,1)  11,5.1(0.3,02) 75.3,80.6 (0.6, 0.5)
SEAS-SIR! 100,99.8 (0,0.2)  0.6,0.8 (0.2,0.1)  18.3,33.1(0.4,0.4) | 100, 86 (0, 1.3) 04,0.1(0,0)  32.7,54.5(0.5,0.9)
SEAS-SIR™  97.3,96.7(1.2,13)  1.1,1(0.3,0.1)  22.6,36.1(1.4,1.2) | 97.5,84.3(1, 1.5) 0.3,0.1 (0, 0) 36.5,56.1 (1.2, 1)
SEAS-PFC'  100,99.2 (0,05  0.1,0.7(0,0.1)  17.6,32.5(0.3,0.6) | 100, 83.8 (0, 1.4) 0.1,0.1 (0, 0) 32,54.6 (0.5, 0.9)
SEAS-PFC™  96.8,95.3(1.4,1.6)  0.1,0.8(0,0.1)  21.7,36.3(1.5,1.3) | 96.5,81.8 (1.4,1.6)  0.1,0.1 (0, 0) 35.8,56.3 (1.3, 1)
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Table A.12. Simulations results for scenario S3 with n = 400,p = 1000, K = 2. The table reports averages and standard errors of
TPR, FPR, and subspace distance for each cluster.

A =0.11I A=1
Method
TPR(%) FPR(%) D x 100 ‘ TPR(%) FPR(%) D x 100
Ml

mixPFC 96.8,95.8 (1.2, 1.4) 0,0 (0,0) 38,37.7(1.3,1.4) | 95.7,95.7 (1.6, 1.7) 1.4,1.3(0.3,0.3) 37.8,36(1.9,2)
mixPFC-ISO 100, 100 (0, 0) 0.6, 0.6 (0, 0) 2.6,2.7(0.1,0.1) 99.7,99.7 (0.3, 0.3) 1.4,1.5(0.1,0.2) 13.2,13.5(1, 1.1)
LassoSIR? 100, 99.5 (0, 0.3) 1,1.2(0.1,0.1)  38.1,43.8 (1.1, 1.3) 100, 100 (0, 0) 2.5,2.6(0.2,0.2) 36.5,40.8(1.2,1.2)
LassoSIR™ 99.7,99.7 (0.2,0.2) 1.2,0.9(0.1,0.1) 43.1,39.5(1.2,1.2) | 96.7,96.2 (1.6, 1.7) 3.1,3.3(0.3,0.3) 45.8,45.3(1.8,1.9)
SEAS-SIR! 100, 100 (0, 0) 0,0 (0,0) 3.6,3.7(0.2,0.2) 100, 100 (0, 0) 0.9, 1.1 (0.1,0.2) 11.1,13.2(0.4,0.4)
SEAS-SIR™ 100, 100 (0, 0) 0,0 (0,0) 3.8,3.9(0.2,0.2) 98.1,98.3 (1.3, 1.2) 1.6,1.6 (0.2, 0.2) 17.1,16 (1.3, 1.4)
SEAS-PFC! 100, 100 (0, 0) 0.2,0.3(0,0.1) 34,3.5(0.2,0.2) 100, 100 (0, 0) 0.9, 1.1 (0.2,0.2) 10.8,12.9 (0.4,0.4)

SEAS-PEC™

100, 100 (0, 0)

0.3,0.3(0.1,0)

3.7,35(0.2,0.2)

97,96.8 (1.7, 1.6)

1.6, 1.7 (0.3,0.3)

19.5,18.1 (1.8, 1.9)

mixPFC
mixPFC-ISO
LassoSIR?
LassoSIR™
SEAS-SIR"
SEAS-SIR™
SEAS-PEC’
SEAS-PFC™

91.7,90.5 (1.6, 1.7)
100, 99.5 (0, 0.5)
100, 99.7 (0, 0.2)

92.8,92.3 (1.7, 1.6)

100, 100 (0, 0)
94.3,95.8 (1.5, 1.3)
100, 100 (0, 0)
92.3,94.7 (1.9, 1.5)

0.8, 0.6 (0.3, 0.4)
4.4,0.8 (1.4,0)
1,1.2(0.1,0.1)

1.4,1.7(0.2,0.2)

0,0 (0, 0)
0.1,0 (0, 0)
0.2,0.3 (0, 0.1)
0.2,0.3 (0.1,0.1)

M2
42.7,45.9 (1.8, 1.9)
8.5,7(2.1, 1.5)
372,43 (1.1, 1.3)
46.1,49.8 (2, 1.9)
3.6,3.8(0.2,0.2)
14.5, 14 (2.5,2.4)
3.3,3.6(0.2,0.2)
14.8, 14 (2.6, 2.4)

95.3,95 (1.6, 1.4)
98.3,97.7 (0.8, 0.9)
100, 100 (0, 0)
95.8,95.7 (1.3, 1.4)
100, 100 (0, 0)
97,96.8 (1.2, 1.2)
100, 100 (0, 0)
96.3,95.7 (1.3, 1.5)

1.1, 1.7 (0.2, 0.2)
1.7,2.5 (0.2, 0.4)
2.5,2.6(0.2,0.2)
2.8,2.8(0.2,0.2)
0.9, 1.1 (0.1, 0.2)
1, 1.1(0.1,0.2)
0.9, 0.9 (0.2, 0.2)
0.9, 1.2 (0.2,0.2)

36,39.8 (1.7, 1.7)
16.9,19.3 (1.5, 2)
36.5,40.1 (1.2, 1.4)
47.1,48.9 (1.5, 1.5)
11.1,12.9 (0.4, 0.4)
20.7,22.2 (1.7, 1.6)
10.8, 12.3 (0.4, 0.5)
21.1,22.7 (1.7, 1.8)

mixPFC
mixPFC-ISO
LassoSIR?
LassoSIR™
SEAS-SIR"
SEAS-SIR™
SEAS-PFC’
SEAS-PFC™

40.7,42.5 (1.4, 1.1)
82.8,84.3 (2.1,2)
98.7,99.8 (0.6, 0.2)
69.5,70 (3.2,3.3)
94.7,95.8 (1.4, 1.2)
68.3, 67.7 (2.9, 3)
50, 50 (0, 0)
43.7,44.7 (0.9, 0.9)

2.6,4.5(0.7,0.9)
1.1,0.9 (0.3, 0.1)
8.3,8.3(0.2,0.3)
9.9,9.3(0.3,0.2)
0,0 (0, 0)
0.5,0.3 (0.2, 0.1)
0,0 (0, 0)
0.2,0.5(0.1,0.2)

M3
80.3, 81 (0.8, 0.9)
48.8,48.7 (2.4,2.2)
67.6,67.3 (0.9, 1)
81.6, 80.1 (1.2, 1.3)
42.9,40.2 (1.5, 1.5)
65.4,65.2(1.7,1.7)
70.7, 70.7 (0, 0)

75.3,75.7 (0.6, 0.7)

49.7,49.2 (1.2, 1.1)
54,53.6 (1.4, 1.5)
69,67 (1.5, 1.5)
59, 60.8 (1.3, 1.8)
56.2,56.2 (1.2, 1.1)
53.1,53.3 (1.2, 1.2)
51,52 (0.5, 0.5)
48.7,49.2 (0.8, 0.9)

2,2.2(0.2,0.2)
4.6,4.1(0.2,0.1)
10.1, 10.5 (0.2, 0.1)
10.5,10.9 (0.2, 0.2)
1.7, 1.8 (0.3,0.3)
2.5,1.5(0.3,0.2)
1.4,2.5(0.2,0.3)
1.8, 1.7 (0.3,0.3)

73.7,74 (0.4,0.5)
73.2,73 (0.6, 0.6)
73.5,73.9 (0.3,0.3)
76.3,76.4 (0.7, 0.7)
70.7,70.6 (0.1, 0.1)
71.9,71.6 (0.5, 0.4)
70.8, 70.8 (0, 0)
72.3,72.4(0.5,0.5)

Table A.13. Simulations results for scenario S3 with n = 400,p = 1000, K = 2. The table reports averages and standard errors of
TPR, FPR, and subspace distance for each cluster.

Method A = AR(0.3) A = AR(0.5)
TPR(%) FPR(%) D x 100 \ TPR(%) FPR(%) D x 100
Ml
mixPFC 96.7,96.5 (1.1, 1.1)  0.5,0.6 (0.2,02) 35.1,36.9(1.6,1.7) | 92.2,91.3(1.5,1.9) 04,03 (0.3,0.2) 49.4,49.1 (1.5, .5)
LassoSIR"  99.7,99.7(0.2,0.2) 1.7,2(0.1,0.2) 41.6,455(1.2,1.4) | 99,97.3(04,0.7) 12,1.4(0.1,0.1) 47.1,53.7(1.3,1.2)
LassoSIR™  99,98.5(0.6,0.7)  1.9,1.9(0.2,02) 43.9,455(1.5,1.5) | 94.8,94.7(1.2,1.4) 14,1.4(0.2,02) 53.3,52.3 (1.4, 1.4)
SEAS-SIR! 100, 100 (0, 0) 1,1(0.2,0.2) 15, 15 (0.4, 0.4) 100, 100 (0, 0) 0.2,03(0,0)  20,20.9 (0.4,0.6)
SEAS-SIR™ 998,100 (0.2,0) 12,1.2(0.2,02) 16.3,15.7(0.6,0.5) | 99,99.2(0.6,0.8) 03,04 (0.1,0.1) 22.3,23 (1.1, L.1)
SEAS-PFC! 100, 100 (0, 0) 1.5,1.9(0.2,0.3) 14.7,15.3 (0.4,0.4) | 100, 99.8 (0, 0.2) 0.2,02(0,0)  20,20.9 (0.4,0.6)
SEAS-PFC™ 100, 100 (0, 0) 1.9,2(0.3,0.3) 162,168 (0.7,0.8) | 98.7,98.7(0.7,1) 04,0.5(0.2,02) 22.7,23.7(1.2,1.3)
M2
mixPFC 94.2,99 (1.5,0.5)  0.1,2.3(0.1,0.3) 423,36.6(1.5,1.3) | 727,94 (1.6,1.5) 0.1,4.5(0.1,0.6) 64.2,52 (1.1, 1.5)
LassoSIR? 99.7,100(0.2,0)  1.7,4.9(0.1,0.2) 41.6,47.9(1.2,1.3) | 99.2,86(0.4,1.2) 1.3,6.6(0.1,0.2) 47.5,70.6 (1.3, 1.2)
LassoSIR” 948,98 (1.2,0.7) 1.6,49(0.2,02) 51.3,51.9(1.4,12) | 88.5,85.7(1.2,1.4) 12,6.7(0.1,02) 60.4,71.5(1.3,1.3)
SEAS-SIR’ 100,99.5(0,0.3)  1,2.3(02,02)  15,41.1(0.4,0.8) | 100,66.8(0,1.5)  0.2,1.4(0,02)  20,73.4(0.4,0.5)
SEAS-SIR™ 987,967 (0.7,1.1) 15,23(0.2,02) 22.5,46.1(1.4,1) | 973,71.3(0.8,1.5)  0.1,2(0,0.2)  31.1,72.3 (1.4, 0.5)
SEAS-PFC'  100,99.7(0,0.3)  15,0.9(0.2,0.1) 14.7,36(0.4,0.7) | 100,73.8 (0, 1.7) 0.2,1(0,0.1)  20,69.7(0.5,0.5)

SEAS-PFC™

98.8,97 (0.6, 1.1)

0.6,1.4(0.2,0.2)

22.1,42.1 (1.4, 1.1)

96.7,71.8 (1.1, 1.5)

0.1, 1.2 (0,0.2)

31.3,70.6 (1.5, 0.5)

mixPFC
LassoSIR?
LassoSIR™
SEAS-SIR?
SEAS-SIR™
SEAS-PFEC!
SEAS-PFC™

50.5,50.7 (1.2, 1.1)
78.2,73.5(1.6,1.5)
71.8,70 (1.9, 1.7)
91.5,80.2(1.3,1.2)
82.6,74.3 (1.9, 1.6)
89.7,76.3 (1.5, 1.2)
80.3,70.5 (2.1, 1.8)

0.5, 1.3 (0.1,0.2)
9.6,9.5(0.2,0.2)
10,10.2 (0.2, 0.2)
0.6, 1.3 (0.1,0.2)
0.5,1(0.1,0.2)
0.4,0.7 (0.1,0.2)
0.3,0.8 (0.1,0.2)

M3
72.6,74 (0.4, 0.6)
74.2,73.9(0.3,0.3)
76.5,76.7 (0.7, 0.7)
59.5,65.7(1.2,0.6)
67.9,69.2 (0.9, 0.6)
53.9,61.7(1.4,0.8)
64.4,68.1(1.2,0.9)

53.5,54.3 (1.3, 1.3)
78.5,77 (1.4, 1.4)
75.8,75 (1.9, 1.4)

93,84.2(1,0.8)

87.4,81.3 (1.6, 1.4)
93.3, 83.2 (1, 0.6)

85.7,80 (2, 1.3)

0.3,1(0.2,0.2)
8.7,9(0.2,0.2)
9.2,9.4(0.2,0.2)
0.2,0.5 (0.1,0.1)
0.5,0.4 (0.1,0.1)
0.1,0.1 (0, 0)
0.1,0.4 (0,0.1)

72.3,73.6 (0.5, 0.5)
75.4,74.1 (0.3, 0.2)
77.7,76.2 (0.7, 0.6)
62.9, 65.7 (1.1, 0.7)
69.5, 68.4 (0.8, 0.7)
55.1,63.2 (1.2, 0.7)
64.9, 67.5 (1.2, 0.9)

18



Heterogeneous Sufficient Dimension Reduction and Subspace Clustering

A.2. Real Data Analysis

For the CCLE data, we evaluate the performance of mixPFC across K = 2,3,...,10. Table A.14 summarizes PMSE
and the number of selected variables § (total number of unique variables selected across all clusters) for different K under
mixPFC.

For mixPFC, the prediction error decreases as the number of clusters K increases. However, the reduction becomes less
pronounced beyond K = 3 for Nutlin-3 and K = 5 and AZD6244. For both responses, mixPFC achieves a significant
reduction in prediction error compared to homogeneous methods (Table 2), suggesting heterogeneity in the data. The num-
ber of selected variables § initially increases and then stabilizes as the number of clusters K grows, indicating that different
clusters select different variables. Notably, mixPFC does not select more variables than Lasso and the three homogeneous
SDR methods, even for large K. These findings suggest that over-specification of K does not significantly impact the pre-
diction performance of mixPFC. However, over-specification of K increases computational cost and introduces variability
in parameter estimation. Using the tuning method described in Section B of the appendix, the average selected K is 3 for
both Nutlin-3 and AZD6244.

Summary plots of the response versus the reduced predictors projected onto each subspace are shown in Figure A.5 for
AZD6244. These plots reveal approximately linear relationships between the response and projected predictors within
each cluster for both drugs. Notably, the points in cluster 1 form a vertical band when projected onto subspaces S,,, w =
2,3,4,5. This pattern coincides with the example in Figure 2 (b) and suggests the first subspace is orthogonal to the
remaining subspaces.

Table A.14. The averages of the prediction errors, the sparsity level 3, and the corresponding standard errors based on 100 replicates.

K=2 K=3 K=4 K=5 K=6 K=17 K =38 K=9 K =10

Nutlin-3
PMSE x100 11.9(04) 8.9(0.4) 83(0.3) 84(0.3) 7.7(03) 784(04) 736(0.3) 69(0.3) 6.9(0.3)
5 16.5(1.2) 31.52.5) 452@2.7) 5232.7) 539@2.7) 537Q2.6) 526122 58224 595(2.1)
AZD6244
PMSE x100 66.4(1.5) 58.7(2.0) 622(2.3) 456(1.7) 41.6(1.2) 36.7 (1) 33.5(1.0) 32.0(1.0) 34.7(1.2)
s 21.6 (0.6) 53425 62223) 77.83.2) 774(3.1) 7412.8) 651Q2.7) 67524 70.6(2.3)

B. Implementation Details
B.1. Initialization and Tuning K

Initialization. To implement the proposed mixPFC algorithm, it is critical to obtain reliable initial values for ~;,,. Classical
distance-based clustering algorithms, like K -means and hierarchical clustering, often produce low-quality initial values.
Similarly, subspace clustering methods also fail for the high-dimensional mixture of PFC. In the Gaussian mixture model, it
is recommended to initialize EM with short runs of EM, where the algorithm is stopped early rather than run to convergence
(Biernacki et al., 2003). Given that existing methods are not designed for the model (3), we propose a similar initialization
procedure that runs the mixPFC algorithm on transformed data with an early stopping criterion to generate initial estimates
of ;. In high-dimensional settings, we transform the original data into a lower-dimensional space by applying distance
correlation (dcor) screening (Li et al., 2012) followed by principal component analysis (PCA). Specifically, we first select
u X |nlogn| variables using dcor and then project the data onto the first v principal components of the selected variables.
Based on simulation results in Table A.15, we recommend setting v = 2 and v = 10.

Selection of number of clusters K. The gap statistic (Tibshirani et al., 2001) is a popular technique for selecting the
optimal number of clusters for many clustering algorithms. Here, we adapt this approach to enhance its suitability for the
mixture model 3. Let Q,, represent the orthogonal complement of 3,,, G, denote the indices of observations in cluster w
and n,, = |Gy |. Then define

K

Dy= Y QX —QiXull2, Vic= 5—Du.

2n
1,1’ €EGy w=1 w

The gap statistic is
Gap,, (K) = E,[log(Vi)] — log(Vk),
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Figure A.5. The scatter-plot of the response Y versus ﬁfﬂ X for the drug AZD6244. The solid line is fitted using samples in the given

cluster.

Table A.15. Error rates averaged over 20 datasets generated under model scenario S1 using M1-M3. First, we use dcor to select u X
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| N log(N) ] variables and then apply PCA to project the data onto v dimension space spanned by principal components.

Mi M2 M3
v=5 v=10 v=15|v=5 v=10 v=15|v=5 v=10 wv=15
A = 0.11 mixPFC
u=1 5.7 2.2 6.3 25.2 27.1 30.0 8.4 3.0 7.3
u=2 13.6 4.0 4.5 29.2 31.6 35.0 11.0 11.9 13.5
u=3 158 13.2 4.5 30.1 38.6 38.1 7.3 7.5 10.5
A = 0.1I mixPFC-ISO
u=1 238 25.0 24.9 6.7 9.0 11.3 20.6 24.3 19.2
u=2 247 22.1 34.5 11.1 11.3 17.3 18.7 19.8 24.5
u=3 305 28.2 18.7 9.1 21.9 9.2 27.3 22.3 17.2
A = I mixPFC
u=1 143 10.7 10.8 27.3 374 435 9.9 7.3 9.0
u=2 20.1 14.4 11.9 31.6 38.5 41.3 13.9 9.9 8.7
u=3 16.1 16.5 18.7 31.8 42.7 45.9 11.9 13.8 20.7
A = I mixPFC-ISO
u=1 173 13.0 114 9.4 12.0 15.3 139 19.7 17.6
u=2 18.8 15.0 11.5 15.3 10.2 12.6 24.8 22.1 13.3
u=3 15.0 15.4 17.6 12.2 14.4 13.2 14.7 19.5 8.3
A = AR(0.3) mixPFC
u=1 21.0 12.3 14.4 27.0 31.2 38.8 129 12.3 114
u=2 139 15.5 12.5 23.2 34.3 414 20.5 19.1 14.9
u=3 225 18.9 14.3 29.4 40.9 36.5 26.3 28.4 23.5
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where E;, denotes the expectation under a sample of size n from a reference distribution. We estimate E; [log(Vk )] by an
average of B copies log(V}), which is computed from samples drawn from uniform reference distribution. However, in
high dimensions, the gap statistic becomes computationally expensive as it requires calculating Vi for B data samples. In
practice, we find that bypassing the expectation calculation and directly using Vi yields effective results. Let K* denote
the true number of clusters. To illustrate, we use models M1 (K* = 2) and M4 (K* = 3,5), with an identity covariance
matrix as defined in the simulation section, to generate high-dimensional data. Notably, the two subspaces are identical
in model M1. Figure A.6 presents a representative plot of the within-cluster dispersion Vi, calculated using the mixPFC
Algorithm 1, as a function of the number of clusters. The error measure Vi decreases monotonically as the number of
clusters K increases, but begins to rise once K exceeds the true number of clusters K *. Based on this finding, we propose
to select the smallest K such that

max(Vk) — Vi > p(max(Vi) — min(Vk)),

where p € (0,1) is specified to avoid overestimating K. Table A.16 presents the selected K for models M1 and M4
across four different covariance matrices. The proposed selection method works well in most cases, with the exception of
K* = 5 under AR(0.3) and AR(0.5). The reason is inaccuracies in subspace estimation affect Vi, which depends on the
orthogonal complement of central subspaces.
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Figure A.6. Within-cluster dispersion Vi for K = 1,2, ...10.

Table A.16. The average selected number of clusters over 100 repetitions, using statistic V. The standard errors are in parentheses and
Kmax = 10.

K* 0.11 I  AR(0.3) AR(0.5)
K =2 2(0) 2(0) 2 (0) 2.1(0)
K*=3 310) 30 270) 29(0.1)
K*=5 5() 48(0) 3.70.1) 3.1(02)

B.2. Implementation of mixPFC

For the mixPFC algorithm 1, the tuning parameter \(*) could either be fixed or vary across iterations. In theoretical analysis,
to show statistical convergence results, we set \(!+1) = kKA(®) + €\ /¢3(logn)2log p/n, where 0 < Kk < 1/2 and C), is a
positive constant. Note A(*) is at the order of +/ q®(logn)?log p/n when ¢ is large. Therefore, in practice, we fix A = )
and tune \ with cross-validated distance correlation (Székely et al., 2007). For fixed A() = ), the penalized EM algorithm
maximizes

K
(6) = A IBull21, (7)
w=1
where £(8) is the log-likelihood of X |Y". The following lemma shows the convergence of Algorithm 1.
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Lemma B.1. If we set \() = X for all t, the objective function from (7) evaluated at 6+ s guaranteed to be no less
than the objective function from (7) evaluated at 0. That i is, the sequence of iterates {O(t }92, generated by Algorithm 1
monotonically increase the value of the objective function from (7).

Proof. Recall that the conditional log-likelihood is

0(6;X,Y) = Zlome (Xi | g + Tunuf (), A)].

=1

The penalized EM algorithm can be viewed as two alternating maximization steps. Consider the following function:

F(q,0) := E,[log(L(6; X, Y, W))]

where ¢ = (q1, ..., qx) is an arbitrary probability density over the unobserved variable W and H(q) = — >, ¢; log(g;) is
the entropy of distribution g. It is easy to show

K
F(q,0) = £(6;X,Y) — D (allpwix,y (1X,Y,0)) =AY |Bull21,

where Dy, is the Kullback-Leibler (KL) divergence. The KL divergence between two distributions is non-negative and is
zero when the two distributions are identical. Therefore, the E-step is to choose ¢ to maximize F'(q, 0):

gD = argmax F(q,0) = pwx v (X, Y,09),
q

which is given by the updating function of ~;,,. In M-step, we maximize F' over 6:

ot = argmax F (3", 0)
2]
K
= argmax Ego [log(L(0: X, Y, W) = A ) |[Bull21

= argmax Q( 9|0(t

which is the same as the penalized M-step. Through this coordinate ascent strategy, the update 61+1) makes the value of
the penalized log-likelihood function converge monotonically. Combining this result with the convergence (Lemma H.1,
Zeng et al. (2024)) of the group-wise coordinate descent algorithm 2, we know Algorithm 1 converges when \(*) = .

O
Recall that in Algorithm 1 in the main paper. We update B%H! by solving:

1 ~
argmin _ tr(BYE()B,,) — or{(T) "By} + A|Bull2.1-
B, €RP*4
This optimization is solved by the group-wise coordinate descent algorithm proposed in Mai et al. (2019). For ease of
presentation, we remove the subscript w in By, 2&? and Ug). The algorithm is presented in Algorithm 2.

Tuning A. For two random vectors T € R? and Z € RY, the distance correlation dcor(T,Z) € [0, 1] measures the
dependence between the two random vectors (Szekely et al. 2007) In particular, dcor(T,Z) = 0 if and only if T and
Z Z are 1ndependent Given observed samples T € R and Z € R"¥9, the sample distance correlation is denoted as
dcor(T Z) Under the usual SDR model, Sheng & Yin (2016) showed that the distance covariance between Y and 87X
is maximized at the central subspace over B € RP*4 such that [)’TZ,B = I,. Therefore, Zeng et al. (2024) recommended
selecting A by maximizing dcor(Y Xﬂ) where Y € R™ and X € R"*P represent the observed response vector and
predlctor matrix. For the mixture SDR model, we adjust for the sample membershlp ~iw and select A by maximizing
dcor(D Y,D X,Bw) where D, is a diagonal matrix with diagonal elements %w(0)
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Algorithm 2 Group-wise coordinate descent algorithm

Input: () = (5,;) € RP*r, UM = (4;,) € RP*4

Initialize each row of B(®) as B;O) = (b;?), cee bg.?z))T =0 € R?j = 1,...,p and calculate the auxiliary vector

#1030

h” = (r),... BT e R7as ) = d=1,....q

repeat
for j =1topdo
Based on hg-rfl) in the previous step, update By) as

(r) _ p(r=1) A
B;’ =h; (1—A(r_1)>
Ujohj 2 i
1)

Basedon B\, ... Bgr)l, Bgill), ..., BU™Y, update the auxiliary vector hgr_ as

011

- ( .
pr=1) _ Uil — (ZJ 1< oy Jb;l + ZJ 1>5 95 ij'l )
jl -

0jj

JA=1,....q

end for
until converge
Output: B(")

B.3. Implementation of mixPFC-ISO

When A = ¢21, there is no need to compute the inverse of the px p covariance matrix. Instead, we only need to estimate o2,
Under this simplification, the parameters of mixture of PFC model (3) reduces to 8 = (02, 7y, pu, Sw,w = 1,..., K).
In the E-step, the estimated probability is calculated by

~(t)

Tw

B (0W) = — __ __ .
T+ Y, T exp{1/(32) O (X; — (TS + TUHENT (TS — Tt}

In the M-step, the most important part is the updating formula of I",,. Let Cq(ut ) = > %w(é\(t)), D,, be a diagonal matrix

with diagonal elements 7;,,(8!)), X,, € R" P be the centered data matrix with rows (X; — ﬁ&f)) F € R™*1 with
St )

fit,w
to the largest d,, eigenvalues, where s = X'D,PrD,X,/Cw, Pr = F(FTD,,F)'F and d,, is the dimension of
4 g ﬁt w w

subspace S,,. Let 655) = (Agt), R ¢dw) be the eigenvectors corresponding to the largest d,, eigenvalues of Eét) - Then,
we have

rows (f; — £)T. Through straightforward calculation, the MLE of S,, is the span of eigenvectors of X corresponding

) = o (@!) X D,FF D,F)*

To update o2, we maximize @ function over o2, while letting other parameters fixed,

1 K
— t < S
nip 11)2::1 01(“) [tr(zw) - tr(P:I;EJ) Eﬁt,w):| R

where 2( ) = = X’D, X, /n. In high dimensions, it is challenging to accurately estimate the eigenvectors of ﬁf({?w. To

address this issue, we promote sparsity by finding the sparse eigenvectors of Et(%) Several algorithms have been proposed

to compute sparse eigenvectors (d’ Aspremont et al., 2007; Zou et al., 2006; Witten et al., 2009; Journée et al., 2010). We
adopt the variable projection method proposed by Erichson et al. (2020) for its computational efficiency and robustness in
high dimensions. The algorithm, mixPFC-ISO, and corresponding convergence analysis are provided in the supplement.

£

To obtain sparse estimates «i>§,, , We adopt the variable projection method proposed by Erichson et al. (2020) for its com-
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putational efficiency and robustness in high dimensions. Specifically, we solve the following problem
~ 1.~ ~
(A*, @) = argmin QHES?M - Egt)w@wATH% +aWe(®,), subjectto ATA =T,
AP, ' '

where o is a tuning parameter, and ¢ is a sparsity-inducing penalty function such as Lasso or elastic net. For fixed
a®) = q, the penalized EM algorithm 3 for mixPFC with isotonic errors maximizes

K
06) —a_ &(Pw). ®)
w=1

The following result guarantees the convergence of Algorithm 3.

Lemma B.2. If we set oY) = o for all t, the objective function from (8) evaluated at QA(t‘H) is guaranteed to be no less
than the objective function from (8) evaluated at 0Y). That is, the sequence of iterates {B(t) }22, generated by Algorithm 3
monotonically increase the value of the objective function from (8).

Proof. The conditional log-likelihood is
n K
06;X,Y) = "log[ Y muN(X; | o + Tunuf (¥i), o’ T)].
i=1 w=1

The penalized EM algorithm can be viewed as two alternating maximization steps. Consider the following function:
K
F(q,6) := Eq[log(L(6; X, Y, W))] + H(q) —a Y _ £(¥y),
w=1

where ¢ = (q1, - . -, ¢k ) is an arbitrary probability density over the unobserved variable W. It is easy to show
K
F(q,0) = £(6;X,Y) — Dxv(gllpwx.v (- X,Y,0)) —a > &(®,),
w=1

where Dxr, is the Kullback-Leibler (KL) divergence. The KL divergence between two distributions is non-negative and is
zero when the two distributions are identical. Therefore, the E-step is to choose ¢ to maximize F'(g, 0):

gD = argmax F(q,0) = pwx v (1X,Y,09),
q

which is given by the updating function of ~y;,,. In M-step, we maximize F' over 0:

6+ = argmax F(q®,0)
)

K
= argznax Eqo [log(L(6; X, Y, W))] — a Z ()

w=1

K
= X 9t)y — w)-
argma Q(]0) —a Y &(W,,)

w=1

Through this coordinate ascent strategy, the update 6+1) makes the value of the penalized log-likelihood function con-
verge monotonically. Combining this result with the convergence of the variable projection algorithm solving the penalized
Q@-function (Erichson et al., 2020), we know Algorithm 3 converges when al®) = a.

O
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Algorithm 3 Penalized EM algorithm for mixture PFC with isotonic errors
Input: Data {(X;,Y;)}?™ ,, fitting function f
Initialize 7;,, (6°)
repeat

(1)

E-Step: ﬁ-(t) = — = = = =
T+ 7y exp{1/(62)®(X; — [T + TUHENT(T — T)E}

w

M-Step:

S = X[D,PsDy X/, Pe = F(E'D, )T

A* D)) = argmax—f SO S0 & ATI% — o0g(®,), subject to ATA =T
w fit,w fit,w F

AP,
I‘(tJFl) @(t)( (t ))TngwF(FTDwF)_l

@)D = LYE L O [(B) - 1P S
FEHD _ Ly 0

z 1 iw
A(t+1) 1 ()
Pw' == 5 mw(ew 27w (070) X,

until converge
Output: 7, T,

C. Proof of Theorem 1
From this section onward, we focus on the theoretical properties of a simplified version (Algorithm 4) of the mixPFC
algorithm presented in the main paper.
Recall the five conditions are:
(C1) The singular values of EAJf = %2?21 £;f7 satisfy that M; < amin(flf) < Umax(if) < Ms, and M3 <
ming<i<p [|fillz < maxi<i<y, ||fill2 < My.
(C2) The initialization 6(*) satisfies that d(8©, 6*)v |B{”) —B*||p v| B — Bj i < 7@ and vee(T\W —T%) € L(s),

with r < leg — ol /A Cy A L(/Ca = 1/(AVAE) + [ — &) a2 = 280y — 9 /0, + VeI,

(C3) There exists a sufficiently large constant M5 > 0, which does not depend on n, p, s, such that o4(B}) > M; >
V/5¢3(logn)?log p/n.

(Cc4) Q= \/tr[(I‘§ - I"{)ZA)f(l"g —TI')T] > Cleo, Cp, Mp, M3 =1,...,4), which is a constant that is only depends on
co, My, Cp,and M;, i =1,...,4.

(C5) n > C3sq®log(p) for a sufficiently large constant Cs.

Before the proof, we review some definitions and present properties about 37 and U;,. The parameter of interest is

60 = {m1,I'1,T'2}. Let 6* be the true value of 8, and 0®) be the estimate of @ at the #-th iteration. The true parameter
space we consider is

©" ={0" : 1] € (cr, 1 —cr), || vee(I,)llo < sq, 1By, ||l < Ma, [T, || p < My, w = 1,2},
and the constriction basin Beo, (60*) is
Beon(0%) ={6 : mw € (co,1 — co), [Tw — T [[ 7 < Cpl2
(1 = Cg)Q2 < |tr(8, (D) Ee(T2 — T1)T)| < (1 + C)Q2,
vec(T'y, —Ty,) € L(s),w = 1,2},
where (2 is the signal strength, ¢y < ¢, and 6,,(I') = I’} — (T's + I'1) /2. We define
L(s) = {u e R : [lug|l < (V5q+2qV3s)l|ug, |2 + Vsqlul2,

for some S; C [pqg] with |S;| = 3sq.}
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Algorithm 4 Penalized EM algorithm for mixture PFC (simplified version for theoretical analysis)

Input: Data (X;,Y;), fitting function f, d;, ds
1 ~ N
Initial value 7., T, £, UL, and B = argmin B tr(BIZOB,) — tr{(U)TB, } + AV By||2.1, where the
B
initial tuning parameter is

Y * 5 0 * 5 0 *
O _ ¢, 2r(0©.6°) VB ~ Billp v [BY ~Bilr . [¢(ogn)?logp
NG n
repeat
E-Step:
5, (60) = 7
Yiw — =
T+ D By exp{[(62)O]1(X; — F{TS) + TN T(TL) — TEHE(YV:)}
M-Step:
~ 1 & ~ ~ 1< ~
A = LY 5i(@0), B = =3, (00)XiXe, T = =3, (00)XeE (V)T
=1 =1
q3(logn)?logp

1 ~
BTV = argmin 5 tr(By £ BL)—tr{ (T T)) B} 44 By 20, A = sd405

w w
B, n

Compute 31(5 H), the top-d left singular vectors of 1§£§“> and then update according to

(t+1) - PA< +1)U(t+1)[ (t+1)2f]

n

2
N 1 ~
@) = 3 (S A @(RE) — P B

until converge
Olltpllt! %wa I‘wa ﬁw

Let M(0) = {m,(0),U,(0),X,(0),w = 1,2}. Note that || vec(I'*)||o < sq implies || vec(B*)||p < sq. Define
= 2 (@), 7a(0) = Bffu(o)
U,(0) = - va £, Uy,(0) = E[U,(6)]

2w(e) = n Z'Yiw(e)XinTa ¥,(0) = E[iw(e)]-

By definition,
AU =7,(00), 7Y = BEIY] = B[7,(00)] = .,(8)
Ul =T, (0"), UL =E[UIHY] = E[U,(81)] = U, (8")
BT =2,(00), BT =BT =BE.,(09)] = 2,(0Y).
Note that
Z%w (0%)] = ZP =wX;,Y;)] = P(W; =w|X;,Y;) =7
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We have

* * 1 - *
Uw = U1(0 ) = ﬁ ZE['WTU(O )Xl]sz
=1

1 n 1 n
= Z E[Bywx [[(W; = w)Xi]Jf] =~ ZEWX[I(W,» = w)X|ff
=1 i=1
1 - T 1 - * Tk T * K R
== Z; Ew [I(W; = w) Exjw [l = ~ Z; DA EET = 7 Tk B,

where 8¢ = 15" £7. Similarly,

n

¥ =5,(0%) = 1 > Bl (07X X]]

n -
=1

1 — 1 &
= > Ew[I(W; = w) Exjw—u[X:X{]] = -~ > Bw[[(W; = w)(@, + T, £ (T;)7)]
i=1 =1
1 & -~ ~
== (mpL) + DB (D))" = L, + Ty B (T5,) 7
n
i=1

Let BX, = (X%)71U7, B be the top-d left singular vectors. Then span(3},) = span(T'}). We further have I'} =
PFLUTU(’/T* Ef)il = PﬁLU (W;Ef)fl.

*
w w

Since opmin(T%) > 0, omin(Ip + F*wif(FZ)T) > 1, we can bound the 2-norm as following
B [l2 = [ L, + 7 Th B (T5) 7] 1 T el
= ||[L, + D5 Ee(T5)T)7IT5 e
<y + T B ()] 2 - T, B2
<TollF - 1 Zell2 < My Ms.
Define dF}S(M(01>, M(eg)) and dg(M(Gl), M(02)) as

Jnax {7, (81) — 70 (02)] V [[Uw(61) = Uw(02)ll s V [ (B (81) — 30, (82)) B, |

F,s}a
ffﬁ)fz{h“’(el) — 7w (02)| V [|[Uy(01) — Uy (02)[|F V [|(Bs (61) — Z0p(02))B5, ||},

where [|A[[F,s = SUPyerpxa, |u|| p=1,vec(u)es(s) (4, W) - The proof of Theorem 4.1 is based on the following two lemmas.
Lemma C.1. Under conditions (C1) and (C4), if 0 € B.,,(0*), for some 0 < ko < m,
dp(M(8), M(67)) < ro(dr(0,607) V [|B1 = Bi|lr VB2 — B | r),

where dp(0,67) = {|m — i V[ [1 —Til[p VT2 = T3] r}
Lemma C.2. Suppose 8* € O, under condition (C1) and (C5), there exists a constant C,, > 0, such that with probability

at least 1 — o(1),
3 1 21
Sup s (My(6), M(6)) < Copy | 2L U0BM 108D
0By (0%) n

The proof of these two lemmas is quite involved and is presented in Sections D and E. We first establish a concentration
result for the estimator B,, in Section C.1 before proving Theorem 4.1 in Section C.2.
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C.1. Concentration of the estimator ]ABU,

Lemma C.3. Suppose that 0* € ©®* and Vec(B(O)) € Beon(0*). Let

A 5 g0, [ Cogn)? oy dp(89,67) VB — Bijle v B - Bilr,
- con n \/g bl

for kg defined before and some constant C,,, and ﬁgﬂ) solved by

~

1 .
BU*D = argmin = 5 tr(BISUAUB,) — tr{(UE))TB,} + AEHDIB,, 2.1
By
With probability at least 1 — o(1), we have

vec(BUHD —B*) € £(s),
and

~ 4 ~ 2
IBGH) =By lr < —dpo (M (6), M(67)) + =AU (/35 + 2/5 + 2/35¢2).
70 70

Proof. Recall that
L(s) = {u e R : |lug|l < (/34 +2qV3s)llug, |2 + v/5q]lull2,
for some Sy C [pq] with |S;| = 3s¢.}
Consider
B+D)

(1) = argmin £ x(BISEIB,) — tr{ (D) By} + A Byl
By

For simplicity, we let w = 1 in the following. To show
vee(B{"™ — BY) € £(s),
we note that

A (B

1~ [IBill2,1)

]. X ]_ ) fa -~ -~ A~
< 5 tr((B)TS{TUBY) — S or(BYTY) TSR — a(UFTY)TBY) + (U Y)TBYTY))

—_

< tr((BY — ﬁgt+1))T§]§t+l)B>{) — (B - ﬁ§t+l))T§§t+l)(B>{ _ :’E\;gt—i-l)))_

M

(U T (B - BIY))

)

where we use

tI‘(( B(t+1))T2(t+1)(B B(t+1)))

N —

1 1 ~ o N - ~
= 5 u((B)TETVBY) + 5 u(BYT)TETUBITY) —u(B)TSTVBITY).

. S(t+1) . . . .. .
Since 2§ +1) is symmetric semi-positive definite, we have

= vee(B} — B{") T vec(E{TV (B — B{TY))

(B} - BTV (B — BIY))
)T v
= vee(B} — BT (1, @ S vee(Br — BI™) > 0.
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Using the fact that 37B} — U7 = 0, we have

AED (B 51 — B |2)
< tr((B - B{")TE(HYB;) - ar((UIH)T(B; - B{ ™))
tr(( o t+1)) (E(HI)B’{ . U(1t+1))
(B’l‘ B(t+1) §+1)B* - ﬁ§t+1)>F
— (B} (t+1) (igﬂrl) _ Egtﬂ))By{ + ESHI)BT _ Ugt+1) _ (ﬁgtJrl) _ U§t+1))>F
= (B} Bﬁ””, (B - =By — (U —ulY)) et

<B>1k . ]’?\)gt—s—l)’ Egt-f-l)BT . U(1t+1)>F
= (B - B{""V, (=" - s{"B; — (UMY - UfY) et

(B - BI"™V (={"") - =1)B; + 2B} - U — (U —U)p
_ (B’{ _ ﬁ§t+1)7 (§§t+1) _ Egt—&-l))B,{ _ (I’jgt+1) _ U(1t+1))>F n

(4)
(B} — B (=) — =B — (U —Up)r+
(i)
(B} - B{"Y =B - Ul

=0

Let u(tt!) = ﬁgtﬂ) — BY. For amatrix A € RP*9 and aset S € [p], As € RISIX9 is the submatrix where rows are in
set S. Occasionally, we use the same notation A s to represent its 0-extended version A’ € RP*? such that A:SC = 0 and
A = As. Then

|BY B3 [l2.1 = 1B + a2y — [|Bl21
= B} +ul™ +us“>|\2 1= B Iz
> |Bj + ull — [tV 21 = B2

t+1
< | B}z,

= [Bi o1 + 0§ o0 — [[u§

t+1 t+1
= [0 oy — [0

Therefore

AED (= u§ ™V l20) < () + (i) + (i),
For a vector x € RY, we have ||x||2 < ||x[|; < /q]|x]|2. Then,

LetS; ={S,S+p,...,S + gqp}, where S + p means the set of indices in S adds p. Then

q
1
[ul o0 ST = — | vec(u™ ) se |y
i€Se j=1 \/E]
And
q
lud ™)l = 12 <305 ) = vec(u® V), .

Thus, we have

1
AED ([ vee(u®™ D) selly — [ vee(®™ D) s, 1) < XD ([uld ™ o — [ud ™tV lo0) < () + (i4) + (idd).

NG

29



Heterogeneous Sufficient Dimension Reduction and Subspace Clustering

Recall that
(i) = (B - B (B - =B — (T - Uf"))x
= vee(B} — BT vec((B1HY — mD)BY) — vee(Br — BI)T vee(TUHY — Uty

We want to bound ¢5 norm of vec((g(tﬂ) E(H_U)BT) and vec(ﬁgtﬂ) - U(ltH)). Let S be a set of size 3sq, which

contains S; and the largest sq coefficients of U(tH) Ugtﬂ) flgtﬂ) — Egtﬂ))B*{. We

have

and the largest sq coefficients of (

| vec(BT — ﬁﬁt“))T Vec(ﬂ'(ltﬂ) - U(t+1))|

< |vee((UHY — U Y) 5 )T vee((B] — BY™) g )1+

b 1 1 * 1
[ vec((U" " = U*Y) )7 vec((B] - B{'* >>g;.>|
suvec<<ﬁ§’f+”—u<t“>> 2 - | vee((Bf = BY V)5 ) [lo+

g 1 1 1
[ vee((OFHY —u* >>Sc>||oo [ vee(Bf = B ™))l
By the definition, we have

Al = sup  (vec(A), vec(p)).
[LGRPX'I
vec(pn)€EL(s)NSPI~L

Let v € RPY such that vg = vec(A)g and vg. = 0. To define L(s), we want vectors u that [ug. |1 is bounded. Clearly
1 1

v € L(s) since ||vg.
1

1 1
> ——(vec(A),v) = -——|Iv[5 = [Iv]l2 = || vec(A) 5, ||2-
[vll2 vz " 51

Thus, || vee((T)Y — U V)g)la < O — UY™)g flpe. By the definition of Sy, | vee((UY""
U(ltH))glc)”oo < VeC((UEt“) - Ugtﬂ))gl)”z/\/@ < ||U(1t+1) — UY“))@HRS/\/@. Therefore,
[vee(B] = BY"")T vee(T}Y — 01|

1 ~
7HU§t+1) . UgH_l)HF,s o Vec(u(t+1))§f||1.

N

<O — U Y| - [ vee(u® D) 5 |2 +

Similarly, we have
vee(BY — BI"™)T ve((E(Y - m{"*Y)By)
< [ vec((SIHY — B 5 ll2 - [l vee(Bf — B ™) 5|2+
[ vee((B{ = 2B 50 ) oo - [lvee(BY = B ™))l

~ 1~
< &Y = =B ks - ||vec<u<t+”>§1||2+Ts—qluzﬁ””—zﬁ“”) e - llvee(™ ) gl
Therefore,
. sg3(logn)?logp sg3(logn)2logp 1
()] < 2Con %Hve(xu(“_l))‘i”?+2000n ( gn) g \/5>||V€C(u(t+1)>§c||1.
q 1

Using Lemma C.1, we have
.. 1 * % 1 * 1
(i) < (=TT = =)Bi|F + UV — U #) 1B - BV |5
Y * £ % 1
= (I(= <o<t>>— OBl + [UL(80) — Uf||#)|Bf — B V|
dr(81),6%) v |BY — Bi|r

% 1
< 2Ky /5 V/5q|| BT — H ||F
dr(0® 0%y v IBY — B*
_ ok, OO VB ZBille o oo g,
v Sq
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Combine the bound for terms () and (7), we have
1
N (2l vee(u sl — [ vee(u ), 1)

3(1 1 1
< 2Con 5q (Ogn) ogp \/7HV6C( (t+1))81” +

n \/8q
sq3(logn)?lo 1
2o q ( gn) gp\/@HVGC(U(tJ'_l))g]cHl“F

dp(8®,6%) v Bl — B
r(0",60%) V||B; 1”F\/@Hvec(u(t“))ll2.

ko

NG
Let
2(logn)? log p dp(00,6%) v |BY — B »
t+1) > 9 /7 | 2 ¢ 9 ) 1 e )
A = \/§< Ceon n + 2K0 \/@
Then

1
— [Ivec(uV)se ||y — [ vec(u ), |11

V54 (t+1) 1 (t+1) Vi (f+1)
< vec(u : + vec(u Se + vec ’

1
= g” Vec(u(t+1))§1”2 + m|| VeC(u(t+1))§f||1 + g” Vec(u(t+1))||2,
which implies

NG

\/g
ol veelu ) < 7 vee(u+ ) o + 7 vee( ) o + | vee(u ), .

NG
where we use S; C S;. Using || VeC(u(t-i-l))gl 1 < 3sqll Vec(u(t-i-l))gl |2, we have
Ivee(u™ V)5l < (V54 + 29v/3s) || vee(u™* V) 5 [l2 + /5q] vec(u*) 5.

Now, we focus on the second result. Let w = 1. Recall that

A (B

1)
o S 1
<tr((B] — B(1t+1))T2§t+1)BT) = tr((BY — B(t+1))T2(t+1)(B B(t+1)))

2,1 — |

(O )7 (B; - B{HY)
~ ~ 1 ~ ~
= (B B 2"VB;)p — S (B] - BV BTV (B - BITY))r - (U1 B - B{Y)
It follows that

(B} — B, s By — B Y))p| < 2By - BTV, SHUBY - UFY) p| +
()
A (B 21 — B 2.1])-

©))

(1)
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Recall that 7B} — U} = 0. For term (), since vec(B} — ]ABY/H))/H vec(B} — ]§(1t+1))||2 € L(s) N'SP4~1, we have

r Bot+F) S+ st

(B} — B, 2{"VB] — T"™) |
* H(t+1) {&(t+1 * * T * * T * * * rr(t+1

:‘<B1_B§ )725 )B1_21B1+21B1_U1+U1_U§ )>F‘

= (B} - B{*"Y (VB — B + (B - BYTV, U - U

+(B] - B, =iB; — U |
* 5 1 - 1 *
<|B; - BV p(= VB s)

* * =3 1 *
— B ps + JUEY — Uy
< 2B} — BV | pdp (M, (89), M (6%)),

where we use the definitions of || - || ;s norm and d ;. In the last inequality, we use the fact

M, (0D) = {7,(81), Uy (81), £,,(01),w = 1,2} = {7UTD TE+D S0+ 4 = 1,2}

For term (I7), using reverse triangle inequality,

5 (t+1
1BV o — B3l | =

- B
=\|vec(B§f“’ Bi)g, |1 + [[vee(B{"" - B)5. |

< y/3sq]| vec( Bgtﬂ) Bi)g ll2 + (V/sq +21/3s5¢?)|| vec(B t+1
V/5q] vee(B{™ — BY)|l2
< (/3sq + 2y/50 + 21/35¢%)|IBY ) — Bi | 5.
For the right hand side of (9), we have

BT)§1||2+

(B} — B S (BY - BIY)) p| = [vee(Bf — BUT) T vee(E(HY (B} - BIHY))
_ |Vec(B* - BT, @ S ) vee(B; — BT

:‘ Z B{ )T (B; -BIY)],

where B ; and ﬁgtzl) represent the k-th column of B} and ﬁgtﬂ). Recall that

R 1 n
t+1
S+ ﬁzylﬁ(,,)(xi,mxixf.

i=1

By Lemma C.2, we know that

1 N sq3(logn)2log p
|ﬁ Z%,éu) (X,,Y;) — BTV = o) 222 20 E

n )
i=1

with probability at least 1 — o(1). Thus, % - Y g0 (X4, Y;) > 71 for some positive constant 71 with probability at
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least 1 — o(1). Define the set N = {i : vy, 5 (X4, Y;) > 71/2}. Then by Lemma F.2,
" SEHDNT QD) (141
(B1, ~B)TE V(@B - B

n
* 5 (t+1) 12 . T 1 T
> [[Blr =By I3 uecp}?)fmswl u ;%,ém (Xi, Y3 XX u

‘ = (t41 . 1
> B, ~By B i 'y G (X V) XX
i EN

uel,(s)nNsp—1
S (t+1
> |IBf, — B3 /27

Then

q
(B} — B{Y SV B - BIY)p > 3 vee(B, — B3 m1/2 - 7 = | vee BT - BY)|I370,
k=1

where 179 = 71/2 - 7. Combing the above results, we have
5 (t+1 * 5 (t+1 * *
o[BI = Bi|F < 4B = Bil|rdp(M.(69), M(67))+
2D (\/Bsg + 2y/5¢ + 21/35¢2)|BY ) — By p.

Hence,
. 4 . 2
1B — B||p < T—dF,S(Mn(W)), M(6%)) + 7A<t+1>(\/@ +2,/5 + 21/3s¢?).
0 0

C.2. Proof of Theorem

Theorem C.4. Under conditions (C1)-(C5), there exists a constant 0 < k < 1/2, such that ]§§ﬁ) satisfies, with probability
at least 1 — o(1),

~ . A . ~ . ~ . sq3(logm)?lo
IBY ~ Bl = O (n%dF(e@), o) v B~ Bl v [BY — B3l + ) q(gn)gp) |

Consequently, fort > (—logr)™! 1Og{n(dp(§(0), 6*) v ||]A3(10) —Bi|lrV ||]§é0) —Bi|r)}

r=0 (\/ng(logmzlogp>
n

IBY — By [lr, [D(S5005Sas,)

Proof. We update () by

q3(logn)?log p
n b

© . dr(0©,0%) v |BY —Bj|r Vv |BY - Bj|lr ¢*(log n)? log p
2O =y 7 + Oy ——=——5
S

where Cy = 79/(32C)q). Thus, we have

)
A )
n
0 ot dr(0©,09) VB —Bi|p VBY ~Billr 1" [g3(logn)?logp
A= g'Cy \/» + 1 Ch .
S — K n

A = A0 4oy

128C .
Letk=(1V Toq V 4C) ko, since 0 < Ko < m, we have 0 < k < 1/2. Then define
2k% — 4Kk + 2 4Cyq 64Coq 1-k
o= | (2T o v C
{(2/{255+2 (Co 70 +7'0(1—fi)) 1—2k|

4k

C = 4Coon + —=C*.
1—k

We claim
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(1) Kk > kg, C1k > 4Ky, and (%(?q + Co)ko + 16%0‘156‘1 < K.

(i) {2 C* + Coon < C*, (1920 + Co) Coon + 70125 C < C.

The first two inequalities in (I) can be seen from the definition of x and Cy. For the third, we have

4C; 16C 4C 1 1 1 1
Oq—l—Co)mo—i— OqﬁClz( Oq+Co)f$0+f/£< — K+ —-Kk+ =k < k.

(= P - 27 =327 T4 2

For the first inequality in (4), it is equivalent to Cto, < 1_1"“_7_:00*. Since kg < K,

1—kKx—kKo s 1-2k

>
1—k _1—,%0_0“)“’

where in the last inequality we use the definition of C*. For the second inequality in (i), we have

400(] 1600q 400(] 1600q 4I<60
C C(con ——C)\ = C C(con T N 4C’con C*
(To + Co) +7_0(1_H) A (To + Co) +7_0(1_H)[ 1. ]
400(] 6400(] 6400q1'€0
= Co+ ———~|C — = C".
To +lo+ T0(1 — k) con + To(1 — k)2
Use the second inequality in (),
64Coqro 2& < B
T0 a 1 - 2 '
Then
4Chq 16Cohq 4Chq 64Cohq K
Co)C, Cy < Co+ ———|C —C"
( To +Co) c011—‘_7'0(17,%) A= To + O+T0(17I€) con+2(lf/£)2
262 — 5Kk + 2 K
< o Cc*=C".
T 262 — 4k +2 +2(1f/<;)2

Next, we use induction to show the following results

3 2 A(t) * 5 (1) _ * 5 (1) _ *
A+D > 4C.0n q (1ogn) logp —|—4/€0(dF(0 0 )\/ HBl BIHF v HBl P’2||F)7
n Vs
dp(0@+Y,0%) v |B{TY — By||p v BITY — Bl <
~ . ~ (0 . ~ (0 . 1— kT2 [sq3(logn)?logp
w1 (dp (8,07 v ||BY” — Bi||r V[|BY” ~ Bjl|r) + ———C =,

dp(0U),0%) v |[BITY — Bi|lp v IBIY - Bj|lr < rQ, vec(T{H) — T} € L(s).
It is easy to verify that dr , satisfies the triangle inequality. Then using Lemma C.1 and C.2

Ao (M, (8©), M(6*)) < dpp,o(M(80), M(8*)) + dp (M, (8), M(6®))
< ko(dr(8®,6%) v |BY” — Bi|r v B - Bj||r)+

c sq3(logn)?logp
con 7

< w(dp(0©,0%) v B — Bi||r v |B” - B|r)+

1— K2 o /sq®(logn)?logp
1—x n ’
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where we use o < £ and Ceop < 17%-C* + Ceon < C* < (14 £)C*. For 2D we have

AL — 2O 4 oy, L 0ogn)* logp
n

dr(0©,0%) v |BY” —Bi|lr Vv |BY — Bj|r

¢®(logn)?log p
= kC 1 C _— -
rCh \/g +( +l<6) A "
¢3(logn)? log p dr(0©,0%) v |BY” —Bi|r VB — Bj|r
> 4Ccon T""L‘?O \[ )
S

since (1 + k)Cy > 4C.on and C1k > 4Ko.
Note that v/3sq + 2,/5q¢ + 21/35¢% < 84/5¢%. By Lemma C.3, we have

IB{Y — BY||r
4 ~ 2
< (Mo (6), M(67)) + XD (/3sq +2/5 + 21/35¢%)

IN

~ . ~ . ~ sq3(logn)?lo
™ l“e(dﬂ@‘ohe IV IBY — B v B — Bilr) + Cuy LUELIEL

n

16 dp(6©,0%) v B\ - Bi|r v |BY - B; 3(logn)21
16 /s [KCI r(@©.69) VB -~ Bille VIBY “Bilr (o [eogn)?lop
7o NG n

4

16 * * - *
< [+ —anCa)(dp(8,0%) v IBY — Billr v B — Billr)+

16 sq3(logmn)?lo
[7Cm + 21+ R)CY sq°(logn)?logp
T0 T0 n

. ~ . ~ . 1—-k% ., [sq®(logn)?lo
K(dr(@,0°) v B Billr v [BY ~ Bylp) + 5y [HLIEIED.
11—k n
By results in (¢), %Ho + %‘H@Cl < k. To show %CconJr %‘Z(IJr/-@)C)\ (1+ k)C*, it is equivalent to show 2 LCeon/(1+
k) + %qc)\ < C*. Since 1/(1 + k) < 1 < 1/(1 — k), the result holds by applying second inequality in (i7).

Let B&t) be the top-d left singular vectors of ﬁgt). For matrix A € RP*9,

IPa; Allrs = sup (Pg; A, u)r = sup (Pgru,A)r
ueRP*4 ucRP >4
vec(u)€L(s)NSPI~1 vec(u)€L(s)NSPI1

< [Pg;ullpllAllps < VA|Allrs,

where we use the fact that vec(Pg: A) € L(s). If vec(A) € L(s),

[AllFs = sup - (Awr > (A, A/AllF)F = [|A]lp.
ueR?>
vec(u)€L(s)NSPI !

Then, we have
I = Tille = 1P 50 U1 (8)[71(8) k]~ — P; Ui a1 2e) |
<|Pj <1>U1(9 NFOD)Ze] ™! — Pg: Ur(0)[71 () %)
1Ps; U1 (0)[71(8) %) " — P Ui [ 2] | s

1
<|Pzn —P U, (0)——
< P50 — Paille 10,0~ #1(00)

V| U, (67, (0) ]! — Uj[mi Sg]

2f_lHF,S+

||F,s-
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By condition (C3), we have IBY — B, < |IBSY = Bi||r < k(dr(8©,0%) v |B” — BY||r v |BY — Bi||r) +
ey 3 Croa(BY) = C'. For the first term in the last equality, by Lemma F.4, we have

P 5

g~ Per

- Bilr,

where O3 = +2d(401(B*) + 2C")/02(B}). Note that U;(6©) = 15" 4 5 (X, Y)XfT and 0 <
Y 60 (Xi, Y;) < 1. According to Lemma F.3,

[T O)S; e < 3101 E)llrs < M/M,
with probability at least 1 — o(1). For the second inequality,
[T1(0)[F1(0)S¢] * — Ui [ Se] ™| s
< S0 @) R @) - Ui(rd) e

1 ~ ~ . P 1 . P o
< —[01(0) = Uil|ps[71(8)]) " + — U5 || - |72 (8] " — (=)
M, My

1 ~ o~ x S~ _ MbM2 o~ Y _ *\ —
< 57 1018) = Uil o [71 (0]~ + = - [ (6] — (x) .
1 1

Then, there exists a positive constant C, such that
ITSY =Tl < CollBYY — Billr + dps(M(0), M(67))].
Without loss of generality, we assume Cy > 1. Therefore, we have
dr (00,67 v [B" ~Bir v By - Bille
< (Corr + Codies (ML (), M(67) + Co— A(/Boq + 257 + 21/35¢P)

~ sq3(logmn)? 1o
< Co(2+1) [ mo(dr(@,0%)V B~ Billr v B — Ble) + Cony “LUELEL |
1600 #(6©,0%) v |BY” - Bi||lr v [|B” — Bj|r ¢*(logn)? log p
vVsq? | kC 1 Z + (14 k) Chy| ————==
NG n
160 (0) « 5 (0) * »(0) *
[Co( -+ Do+ — 2 anCa(dr(0,0) v [BY ~Billp v |BY — B3 |lr)+
4 160 3(1 2]
[00(7 + 1)0(:011 + OQ(l + H)Ck] w
T0 T0 n

~ . ~ (0 . ~ 0 . 1—-x% . /¢3(logn)2logp
w(dr(0©.07) v [BYY ~Bi|r v By ~Bi|r) + 7—C o

By results in (4), (%{;’q + Co)ko + wT—COanC’l < k. To show (%gq + Co)Coon + 16C‘)q(l +r)Cy < (14 Kk)C*, it is

equivalent to show (%{;’q + Co)Ceon/(1 + k) + %CA < C*. Since 1/(1 + k) < 1 < 1/(1 — k), the result holds by
applying second inequality in (4%).

In addition, since d(0(?),0%) v |B” — B*||p v |BY”) — Bi||» < rQ,
dr(0W,0%) v By —Bi|r v [BY — Bj||r

0' * B * 5 . 1—-x% ., /¢3(logn)?lo
w(dr(0©,07) v B = Bi|r v [BY - B3|r) + T——C ¢ gn> gp

q3(logn)?log p
n

<krQ+ (14 k)C* < rf,

36



Heterogeneous Sufficient Dimension Reduction and Subspace Clustering

since rQ > {£C* ‘mogzﬂ when 7 is sufficiently large. Then by Lemma F.5, 81 € Beo, (6%).

Next, we assume the following holds for ¢-th step,

3 2 pt—1) p* B(t=1) _ px B(t—1) s
A0 5 a0y PO 08D | dr (600,07 v B] ~Bile VBV Bile,
n s

Y * S * S * Y * 5 (0 * 5(0 *
dr(0©,6%) v |BYY — Bi||r v |BY — Bj|r < #'(dr(6©,0%) v |BY” — Bi|lr VB — Bj|r)+

1 — gt o /sq3(logn)2logp
1—k n ’

dp(0D,0%) v |[BY — Bi|lr v |IBY - Bjlr < rQ, vec(T{) —T},) € L(s).

By Lemma F.5, ONS Beon(0*). Then

#(09,6%) v B - Bi||r v B} — S

q3(logn)?logp d
4
- drol Vs

4‘C’COII

n
3(logm)2lo 4K ~ . ~ N ~ N
< | TEEEL 75 (W@ (@,07) v IBY — Bill v B — B3 )+

1-— mt+10*\/sq3(logn)210gp>

1—+x n

Y * » (0 * (0 *
L (dr(0©,0%) v B — B||r v |BY - Bs|r)

< 4kok 7 +
1 — it 3(logn)? 1
(40(:01]_'_4[{0 K C*) q (Ogn) ng
11—k n
0 * » (0 * (0 *
_ i, [@r(0©,67) VB — Bijlr v [BY ~Billp)  1-  [gilogn)?logp
- NG 1—k n
= AE+D),
Use (i), 4k9 < C1k. By the definition of C'y,
1 — git? 1 — g2 4rg dkg 1 — kT
Cy = 4Con C*) > 4C.on —_—C
11—k A 1—,%( c0—’—1—,'{ )_ c0+1—/<; 11—k
>1
17 t+1
> 4C,0n + kg — .
11—k
Then note that
dps (M, (8), M(6"))
< dps(M(0), M(0%)) + dps(M,(8), M(8™))
- . ~ . ~ . s5q3(logn)?lo
< R dr (@0 V [BY) Bl v [BY — Byl ) + Cooy [ 2087 1082
300) p* 5 . = . 1—wttt _ [sq3(logn)?lo
< o [mt(dF(H(O),O JVIBY — Billp v IBY) ~ Bjp) + 1y 208" gp] +
sq3(logn)?logp
CCOI’] -
n
14,80 g4 v IBO _ B* 5(0) _ px 1—w"? . [sq3(logn)*logp
< K (dp(8,07) v |BYY ~ Bi|lr v [BY ~Bj|lr) + T —C e
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since ko < k and kg2 7 o+ Coon < 2 "2 C*. Then by Lemma C.3,

IBY Y — By
4 10 N NG
< —dps(M,(0'), M (0 ))+TO\/§>\

70

IN

4 Y * » (0 * (0 * 1-— I{t+1 * ng(log 71)2 logp
o {no ["th(e“’),e )V By~ Bilr v B ~B3|r) + ———C n "

3(logn)21 16 dp(0© %) v |B\” — B v |BY — B;
Cou s5q3(logn) ogp} q\[ (F( )Vl illr Vv IIBy QIIF)+

n \/g
1— Kt+2 q*(logn)? logp]
Ch
1—k n
4 16 te1 B0) aey o R0 | T S0) s
< [;Ofﬁo + 70%01]5 (dp(0™,6%) VB —Bi[lr Vv [By" — Bj|[r)+
4 41— gttt 16¢ 1 — k12 sg3(logn)?lo
(2 o+ L L o 160 ATV (logn)?log p
) ) 1—kr 7 1—kK n
~ ~ ~ 1 — gtt2 3(1 2]
< W@, 0°) VB ~ Bl v [BY  Bye) + 1 ory [ SLIEIIED,
In the last inequality, we use (%C’oq + Co)ko + %C’oanl < K, and
4C, 4C, 1 — gttl 16Chq 1 — k2 1 — xtt2
(=2 4 C)Coon + (—2 4 ) o 4 % Ch < c
0 0 1—=x 70 11—k 1—k
4Cyq 1 11— gttt 16Cyq 1 — x'*2 1—rkit2
<— Co)Creon - - < —— "
(= T+ (prtgn) G+ — = O =5
4Chq 16C’0q 1 — gt 1 — gt2 9 1—git!
— Co)C, _— O\ —C" - —g—C"*
(T TO e+ = O s 27 1k

where the right-hand side is greater than C* and thus the inequality holds due to (ii). Using the same argument,
R~(t+1 * H(t+1 * Y *
ITYY —Tfle < ol B — Billr + dro (M, (6), M(87))]
Therefore,

dr(6).67) v B — Bil|r v BY Y B3|

4C ~ 16C
< (2 + Co)dr (Mo (69), M(8)) + =4 /5D
70 70
4Cy ~ . =~ (0 . ~(0 .
< (7 4+ Co) {0 [ (dr(@.07) v B ~Bilp v [BY B3 |r)+
1— gttt o5 3(logn)?logp L C sq3(logn)?log p N
11—k n con n
16Cog | 411, (0,01 VB —Bi|r Vv |BY —Bjlr)  1-x*2 _  [¢3(logn)2logp
— Vs |0y + O
7o NG 1—k n
4Cy 0g ¢ 20) pr 5(0) . 5(0) «
<[5+ Colro + —22kCi]w! (dp(6),07) v [BY ~ Bl v B — B3| r)+
4C, 4C, 1— gt 16Cpq 1 — k12 3(log n)? lo
[(70 + CO)Ccon + ( + CO)HO K C* + 0q K CA] w
To 11—k T0 11—k n
~0) ~ . N . 1—x!2 . [sq3(logn)?lo
< R (dp (0, 0°) v ||B§O> ~Bille v [BY — Byp) + oy S8 T08D
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Further, since

42 3 2 . .
L= <1— k' and rQ > {220%/ M when n is sufficiently large,

dp(0@+V,6%) v BT — By v IBYTY — By||r

- ~ R 1 — gt+2 3(1 2]
S Kt+1(dF(0(0)50*) Vi HB(lo) _ BTHF V ||Béo) — B;HF) + 1 _I{K C* sq ( Og:) ogp
. 2 3 1 21 1— t+2
< pttipg ¢ L e [s 00BN logD g TR G g,
1= x n 1+k

When t > (—log &)~ log{n(dr(8©,6%) v |[B{” — B||r v B — Bs||r)},

Kt < g 108 {n(dr (8,07 VB —Bi || rV[BY” ~B3 | r)}
1
= 5 50 50 '
n(dp(0©,0%) V|B;’ —Bi|rV|By’ —Bj|Fr)

which implies

_ 3(logn)?1
IBY — B[z = O <\/3q(0g:>°gp>_

With Lemma F.4,
IPse — Pg- \/sq3(logn)210gp
D(S~t . :M< V2d|BY) — B || p = i St - Rt =7 A
(Sﬁfu> ) Sﬁw) m Cﬁ/ || w ||F 0 n
D. Proof of Lemma C.1

D.1. Contraction of weights

In this section, we show |m1(0) — 71 (0%)| < ko(dr(0,0%) V |B1 — Bi||r V|| B2 — B}||#). By definition,

1 n
m1(0) — 71 (0%) — Z Y1,0(X5,Ys) — 11,6+ (X5, Y5))].
i=1

3
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When Y; is fixed, we can not further simplify the above. Thus, for given i, we bound | E[v; (X, Y;) — 71,6+ (X;, Y3)]|.
Let €7 = (my, vee(T — T1)7,vee(Ty + 1)), Ag = € — €, €, = £ + ulg. Then & = £°,&; = &. Then

’Ehl,e(xu Yi) — 71,6+ (X, Yz)]’

1 . .
Jp{ [ (et S|
0 e=¢, Ou

73
Loy e(X,, ;) Lo e(X,, ;)
E LA Wi LTS JAr)d +E s P
{/0 < om £=¢, ) u}‘ ‘ { 0 <8vec(I‘2—I‘1)‘g:gu

1

Om1,¢(X4,Y5)
pl [0 XX) )y
{0 Ovec(Ty +T') le=¢, ra+Ty

IN

7Ar2r1>du} ‘—f—

b 0me(Xi, Vi) L 0me(Xi, ;)
< s d % s 1y L1
< [EEReRdy = e || A e

/1<E O1,¢(X,Y5) ]’
0 dvec(Ty + 1) le=¢,’

6 X’L7 }/Z
< sup | E[ifh’%( )
£E€Beon (07) Lt

AF2+F1 >du

I+ fm =i+

(I)
O71,6(Xi, Vi)
2 Fl)
an
sup | [ e Xe )
£CBn(0%) dvec(Ty +T)

sup || E[

£E€Beon(07) dvec(T Jll2 - IT2 1 ST p+

2 [[T2+Ty =I5 —T7|F.

(I11)

Thus, we bound the three terms in the last inequality. Recall that

1
X’L’a}/i - .
’Yl,ﬁ( ) 1 + (1 — 7T1) eXp{[Xi — %(I‘g + Fl)fz}T(I‘Q — I‘l)fz}

We can decompose X; as the sum of two independent random variables, X; ~4 Z + 9f;, where Z ~ N(0,1,) and is
independent of f; and W;, P(¢» =T']) = 7 and P(yp =T%) =1 — 77. Let 6(T') = ¢ — (T2 + I'1)/2. Then

1 1
X, — 5(1“2 +I))f; ~q Z + of; — 5(1“2 + ) ~qg Z 4 6(D);.
Therefore, we can write

1—m)exp{(Z +6(D)f)T (T2 — T1)E}

Py ) ( ) (

O eXi,Yi) _ exp{(Z + o(D)f;)" (T2 — T1)fi}
8771 (7T1 + (1 — 71'1) eXp{(Z + 6(I‘)fz)T(1—‘2 — I‘l)fl})2
Ome(X,Ys) - )eXp{(z +o(D)f;)" (T —T)fi} - fi ® (Z + §(D)Fy)
dvec(Ty —Ty) ! Yo + (1= ) exp{(Z + 6(T)f;)T(Ty — T1)f;})2
e V) g ep{(Z 38T TR} e (T~ Tf
dvec(Ty +Ty) Y + (1= my) exp{(Z + 6(T)E)T(Ty — T1)E})2

Let T; = (T3 — I'y)f; and Ty = §(I)f;. Let H; be an orthonormal matrix whose first row is T7 /|| T1||2. Then
H;T; = ||T:||ze1, where e; is the basis vector in the Euclidean space whose first entry is 1 and zero otherwise. Then

£, —T))'Z=T1Z=TTH H,Z = TTH]V = V|| T ||z, (10)
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where V4 is the first coordinate of V. = H;Z ~ N(0,I,) and is a standard normal distribution. Then

One(X,Yi),
E[ ot ] =E|

exp(TT(Z + T5)
(m1+ (1 —m) exp{TT(Z + Ts)})?
exp([T1221 + T1 Ts)) ]
(m1 4 (1 —m1) exp{[|T1([221 + T T2)})?"

where Z; is a standard normal distribution. Note that

]
:E[

ITTT,| = £ (Ty — T1) 7 8(D)f;| > | tr(6(D)Zg (T2 — T1)T)| > 102,

where ¢; = ¢(1 — Cy). Similarly, we can show | T T5| < Q2.

Recall that ) = \/tr[(r; —THS(T5 — T = |B/*(T5 — T7)7 || . We have

0% = vec((T5 — TH)T vec(Ze(Th — THT)
= vec((T3 — )T (I, ® ¢) vec((T3 — T)7),

which implies
Q/M, < T3 — T} |5 < Q%/M.

Then, when 2/ MsC), < 1,

\/T{Tl = \/flT(I‘Q — I‘l)T(l—‘Q — I‘l)fz = \/tI‘[(FQ — Fl)fszT(FQ — I‘l)T]
> ey/ie{(Ty — TS0y — D)7 = | SYATs — 1)
Al 2 * * -~ 2 * *
> o I2*(05 — Tl — |2/(T2 = T3 = D1 + ) |

> o(Q = 2/ MGy Q) > 39,
for some constant c3 that depends on Mj and C;. Similarly, we can show /T T < ¢4€. Define events
c
E = {|IT1][22:] < 51(22}.

On the event &, ||| T1||2Z1 + TFTo| > |TTTy| — |T1]|2Z1| > ¢192/2. Using the tail probability of normal distribution,

we obtain 2yt 2y2
C C
P(ES) < 2exp(——L1" ) < 2exp(——L).
( z) > p( 8HT1||%) > p( 80?1 )
Then
O.¢(X,Y;)
i)
1
g exp([|[T1]]221 + TTTy) |
(m1+ (1 = m1) exp{|| T1[[2Z1 + T T2)})?
T2 TIT
B exp([|T1[l221 + T1 2)T &P+
(m1 + (1 —m) exp{||T1[[2Z1 + T{ T2)})
T[22 TIT
exp(H 1”2 1+ 1 2)T ; gﬂp(glc)
(m1 4+ (1 = m1) exp{||T1(221 + T{ T2)})
1 a1 Q? 1 302
< _ —
~ min{7?, (1 — m )2} exp( 2 )+ 2min{r?, (1 — m)?} exp( 8c? )
1 192 1 302
< _ el ot
<z exp( 5 )+ 22 exp( 52 )
< 2 oxp(—(2 n D2 (11)
S exp(—(= AN — .
- P75 8c2
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We proceed to bound (I7). Note that

1 Om.e(Xi, Y5)
w1 (1 —my) Ovec(Ty —Ty)
_ exp{(Z + 6(D)f;))T (T3 — T'y)f;}
(m1 + (1 —m) exp{(Z + 6(T)f)" (T2 — T'1)fi})?

fi®(Z+ o))

X;,Y; ‘
- Mfi Q7+ Mfi ® 6(D)f;
87r1 om m
(I1.4) (I1.30)

By definition of H;,
foZ==1, oH H,Z = (f; o H)(H,Z) = (fi  H]) V.

For the first term, we have

E |:a’Yl E(XZaY)
871’1

e z] {(fi o HT) exp(|| T 2V3 + T Ta) }

(m1 + (1 —m1) exp{[|T1[]2V1 + T{ T2)})?
exp([|T1][2Vi + TT T3))
(m1 + (1 = m1) exp{||T1[[2V1 + T T2)})?

= (f ®H))E { vlel] :

where the last inequality uses the fact that V; and V; are independent for any 1 < j < p and E[V}] = 0. Then

’ { exp([|T12V2 + TTT2)) ‘/1] ‘
(m1 + (1 = m1) exp{[| T1[l2V1 + T T2)})?

[ exp(||T1]|2Z1 + T] T3)) T T ] 1
—|E T,|sZ; + TTTy — TTT 7‘
() ep([T Rz + TrTy) e I r 2+ T = TiTs) I
[ exp(||T1|[2Z1 + T{ T3)) T }
<|® T, 1,7 + TTTy) &, | P ‘+
[+ (=) e (T[22 + T2 T2t TiTa) &) P(E) |\T1||2
[ exp(||T1][2Z1 + T T2)) T ]
B T\ 221 + TTTo)| e8| P(es) \+
T e ez, ATy Tl T P
[ exp(||T1]l2Z1 + TTTy)) T 1
E T ; T1 T2 ’
L (1 + (1 — ) exp{||T1[|2Z1 + T{ T2)}) 1T |2

For the first term in the last equality, using the fact that on the event &, ||| T1|2Z1 + TT Ta| > ¢192/2, it is bounded by

2 3102, 1

min{r?, (1 — )2} exp(= 8 )0379
The second term is bounded by
1 A0 1
— exp(— ) —.
min{7{, (1 —m)?} 8ci " e3fd
For the third term, we have
Ty|[2Z; + TTT 1
‘E[ exp(|| T[22 + 2))T TlTT2] ‘
(m1 4 (1 = m1) exp{||T1[[221 + T1 T3)})? [T ]2

IN

[ exp(|| T1[l2Z1 + T T2)) ’ o } [T T
(m1 + (1 — m1) exp{||T1[]2Z1 + T{ T3)})2 1 T2

E*

C1 C% 2
exp(— (5 @)Q )eaf2/cs.

\ A

2

2
2

7
€
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Since (f; ® HY e, = vec(HY e1f]) = vec(T1/||T1||2f]), it follows that,

2 3c102. 1
E[(II. < H! - —
(L]l < (8 & HDJer o | e exp(- 24 5) =
1 0% 1 2 e
AT N - 2 (= 792 Q
min{7?, (1 — m)2} exp( 8c2 )03Q+cg exp( (2 4 2) Jead/es
2 2¢o() 3¢y

< T/ T o) |2 (—— V S (LA 22

< v o/ lat! el s v 2D exp(—(2E n Sy
2 2029 3c1 C% 9

<|If; v —(— AN =)0

<8 Ia( gy v ) exp(—(5 1 ) 0?)
2 QCQQ 3c1 cf 9

<M — A =—)Q7). 12

4(00039 0003)6Xp( (8 802) ) (12)
We proceed to bound (I1.iz). Note that
I's +T' rn nrn, I
AR S RN Y R [ A 71“* r
ot - 2R = ] s 2p < T~ Tulr + 4 IT% ~ Tl
1

§50b9+ ||F2 F2+FT—F§||F
<}CQ+76’Q+#Q—(C’ +#)Q
S T e AL VY AL

and similarly ||T% — 22451 || p < (G, + 5 )Q Therefore ||§(T)f;||3 ‘W < MZ(Cp + 2\/1]71)292. By the definition of
Kronecker product,

$02,

1
IF; © 6(T)E; |12 (W Z 2| 6(T)f |2 ‘W<M4(Cb+2\/ﬁl

where f;; is the j-th element of f;. Then

O1,¢(X,Y5)

IE[(ILid)]]2 = | E] fi @ 6(I)fi]]2

8771
2 e NP 1
<— —(—= N =5)Q*)M; (C Q.

Therefore,

071,¢(X;,Y;)

I [m]llz <mi(L—m)([[E[(IL9)]ll2 + [ E[(IL.)]]]2)

< g V(= @m

Lz, + L )exp(— & Lo

22 A\ Ty AP 82
< c5 exp(— (& A —2)92) (13)
- 8 82 ’

where 5 = max{ 2 (25 v 222) L A2(C, + ﬁ)g} .

) )
cgesf) cjes 2cg

For the term (I17), note that
q
IE @ Tal3 =D €I Tol3 = 163 - 1T < MEQ2.
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Then, we have

el ),
dvec(T'y +T)
exp{(Z + 6(D)f))T(Ty — Ty)f;} - 3f; @ (T 2_F1)fi]H2
(m1 4+ (1= m1) exp{(Z + 6(I)f;)T(T'z — T'1)f; })?
5’}/15(X“Y)
omy

IE[

= || E[r1(1 —m)

(1 =)
_ . D g

JIf: ® T2
<12 (& C%)QQ)MCQ
12 (A
=82 P e ac
Mycs) c c? 9
—(Z= A 2209, 14
12 exp(—(3 ASci) ) (14)

Combing results in (11), (13) and (14), we have

Elv1,0(Xs,Yi) — 71,6+ (Xi, Yi)]| < kr(dr(0,07) V By — Bi|[r V [|B2 — B3| r), (15)

2
where kK, = ( +c5+ M4C4Q) exp(— (3¢ A £5)02).
4

D.2. Contraction of matrices U,

We aim to show
1U1(0) — U1(67)|F < ku(dr(6,0%) V [B1 — Bi|lr VB2 — B3||r).

By definition,

n

U (0) ~ Uy(8) = B S {Ine(Xi,¥i) — e (X, VOIXiA ).
=1

When Y; is fixed, X; are not identically distributed. Thus, we bound the expectation of given i. Let & = (w1, vec(I'y —
I'1),vec(T'2+T1)), Ag = §—€*, & = ¥ +ul¢. Then &y = £*, &1 = §. Define the Jacobian matrix J = 0f /0x € R™*"
as J;; = 0f;/0x;, where x = (z1,...,x,)" and f = (f1,..., fn)”. Then

vec(E 715 (X3, Vi) — e (X, VI Xaf )

— Y 9vec(y ¢ (Xi, V)X £T) dvec(&y)
- E{ Ovec(§) ‘stu 9u du
:E{/ 9 vec(y1,¢(Xi, Y3) X fT)‘ A du}+
Im e=¢,
: {/0 3vec(I‘2 - 1"1) L:SHArzfrldu +
8vec (71.6(Xs, ) XGfT)
E { dvec(Ty +T'y) LZEUArﬁrldu .
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Therefore,

I E{[71.6(Xs, Ys) — y,e+ (X3, Yo) X} £
< VAl E{m.e(Xi, Y5) — 71,6 (X, Y)IXGf 2
0 vec X;, YX £
< \/Z]” sup E( (71,5(87‘-1 ) i )) Aﬂ_le_’_

£€Beon (6*)

Vgl sup E

(mwmmeM£v
£E€Bon(0%)

(
8V6C(1—‘2 — I‘l)
(

3vec(71 ¢ X,L', YL)XLfT)
5 E : C A
V|| 5623}29*) ( Ovec(T'y +T') TodT |2

)Ar2r1|2+

<q sup | E (715(’) VecT(X,»fiT)) sl — 7| +
£€B.on(6%) om
(I)
8'71 £(X27}/;) T T
El =~ Xif; Iy - —Ty,+TI%
\/65685;159*)” <8vec(I‘2 -T) veed (X£7) | 2/ 1 2+ 3llr+
(D)
E et Xf; ' —I1+IT,-TI3F.
ﬁ&e;:j}zs*)” (3vec(I‘2+1"1) vee' ( ) ) ll2lIT 1 2 3llp
(II1)

Note that vec(X; ) = vec[(Z + ¥f;)fl] = (f; @ I,)(Z + 9f;). For the second term (II), we have

1 8’)/1’6()(“}/;)
B 7'1'1(1 — 7T1) 8V€C(I‘2 — Fl)
_ exp((Z + 6(D)E;) T (T2 — T'1)f)
{m + (1 = m)exp((Z + 6(I)f)" (T — T1)fi)}?

= e Yo g o1 )2+ 5)E) (24wt (T 0 T,)

vecT (X£1)

(£ @ L,)(Z + 6(T)f;) vec” (Xf])

87‘&'1
X, Y; X, Y;
- 871758( 24 (i ®IP)ZZT(fz‘T ®L)+ 6%758( _a - (f; ®Ip)ZfiT¢T(fiT ® L)+
1 1
(I1.%) (IL.i4)

871,5 (Xia )/7,)
871'1

871,5 (Xia }/l)
871'1
(I1.444) (I1.iv)

(& ® L)AL (£ 9 1,) + (& @ L) (] 9 1,).

Recall that T = (T'y — I'y)f;, T2 = &(I)f;, H; is an orthonormal matrix whose first row is T7 /|| T1|[2, V = H;Z ~
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N(0,1,). For the first term, we have

E[(I1.i)]
071.¢(Xi,Y5)
87’(’1
8,71 ﬁ(Xh Y)
T

071,¢(Xi, Yi) < s T T
—=— S VV'|(f; I,)H;
671'1 }( ) ® P) 7

= (f; @ L) E] 277t 2 1,)

= (i ® I,)H! B H,zz"81](f ®1,)H;

~ (f, 1) H] |

exp(||T1[|2V1 + T{T2))

~ (f;® 1) H] E|

T, | Vi + TTT
= (f, o L) HL B exp(||T1[]2V1 + T Ts))

(m1+ (1 — m1) exp{||T1[[2V1 + T T2)})?

(m1 + (1= m) exp{[| Ty 2V + TTTy)})?

(IT.i.a)

T
(f; @ I,)HT EJ exp([|T12Vi + TTT2))

vVvT|(ff o 1,)

] Ip(fiT ® Ip)Hi‘

(m1 + (1 — m1) exp{[|T1[[2V1 + T T2)})?

(I1.i.b)

Recall that the event & = {[||T1[|2Z1| < $Q?} and on the event &, ||| T1[|2Z1 + T{ Ta| > |TTTy| —

6192/2. Lett = HT1||2Z1 —+ T?T% g( ) - (7r1+(1e}7(1'}i()2xp{t})2 Then
|E[(II.i.a)]|
Ti|2Z1 + TTT
| exp([T1221 + T1 Ts) (Z%—l)]‘

(m1 + (1 = m1) exp{[|T1]|2Z1 + T T2)})?
<|Elg(t)(Z7 —1)|&]P(E (27 —1)|E1P (&)

(IT1]2Z1 + T{T3)? — 2T{ To(||T1 221 + T T3) +

(T{Ty)?

— IT43

H; (by(10))

(V? —1)]ese] (f @ I,)H;+

T1|2Z1 + TTT2)? — 2TT Ty (|| T4 |2 Z1 + TFTo) + (TTT2)2 — [ Tal2 0 oo
E[g(t)((” 1ll2Z1 + T7 Ty) 1 2(|||£1|||T%1 1T2) + (T1Te)” — || 1“2)\51'}13(51‘
1
< E 2 (T TiT oTTT
< o7z 1 Flo@P 1 [+ Bly ) (1T — (T T2)°) e |} +
1
=z {| Ble®(€7] +\ H(IT1[3 - (T7T2)?) €] 2TTT2t|5]}P(5f)+
T3
1 4 Cl o 2 o2 2 C1 C% 2
< _90 025 exp(—(Z A 0
—cgm{mm{ﬁ,(1—m)2}ex"( 1) F et Q)P g ep(=(5 Mg )0 +
2 3¢y 1 4 (c3 + c2)0?
2 2 4 2
262 min{72 (1 — )2 exp(— 8 ) +C?Q2 min{7?, (1 — )2 +47r 1—7
{71, ( 1)%} 3 {1, ( 1)%} 1( 1)
CQQ2 C%Qz
2 _
min{7?, (1 — m)? exp( 8c? )
1 4

JAT 2(c3 + c§)0?% + 4c? xp(—(c—l A)QQ) 8+ (c3 + c3)Q? + 2¢20? exp(— 302
3302 4" 8k 3302 8¢3
Let s = 4+2(C§t§§%32+40292 I 8+(C§+c§c)g§gz+202m. We have
. a i 2
|E[(I1.4.a)]] < csexp(—(— A —5)°).
4 8ci
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The term (I1.i.b) can be bounded same as (11),

2
|B[(I1.i.b)]] < %exp(—(? A ;713)92).
Then we bound the spectral norm of E[(I1.)],
I E[(I1.0)]]l2
< ||(f @ I)H] ere] (£ @ L,)H,|2 - | E[(I].i.a)]|+
I(f; ® L H] L,(f7 © I,)H|> - | E[(I1.i.)]|
< MZ|E[(II.i.a)]| + M| E[(I].i.a)]

< M2esexp(—(2 A Ci)m) + 022 exp(—(EL A i)92)
= Mt SPITY 8c? t et P 8c?
2 c c?
2 1 €T\
< Mj(es + CT%)GXP(*(Z Q)Q )-

The other three terms are easier to bound. Note that

E[(I1.ii)] = (f; ® I,) E]

Om1,¢(X5,Y5)
e G (D

1

O.¢(X,Y;) ]

= (@ ! B0 e £y 0 T,).
1

Using the similar technique in (12), we have

1o} X,;,Y; 0 X;,Y;
87T1 om
2 2¢9() 3c1 c%
< My M, —(— N =—=).
MgV e el (A )
Therefore,
| E[(11.39)]||2
071,¢(X4, Y5
<“<®I”ﬂh'Wki%a‘J%mﬁwﬂmwm?®bmz
2¢9§2 3c1 c
< M} M, —(— AN =—5).
4bQMQ o R A )

We proceed to bound (11 .ii7),

oM E(Xh YZ)
871'1

071.,¢(X;,Y;)
om

Using the similar technique in (12) and ||§(T)f;||3 < M2(C, + \/1—)292, we have

X,;.Y; 2 20902
th%%ﬂﬂgllé( )fiel Villl2 < My (Cy + @

E[(I1.iii)] = (£ ® L) E[ SEZT](E @ 1,)

= (i o L) E| S(D)fief Vi[H; (] @ 1,,).

E V ——
I1EL \/7)(%03 cdes 8

Therefore,

I E[(IL.i)][|2

a’y s X’MY;
< (& @ L)) - | E e XY 5

671'1
1 2 20502 3c1 c

ot @y Ve P A g

S(T)fie] Villlz - || HL (£ @ L)

= M2(0b+

47

Jesp(~(30 ).

a7

(18)

19)
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Finally, we bound (I1.iv),

IE[(I1.i0)][l2

Ome(X,,Y;
~ | o 1,) B e Ei )

SMEETYTIET 91
T S e @ T
< MIM(Ch+ ——)0 2 exp(—(SE A L y02). @n
= TaTbAe 2V/M;" 3 P g c?
Combing results (18), (19), (20), and (21), we have
Om,¢(Xi, Y5) T T
E|lbe X.f
IB | e e e () I
< m(1—m) ([ E[ILD)]]l2 + | E[(U @)]|l2 + (| E[(/L.éd0)]||2 + | E[(I1.7v)]]|2)
1 2 G 9 2¢5€) 3c1 c
< 1 {Miten+ Zrew( % n Son Mt v B -2 0 L+
1 2 2502 3¢y c?
M3 L . A a
a(Co+ QM)(6363 v cies ) exp(=( 8 8(:2)Jr
1 2 C1
MM, ——)0 5 —(= 0?
BML(Cy + I e~ A 0}
C1 C% 2
<cg exp(—(z A 870421)9 )s (22)
where cg = i {ME(C5 + 02 ) M3Mb( \/ 2029) + M3(Cb + 2\/7)(68263 V 2%27?:)“!‘
MEMy(Cy + 54)92 2}
Next, we bound the first term (1)
0 X’MYL
B | 22 et it Iy
a XZ?E
B | P 1)@ 4w e
971 ¢(X;, Vi 01 ¢(X0, Y,
<6 1) 8 | TR g1, | PR g ),
T om
(I.9) (I.i3)
Similarly to (12), we have
‘ Om,e(X4,Y;
(1) = (6 o 1R B | 2R By ),
exp([[T12V1 + T Ts))
= |(fi®I,)H e E[ Vi
R (e ey Fewet [ Y P v PSR R
2 2¢51) 3cq c? 9
< M, —(— A —5)Q). 23
4(6063Q v cdes 2oy ) P 8 A 80421) ) 23)
According to (11),

(24)
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Therefore,

Xi7§/i
IE OIne(Xi, i) vecT (XA | |

(97'('1
2 2c202 3 A& o 9. 2 SN 9
My(——— —(— AN —=)Q Mi My, — — Q
< Mg v 28 exp - n 0 + b2 S (-G 1 o)
3
< cresp(~(%2 A o2, (25)
8 82
where ¢; = M4(C oV 2629) + Mbe
For the third term, using (25) and the fact that ||f; ® (s — T'1)f;||2 < Mycs€2,
0v1,¢(Xi, Vi) T T
E|l—>—" X, f:
|| 8vec(l"2—|—1"1) C ( i ) ”2
m(l—m 0 X, Y;
2 om
1 Om,e(X4,Y;
< Lo (0 - Dot - BT oo gy
8 871'1
Mycs) 3cq c? 9
< —(=2 A 102,
< —g —erexp(=(- A 863)9 ) (26)

Combining results (22), (25) and (26), we have

I E{[71.6 (X5, Y) — y,e (X3, Yo X} e

2 361 62
< \Jadr(0,6%) { exp(—(2 1 5)02) 4 erexp(—(32 024

82 8 "8
M4C4Q 361 2
3 cr exp(— (?/\872)9 )}
. MycsQ 3c c
< Vqdr(0,0%)[ce + c7 + 484 cr] eXP(*(?l A 8712)92)
< ku(dr(0,0%) V[B1—Bi[r VB2 - Bj|r). (27)

2
where Ky = /qlce + c7 + 464 cr) exp(— (3§1 A 8%21)92).

D.3. Contraction of covariance matrices

We aim to show

[[21(0) — 1(07)|B]||F < ks(dr(0,07) V[B1 — Bi|[r VB2 — B3| ).

By definition,

n

35(6) ~ 21(6°)1B] = B> > {In(X0, ¥i) — e (Xo, VIIXXT BY)).

i=1
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Using the same argument as before, we obtain

1 B{[y1.6(Xi, Ys) — m.¢- (Xi, V)| X XT B}l r
< Vall E{[r,e(Xi, i) — y.e- (X, V) X X] Bi 2

) X, V)X, X B!
< \/Z]” sup E VGC(’)/L&( ) i 1) A7r1 H2+
£ Boon(60%) om
dvec(y1.¢(X;, V)X, XTBY)
E : L Ar., _
vl s e -
dvec(v1e(Xy, Vi) X, XTBY)
up B £ = DA
\/&H 5623}?9*) ( Ovec(T'y +T') TodT |2

0 X;,Y; " N
<vi_sw B (PR et (X XTBY) ) aim - o1 +
£€B:on(6) 1

(D)
0 X, Y; " * *
Vi swp |E (W)vecﬂxixiTBo) ol — T — Ty + T3 +

£EBoon (07) dvec(Ty —T)
)
871, (X“Yl) « . .
Vi, IE (avfpm ve! (X,XTB?) ) Ty — T + T — T 5
(II1)

We focus on the second term (II). Note that vec(X,;X?B?) = [(X7B$)T @ I,)X;. Then,

1 Om.e(Xi, Y5)
B 7'('1(1 - 7'('1) 8vec(F2 - Fl)
_ exp((Z + 8(I)f;)" (T2 — T'1)fi) .
= T ) e ((Z 1 ST, - TEpe (@ B)(Z+ 8N vec! (XX BY)
= Dl (g, 1) (24 S0 (24 9)T (24 9E) Bi @ 1,), o9

vec! (X, XTBY)

We can decompose the last line into a sum of 8 terms. The term involves three Z is the most complicated one. We consider

W (®L)ZZ"(ZTB; o L).
1

Recall that H;; is an orthonormal matrix whose first row is T7 /|| T1|2. We further require that B} ;. € span(H; 1., H; ».),
B, €span(H; 1., H; 2., H;3.), ..., B} ;. € span(H, 1.,.

.. H; (g41):), where A . is the j-th row of matrix A. Thus
there exists a matrix A € RP*4 such that B} = HY A. Then

Z'B; = (H'H,Z)"B: = ZTHTH,HT A = VTA

2 3 g+l
= (Z )\jl‘/jﬁz)\JQ‘/j, .. ,ZA]q{/j) — MT,
j=1 j=1 =
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where Ay, is the (j, k)-th element of A and Vj is the j-th element of V. When j > k+1, Aj; = 0 and [|A||r = |B}|lr <
Vd||B¥||2 = v/dMj,Ms,. Therefore,

O,e(Xi,Y5)
om

_ 0ne(Xi,Y5)

N 87‘&'1

_ 0m1e(X,Y5)

N om

_ 0me(X,Y5)

N 871'1

(6 ®L,)ZZ"(Z"Bi @ 1,)

(£, @ L) H VVTH, M” @ I,)
(feL)HI'VVT(MT © H;1,)

(@ L,)HI VVT (M H,, MoH,, ..., MH,),

where Mj is the j-th element of M. Therefore, we have

671,& (le 1/1)
87r1

= (f; @ L) H B

E[ ’ (fi ® Ip)ZZT(ZTBik ® Ip)]

X'h}/;
%VVT(MlHi; MZHi7 ceey Mqu)]
1
exp(||T1|]2Vi + T Ts))

= e L B o TV + TTT2))

> VVI (M H;, MoH;, ..., MJH;)).

9(V1)
Note that -
Elg(V1)VV™ My]
DTA %
MpViVE
= E(g(V1) . +
A VA V2
i >\sz1‘(22 AseViVd o AppwVaVid, O]
Ao V1 VE A V3
s Vi Vi A V3 )
AnrViVidi A 1kVid

Therefore, for each k, the matrix E[g(V;)VVT Mj] can be written as the sum of a diagonal matrix and a matrix with 2k
non-zero elements. Then, the p X pq matrix E[g(V1)VVT (M H;,

MyH;, ..., M,H,;)] can be written as the sum of two block matrices (E[J1] + E[J2]), where each block has size p x p.
In the first matrix E[J;], the k-th block is DyH;, where Dy, is a diagonal matrix. And in the second matrix E[J5],
the k-th block is A;H;, where A} is a matrix that only has 2k non-zero elements. Since ||E[J2]|l2 < [|E[J2]l|lr =
|E[(AH;,...,AH))llr = |E[(A1,...,Aq)]|lr, each element of E[A] only involve E[¢g(V7)Vi], which can be
bounded with the same argument used in (12). The total number of non-zeros elements in E[(A1,...,A,)] is ¢(1 + ¢).
Then we have

3c c
I Ea]ll2 < esa(1 + g) exp(— (- A £ 5)02%), (29)
4

where cg is some positive constant.

Next, we bound || E[J;]||2. Since each block of J; is a diagonal matrix D4 times the orthonormal matrix H;, rows of J; are
orthogonal. Then we can construct its SVD E[J;] = FDK in the following way. Let F € RP*? be the identity matrix,
D is a diagonal matrix that elements are /5 norm of rows of J;, and K7 is normalized E[J;] where each row is divided
by its £5 norm. Therefore, || E[J1]||2 equals to the largest ¢ norm of rows E[J4]. It is easy to see rows of E[J;] and rows
of E[(Dy,...,Ds)] have same ¢5 norm. Thus, we only need to bound the largest £5 norm of E[(Dy, ..., Ds)]. Each row
of E[(Dy,...,D3)] has ¢ non-zero elements, which contain either E[g(V1)V;] or E[g(V;)V;3]. Since E[g(V1)V4] can be
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bounded similar to (12). We focus on bounding E[g(V;)V7?]. Recall that the event & = {|||T1[[2Z1| < $-Q*} and on the

event &, || T1l|2Z1 + T Ts| > [T Ts| — [T1[221| > 10?/2. Lett = || T4 |22y + T T, h(t) = ooy,
Then

|Elg(V1i) V]|

exp(||T1[[2Z1 + T Ty)
(m1 4 (1 —m1) exp{||T1[[2Z1 + T{ T2)})?
(IT1[l2Z1 + TTT5)? = 3(TT T2)*|| T1ll2Z1 — 3||T1[3TT ToZ7 — (T1 Ty)?

—| Bl )

=|E[n(t) ]
‘ ||T1H§
< Elh |T1|\ng+TTT2) ]’ ‘E )(TTT,)2 2]
||T HB’ HT1||2
Eh TTTQZQ‘ n ‘E )(TTT,)?).
||T1||2’ \T1||3

The second, third, and fourth terms can be bounded similarly as (12), (16) and (11). For some positive constant cg, we have

3
Eh(t)(TTTy)?Z1]| + —— | E[h(t)TTT,Z2| + Eht)(TTT
e PO 21|+ e [ BT T8+ e B (T T
< <—<C—1Ai>ﬂ2>
S Cg €Xp 1 80?1 .
Using Lemma F.1,
T
o] EPO (T 1oZ0 + TV Ty
1 exp(t) 3 exp(t) 5 }
E t*|&P(E gep(&s
= C%Q?’ {‘ [(7r1+(1—7'r1)exp{t})2 | ] ( ) (7T1+(1—7T1)€Xp{t})2 | ] ( z)

o1 8 L 1 (G2
xp(— xp(—
— 30 | min{r?, (1 - m)?} P 8 min{7?, (1 — m)?} P 8c?
8 102 4 30?2 A,
ey S ep(— <% exp(—(Z A 02y,
2303 exp( 8 )+ 2303 exp( 8c2 )< A3 exp(=( 8 803) )

Combining the above results, we have

BI04 ) exp(—(5 A E)2)

Therefore, the 2-norm of E[J;] (the largest £2 norm of rows of J) is bounded by

2

c c
IEMD]ll2 < crogexp(—(= A =5)027). (30)

8 8¢

Combing results (29) and (30),

0 X, Y; .
[ E[% (£ ® L)ZZ" (Z"B} ® L)]||2 < Mu[csq(1+ q) + c104] exp(—(gl 8712)92)
Ci

The other 7 terms in (28) involve Z at most twice and therefore can be bounded with the same technique in (11), (12), and
(16). Therefore, we have

Ome(Xi,Yi) T ) 2,
IE (8vec(l"2 -Ty) vec” (XX BY) | [|l2 < en1q” exp(—( 3 A 8Ci)Q ), (31

for some constant ¢;7.
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For the first term (1),

O71,¢(Xi, Vi) _ 0me(Xy, i)

Ty xTR* rxTrg*
. vec” (X;X; BY) o X; [(X; BY) ®1)]
_ w (Z+ ¢f)" (Z+$f)'B] ©1,),
1

and the third term (III)

O1,¢(X,Y5)
Ovec(T'y +T'y)

_ m(—m) 0mne(X,Y5) (£ ® (T — T)E) veeT (X;XTBY)

vecT (X;XTBY)

2 67‘(1
= Dl OBl 1 o (0, - L) (24 9)7 (4 9)Bi @ 1,),

We see that both terms only have ZZ” and thus can be bounded similarly to (11), (12), and (16). Finally, for some positive
constant ¢1 we obtain

2
* c c *
B 6 (X0, ¥0) = 6 (X YOIXXT B} | < Vaden exp(~(D 4 £5)0%)dp(0,67)
1
< rx(dr(6,67) V[B1 — Bi||r V|B2 — By|[r), (32)
2

where ks = \/qq*c12 exp(—(% A ;TIZ)QQ)'
E. Proof of Lemma C.2
E.1. Covering number of £(s)
We state two lemmas that are used later.
Lemma E.1 (Rudelson & Zhou (2012), Lemma 11). Let uy,...,up € RPY Lety € conv(uy,...,ups). There exists a

set L € [M] such that

L <m— dmax;ec |luyll3

2
€
and a vector'y’ € conv(u;,j € L) such that

Iy =yl <e.

Lemma E.2 (Rudelson & Zhou (2012), Lemma 21). Let u, 8,x € RP? be vectors such that ||0||2 = 1, (x,0) # 0, and u
is not parallel to x. Define ¢ : R — R by:

(x + Au, 0)
A)= 7.
" e
Assume ¢(N) has a local maximum at O, then
w6l
x,0) —  |xl

Next, we show the following lemma
Lemma E.3. Let 0 < s < 1/3p, and d = 26883sq>, then

L(s)N spa—t 2 conv( U E;(pg) N Spq_l), (33)
[J]<d

where conv denotes the convex hull and E ;(pq) = span(e; : j € J).
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Proof. The proof is analogous to that for Lemma 13 of Rudelson & Zhou (2012) with some modifications. We assume
d < pq, otherwise the lemma is trivially true. For a vector u € RP9, let T denote the indices of the 3sq largest absolute

coefficients of u. Then |luye||; < [|ug.|/1. We decompose a vector u € L(s) N SP9~! as
1

u = ur +ure € ur + (/53¢ +2qV3s)|lug, l|l2 + /3g|[ulls] - absconv(e; : j € T°),

where absconv denotes the absolutely convex hull. Since
[[ar |y

2 ~
ez < Jfurellsllarelloc < llugll: =

urll2
< [(Vsq+ 2(]\/?;)”1151 ll2 + \/@HUHﬂﬁ
[ur|lz

< [(V5q +2qV3s)|lur |2 + /5q]ul2] NEET
= [(V3/3 + 2y lurllz + V3/3||ullz][ur]l2,

we have
lur|3 + v/3/3 lur|l2.
b

1= fufl3 = llur|3 + [lurll3 < (1+V3/3+2,/4)

a2
Let |[ur|s = x. We are interested in finding a range of x that satisfies a®x? + bx > 1, which is equivalent to (ax +

b/(2a))? > b?/(4a?) + 1. Then we have |jur|, > VAo tb==b

Define
V = {ur + (V5T + 20V39) Jug, 1 + y5dlluls] - absconv(e; : j € T) : u € £(s) NP1},
We have £(s)NSP?~1 C V C L(s) and V is compact. Therefore, V contains a base of £(s), that is, for any y € £(s)/{0},

there exists A > 0 such that Ay € V. For any nonzero vector v € R?9, we define
v

PO =1

Then function F is continuous on £(s)/{0} and V. Thus,
L(s)NSPI~1 = F(L(s)/{0}) = F(V).

By duality, inclusion (33) can be derived by showing the supremum of any linear functional over the left side of (33) does
not exceed the supremum over the right side of it. Since £(s)NSP4~! = F(V), it is enough to show that for any 6 € SPI~1,

there exists z' € RP?/{0} such that supp(z’) < d and F'(z’) satisfies that
(34

max(F(v), 0) < 2(F (), ).

For a given 8, we construct a d-sparse vector z’ that satisfies (34). Let z = argmax, ¢, (¥ (v), 8). By the definition of V,

there exists a set Z € [pg| such that |Z| = 3sq and for some n; € {1, -1},

z =27 + (/5 +20V35) |25 |2 + V5dllzll2] D ajnje;,
J€Te

where a; € [0,1], 37, 7. a; < 1and [|z[]2 > VACHL"=b If o; = 1 for some i € Z°, then a; = 0 for j € Z¢/{i} and z
is a sparse vector with supp(z) < 3sq + 1. Let z’ = z. Clearly, (33) holds with d = 3sq + 1. In the following, we assume

a; € [0,1),Vi € Z¢ To use lemma E.1, denote epy+1 = 0, npg+1 = 1 and set

Qpg+1 = 1— E ;.

JETI*
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Then y = z7c € conv(ul,...,u|M|), where u; = [(\/sq + 2q\/35)||z§1\|2 + /5q|z|l2] - njej, 5 € M = {j €
Z°U {pg + 1} : a; > 0}. We define apq41 because the sum of coefficients must equal 1 in convex combinations.
According to lemma E. 1, there exists a set J' C M such that

_ 4Amaxjem [luy]l3
e
Amaxjem[(v/3q + 29V3s)zg, |2 + /5qllzll2]le; 13
— 2
5q + 125¢% + 45q\/3q + sq + 2sq + 45q+/3q
22
4sq + 85q/3q + 12s¢>  16sq + 325q+/3q + 48s¢>
g2 N g2

[T’ <m:

<4

=4

< 12054

2’

and a vector y’ € conv(u;,j € J')
y' = (34 +20v3s) |z, ll2 + v/3dllzll2] Y Binse;
JjeT’
such that 37, , B; = land [[y —y'[l2 < e. Setz’ = zz +y'. Thenz' € Ez, where J = (ZU J’) N [pg] and
T < |Z| + |T'| < 3sq + m. We have

Iz =22 = llz — 2z = y'll2 = llzze =¥l =y = ¥'ll2 <&

For {§; : j € J'} as above, we extend it to {3; : j € Z°U {pg+ 1}} by setting 5; = 0if j € Z°U {pg+ 1}/{J’} and
write

2/ =2z + (V50 +20V38)|zg [l + Vaalzlz] D Bimges,

JET°U{pg+1}

where 3 € [0,1] and 3, 7c )11y B = 1. If z = 2/, then (34) holds naturally

max(F(v), 0) = (F(2),0) < 2(F(), 6) = 2(F(2),6),

and d = 3sq + m. Otherwise, for some A to be specified, consider the vector
2+ Mz —2) = 2z + (V50 + 20V39)||z5 [l + Vsalzla] Y (1= Nay + AB;Ine;.
J€Z°U{pg+1}
Wehave e 7epgr13 (1= A)aj +AB;] = 1. There exists 6 > 0 such thatVj € Z°U{pg+1}, (1—A)o; +AB; € [0,1]

if [A] < dp since

* This condition holds by continuity for all j such that c; € (0,1).

* If a; = 0 for some j, then 3; = 0 by definition of M.

Therefore, we have 3 7.[(1—A)a;+AB;] < 1, which implies z+A(z' —2z) € V. Now consider function ¢ : (—do, do) —
R’

(z+ Nz’ —z),0)

Iz + Az —2)ll2

¢(\) = (F(z+ ANz’ —2)),0) =
Since z = argmax, ¢y, (F(v),0), ¢(\) attains a local maximum at 0. According to lemma E.2,

(2.0) _(a+(2=2.0) |72l _|al:—|=
(2.) @0) el lel2

55




Heterogeneous Sufficient Dimension Reduction and Subspace Clustering

It follows that
(F(2),0) _ (7 /12]2,0) _ lzlla  (2,0) _ llzll2 [zll2 — ||z’ — z[l
(F(z),0)  (z/llzll2,0)  |z']l2 (2,6) ~ [|Iz']2 ]2
]2 Mzllz —1lz" —zl2 _ lz]ls — (12" — 2|2
“lzllz + 12" — 2|2 ]2 Izll2 + 2" — 2]l
lz]|2 — € 4 2e
“lzllz ezl +e

We know ||z]|2 > ||zz]|2 > 7“1“22:2”2_6, where a® =1+ 1/3/3+2,/gand b = /3/3. Lete = 7“1‘%;@1’2_", we have

(F(),0)

(F(z).0) ~

DN | =

Therefore, we construct a sparse vector z’ such that (34) holds. To derive d, we have

2
m < 120;(1 .
e
Note that
5 462 + 2b% — 2bv/4a2 + b2
° T 3644
A(1+V/3/3+ 2y0) +2/3 — 2v/3/3\ /401 +V3/3 + 2/7) + 1/3
B 36(1 +v/3/3 + 2,/q)?
x+2/3-2V3/3\/x+1/3
n 92 ’

where z = 4(1 +v/3/3 + 2,/q). Since ¢ > 1, z > 4(3 4+ /3/3). By the derivative

d 1
—(x+2/3-2V3/3/x+1/3) =1— ——— >0, whenz > 4(3 +/3/3).
Substitute x = 14 into the numerator
10 1 1 1 1

2
2> = > == > = .
92 © 22 16(1+V3/3+2q)? 16x14q 224q

Then, we have
120sq>

m <
52

< 26880s¢°.

O

Let M, be the cardinality of a 1/2-net of £(s) N SP9~1. We want to bound M, which will be used in the later proof.
With lemma E.3 and using the same argument in Rudelson & Zhou (2012)[Section H.1], we have

Vw2 12/ () < 3G = exptaton "),

Let Cy = 26883,

5e
log(Maer) < dlog(*=) = Cusq® log

P,

depq P oe
) = Casq®[log(——) + log( = e

< Che 31
Cd8q3 8(]2 Cd)] — C tSq Og(

for some Che > 0, when p > csq? for sufficiently large c. If we want to eliminate log 5e/Cy, 1og(s%) > log 5e/Cy. That
is the reason we require p > csq?.
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E.2. Concentration of the matrices U,

Recall that Uy () = I m,e(X, V)X, U (8) = L Y0 | E[y1,0(X, Y;)X;]fT. We want to bound

WY = sup ||ﬁ1(0) - Ul(a)“F,s-
0E€Beon (6*)

By definition, we have

wY = sup sup Y1,0(Xi, V)X — =) Ely,0(X, V)X u)p
vec(u)EL(s)NSPI— 10€an(9 y n ZZ; ZZ;

n

1
= sup sup (= ) (11.0(Xi, Yi) X — Elyne0(X:, Vo) Xi)) £, u) .
vec(u)EL(s)NSPI—1 O€Bon (%) T i—1

Define
1 n
W= sup (=3 (y.0(X:,Y)X; — By o(Xi, V) X)) £, u)p
0€Becn(6%) T ]
Then WY = SUDyec(u)eL(s)NSpa—1 WU.  We use an e-net argument. The first step is approximation. Let
vec(uy), ..., vec(uas,,) be a 1/2-net of £(s) N SP4~1. This means that for any v € £(s) N SP4~1, there is some in-

dex j € [Mpe such that |[v — u;||p < 1/2. We have

Wy <Wo + Wy - W

< max WU +WYu; —v|r
]G[Muel]

< max WU + WU
Je[Mnel] 7

net

Then WY = sup, WP < MaxX;e[M,] wy .+ 1/2WY, which implies WY < 2 MAaXj e[ M, W . Then in the second step,
we bound the tail of WU for fixed 5. And the third step is union bound, where use the covering number of L(s) N SPI~1,

Let {¢;}7, bei.i.d. Rademacher variables. Recall that

T+ (1 — 7T1)€Xp{( — 1/2(1—‘2 + Fl)f) (FQ — I‘l)fz}

Co,v (X;)

7,0(X;,Y;) =

71+ (1 —m) exp(Co,y (Xi))
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Then according to Lemma S.5 in Wang et al. (2024) and Hélder’s inequality, we have

Elexp(AW))]

1 n
= Elexp(A  sup *Z 7,0(Xi, i) X — E[y1,0(Xs, Vo) Xu]) £, u;) )]
0€Becn(6%) T

A
= Elexp(=  sup Z (71.0(X4, i) Xy — Ely1,0(Xs, Yo) Xu]) £, ) )]
T 9cBeon (0%) i1

2X -
< Elexp(— . )Zez 1.6(Xe, Vi) Xt ) p|)]
con =1
2\ T T T }
= Elex su —m )(XGf  u)p 4+ emi(Xif] ,u; ‘
ey eesmnpm;{ T 0 - m)ep(Coy (k) T il am e )
4\ T T 1
<E _ X7 u; /2,
= [exp(n GGZZEHPH )Z ™+ 1—7T1)QXp(ng( D) m1)( i u]>F )]
(I)
4\ -
Blexp(—-| sup > em (Xuf wy) e )12

GGBcon(G*) i=1

(1)

To bound (I), we use lemma C.1 in Cai et al. (2019). The function ¢(x) = T myem — T is Lipschitz with

constant % < % and ¢(0) = 0. Since Y, f; are fixed, Cg y (X;) is a function defined for random variable X;. Let
I'* = 77 + (1 — n7)T5, and Z; = X; — I'*f; be the centered random variable. Note that Z; ~ 7} N (I'1f; — I'*f;, I,) +
(1 — 7)N(Tif; — T, 1,).
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Therefore
(1)
8A1 — Co T
< Elexp(— sup €;C Xt u;
[exp(— L ); 0,v (Xi)( ) F|)]
SA1—
= Blexp(22~—— L] sup Zez —1/2(Ty + T)E)T(Ty — T)ENX AT u)) p ’)]
n €o 0€Bcon(0* )z 1
Al—
Bl 376X 12T T (T — TR KT ) )
n Co 0B (0" )Z 1
8\1—¢ .
= Elexp(—=—=2|  sup Z (Zi + T*f; — 1/2(Ty + T1)f;, (T — D)) (Zs + T )T u,) p|)]
n Co 0€Beon(0* )’L 1
3201 —c¢ -
< Blexp(“= 2| sup 3 ei(Zi, (D2~ Do) (ZT ) )]/
n €0 1 9eBan(07) =]
(iv)
3201 ¢
Elexp(===—2| sup Zel “f, — 1/2(Ts + T1)fi, Ty — T)E)(Zt] uy)p )]V
n €0 1 ocBnm(0
)
3201 — ¢ . L
Elexp(=—== (T £V EE /4.
(" | s Z Zi, (T2 — T1)E) (D67, ;) )
(44)
3201 —
Blexp(Z2 2| sup Z (T*f; — 1/2(Ty + T, (Do — TOENTEET, wj) e |)]/4.
n €0 1 OEBan(6%) 5=
(ii7)
Note that
[T —T1f|p =[T2 = T5 — (I'1 = T7) +T5 - T][[r
< |2 = T3l[r + IT1 = Tillr + T3 ]lF + [TT ] F (35)
< 20, + 2M;y,.

We can bound ||T'y + I'1 || » with same quantity. Therefore, ||(T})7(T'; —T'2)|l2 < M (2C,Q+2M,) = 2C, MpQ + 2 M.
We like to bound 4T rYaT

2 1 X 2+ 1
T)T(I& = Tyll2 < 0T = —5—IlFT2 — Tull2

I‘2+I‘1

1Ty -

< (I3 [l7 + 1 [ 7)(2CH2 + 2My)
< 2(Cp2 + 2Mb)(CbQ + M)
= 2070 + 6C, MpQ + 4M;.

We know that [|Allz = maxy y X" Ay/([x|l2[[y|l2) For (i), we have

‘ sup <]_1*fz — 1/2<F2 + I‘l)fi, (FQ — Fl)fz>
0€Bcon(0*)

< sup ]w;«r; —1/2(Ts + T1))E;, (T — T+
0E€Bcon(0*)

sup |(1=m)((T5 = 1/2(T3 + T1))fi, (T — 1))
0 Bon(0*)

< sup
OEBon(0*)

I£:]12(2C2Q2 + 6C, MyQ + 4Mg)].
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Let Cyy = (20202 + 6C, MyQ + 4M2) max; ||f;]|3. Therefore,

(i)*
3211 —c¢ g
= Blexp(“2 2| sup 3D~ 1/2(Ts + T1)f;, (T - T (Zf wj) v )]
n Co 0€Bn (0%) ;4
3221 —
< Elexp(222 2= ] sup  (D*f; — 1/2(Ty + T'))f;, (T2 — T'1)E) ‘ sup Zel (Z£T w5 ‘)]
n Co 0EBeon (0%) 0B (6%) ;=1
<Cn
3211 —c .
< E[exp( 01 ‘ sup ZEKZifiT,UﬁF )].
Co 0 Beon (0%) i=1
Let that
Zi|(W; = w) = (Zf] ;) p | (W; = w) = vee(u)) (£ @ 1) Zi| (W; = w).
Since Z;|(W; = w) N(T: £ — T, 1), var(Z;|(W; = w)) = Hvec(uj) (Z L,)||2 < M2. Therefore ||e; Z;|(W; =
W) |l = 1Zs|(W; = = w)|lyp, < CMy. Since ¢; is 1ndependent of Z;, Ele; Z;|(W; = w)] = hen, by equation (5.12) in

Vershynin (2010), the moment generating function of €; Z; |(W; = w) is
Elexp(te; Z;|(W; = w))] < exp(CMZ?).

Then, we have

E[exp(gi)\l_cocu ‘zn:€z<z £ uj)r ‘)]

C
0 i=1

2N —cp ~ < 32X 1 — ¢ ~ -
= E[max {exp(n Chy - Zq<zifﬁ u;)p,exp(— - Chi - Zq<Z f7 u;)p }]

¢ ¢
0 i—1 0 i—1

221 201 —
E[max {eXp(3 A COCOCH Zfz i exp(_ﬂ COCll ZQ z}

=1

3221 — 3221 —
< E[exp( . “& Ci - ZQ i —i—E[eXp(—— COCH Zez i
0 =1
A2 322(1 A2
< 2exp(— - %CHC’MQ = 2exp(—4C’11)
0

where Cyy = 322/4CM2U=2)° G2, Then
0

3201 — ¢ ~ = A2
(i) < Elexp(—= OClr‘ , ;ul?e )Zq(ZiflT,uj)F /A < 2l/4 exp(—Chu). (36)
€Beon(07) ;1

Co

When 6 € B, (60%), vec(T', — T'})) € L(s), which implies vec(T',,) = vec(T'})) + vec(uy,), vec(u,,) € L(s). Next, we
bound the second term (7). Note that

(L E£7 u) p| = | vec(u;)T vee(Tfif;)| < [ vee(u;)l|z - | vee(T* €72
= [(E:£] ® L) vee(T™) |2 < [[££] |2 - || vee(T™)] 2
< Mp|;])3 < Mp max |3
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Then

<¢i>4:E[exp(%1‘CO\ sup 3 eulZi (T2 — RN EET, ) )

no Co 1ocBwm(0%) =]
3201 — -
< E[eXp( sup € (Z ’L7 F2 )f2> )]
n EBCOII(G*) ;
41— =
< E[exp(ﬁ— “ sup [ ez, (T + w172
n EBcon i=1
6401 — ¢ =
Efexp(—-— sup \ > eilZa, (T} +w)8) )]/
n GBwn(O*) i=1
128N 1 —
< E[exp(i)\ ‘Zez Zzar*f> )]1/4'
=1
(#.1)
128\ 1 =
E[exp(i z”% . sup Z €i<Zi, Uin> )]1/4 .
vec(uz)€L(s)' ;4
(#.2)
12801 — - .
Elexp(—— ‘ Z €i(Zs, TiE) )]/
=1
(#4.3)
12801 — -
Elexp( 8 sup | D ei(Zi,wfi) )]
Vec(ul)EC(s) i—1
(i.4)
We first focus on the term (#7.4)
128\ 1 — ”
Elexp(—— sup Z €{Z;, u1;)|)].
vec(ul)EL(s) i—1
Again, we use the e-net argument. Let vec(Uy), . . ., vec(tiyy,, ) be a 1/2-net of £(s) N SPI~1L,
n n
sup (Ziwf)| = s | Y e(Zeuw/lluof)
vec(ui)€L(s)' ;51 vec(uy)EL(s) i—1
< sup lwlr €i(Zi,
vec(uy)€L(s) Vec(u)eﬁ(s nSra—1 ;
<2 sup u;||r max €i{Z;,u,f;
vec(ui)€L(s) || ” JE€[Mpel] ; < ! >
< QCijg[l]E\Kl] Z;&(Zi,ujm ;
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where in the last equality we use vec(u;) = vec(I'y) — vec(I'}) and ||T'; — || < Cpf2. Then

n

12811 —
Elexp(—— sup ‘ €i(Zi, i) )]
n vec(ul)eﬁ( ) ;
256\ 1 — -
< Elexp(—— o6 20,9 - max is
256\ 1 — =
< > E] (— 5049 ‘ €i(Z;, u;f) )]
JE[Maa] i=1
= Z E[eXp()\ 20,00 - ‘iez Z;
n
je[J\/[ncl]
512
where Z; = (Z;, W;f;). Since E[e;Z;|(Wi = w)] = 0 and var[Z;|(W; = w)] < ||fi|3, Elexp(t&;Z|(W; = w))] <
exp(C'M3t?). Therefore, we have
114 Z Elexp( 012‘261 i
]e[Mnel]
)\
= Z E[max < exp( C’12 Z Z;), exp( C’12 Ze, f
JE[Mped]
A~ ~
< > Elexp(Ciz2 - Z@Zi)] + ) Elexp( Clz Zel i
je[Mnul] =1 je[Mncl]
)\2
< 2 Mgt Hexp C L CM2) = 2Mye exp(CHLCM2 =)
- H,—/
4012
_ o \2 -
< 2exp(4C12; + Coersq® log(%)).
Let Z; = (Z;, Tif;). Then Ele; Z;|(W; = w)] = 0, var[Z;|(W; = w)] < MZ||f;]|3. With same the argument,
3 128\ 1 — ¢ -
3)* = E[exp(=22 M, f, 2.‘ AZ:. T,
(ii.3) [exp(— p max || £33 ;6 (Z:, T7t)))]
12801 — 12801 — S
< Elexp(—— Z €;.7;)] + Elex ( Z €.7;)]
i=1 i=1
A2 128%(1 —
< 2exp(— MCM?ME).
n g
4C1a
Then we have 32
(#4.3) - (ii.4) < V2exp((Cra + 6’12); + Cher/45¢° log(;%)).
With the same argument, we can derive a similar bound for (¢.1) - (¢¢.2). Then, for some positive constant C' 2,
A2 D
(id) < 2'/4 exp(Cra "~ + Cher/85¢° log(E)). 37)

Recall that for a bounded random variable X € [a, b] almost surely with E[X] = 0, E[exp(tX)] < ex (tz(b —a)?/8)
for any ¢ € R. From earlier derivation, we have [(T*£;f! u;)r| < M, max; |/f;||3. Thus, E[e;(T*f;f!,u;)r] = 0 and
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ei(T*EfT u;) p € [— My max; ||f;||3, M), max; ||f; ]3], which implies

202 IR N12)2
E[exp(tei<r*fiff,uj>p)] < exp( b (maQX I£ill2) ), VteR.

For (iii), we have

(idi)*
3201 — .
= Elexp(—= CO‘ sup ZGZ(I‘ f; — 1/2(Ty + T)f;, (T = TOENT G u;) p ’)}
n Co 0€Beon (0*) ;=
B2M1—co 5 "
<E : ‘ AT
< Blexp(5 =~ e sw ;6 F|)]
3201 — S 32A1— -
< Blexp(% 20 - 6067 ;) )] + Elexp(% > =D el
1=1 i=1
A2 512
< 2exp(— - G 2 )” 0121Mb M4)
0

4Ch3

Thus

)\2
(i) < 24/* exp(“—-Chs).

Recall that vec(T,, — %)) € L(s). There exist u,, € RP*? such that vec(T',,) = vec(I'%,) +vec(u,,) and vec(uy,) € L(s).

Then we proceed to bound

n

(iv)* = Elexp(

co | oeBum(6) %

sup ZQ‘(Zi;I‘2fi><zifZT7uj>F‘)]1/2'
0EBeon (0%) ;4

64\ 1 — ¢y ‘ - T 1/2
sup eiZs, T EMNZ:£T  u, F‘
e 9ezscon(o*); ( 1fi)( )

n

Elexp(—

12801 — ¢
n Co

< Elexp( 0P
€Beon(07) ;1

(iv.1)

n

12801 —
E[exp(TS %

Co

OEBcon(e*) =1

(iv.2)

n

128\ 1 —
E[exp(—8 CO‘ sup ZQ(Zz‘,Fffiﬂzif?,ujﬁ‘)]l/él'
n

Co 1 ocBun(6*) i3

(iv.3)

E[exp(@l_co‘ sup Zez Zi,wifi)(Z£] uj)p ’)]1/4-

no € leeBuw(6) i

(1v.4)
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sup " ei(Zi, Taf) (Zaf ;) w )]/

sup Z €i(Zi,uof;) (Z £, uj>F’)]1/4 :

)F)]
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For (iv.4), define
Wy = sup ei(Zi, ufi)(Zif] ,w;) p
vec(U)eL(s)NSPa—1 ;4

= sup (vec(ua), (Z e vec(Zifl ) vec(Z£5)T), vec(u;)),

vec(u)eL(s)NSPa—1 i—1
where we use
<Z“ivlf1> = f,LTﬁTZZ = tI‘(flTﬁTZZ) = <ﬁ7szzT>F = <V€C(ﬁ),V€C(ZifiT)>.
Let

n

Wi = (vee(@), (Y € vee(Zif]) vee(Zif])T), vee(u;)),
i=1
and {Uy,..., Uy, } be a1/2-net of of £(s) NSPI~L. Forany v € L(s) N SPY~1, let Uy, be one of the closest point in the
1/2-cover. Then by definition,
vV —u

€L(s)NSPIL |lv — T2 <

DN | =

v — gl
Therefore,

Wv,u S Wﬁk,u + |Wﬁk,u - Wv,u|
n

< i Wy o+ [{vee( — V)8 vl (3 e veol e vec(Zi ) veo(y ) e = v1-

< Wy Wa=
< kg[lﬁx] f,,u ug

which implies Wu < 2maxpe(M,.] /V\V/ﬁkvu. Then

sup Zei<Zi,u1fi><ZifiT,uj>F
0€Bean(0%) ;21

n

= sup  lwlp Y elZiw/|u | p)(Z£ ug) p
vec(uy)EL(s) i—1

S CbQ . Wu S QObQ - Imax Wﬁk us
ke[Mne(] ’

[ui||F = || vec(T'y — T'7)[]2 < CpQ2. Then

128\ 1 — —
—_— €0 2C,Q - max Wy,
n co k€[ Maet] ’

where we use supge_, (6+)

(iv.4)* < Elexp(

)]

12801 — ¢ - _
< Z E[GXP(T o OQCbQ‘ZQ(Znukfi><zif¢Tauj>F)]+

ke [Mnel] i=1

12801 — ¢ - -

Z Elexp(—— 220,02 - —Z€i<ziaukfi><zif?auj>F)]~
n Co -

k€[ Mol i=1

To bound €;(Z;, uxf;)(Z;£F, u;) r for fixed Uy and u;, we use lemma D.2 in Wang et al. (2015) that states the product of
two sub-Gaussian random variables is a sub-exponential random variable. Let | - ||, and || ||, denote the sub-exponential
and sub-Gaussian norm. Note that (Z;, uf;)|(W; = w) and (Z;f],u;)p|(W; = w) are normal distributions with zero
mean and variance less than or equal to ||f;||3. For X ~ N(0,02), | X ||y, < Cy,0. For some Cy, > 0, we have

ll€i(Zs, Wk ) (Zif]  uy) | (Wi = w)l gy = [[{Zi, 0 (ZiET ;) p| (Wi = w) ||y,
< Cy, max{|(Zi, wef)) (Wi = w)|[3,, NZif], u;) p| (W = w7, }
< Cy, (CF, max 15115 + Cf2 max I1£113)

< CwMZ.
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Note that E[e;(Z;, 0 f;)(Z: £, u;) p|(W; = w)] = 0 since ¢; is Rademacher random variable independent of Z,. Accord-
ing to Lemma 5.15 in Vershynin (2010) we obtain

128\ 1 — _ 1282)2 (1 —
Elexp(—— €0 20, - €;(Z;, ukfi><ZifiT,uj>F)] <exp(C— ﬂél(?b Q2 MY,
n co n c?
when
128\ 1 — C’
= Cymax; |3
Then ) )
A 128
(iv.4)* < 2 Z CXp—4C’ (1= co)” CZO2 MY
k€[ My b
4C14

A2 A2 3 P
< 2oxp(;4014)Mnet < 2cxp(;4014 + Chet5q log(E)).

For term (iv.3), using Lemma D.2 (Wang et al., 2015) and Lemma 5.15 (Vershynin, 2010) again, for some positive constant
C, we have

2
Blexp(“0 0 6 (2 T (2T w)r)] < expl5C)
when
12821 — ¢ c
| n = C'(1+ M) max; |£)3
Therefore,

2
(iv.3)* < 2exp(%4(714).

‘We can bound .
(iv.3) - (iv.4) < \/ﬁeXp((ém + 6'14); + Onet/43q38p?)'

The analysis of (iv.1) - (iv.2) is similar to (7v.3) - (iv.4) and we have
(iv) < 2'/4 exp(OMA—Q + Chet/85¢3 L), (39)
- n sq2
Combing (36), (37), (38), and (39), the bound for (I) is
N A2 3 D
(1) < [(@) - (i) - (édd) - (iw)]/~ < ﬁexp((h; + Chet/85q E)v (40)

where C; = (C11 4+ C12 + C13 + C14) /2. It remains to bound (I7). Using the same argument, for some positive constant
Cr1, we have

(IT)? = Elexp( ‘ sup Z eim (X,f >F‘)]
" 1 0eBm(07) ;1
E[exp —| sup Z e;m(Z F‘)]I/Q-

N 1 oeBan(0*) =1

4
w2, S 1

)\2
< 2exp(—2C7r),
n
which implies

2
(1) < Ve, (1)
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Combining the results (40) and (41), we obtain
U A? 3 p
Blexp(WE)] < (1) - (I1) < 2exp(-Co + /855" og(5)).

where C'y = C7 + Cyy. Thus,

Elexp(A\WY) < Elexp(2A max W) < Y Elexp2AW,0)]
JE[Mped] 7 €[ Med] 7

4)\2 3 p 402 3 p
< 2M et exp(TCU + Chet/8s¢ log(g)) < QQXP(TCU + 2Cet8q log(@))

472 3
< QQXP(TCU + 2Chet5q” log(p))-

Using the Chernoff bounds, we have

P( sup |[UL(6) = Uy(0)||ps >t) = PWY > 1)
6EBeon(0*)

4 2
< exp(—At) Elexp(AWVY)] < 2 exp(%CU + 2Ch5q° log(p) — At).
Let A = \/ns¢®log(p)/Cu, t = (2Chet + 5)1/Cusq® log(p) /n. Then
P(WY > t) < 2exp(—sq’log(p)) < 2exp(—log(p)) = o(1).

Recall that we require

12801 —¢g

n Co

<.

sq3log(p) 1 — ¢ ’

={128
’ ‘ nCuy Co

Therefore as long as n > C”sq> log(p) for a sufficiently large C”’, we have with probability at least 1 — o(1),

N sq3 lo
sup [01(8) — UL(8)]1 s < /211080 )
OEBeon(0*) n

Note that we can get a sharper bound when s¢* = o(p),

N sq3 log(Lx)
sup  [[U1(0) = U1(0)|ps S/ ———
6e€Beon(0*) n

E.3. Concentration of the weights 7,

71(0) — m1(0)|. Recall that

We proceed to bound supgep,, (6+)

n

~ 1 1
1= - 76(Xi, Yi),m(6) = ~ By e(X;, Vi),

i=1

and
™

T + (1 — 71'1) exp{(Xi — 1/2(F2 + Fl)fZ)T(FQ — I‘l)fz} '

Co,y (X;)

71,0(Xi,Yi) =
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71(0) — 71(0)|. We have

Let W™ = Supger

Blesp (W)
A n 71_1
~slontiy o |3 e ey oy ek )

A - T
RO e (e orr e R SR O

)

- {m T ) ep(Coy (X)) E[%’”(X“Y"”}” |

A
Elexp(= sup
n 0cBeon(0*) i=1

(1)

Apply Lemma S.5 in Wang et al. (2024) to (1),

n

2\ T
N <E — 3 i
(1) < Efexp( n ’ee;:fze*) ;6 71 + (1 —m1) exp(Co,y (X)) ‘)]

n
1

4\ 1
< 4 , _ /2.
< Elep(c| s 3 G esermy )

(@)

4N
s g, S
E€Bcon

()
Note that 1(x) = (e — T is Lipschitz with constant Lw < 1;—:0 and ¢(0) = 0. By Lemma C.1 (Cai et al.,
2019) with g(-) = 1, we have

. 8\
(i)? < E[exp(—’ sup Zel i~ 1/2(Ts + T1)E)T (T — TDE )]
0eBeon(0%) i=1
n

16\
< Elexp(—| sup ZQ‘(Zn (Ty —Ty)E)|)])/?
1 9B (6%) i=1

(i.1)

n

16) L1
E[exp(—’ sup 376 (D' — S(T2 + T, (T = 1)) )]Y2.
0B (0%) i=1

(i.2)
Terms (.1) and (¢.2) can be bounded similarly to (37) and (38). We have

(Z 1) < \fexp(QCu + Cnet/QSq IOg( ))

2

(1.2) < ﬁexp(?Clg%).

Term (%) can be bounded easily using properties of sub-Gaussian random variables,

)\2
(#1) < \/ﬁexp(CwF)

Thus 2
A
(1) < (@) - (id) < 26XP(01; + Chet/45¢° log(%))7
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where C; = C11 4+ Ci2 + Cy3. Term (I1) can be bounded similarly. Combining the results, we have

2

Elexp(A\WW™)] < 4exp(0ﬂ% + Cheesq® log( P ).

sq?
Using the same Chernoff approach as before, we have

~ A2
P( sup [71(8) —71(0)] >t) = P(WT™ > t) < dexp(Cr— + Chesq” log(p) — At).
0 Beon(6%) n

Let A = \/nsq3log(p)/Cr. t = (Chet + 2)1/Crsq®log(p)/n. Then
PWY > t) < dexp(—sq’ log(p)) < 4exp(—log(p)) = o(1).

Therefore, as long as n > C”’sq> log(p) for a sufficiently large C’, we have with probability at least 1 — o(1),

sq3 log(p)

sup |[71(0) — m(0)] S\ ———=. (43)
0€ B (6*) n
Still when sq® = o(p), we have the following sharper bound
_ sq3log(Lz)
sup  [71(0) —m(0)| S\ ————
0EBecn (07) n

E.4. Concentration of covariance matrices

Last, we study the concentration of 32,,. Recall that

- 1 & 1 —
Su(0) =~ > me(Xi, Y)XiX],  Bu(0) = > Bl o(Xi, Y)XiX]].
i=1 =1

Directly applying Lemma C.1 (Cai et al., 2019) converts the problem into bounding the product of three sub-Gaussian
random variables. While it is well known the product of two sub-Gaussian variables is sub-exponential, the product of
three or more sub-Gaussian random variables is not necessarily sub-exponential. Therefore, we must use another method
than the one used in the concentration of U,,. We use tail bound for unbounded random processes given in Theorem 4
Adamczak (2008).

Let W= = supgep,, o) II(Z1(8) — 31(8))B] || r,s. By definition, we have

n

1 *
W = sup sup  (— Z{’Yl,e(xz‘, V) XiX] — E[y,6(Xi, V)X X[ }B], u) p.
vec(u)€L(s)NSPI—1 O Beon(8%) T i—1
Let
1 n
WE= sup (=D {n.e(Xi, Y)XiX] — E[y1,6(X:, Y) X, X!} B}, u)p.
0€Been(6%) T ]
Then W= = SUDyec(u)e£(s)nSPa—1 WZ. Let vec(uy),...,vec(uys,) denotes the 1/2-net of £(s) N SPY~1. For any
v € L(s) 'SP~ let u; be one of the closest point in the 1/2-cover. Then by definition,
vV —uy _1 1
———— e L(s)NSPIT,  |[v—u,]2 < <.
v — ] T2

Therefore,

1
”72 ”72 HrZ ”72 HrZ ”rE
v S W [Way =TS max Wy 5
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which implies W* < 2max;e|(p,
(Adamczak, 2008), define

] W . We proceed to bound Wz for fixed u; € L£(s) N SP?~. To use Theorem 4

net

F(Xi,Y:) = 710X, Vi) (XiXI B3, u;) r — E[y1,0(X;, V) (X X! B3, uj) p).
‘We have

1 n
We <= sup | f(Xi,Yi)
TN geB(07) Zzzl

It is clear that for every 8 € Beon(6*) and every 4, E[f(X;, Y;)] = 0. Next we show (X; X7 B}, u;)F is sub-exponential.
Note that
(X, XI'Bj,uj)p = vec(u]) vee(X; X7 B}) = vec(u;)" (I, ® X;XT) vec(BY)

q
_Zu7kX )(TBlgC :Z X17u]k? XzaBl k>
k=1 k=1

where u; . and B} , are the k-th column of u; and B7. Clearly, (X;, u; 1) and (X;, B ;) are normal. Then

(X, W) e < 1(Zis 0 pe) gy + [1€20F3, ) [, < Cllugll2 +C,

and similarly
(X, BT )|, < CIIBT 112 + €

Therefore, by Lemma D.2 (Wang et al., 2015)
q
||<XX Blau] F||¢1 Z Xl7ujk XZ7B1 k>||7/11

q
Z ~max{ [(Xs, win) 7, (X, B p)[I3,} < €7 < 0.

The above results hold for any 8 € B.,,(6*). Then

I sup (X5, Yi)lll,

0€Beon(6%)
= sup <71,9(X¢,K)X1XfBT7uj>F’+ sup | E[(y1,0(Xi, V) XiXT, w;) ]|l
0EBeon(0%) 0EBeon(0%)

<l swp  |(XXIBiu)e|ls, + ] sup
0E€Bcon (%) 0€Beon (0*)

E[XXT ;) ]| s
< 00,

where we use the fact 0 < 1,9(X;,Y;) < 1. We verified the two conditions for Theorem 4 (Adamczak, 2008).
Define truncated function and the remaining parts of f(X;,Y;) as

[1(Xi, Ye) = f(X, Y)I( sup  |f(X,Y5)] < p),
0B (0%)

[2(Xi,Ys) = f(Xi, Yi)I( sup  |f(Xq,Y5)] > p),
0EBeon(0%)

where p = 8E[max; SUPg € Beon(6*)

(X“YDH Let Q = max; |<XiX;TFB>{,Uj>F‘. Since <XiX?BT7Uj>F is sub-
exponential, P(|(X; X7 Bj,u;)r| > xlogn) < 2exp(—czlogn). Then

P(Q > zlogn) < ZP(|<XiXiTBT,uj>F| > xlogn) < 2exp(—cxzlogn + logn).
i=1
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Therefore, when logn > 1 we have

21
S-S0 %)

/OOP(Q>t)dt:/ ’ P(Q>t)dt+/ P(Q > t)dt
’ L

2logn
c

ElQ]

IN

21 e
oen —|—/ P(Q > tlogn)d(tlogn)
c

2

2logn

IA

+ 210gn/ exp(—(ct — 1) logn)dt
2

2logn

IN

+210gn/ exp(—ct + 1)dt
2

exp(—1)

21
ogn < C'logn.

+ 2logn

Since the above holds for any 8 € B, (0*), we have p < C'logn.

Note that

n

sup | f(Xi, V)| < sup |Zf1 X;,Y;) — E[A (X, Y9+

9€Bcon(9*) i=1 9€Bcon(0 i=1

sup |Zf2<XiaYi) — E[f2(X;, Y2)]l,

BEBcon(a*) i=1

where we use the fact that E/[f1] + E[f2] = 0. It follows that

E sup | f XMYL < E sup | fl XMY; [fl(X“Y;)]”—‘r
eeBm(e ) ; eesm(e ) ;

2E[ sup [ ) f2(Xi,Yi)]
GeBconG) ;

By Markov inequality and definition of f5(X;,Y;), we have

k
P(max sup f2(X;,Y;)| >0
(k<n - )l; ( )| >0)

E[max; (X, V)l 1
< P(max  sup [f(X;,Y5)] > p) < <z
v 9EBen(0%) P 8
which means
k
to = inf{¢t > 0; P(max sup \ng(Xi,Ym >1) < 1} =0.
k<n 9cB.om(6+) i=1 8
Then, by Proposition 6.8 in Ledoux & Talagrand (1991),
1
E[max sup | f2(X:, ;)] < <E[max  sup |f2(X;, ;)] < p < Clogn.
FEN 9eB,0 (67) ,z; 8 " i 9eBun(67)
Thus,
E| \foXY <E| |foXY <,
sup 2( A, Iy max SUP 2\ A, ¥y 2 N

968::011(9 k<N 6cB.on *) n
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When supgep,, o+ |f(Xi, Yi)| < p, (X;XTB%,u;)F is bounded. We proceed to bound f1, by Lemma S.5 (Wang et al.,
2024) and Lemma C.1 (Cai et al., 2019),

‘7 Zfl X;,Y:) — E[fi(Xi, Y3)]|]

BeBm(G )
1 n

< CE[ sup D elXi - (1“2 +T)fi, (Ty — T)ENX XTI B, u,) p|] +
0EBeon (0%)! TV 2

(I
<C sup 1 i (X;XTB3,u;)r|,
- 627T1 )
eeBcon n ' ’

(1)

where (X;XTB?,u;)  is bounded for all i. Under the condition (X; X7 B3, u;)  is bounded, €;(X; — % (T'o+T)f;, (T2 —

I')f;)(X;XTB}, u;)F is sub-exponential for any I'y and T's. Define set 7 = {t : t = (vec(T'1)?, vec(I'2)T),T'1, T2 €
Beon(0%)}. Usmg the argument to derive £(s), we have 7 C C'conv(U, ;<4 Es(2pg) N S2r4—1) where d = Cysq®. By
the definition of constriction basin, we have

|| vec(T'1) — vec(T))|l2 < || vec(T'1) — vec(T5) |2 + || vec(T]) — vec(TF)]|2 < 2C,0.

Therefore,
[[([vec(Ty) — vec(T'})]7, [vec(T'z) — vec(T'%)]™) |l
< \/H vec(I'1) — vec(I')) |2 + [| vec(T'2) — vec(I'y)||2
< |l vec(T'y) — vec(TY) |2 + || vee(T2) — vec(T) |l
< 4Cy0.
The diameter of 7

D = diam(7) = sup d(s,t) < 4CyQ,
s, teT

where d is the ¢, distance. Note that

sup — ZE

q
(X I‘z +T)f;, (T2 — T)ENXXT B, u))r| |
teT T3

< sup — ZCq =Cq? < Oqle? = C”eq 2

teT 1

where we use the bound of moments of sub-exponential random variables and Stirling’s approximation. By Corollary 5.2
in Dirksen (2015),

1 1 1 1
1)< Cs [ —=ro(T,ds) + ~71 (T, d Cy(—=+2),
(I) < 3<ﬁV2(T 2)+n71(T 1)>+ 4(\/ﬁ+n>
where 1 (T, d1) and v2(T, dz) are Talagrand functional (see Dirksen (2015) for details). Givent € T, let Ky, = €;(X; —

%(I‘g + I‘l)fi, (FQ — Fl)fl><X1XZTB>{, llj>F. Dirksen (2015) define
1/2
( Z |15, - ) :

Consider the two metric spaces (7, ¢2) and (7, d1). We have d;(s,t) < Cpl||s — t||2. Then by Theorem 1.3.6 (Talagrand,
2005), v1(T,d1) < Cpy1(T, £2). Similar result hold for 2 (7, ds). Therefore,

di(s,t) = max | K, -

(<

1 1 1
\/5’72(7'7 l2) + 571(7—, 52)) +Cy ( + ) . (45)

N
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By equation (4) (Dirksen, 2015),
oo D
Ya(Tf2) < Ca / (log N(T, £2,€))"/*de = Ca / (log N (T €5, ¢))/*de,
0 0

where we use log(1) = 0. We know that

o= (122) ()= 042 ()

D
’}/1(T, 52) S C IOgN(T, Kg,e)de

0

D
2 2
§C’/ sq®log <1+>+sq3log( ep2)d6
0 € Cysq

< Csqg? log( P ) < Csq>logp,
s5q?

Then we have

when p > C’sq? for some constant. Similarly,

Yo(T la) < c/ (log N (T, 5, ¢))"/2de

<C/ \/sq310g 1+ )+sq3log<c )d

< Cv/sq3logp.

[sq31 3] [sq3(logn)21
(I) < Cy log 5q nogp+ 5q nogp) <0/ (Og:) o8P

when n > s¢*log(p). Combining with (44), we have

¢ )21 1 3(1 2]
E[ sup kaX“YZ <cl\/W 108 _ o, |50’ (logn)*logp.
HEBum(B n n

where we use log(n)/n < log(n)/v/n < \/sq?log plog(n)/+/n. To use Theorem 4 (Adamczak, 2008), we need to bound

Then according to (45),

o= sup ZE{ FX3 Y)Y = % sup Y EIFK Y0P

6EBeon(0%) 0€Bon(07) ;1

Note that )
E[{f(X:, Y)}]
= E[{71,6(X:, Yo)(XiX{ B], uj)r — E[y1,6(Xs, Vi) (XiX{ B, uj) p]}?]
= E[(71,6(Xs, Y:)(Xi X! B}, u;) r)*] — E[y1,0(Xs, Vi) (X X! B}, u;) p]?
< B[((XXI By, u;))?) + E[(X.XI B, w,)¢)? < C.
since (X;XIBj,u;)p is sub-exponential. Then 0> < C/n. The last term to bound before applying the theorem is
|| max; supgep (X, Y|, - Use earlier results,

1 1

[max sup |=f(X;, Yi)l[ly, < C—logn| sup [f(X;,Y5)|[ly,
L OeBn(0%) T n 0EBeon (0%)

logn C'logn

<C—=| sup [(X;X7Bj,uj)plly, <

N 9eBn(0*) n
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Let Wlf:j = SUPgep.,,(0) |% St f(X;,Y;)]. Then, for 0 < 7 < 1and § > 0, we have the following result

PWL > (1+n)EW]]+1)

t2 t
< exp (—) +3exp | —
2(1 + 6)o? Cll max; supgep,,, o+) 1f (Xi, Yi) [l

Cgnt
< exp (—Csnt?) + 3exp <106gnn) .

Lett = Cr4/ M, where C7 is sufficiently large. Using union bound, we have

P(max W > 1+ n)EWI]+1)
jeMllEl J 7

Cegnt
< My €xp (fC5nt2) + 3 Mt €Xp < 106gnn>

D (767lt
sq2  logn

< exp (C’netsq3 log % — C’5nt2) + 3exp (C’netsq3 log
4
< exp(—logp) + 3exp(—logp) = b

when n > Cgsq® log p for sufficiently large Cy. This means with probability at least 1 — o(1),

3 1 2 1 3 1 2 1
max Wi, < (1+5) BIWE ] + Cpy 22008 logp ¢ [sa7(logn)Plogp

jEMp T n n

Recall that WS < Wlfj Then, with probability at least 1 — o(1),

& . sq3(logn)?lo
sup |(S1(0) — 1 (0))Bi| e = WS < /21081 o p
0EBeon (%) n

F. Ancillary Lemmas

We first present some technical lemmas that are used in the proof.

t t 2_12)\,t
Lemma F.1. Let fl (t) = W, fQ(t) = W, f3(t) = %, and f4(t> =

1
hit) = 4min{w?, (1 — w)?}’

< —mMm8
?gg h®) < min{w, 1 — w}?

falt) !

<
= 2min{w?, (1 —w)?}’

2
\iluzl?z [f2(t)] < min{w, (1 — w)}

4 + b2
|f3(t)] < min{w?, (1 —w)?}

4+
<
o PO S (T

2
[fa()] < min{w?, (1 — w)2}

) <
;g; [fa(®)] < min{w, (1 — w

Vt € R,

exp(—a), Va >0,

vt € R,

5 exp(—3a/4), VYa >0,

vVt € R,

exp(—a/2), Va >0,

vVt € R,

e exp(—a/4), Va>0.
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Proof. We use results (C.1) - (C.6) in supplement of Cai et al. (2019) to prove. Since f1(t)
fi(t/2). By (C.1) and (C.2), f1(t) < mmmpar-q=myy> 2nd

— 1 —
= {we ¥ (1—w)et/2}2 T

su t) = su ~t2<_—ex 2-a/2).
tzlzfl() t/2212/2f1(/ )_mm{w,l—w}2 p( /)

Since fo(t) =2 {we*t/2+t(/127w)et/2}2 = 2]?2(t/2), using (C.3) and (C.4), we have

2(8)] < 2/ fa(t/2)] < 24min{w21(1 —w)2}’

and
sup |20 =2 swp |Ft/2)] < exp(—20)
o T2l NS minfw, (T w)p? TP 227
a
t) = —t/2)| < ——=).
tsguf)a|f2( )‘ E’?Zpa|f2( / )| — mln{w,(l—w)}2 exp( 22)
Note that f5(¢) = 4 {wefiﬁf@% 2)>2 oz = 4f5(t/2). Then, by (C.5) and (C.6),
~ 1+ (b/2)? 4+b?
3(t)| = 4|f3(t/2)| <4 =
|f3( )‘ |f3( / )‘ = min{wQ’(l_w)Q} min{wQ,(l—w)2}7
and
suplFs) =4 sup [Fat/2)] € — - exp(-a/2)
= . xp(— .
tzg ° t/225/2 ° ~ min{w, (1 —w)}? P
Define ﬁ(f) = Wf_ww Then f4 (t) = 8,]?4(t/2) Note that
~ 3 3
)] = ! < — : R — ,
{we™t + (1 —w)et}2 ~ min{w, (1 —w)}2(e7t +et)2 ~ 4dminf{w, (1 —w)}?
which implies
2
) < .
1] < min{w, (1 —w)}?
Then note that W < exp(—a/2) whent > a > 0. Therefore,

sup|fa(t) =8 sup |fa(t/2)| <
t>a t/2>a/2

min{w, (1 —w)}? exp(=a/4).

Lemma F.2. Let £,,(s) = L(s)1.p. The restrictive eigenvalue condition

inf
ueLl,(s)nNsp—1

1 n
T T
u - Eﬂ XX u‘ > Ty

holds with probability at least 1 — o(1) when n > Cslog p for sufficiently large positive constant C.

Proof. Let C(s) = 2conv(U, ;<4 Es(p) NSP~1), d = Cys. According to Lemma E.3, we have £, (s) N SP?~1 C C(s).
We show a stronger conclusion that

1 n
UTE ;XLXTU‘ > T1.

inf
weC(s)nsp—1
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Since X; ~ i N(IT'if;, A) + m3 N(T'5f;, A), we have

E[XZ] = F*fl, F* = WTFT + 7T2F§,
E[X;X{] = A+ niDiff] (T)T + m 3£ (T5)7,
Ax, =cov(X;) = A + w1 ()T + mTf el (T5)T — T f,£7 (1) (47)

For any v € C(s) N SP~Y, Z; = vI'X; is mixture of Gaussian and thus sub-Gaussian. Then Z7 = vIX;X7'v is sub-
exponential. Thus, ||[vIX;XTv — E[vIX;XTV]|y, < Ci|IvTXiXTv|y, == L;. Let L = max; L,. By Bernstein’s
inequality (Theorem 2.8.1 in Vershynin (2018)), for ¢ > 0,

(1 1 t2 t
P’ VX, Xy — ~vTE[X,XT ‘>t < 2 exp(—cmi ,
( ; {nv b nv [ Jvel >t) < 2exp(—cmin 2?21 #Lf - %Li )

nt? nt

< 2exp(—cmin {LZ’ T

b < 2esp(-cns),

where the last inequality holds when ¢ < L and ¢; = ¢/L?. Lete < 1, vy,..., V|7 is an e-net of C(s) N SP~'. Then
according to Lemma E.3, log | 7| < C7slog p, where C'7 is a positive constant. By union bound,

(1 1 ,
P(‘ Z {nvaiX?vj - anTE[XzXﬂVJ}‘ >t,35 € J) < 2|J|exp(—cint?)
i=1
< 2exp(Cyslogp — cynt?).
Define ¥ = 1/n Z?:l XiXiT. Then, we have for all j € 7,
VJT E[@]v, —t < || @Y %v;|2 < VfE[\Il]vj +1,
with probability at least 1 — 2 exp(C 7slogp — cint?).

Assume C < 0ppin(A) < 0max(A) < Cs. For any unit vector v, we have
VTSIV < (0 VIBM: < max (D)2 My < MZMs.
Since E[¥] = A + 7 T35 4(T9)T + mT35(T3)7,

Cl S VT E[\I’]V S CQ + MQsz

VO —t < H‘I’l/QVjHQ < \/Cg—i—Mgsz—I—t.

Then, for any v € C(s) N'SP~1, there exists a v; such that

Therefore,

V*Vj

v =vjl2 <e €C(s)Ns",

v =vjll2

and
W2yl — [[®2 (v = v) [l < [ @20]ls < [ 2v )1 + @2 (v = v;) 2.

The right-hand side is upper bounded by

\/Co+ MoMZ +t4e  sup ||/ 2y|s,

veC(s)nsp—1

which implies

/Co + Mo M? +t
sup ||\Ill/2v||2§ 2+ Mo b+.

veC(s)nNSp—1 1—e
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Meanwhile, the left-hand side is lower bounded by

||\I'1/2vj||2 — ||q,1/2(v —vj)2>VCi—t—c¢ C(Sl)lpS 1 H\I;1/2VH2
vel(s)NSP—

o O i VO MM

1—c¢

which means

ey/Co+ MoMP +t
inf H‘I’l/QVH > /Cl N 2 + Mo b+ )

veC(s)nsp—1 1—e€

LetCng+M2Mf,t=Cl/2and
< 01/2—7'1
T O+ C24+/Ci)2-T1

When 0 < e < 1,0 < 71 < 4/C1/2. We have

inf ||‘I’1/2V||2 Z 71,
veC(s)nsSp—1

with probability at least 1 — 2 exp(C 7slog p — cynt?) for 0 < 71 < \/C1/2. When n > C'slog p for sufficiently large C,
exp(Czslogp — cint?) < 2exp(—logp) =2/p = o(1).
O

Lemma F3. Let U = 23" | X, fT. The following

sup (U,v)p <M,
veRP*1
veL(s)nSPI~!

holds with probability at least 1 — o(1) when n > C'sq® log p for a sufficiently large positive constant C.

Proof. By definition

|U|lps = sup Zx T v sup - Zvec f, ® 1,)X,.
cRPX4 cRP X4
vcc(v)veﬁ(s)ﬂSpq 1 vcc(v)veﬁ(s)ﬁSpq !

Note that, for any vec(v) € L(s) NSPI~1 | E[vec(v)T (f; ® I,)X;] = vec(v)T (f; ® I,)T*f;, where I'* = 7iT} + mal.
Since vec(v)T (f;®1,)X; is sub-Gaussian, we have || vec(v)T (f;®1,)X; —vec(v)T (f;®1,)T*fi||4, < C1. By Bernstein’s
inequality (Theorem 2.8.1 in Vershynin (2018)), for ¢ > 0,

‘ Z { vee(v)T (£ ® I,)X; — vec(v)T (f; ® Ip)l"*fz}‘ >t)

< 2exp( . { 2 t })<2 ( . {nt2 nt})
~ exp(—cmin 5 ~ exp(—cmin 5 o~
Z?:l #012 max; %Cl CIQ Cl

< 2exp(—cint?),

where the last inequality holds when ¢t < C; and ¢; = ¢/C%. Let vec(vy), ..., vec(vyy, ) is an 1/2-net of £(s) N SP4~1,
Then according to Lemma E.3, log M; < Cher5q° log p, where Cy is a positive constant. By union bound,

‘ Z { vec(v)T (f; @ I,)X; — vec(v)T (f; ® Ip)I‘*fi}‘ >t,3v; € L(s) NS
< 2Mnet exp(—cint?) < 2exp(Chersq® log p — c1nt?).
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Therefore for all Vi S E(S) N 1,
Z i : eC ! )
l 7 j —1 n j

<Z—vecv] £, I, I‘*f+t<Z—H s QLT [o My +t

Then, for any vec(v) € £(s) N'SPY~1, there exists a v; such that

1 vec(v—v;j) _1
v_vllr <=, —— e L(s)nsrel
|| ]” 2 ||V_Vj||F ( )

and
1 « 1 «
<E;xiff,v>pg<ﬁgxi VidE A+ ( Zx

Taking supremum of both sides, we have

sup ZX P < 2(MZM, +1t),

veL(s)nspa—1 T i=1

with probability at least 1 —2 exp(Chesq> log p—cint?). Lett = (%)1/ 2. Whenn > Csq® log p, with probability
atleast 1 — o(1),

2C et
sup E X,f < 2(M3M, + ).
veL(s)nSpa—1 n i— 4 caC

O

Lemma F4. Suppose that B, B* € RP*? with rank(ﬁ) = rank(B*) = d. Ler B. B be the top-d left singular vectors of
B, B* € RP*Y and o1 > - - - > 04 be the singular values of B*. Assume |B* — B||2 < Cp. Then

401+ 2Cpg . 3
IPs —Pgllr < V2d——5—|B" — B r.
d

Proof. Let 373 = MDNT denote the singular value decomposition of 373, where M,N € R%? and D =

diag(wi,...,wq). Define the principal angles between the subspaces spanned by B and B as (¢1,...,¢>d) =

(cos™twy,...,cos" wy), where w; > --- > wy are the singular values of BT,@ And define sin <I>(ﬁ B) =

diag(sin ¢1, . .., sin ¢4). Then according to Theorem 3 (Yu et al., 2015),

PN 2(201 + ||B — B*||2) min{v/d||B — B*|5, |B — B*
|sin® (B, g)||r < 220+l o) min{ V] Iz, I I}

04

4 2C ~
< P VAB - B
d

Then

IPs —Pgllr = 88" — BB | r = \/tr[(ﬁﬂT — BBT)T (BT — BAT)]
— \/tx(BB + BBT) — 20:(B7 BT B) = /2 — 20x(MD?MT)

d 1/2 d 1/2
—ﬂ(d—zwi2> —\@<ZSin2¢¢> = V2| sin (B, 8)||»
i=1 i=1

4 2C ~
< VoI R VB - B,
d
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where we use sin(cos™

O
LemmaF5. Leta? = 22— C oy —oyil M+ 22208 £ (6,6")V|B1—Bi|pV[Bo—Bj | ¢ < rQ, vece(T,, —T},) €
L(s), and 1 < |eg — cal [QNCy A L(/Ca — LVIT + L — L), then 8 € Boun(67).

Proof. Recall that
Beon(0%) ={0 : my € (co,1 — ¢0), |[Tw — T llr < CbQ,
(1—Cy)2 < |tr(8 w(I‘)Ef(l"g - <1 +Cy)R2
vec(T'y, — Ty,) € L(s),w = 1,2},

)

where 8,,(T) = T, — (T3 + T1)/2, and @ = 1/ta](T3 — T7) S (T3 — T7)7].

Since 71} € (¢q,1 — ¢r), when |1 — 75| < rQ < |co — ¢x|, we have ¢ — |cg — ¢x| < 1 < 1 — ¢y + |co — ¢x|. Using
co < Cx, 1 € (co, 1 — ¢g). By definition of r, ||T'y, — T || p < rQ < CBQ.

Note that N
9% — tr(6, (T)Z¢ (T2 — T1) "))
= | tx[(T3 — T}) (T3 — T})"] — tx([T}, — (T2 + T1)/2)Ze (T2 — T1)7)]
= | tx[Ze{(T3 — T7)T(T; — T7) — (T2 — T1) " (T5 — T))}|+
| tr[Se{(To — )T (T3 —TF) — (T — T)T[TE — (T2 + T1)/2]3
= | tr[Zp(Ty — T} — Ty + T) (T3 — T7)| +
()
| tr[Se(Py — T)7[05 = T] =T, — (T +T4)/2]}].
(1)
We have .
(I) = |vec(Ty — T5 — Ty + )" vec[(T5 — T'5) 4]
<05 —T; Ty + Tyl p - ||(T3 — T ¢
< 2r Q- /Mo = 24/ Mor Q2.
Since
1Ty = T)E (| < [[(05 = TDE?[|r + [[(Ts = T3 = Ty + THEY?|[p < Q + 20/ Mar,
we have
[T —Tflr < FH(F2—F1) =2 < 1+51\\%\72TQ
And

ITe +Ty|lp = ||[Te —T5 + Ty =T} +T5 + Tl < 2rQ + 2M,,.
When Q2 > 16 My M, forw =1,

(IT) = | vec(T'y — T1) " vec([T5 — 2T% — (T + T1)/2)3s)|
< Dy = Ty|lp - [|[T — 20% — (T2 + 1) /25|
< 1+ 2/ Msr
< AT,
S1+2\/ rM2 0% 4 142/ Mar
v/ My v My
< 1+2\/M27‘ 1

M. )02,
S AL (2T+4)

—0- M2(3Mb + rQ + Mb)

————4M M)
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Ifw =2, ~
(IT) = |vec(Ty — T1)T vec([-T% — (Ty +T'1)/2]1%¢)|
< |0y = Tyl - I[T + (T2 + T1) /2S¢ 7
1+ 2/ Msr
< ———= QO - My (M, Q+ M,
< 7, o( My + 12+ My)
1+ 2/ Myr 1,
< 2TV e 4 )02,
s — A Mer+ )
Let a? = 2%7, = 2y/M; + 2M2+F and assume 1/(4y/M;) < Cg4. Then a?r? + br < Cy — 1/(4y/M7) when
r< = \/C’d—l/ 4/ M) + m——) Therefore, we have
Ea 1+2\/M27’ 1
02 — t1(8,(D)Ee(Ty — T1) )| < 24/ MorQ? + — X2 (M. -)02
| (0, (0)Ze(T2 —T)" )| < 27§ + N (M + 7)
oM2/? 2My + /M 1
< 224 (2¢/M 2 2 02 < 0,02
-l\/ﬁf” T an |t e

G. Additional Discussion

The mixture PFC method is model-based and belongs to the linear heterogeneous SDR method. In contrast, nonlinear
SDR aims to find a vector-valued function g such that Y 1L X | g(X). Traditional nonlinear SDR methods often combine
kernel tricks and linear SDR techniques (Wu, 2008; Hsing & Ren, 2009; Li et al., 2011). However, these approaches
have common computational challenges, when computing eigenvectors or inverse of n X n or p X p matrices, making
them infeasible for large-scale high-dimensional data. Deep learning, with its proven success in various domains, offers
promising alternatives for nonlinear SDR. The auto-encoder (Hinton & Salakhutdinov, 2006; Zong et al., 2018) is the most
representative example of deep learning for unsupervised dimension reduction. Recently, several deep SDR methods have
emerged, leveraging the power of deep neural networks to address the above challenges (Banijamali et al., 2018; Liang
et al., 2022; Kapla et al., 2022; Huang et al., 2024; Chen et al., 2024).

We suggest two strategies to extend the linear heterogeneous SDR to nonlinear settings through deep learning. The first
strategy is inspired by Kwon et al. (2024) and addresses semi-supervised scenarios with both labeled data {(X;,Y;)}" ;
and unlabeled data {(X;)X_, . ; }. Then model assumes the following structure:

Y L X|(gu(X),W=w), Pr(W]|Y X)=Pr(W|Y, gu(X))
X | (W=a)~NpgSs),ww=1,... K
Pr(W = w|W = @) = Tp(a-

The key idea is to use the Gaussian mixture model on the unlabeled data to infer the joint distribution of (X, W) and then
apply any proposed deep SDR method to learn g,,. The procedure is as follows.

Step 1: Learn the joint distribution of (X, W) using GMM fitted to the unlabeled data.

Step 2: Assign labeled data {(X;,Y;)}?_; to the K clusters defined by W using the estimate distribution of W|X
Step 3: Estimate the nonlinear SDR using any deep SDR method for each cluster.

Step 4: Estimate the transition matrix Tl 7 = (Tw|@)-

The second strategy combines a compression network and an estimation network, similar to the deep auto-encoding Gaus-
sian mixture model (DAGMM) (Zong et al., 2018). The compression network is a supervised auto-encoder (Le et al., 2018),
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designed to perform dimension reduction while preserving the nonlinear SDR structure. The innermost layer incorporates
a supervised loss to ensure the reduced representation g(X) satisfies the conditional independence condition in nonlinear
SDR. Various dependence measures can be used to construct the loss function, such as distance covariance (Székely et al.,
2007), martingale difference divergence (Shao & Zhang, 2014), and generalized martingale difference divergence (Li et al.,
2023). Then the estimation network uses the learned low-dimensional vector g(X) and the response to predict clusters.
Unlike DAGMM, this step employs a supervised clustering model rather than the Gaussian mixture model Zong et al.
(2018). To evaluate the clustering quality of the estimation network, the log-likelihood of the cluster assignments can be
computed. Both strategies highlight the potential of deep learning to effectively extend SDR to nonlinear, heterogeneous,
and high-dimensional settings.
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