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without imposing any parametric models or distributional assumptions. To achieve this goal,
a new metric called cumulative tensor martingale difference divergence is introduced and its
theoretical properties are studied. Unlike existing methods, the proposed approach achieves
dimension reduction by estimating a distinctive subspace that can fully retain the conditional
mean information. By focusing on the conditional mean, the proposed dimension reduction
method is potentially more accurate in prediction. The method can be viewed as a factor model-
based approach that extends the existing techniques for estimating central subspace or central
mean subspace in vector time series. The effectiveness of the proposed method is illustrated by
extensive simulations and two real-world data applications.

1. Introduction

Tensor data is nowadays prevalent in numerous applications, including tensor time series, where the observation is tensor-valued
(i.e., a multidimensional array) at each time point. In general, tensor time series data has a complex structure, meaningful temporal
dependence, and requires dimension reduction for efficient analysis.

A primary problem in tensor time series analysis is reducing the dimension while retaining the information of interest and the
tensor structure. Traditionally, the dimension reduction methods in time series analysis were developed for the multivariate time
series data; see Lam et al. (2011); Matteson and Tsay (2011); Lam and Yao (2012); Lee and Shao (2018), among others. Recently,
there are methods that particularly focus on the dimension reduction for matrix or tensor time series data, including the factor model
for matrix time series by Wang et al. (2019), the constrained factor models for matrix time series by Chen et al. (2020), the factor
models for tensor time series by Chen et al. (2021), the two-way transformed factor model for matrix-variate time series by Gao and
Tsay (2021), a-PCA method for matrix-variate time series by Chen and Fan (2021). However, all these above-mentioned methods
adopt a linear metric, a covariance matrix, that can only summarize the linear dependence to achieve the dimension reduction.
Thus, these methods target to find linear subspaces where the transformed matrix or tensor times series has a strong linear dynamic
structure. If the data is Gaussian, the linear metric can detect the full dependence and the existing methods shall achieve an accurate
dimension reduction. However, if the data is not Gaussian or the data has nonlinear dependence, the linear metric may fail to
summarize the full dynamic.
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In the tensor regression context, where independent and identically distributed data are assumed, the dimension reduction tech-
niques have been extensively studied. On one hand, there are methods reduce the dimensionality of a tensor predictor by constructing
dimension-folding subspaces; see, for example, Li et al. (2010), Ding and Cook (2014), Sheng and Yuan (2020), Wang et al. (2022).
On the other hand, Rabusseau and Kadri (2016), Li and Zhang (2017), Sun and Li (2017), Lee et al. (2023) incorporated dimension
reduction and low-rank decomposition techniques in tensor response regression models.

In this article, we propose a dimension reduction procedure of a stationary tensor times series, {X;}" |, X, € RM%Xm | especially
focusing on the conditional mean of a tensor time series given the past information, 7,_; = o(X,_;,&,_,,---), which is the main
interest of modeling the behavior of the data. More specifically, our goal is to seek subspaces that reconstruct the tensor time series
into two parts: one part that contains the conditional mean information and the other part that is mean independent of the past.
In other words, our approach can effectively reduce the number of parameters while preserving both the tensor structure and the
conditional mean information without assuming a parametric time series model or a distributional assumption. Our proposal can
be viewed as a factor model-based approach that extends the methods for estimating central subspace or central mean subspace in
vector time series (Park et al., 2010, 2009) to tensor time series. These existing model-free time series dimension reduction methods
are flexible but not scalable or directly applicable to large number variables, which is typical in tensor time series.

While the existing methods achieve dimension reduction by using the linear metric, our approach relies on the new metric,
called the cumulative tensor martingale difference divergence (CTMDD), that can summarize the mean dependence and overcome
some limitations of the covariance matrix-based approaches. Hence, we shall call our approach as the conditional mean dimension
reduction for tensor time series. Since the new metric measures the mean dependence, it can gather the nonlinear dependence along
with the linear dependence that appears in the conditional mean. Therefore, our targeted subspace indeed contains the subspace
that the existing method seeks where two subspaces become equivalent for a particular case. Moreover, our approach can retrieve
the conditional mean which is the optimal predictor in terms of the mean squared error. Thus, modeling the behavior of a tensor
time series with our dimension reduction method could produce more accurate predictions. Compared to the existing methods, our
approach is more robust and flexible to the dependence, and practically useful for forecasting. Similar to the existing methods, our
approach has a tensor factor model representation which has a sophisticated difference compared to the existing tensor factor model.

Our new metric is built upon and extends the martingale difference divergence (MDD) metric. Shao and Zhang (2014) proposed
the MDD for the variable screening purposes which can capture the mean dependence between a scalar and a vector. Furthermore,
Lee and Shao (2018) and Lee and Shao (2020) extended the MDD and introduced the cumulative martingale difference divergence
matrix (CMDDM) and the cumulative volatility martingale difference divergence matrix to achieve the dimension reduction for a
stationary multivariate time series. However, they all handle the multivariate time series instead of the tensor time series. In order
to achieve our goal, we particularly generalize the CMDDM of Lee and Shao (2018) in two ways. First, we extend the metric in Lee
and Shao (2018) and define the CTMDD so that it is well defined for two tensors. Second, we develop the new metric for a general
class of distances motivated by the recent progress of adopting new distances for metrics. This allows us to efficiently quantify the
mean dependence for tensors which often have large dimensions; see Chakraborty and Zhang (2019) and Zhou and Zhu (2021). We
further show that the generalized metric indeed fully quantifies the mean dependence between two tensors by using new techniques.
Later, we propose our dimension reduction approach with the extended metric to estimate the number and the linear forms of the
data that retain the conditional mean information. Our approach is computationally efficient and simple to implement regardless of
the fact that we consider the tensor time series.

The rest of the article is organized as follows. In Section 2, we briefly review the key tensor notations, operations, and the CMDDM
(Lee and Shao, 2018). Section 3 introduces the new metric CTMDD and we introduce our approach to reduce the dimension using
the new metric. Section 4 presents numerical studies, and Section 5 presents applications of the proposed method to two real data
sets. Section 6 concludes the paper with a short discussion. All proofs and additional simulations are relegated to the supplementary
material.

2. Preparation
2.1. Notations

Let A € R"*""m be a m-th order tensor and A; ...; be the (i},,i,) element of A. The order of a tensor is the number of its
modes. A tensor fiber is defined by fixing every index of the tensor but one. For instance, A. o € R’ is a mode-1 fiber for given

J
Jas+**+jm- The Frobenius norm of A is ||.A||§7 =(A,Ap =2, ;- Aiz, ...; - The vec(A) operator stacks all the entries of a tensor

AN
into one column vector, so that an entry A; ..; becomes the j-th entry of vec(A), where j =1+ Y G —1) H’;,;ll . The mode-k
matricization, A, transfers a tensor A into a matrix, denoted by Ay, so that the (i}, -, i,) element of A is the (iy,j) element
of the matrix A, where j =1+ 3/ (i — D [ s 144 7 - The k-mode product of a tensor A and a matrix C € R™"% is a
m-th order tensor denoted as A X, C € R">X/k-1XX"k+1XX"m  where each element is the product of mode-k fiber of .4 multiplied
by C. The Tucker decomposition of a tensor is defined as A =D Xy I'y X() *** Xy I, Where D € R41Xdn is the core tensor,
and I'; € R"Xdk g =1,..-,m, are the factor matrices. It is a low rank decomposition of the original tensor .A. For convenience,
we shall denote the Tucker decomposition as [D;I';,---,I,]. We refer to Kolda and Bader (2009) for more background on tensor
decompositions.

1/2
For a vector X = (x,-+,x,) € R?, the Euclidean norm of X is || X || = (x% + e+ xl%) . For a square matrix A = (A,-’j)fj=1, we
denote the spectral norm and the Frobenius norm of A as ||A|| and ||A|| , respectively, where ||A]| = \/4,,,x(ATA) and 4,,,,(ATA) is
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the largest eigenvalue of ATA and ||AlF =4/ i Al.2j. The trace of A is tr(A) = f=1 A;; and we denote the Kronecker product as

®. The orthogonal complement of S is S, 1 denotes the independence, and 0 is a tensor with zero for all entries.
2.2. Cumulative martingale difference divergence matrix

We briefly review the cumulative martingale difference divergence matrix (Lee and Shao, 2018), which is related to our new
metric introduced in the next section. Following their notation, we will denote I, as the CMDDM. If a multivariate time series

X, € R? satisfies E(|| X,||?) < oo, then

ho
Uy = 2 {=E [(X, — EXDHX] —EXDY X, — X, 11|} €
h=1
where (X t’ X t’_ h) is an independent copy of (X;, X;_;). From the definition of the matrix I ho? itis a pX p real, symmetric, and positive
semi-definite matrix. By a direct consequence of Theorem 1 in Lee and Shao (2018), we have the following result.

Lemma 2.1. For a stationary multivariate time series X, which satisfies E(|| X, I%) < o0, we have

1. There exist p—d linearly independent combinations of X, such that they are mean independent of { X,_,, }20:1 if and only if rank (I‘ ho ) =

d.
2. Let a € span* (rh0 ) then E@@" X, | X,_,) = E(a"X,) as. for h=1,--.h,.

The above lemma indicates that the space spanned by I';, is closely related to the linear combinations of X, that are mean
dependent of (X,_, -+, X;_p ).

3. Conditional mean dimension reduction

In this section, we propose our approach to achieve the dimension reduction for X, € R"1*"*' considering the conditional mean
and provide a theoretical justification. Moreover, there is a factor model representation for our approach and we shall first introduce,
arguably more general, tensor factor model which has a subtle difference compared to the existing tensor factor model.

3.1. Factor model representation to conditional mean dimension reduction

Our motivation is to reduce the dimension without losing the conditional mean information so that the dimension reduction is
achieved with the least amount of loss on the prediction accuracy. Notice that data can always be decomposed into two parts where
one part is mean dependent on the past and the other part being mean independent, i.e.,

X, =EX | F_D+&=[Z;C,,Cl+ &, 2

where & = X, —E(X, | F,_;) € R"*"*"» is a martingale difference sequence that is mean independent of the past, and [Z,;C, ---,C,,]
is the mean dependent part driven by a latent factor time series Z, € R Xdy | dy, <ry, k=1,--,m, and factor loading matrices
{Celi G € R’&* that are semi-orthogonal, i.e., CZCk =1,

Similar to the existing factor models, it is worth pointing out that Z, and {C, }]’_, are not unique since we can replace those by
([Z::Hy, -, H, ], {C,H[ }}_ ) with orthogonal matrices {H,}7"_ , H, € R%* that produce the same data &,. However, the linear
subspaces spanned by the columns of {C; }]"_,, denoted by {span(C,)}]"_,, are unique and identifiable; see Section 3 in Chen et al.
(2021) for more discussion. Therefore, our goal is to estimate the dimensions of the factor (d, ---,d,,) and the identifiable subspaces,
often called as factor loading spaces {span(Cy)}}"_, that fully carry the conditional mean information. Let (C;, C; ) be an orthogonal
matrix for k=1, ---, m. Under our factor model (2), we observe that

T _ T _
X Xy Cro=E Xy Crpr k=1,-,m.

This is further identical to
Cp o@Dy = Clo(Egoys k=1,+,m, 3)

which implies [E(CZO(X,)(,() |F_p)= [E(CIO(X,)(,C)) a.s. Hence, our goal of estimating (dk);c';] and {C, }Z’=1 is equivalent to searching
the number and the linear combinations of (X)) such that the transformed series is mean independent of the past for each mode

k=1, ,m.

Remark 3.1. Interestingly, our dimension reduction approach is related to the time series central subspace (TS-CS) (Park et al., 2010)
for tensor time series. To demonstrate the connection, we shall briefly review TS-CS in Park et al. (2010). Park et al. (2010) consider
a univariate time series x, € R and search for TS-CS which is a minimal subspace of span(®), where ® & RPX4 d < p satisfies
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x, LX,_ |®"X,_,,

here 1 denotes the independence and X,_; = (x;,_;,* ,x,,p)T € R?. As described in Park et al. (2010), TS-CS may not exist; see
Proposition 1 in Park et al. (2010) for more discussion. We extend their notion of TS-CS from vector time series to tensor time series.
Specifically, we introduce the mode-k tensor TS-CS as follows.

Definition 3.1. The mode-k tensor time series central subspace is a minimal subspace of Span(ék), where Ek e Rk, d, <r,
satisfies

XL (X, X,y ) | (X,_l X CTL &,y X ﬁz,m). @

When the mode-k tensor TS-CS exists for each mode, the factor loading spaces span(C;) contains or become equivalent to the
mode-k tensor TS-CS if

(CZO(&—I i CLo(E-2- ) L (X €L (XD Cf (X)) - (5)

for k =1, ---, m. This is due to the fact that the factor loading matrix C, satisfies (4) under the assumption in (5) and by the fact in (3)
and Proposition 4.6 in Cook (1998). This further implies that the mode-k tensor TS-CS C span(C,), k =1, ---,m, where the equality
holds if dimensions of two subspaces are identical. Discussion based on the central subspace in times series can be extended to the
central mean subspace in time series which is a minimal subspace of span(®), where ® € RP%4 J < p satisfies

x, LE(x, | X,_) | ®TX,_,.

Similarly, we can generalize the time series central mean subspace in Park et al. (2009) to the mode-k tensor time series central
mean subspace.

Definition 3.2. The mode-k tensor time series central mean subspace is a minimal subspace of span(C,), where C, € R"*, d, < r,
satisfies

—T —T
X LE (XX, Xy, ) | (x,_l X Cp> X2 Xy Cp» )

We find out that our factor loading space span(C) also contains the mode-k tensor time series central mean subspace. This can
be easily verified by the natural connection that the mode-k tensor time series central mean subspace C the mode-k tensor TS-CS C
span(Cy), k=1,--,m.

Remark 3.2. We further compare our factor model with the existing factor model in Wang et al. (2019) and Chen et al. (2021). We
shall first review the existing factor model.

X = [V A AL+ W, (6)

where X, is the observed tensor time series, Y, € RV *¥n v, <r,, k=1,---,m is the latent factor series, W, € R"*"*"m is
white noise, i.e., cov(W,, W,_,) =0, h#0, and {A}}" |, Ay € R%> are the semi-orthogonal factor loading matrices assuming
that the magnitude of X, is taken into account in Y,. As mentioned in Chen et al. (2021), ), and {Ak};c":1 are not identifiable.
Since the error series in (6) is white noise, it is obvious that &, X k) A;O =W, Xk A;O, k=1,---,m is a white noise series, where
(A, Ay o) construct an orthogonal matrix. Therefore, the existing methods employ the linear metric, covariance matrix, to achieve
the dimension reduction. This implies that the existing methods search for the linear transformations of the data that capture the full
linear dependence.

The main difference between the tensor factor models in (6) and (2) is the error series. While the error in the existing tensor factor
model is a white noise series, the error in our tensor factor model is a martingale difference sequence. With this subtle difference,
our approach has several differences compared to the existing method. Under our factor model, we have a nice interpretation for the
factors Z, which produces the conditional mean E(&; | F,_;) along with the factor loading matrices {C, };__, whereas [V;; A}, -+, A, ]
is not necessarily the conditional mean. This implies that our dimension reduction approach can fully recover the optimal predictor,
the conditional mean, through the factors Z, and the factor loading matrices {C; }}"_| even after the dimension reduction is achieved.
Due to this fact, our approach may allow us to have more accurate forecasting especially when building a model with our factors;
see the real data applications in Section 5. Furthermore, the existing methods reduce the dimension by the linear dependence. Unless
the data is Gaussian, the linear dependence is not sufficient to summarize the full dependence. On the other hand, our approach can
fully carry the conditional mean information where both the linear and the nonlinear dependence may exist. Hence, our approach
could be more robust and flexible to the dependence and the distribution of the data. Moreover, it is possible for our tensor factor
model to detect more factors than the existing tensor factor model which may lead to a better prediction. In particular, we have the
nested structure, i.e., span(A;) C span(C,), k =1,---,m with equality when the white noise W, is a martingale difference sequence
which is not true in general; see Example 2.2 and 2.3 in Shao (2011) for examples of a white noise that are not martingale difference.
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We shall provide one example where two factor models target different factors and factor loading spaces to better understand the
differences between two factor models.

Example 3.1. Let the data be
X =1, Z1,):ML M+ Y,

where ¥, € R™1%"2 is an i.i.d. mean zero error series, M; € R"1%41, M, = (M,,M,), M, € R™2*%2, M, € R2X(2-02) | 1y, < d,, Y, €
R?1%v2 is not white noise, and Z 1+ € R41X(d2-2) i5 white noise but not martingale difference.

Notice that [Z; ;M ,M,] is a white noise sequence along with V,. Then the error series in (6) becomes W, = [Z 1M LML+,
whereas the error series in (2) is identical to & = &, — [E { D211 F,_l} ; M|, M,]. Due to this fact, two models have different
factors and factor loading spaces. Under the factor model of the existing method in (6), the factor is Y, = Y, , and the factor loading

spaces are {span(Ml), span(1\~/12)}. On the other hand, under our factor model in (2), the factor becomes Z, = E {(y,, Zi)| F,_l}

and the factor loading spaces are {span(Ml ), span(M2)} = {span(Ml ), span(l\N/[z,Mz) }, thus two approaches identify different factors
and factor loading spaces. It would be interesting to observe the numerical performance of two approaches for several cases, e.g.,
when two target subspaces are identical or different. We shall address this question in our simulation. Lastly, we remark that our
approach extends Lee et al. (2023) from i.i.d. tensor data to tensor time series. Lee et al. (2023) introduced a semiparametric tensor
regression model for a tensor response and a vector predictor, while we introduce a factor model to achieve the dimension reduction
for tensor time series. As we consider the temporal dependence and the dependence between two tensors, this extension is nontrivial
and requires new techniques.

In the further sections, we shall introduce the estimation procedure with a new metric, the CTMDD, which allows us to estimate
{Cy }i_, indirectly by the fact in (3). Our approach consistently estimates {C; }}"_, through the eigen-decomposition of the CTMDD,
thus it does not require an iteration procedure and makes it simple to implement.

3.2. Cumulative tensor martingale difference divergence

For each mode k, our specific goal is to seek linear forms of (&), that are mean independent of the past 7,_;. Since we have a
finite number of observations, we approximate the mean independence of the linear transformation of (X;)(, on 7,_; by considering
Fiti—hy =0(Xi_, -+, X;_p,,) with a prespecified positive integer /i, which is commonly used in the literature; see Lam et al. (2011),
Wang et al. (2019), Chen et al. (2021) among others. Next, we shall suggest a new metric, the CTMDD, that summarizes the mean
dependence information between &, and 7,_;,_j, in a pairwise fashion.

Definition 3.3. For [E(llX,ll%. +|K(X,, 0)]2) < o0, the mode-k cumulative tensor martingale difference divergence matrix (CTMDDM),
MZ,)’ is defined as

ho

M) = 3 {=E (@) = oo XD = o) K@i X))}
h=1

ho
= Z k), (7)
h=1

where W% = —E [{(X) ) = s HEX oy = Hioy ) TK(X,_p X!_)], (X/, X!, ) is an independent copy of (X, X,_,), (X,), € R™*Ti#s
is the mode-k matricization of X;, and ), = E{(X,)}, and K(-,-) is a distance of strong negative type (Lyons, 2013) for a tensor.
Collectively, we define the cumulative tensor martingale difference divergence (CTMDD) as the set,

M :{Mm M<m>}
h 0 :

0 ho

Similar to Iy, M;:J) is a ry X ry real, symmetric, and positive semi-definite matrix. It is worth noting that the CTMDD M, is
defined for a general distance K(-,-), where a metric space (X;; K) has strong negative type; see Lyons (2013) and Chakraborty and
Zhang (2019) for more discussion on the strong negative type. One natural example of K(, ) is Frobenius norm, i.e., K;(X,X’") = ||X —
X'|| g, X € R1X%'m_To efficiently quantify the mean dependence between two tensors that often have large dimensions, we adopt

one distance in Chakraborty and Zhang (2019) and employ K,(X,X’) = \/Z, [1(X)).i = (X('k)).iH, where (Xy)).; is the i-th column
of X;. On the other hand, we consider another distance which is related to Mahalanobis distance that shows some advantages
under our simulation study, i.e., K5(X,X") = ||Z — Z/||, where Z = [[X;El_l/z,n- ,2;,1/2}] and X, =E {(X(k) — ) (X, —ﬂk)T},
P = E(X)), k=1,---,m. In practice, when the dimension of the data is large, the distance K, or K; are preferred instead of

K, based on our simulation study in Section 4. Also, if there is a prior knowledge regarding the group information in the data,
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K, can easily incorporate such a group information into the distance. For example, when different economic indices for different
countries are analyzed, different countries can be grouped based on the continent information. More specifically, if the mode-2
represents the countries and there exists three different continents in the data, let’s say (&,)) = ((XL,)( 1 (X201 (X3,) 1)) € RN,

(X)) ERMXN2, 2?:1 r;, =r,. Then we can use this group information and define

Ky(X,, X)) = \/H(A’l,x)m) - (X{,,)m” + H(Xz,t)a) - Wé,)(l)” + “(Xs,t)a) - (Xé,r)<l>||~

Furthermore, if the scales of the elements are quite different or show some correlations from the data, the Mahalanobis distance K3
would be preferred since the Mahalanobis distance measures the fair distance after taking into account the scale differences and the
correlation.

The CTMDD is defined by collecting the mean dependence between &, and F,_; ;_5 in a pairwise fashion. As mentioned in Section
4 of Lee and Shao (2018), it is possible to consider the mean dependence between &, and 7,_;,_, jointly and propose a variant of
the CTMDD. However, based on our numerical study which is reported in our supplementary material, dimension reduction with a
variant matrix shows a very comparable but slightly less accurate performance. Thus, we shall only present the numerical results of
the pairwise approach with M, in this main paper; see the supplementary material for more details regarding the joint approach.

Under the condition that (X,; K) has strong negative type and by following the arguments in Lyons (2013), we can show that
M;';) indeed maintains the key property of I';, and establish the property of M, .

Proposition 3.1. For E(||X,[|3, + K (X,,0)|*) < oo and k=1, -, m,

1. There exist r, — d, linearly independent combinations of (X,), such that they are mean independent of {X,_h}:il if and only if
rank (Mg;)) =d,.

2. Let @ € spant (M;::), then E(X, Xy a’ | X)) =EQX, Xk aMyas. forh=1,-,h,.

3. If K is Frobenius norm K;, span (M;:;) ) = ), span (I‘;lo ), where F;lo € R’k is the CMDDM with (X,)g‘) and vec(X,_;) where
(X,)Ff‘) is the i-th column of (X,) ).

Remark 3.3. The first and second assertions in Proposition 3.1 generalize Lemma 2.1 of Lee and Shao (2018) in two directions
which seem to be nontrivial. One is extending the approach in Lee and Shao (2018) to a tensor time series. The other direction
is generalizing the approach of Lee and Shao (2018) by adopting a general class of distances K which is a strong negative type.
Proposition 3.1 guarantees that the generalized metric certainly measures the full mean dependence between the current and the
past tensor time series up to lag h,. This can be viewed as an analog of Theorem 3.11 in Lyons (2013), whereas the theoretical

argument is noticeably different. Also, this suggests that Mg;) contains the number and the linear forms of the tensor time series

(X)) that are mean independent of 7;_; ,_j, . We further remark that the subspace span (M;{;)> is certainly related to span(C,) and
it belongs to span(C) for k = 1,---,m under the factor model in (2). The third assertion in Proposition 3.1 states the connection
between M;’;) and the vector counterpart Iy, . It indicates that the mean dependence information contained in Iy, is all accumulated
in Mho when K = K. It is also worth pointing out another approach to utilize Fho to measure the mean dependence for tensor time
series. We can compute the CMDDM IN‘hO € RILeexIlex with vectorized tensor time series {vec(X,)}f;l. This method is related to
the vectorized factor model in (2) of Wang et al. (2019). However, this approach cannot preserve the meaningful structure of the
tensor time series thus may lose some inter-relationship which appears among each mode and could lead to a loss of interpretation.
Furthermore, this approach has more number of parameters for the factor loading matrices compared to our approach under (2); see
more discussions on the vectorized factor model in Wang et al. (2019). Lastly, we shall mention about the user-chosen number A.

Similar to the method of Wang et al. (2019), any A, can be selected for our approach if the rank of any {‘sz)}:il is d, since this
will make the rank of MZ’L) be d, . Selecting h( has been a common question in the literature and proposing a method to select A is
beyond the scope of this paper. As mentioned in Wang et al. (2019), Lam and Yao (2012), generally, relatively small A is used since
major dependence is often at the short time lag and more noises can be added if large A is selected. As suggested in the existing
literature, we shall use small 4, and follow their approach. Considering that most of the existing methods rely on a linear covariance
matrix which can only measure the linear dependence, we view our approach can be a useful addition to the dimension reduction
method of tensor time series since our proposed method can also handle nonlinear mean dependence.

Inspired by the estimation of I‘ho in Lee and Shao (2018), we construct the estimator of ME:)) by

hy n
~ -1 — —
M=) { D&~ @ H&) @ — (xxk)}TK(fv,l_h,sz_h)} ,

= (- hy? t1.t=h+1
where (E)(k) is the sample mean of (&), based on {(X),11) ) > (X)) }-

6
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3.3. Estimation

We introduce and establish the theoretical results for our estimation procedure using the CTMDD M,, . We denote {l;.k),y/(.k)}
and {//l\(jk),?j(.k)} as eigenvalues in the descending order and the corresponding eigenvectors of M(h]:)) and 19[212 , respectively. We have
two specific goals which are seeking the number and the linear transformations of (&,)(, that are mean independent of F,_;,_, .

By Proposition 3.1, those information are contained in M;:)). We suggest to estimate span®(C,) = span(Cy () as the space spanned

by the eigenvectors of M;k) corresponding to zero eigenvalues. As C, and Cy , are only identifiable up to span(Cy) and span(Cy ),
respectively, we define the following distance and show the theoretical result.

D(C,.Co = P, —Pg lIF, ®)

where Pck, Pék are the projection matrices of C;, ék, respectively. Notice that D(C,, (Ajk) =0 if and only if span(C;) = span(ék).

We make the following assumptions, under which we establish the consistency of {/Tj.k),?/(.k), span(ék)}.
Condition 3.1. We assume that A(lk) > A(Zk) > > Ag‘) >0= /lilk) == 4P for k= 1., m.
" 1 rk

< o0

Condition 3.2. Let {vec(X,)} be a strictly stationary and f-mixing process. We assume that there exists 6 > 0 such that E||X, ||?,+3‘3

245"
and E|K(X,,0)|%"% < co. For a &' €(0,6), f(n) = O (rfs_').

Condition 3.3. Let {vec(X,)} be a strictly stationary and m-dependent process, and [EllX,llS} < o0, E|K (z\’,,O)l6 < 0.

Condition 3.1, Condition 3.2, and Condition 3.3 are analogous to (C1), (C2), and (C2’) in Lee and Shao (2018), which are stated for
the CTMDD. Condition 3.1 provides us that there is a single eigenvector corresponding to each nonzero eigenvalue which simplifies
the derivations. Condition 3.2 and Condition 3.3 are the assumptions imposed on the data X, with a general distance K(-,-) which
can be easily verified in practice. Those conditions guarantee that the sample estimate M(h];) is close to the ME:)). In other existing
methods, the assumptions are imposed on the latent factor Z; or the factor loading matrices {C;}_ . However, for our approach, the
assumptions are made towards the data &, instead, and study the asymptotic properties.

Theorem 3.1. For k=1,---,m,

1. Under the assumptions in Condition 3.1 and Condition 3.2, we have |//f(jk) - ij.k)| =0, (n—l/z) and H?j(,k) - yj(.k)H =0, (n‘l/z) for
j=1,dy

2. Under the assumptions in Condition 3.1 and Condition 3.3, we have ﬁ\ﬁk) =0, (n7!) forj=d,+ 1,1

3. Under the assumptions in Condition 3.1, Condition 3.2, and (d, --- ,d,,) are known, we have

D(C,.C=0,n"").

Theorem 3.1 shows that the empirical eigenvalues and eigenvectors of M;:)) are reasonable estimators of their population coun-

terparts for large sample size. Also, when the true dimension d, is given, we have the consistency of the estimated space span(C;) in
terms of the distance D.

Remark 3.4. It is worth mentioning that Theorem 3.1 is developed for fixed ry,---,r,. It is plausible to extend the consistency
results in Theorem 3.1 under the assumptions in Condition 3.2 and Condition 3.3 for moderately growing r,:-,r,, with n while

dy,-,d, are fixed, i.e., r*n~! = 0 as n— oo for k=1,---,m. Our proof requires that ||1<\/I(hl;> - M;II;)H2 — 0, where ||1<\/I;lk) - M;l’;)ll2 <

k
(k) (k)2 Ik 'k o1 (k) (k)y 12 _ 2,1 Q) (k) P o (k) (k)
||Mh0 —Mho [ < 2’,=] Zj=] |(Mh0 )ij = (Mho )ij|*=0,(ryn™"), and (Mho) (Mho )i; are the (i, j)-th entry of M . Mho . Thus, under

the condition that rin‘1 — 0, here ||1\A/I§:;) - MZ’:HZ — 0 remains valid and allows us to obtain the consistency results. For the rates

ij?

of convergence, it might be possible to derive explicit rates by considering different scenarios which depend on the strengths of the
signal similar to the theoretical results in Wang et al. (2019) and Chen et al. (2021). Then the assumptions shall be made on the latent
factors Z, and factor loading matrices {C; }}"_ | instead of the assumptions on the data &;. In this paper, we shall work under the
assumptions made on &, in Condition 3.2 and Condition 3.3, and the investigation on the rates of convergence for growing ry, ---,r,,
are left for the future study.

In practice, the dimensions d,,:-,d,, are unknown and need to be estimated. To estimate the dimensions, we shall adopt the
ratio-based estimator following Wang et al. (2019) and Lam and Yao (2012), i.e., for k=1, ,m,
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2k)
Aj+l
J

dy = argmin;_

where R= |r; /2].
Based on the results in Theorem 3.1, the ratio-based estimator ensures that d; > d, in probability. Thus, it will not under select
the true dimension. The main reason that we cannot obtain the consistency result for the ratio-based estimator is because we do not
Q) 20
j+1 j+1

know the rate of convergence for -~ when j > d; and cannot guarantee that the minimum of -2~ is reached at d, . It is possible
20 k Q) k

to use an alternative method to seléct the dimensions. For instance, we can apply the ridge—typej estimator (Xia et al., 2015), the
growth ratio estimator (Ahn and Horenstein, 2013), the transformed contribution ratio estimator (Xia et al., 2017). However, we
use the ratio-based estimator following the approach in Wang et al. (2019) and find out that the ratio-based estimator is simple to
implement that provides reasonable performance; see Section 4.

4. Simulation

In this section, we study the finite sample performance of our dimension reduction approach with three different distances,
K;, K,, K; in Section 3.2. We compare our approach with the closely related methods, the factor model for a matrix time series
in Wang et al. (2019) and the TOPUP approach for a tensor time series in Chen et al. (2021) which shows the most favorable finite
sample performances in their simulation study. Notice that the method of Wang et al. (2019) is a special case for the TOPUP approach
in Chen et al. (2021). When m = 2, the method in Chen et al. (2021) becomes identical to the approach in Wang et al. (2019). Thus,
we shall compare our approach with the existing method in Wang et al. (2019) when m =2 and compare our method with the
approach in Chen et al. (2021) when m > 2. In our simulations, we set the dimension r; =r, =20, 50 or r; =r, =r3 =20 and the
sample size n =20, 50, 200. We consider hy =1, 2 following the simulation study in Chen et al. (2021). For each example, we
replicate the simulation 100 times and use the criteria D(C,, ék) in (8) to measure the accuracy of the dimension reduction method.
Notice that the smaller D indicates more accurate dimension reduction result. We first apply the dimension reduction method by
setting the dimensions of the factor at the truth and carry out separate simulations to assess the performance of estimating the
dimensions using the ratio-based method in Section 3.3.

Example 4.1. The 3-by-2 factor series are generated by the AR(1) models and those are adopted from Wang et al. (2019).

Z[,t = ¢,‘Z,',[_1 +l’],-’,, i= l’ ’6,

where ¢ = ((I)i)?:l =(-0.5,0.6,0.8,-0.4,0.7,0.3)T and (’71',1)[6=1 are generated from the standard normal distribution. The data is

Zl,t Zz,r
generated by X, = C, Z,C] +&,, where Z, = Z;, Z,, |€RN*%, and C; e R"*", C, € R"2*%2 are generated from U(~1, 1). The
ZS,: ZG,I

error vec(&;) is generated from N(0,0.25%, ® X, ), where the diagonals of X, , X, are all 1 and the off-diagonals are 0.2. In this
example, since the data is Gaussian and the error & is white noise and martingale difference, two approaches shall estimate the
identical factor loading spaces, thus the dimensions of factors in model (6) and model (2) are identical, i.e., d; =3, d, =2 and
v =3, v,=2.

Table 1 summarizes the averages and standard deviations of D(Cl,(/f\l ) and D(Cz,é\z). Both approaches produce smaller D-
distance which implies that all methods precisely estimate the targeted subspaces. We notice that the data is generated by Gaussian
linear time series model where all the dependence can be captured by the linear metric. Thus, the existing method is expected
to perform well. However, it is interesting to observe that our approach outperforms the existing method in terms of the smaller
D-distance when the sample size is small, i.e., n =20, 50. It appears that when n =200, our approach and the existing method are
comparable with our approach slightly performing better than the existing method. Among different distances for our approach, our
methods with K, and Kj; tend to produce smaller D-distance than the one with K;. Overall, we observe that D-distance decreases
as n increases or the dimensions r; and r, increase, where the latter phenomenon is often called the blessing of dimensionality. Also,
the performances for all methods do not change substantially with different values of A, which shows that both methods are less
sensitive to the choice of h. Table 2 shows that the ratio-based estimator is correctly identifying the true dimension of the factor
most of the time.

Example 4.2. In this example, we consider a matrix time series with a factor which is white noise but not martingale difference.
Thus, the error series in (6) and (2) are different. The 3-by-2 factor series are generated by the all-pass ARMA(1,1) models.

—1 .
Ziy=¢iZioy — b Mg+ i=1,-,6,

where ¢ = (zi),-)?=1 =(0.3,0.6,0.1,0.4,0.7,0.5)T and (11,-’,)1‘.’=l are generated by #(10). The data is generated by &, = CIZ,C; + &, with
C, and C, defined in Example 4.1. The error vec(&)) is generated from N(0,0.251, ® I, ). Note that the factors Z, are white noise

8
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Table 1
Average and standard deviation of D(C,, é\] ) and D(C,, é;). Two methods are compared: the factor model in Wang et al. (2019)
(L},) and our approach (M,, ).

l:hu Mhu
K K, K;

ri =20, r,=20  0.1447 (0.0632)  0.1014 (0.0264) 0.0928 (0.0244)  0.0937 (0.0260)
r; =50, r,=50  0.0893 (0.0300)  0.0610 (0.0117) 0.0530 (0.0101)  0.0507 (0.0103)

DC,C) ,osp N=20.r=20 00749(0.0173)  0.0649 (0.0168)  0.0605(0.0161)  0.0665 (0.0165)
- r=50,r,=50 0.0505(0.0128)  0.0394 (0.0077)  0.0340 (0.0067)  0.0325 (0.0076)

r; =20, r,=20  0.0331 (0.0058)  0.0315 (0.0052) 0.0303 (0.0052)  0.0491 (0.0078)
ry =50, r,=50  0.0214 (0.0027)  0.0203 (0.0030) 0.0190 (0.0028)  0.0213 (0.0034)

n=20

n=200

ry =20, r,=20  0.0846 (0.0227) 0.0649 (0.0133) 0.0548 (0.0107) 0.0504 (0.0101)
ry =50, r,=50  0.0461 (0.0117) 0.0362 (0.0073) 0.0322 (0.0071) 0.0311 (0.0077)

D(Czqé\v) =50 ry =20, r,=20 0.0586 (0.0189)  0.0451 (0.0111) 0.0366 (0.0076)  0.0314 (0.0069)
- - ry =50, ,=50  0.0312 (0.0076)  0.0248 (0.0054) 0.0217 (0.0047)  0.0213 (0.0047)

r; =20, r,=20  0.0298 (0.0072)  0.0257 (0.0056) 0.0223 (0.0046)  0.0196 (0.0047)

n=20

n=200 ry =50, ,=50  0.0151 (0.0028)  0.0134 (0.0022)  0.0123 (0.0023)  0.0161 (0.0026)
hy=
Ly, M,
K, K, K;
=20 ry =20, r,=20  0.1330 (0.0551)  0.1003 (0.0275)  0.0939 (0.0257)  0.0944 (0.0267)

r; =50, r,=50  0.0782(0.0210)  0.0582 (0.0113) 0.0527 (0.0103)  0.0513 (0.0102)

DC,C) o5y N=20.r=20 00770(0.0191)  0.0659 (0.0162)  0.0617 (0.0159)  0.0665 (0.0163)
r1=50,r,=50 0.0491(0.0119)  0.0386 (0.0081)  0.0339 (0.0072)  0.0326 (0.0076)

r; =20, r,=20  0.0356 (0.0068)  0.0325 (0.0058) 0.0315 (0.0061)  0.0488 (0.0077)

=2
n=200 ry =50, r,=50  0.0227 (0.0035)  0.0207 (0.0031) 0.0192 (0.0029)  0.0214 (0.0035)

ry =20, r,=20  0.0752 (0.0168) 0.0613 (0.0121) 0.0536 (0.0104) 0.0507 (0.0105)
ry =50, r,=50  0.0436 (0.0107) 0.0320 (0.0072) 0.0319 (0.0072) 0.0313 (0.0077)

DIC,C) o5y N=20.1=20 00566 (0.0147)  0.0424 (0.0096)  0.0349 (0.0071)  0.0315 (0.0070)
r1=50,r,=50 0.0311(0.0081)  0.0249 (0.0060)  0.0219 (0.0050)  0.0213 (0.0047)

r; =20, r,=20  0.0315 (0.0083)  0.0256 (0.0056) 0.0216 (0.0044)  0.0192 (0.0044)
ry =50, ,=50  0.0158 (0.0030)  0.0138 (0.0024) 0.0128 (0.0024)  0.0161 (0.0026)

n=20

n=200

Table 2
Relative frequency of correctly estimating dimension for the factor series. Two methods are compared: the
factor model in Wang et al. (2019) (Eh”) and our approach (Mhu).

hy=1 hy=2
ch(v Mh(Y £h(¥ Mhﬂ
K] KZ K3 K] KZ K3
heoo  M1=20.,=20 072 092 096 100 081 093 097 100
- r=50,r,=50 08 09 1.00 098 083 099 099 098
C, ,_sg N=20.r,=2 089 09 099 100 08 094 098 100
- r=50,r,=50 097 099 099 1.00 095 099 099 1.00
weoop M=20.r,=20 100 100 100 100 099 100 100 100
= r=50,r,=50 100 100 1.00 1.00 1.00 100 1.00 1.00
hooo  M1=20.rs=20 087 096 098 100 091 098 099 100
- r=50,rs=50 098 100 1.00 1.00 098 100 1.00 1.00
C, ,_s9 N=20.r,=20 08 094 099 100 089 094 099 100
- r=50,r,=5 097 099 100 1.00 096 099 1.00 1.00
heoop M1=20.r,=20 098 098 100 100 094 096 100 100

ry =50, r,=50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

but not martingale difference. Hence, the existing method treats C, Z,C; as part of W, in (6) and cannot detect them. Therefore, our
approach has a larger number of factors compared to the existing methods. Under our model in (2), our approach has d; =3, d, =2.

In Table 3 and Table 4, we observe that our approach is superior to the existing approach in terms of having smaller D-distances
and higher proportions of correctly identifying the true dimensions in all cases. In this example, we consider factors which are



C.E. Lee and X. Zhang Computational Statistics and Data Analysis 199 (2024) 107998

Table 3
Average and standard deviation of D(C,, é\] ) and D(C,, é;). Two methods are compared: the factor model in Wang et al. (2019)
(L},) and our approach (M,, ).

l:hu Mhu
K K, K;

ry =20, r,=20  0.3212 (0.1685) 0.1097 (0.0241) 0.0790 (0.0146) 0.0651 (0.0106)
ry =50, r,=50  0.1122 (0.0375) 0.0542 (0.0105) 0.0398 (0.0063) 0.0336 (0.0048)

DC,C) o5y N=20.r=20 02745(01013)  0.0902(0.0176)  0.0550(0.0099)  0.0377 (0.0060)
- r=50,r,=50 0.1061 (0.0259)  0.0449 (0.0066)  0.0283 (0.0036)  0.0197 (0.0022)

ry =20, r,=20  0.2542(0.1019)  0.0840 (0.0181) 0.0444 (0.0096)  0.0193 (0.0023)
ry =50, ,=50  0.1100 (0.0257)  0.0402 (0.0071) 0.0220 (0.0036)  0.0096 (0.0007)

n=20

n=200

ry =20, r,=20  0.1537 (0.0602) 0.0626 (0.0157) 0.0436 (0.0090) 0.0356 (0.0064)
ry =50, r,=50  0.0708 (0.0195) 0.0352 (0.0063) 0.0249 (0.0040) 0.0202 (0.0030)

D(Czqé\v) =50 r; =20, r,=20  0.1525(0.0566)  0.0554 (0.0124) 0.0331 (0.0069)  0.0218 (0.0037)
- - ry =50, ,=50  0.0731(0.0196)  0.0302 (0.0057) 0.0185 (0.0030)  0.0125 (0.0014)

ry =20, r,=20  0.1373 (0.0397)  0.0495 (0.0102) 0.0264 (0.0057)  0.0112 (0.0017)

n=20

n=200 ry =50, ,=50  0.0708 (0.0161)  0.0274 (0.0052)  0.0148 (0.0029)  0.0061 (0.0006)
hy=
Ly, M,
K, K, K;
=20 ry =20, r,=20  0.1961 (0.0663)  0.0946 (0.0189)  0.0737 (0.0129)  0.0652 (0.0108)

r; =50, r,=50  0.0858 (0.0203)  0.0471 (0.0083) 0.0376 (0.0058)  0.0339 (0.0048)

DC,C) o5 N=20.r=20 01786(0.0497)  0.0739 (0.0121)  0.0480(0.0076)  0.0374(0.0058)
r=50,r,=50 0.0791(0.0146)  0.0362(0.0045)  0.0247 (0.0029)  0.0198 (0.0022)

r; =20, r,=20  0.1701 (0.0398)  0.0648 (0.0127) 0.0351 (0.0060)  0.0186 (0.0023)

=2
n=200 ry =50, ,=50  0.0814 (0.0148)  0.0318 (0.0042) 0.0177 (0.0022)  0.0095 (0.0007)

ry =20, r,=20  0.1028 (0.0285) 0.0396 (0.0076) 0.0396 (0.0076) 0.0357 (0.0065)
ry =50, r,=50  0.0530 (0.0138) 0.0227 (0.0034) 0.0227 (0.0034) 0.0203 (0.0031)

D(Ca,é:) =50 r; =20, r,=20 0.1013 (0.0286)  0.0280 (0.0052) 0.0281 (0.0052)  0.0216 (0.0037)
T - ry =50, r,=50  0.0501 (0.0098)  0.0159 (0.0021) 0.0159 (0.0021)  0.0125 (0.0014)

r; =20, r,=20  0.0978 (0.0237)  0.0209 (0.0037) 0.0211 (0.0037)  0.0108 (0.0017)
ry =50, ,=50  0.0508 (0.0099)  0.0116 (0.0017) 0.0117 (0.0017)  0.0061 (0.0006)

n=20

n=200

white noise but not martingale difference. Therefore, the existing method with a covariance matrix cannot detect the factors. We
speculate that this could be a part of the reason for the larger D-distances produced by the existing approach. This example shows
the advantage of our approach when there exists nonlinear dependence which is not detectable by a linear metric.

Example 4.3. We consider a tensor time series with factors in Example 4.2, but 2-by-2-by-2 factor series with ¢ = ((l),-)?z1 =
(0.7,0.5,0.2,0.8,0.3,0.6,0.1,0.4)T. Similarly, the data is generated by X, = [Z,;C;,C,,C5] + &,, where Z, € RN1*%X43 and C, €
Rr1xdi C, e Rr2Xd2 C; e R”3%4 are generated from U(—1,1). The error vec(&,) is generated from N (0, 0.252),3 ® 2,2 ® Zrl),
where the diagonals of X, , X, , X, are all 1 and the off-diagonals are 0.4, 0.3, 0.2, respectively. Similar to Example 4.2, we have
dy = d, = d3 =2 under our factor model.

From Table 5, it is shown that our approach produces smaller D-distances than the existing method which indicates that our
approach generates more accurate dimension reduction results. Furthermore, we observe that the performance of the existing method
improves greatly for the larger A, showing some sensitivity to the choice of h, while our approach shows comparable results across
different values of A . In terms of the dimension selection results, we see that the ratio-based estimator produces reasonable results
for our method which are reported in Table 6.

5. Real data illustrations

In this section, we demonstrate the usefulness of our approach in the context of prediction by considering two real data sets
which are sales data and NYC taxi data. To compare the prediction performance, we compute the forecasting error after dividing the
centered data into training and testing sets. In particular, we measure the accuracy of the h-step ahead prediction by

1 5 2
FE= —— || X, — &, s
P T ” i+h 1+h||F

177" 'm

10
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Table 4
Relative frequency of correctly estimating dimension for the factor series. Two methods are compared: the
factor model in Wang et al. (2019) (£,, ) and our approach (M,, ).

hy=1 hy =
Lh() Mh() l:h() Mh()
K, K, Ky K, K, L8]

=120 r=20,r,=20 018 067 082 086 037 074 084 087
- ry=50,r,=5 063 098 100 100 086 1.00 1.00 1.00
C, =50 ry=20,r,=20 016 0.61 093 099 035 086 098 1.00
- r,=50,r,=5 064 100 100 100 087 1.00 1.00 1.00
n=n00 = 20, r,=20 0.21 074 094 1.00 041 0.84 098 1.00
- r,=50,r,=50 067 100 100 100 088 100 1.00 1.00
=120 r=20,rs=20 056 095 095 100 079 098 098 1.00
- ry=50,r;=50 086 1.00 1.00 1.00 096 1.00 1.00 1.00
C, =50 ry=20,r,=20 047 100 1.00 1.00 0.71 1.00 1.00 1.00
- r,=50,r,=5 085 100 100 1.00 097 100 1.00 1.00
n=o00 = 20, r,=20 056 1.00 1.00 1.00 0.71 1.00 1.00 1.00

r =50, r,=50 0.87 1.00 1.00 1.00 0.96 1.00 1.00 1.00

Table 5
Average and standard deviation of D(Cl,é\l ), D(Cz,é;), and D(CB,@). Two methods are compared: the
TOPUP method in Chen et al. (2021) (£, ) and our approach (M, ).

hy =
£h() Mht)
K, K, K;
DC,. € n=20 0.0625 (0.0341) 0.0487 (0.0162) 0.0444 (0.0116) 0.0429 (0.0103)
(€.Cp n=50 0.0641 (0.0331) 0.0454 (0.0134) 0.0423 (0.0097) 0.0414 (0.0083)
n=200 0.0650 (0.0399) 0.0419 (0.0121) 0.0396 (0.0062) 0.0395 (0.0036)
DC..E n=20 0.0736 (0.0568) 0.0487 (0.0162) 0.0434 (0.0157) 0.0420 (0.0147)
(€, C) n=50 0.0731 (0.0462) 0.0450 (0.0157) 0.0403 (0.0094) 0.0389 (0.0076)
n=200 0.0671 (0.0404) 0.0447 (0.0120) 0.0395 (0.0063) 0.0374 (0.0038)
DC..E n=20 0.0339 (0.0139) 0.0186 (0.0055) 0.0144 (0.0039) 0.0131 (0.0035)
(€3, Cy) n=50 0.0332 (0.0119) 0.0147 (0.0036) 0.0093 (0.0021) 0.0076 (0.0018)
n=200 0.0311 (0.0125) 0.0141 (0.0045) 0.0075 (0.0019) 0.0045 (0.0011)
hy =
Ly, M,
K, K, K;
DC,. € n=20 0.0531 (0.0208) 0.0468 (0.0140) 0.0441 (0.0111) 0.0431 (0.0105)
(€.Cp n=50 0.0538 (0.0209) 0.0449 (0.0120) 0.0425 (0.0093) 0.0415 (0.0083)
n=200 0.0534 (0.0243) 0.0406 (0.0081) 0.0395 (0.0048) 0.0395 (0.0036)
DC..E n=20 0.0574 (0.0332) 0.0458 (0.0175) 0.0428 (0.0151) 0.0418 (0.0143)
(€2, C2) n=50 0.0531 (0.0217) 0.0419 (0.0113) 0.0396 (0.0084) 0.0390 (0.0076)
n=200 0.0520 (0.0291) 0.0419 (0.0091) 0.0388 (0.0052) 0.0374 (0.0038)
~ n=20 0.0248 (0.0074) 0.0163 (0.0042) 0.0138 (0.0036) 0.0131 (0.0036)
D(C;,Cy)

n=>50 0.0235 (0.0070)  0.0120 (0.0031) 0.0086 (0.0019)  0.0077 (0.0018)
n=200  0.0223 (0.0052)  0.0105 (0.0025) 0.0062 (0.0014)  0.0045 (0.0011)

where é/\% 45, is the h-step ahead prediction of X;,;, based on the training set. Therefore, the smaller value of FE indicates more
accurate h-step ahead prediction.

5.1. Sales data

In this section, we consider the sales data from a superstore. This data is available at https://www.kaggle.com/yanachshyogoleva/
superstore-sales-dataset/data. Since the daily data is too sparse, we first transform the data into weekly data by calculating the total
amount of sales for 17 categories and 4 regions, and take one difference in order to make the data stationary. Thus, we have
X =[x; ;1] € R!7 with the length of time equals to n = 184, where X; i, 18 the total amount of sales for each category and
region in week ¢. We divide the centered data into training and testing sets where the last 37 data observations are set as testing set
which are approximately 20% of the data. In order to predict X, ;, and generate 2?1- +h» we follow the approaches in Matteson and

Tsay (2011) and Lee and Shao (2018). In particular, we use the rolling-window approach. More specifically, we use the following
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Table 6
Relative frequency of correctly estimating dimension for the factor series. Two methods
are compared: the TOPUP method in Chen et al. (2021) (£,, ) and our approach (M, ).

hy=1 hy=2
l:hu M"u ['hu Mh«y

K, K, K, K, K, K,

n=20 080 086 0.88 090 084 08 088 091

¢ n=>50 0.79  0.93 0.93 0.94 0.83 0.93 0.92 0.93

n=200  0.82 0.96 0.98 1.00  0.90 1.00 1.00 1.00

c n=20 0.53 0.67 0.67 0.75 059 074 077 0.75

2 n=>50 0.43 0.67 0.81 0.87 059 0.75 0.83 0.85

n=200 0.38 0.66 0.83 0.92 0.54 074 091 0.92

c n=20 0.88 0.96  0.99 1.00  0.95 0.98  0.99 1.00
3

n=>50 0.84  0.99 1.00 1.00 090 0.99 1.00 1.00
n=200 0.85 0.99 1.00 1.00  0.93 1.00 1.00 1.00

Table 7
Average of FE (the averages are multiplied 10~%). Two methods are compared:
the factor model in Wang et al. (2019) (£,, ) and our approach (M,, ).
£h‘, Mhn
K, K, K;
1-step ahead  773.26 721.16 724.19 752.24

hy=1 2-step ahead  1190.76  977.91 927.06 972.33
3-step ahead 1232.50 1012.49 1114.75 1107.34

1-step ahead  777.62 738.21 755.30 764.71
hy=2  2-stepahead  1182.65 104526  965.40 939.79
3-step ahead 1229.59 1085.64 1150.19 1147.88

1-step ahead  770.89 751.24 766.75 769.03
hy=3  2-stepahead 1189.74  1088.20  971.17 945.95
3-step ahead  1236.59  1125.51  1147.47  1125.87

procedure. (1) We first estimate the dimension (d,,d,) by using the entire data set. Since we have a moderate dimension for &X,,
we apply the ratio-based estimator in Section 3.3 with R=r; — 1. For hy =1, 2, 3, dAl =1, Jz =3 are selected. (2) Based on the
estimates of (dy,d,), we apply a dimension reduction method to (X;_,,, .1+, &), I = Nygins s Mypain + 36, Nyygyy is the sample size
of the training set. We obtain the estimated factor series and factor loading matrices. (3) The optimal vector autoregressive model is
fitted to the estimated factors. The order is chosen by the Akaike information criterion (AIC) with the maximum order equals to 10.
(4) With the fitted model, we generate the h-step ahead prediction of the estimated factor series and multiply the estimated factor
loading matrices in order to generate the h-step ahead prediction of &, , and calculate FE.

From Table 7, we observe that our approach noticeably outperforms the existing method in Wang et al. (2019) in terms of
smaller FE. This indicates that our approach generates more accurate forecasting for the sales data. Furthermore, Table 8, 9 report
the estimated factor loading matrices after applying methods to the entire centered data with = 1. Here, we report the estimated
factor loadings for our approach with K. However the estimated factor loading matrices with K, and K; are very similar to the
ones with K; and those are reported in the supplementary material. For the categories, while copiers load heavily on the loading
matrix followed by phones for the existing method, our approach selects copiers to have the highest weight followed by machines.
For the regions, both methods agree to give highest weights to east, west, and central for the three factor loadings.

5.2. NYC taxi data

In this section, we consider the NYC taxi data which has been analyzed by Chen et al. (2021). This data is available at https://
wwwl.nyc.gov/site/tlc/about/tle-trip-record-data.page. We select the recent data that contains the daily trip records in Manhattan
starting from January 1, 2017 to December 31, 2018 before COVID 19. Similar to Chen et al. (2021), we calculate the total number
of rides moving among the zones within each hour. Since the daily data is too sparse, we transform the data into weekly data by
calculating the total number of rides occurred in 10 popular zones and busy hours which are 1-11 hours (PM), and take one difference
to make the data stationary. Thus, we have &, = [x; ;, ;. ;] € R'%%I1 with the length of time equals to n = 103, where x; ; ;. , is the
total number of rides from zone i; (the pick-up zone) to zone i, (the drop-off zone) and the pick-up time i; hour in week ¢. Similar
to Section 5.1, we divide the centered data into training and testing sets where the last 20 observations are set as testing set which
are approximately 20% of the data. Next, we follow the same procedure in Section 5.1 with the selected dimensions dAl = dAz = 3\3 =1
for hy =1, 2, 3 and compare the prediction accuracy.

Table 10 summarizes the prediction performances for our approach and the existing method in Chen et al. (2021). It appears that
our M,, 0 -based approach produces smaller forecasting error on average which suggests that our approach produces more accurate
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Table 8
Estimated factor loading matrix C,; with i, = 1. Two methods are compared: the factor model
in Wang et al. (2019) (£, ) and our approach (M,, ) with K.

Ly
Accessories  Appliances  Art Binders  Bookcases  Chairs  Copiers
0.04 -0.03 0.00 -0.03 -0.02 0.02 -0.99
Envelopes Fasteners Furnishings  Labels Machines Paper Phones
-0.01 0.00 0.01 0.00 -0.06 0.02 -0.12
Storage Supplies Tables
0.03 0.02 -0.02
My
Accessories Appliances Art Binders Bookcases Chairs Copiers
0.01 0.00 0.00 -0.09 -0.06 -0.07 -0.97
Envelopes Fasteners Furnishings  Labels Machines Paper Phones
0.00 0.00 -0.01 0.00 -0.19 0.00 -0.08
Storage Supplies Tables
-0.07 0.00 -0.04

Table 9

Estimated factor loading matrix C, with A, = 1. Two methods are compared: the
factor model in Wang et al. (2019) (£,, ) and our approach (M,, ) with K.

[:h Mh

) )

Central East South West Central East South West

-0.39 -0.91 0.02 0.12 -0.31 -0.95  0.01 0.00

0.84 -0.40 0.04 -0.35 0.32 -0.11 -0.08 0.94

-0.37 0.04 0.17 -0.91 0.89 -0.29  0.06 -0.33
Table 10

Average of FE. Two methods are compared: the factor model in Chen et
al. (2021) (£}, ) and our approach (M,, ).

Ly, M,,
Kl K2 K]

1-step ahead  543.08 526.73  526.04  526.28
hy=1  2-stepahead 555.94 547.17 546.35 546.55
3-step ahead  568.06  559.47  558.80  558.91

1-step ahead  540.45  526.67 52592  526.09
hy=2  2-stepahead  553.89 546.65  546.26  546.32
3-step ahead  566.58  559.16  558.72  558.81

1-step ahead  537.80 526.06 52599  526.31
hy=3  2-stepahead 551.67 546.01 546.05 546.34
3-step ahead  565.36  558.71  558.66  558.88

prediction. It is worth mentioning that the improvement in prediction accuracy by our approach is mainly due to the use of MhU
since the same modeling procedure is applied to the estimated factor series.

Fig. 1 reports heat maps that summarize the estimated factor loading matrices when hy =1 for the existing method and our
approach with K;. The estimated factor loading matrices for our approach with K, and K3 are reported in the supplementary
material and they are very similar to Fig. 1c, Fig. 1d. It is interesting to observe that two approaches select different areas as
important places. It shows that our M,, -based approach selects the midtown center, upper east south areas as crucial regions for
the pickup locations whereas the existing method chooses union square as the important area for the pickup locations. Also, union
square, upper east south are selected as important regions for dropoff locations for our method and the existing method.

6. Conclusion

We propose a new dimension reduction framework for tensor time series by utilizing the CTMDD that can summarize dependence
beyond the linear mean dependence. Moreover, we can effectively estimate d;,---,d,, by employing the ratio-based estimator in
Section 3.3. The advantages of our method can be explained by a slightly more general and flexible tensor factor model than the

factor model in Wang et al. (2019) and Chen et al. (2021).
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Fig. 1. Heat maps of the estimated factor loading matrices with /1y = 1. Two methods are compared: the factor model in Chen et al. (2021) (L, ) and our approach
(M, ) with K. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

For a possible future research direction, it would be interesting to develop an alternative tensor time series dimension reduction
based on CP decomposition, following recent advances in Han et al. (2021) and Chang et al. (2021), than factor models.
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