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The dimension reduction problem for a stationary tensor time series is addressed. The goal is 
to remove linear combinations of the tensor time series that are mean independent of the past, 
without imposing any parametric models or distributional assumptions. To achieve this goal, 
a new metric called cumulative tensor martingale difference divergence is introduced and its 
theoretical properties are studied. Unlike existing methods, the proposed approach achieves 
dimension reduction by estimating a distinctive subspace that can fully retain the conditional 
mean information. By focusing on the conditional mean, the proposed dimension reduction 
method is potentially more accurate in prediction. The method can be viewed as a factor model-
based approach that extends the existing techniques for estimating central subspace or central 
mean subspace in vector time series. The effectiveness of the proposed method is illustrated by 
extensive simulations and two real-world data applications.

 Introduction

Tensor data is nowadays prevalent in numerous applications, including tensor time series, where the observation is tensor-valued 
e., a multidimensional array) at each time point. In general, tensor time series data has a complex structure, meaningful temporal 
pendence, and requires dimension reduction for efficient analysis.
A primary problem in tensor time series analysis is reducing the dimension while retaining the information of interest and the 
nsor structure. Traditionally, the dimension reduction methods in time series analysis were developed for the multivariate time 
ries data; see Lam et al. (2011); Matteson and Tsay (2011); Lam and Yao (2012); Lee and Shao (2018), among others. Recently, 
ere are methods that particularly focus on the dimension reduction for matrix or tensor time series data, including the factor model 
r matrix time series by Wang et al. (2019), the constrained factor models for matrix time series by Chen et al. (2020), the factor 
odels for tensor time series by Chen et al. (2021), the two-way transformed factor model for matrix-variate time series by Gao and 
ay (2021), 𝛼-PCA method for matrix-variate time series by Chen and Fan (2021). However, all these above-mentioned methods 
opt a linear metric, a covariance matrix, that can only summarize the linear dependence to achieve the dimension reduction. 
us, these methods target to find linear subspaces where the transformed matrix or tensor times series has a strong linear dynamic 
ucture. If the data is Gaussian, the linear metric can detect the full dependence and the existing methods shall achieve an accurate 
mension reduction. However, if the data is not Gaussian or the data has nonlinear dependence, the linear metric may fail to 
mmarize the full dynamic.
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In the tensor regression context, where independent and identically distributed data are assumed, the dimension reduction tech-
ques have been extensively studied. On one hand, there are methods reduce the dimensionality of a tensor predictor by constructing 
mension-folding subspaces; see, for example, Li et al. (2010), Ding and Cook (2014), Sheng and Yuan (2020), Wang et al. (2022). 
 the other hand, Rabusseau and Kadri (2016), Li and Zhang (2017), Sun and Li (2017), Lee et al. (2023) incorporated dimension 
duction and low-rank decomposition techniques in tensor response regression models.
In this article, we propose a dimension reduction procedure of a stationary tensor times series, {𝑡}𝑛𝑡=1, 𝑡 ∈ℝ𝑟1×⋯×𝑟𝑚 , especially 
cusing on the conditional mean of a tensor time series given the past information, 𝑡−1 = 𝜎(𝑡−1, 𝑡−2, ⋯), which is the main 
terest of modeling the behavior of the data. More specifically, our goal is to seek subspaces that reconstruct the tensor time series 
to two parts: one part that contains the conditional mean information and the other part that is mean independent of the past. 
 other words, our approach can effectively reduce the number of parameters while preserving both the tensor structure and the 
nditional mean information without assuming a parametric time series model or a distributional assumption. Our proposal can 
 viewed as a factor model-based approach that extends the methods for estimating central subspace or central mean subspace in 
ctor time series (Park et al., 2010, 2009) to tensor time series. These existing model-free time series dimension reduction methods 
e flexible but not scalable or directly applicable to large number variables, which is typical in tensor time series.
While the existing methods achieve dimension reduction by using the linear metric, our approach relies on the new metric, 
lled the cumulative tensor martingale difference divergence (CTMDD), that can summarize the mean dependence and overcome 
me limitations of the covariance matrix-based approaches. Hence, we shall call our approach as the conditional mean dimension 
duction for tensor time series. Since the new metric measures the mean dependence, it can gather the nonlinear dependence along 
ith the linear dependence that appears in the conditional mean. Therefore, our targeted subspace indeed contains the subspace 
at the existing method seeks where two subspaces become equivalent for a particular case. Moreover, our approach can retrieve 
e conditional mean which is the optimal predictor in terms of the mean squared error. Thus, modeling the behavior of a tensor 
e series with our dimension reduction method could produce more accurate predictions. Compared to the existing methods, our 
proach is more robust and flexible to the dependence, and practically useful for forecasting. Similar to the existing methods, our 
proach has a tensor factor model representation which has a sophisticated difference compared to the existing tensor factor model.
Our new metric is built upon and extends the martingale difference divergence (MDD) metric. Shao and Zhang (2014) proposed 
e MDD for the variable screening purposes which can capture the mean dependence between a scalar and a vector. Furthermore, 
e and Shao (2018) and Lee and Shao (2020) extended the MDD and introduced the cumulative martingale difference divergence 
atrix (CMDDM) and the cumulative volatility martingale difference divergence matrix to achieve the dimension reduction for a 
tionary multivariate time series. However, they all handle the multivariate time series instead of the tensor time series. In order 

 achieve our goal, we particularly generalize the CMDDM of Lee and Shao (2018) in two ways. First, we extend the metric in Lee 
d Shao (2018) and define the CTMDD so that it is well defined for two tensors. Second, we develop the new metric for a general 
ass of distances motivated by the recent progress of adopting new distances for metrics. This allows us to efficiently quantify the 
ean dependence for tensors which often have large dimensions; see Chakraborty and Zhang (2019) and Zhou and Zhu (2021). We 
rther show that the generalized metric indeed fully quantifies the mean dependence between two tensors by using new techniques. 
ter, we propose our dimension reduction approach with the extended metric to estimate the number and the linear forms of the 
ta that retain the conditional mean information. Our approach is computationally efficient and simple to implement regardless of 
e fact that we consider the tensor time series.
The rest of the article is organized as follows. In Section 2, we briefly review the key tensor notations, operations, and the CMDDM 
ee and Shao, 2018). Section 3 introduces the new metric CTMDD and we introduce our approach to reduce the dimension using 
e new metric. Section 4 presents numerical studies, and Section 5 presents applications of the proposed method to two real data 
ts. Section 6 concludes the paper with a short discussion. All proofs and additional simulations are relegated to the supplementary 
aterial.

 Preparation

1. Notations

Let  ∈ℝ𝑟1×⋯×𝑟𝑚 be a 𝑚-th order tensor and 𝑖1 ,⋯,𝑖𝑚
be the (𝑖1, ⋯ , 𝑖𝑚) element of . The order of a tensor is the number of its 

odes. A tensor fiber is defined by fixing every index of the tensor but one. For instance, ∶,𝑗2,⋯,𝑗𝑚
∈ℝ𝑟1 is a mode-1 fiber for given 

, ⋯ , 𝑗𝑚. The Frobenius norm of  is ‖‖2
𝐹
= ⟨, ⟩𝐹 =

∑
𝑖1 ,⋯,𝑖𝑚

2
𝑖1 ,⋯,𝑖𝑚

. The vec() operator stacks all the entries of a tensor 
to one column vector, so that an entry 𝑖1⋯𝑖𝑚

becomes the 𝑗-th entry of vec(), where 𝑗 = 1 +
∑𝑚

𝑘=1(𝑖𝑘 −1) 
∏𝑘−1

𝑘′=1 𝑟𝑘′ . The mode-𝑘
atricization, (𝑘), transfers a tensor  into a matrix, denoted by (𝑘), so that the (𝑖1, ⋯ , 𝑖𝑚) element of  is the (𝑖𝑘, 𝑗) element 
 the matrix (𝑘), where 𝑗 = 1 +

∑
𝑘′≠𝑘(𝑖𝑘′ − 1) 

∏
𝑘′′<𝑘′ ,𝑘′′≠𝑘 𝑟𝑘′′ . The 𝑘-mode product of a tensor  and a matrix 𝐂 ∈ ℝ𝑠×𝑟𝑘 is a 

-th order tensor denoted as  ×(𝑘) 𝐂 ∈ℝ𝑟1×⋯×𝑟𝑘−1×𝑠×𝑟𝑘+1×⋯×𝑟𝑚 , where each element is the product of mode-𝑘 fiber of  multiplied 
 𝐂. The Tucker decomposition of a tensor is defined as  = 𝐃 ×(1) 𝚪1 ×(2) ⋯ ×(𝑚) 𝚪𝑚, where 𝐃 ∈ ℝ𝑑1×⋯×𝑑𝑚 is the core tensor, 
d 𝚪𝑘 ∈ ℝ𝑟𝑘×𝑑𝑘 , 𝑘 = 1, ⋯ , 𝑚, are the factor matrices. It is a low rank decomposition of the original tensor . For convenience, 
e shall denote the Tucker decomposition as �𝐃; 𝚪1, ⋯ , 𝚪𝑚�. We refer to Kolda and Bader (2009) for more background on tensor 
compositions.

For a vector 𝑋 = (𝑥1, ⋯ , 𝑥𝑝) ∈ ℝ𝑝, the Euclidean norm of 𝑋 is ‖𝑋‖ = (
𝑥21 +⋯+ 𝑥2𝑝

)1∕2
. For a square matrix 𝐀 = (𝐀𝑖,𝑗 )

𝑝

𝑖,𝑗=1, we √

2

note the spectral norm and the Frobenius norm of 𝐀 as ‖𝐀‖ and ‖𝐀‖𝐹 , respectively, where ‖𝐀‖ = 𝜆max(𝐀⊤𝐀) and 𝜆max(𝐀⊤𝐀) is 



C.E

th

⊗

2.

m

𝑋

w

se

Le

1

2

de

3.

an

ar

3.

ac

on

w

is 
{𝐂(
�

su

(2

of

m

Th

w

th

𝑘 

Re

fo

a 
Computational Statistics and Data Analysis 199 (2024) 107998. Lee and X. Zhang

e largest eigenvalue of 𝐀⊤𝐀 and ‖𝐀‖𝐹 =
√∑

𝑖,𝑗 𝐀2
𝑖,𝑗
. The trace of 𝐀 is tr(𝐀) =∑𝑝

𝑖=1𝐀𝑖,𝑖 and we denote the Kronecker product as 
. The orthogonal complement of  is ⟂, ⟂⟂ denotes the independence, and 𝟎 is a tensor with zero for all entries.

2. Cumulative martingale difference divergence matrix

We briefly review the cumulative martingale difference divergence matrix (Lee and Shao, 2018), which is related to our new 
etric introduced in the next section. Following their notation, we will denote 𝚪ℎ0

as the CMDDM. If a multivariate time series 
𝑡 ∈ℝ𝑝 satisfies 𝔼(‖𝑋𝑡‖2) <∞, then

𝚪ℎ0
=

ℎ0∑
ℎ=1

{
−𝔼

[
{𝑋𝑡 − 𝔼(𝑋𝑡)}{𝑋′

𝑡 − 𝔼(𝑋′
𝑡 )}

⊤‖𝑋𝑡−ℎ −𝑋′
𝑡−ℎ‖]} , (1)

here (𝑋′
𝑡 , 𝑋

′
𝑡−ℎ) is an independent copy of (𝑋𝑡, 𝑋𝑡−ℎ). From the definition of the matrix 𝚪ℎ0

, it is a 𝑝 ×𝑝 real, symmetric, and positive 
mi-definite matrix. By a direct consequence of Theorem 1 in Lee and Shao (2018), we have the following result.

mma 2.1. For a stationary multivariate time series 𝑋𝑡 which satisfies 𝔼(‖𝑋𝑡‖2) <∞, we have

. There exist 𝑝 −𝑑 linearly independent combinations of 𝑋𝑡 such that they are mean independent of {𝑋𝑡−ℎ}
ℎ0
ℎ=1 if and only if rank

(
𝚪ℎ0

)
=

𝑑.

. Let 𝛼 ∈ span⟂
(
𝚪ℎ0

)
, then 𝔼(𝛼⊤𝑋𝑡 ∣𝑋𝑡−ℎ) = 𝔼(𝛼⊤𝑋𝑡) a.s. for ℎ = 1, ⋯ , ℎ0.

The above lemma indicates that the space spanned by 𝚪ℎ0
is closely related to the linear combinations of 𝑋𝑡 that are mean 

pendent of (𝑋𝑡−1, ⋯ , 𝑋𝑡−ℎ0 ).

 Conditional mean dimension reduction

In this section, we propose our approach to achieve the dimension reduction for 𝑡 ∈ℝ𝑟1×⋯×𝑟𝑚 considering the conditional mean 
d provide a theoretical justification. Moreover, there is a factor model representation for our approach and we shall first introduce, 
guably more general, tensor factor model which has a subtle difference compared to the existing tensor factor model.

1. Factor model representation to conditional mean dimension reduction

Our motivation is to reduce the dimension without losing the conditional mean information so that the dimension reduction is 
hieved with the least amount of loss on the prediction accuracy. Notice that data can always be decomposed into two parts where 
e part is mean dependent on the past and the other part being mean independent, i.e.,

𝑡 = 𝔼(𝑡 ∣ 𝑡−1) + 𝑡 = �𝑡;𝐂1,⋯ ,𝐂𝑚�+ 𝑡, (2)

here 𝑡 = 𝑡−𝔼(𝑡 ∣ 𝑡−1) ∈ℝ𝑟1×⋯×𝑟𝑚 is a martingale difference sequence that is mean independent of the past, and �𝑡; 𝐂1, ⋯ , 𝐂𝑚�

the mean dependent part driven by a latent factor time series 𝑡 ∈ ℝ𝑑1×⋯×𝑑𝑚 , 𝑑𝑘 < 𝑟𝑘, 𝑘 = 1, ⋯ , 𝑚, and factor loading matrices 
𝑘}𝑚𝑘=1, 𝐂𝑘 ∈ℝ𝑟𝑘×𝑑𝑘 that are semi-orthogonal, i.e., 𝐂⊤

𝑘
𝐂𝑘 = 𝐼𝑑𝑘 .

Similar to the existing factor models, it is worth pointing out that 𝑡 and {𝐂𝑘}𝑚𝑘=1 are not unique since we can replace those by 
𝑡;𝐇1,⋯ ,𝐇𝑚�,{𝐂𝑘𝐇⊤

𝑘
}𝑚
𝑘=1

)
with orthogonal matrices {𝐇𝑘}𝑚𝑘=1, 𝐇𝑘 ∈ℝ𝑑𝑘×𝑑𝑘 that produce the same data 𝑡. However, the linear 

bspaces spanned by the columns of {𝐂𝑘}𝑚𝑘=1, denoted by {span(𝐂𝑘)}𝑚𝑘=1, are unique and identifiable; see Section 3 in Chen et al. 
021) for more discussion. Therefore, our goal is to estimate the dimensions of the factor (𝑑1, ⋯ , 𝑑𝑚) and the identifiable subspaces, 
ten called as factor loading spaces {span(𝐂𝑘)}𝑚𝑘=1 that fully carry the conditional mean information. Let (𝐂𝑘, 𝐂𝑘,0) be an orthogonal 
atrix for 𝑘 = 1, ⋯ , 𝑚. Under our factor model (2), we observe that

𝑡 ×(𝑘) 𝐂⊤
𝑘,0 = 𝑡 ×(𝑘) 𝐂⊤

𝑘,0, 𝑘 = 1,⋯ ,𝑚.

is is further identical to

𝐂⊤
𝑘,0(𝑡)(𝑘) =𝐂⊤

𝑘,0(𝑡)(𝑘), 𝑘 = 1,⋯ ,𝑚, (3)

hich implies 𝔼(𝐂⊤
𝑘,0(𝑡)(𝑘) ∣ 𝑡−1) = 𝔼(𝐂⊤

𝑘,0(𝑡)(𝑘)) 𝑎.𝑠. Hence, our goal of estimating (𝑑𝑘)𝑚𝑘=1 and {𝐂𝑘}𝑚𝑘=1 is equivalent to searching 
e number and the linear combinations of (𝑡)(𝑘) such that the transformed series is mean independent of the past for each mode 
= 1, ⋯ , 𝑚.

mark 3.1. Interestingly, our dimension reduction approach is related to the time series central subspace (TS-CS) (Park et al., 2010) 
r tensor time series. To demonstrate the connection, we shall briefly review TS-CS in Park et al. (2010). Park et al. (2010) consider 
3

univariate time series 𝑥𝑡 ∈ℝ and search for TS-CS which is a minimal subspace of span(𝚽), where 𝚽 ∈ℝ𝑝×𝑑 , 𝑑 < 𝑝 satisfies
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𝑥𝑡 ⟂⟂𝑋𝑡−1 ∣𝚽⊤𝑋𝑡−1,

re ⟂⟂ denotes the independence and 𝑋𝑡−1 = (𝑥𝑡−1, ⋯ , 𝑥𝑡−𝑝)⊤ ∈ ℝ𝑝. As described in Park et al. (2010), TS-CS may not exist; see 
oposition 1 in Park et al. (2010) for more discussion. We extend their notion of TS-CS from vector time series to tensor time series. 
ecifically, we introduce the mode-𝑘 tensor TS-CS as follows.

finition 3.1. The mode-𝑘 tensor time series central subspace is a minimal subspace of span(𝐂̃𝑘), where 𝐂̃𝑘 ∈ ℝ𝑟𝑘×𝑑𝑘 , 𝑑𝑘 < 𝑟𝑘
tisfies

𝑡 ⟂⟂
(
𝑡−1,𝑡−2,⋯

)
∣
(
𝑡−1 ×(𝑘) 𝐂̃⊤

𝑘
,𝑡−2 ×(𝑘) 𝐂̃⊤

𝑘
,⋯

)
. (4)

When the mode-𝑘 tensor TS-CS exists for each mode, the factor loading spaces span(𝐂𝑘) contains or become equivalent to the 
ode-𝑘 tensor TS-CS if(

𝐂⊤
𝑘,0(𝑡−1)(𝑘),𝐂

⊤
𝑘,0(𝑡−2)(𝑘),⋯

)
⟂⟂

(
𝑡,𝐂⊤

𝑘
(𝑡−1)(𝑘),𝐂⊤

𝑘
(𝑡−2)(𝑘),⋯

)
, (5)

r 𝑘 = 1, ⋯ , 𝑚. This is due to the fact that the factor loading matrix 𝐂𝑘 satisfies (4) under the assumption in (5) and by the fact in (3)
d Proposition 4.6 in Cook (1998). This further implies that the mode-𝑘 tensor TS-CS ⊆ span(𝐂𝑘), 𝑘 = 1, ⋯ , 𝑚, where the equality 
lds if dimensions of two subspaces are identical. Discussion based on the central subspace in times series can be extended to the 
ntral mean subspace in time series which is a minimal subspace of span(𝚽), where 𝚽 ∈ℝ𝑝×𝑑 , 𝑑 < 𝑝 satisfies

𝑥𝑡 ⟂⟂ 𝔼(𝑥𝑡 ∣𝑋𝑡−1) ∣𝚽⊤𝑋𝑡−1.

milarly, we can generalize the time series central mean subspace in Park et al. (2009) to the mode-𝑘 tensor time series central 
ean subspace.

finition 3.2. The mode-𝑘 tensor time series central mean subspace is a minimal subspace of span(𝐂𝑘), where 𝐂𝑘 ∈ℝ𝑟𝑘×𝑑𝑘 , 𝑑𝑘 < 𝑟𝑘
tisfies

𝑡 ⟂⟂ 𝔼
(
𝑡 ∣ 𝑡−1,𝑡−2,⋯

)
∣
(
𝑡−1 ×(𝑘) 𝐂

⊤

𝑘 ,𝑡−2 ×(𝑘) 𝐂
⊤

𝑘 ,⋯
)
.

We find out that our factor loading space span(𝐂𝑘) also contains the mode-𝑘 tensor time series central mean subspace. This can 
 easily verified by the natural connection that the mode-𝑘 tensor time series central mean subspace ⊆ the mode-𝑘 tensor TS-CS ⊆
an(𝐂𝑘), 𝑘 = 1, ⋯ , 𝑚.

mark 3.2. We further compare our factor model with the existing factor model in Wang et al. (2019) and Chen et al. (2021). We 
all first review the existing factor model.

𝑡 = �𝑡;𝐀1,⋯ ,𝐀𝑚�+𝑡, (6)

here 𝑡 is the observed tensor time series, 𝑡 ∈ ℝ𝑣1×⋯×𝑣𝑚 , 𝑣𝑘 < 𝑟𝑘, 𝑘 = 1, ⋯ , 𝑚 is the latent factor series, 𝑡 ∈ ℝ𝑟1×⋯×𝑟𝑚 is 
hite noise, i.e., cov(𝑡, 𝑡−ℎ) = 𝟎, ℎ ≠ 0, and {𝐀𝑘}𝑚𝑘=1, 𝐀𝑘 ∈ ℝ𝑟𝑘×𝑣𝑘 are the semi-orthogonal factor loading matrices assuming 
at the magnitude of 𝑡 is taken into account in 𝑡. As mentioned in Chen et al. (2021), 𝑡 and {𝐀𝑘}𝑚𝑘=1 are not identifiable. 
nce the error series in (6) is white noise, it is obvious that 𝑡 ×(𝑘) 𝐀⊤

𝑘,0 =𝑡 ×(𝑘) 𝐀⊤
𝑘,0, 𝑘 = 1, ⋯ , 𝑚 is a white noise series, where 

𝑘, 𝐀𝑘,0) construct an orthogonal matrix. Therefore, the existing methods employ the linear metric, covariance matrix, to achieve 
e dimension reduction. This implies that the existing methods search for the linear transformations of the data that capture the full 
ear dependence.
The main difference between the tensor factor models in (6) and (2) is the error series. While the error in the existing tensor factor 
odel is a white noise series, the error in our tensor factor model is a martingale difference sequence. With this subtle difference, 
r approach has several differences compared to the existing method. Under our factor model, we have a nice interpretation for the 
ctors 𝑡 which produces the conditional mean 𝔼(𝑡 ∣ 𝑡−1) along with the factor loading matrices {𝐂𝑘}𝑚𝑘=1, whereas �𝑡; 𝐀1, ⋯ , 𝐀𝑚�

not necessarily the conditional mean. This implies that our dimension reduction approach can fully recover the optimal predictor, 
e conditional mean, through the factors 𝑡 and the factor loading matrices {𝐂𝑘}𝑚𝑘=1 even after the dimension reduction is achieved. 
e to this fact, our approach may allow us to have more accurate forecasting especially when building a model with our factors; 
e the real data applications in Section 5. Furthermore, the existing methods reduce the dimension by the linear dependence. Unless 
e data is Gaussian, the linear dependence is not sufficient to summarize the full dependence. On the other hand, our approach can 
lly carry the conditional mean information where both the linear and the nonlinear dependence may exist. Hence, our approach 
uld be more robust and flexible to the dependence and the distribution of the data. Moreover, it is possible for our tensor factor 
odel to detect more factors than the existing tensor factor model which may lead to a better prediction. In particular, we have the 
sted structure, i.e., span(𝐀𝑘) ⊆ span(𝐂𝑘), 𝑘 = 1, ⋯ , 𝑚 with equality when the white noise 𝑡 is a martingale difference sequence 
4

hich is not true in general; see Example 2.2 and 2.3 in Shao (2011) for examples of a white noise that are not martingale difference. 
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e shall provide one example where two factor models target different factors and factor loading spaces to better understand the 
fferences between two factor models.

ample 3.1. Let the data be

𝑡 = �(1,𝑡,1,𝑡);𝐌1,𝐌2�+ 𝑡,

here 𝑡 ∈ ℝ𝑟1×𝑟2 is an i.i.d. mean zero error series, 𝐌1 ∈ ℝ𝑟1×𝑑1 , 𝐌2 = (𝐌̃2, 𝐌2), 𝐌̃2 ∈ ℝ𝑟2×𝑣2 , 𝐌2 ∈ ℝ𝑟2×(𝑑2−𝑣2), 𝑣2 < 𝑑2, 1,𝑡 ∈
𝑑1×𝑣2 is not white noise, and 1,𝑡 ∈ℝ𝑑1×(𝑑2−𝑣2) is white noise but not martingale difference.

Notice that �1,𝑡; 𝐌1, 𝐌2� is a white noise sequence along with 𝑡. Then the error series in (6) becomes 𝑡 = �1,𝑡; 𝐌1, 𝐌2� +𝑡

hereas the error series in (2) is identical to 𝑡 = 𝑡 − �𝔼 
{
(1,𝑡,1,𝑡) ∣ 𝑡−1

}
; 𝐌1, 𝐌2�. Due to this fact, two models have different 

ctors and factor loading spaces. Under the factor model of the existing method in (6), the factor is 𝑡 =1,𝑡 and the factor loading 
aces are 

{
span(𝐌1), span(𝐌̃2)

}
. On the other hand, under our factor model in (2), the factor becomes 𝑡 = 𝔼 

{
(𝑡,1,𝑡) ∣ 𝑡−1

}
d the factor loading spaces are 

{
span(𝐌1), span(𝐌2)

}
=
{
span(𝐌1), span(𝐌̃2,𝐌2)

}
, thus two approaches identify different factors 

d factor loading spaces. It would be interesting to observe the numerical performance of two approaches for several cases, e.g., 
hen two target subspaces are identical or different. We shall address this question in our simulation. Lastly, we remark that our 
proach extends Lee et al. (2023) from i.i.d. tensor data to tensor time series. Lee et al. (2023) introduced a semiparametric tensor 
gression model for a tensor response and a vector predictor, while we introduce a factor model to achieve the dimension reduction 
r tensor time series. As we consider the temporal dependence and the dependence between two tensors, this extension is nontrivial 
d requires new techniques.

In the further sections, we shall introduce the estimation procedure with a new metric, the CTMDD, which allows us to estimate 
𝑘}𝑚𝑘=1 indirectly by the fact in (3). Our approach consistently estimates {𝐂𝑘}𝑚𝑘=1 through the eigen-decomposition of the CTMDD, 
us it does not require an iteration procedure and makes it simple to implement.

2. Cumulative tensor martingale difference divergence

For each mode 𝑘, our specific goal is to seek linear forms of (𝑡)(𝑘) that are mean independent of the past 𝑡−1. Since we have a 
ite number of observations, we approximate the mean independence of the linear transformation of (𝑡)(𝑘) on 𝑡−1 by considering 
−1,𝑡−ℎ0 = 𝜎(𝑡−1, ⋯ , 𝑡−ℎ0 ) with a prespecified positive integer ℎ0 which is commonly used in the literature; see Lam et al. (2011), 
ang et al. (2019), Chen et al. (2021) among others. Next, we shall suggest a new metric, the CTMDD, that summarizes the mean 
pendence information between 𝑡 and 𝑡−1,𝑡−ℎ0 in a pairwise fashion.

finition 3.3. For 𝔼(‖𝑡‖2𝐹 + |𝐾(𝑡, 𝟎)|2) <∞, the mode-𝑘 cumulative tensor martingale difference divergence matrix (CTMDDM), 
(𝑘)
ℎ0
, is defined as

𝐌(𝑘)
ℎ0

=
ℎ0∑
ℎ=1

{
−𝔼

[
{(𝑡)(𝑘) − 𝜇(𝑘)}{( ′

𝑡 )(𝑘) − 𝜇(𝑘)}⊤𝐾(𝑡−ℎ,
′
𝑡−ℎ)

]}
=

ℎ0∑
ℎ=1

Ψ(𝑘)
ℎ

, (7)

here Ψ(𝑘)
ℎ

= −𝔼 
[
{(𝑡)(𝑘) − 𝜇(𝑘)}{( ′

𝑡 )(𝑘) − 𝜇(𝑘)}⊤𝐾(𝑡−ℎ,
′
𝑡−ℎ)

]
, ( ′

𝑡 , 
′
𝑡−ℎ) is an independent copy of (𝑡, 𝑡−ℎ), (𝑡)(𝑘) ∈ℝ𝑟𝑘×Π𝑗≠𝑘𝑟𝑗

the mode-𝑘 matricization of 𝑡, and 𝜇(𝑘) = 𝔼{(𝑡)(𝑘)}, and 𝐾(⋅, ⋅) is a distance of strong negative type (Lyons, 2013) for a tensor. 
llectively, we define the cumulative tensor martingale difference divergence (CTMDD) as the set,

ℎ0
=
{
𝐌(1)

ℎ0
,⋯ ,𝐌(𝑚)

ℎ0

}
.

Similar to 𝚪ℎ0
, 𝐌(𝑘)

ℎ0
is a 𝑟𝑘 × 𝑟𝑘 real, symmetric, and positive semi-definite matrix. It is worth noting that the CTMDD ℎ0

is 
fined for a general distance 𝐾(⋅, ⋅), where a metric space (𝑡; 𝐾) has strong negative type; see Lyons (2013) and Chakraborty and 
ang (2019) for more discussion on the strong negative type. One natural example of 𝐾(⋅, ⋅) is Frobenius norm, i.e., 𝐾1( ,  ′) = ‖−
′‖𝐹 ,  ∈ℝ𝑟1×⋯×𝑟𝑚 . To efficiently quantify the mean dependence between two tensors that often have large dimensions, we adopt 
e distance in Chakraborty and Zhang (2019) and employ 𝐾2( ,  ′) =

√∑
𝑖 ‖((𝑘))⋅𝑖 − ( ′

(𝑘))⋅𝑖‖, where ((𝑘))⋅𝑖 is the 𝑖-th column 
 (𝑘). On the other hand, we consider another distance which is related to Mahalanobis distance that shows some advantages 
der our simulation study, i.e., 𝐾3( ,  ′) = ‖ − ′‖𝐹 , where  = � ; 𝚺−1∕2

1 , ⋯ , 𝚺−1∕2
𝑚 � and 𝚺𝑘 = 𝔼 

{
((𝑘) − 𝜇̃𝑘)((𝑘) − 𝜇̃𝑘)⊤

}
, 

= 𝔼((𝑘)), 𝑘 = 1, ⋯ , 𝑚. In practice, when the dimension of the data is large, the distance 𝐾2 or 𝐾3 are preferred instead of 
5

1 based on our simulation study in Section 4. Also, if there is a prior knowledge regarding the group information in the data, 
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2 can easily incorporate such a group information into the distance. For example, when different economic indices for different 
untries are analyzed, different countries can be grouped based on the continent information. More specifically, if the mode-2 
presents the countries and there exists three different continents in the data, let’s say (𝑡)(1) =

(
(1,𝑡)(1), (2,𝑡)(1), (3,𝑡)(1)

)
∈ℝ𝑟1×𝑟2 , 

𝑖,𝑡)(1) ∈ℝ𝑟1×𝑟𝑖,2 ,
∑3

𝑖=1 𝑟𝑖,2 = 𝑟2. Then we can use this group information and define

𝐾2(𝑡,
′
𝑡 ) =

√‖‖‖(1,𝑡)(1) − ( ′
1,𝑡)(1)

‖‖‖+ ‖‖‖(2,𝑡)(1) − ( ′
2,𝑡)(1)

‖‖‖+ ‖‖‖(3,𝑡)(1) − ( ′
3,𝑡)(1)

‖‖‖.
rthermore, if the scales of the elements are quite different or show some correlations from the data, the Mahalanobis distance 𝐾3
ould be preferred since the Mahalanobis distance measures the fair distance after taking into account the scale differences and the 
rrelation.

The CTMDD is defined by collecting the mean dependence between 𝑡 and 𝑡−1,𝑡−ℎ0 in a pairwise fashion. As mentioned in Section 
of Lee and Shao (2018), it is possible to consider the mean dependence between 𝑡 and 𝑡−1,𝑡−ℎ0 jointly and propose a variant of 
e CTMDD. However, based on our numerical study which is reported in our supplementary material, dimension reduction with a 
riant matrix shows a very comparable but slightly less accurate performance. Thus, we shall only present the numerical results of 
e pairwise approach with ℎ0

in this main paper; see the supplementary material for more details regarding the joint approach.
Under the condition that (𝑡; 𝐾) has strong negative type and by following the arguments in Lyons (2013), we can show that 

(𝑘)
ℎ0
indeed maintains the key property of 𝚪ℎ0

and establish the property of ℎ0
.

oposition 3.1. For 𝔼(‖𝑡‖2𝐹 + |𝐾(𝑡, 𝟎)|2) <∞ and 𝑘 = 1, ⋯ , 𝑚,

. There exist 𝑟𝑘 − 𝑑𝑘 linearly independent combinations of (𝑡)(𝑘) such that they are mean independent of {𝑡−ℎ}
ℎ0
ℎ=1 if and only if 

rank
(
𝐌(𝑘)

ℎ0

)
= 𝑑𝑘.

. Let 𝛼 ∈ span⟂
(
𝐌(𝑘)

ℎ0

)
, then 𝔼(𝑡 ×(𝑘) 𝛼

⊤ ∣𝑡−ℎ) = 𝔼(𝑡 ×(𝑘) 𝛼
⊤) a.s. for ℎ = 1, ⋯ , ℎ0.

. If 𝐾 is Frobenius norm 𝐾1, span
(
𝐌(𝑘)

ℎ0

)
=

∑
𝑖 span

(
𝚪𝑖
ℎ0

)
, where 𝚪𝑖

ℎ0
∈ ℝ𝑟𝑘×𝑟𝑘 is the CMDDM with (𝑡)

(𝑘)
⋅𝑖 and vec(𝑡−ℎ) where 

(𝑡)
(𝑘)
⋅𝑖 is the 𝑖-th column of (𝑡)(𝑘).

mark 3.3. The first and second assertions in Proposition 3.1 generalize Lemma 2.1 of Lee and Shao (2018) in two directions 
hich seem to be nontrivial. One is extending the approach in Lee and Shao (2018) to a tensor time series. The other direction 
generalizing the approach of Lee and Shao (2018) by adopting a general class of distances 𝐾 which is a strong negative type. 
oposition 3.1 guarantees that the generalized metric certainly measures the full mean dependence between the current and the 
st tensor time series up to lag ℎ0. This can be viewed as an analog of Theorem 3.11 in Lyons (2013), whereas the theoretical 
gument is noticeably different. Also, this suggests that 𝐌(𝑘)

ℎ0
contains the number and the linear forms of the tensor time series 

𝑡)(𝑘) that are mean independent of 𝑡−1,𝑡−ℎ0 . We further remark that the subspace span
(
𝐌(𝑘)

ℎ0

)
is certainly related to span(𝐂𝑘) and 

belongs to span(𝐂𝑘) for 𝑘 = 1, ⋯ , 𝑚 under the factor model in (2). The third assertion in Proposition 3.1 states the connection 
tween 𝐌(𝑘)

ℎ0
and the vector counterpart 𝚪ℎ0

. It indicates that the mean dependence information contained in 𝚪ℎ0
is all accumulated 

 ℎ0
when 𝐾 =𝐾1. It is also worth pointing out another approach to utilize 𝚪ℎ0

to measure the mean dependence for tensor time 
ries. We can compute the CMDDM 𝚪̃ℎ0

∈ ℝ
∏

𝑘 𝑟𝑘×
∏

𝑘 𝑟𝑘 with vectorized tensor time series {vec(𝑡)}𝑛𝑡=1. This method is related to 
e vectorized factor model in (2) of Wang et al. (2019). However, this approach cannot preserve the meaningful structure of the 
nsor time series thus may lose some inter-relationship which appears among each mode and could lead to a loss of interpretation. 
rthermore, this approach has more number of parameters for the factor loading matrices compared to our approach under (2); see 
ore discussions on the vectorized factor model in Wang et al. (2019). Lastly, we shall mention about the user-chosen number ℎ0. 
milar to the method of Wang et al. (2019), any ℎ0 can be selected for our approach if the rank of any {Ψ

(𝑘)
ℎ
}ℎ0
ℎ=1 is 𝑑𝑘 since this 

ill make the rank of 𝐌(𝑘)
ℎ0
be 𝑑𝑘. Selecting ℎ0 has been a common question in the literature and proposing a method to select ℎ0 is 

yond the scope of this paper. As mentioned in Wang et al. (2019), Lam and Yao (2012), generally, relatively small ℎ0 is used since 
ajor dependence is often at the short time lag and more noises can be added if large ℎ0 is selected. As suggested in the existing 
erature, we shall use small ℎ0 and follow their approach. Considering that most of the existing methods rely on a linear covariance 
atrix which can only measure the linear dependence, we view our approach can be a useful addition to the dimension reduction 
ethod of tensor time series since our proposed method can also handle nonlinear mean dependence.

Inspired by the estimation of 𝚪ℎ0
in Lee and Shao (2018), we construct the estimator of 𝐌(𝑘)

ℎ0
by

𝐌̂(𝑘)
ℎ0

=
ℎ0∑
ℎ=1

{
−1

(𝑛− ℎ)2

𝑛∑
𝑡1 ,𝑡2=ℎ+1

{(𝑡1
)(𝑘) − ()(𝑘)}{(𝑡2

)(𝑘) − ()(𝑘)}⊤𝐾(𝑡1−ℎ,𝑡2−ℎ)

}
,

6

here ()(𝑘) is the sample mean of (𝑡)(𝑘) based on {(ℎ+1)(𝑘), ⋯ , (𝑛)(𝑘)}.



C.E

3.

an

tw

By

by

re

w

W

Co

Co

an

Co

th

th

ca

m

as

Th

1

2

3

te

te

Re

re

𝑑1‖𝐌
th

of

sig

fa

as

ar

ra
Computational Statistics and Data Analysis 199 (2024) 107998. Lee and X. Zhang

3. Estimation

We introduce and establish the theoretical results for our estimation procedure using the CTMDD ℎ0
. We denote {𝜆(𝑘)

𝑗
, 𝛾 (𝑘)

𝑗
}

d {𝜆(𝑘)
𝑗

, ̂𝛾 (𝑘)
𝑗

} as eigenvalues in the descending order and the corresponding eigenvectors of 𝐌(𝑘)
ℎ0
and 𝐌̂(𝑘)

ℎ0
, respectively. We have 

o specific goals which are seeking the number and the linear transformations of (𝑡)(𝑘) that are mean independent of 𝑡−1,𝑡−ℎ0 . 
 Proposition 3.1, those information are contained in 𝐌(𝑘)

ℎ0
. We suggest to estimate span⟂(𝐂𝑘) = span(𝐂𝑘,0) as the space spanned

 the eigenvectors of 𝐌(𝑘)
ℎ0
corresponding to zero eigenvalues. As 𝐂𝑘 and 𝐂𝑘,0 are only identifiable up to span(𝐂𝑘) and span(𝐂𝑘,0), 

spectively, we define the following distance and show the theoretical result.

(𝐂𝑘, 𝐂̂𝑘) = ‖𝐏𝐂𝑘
− 𝐏𝐂̂𝑘

‖𝐹 , (8)

here 𝐏𝐂𝑘
, 𝐏𝐂̂𝑘

are the projection matrices of 𝐂𝑘, 𝐂̂𝑘, respectively. Notice that (𝐂𝑘, ̂𝐂𝑘) = 0 if and only if span(𝐂𝑘) = span(𝐂̂𝑘). 

e make the following assumptions, under which we establish the consistency of 
{
𝜆
(𝑘)
𝑗

, 𝛾̂
(𝑘)
𝑗

, span(𝐂̂𝑘)
}
.

ndition 3.1. We assume that 𝜆(𝑘)1 > 𝜆
(𝑘)
2 >⋯ > 𝜆

(𝑘)
𝑑𝑘

> 0 = 𝜆
(𝑘)
𝑑𝑘+1

=⋯ = 𝜆
(𝑘)
𝑟𝑘
for 𝑘 = 1, ⋯ , 𝑚.

ndition 3.2. Let {vec(𝑡)} be a strictly stationary and 𝛽-mixing process. We assume that there exists 𝛿 > 0 such that 𝔼‖𝑡‖6+3𝛿𝐹
<∞

d 𝔼|𝐾(𝑡, 𝟎)|6+3𝛿 <∞. For a 𝛿′ ∈ (0, 𝛿), 𝛽(𝑛) =𝑂

(
𝑛
− 2+𝛿′

𝛿′

)
.

ndition 3.3. Let {vec(𝑡)} be a strictly stationary and 𝑚-dependent process, and 𝔼‖𝑡‖6𝐹 <∞, 𝔼|𝐾(𝑡, 𝟎)|6 <∞.

Condition 3.1, Condition 3.2, and Condition 3.3 are analogous to (C1), (C2), and (C2’) in Lee and Shao (2018), which are stated for 
e CTMDD. Condition 3.1 provides us that there is a single eigenvector corresponding to each nonzero eigenvalue which simplifies 
e derivations. Condition 3.2 and Condition 3.3 are the assumptions imposed on the data 𝑡 with a general distance 𝐾(⋅, ⋅) which 
n be easily verified in practice. Those conditions guarantee that the sample estimate 𝐌̂(𝑘)

ℎ0
is close to the 𝐌(𝑘)

ℎ0
. In other existing 

ethods, the assumptions are imposed on the latent factor 𝑡 or the factor loading matrices {𝐂𝑖}𝑚𝑖=1. However, for our approach, the 
sumptions are made towards the data 𝑡 instead, and study the asymptotic properties.

eorem 3.1. For 𝑘 = 1, ⋯ , 𝑚,

. Under the assumptions in Condition 3.1 and Condition 3.2, we have |||𝜆(𝑘)𝑗
− 𝜆

(𝑘)
𝑗

||| = 𝑂𝑝

(
𝑛−1∕2

)
and ‖‖‖𝛾̂ (𝑘)𝑗

− 𝛾
(𝑘)
𝑗

‖‖‖ = 𝑂𝑝

(
𝑛−1∕2

)
for 

𝑗 = 1, ⋯ , 𝑑𝑘.
. Under the assumptions in Condition 3.1 and Condition 3.3, we have 𝜆(𝑘)

𝑗
=𝑂𝑝

(
𝑛−1

)
for 𝑗 = 𝑑𝑘 + 1, ⋯ , 𝑟𝑘.

. Under the assumptions in Condition 3.1, Condition 3.2, and (𝑑1, ⋯ , 𝑑𝑚) are known, we have

(𝐂𝑘, 𝐂̂𝑘) =𝑂𝑝(𝑛−1∕2).

Theorem 3.1 shows that the empirical eigenvalues and eigenvectors of 𝐌̂(𝑘)
ℎ0
are reasonable estimators of their population coun-

rparts for large sample size. Also, when the true dimension 𝑑𝑘 is given, we have the consistency of the estimated space span(𝐂̂𝑘) in 
rms of the distance .

mark 3.4. It is worth mentioning that Theorem 3.1 is developed for fixed 𝑟1, ⋯ , 𝑟𝑚. It is plausible to extend the consistency 
sults in Theorem 3.1 under the assumptions in Condition 3.2 and Condition 3.3 for moderately growing 𝑟1, ⋯ , 𝑟𝑚 with 𝑛 while 
, ⋯ , 𝑑𝑚 are fixed, i.e., 𝑟2

𝑘
𝑛−1 → 0 as 𝑛 →∞ for 𝑘 = 1, ⋯ , 𝑚. Our proof requires that ‖𝐌̂(𝑘)

ℎ0
−𝐌(𝑘)

ℎ0
‖2 → 0, where ‖𝐌̂(𝑘)

ℎ0
−𝐌(𝑘)

ℎ0
‖2 ≤

̂ (𝑘)
ℎ0

−𝐌(𝑘)
ℎ0

‖2
𝐹
≤
∑𝑟𝑘

𝑖=1
∑𝑟𝑘

𝑗=1 |(𝐌̂(𝑘)
ℎ0
)𝑖𝑗 −(𝐌(𝑘)

ℎ0
)𝑖𝑗 |2 =𝑂𝑝(𝑟2𝑘𝑛

−1), and (𝐌̂(𝑘)
ℎ0
)𝑖𝑗 , (𝐌

(𝑘)
ℎ0
)𝑖𝑗 are the (𝑖, 𝑗)-th entry of 𝐌̂

(𝑘)
ℎ0
, 𝐌(𝑘)

ℎ0
. Thus, under 

e condition that 𝑟2
𝑘
𝑛−1 → 0, here ‖𝐌̂(𝑘)

ℎ0
−𝐌(𝑘)

ℎ0
‖2 → 0 remains valid and allows us to obtain the consistency results. For the rates 

 convergence, it might be possible to derive explicit rates by considering different scenarios which depend on the strengths of the 
nal similar to the theoretical results in Wang et al. (2019) and Chen et al. (2021). Then the assumptions shall be made on the latent 
ctors 𝑡 and factor loading matrices {𝐂𝑘}𝑚𝑘=1 instead of the assumptions on the data 𝑡. In this paper, we shall work under the 
sumptions made on 𝑡 in Condition 3.2 and Condition 3.3, and the investigation on the rates of convergence for growing 𝑟1, ⋯ , 𝑟𝑚
e left for the future study.

In practice, the dimensions 𝑑1, ⋯ , 𝑑𝑚 are unknown and need to be estimated. To estimate the dimensions, we shall adopt the 
7

tio-based estimator following Wang et al. (2019) and Lam and Yao (2012), i.e., for 𝑘 = 1, ⋯ , 𝑚,
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𝑑𝑘 = argmin𝑗=1,⋯,𝑅

𝜆
(𝑘)
𝑗+1

𝜆
(𝑘)
𝑗

,

here 𝑅 = ⌊𝑟𝑘∕2⌋.
Based on the results in Theorem 3.1, the ratio-based estimator ensures that 𝑑𝑘 ≥ 𝑑𝑘 in probability. Thus, it will not under select 
e true dimension. The main reason that we cannot obtain the consistency result for the ratio-based estimator is because we do not 

ow the rate of convergence for 
𝜆
(𝑘)
𝑗+1

𝜆
(𝑘)
𝑗

when 𝑗 > 𝑑𝑘 and cannot guarantee that the minimum of 
𝜆
(𝑘)
𝑗+1

𝜆
(𝑘)
𝑗

is reached at 𝑑𝑘. It is possible 

 use an alternative method to select the dimensions. For instance, we can apply the ridge-type estimator (Xia et al., 2015), the 
owth ratio estimator (Ahn and Horenstein, 2013), the transformed contribution ratio estimator (Xia et al., 2017). However, we 
e the ratio-based estimator following the approach in Wang et al. (2019) and find out that the ratio-based estimator is simple to 
plement that provides reasonable performance; see Section 4.

 Simulation

In this section, we study the finite sample performance of our dimension reduction approach with three different distances, 
1, 𝐾2, 𝐾3 in Section 3.2. We compare our approach with the closely related methods, the factor model for a matrix time series 
 Wang et al. (2019) and the TOPUP approach for a tensor time series in Chen et al. (2021) which shows the most favorable finite 
mple performances in their simulation study. Notice that the method of Wang et al. (2019) is a special case for the TOPUP approach 
 Chen et al. (2021). When 𝑚 = 2, the method in Chen et al. (2021) becomes identical to the approach in Wang et al. (2019). Thus, 
e shall compare our approach with the existing method in Wang et al. (2019) when 𝑚 = 2 and compare our method with the 
proach in Chen et al. (2021) when 𝑚 > 2. In our simulations, we set the dimension 𝑟1 = 𝑟2 = 20, 50 or 𝑟1 = 𝑟2 = 𝑟3 = 20 and the 
mple size 𝑛 = 20, 50, 200. We consider ℎ0 = 1, 2 following the simulation study in Chen et al. (2021). For each example, we 
plicate the simulation 100 times and use the criteria (𝐂𝑘, ̂𝐂𝑘) in (8) to measure the accuracy of the dimension reduction method. 
tice that the smaller  indicates more accurate dimension reduction result. We first apply the dimension reduction method by 
tting the dimensions of the factor at the truth and carry out separate simulations to assess the performance of estimating the 
mensions using the ratio-based method in Section 3.3.

ample 4.1. The 3-by-2 factor series are generated by the AR(1) models and those are adopted from Wang et al. (2019).

𝑖,𝑡 = 𝜙𝑖𝑖,𝑡−1 + 𝜂𝑖,𝑡, 𝑖 = 1,⋯ ,6,

here 𝜙 = (𝜙𝑖)6𝑖=1 = (−0.5, 0.6, 0.8, −0.4, 0.7, 0.3)⊤ and (𝜂𝑖,𝑡)6𝑖=1 are generated from the standard normal distribution. The data is 

nerated by 𝑡 =𝐂1𝑡𝐂⊤
2 + 𝑡, where 𝑡 =

⎛⎜⎜⎝
1,𝑡 2,𝑡
3,𝑡 4,𝑡
5,𝑡 6,𝑡

⎞⎟⎟⎠ ∈ℝ𝑑1×𝑑2 , and 𝐂1 ∈ℝ𝑟1×𝑑1 , 𝐂2 ∈ℝ𝑟2×𝑑2 are generated from 𝑈 (−1, 1). The 

ror vec(𝑡) is generated from 𝑁(𝟎, 0.25𝚺𝑟2
⊗ 𝚺𝑟1

), where the diagonals of 𝚺𝑟1
, 𝚺𝑟2

are all 1 and the off-diagonals are 0.2. In this 
ample, since the data is Gaussian and the error 𝑡 is white noise and martingale difference, two approaches shall estimate the 
entical factor loading spaces, thus the dimensions of factors in model (6) and model (2) are identical, i.e., 𝑑1 = 3, 𝑑2 = 2 and 
= 3, 𝑣2 = 2.

Table 1 summarizes the averages and standard deviations of (𝐂1, ̂𝐂1) and (𝐂2, ̂𝐂2). Both approaches produce smaller -
stance which implies that all methods precisely estimate the targeted subspaces. We notice that the data is generated by Gaussian 
ear time series model where all the dependence can be captured by the linear metric. Thus, the existing method is expected 
 perform well. However, it is interesting to observe that our approach outperforms the existing method in terms of the smaller 
-distance when the sample size is small, i.e., 𝑛 = 20, 50. It appears that when 𝑛 = 200, our approach and the existing method are 
mparable with our approach slightly performing better than the existing method. Among different distances for our approach, our 
ethods with 𝐾2 and 𝐾3 tend to produce smaller -distance than the one with 𝐾1. Overall, we observe that -distance decreases 
 𝑛 increases or the dimensions 𝑟1 and 𝑟2 increase, where the latter phenomenon is often called the blessing of dimensionality. Also, 
e performances for all methods do not change substantially with different values of ℎ0 , which shows that both methods are less 
nsitive to the choice of ℎ0. Table 2 shows that the ratio-based estimator is correctly identifying the true dimension of the factor 
ost of the time.

ample 4.2. In this example, we consider a matrix time series with a factor which is white noise but not martingale difference. 
us, the error series in (6) and (2) are different. The 3-by-2 factor series are generated by the all-pass ARMA(1,1) models.

𝑖,𝑡 = 𝜙𝑖𝑖,𝑡−1 − 𝜙−1
𝑖 𝜂𝑖,𝑡−1 + 𝜂𝑖,𝑡, 𝑖 = 1,⋯ ,6,

here 𝜙 = (𝜙𝑖)6𝑖=1 = (0.3, 0.6, 0.1, 0.4, 0.7, 0.5)⊤ and (𝜂𝑖,𝑡)6𝑖=1 are generated by 𝑡(10). The data is generated by 𝑡 =𝐂1𝑡𝐂⊤
2 + 𝑡, with 
8

1 and 𝐂2 defined in Example 4.1. The error vec(𝑡) is generated from 𝑁(𝟎, 0.25𝐼𝑟2 ⊗ 𝐼𝑟1 ). Note that the factors 𝑡 are white noise 
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Table 1

Average and standard deviation of (𝐂1 , ̂𝐂1) and (𝐂2, ̂𝐂2). Two methods are compared: the factor model in Wang et al. (2019)
(ℎ0

) and our approach (ℎ0
).

ℎ0 = 1

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3

(𝐂1,𝐂1)

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.1447 (0.0632) 0.1014 (0.0264) 0.0928 (0.0244) 0.0937 (0.0260)

𝑟1 = 50, 𝑟2 = 50 0.0893 (0.0300) 0.0610 (0.0117) 0.0530 (0.0101) 0.0507 (0.0103)

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.0749 (0.0173) 0.0649 (0.0168) 0.0605 (0.0161) 0.0665 (0.0165)

𝑟1 = 50, 𝑟2 = 50 0.0505 (0.0128) 0.0394 (0.0077) 0.0340 (0.0067) 0.0325 (0.0076)

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.0331 (0.0058) 0.0315 (0.0052) 0.0303 (0.0052) 0.0491 (0.0078)

𝑟1 = 50, 𝑟2 = 50 0.0214 (0.0027) 0.0203 (0.0030) 0.0190 (0.0028) 0.0213 (0.0034)

(𝐂2,𝐂2)

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.0846 (0.0227) 0.0649 (0.0133) 0.0548 (0.0107) 0.0504 (0.0101)

𝑟1 = 50, 𝑟2 = 50 0.0461 (0.0117) 0.0362 (0.0073) 0.0322 (0.0071) 0.0311 (0.0077)

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.0586 (0.0189) 0.0451 (0.0111) 0.0366 (0.0076) 0.0314 (0.0069)

𝑟1 = 50, 𝑟2 = 50 0.0312 (0.0076) 0.0248 (0.0054) 0.0217 (0.0047) 0.0213 (0.0047)

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.0298 (0.0072) 0.0257 (0.0056) 0.0223 (0.0046) 0.0196 (0.0047)

𝑟1 = 50, 𝑟2 = 50 0.0151 (0.0028) 0.0134 (0.0022) 0.0123 (0.0023) 0.0161 (0.0026)

ℎ0 = 2

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3

(𝐂1,𝐂1)

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.1330 (0.0551) 0.1003 (0.0275) 0.0939 (0.0257) 0.0944 (0.0267)

𝑟1 = 50, 𝑟2 = 50 0.0782 (0.0210) 0.0582 (0.0113) 0.0527 (0.0103) 0.0513 (0.0102)

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.0770 (0.0191) 0.0659 (0.0162) 0.0617 (0.0159) 0.0665 (0.0163)

𝑟1 = 50, 𝑟2 = 50 0.0491 (0.0119) 0.0386 (0.0081) 0.0339 (0.0072) 0.0326 (0.0076)

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.0356 (0.0068) 0.0325 (0.0058) 0.0315 (0.0061) 0.0488 (0.0077)

𝑟1 = 50, 𝑟2 = 50 0.0227 (0.0035) 0.0207 (0.0031) 0.0192 (0.0029) 0.0214 (0.0035)

(𝐂2,𝐂2)

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.0752 (0.0168) 0.0613 (0.0121) 0.0536 (0.0104) 0.0507 (0.0105)

𝑟1 = 50, 𝑟2 = 50 0.0436 (0.0107) 0.0320 (0.0072) 0.0319 (0.0072) 0.0313 (0.0077)

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.0566 (0.0147) 0.0424 (0.0096) 0.0349 (0.0071) 0.0315 (0.0070)

𝑟1 = 50, 𝑟2 = 50 0.0311 (0.0081) 0.0249 (0.0060) 0.0219 (0.0050) 0.0213 (0.0047)

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.0315 (0.0083) 0.0256 (0.0056) 0.0216 (0.0044) 0.0192 (0.0044)

𝑟1 = 50, 𝑟2 = 50 0.0158 (0.0030) 0.0138 (0.0024) 0.0128 (0.0024) 0.0161 (0.0026)

Table 2

Relative frequency of correctly estimating dimension for the factor series. Two methods are compared: the 
factor model in Wang et al. (2019) (ℎ0

) and our approach (ℎ0
).

ℎ0 = 1 ℎ0 = 2

ℎ0
ℎ0

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3 𝐾1 𝐾2 𝐾3

𝐂1

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.72 0.92 0.96 1.00 0.81 0.93 0.97 1.00

𝑟1 = 50, 𝑟2 = 50 0.81 0.96 1.00 0.98 0.83 0.99 0.99 0.98

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.89 0.95 0.99 1.00 0.86 0.94 0.98 1.00

𝑟1 = 50, 𝑟2 = 50 0.97 0.99 0.99 1.00 0.95 0.99 0.99 1.00

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

𝑟1 = 50, 𝑟2 = 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

𝐂2

𝑛 = 20 𝑟1 = 20, 𝑟5 = 20 0.87 0.96 0.98 1.00 0.91 0.98 0.99 1.00

𝑟1 = 50, 𝑟5 = 50 0.98 1.00 1.00 1.00 0.98 1.00 1.00 1.00

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.86 0.94 0.99 1.00 0.89 0.94 0.99 1.00

𝑟1 = 50, 𝑟2 = 50 0.97 0.99 1.00 1.00 0.96 0.99 1.00 1.00

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.98 0.98 1.00 1.00 0.94 0.96 1.00 1.00

𝑟1 = 50, 𝑟2 = 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

t not martingale difference. Hence, the existing method treats 𝐂1𝑡𝐂⊤
2 as part of 𝑡 in (6) and cannot detect them. Therefore, our 

proach has a larger number of factors compared to the existing methods. Under our model in (2), our approach has 𝑑1 = 3, 𝑑2 = 2.

In Table 3 and Table 4, we observe that our approach is superior to the existing approach in terms of having smaller -distances 
9

d higher proportions of correctly identifying the true dimensions in all cases. In this example, we consider factors which are 
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Table 3

Average and standard deviation of (𝐂1 , ̂𝐂1) and (𝐂2, ̂𝐂2). Two methods are compared: the factor model in Wang et al. (2019)
(ℎ0

) and our approach (ℎ0
).

ℎ0 = 1

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3

(𝐂1,𝐂1)

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.3212 (0.1685) 0.1097 (0.0241) 0.0790 (0.0146) 0.0651 (0.0106)

𝑟1 = 50, 𝑟2 = 50 0.1122 (0.0375) 0.0542 (0.0105) 0.0398 (0.0063) 0.0336 (0.0048)

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.2745 (0.1013) 0.0902 (0.0176) 0.0550 (0.0099) 0.0377 (0.0060)

𝑟1 = 50, 𝑟2 = 50 0.1061 (0.0259) 0.0449 (0.0066) 0.0283 (0.0036) 0.0197 (0.0022)

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.2542 (0.1019) 0.0840 (0.0181) 0.0444 (0.0096) 0.0193 (0.0023)

𝑟1 = 50, 𝑟2 = 50 0.1100 (0.0257) 0.0402 (0.0071) 0.0220 (0.0036) 0.0096 (0.0007)

(𝐂2,𝐂2)

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.1537 (0.0602) 0.0626 (0.0157) 0.0436 (0.0090) 0.0356 (0.0064)

𝑟1 = 50, 𝑟2 = 50 0.0708 (0.0195) 0.0352 (0.0063) 0.0249 (0.0040) 0.0202 (0.0030)

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.1525 (0.0566) 0.0554 (0.0124) 0.0331 (0.0069) 0.0218 (0.0037)

𝑟1 = 50, 𝑟2 = 50 0.0731 (0.0196) 0.0302 (0.0057) 0.0185 (0.0030) 0.0125 (0.0014)

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.1373 (0.0397) 0.0495 (0.0102) 0.0264 (0.0057) 0.0112 (0.0017)

𝑟1 = 50, 𝑟2 = 50 0.0708 (0.0161) 0.0274 (0.0052) 0.0148 (0.0029) 0.0061 (0.0006)

ℎ0 = 2

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3

(𝐂1,𝐂1)

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.1961 (0.0663) 0.0946 (0.0189) 0.0737 (0.0129) 0.0652 (0.0108)

𝑟1 = 50, 𝑟2 = 50 0.0858 (0.0203) 0.0471 (0.0083) 0.0376 (0.0058) 0.0339 (0.0048)

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.1786 (0.0497) 0.0739 (0.0121) 0.0480 (0.0076) 0.0374 (0.0058)

𝑟1 = 50, 𝑟2 = 50 0.0791 (0.0146) 0.0362 (0.0045) 0.0247 (0.0029) 0.0198 (0.0022)

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.1701 (0.0398) 0.0648 (0.0127) 0.0351 (0.0060) 0.0186 (0.0023)

𝑟1 = 50, 𝑟2 = 50 0.0814 (0.0148) 0.0318 (0.0042) 0.0177 (0.0022) 0.0095 (0.0007)

(𝐂2,𝐂2)

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.1028 (0.0285) 0.0396 (0.0076) 0.0396 (0.0076) 0.0357 (0.0065)

𝑟1 = 50, 𝑟2 = 50 0.0530 (0.0138) 0.0227 (0.0034) 0.0227 (0.0034) 0.0203 (0.0031)

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.1013 (0.0286) 0.0280 (0.0052) 0.0281 (0.0052) 0.0216 (0.0037)

𝑟1 = 50, 𝑟2 = 50 0.0501 (0.0098) 0.0159 (0.0021) 0.0159 (0.0021) 0.0125 (0.0014)

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.0978 (0.0237) 0.0209 (0.0037) 0.0211 (0.0037) 0.0108 (0.0017)

𝑟1 = 50, 𝑟2 = 50 0.0508 (0.0099) 0.0116 (0.0017) 0.0117 (0.0017) 0.0061 (0.0006)

hite noise but not martingale difference. Therefore, the existing method with a covariance matrix cannot detect the factors. We 
eculate that this could be a part of the reason for the larger -distances produced by the existing approach. This example shows 
e advantage of our approach when there exists nonlinear dependence which is not detectable by a linear metric.

ample 4.3. We consider a tensor time series with factors in Example 4.2, but 2-by-2-by-2 factor series with 𝜙 = (𝜙𝑖)8𝑖=1 =
.7, 0.5, 0.2, 0.8, 0.3, 0.6, 0.1, 0.4)⊤. Similarly, the data is generated by 𝑡 = �𝑡; 𝐂1, 𝐂2, 𝐂3� + 𝑡, where 𝑡 ∈ ℝ𝑑1×𝑑2×𝑑3 , and 𝐂1 ∈
𝑟1×𝑑1 , 𝐂2 ∈ ℝ𝑟2×𝑑2 , 𝐂3 ∈ ℝ𝑟3×𝑑3 are generated from 𝑈 (−1, 1). The error vec(𝑡) is generated from 𝑁(𝟎, 0.25𝚺𝑟3

⊗ 𝚺𝑟2
⊗ 𝚺𝑟1

), 
here the diagonals of 𝚺𝑟1

, 𝚺𝑟2
, 𝚺𝑟3

are all 1 and the off-diagonals are 0.4, 0.3, 0.2, respectively. Similar to Example 4.2, we have 
= 𝑑2 = 𝑑3 = 2 under our factor model.

From Table 5, it is shown that our approach produces smaller -distances than the existing method which indicates that our 
proach generates more accurate dimension reduction results. Furthermore, we observe that the performance of the existing method 
proves greatly for the larger ℎ0 showing some sensitivity to the choice of ℎ0 while our approach shows comparable results across 
fferent values of ℎ0. In terms of the dimension selection results, we see that the ratio-based estimator produces reasonable results 
r our method which are reported in Table 6.

 Real data illustrations

In this section, we demonstrate the usefulness of our approach in the context of prediction by considering two real data sets 
hich are sales data and NYC taxi data. To compare the prediction performance, we compute the forecasting error after dividing the 
ntered data into training and testing sets. In particular, we measure the accuracy of the ℎ-step ahead prediction by

1 2
10

FE =
𝑟1⋯ 𝑟𝑚

‖𝑖+ℎ − ̂𝑖+ℎ‖𝐹 ,
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Table 4

Relative frequency of correctly estimating dimension for the factor series. Two methods are compared: the 
factor model in Wang et al. (2019) (ℎ0

) and our approach (ℎ0
).

ℎ0 = 1 ℎ0 = 2

ℎ0
ℎ0

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3 𝐾1 𝐾2 𝐾3

𝐂1

𝑛 = 20 𝑟1 = 20, 𝑟2 = 20 0.18 0.67 0.82 0.86 0.37 0.74 0.84 0.87

𝑟1 = 50, 𝑟2 = 50 0.63 0.98 1.00 1.00 0.86 1.00 1.00 1.00

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.16 0.61 0.93 0.99 0.35 0.86 0.98 1.00

𝑟1 = 50, 𝑟2 = 50 0.64 1.00 1.00 1.00 0.87 1.00 1.00 1.00

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.21 0.74 0.94 1.00 0.41 0.84 0.98 1.00

𝑟1 = 50, 𝑟2 = 50 0.67 1.00 1.00 1.00 0.88 1.00 1.00 1.00

𝐂2

𝑛 = 20 𝑟1 = 20, 𝑟5 = 20 0.56 0.95 0.95 1.00 0.79 0.98 0.98 1.00

𝑟1 = 50, 𝑟5 = 50 0.86 1.00 1.00 1.00 0.96 1.00 1.00 1.00

𝑛 = 50 𝑟1 = 20, 𝑟2 = 20 0.47 1.00 1.00 1.00 0.71 1.00 1.00 1.00

𝑟1 = 50, 𝑟2 = 50 0.85 1.00 1.00 1.00 0.97 1.00 1.00 1.00

𝑛 = 200 𝑟1 = 20, 𝑟2 = 20 0.56 1.00 1.00 1.00 0.71 1.00 1.00 1.00

𝑟1 = 50, 𝑟2 = 50 0.87 1.00 1.00 1.00 0.96 1.00 1.00 1.00

Table 5

Average and standard deviation of (𝐂1 , ̂𝐂1), (𝐂2, ̂𝐂2), and (𝐂3, ̂𝐂3). Two methods are compared: the 
TOPUP method in Chen et al. (2021) (ℎ0

) and our approach (ℎ0
).

ℎ0 = 1

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3

(𝐂1,𝐂1)
𝑛 = 20 0.0625 (0.0341) 0.0487 (0.0162) 0.0444 (0.0116) 0.0429 (0.0103)

𝑛 = 50 0.0641 (0.0331) 0.0454 (0.0134) 0.0423 (0.0097) 0.0414 (0.0083)

𝑛 = 200 0.0650 (0.0399) 0.0419 (0.0121) 0.0396 (0.0062) 0.0395 (0.0036)

(𝐂2,𝐂2)
𝑛 = 20 0.0736 (0.0568) 0.0487 (0.0162) 0.0434 (0.0157) 0.0420 (0.0147)

𝑛 = 50 0.0731 (0.0462) 0.0450 (0.0157) 0.0403 (0.0094) 0.0389 (0.0076)

𝑛 = 200 0.0671 (0.0404) 0.0447 (0.0120) 0.0395 (0.0063) 0.0374 (0.0038)

(𝐂3,𝐂3)
𝑛 = 20 0.0339 (0.0139) 0.0186 (0.0055) 0.0144 (0.0039) 0.0131 (0.0035)

𝑛 = 50 0.0332 (0.0119) 0.0147 (0.0036) 0.0093 (0.0021) 0.0076 (0.0018)

𝑛 = 200 0.0311 (0.0125) 0.0141 (0.0045) 0.0075 (0.0019) 0.0045 (0.0011)

ℎ0 = 2

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3

(𝐂1,𝐂1)
𝑛 = 20 0.0531 (0.0208) 0.0468 (0.0140) 0.0441 (0.0111) 0.0431 (0.0105)

𝑛 = 50 0.0538 (0.0209) 0.0449 (0.0120) 0.0425 (0.0093) 0.0415 (0.0083)

𝑛 = 200 0.0534 (0.0243) 0.0406 (0.0081) 0.0395 (0.0048) 0.0395 (0.0036)

(𝐂2,𝐂2)
𝑛 = 20 0.0574 (0.0332) 0.0458 (0.0175) 0.0428 (0.0151) 0.0418 (0.0143)

𝑛 = 50 0.0531 (0.0217) 0.0419 (0.0113) 0.0396 (0.0084) 0.0390 (0.0076)

𝑛 = 200 0.0520 (0.0291) 0.0419 (0.0091) 0.0388 (0.0052) 0.0374 (0.0038)

(𝐂3,𝐂3)
𝑛 = 20 0.0248 (0.0074) 0.0163 (0.0042) 0.0138 (0.0036) 0.0131 (0.0036)

𝑛 = 50 0.0235 (0.0070) 0.0120 (0.0031) 0.0086 (0.0019) 0.0077 (0.0018)

𝑛 = 200 0.0223 (0.0052) 0.0105 (0.0025) 0.0062 (0.0014) 0.0045 (0.0011)

here ̂𝑖+ℎ is the ℎ-step ahead prediction of 𝑖+ℎ based on the training set. Therefore, the smaller value of FE indicates more 
curate ℎ-step ahead prediction.

1. Sales data

In this section, we consider the sales data from a superstore. This data is available at https://www .kaggle .com /yanachshyogoleva /
perstore -sales -dataset /data. Since the daily data is too sparse, we first transform the data into weekly data by calculating the total 
ount of sales for 17 categories and 4 regions, and take one difference in order to make the data stationary. Thus, we have 
= [𝑥𝑖1 ,𝑖2 ,𝑡

] ∈ ℝ17×4 with the length of time equals to 𝑛 = 184, where 𝑥𝑖1,𝑖2 ,𝑡 is the total amount of sales for each category and 
gion in week 𝑡. We divide the centered data into training and testing sets where the last 37 data observations are set as testing set 
hich are approximately 20% of the data. In order to predict 𝑖+ℎ and generate ̂𝑖+ℎ, we follow the approaches in Matteson and 
11

ay (2011) and Lee and Shao (2018). In particular, we use the rolling-window approach. More specifically, we use the following 

https://www.kaggle.com/yanachshyogoleva/superstore-sales-dataset/data
https://www.kaggle.com/yanachshyogoleva/superstore-sales-dataset/data
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Table 6

Relative frequency of correctly estimating dimension for the factor series. Two methods 
are compared: the TOPUP method in Chen et al. (2021) (ℎ0

) and our approach (ℎ0
).

ℎ0 = 1 ℎ0 = 2

ℎ0
ℎ0

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3 𝐾1 𝐾2 𝐾3

𝐂1
𝑛 = 20 0.80 0.86 0.88 0.90 0.84 0.88 0.88 0.91

𝑛 = 50 0.79 0.93 0.93 0.94 0.83 0.93 0.92 0.93

𝑛 = 200 0.82 0.96 0.98 1.00 0.90 1.00 1.00 1.00

𝐂2
𝑛 = 20 0.53 0.67 0.67 0.75 0.59 0.74 0.77 0.75

𝑛 = 50 0.43 0.67 0.81 0.87 0.59 0.75 0.83 0.85

𝑛 = 200 0.38 0.66 0.83 0.92 0.54 0.74 0.91 0.92

𝐂3
𝑛 = 20 0.88 0.96 0.99 1.00 0.95 0.98 0.99 1.00

𝑛 = 50 0.84 0.99 1.00 1.00 0.90 0.99 1.00 1.00

𝑛 = 200 0.85 0.99 1.00 1.00 0.93 1.00 1.00 1.00

Table 7

Average of FE (the averages are multiplied 10−3). Two methods are compared: 
the factor model in Wang et al. (2019) (ℎ0

) and our approach (ℎ0
).

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3

ℎ0 = 1
1-step ahead 773.26 721.16 724.19 752.24

2-step ahead 1190.76 977.91 927.06 972.33

3-step ahead 1232.50 1012.49 1114.75 1107.34

ℎ0 = 2
1-step ahead 777.62 738.21 755.30 764.71

2-step ahead 1182.65 1045.26 965.40 939.79

3-step ahead 1229.59 1085.64 1150.19 1147.88

ℎ0 = 3
1-step ahead 770.89 751.24 766.75 769.03

2-step ahead 1189.74 1088.20 971.17 945.95

3-step ahead 1236.59 1125.51 1147.47 1125.87

ocedure. (1) We first estimate the dimension (𝑑1, 𝑑2) by using the entire data set. Since we have a moderate dimension for 𝑡, 
e apply the ratio-based estimator in Section 3.3 with 𝑅 = 𝑟𝑘 − 1. For ℎ0 = 1, 2, 3, 𝑑1 = 1, 𝑑2 = 3 are selected. (2) Based on the 
timates of (𝑑1, 𝑑2), we apply a dimension reduction method to (𝑖−𝑛𝑡𝑟𝑎𝑖𝑛+1, ⋯ , 𝑖), 𝑖 = 𝑛𝑡𝑟𝑎𝑖𝑛, ⋯ , 𝑛𝑡𝑟𝑎𝑖𝑛 + 36, 𝑛𝑡𝑟𝑎𝑖𝑛 is the sample size 
 the training set. We obtain the estimated factor series and factor loading matrices. (3) The optimal vector autoregressive model is 
ted to the estimated factors. The order is chosen by the Akaike information criterion (AIC) with the maximum order equals to 10. 
) With the fitted model, we generate the ℎ-step ahead prediction of the estimated factor series and multiply the estimated factor 
ading matrices in order to generate the ℎ-step ahead prediction of 𝑖+ℎ and calculate FE.
From Table 7, we observe that our approach noticeably outperforms the existing method in Wang et al. (2019) in terms of 
aller FE. This indicates that our approach generates more accurate forecasting for the sales data. Furthermore, Table 8, 9 report 
e estimated factor loading matrices after applying methods to the entire centered data with ℎ0 = 1. Here, we report the estimated 
ctor loadings for our approach with 𝐾1. However the estimated factor loading matrices with 𝐾2 and 𝐾3 are very similar to the 
es with 𝐾1 and those are reported in the supplementary material. For the categories, while copiers load heavily on the loading 
atrix followed by phones for the existing method, our approach selects copiers to have the highest weight followed by machines. 
r the regions, both methods agree to give highest weights to east, west, and central for the three factor loadings.

2. NYC taxi data

In this section, we consider the NYC taxi data which has been analyzed by Chen et al. (2021). This data is available at https://
ww1 .nyc .gov /site /tlc /about /tlc -trip -record -data .page. We select the recent data that contains the daily trip records in Manhattan 
rting from January 1, 2017 to December 31, 2018 before COVID 19. Similar to Chen et al. (2021), we calculate the total number 

 rides moving among the zones within each hour. Since the daily data is too sparse, we transform the data into weekly data by 
lculating the total number of rides occurred in 10 popular zones and busy hours which are 1-11 hours (PM), and take one difference 
 make the data stationary. Thus, we have 𝑡 = [𝑥𝑖1 ,𝑖2 ,𝑖3 ,𝑡

] ∈ℝ10×10×11 with the length of time equals to 𝑛 = 103, where 𝑥𝑖1,𝑖2 ,𝑖3 ,𝑡 is the 
tal number of rides from zone 𝑖1 (the pick-up zone) to zone 𝑖2 (the drop-off zone) and the pick-up time 𝑖3 hour in week 𝑡. Similar 
 Section 5.1, we divide the centered data into training and testing sets where the last 20 observations are set as testing set which 
e approximately 20% of the data. Next, we follow the same procedure in Section 5.1 with the selected dimensions 𝑑1 = 𝑑2 = 𝑑3 = 1
r ℎ0 = 1, 2, 3 and compare the prediction accuracy.
Table 10 summarizes the prediction performances for our approach and the existing method in Chen et al. (2021). It appears that 
12

r ℎ0
-based approach produces smaller forecasting error on average which suggests that our approach produces more accurate 

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Table 8

Estimated factor loading matrix 𝐂1 with ℎ0 = 1. Two methods are compared: the factor model 
in Wang et al. (2019) (ℎ0

) and our approach (ℎ0
) with 𝐾1 .

ℎ0

Accessories Appliances Art Binders Bookcases Chairs Copiers

0.04 -0.03 0.00 -0.03 -0.02 0.02 -0.99

Envelopes Fasteners Furnishings Labels Machines Paper Phones

-0.01 0.00 0.01 0.00 -0.06 0.02 -0.12

Storage Supplies Tables

0.03 0.02 -0.02

ℎ0

Accessories Appliances Art Binders Bookcases Chairs Copiers

0.01 0.00 0.00 -0.09 -0.06 -0.07 -0.97

Envelopes Fasteners Furnishings Labels Machines Paper Phones

0.00 0.00 -0.01 0.00 -0.19 0.00 -0.08

Storage Supplies Tables

-0.07 0.00 -0.04

Table 9

Estimated factor loading matrix 𝐂2 with ℎ0 = 1. Two methods are compared: the 
factor model in Wang et al. (2019) (ℎ0

) and our approach (ℎ0
) with 𝐾1 .

ℎ0
ℎ0

Central East South West Central East South West

-0.39 -0.91 0.02 0.12 -0.31 -0.95 0.01 0.00

0.84 -0.40 0.04 -0.35 0.32 -0.11 -0.08 0.94

-0.37 0.04 0.17 -0.91 0.89 -0.29 0.06 -0.33

Table 10

Average of FE. Two methods are compared: the factor model in Chen et 
al. (2021) (ℎ0

) and our approach (ℎ0
).

ℎ0
ℎ0

𝐾1 𝐾2 𝐾3

ℎ0 = 1
1-step ahead 543.08 526.73 526.04 526.28

2-step ahead 555.94 547.17 546.35 546.55

3-step ahead 568.06 559.47 558.80 558.91

ℎ0 = 2
1-step ahead 540.45 526.67 525.92 526.09

2-step ahead 553.89 546.65 546.26 546.32

3-step ahead 566.58 559.16 558.72 558.81

ℎ0 = 3
1-step ahead 537.80 526.06 525.99 526.31

2-step ahead 551.67 546.01 546.05 546.34

3-step ahead 565.36 558.71 558.66 558.88

ediction. It is worth mentioning that the improvement in prediction accuracy by our approach is mainly due to the use of ℎ0
ce the same modeling procedure is applied to the estimated factor series.
Fig. 1 reports heat maps that summarize the estimated factor loading matrices when ℎ0 = 1 for the existing method and our 
proach with 𝐾1. The estimated factor loading matrices for our approach with 𝐾2 and 𝐾3 are reported in the supplementary 
aterial and they are very similar to Fig. 1c, Fig. 1d. It is interesting to observe that two approaches select different areas as 
portant places. It shows that our ℎ0

-based approach selects the midtown center, upper east south areas as crucial regions for 
e pickup locations whereas the existing method chooses union square as the important area for the pickup locations. Also, union 
uare, upper east south are selected as important regions for dropoff locations for our method and the existing method.

 Conclusion

We propose a new dimension reduction framework for tensor time series by utilizing the CTMDD that can summarize dependence 
yond the linear mean dependence. Moreover, we can effectively estimate 𝑑1, ⋯ , 𝑑𝑚 by employing the ratio-based estimator in 
ction 3.3. The advantages of our method can be explained by a slightly more general and flexible tensor factor model than the 
13

ctor model in Wang et al. (2019) and Chen et al. (2021).
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. 1. Heat maps of the estimated factor loading matrices with ℎ0 = 1. Two methods are compared: the factor model in Chen et al. (2021) (𝐋ℎ0
) and our approach 

ℎ0
) with 𝐾1 . (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

For a possible future research direction, it would be interesting to develop an alternative tensor time series dimension reduction 
sed on CP decomposition, following recent advances in Han et al. (2021) and Chang et al. (2021), than factor models.
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