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ABSTRACT

In response to the lack of trust in Arti�cial Intelligence (AI) for

sequential planning, we design a Computational Tree Logic-guided

large language model (LLM)-based natural language explanation

framework designed for the Monte Carlo Tree Search (MCTS) al-

gorithm. MCTS is often considered challenging to interpret due

to the complexity of its search trees, but our framework is �exible

enough to handle a wide range of free-form post-hoc queries and

knowledge-based inquiries centered around MCTS and the Markov

Decision Process (MDP) of the application domain. By transform-

ing user queries into logic and variable statements, our framework

ensures that the evidence obtained from the search tree remains fac-

tually consistent with the underlying environmental dynamics and

any constraints in the actual stochastic control process. We eval-

uate the framework rigorously through quantitative assessments,

where it demonstrates strong performance in terms of accuracy

and factual consistency.
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1 INTRODUCTION

Arti�cial Intelligence (AI) algorithms often operate as black-box

systems, o�ering little to no insight into the reasoning behind

their outputs. As a result, domain experts hesitate to deploy these

algorithms in real-world settings due to concerns over transparency,

understandability, and accountability, leaving them without a clear
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Figure 1: We explain sequential planning by combining do-

main knowledge, search process, and logical reasoning.

understanding of the implications or rationale behind the decisions

made by these AI models [5, 12–16].

One family of such AI approaches that is widely used in com-

plex sequential planning problems such as manufacture engineer-

ing [17] and transit route planning [20] is Monte Carlo Tree Search

(MCTS) [10]. Understanding the results and decisions of MCTS

is challenging even for experts due to the large, sampling-based

search trees from which they are derived [2, 4]. Therefore, we de-

velop a logic-enabled large language models (LLMs) framework

that integrates knowledge and symbolic reasoning with natural lan-

guage, creating a robust yet expressive xAI system for explaining

planning algorithms like MCTS (Figure 1).

Aiming to address a �exible range of free-form user queries, our

framework leverages advanced LLMs, which enables the develop-

ment of xAI systems based on natural language [6, 8, 19]. More

speci�cally, it o�ers broad �exibility in handling queries by convert-

ing natural language inquiries submitted via a chat interface into

parameterized variables and logic expressions. It then evaluates the

search tree based on the criteria speci�ed by these logic expres-

sions, and the results are presented in the �nal explanation, once

again expressed in natural language. The framework also enables an

unlimited number of follow-up queries, facilitating an interactive,

back-and-forth communication with the user.

2 METHOD

Background. As the testbed for our framework, we use a para-

transit planning scenario formulated as a Markov Decision Process



(MDP). We de�ne the state space, action space, constraints, and

reward of the MDP. State transitions are driven by a simulated

demand model for paratransit trip requests. We leverage MCTS to

generate vehicle assignment decisions, which is initiated at each

“decision epoch” [9].

Query Categories and Types. The �rst category of queries, called

post-hoc queries, seeks explanations for the returned plan after the

algorithm has completed its execution and focuses on explaining

speci�c MCTS decisions. The second category, called background

knowledge-based queries, focuses on the MCTS decision-making

process in general. After the user submits a query, and a Query-

Classi�cation LLM component interprets the new query and at-

tempts to classify its intent to one of two categories. User queries

are not restricted in terms of content or narration. However, to

strategically address these queries, we pre-de�ne 26 speci�c query

types based on the user’s underlying intentions for the �rst cate-

gory. In contrast, for the second category, queries answerable with

background knowledge, there are no speci�c types, as one piece of

knowledge can address multiple queries.

Logic Generator and Parser. Each pre-de�ned query type is asso-

ciated with a few-shot prompt, containing example pairs of input

queries and output logic. After a new query is classi�ed into a

speci�c query type, the corresponding prompt is used to guide the

logic generation LLM component in formulating a logic statement

for the query. We categorize all user questions based on the type

of evidence required to answer them: those that can be addressed

with base-level evidence, referring to information directly extracted

from a tree node; those that rely on derived evidence, requiring

consideration of multiple nodes across di�erent depths or branches;

and those that require logic comparison evidence, involving both

multi-level calculations and comparisons between two branches us-

ing Computation Tree Logic (CTL) [7]. The variables are organized

into a three-level hierarchical structure, where each level builds

upon the variables and logic de�ned in the previous level.

Logic Scorer. To obtain both quantitative and qualitative evidence,

we de�ne scorer functions that take the MCTS tree including states

and actions as input and return either numerical or boolean val-

ues based on the evaluation of speci�c criteria [3]. For base-level

variables, the result is obtained by identifying the target node cor-

responding to the variable through tree traversal. For derived evi-

dence variables, we further de�ne formulas to calculate the overall

averaged quantitative result across all relevant nodes in the search

tree. Lastly, we utilize CTL model checking algorithms to obtain

logic comparison evidence, where the input is the MCTS tree.

Knowledge Retrieval. To provide domain knowledge-informed

explanations for category two queries, we prepared a lightweight

knowledge base containing approximately 3,000 words, divided

into 34 chunks. This knowledge base covers background informa-

tion on paratransit services and the MCTS algorithm, as well as

detailed components of the MDP, including prede�ned constraints,

algorithm objectives, and reward functions. We leverage the RAG

technique with the OpenAI text-embedding-3-small model to

obtain the top : results, passing information chunks to the LLM

only if their relatedness scores exceed a prede�ned threshold.

Table 1: Quantitative evaluation results.

Method Metric @1↑ @3↑

Llama3.1 FactCC / BERT 25.77% / 06.15% 34.62% / 12.31%

Ours (Llama) FactCC / BERT 67.88% / 86.54% 83.27% / 97.50%

GPT-4o FactCC / BERT 42.31% / 40.00% 51.15% / 55.77%

Ours (GPT) FactCC / BERT 72.12% / 88.46% 81.35% / 94.81%

Generating Explanations. Once the list of calculated evidence or

retrieved domain knowledge is obtained, the framework engages

with a Question-Answering LLM to generate the �nal response.

Key pieces of information provided to the LLM include the original

user query, the evidence variables used, the result from the scorer

function obtained in the previous step, and the retrieved knowledge.

3 EVALUATIONS

We quantitatively evaluate the framework to answer the research

question (RQ): Does our framework outperform existing LLMs in

generating factually accurate and relevant explanations? We con-

sider three LLM models for our evaluation: GPT-4 [1], GPT-4o [1],

and Llama3.1 [18] model. We systematically generated 620 distinct

input queries along with their corresponding ground truth. We com-

pare the generated explanations using two metrics: BERTScore [21]

and FactCC [11].

Factual Consistency Results and Discussions. As shown in Table 1,

the best result achieved across basic LLMs was a 51.15% FactCC

score, and the highest BERTScore achieved was 55.77%. Both results

suggest that basic LLMs struggle to generate relevant and factually

accurate explanations directly. We then compared them with our

framework with GPT-4 and Llama3.1 as backbone models, where

we observed signi�cant improvements. our framework consistently

outperformed the basic LLMs across all categories. Speci�cally, we

observed a 2.40× improvement using Llama3.1 and a 1.59× improve-

ment using the GPT-4 model for FactCC score. The improvement

in BERTScore was even more evident, with an overall increase of

7.92× for the Llama3.1 backbone model and 1.70× for the GPT-4

backbone model, respectively.

4 CONCLUSION

We present an explainability framework for MCTS sequential plan-

ning. Tested within the context of paratransit planning scenarios,

our framework can address a variety of user queries by o�ering post-

hoc explanations and RAG-based explanations, through three-level

hierarchical evidence. We thoroughly evaluated the framework per-

formance quantitatively. Results show that our framework achieved

overall superior performance compared to traditional LLMs.
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