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A B S T R A C T

This work investigates the steady-state nonlinear dynamics of a large-deformation flexible beam 
model under oscillatory flow. A flexible beam dynamics model combined with hydrodynamic 
loading is employed using large deformation beam theory. The equations of motion discretised 
using the high-order finite element method (FEM) are solved in the time domain using the effi
cient Galerkin averaging-incremental harmonic balance (EGA-IHB) method. The arc-length 
continuation method and Hsu’s method trace stable and unstable solutions. The numerical re
sults are in accordance with the physical experimental results and reveal multiple resonance 
phenomena. Low-order resonances exhibit hardening due to geometric nonlinearity, while 
higher-order resonances transition from softening to hardening influenced by inertia and geo
metric nonlinearity. A strong coupling between tensile and bending deformation is observed. The 
axial deformation is dominated by inertia, while bending resonance is influenced by an interplay 
between inertia, structure stiffness, and fluid drag. Finally, the effects of two dimensionless pa
rameters, Keulegan and Carpenter number (KC) and Cauchy number (Ca), on the response of the 
flexible beam are discussed.

1. Introduction

The work of flexible structures submerged in fluids has been the subject of considerable research activity in recent years, reflecting 
their potential for a wide range of applications in fields as diverse as bio-inspired machinery with soft bodies (Xia et al., 2023; Li et al., 
2021, 2024), renewable energy harvesting via flow-induced vibrations of piezoelectric materials (Mazharmanesh et al., 2022; Akcabay 
and Young, 2012; Chatterjee et al., 2024), fluid-conveying pipeline (Farokhi et al., 2021; Dehrouyeh-Semnani, 2025; Guo et al., 2024), 
and underwater ecological protection (Poi et al., 2021; Vymazal, 2013). Among the various flexible structures, flexible beam-like 
structures frequently display intricate dynamical behaviours due to their substantial disparities in normal and axial stiffnesses. 
These structures are susceptible to considerable elastic deformations, particularly in environments characterised by oscillatory flow 
induced by waves (Wang et al., 2022). The interaction of flexible beam-like structures with fluids represents a typical and important 
object of study, with aquatic plants (de Langre, 2019) representing a specific example. These plants are pivotal in aquatic ecosystems, 
providing habitats, sustenance and oxygen for marine organisms. Additionally, they can effectively safeguard coastal regions and 
communities from erosion by attenuating wave energy (Henderson, 2019). The theoretical modelling of the dynamics of flexible 
beam-like structures in oscillatory flows is fundamental to understanding the interaction between the fluid and the aquatic plants due 
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to their high degree of flexibility and consequent ’reconfiguration’ (Vogel, 1984), which results in significant relative motions between 
the fluid and the aquatic plants.

Although Fluid-Structure Interaction (FSI) models (Jin and Zhang, 2022; Wei et al., 2024) are the most effective way to capture 
fluid-solid interactions, and considerable research effort has been devoted to developing computational hydrodynamics models for 
flexible elongated structures in recent years (Divyaprakash, 2024; Huang et al., 2007; Chen et al., 2024), their high computational cost 
makes them unsuitable for large-scale parametric studies.

Consequently, many studies have utilised simplified modelling approaches, particularly when specific assumptions can reasonably 
simplify the fluid motion. In the case of oscillatory flows, the velocity at any given point within the flow field is a function of time. 
While the actual flow velocity variation can be highly complex, theoretical studies often assume that the flow velocity is dominated by 
a single frequency component (Zhang and Nakamura, 2024; Jacobsen et al., 2019). This assumption enables the differentiation of 
various oscillatory flow conditions by identifying two key parameters: the maximum flow velocity and the frequency of flow velocity 
fluctuations. For a specific oscillatory flow scenario, the movement of the flexible beam within the flow field will gradually reach a 
stable equilibrium state. Investigating this steady-state periodic response is of particular significance for elucidating the 
amplitude-frequency characteristics of the flexible beam structure.

Given that the flow velocity has been predetermined, the hydrodynamic forces are regarded as non-conservative loads related to 
the attitude of the flexible beam. This results in the driving of a rigid beam connected by torsion springs in series (Zeller et al., 2014) or 
a non-extensible cantilevered flexible beam (Luhar and Nepf, 2011, 2016) for a wide range of motions. The specific state of motion of 
the flexible beam under different oscillatory flow conditions results from the combined effect of the hydrodynamic forces and the 
structural elastic restoring forces on the flexible beam, given the finite structural stiffness of the beam itself (J. Lei and Nepf, 2019). The 
introduction of structural stiffness in flexible beams also allows for further refinement of modelling, for example, by considering 
differences between aquatic plant stems and leaves (Zhang and Nepf, 2021; Marjoribanks and Paul, 2022), by considering both the 
pure flow component in oscillatory flow (Beth Schaefer and Nepf, 2022) or by partially surfacing the water (Yin et al., 2023b). This, in 
turn, results in notable discrepancies between the hydrodynamics and those obtained from rigid-body models (Cavallaro et al., 2018; 
Reis et al., 2024), which in turn affects the quantitative assessment of the efficiency of wave attenuation of aquatic plants (Mullarney 
and Henderson, 2010; J. Lei and Nepf, 2019; Yin et al., 2023a).

Nevertheless, few studies have investigated the resonance phenomenon of flexible beams excited by oscillatory flows with a specific 
frequency of flow velocity change. Leclercq and de Langre (2018) investigated the ’reconfiguration’ of two-dimensional flexible beams 
in oscillatory flows. The authors identify four distinct states of motion for the flexible beam, contingent upon the offset of the fluid 
particles relative to the beam dimensions and the frequency of flow oscillations about the beam eigenfrequency. When the fluid 
amplitude is smaller than the width of the structure, the fluid inertia exceeds the drag force, triggering a resonance phenomenon in the 
flexible beam. This phenomenon leads to an amplification of the internal stresses. Kumar et al. (2021) conducted a theoretical analysis 
demonstrating that the resonance phenomenon only occurs in states of motion dominated by inertia. This contrasts states of motion, 
which are dominated by the additional inertia, such as that of the fluid. This suggests that resonance does not occur in drag-dominated 
motions. However, their model is based on the assumption of small deformations. Hasan et al. (2023) specifically investigated the 
effect of geometric nonlinearities on the amplitude-frequency characteristics due to the extensive range of motion of the flexible beam. 
They observed both stiffening effects due to geometric nonlinearities and instability due to bifurcation. Notwithstanding the 
comprehensive analysis of the wide range of motion of the flexible beam, the additional inertial forces of the fluid have been dis
regarded in the investigation.

In the modelling of cantilevered flexible beams, the tensile deformation was disregarded in most models employed in the previous 
study. Given that the axial stiffness of a flexible beam is typically considerably more significant than its bending stiffness, the load 
frequency required to excite the low-order bending resonance is significantly less than that needed to excite the tensile resonance in 
terms of the intrinsic vibration mode of the flexible beam itself. Nevertheless, due to the intricate impact of oscillating flow on the 
flexible beam, the possibility of tensile resonance also exists at low frequencies.

Furthermore, a comprehensive parametric investigation is imperative to elucidate the dynamic response of the flexible beam fully. 
However, due to the complexity of nonlinear coupling effects, conventional numerical methods encounter significant challenges in 
terms of computational efficiency. To achieve this, this work employs the incremental harmonic balance (IHB) method (LaBryer and 
Attar, 2010; Hall et al., 2013; Yan et al., 2023), an efficient numerical technique, as the principal instrument for investigating the 
steady-state response. The IHB method demonstrates remarkable computational efficiency in addressing intricate nonlinear systems, 
effectively reducing computational time without compromising accuracy. Consequently, this work addresses the modelling of the 
nonlinear dynamics of flexible beams. It guarantees the implementation of an efficient numerical simulation and analysis over a 
comprehensive range of parameter spaces by utilising the IHB method.

Although considerable progress has been made in the study of flexible beams in oscillatory flows based on equivalent fluid force 
models, it is worth noting that these studies require further simplification of the models. While these simplifications reduce compu
tational complexity in some cases, they do not fully explain the dynamics of flexible beams under large deformation conditions. 
Moreover, they are particularly limited in their ability to analyse resonance and instability phenomena. In light of these limitations, 
this work aims to comprehensively analyse the resonance characteristics and potential instability behaviour of flexible beams in 
oscillatory flows by avoiding simplifying assumptions on tensile deformations and fully accounting for hydrodynamic and geometric 
nonlinear effects. Furthermore, the efficient solution of steady-state dynamics for flexible beams in oscillating flows and the 
discrimination of stability is achieved by high-order FEM, IHB method, and Floquet theory with guaranteed accuracy.

The following is a description of the structure of this work. Section 2 commences with underwater flexible beam dynamics 
modelling, employing the tenets of large deformation beam theory and equivalent hydrodynamics. The equations of motion are 
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established based on the high-order FEM. The EGA-IHB method obtains the steady-state periodic solution and tracks the solution 
branching, utilising the arc length extension and Hsu’s methods. Section 3 presents the findings of a physical experiment on an un
derwater flexible beam, compared to the numerical modelling results. Section 4 examines the nonlinear steady-state dynamics of an 
underwater flexible beam subjected to oscillating flow, analysing its amplitude-frequency characteristic curves, specific kinematic 
states and forces. In conclusion, Section 5 presents the findings of this work and offers suggestions for further research.

2. Numerical method

In this work, a flexible beam dynamics model is employed in conjunction with an equivalent hydrodynamic loading model to 
examine the nonlinear steady-state dynamics of an underwater flexible beam subjected to wave action. This work employs a com
bination of flexible beam dynamics and hydrodynamics, utilising large deformation beam theory and equivalent fluid forces to 
simulate the oscillatory behaviour of the flexible beam in the submerged state. The empirical coefficients in the equivalent fluid forces 
are derived from existing physical experiments to ensure an accurate modelling of the hydrodynamics.

The governing equations of motion are strongly nonlinear partial differential equations, which are spatially discretised using the 
high-order FEM. The temporal discretization is performed using the EGA-IHB method, which is particularly effective for analysing 
steady-state dynamics in nonlinear systems due to its computational efficiency, which is significantly superior to that of conventional 
time domain methods. The arc-length continuation and Hsu’s methods are employed to investigate the response of the flexible beam 
under hydrodynamic conditions. This approach enables the solution curve to be traced continuously, thus facilitating the identification 
of stable and unstable equilibrium states.

2.1. Underwater flexible beam dynamics model based on high-order FEM

A dynamical model, which accurately describes the geometrical configuration of the flexible beam, was developed by Li (2015). 
The following assumptions underpin this model: 

1) The underwater flexible beam is composed of homogeneous and isotropic materials. Its cross-section, perpendicular to its cen
troidal axis, retains its planar configuration following deformation.

2) While elongation along the centroidal axis of the flexible beam is accounted for, the area of any cross-section remains constant 
following deformation.

3) It is assumed that the deformation of the beam occurs only in the OXY plane and that during deformation, the cross-section rotates 
only about the axis perpendicular to the OXY plane but not about the X-axis and the Y-axis.

Consider the motion of a flexible beam aligned with linear gravity waves on the surface of a water layer with a mean depth H and 
density ρf , as illustrated in Fig. 1. The physical parameters of the beam are as follows: length l, mass density ρ, Young’s modulus E, 
width b, thickness h, cross-sectional area A = hb, and area moment of inertia I = bh3 /12. The position of a cross-section along the 
beam can be described by the unstretched arc-length coordinate s along the centroidal axis, where 0 ≤ s ≤ l. The Cartesian coordinates 
of a point P on the centroidal line of the beam, before and after deformation, are given by r(s) = (s, 0) and R(s, t) =

(
s +ux, uy

)
in the 

OXY coordinate system, respectively. Here, ux(s, t) and uy(s, t) represent the longitudinal and transverse deformations of the point P, 
respectively. The stretch strain ε(s, t) and slope angle φ(s, t) are employed to describe the deformation of the planar beam. Thus, the 
displacement vector u(s, t) =

(
ux uy

)T at the point P can be expressed, 

u =

⎛

⎜
⎝

∫ s

0
(ecosφ − 1)dζ

∫ s

0
(esinφ)dζ

⎞

⎟
⎠ (1) 

where, e = ε + 1 denotes axial elongation.

Fig. 1. Underwater flexible beam model.
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In the FEM, the flexible beam is divided into Ne + 1 discrete nodes, with the arc length coordinate of the ith node denoted as si, i =

0,⋯,Ne. Each pair of adjacent nodes forms an element, and the local coordinate within the element is defined as s = (s − si) /li, where li 
= si+1 − si. By using interpolation functions to discretise ε(s, t) and φ(s, t) in the spatial domain, the quantities εe,i(s, t) and φe,i(s, t)
within the ith element are obtained, 

{
εe, i = Ni

1 ⋅ d(n)

φe, i = Ni
2 ⋅ d(n)

(2) 

where, d(n)
(t) =

(
ε0 φ0 κ0 ⋯ εi φi κi ⋯ εn φn κn

)T denotes the total degrees of freedom vector, where εi = ε(si,t), φi =

φ(si, t), and κi = ∂φ /∂s(si, t); Ni
1(s) denotes the linear interpolation function for the ith beam element; Ni

2(s) denotes the Hermite 
interpolation function for the ith beam element. Thus, the displacement vector at s can be expressed as 

u(s, t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑i−1

j=1

∫ sj

sj−1

(
ee,iCe,i

φ − 1
)
dζ +

∫ s

si−1

(
ee,iCe,i

φ − 1
)
dζ

∑i−1

j=1

∫ sj

sj−1

(
ee,iSe,i

φ

)
dζ +

∫ s

si−1

(
ee,iSe,i

φ

)
dζ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, si−1 ≤ s ≤ si, i = 1, 2, …Ne (3) 

where, Ce,i
φ = cosφe,i; Se,i

φ = sinφe,i. Define the operator, 

I[ • ] =
∑i−1

j=1

∫ sj

sj−1

( • )dζ +

∫ s

si−1

( • )dζ (4) 

Application of the Hamilton’s principle (Meirovitch, 2010), the governing equations of the flexible beam can be obtained, 

M ⋅
d2d(n)

dt2 = Q (5) 

where, M(d(n)
, t) =

∑Ne

k=1
∫ 1

0 Me,ids denotes the mass matrix and the element mass matrix Me,i is given by, 

Me,i = ρA
(

Me,i
x

T

⋅ Me,i
x + Me,i

y

T

⋅ Me,i
y

)
(6) 

where Me,i
x = I

[
Ni

1Ce,i
φ −Ni

2ee,iSe,i
φ

]
and Me,i

y = I
[
Nj

1Se,j
φ + Nj

2ee,iCe,j
φ

]
.

Q
(

d(n)
, dd(n)

/dt, d2d(n)
/dt2, t

)
=

∑Ne

k=1
∫ 1

0

(
Qe,i

F −Qe,i
I −Qe,i

E −Qi
C

)
ds denotes the generalised force vector, and the element gener

alized force vectors are respectively given by, 

Qe,i
F = Me,i

x

T

⋅ Fe,i
x + Me,i

y

T

⋅ Fe,i
y (7) 

Qe,i
I = ρA

⎛

⎜
⎜
⎜
⎝

I

[

− 2
∂εe,i

∂t
∂φe,i

∂t
Se,i

φ −

(
∂φe,i

∂t

)2

ee,iCe,i
φ

]

Me,i
x

T

+I

[

2
∂εe,i

∂t
∂φe,i

∂t
Ce,i

φ −

(
∂φe,i

∂t

)2

ee,iSe,i
φ

]

Me,i
y

T

⎞

⎟
⎟
⎟
⎠

(8) 

Qe,i
E =

(

EANi
1

T

⋅ Ni
1 + EI

∂Ni
2

∂s

T

⋅
∂Ni

2
∂s

)

⋅ d(n) (9) 

Table 1 
Equivalent fluid force.

Buoyancy force FB =
( (

ρ − ρf
)
gbh 0

)T

Drag force FD =
1
2

ρbCD|Ut |UtTt

Skin friction force FF =
1
2

ρbCF|Un |UnTn

Froude-Krylov force FVB = ρbhU
⌢

Added inertial force
FAM =

π
4

ρf b2CM

(
∂U

⌢

∂t
−

∂2u
∂t2

)
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Qe,i
C = α

(

EANi
1

T

⋅ Ni
1 + EI

∂Ni
2

∂s

T

⋅
∂Ni

2
∂s

)

⋅
∂d(n)

∂t
(10) 

where, α denotes the material damping factor;

Fe,i
(

d(n)
, dd(n)

/dt, d2d(n)
/dt2, t

)
=

(
Fe,i

x Fe,i
y

)T
= Fe,i

B + Fe,i
D + Fe,i

F + Fe,i
VB + Fe,i

AM denotes the equivalent fluid force vector acting on 

the ith element. The equivalent fluid force includes net buoyancy force Fe,i
B = FB(si, t) which is defined as the combined effects of 

gravity and water buoyancy, drag force Fe,i
D = FD(si, t), skin friction force Fe,i

F = FF(si, t), Froude-Krylov force Fe,i
VB = FVB(si, t) which 

arises from the unsteady pressure gradient (Batchelor, 1999), and added inertial force Fe,i
AM = FAM(si, t) which is due to the change in 

motion of the oscillatory flow. Their specific forms are provided in Table 1. Equivalent fluid forces are principally based on the Morison 
formula (Denny et al., 1998), a semi-empirical formula utilised to determine the forces on slender structures subjected to wave action. 
Fe,i is extensively employed in the dynamic modelling of underwater flexible beams, but frequently undergoes further simplification. 
For instance, the component of the additional inertial force in the beam axis direction is neglected due to the utilisation of a 
non-extensible beam model (Luhar et al., 2016).

As the flexible beam undergoes a significant degree of deformation, the equivalent fluid force acting on the flexible beam is 
calculated in terms of the relative velocity of the fluid with respect to the flexible beam. This results in the coupling of the motion of the 
flexible beam with the flow velocity.

Consider the flow field velocity vector at the point P underwater to be U
⌢

(s,t). The simplest assumption for describing the flow field 
velocity can be expressed as, 

U
⌢

1(s, t) =

(
0

Uf cos(ωt)

)

(11) 

where, Uf denotes the maximum oscillatory flow field velocity and ω denotes the oscillatory flow field velocity frequency. Considering 
the presence of waves, the linear wave theory (Dean and Dalrymple, 1991) can be employed, 

U
⌢

2(s, t) =

⎛

⎜
⎜
⎝

awω
sinh

(
kf (s + ux)

)

sinh(kH)
sin

(
kf uy − ωt

)

awω
cosh

(
kf (s + ux)

)

sinh(kH)
cos

(
kf uy − ωt

)

⎞

⎟
⎟
⎠ (12) 

where, aw denotes the wave amplitude; kf denotes the wave number, which satisfies the dispersion relation ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gkf tanh
(
kf H

)√

; g 

= 9.81 m /s2 denotes the gravitational acceleration. In applying linear wave theory to determine the velocity of the flow field, Uf can 
be set as awωcosh(kl) /sinh(kH), which denotes the maximum velocity of the flow field at the end position when the flexible beam is not 
deformed.

The following derivation applies to all flow field velocity assumptions and thus U
⌢

is still used to denote the flow field velocity 

vector. Define U
⌢

rel(s, t) = U
⌢

− ∂u/∂t as the relative velocity vector between the flexible beam and the fluid at the point P. Thus, the axial 
unit vector Tt(s, t) = ( cosφ sinφ )

T and the normal unit vector Tn(s, t) = ( −sinφ cosφ )
T of the flexible beam can be decomposed into 

the axial relative velocity Ut(s, t) = U
⌢

rel
T ⋅ Tt and the normal relative velocity Un(s, t) = U

⌢

rel
T ⋅ Tn.

The equivalent fluid forces require the drag coefficient CD, inertial coefficient CM, and friction coefficient CF. The drag coefficient 
CD and the inertial coefficient CM for the flexible beam depend on the KC, defined as KC = Uf Tf /b where Uf denotes the maximum 
oscillatory flow field velocity and Tf = 2π /ω denotes the flow field velocity period. Rational functions were used to fit the CD(KC) and 
CM(KC) measured in the experiments (Keulegan and Carpenter, 1958) and used in the calculations, 

Table 2 
fitting coefficients of CD(KC) and CM(KC).

i pD
i qD

i pM
i qM

i

0 2.3 × 104 1638 6.795 × 106 5.924 × 106

1 − 1129 45.84 − 9.433 × 105 − 1.602 × 106

2 348.1 66.32 3.313 × 104 1.839 × 105

3 - - 4267 − 8941
4 - - − 431.6 133.5
5 - - 10.73 -
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD = max

⎛

⎜
⎜
⎜
⎝

∑2

i=0
pD

i (KC)
i

(KC)
3

+
∑2

i=0
qD

i (KC)
i
, 1.95

⎞

⎟
⎟
⎟
⎠

CM =

∑5

i=0
pM

i (KC)
i

(KC)
5

+
∑4

i=0
qM

i (KC)
i

(13) 

The specific fitting coefficients are listed in Table 2. The coefficient of determination R2 (Glantz, 2016) for CD(KC) and CM(KC) are 
0.9922 and 0.9587, respectively. It should be noted that a direct fit to the experimental data would result in CD being <1.95 (CD in 
steady flow) when KC is relatively large (Luhar and Nepf, 2016). Therefore, in practical calculations, the maximum value of CD is taken 
to be 1.95.

The friction coefficient CF for the flexible beam depends on the Reynolds number (Re), defined as Re = Uf b /υf , where υf = 1 ×10−6 

denotes the kinematic viscosity of the water. The friction coefficient CF(Re) used in the calculation is given by (Zeller et al., 2014), 

CF = 0.074Re−0.2 (14) 

As Fig. 2, the variation of CD with KC is monotonic and increases rapidly with increasing KC, whereas the variation of CM with KC is 
relatively complex, with a non-monotonic interval for CM at KC < 20.

2.2. IHB method

Regardless of the assumptions made about the flow field velocity, the velocity is always periodic, resulting in an eventual periodic 
motion of the flexible beam in the flow field. The periodic response of the underwater flexible beam can be obtained using the IHB 
method. The method requires the solution to be expanded into a truncated Fourier series. Then, Eq. (5) is transformed into a nonlinear 
algebraic equation by harmonic balancing and solved by Newton’s method.

Define τ = ωt as the non-dimensional time. Upon replacing t by τ, the original differential relationship transforms, 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂d(n)

∂t
= ωḋ

(n)

∂2d(n)

∂t2 = ω2d̈
(n)

(15) 

where, •⋅ and •⋅⋅ denote ∂ • /∂τ and ∂2 • /∂τ2, respectively. Upon substituting Eq. (15) into Eq. (5), and expanding Eq. (5) around a non- 
trivial solution d(n)

0 (τ) using the Taylor expansion, while neglecting high-order terms, it can be obtained, 

(

ω2M −
∂Q

∂d̈
(n)

)⃒
⃒
⃒

d(n)

0

⋅ Δd̈
(n)

−
∂Q

∂ḋ
(n)

⃒
⃒
⃒

d(n)

0

⋅ Δḋ
(n)

+

(
∑3(Ne+1)

α=1

∂M
∂(d(n)

)α
(d(n)

)α −
∂Q

∂d(n)

)
⃒
⃒
⃒

d(n)

0

⋅ Δd(n)
= −r (16) 

where, ()α denotes the αth entry of a vector; Δd(n)
= d(n)

− d(n)

0 ;r
(

d(n)
, ḋ

(n)
, d̈

(n)
, τ

)
= ω2M ⋅ d̈

(n)
− Q

(
d(n)

, ḋ
(n)

, d̈
(n)

, τ
)

denotes residual 

vector. The specific forms of ∂Q/∂d(n), ∂Q/∂ḋ
(n)

, ∂Q/∂d̈
(n)

and ∂M/∂(d(n)
)α are in Appendix A. The entry of d(n) and Δd(n) can be 

expressed using Fourier series, respectively, 

(d(n)
)α = a0

α +
∑Nf

i=1
ai

αcos(iτ) + bi
αsin(iτ)

= C ⋅ Pα

(17) 

Fig. 2. Fitted curves of CD(KC) and CM(KC) with KC.
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(Δd(n)
)α = Δa0

α +
∑Nf

i=1
Δai

αcos(iτ) + Δbi
αsin(iτ)

= C ⋅ ΔPα

(18) 

where, Nf denotes the truncation number; C(τ) =
(

1 cosτ sinτ ⋯ cosiτ cosiτ ⋯ cosNf τ cosNf τ
)

denotes the trigonometric 

base row vector; Pα =
(

a0
α a1

α b1
α ⋯ ai

α bi
α ⋯ aNf

α bNf

α

)T 
and ΔPα =

(

Δa0
α Δa1

α Δb1
α ⋯ Δai

α Δbi
α⋯ΔaNf

α ΔbNf

α

)T 

denote the corresponding coefficient vector. Thus, it can be obtained that d(n)
(τ) = Cg ⋅ P and Δd(n)

(τ) = Cg ⋅ ΔP, where Cg(τ) =

diag(C, …, C)
⏞̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅⏞ 3(Ne+1)

, P =
(

P1
T ⋯ P3(Ne+1)

T )T and ΔP =
(

ΔP1
T ⋯ ΔP3(Ne+1)

T )T. Similarly, the first-order and second-order 

derivatives of d(n) are ḋ
(n)

(τ) = Ċg ⋅ P and d̈
(n)

(τ) = C̈g ⋅ P, respectively; The first-order and second-order derivatives of Δd(n) are 

Δḋ
(n)

(τ) = Ċg ⋅ ΔP and Δd̈
(n)

(τ) = C̈g ⋅ ΔP, respectively. Thus, the εn and φn on the nth node can be obtained, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εn = a0,ε
n +

∑Nf

i=1
ai,ε

n cos(iτ) + bi,ε
n sin(iτ)

= C ⋅ Pε
n

φn = a0,φ
n +

∑Nf

i=1
ai,φ

n cos(iτ) + bi,φ
n sin(iτ)

= C ⋅ Pφ
n

(19) 

The harmonic balance procedure is then conducted. Substituting Eq. (17) and Eq. (18) into Eq. (16), Pre-multiplying Eq. (16) by 
CgT, and integrating the resulting equations from 0 to 2π yield, 

J ⋅ ΔP = R (20) 

where, 

J =
1
π

∫ 2π

0
CgT ⋅

((

ω2M −
∂Q

∂d̈
(n)

)⃒
⃒
⃒

d(n)

0

⋅ C̈g
−

∂Q

∂ḋ
(n)

⃒
⃒
⃒

d(n)

0

⋅ Ċg
+

(
∑3(Ne+1)

α=1

∂M
∂(d(n)

)α
(d(n)

)α −
∂Q

∂d(n)

)
⃒
⃒
⃒

d(n)

0

⋅ Cg

)

dτ (21) 

denotes the Jacobi matrix and 

R = −
1
π

∫ 2π

0

(
CgT ⋅ r

)
dτ (22) 

denotes the residual vector.
If an initial guess of d(n) is made, Newton iterations can continue until the norm of R is less than a preset tolerance, thereby 

obtaining a periodic solution of Eq. (5). To circumvent the necessity of directly calculating Galerkin integrals when generating J and R, 
the EGA procedure is employed. A comprehensive account of the EGA procedure can be found in Ju et al. (2020), which offers a more 
expedient approach than that of Eq. (21), Eq. (22), for the computation of J and R.

2.3. Arc-length continuation method

A response curve is a commonly employed tool for elucidating the variation in periodic response amplitudes as a function of a 
specific parameter, such as the external excitation frequency or a structural parameter. The continuation method (Ri et al., 2020) has 
been a prevalent approach for obtaining response curves in nonlinear dynamic analysis, as it can circumvent the occurrence of singular 
points at their peaks.

Define S as the arc-length parameter and X =
(

PT ω
)T. Given that the number of unknowns in X exceeds that of the equations in 

Eq. (5), the following augmented equation is employed (Woiwode et al., 2020), 

g(X) − S = 0 (23) 

where, g(X) =
(
Xp − Xb

)T ⋅
(
X − Xp

)
/ ‖ Xp − Xb‖, which Xp denotes the previous solution vector on the response curve and Xb denotes 

the solution vector before the previous one. In terms of Newton iterations, the following relationship holds, 
( J Rω

dg
/
dXT

)

⋅
(

ΔX
Δω

)

=

(
R

g(X) − S

)

(24) 

where, Rω = − 1
π

∫ 2π
0

(

CgT ⋅ ∂r
∂ω

)

dτ. After solving Eq. (24), X is updated by X + ΔX→X and ω is updated by ω + Δω→ω.
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2.4. Stability analysis

Once a steady-state periodic response of the underwater flexible beam has been obtained using the EGA-IHB method, an analysis of 
its stability is required. This is typically conducted using Floquet theory (Cheung et al., 1990), which involves introducing a minor 
perturbation to the steady-state periodic solution. Assume d(n)

∗ (τ) is the steady-state solution that satisfies Eq.(5) and δd(n)
(τ) is a small 

perturbation around d(n)
∗ . Using the Taylor expansion while neglecting high-order terms, the following result is obtained, 

(

ω2M −
∂Q

∂d̈
(n)

)⃒
⃒
⃒

d(n)
∗

⋅ δd̈
(n)

−
∂Q

∂ḋ
(n)

⃒
⃒
⃒

d(n)
∗

⋅ δḋ
(n)

+

(
∑3(Ne+1)

α=1

∂M
∂(d(n)

)α
(d(n)

)α −
∂Q

∂d(n)

)
⃒
⃒
⃒

d(n)
∗

⋅ δd(n)
= 0 (25) 

Transforming Eq. (25) to a state-space form with a state-space variable Y(τ) =
(

Y1
T Y2

T
)T, where Y1 = δd(n) and Y2 = dδd(n)

/dτ. 
The stability of Eq.(24) can be evaluated by calculating the eigenvalues of the transformation matrix B that transforms Y at τ = 0 to that 

at τ = 2π. The transformation matrix B can be computed using Hsu’s method in B =
∑NT

k=1 exp
(

Φ
(

2π
NT k

)
2π
NT

)

, where NT denotes the 

number of equal divisions of the period. The periodic matrix Φ(τ) is given by, 

Φ =

(
I

M̂
−1

⋅ K̂
0

M̂
−1

⋅ K̂
1

)

(26) 

where, ̂M(τ) =

(

ω2M − ∂Q
∂d̈

(n)

)

|
d(n)

∗

; K̂
0
(τ) =

(
∑3(Ne+1)

α=1
∂M

∂(d(n)
)α

(d(n)
)α − ∂Q

∂d(n)

)

|
d(n)

∗

; K̂
1
(τ) = − ∂Q

∂ḋ
(n) |

d(n)
∗

. If all the eigenvalues of B are inside 

the unit circle in the complex plane, the periodic solution is stable; otherwise, it is unstable.

3. Experiments and validations of numerical model

The experiments were conducted in a recirculation water channel at the University of Texas at Dallas. The water tunnel has a test 
section of 2 m length and 200 mm width with a background turbulence level of <1 % (Suresh et al., 2021; Aju et al., 2022). A 0.5 mm 
thickness acrylic flexible beam (Young’s modulus E = 3.2 GPa) with length l = 15 cm and width d = 20 mm was mounted in the 
middle of the water channel bed as shown in Fig. 3(a). The flexible beam was submerged inside the water and maintained a 50 mm gap 
between its free end and the water surface without bending. The design of the wave generator is also illustrated in Fig. 3(a).

The variations in streamwise velocity were achieved by moving an 80 μm stainless mesh mounted on a high torque motor-driven 
transverse system. Forward movements of the mesh decelerated the incoming flow, while backward movements accelerated it. To 
ensure a more uniform flow, this traverse system was positioned 40 cm downstream of the flexible beam, the target was to generate a 
sinusoidal wave form depicted as u(t) = U0(1 + δsin(ωt)), where U0 denotes the mean incoming flow field velocity generated by the 
water channel and δ denotes flow field velocity amplitude ratio. The motion of the frame was programmed to follow a trajectory 
defined by xω(t) = σωsin(2πfωt) in order to generate the sinusoidal waves with different wave amplitudes and frequencies, where fω is 
frequency of the moving net and σω is the moving frame amplitude. The transfer function U1 = δU0 = f(U0, σω) was calibrated by 
measuring the averaged velocity near the location of the flexible beam centre, and each calibration data point then was used as the 
training points for Radial Basis Function Method to generate the function surface U1 = f(U0,σω). With this calibrated function, we were 
able to realize the desire U1 and ω by adjusting parameters in the traverse system. To capture the flow field and verify the flow 
uniformity, a planar particle image velocimetry (PIV) system from TSI was applied to characterize the wave velocity. A field of view 
(FOV) of 135 mm × 84 mm was illuminated via a 1 mm thick laser sheet from a 30 mJ/pulse laser. The water flow was seeded with 
14 μm silver-coated hollow glass spheres with a density of 1.02 g /cm−3. The image pairs were captured with a 4 MP (2560 ×1600 mm 
pixels), 16-bit CMOS camera at a frequency of 60 Hz. Fig. 3(b) shows a sample case of the velocity along the depth-wise direction. The 
reciprocating motion of the wave generator was set to 0.1 Hz, and the target flow is u(t) = 0.136(1 +0.23sin(0.2πt)) m /s. The 

Fig. 3. (a) Schematic of the experiment set up. (b) Verification of the generated flow uniformity. The red solid line is the space averaged time series 
for the incoming velocity along the wall-normal direction, dark dash line represents the target flow velocity function u(t) = 0.136(1 +

0.23sin(0.2πt)) m /s, the grey solid lines show the time series at 3 different depths.
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experimental results demonstrated a good fitting with the target flow time series along the height of the flexible beam. The motion of 
the flexible beam was captured by a high-speed camera from DANTEC at a sampling frequency of 60 Hz. To facilitate the detection of 
beam vibrations, the side of the flexible beam facing the camera was painted by a luminous paint. A total of 8 sets of experiments were 
performed under different oscillating flow scenarios as shown in Fig. 4 and Fig. 5. In the numerical calculations, the flow field velocity 

assumption U
⌢∗

= ( 0 U0(1 + δsin(ωt)) )
T is used and the CD is set to 1.95 due to the effect of the current component. The numerical 

results demonstrate reasonable agreement with the experimental results. In order to quantitatively assess the error situation between 
simulation and experiment, the horizontal and vertical relative errors are defined as eh =

(
es,h −ee,h

)
/ee,h and ev =

(
es,v − ee,v

)
/ee,v, 

where es,h, ee,h denote the maximum horizontal displacement of simulation and experiment, respectively, and es,v, ee,v denote the 
maximum vertical displacement of simulation and experiment, respectively. It is worth noting that for the beam tested in the ex
periments, its first-order natural frequency was 6.6 Hz, which was more than one order of magnitude higher than the highest fω 
examined in the water channel. Therefore, the beam oscillations were dominated by the first-order deformations.

4. Numerical results

This work aims to examine the amplitude-frequency characteristics of flexible beams under different oscillatory flows. In the 

parametric study, Tf = 0.5 − 20 s which corresponds ω = 0.1π − 4π rad /s. In the case based on U
⌢

1, Uf = 1 − 15 cm /s. Thus, KC = 0.25 

− 150; Re = 200 − 3000. In the case based on U
⌢

2, aw = 5 − 35 mm /s. Thus, Uf = 0.252 − 17.32 cm /s; KC = 0.063 − 173.2; Re =

50.32 − 3463. In the numerical calculations, Ne = 35; Nf = 25.

Fig. 4. Comparison of experimental and numerical results. Snapshots of the motion (simulation) and trajectories (experimentation) of the flexible 
beam for one cycle under U0 = 0.136 m /s.
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The numerical results of the dynamics model are based on three specifications of flexible beam: high-density polyethene (HDPE, E 
= 0.93 GPa, ρ = 950 kg /m3, and h = 0.4 mm), low-density polyethene (LDPE, E = 0.3 GPa, ρ = 920 kg /m3, and h = 0.4 mm). The 
remaining physical parameters are as follows: H = 40 cm, ρf = 1000 kg /m3, b = 2 cm, l = 20 cm, and α = 0.002. Although the mass 
density of the HDPE and LDPE materials is approximately equal to that of water, the inertial force on the flexible beams is mainly 
provided by the flow field due to the added inertial force ∝π

4ρf b2CM, which is typically much more significant than ρbh.
To quantitatively describe the steady-state dynamic response of the flexible beam, defining the amplitude of the frequency response 

of the tensile strain ε and bending strain κ in the axis of the flexible beam, 

Σ{ε,κ} =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Ne+1

n=1

(
(
a0,{ε,κ}

n
)2

+
∑Nf

i=1

(
ai,{ε,κ}

n
)2

+
(

bi,{ε,κ}

n

)2
)√

√
√
√ (27) 

Also, defining the force-frequency response of the added inertial force and the drag force, 

Σ{m,d} =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Ne+1

n=1

(
(

a0,{m,d}
n

)2
+

∑Nf

i=1

(
ai,{m,d}

n

)2
+

(
bi,{m,d}

n

)2
)√

√
√
√ (28) 

where, ai,{m,d}
n and bi,{m,d}

n are harmonic coefficients of Qe,i
m = Me,i

x
T

⋅
(

Fe,i
x,AM +Fe,i

x,VB

)
+ Me,i

y
T

⋅
(

Fe,i
y,AM +Fe,i

y,VB

)
and Qe,i

d = Me,i
x

T
⋅ Fe,i

x,D +

Fig. 5. Comparison of experimental and numerical results. Snapshots of the motion (simulation) and trajectories (experimentation) of the flexible 
beam for one cycle under U0 = 0.284 m /s.
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Me,i
y

T

⋅ Fe,i
y,D, respectively, which 

{
Fe,i

x,{AM,VB,D}
Fe,i

y,{AM,VB,D}

}T
= F{AM,VB,D}(si, t).

As shown in Fig. 6, the amplitude-frequency characteristic curves of flexible beams under different flow field conditions exhibit 
multiple resonance phenomena. With the increase in Uf , the low-order resonances (for HDPE, ω ≈ 0.40 − 1.07 Hz; for LDPE, ω ≈ 0.34 
− 1.17 Hz) exhibit the hardening effect, predominantly attributable to the geometric nonlinearity. As the deformation of the flexible 
beam increases, the internal stress leads to a consequent rise in its structural stiffness, which results in higher resonance frequencies. In 
different, the amplitude-frequency characteristic curves for higher-order resonances (for HDPE, ω ≈ 5.20 − 8.83 Hz, ω ≈ 7.54 −

10.63 Hz; for LDPE, ω ≈ 3.27 − 4.84 Hz, ω ≈ 6.62 − 12.02 Hz, and ω ≈ 4.21 − 6.13 Hz) exhibit the softening effect followed by the 
hardening effect with the increase in Uf . This phenomenon can be understood because of the combined influence of inertia and 
geometric nonlinearity. At lower Uf , the inertia is predominant, leading to a reduction in resonance frequencies which means the 
softening effect. As Uf increases further, the geometric nonlinearity is gradually enhanced, ultimately resulting in the hardening effect.

Snapshots of motion in Fig. 7 further show that apart from Fig. 7.a.1 and Fig. 7.b.4, which distinctly showcase the typical motion 
patterns of the first and second vibration modes of the flexible beam, most of the periodic motions exhibit the mixture of both first and 

Fig. 6. The amplitude-frequency characteristic curves of flexible beams under different flow field conditions based on U
⌢

1 are presented in subplots 
(a) and (b), which correspond to HDPE and LDPE materials, respectively. The two coordinate regions of each subplot demonstrate the relationship 
between ε and κ as a function of ω, with solid lines indicating stable motion and dashed lines indicating unstable motion. Peaks on the amplitude- 
frequency curves are marked by green diamond-shaped blocks.
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second mode characteristics. This suggests that the vibration behaviour of the flexible beam is generally the result of multi-modal 
coupling rather than being dominated by a single vibration mode.

In the low-frequency range, the resonance of tensile and bending deformations occurs concurrently, indicating a strong coupling 
between these two deformations at low frequencies. However, as the flow frequency increases, the resonance frequencies of the tensile 
and bending deformations become increasingly distinct. This separation is likely related to the difference between the tensile and 
bending stiffnesses and influenced by the interaction of fluid forces and the flexible beam.

In conjunction with the force amplitude-frequency response curves illustrated in Fig. 8, the tensile deformation of the flexible beam 
is almost entirely dominated by the inertial force. The reason is that the axial component of the inertial force is significantly greater 
than the axial friction in the fluid resistance. In different, the bending deformation is influenced by both the inertia and the fluid 
resistance. The peak of the fluid resistance is insufficient to initiate the bending deformation resonance, and a certain level of inertial 
force is still necessary to excite the bending resonance.

The stability analysis shows that there are unstable regions in amplitude-frequency characteristic curves of the flexible beam. The 
frequency range of the unstable region expands as Uf increases. This phenomenon may be related to the relationship between inertia 
and structural stiffness, as HDPE and LDPE have almost the same density, but Young’s modulus of LDPE is only 1/3 of that of HDPE.

There is a significant difference between the amplitude-frequency characteristic curves based on U
⌢

2 (Fig. 9) and those based on U
⌢

1 
(Fig. 6). Geometrical nonlinearities have a more significant influence on the amplitude-frequency characteristics. Although inertia can 
still dominate the specific aw for flexible beams made of LDPE with low structural stiffness, the range of this specific aw becomes 
smaller.

From the snapshots of motion in Fig. 10, the coupling of the vibrational modes of each order of the flexible beam in its mode of 
motion is enhanced. In addition, the periodic motion of the flexible beam, driven by the symmetrically varying flow field velocity, is 
asymmetric. The asymmetry of the periodic motion becomes more significant as the structural stiffness and aw of the flexible beam 
increase, which is consistent with the conclusion of the existing study (Zhu et al., 2020). Combined with the amplitude-frequency 
characteristic curves in Fig. 9, it is also found that the asymmetry significantly expands the frequency range of resonance of the 
flexible beam, ultimately leading to the appearance of bifurcation.

The amplitude-frequency characteristic curves calculated based on U
⌢

2, the frequency ranges in which the tensile deformation 
resonance and the bending deformation resonance of the flexible beam occur overlap to a large extent, indicating that the degree of 

coupling between the two types of deformation is also greater than in the case which calculated based on U
⌢

1. From the force amplitude- 
frequency characteristic curves in Fig. 11, the tensile deformation of the flexible beam is still almost completely dominated by the 
additional inertial force of the fluid. However, the cause of the resonance of the bending deformation becomes more complex, 
especially between aw = 19 ∼ 21 cm, where there is a significant jump in the frequency of the flow field velocity that leads to the 
occurrence of the resonance, which is a result of the interaction between the asymmetry of the motion of the flexible beam, the 
resonance of the tensile deformation and the resonance of the bending deformation.

At higher ω, the deformation of the flexible beam motion becomes smaller and smaller, and its asymmetry gradually disappears.
The presence of two resonances in a narrow frequency range on the amplitude-frequency characteristic curve of the flexible beam at 

low ω and Uf may be attributed to the fact that the KC corresponding to ω and Uf at this time is situated within a non-monotonic 
interval on CM(KC).

Fig. 7. Snapshots of the motion of the flexible beam for one cycle under different wave period conditions in subplots (a) and (b), which correspond 

to HDPE and LDPE materials, respectively. The Uf based on U
⌢

1 is 15 cm. The coordinate regions represent the OXY plane where the beam is located 
and the coordinate scale is normalised by the length of the flexible beam. The green curve represents the trajectory of the flexible beam end.
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Ca (defined as Ca =
ρf bUf

2 l3

EI ), similar to KC, is another dimensionless parameter in this work. Figs. 12–15 illustrate the relationships 
between responses of the tensile and bending and the parameters KC and Ca, respectively. Overall, as the value of Ca increases, the 

responses of the flexible beam also intensify. In the case of U
⌢

1 (Fig. 12 and Fig. 13), the tensile response and bending response are 
pronounced when the value of KC is low, and over the small range of values of KC, there are two peaks with higher levels of both. With 
a further increase in the value of KC, the levels of tensile response and bending response slowly increase first and then decrease. 
However, the peak of the bending response at a higher value of KC increases significantly with increasing values of Ca to the point 

where it exceeds the peak at a lower value of KC. In the case of U
⌢

2, the tensile and bending responses varied relatively consistently with 
values of KC and Ca. At a lower value of KC, both responses have higher levels. For the tensile response, the level increases and then 
decreases as the value of KC continues to increase. However, at a higher value of Ca, the tensile response exhibits two peaks within the 
range of high values of KC.

5. Conclusion

This work presents an in-depth analysis of the nonlinear steady-state dynamics of a flexible beam subjected to an oscillatory flow, 

with numerical simulations based on two different flow field velocity assumptions (U
⌢

1 and U
⌢

2). For a strongly nonlinear system of 
partial differential equations based on the theory of the large deformation beam allowing tensile deformations and fluid dynamics, the 
spatial domains and temporal domains discretisation is performed using high-order FEM and IHB, respectively, combined with the arc 
length extension method and Hsu’s method for continuum tracking of solutions and stability discrimination. Actual physical exper
iments verify the correctness of the method. The effects of significant flow velocity and flow velocity change frequency on the dynamic 
response of flexible beams are investigated, and various typical nonlinear phenomena, such as the soft and hardening effects, are 
observed.

In contrast to previous studies, the results of this work show that flexible beams subjected to oscillatory flow also undergo reso
nance phenomena for their tensile deformation. Although there is no coupling between the tensile and bending deformations of the 
flexible beams from a modelling point of view (since the beams are composed of mono materials and have a rectangular cross-section), 
the resonance of the tensile deformations is still triggered under certain conditions due to the complex loading conditions. It is strongly 
coupled with the resonance of the bending deformations.

The action of the fluid on the flexible beam is complex. Although the analyses in this work consider only the unidirectional action of 

Fig. 8. The force amplitude-frequency characteristic curves of flexible beams under 4 kinds of different flow field conditions based on U
⌢

1 are 
presented in subplots (a) and (b), which correspond to HDPE and LDPE materials, respectively.
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the fluid on the flexible beam and ignore the counteraction of the flexible beam on the fluid, this simplified treatment is still reasonable 
regarding the degree of agreement of the experimental results. Moreover, it is worth pointing out that if the fluid force is not calculated 
by the equivalent fluid model but by the fluid solver, the steady-state dynamics and the stability of beam oscillations can also be 
determined using the methodology given in this work with very low computational costs. In the steady-state cyclic motion, the flexible 
beam exhibits a coupling phenomenon of multimodal vibration modes, and the fluid-solid coupling mechanism behind it requires 
further theoretical analysis and experimental verification for a deeper understanding of the nonlinear dynamic behaviour of the 
underwater flexible beam.
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⌢
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Appendix A

Define ( • )́ = ∂•
∂t and ( • )

ʹ́
= ∂2•

∂t2 . For the Jacobi matrix of the generalized force vector over d(n), it can be obtained, 

∂Q
∂d(n)

=
∑Ne

i=1

∂Qe,i
F

∂d(n)
−

∂Qe,i
I

∂d(n)
−

∂Qe,i
E

∂d(n)
(A.1) 

where, 

∂Qe,i
F

∂d(n)
=

∂Me,i
x

∂d(n)
⋅ Fe,i

x +
∂Me,i

y

∂d(n)
⋅ Fe,i

y + Me,i
x ⋅

∂Fe,i
x

∂d(n)
+ Me,i

y ⋅
∂Fe,i

y

∂d(n)
(A.2) 

∂Qe,i
I

∂d(n)
= ρA

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I
[

− 2εe,iʹφe,iʹSe,i
φ −

(
φe,iʹ)2ee,iCe,i

φ

] ∂Me,i
x

∂d(n)
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2εe,iʹφe,iʹCe,i

φ −
(
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φ
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+Me,i
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[
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)]
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)]

⎞

⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A.3) 

∂Qe,i
E

∂d(n)
= EANi

1
T ⋅ Ni

1 + EI
∂Ni

2
∂s

T

⋅
∂Ni

2
∂s

(A.4) 

which 

∂Me,i
x

∂d(n)
= I

[
−

(
Ni

1
T ⋅ Ni

2 + Ni
2

T ⋅ Ni
1

)
Se,i

φ − Ni
2

T ⋅ Ni
2ee,iCe,i

φ

]
(A.5) 

Fig. 15. The variation of κ with KC and Ca based on U
⌢

2.
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∂Me,i
y

∂d(n)
= I

[(
Ni

1
T ⋅ Ni

2 + Ni
2

T ⋅ Ni
1

)
Ce,i

φ − Ni
2

T ⋅ Ni
2ee,iSe,i
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]
(A.6) 

For the Jacobi matrix of the generalized force vector over ḋ
(n)

, it can be obtained, 

∂Q

∂ḋ
(n)

=
1
ω
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i=1

∂Qe,i
F
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where, 
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For the Jacobi matrix of the generalized force vector over d̈
(n)

, it can be obtained, 
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=
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ω2
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k=1

∂Qe,i
F

∂d(n)ʹ́ (A.11) 

Where, 

∂Qe,i
F

∂d(n)ʹ́ = Me,i
x ⋅

∂Fe,i
x

∂d(n)ʹ́ + Me,i
y ⋅

∂Fe,i
y

∂d(n)ʹ́ (A.12) 

For the Jacobi matrix of the mass matrix over the (d(n)
)α, it can be obtained, 
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For the Jacobi matrix of the equivalent fluid force vector over the d(n), it can be obtained, 
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For the Jacobi matrix of the equivalent fluid force vector over the ḋ
(n)

, it can be obtained, 
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For the Jacobi matrix of the equivalent fluid force vector over the d̈
(n)

, it can be obtained, 
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There are also some formulas that need to be used in calculations, 
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