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The general system of images for regularized Stokeslets (GSIRS) developed by Cortez

and Varela [J. Comput. Phys. 285, 41 (2015)] is used extensively to model Stokes flow

phenomena such as microorganisms swimming near a boundary. Our collaborative team

uses dynamically similar scaled macroscopic experiments to test theories for forces and

torques on spheres moving near a boundary and uses these data and the method of

regularized Stokeslets (MRS) created by Cortez et al. [Phys. Fluids 17, 031504 (2005)]

to calibrate the GSIRS. We find excellent agreement between theory and experiments,

which provides experimental validation of exact series solutions for spheres moving near

an infinite plane boundary. We test two surface discretization methods commonly used

in the literature: the 6-patch method and the spherical centroidal Voronoi tessellation

(SCVT) method. Our data show that a discretization method, such as SCVT, that uniformly

distributes points provides the most accurate results when the motional symmetry is broken

by the presence of a boundary. We use theory and the MRS to find optimal values for

the regularization parameter in free space for a given surface discretization and show that

the optimal regularization parameter values can be fit with simple formulas when using

the SCVT method. We also present a regularization function with higher-order accuracy

when compared with the regularization function previously introduced by Cortez et al.

[Phys. Fluids 17, 031504 (2005)]. The simulated force and torque values compare very

well with experiments and theory for a wide range of boundary distances. However, we

find that for a fixed discretization of the sphere, the simulations lose accuracy when the gap

between the edge of the sphere and the wall is smaller than the average distance between

discretization points in the SCVT method. We also show an alternative method to calibrate
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the GSIRS to simulate sphere motion arbitrarily close to the boundary. Our computational

parameters and methods along with our matlab and python implementations of the series

solution of Lee and Leal [J. Fluid Mech. 98, 193 (1980)], MRS, and GSIRS provide

researchers with important resources to optimize the GSIRS and other numerical methods,

so that they can efficiently and accurately simulate spheres moving near a boundary.

DOI: 10.1103/PhysRevFluids.10.033101

BACKGROUND

The method of regularized Stokeslets (MRS) [1] and the general system of images for regularized

Stokeslets (GSIRS) [2] have been used extensively to model swimming microorganisms. The

work of Shindell et al. [3] showed how dynamically similar macroscopic experiments and theory

provide a principled method to calibrate the MRS and GSIRS. They considered a cylinder and helix

moving near a boundary and showed that the optimal regularization parameter depended on both

the surface discretization and geometry. Accurate forces and torques on a model bacterium could

then be calculated and swimming performance measures such as the Purcell efficiency [4], energy

per distance [5,6], and metabolic energy cost (energy per distance per body mass) [3] could be

computed. Thus, accurately calibrated models allow determination of important structure-function

relationships when microorganisms are moving in their environment.

We use similar techniques to calibrate the GSIRS for spherical geometries, which can be used

to model Rhodobacter sphaeroides and Enterococcus saccharolyticus and other microorganisms

with round bodies [7–9]. The theoretical analysis of forces and torques on spheres moving near a

boundary in Stokes flow has a long history beginning with the work of Jeffrey [10] who first found

a series solution to the Stokes equations to calculate the torque on a sphere rotating with its axis

perpendicular to an infinite plane. Subsequent work found the drag on a sphere moving parallel to

and perpendicular to a boundary [11,12], and the torque on a sphere with its rotation axis oriented

parallel to the boundary [13]. The linearity of the Stokes solutions allows any arbitrary motion of a

sphere relative to a boundary to be decomposed into a sum of these four fundamental motions [14].

Work by Lee and Leal [14] unified these various series solutions into one linear system of

equations that calculates the force and torque for motion near surfaces with varying properties.

However, there has been no comprehensive comparison of experiments to theory to validate the

drag and torque for the four fundamental motions [14]. Previous experimental work that has been

compared to theory has generally focused on sedimentation experiments, such as those by Malysa

and van de Ven [15]. They showed good agreement between theory and experiment for spheres

moving parallel to a plane wall, but tested no other motions, instead focusing on the small rotation

predicted by the theory for this motion. Dufresne et al. [16] used microscopic measurements of pairs

of colloidal particles moving near a boundary, and their work was also different because the particles

were affected by thermal motion. Pitois et al. [17] used soap films to create quasi-free-slip surfaces

in channel flow experiments and compared their results to Lee and Leal’s theory for this boundary

type but were focused on the difference between free-slip and no-slip boundaries in channel flow.

Wang et al. used optical tweezers and thermal noise to measure the drag increase for motion parallel

to free-slip boundaries, but did not have the precision that we achieve in our experiments [18].

Likewise, Wu et al. used the theory of Brenner [12] in their analysis but were focused on finding

attractors in a plane Couette flow setup rather than testing the theory directly [19]. There have

been fewer experimental tests of torque on a sphere, such as those by Maxworthy [20] and Kunesh

et al. [21], but they studied a sphere in a rotating cylindrical tank rather than a rotating sphere in

a stationary tank, so the comparison was with a similar but different theory. Thus, there have been

no direct tests of the increased torque on a sphere by a plane wall as predicted by Lee and Leal’s

theory.

Our dynamically similar experiments, therefore, provide a complete test of all four fundamental

sphere motions near a boundary. We test the theory over a much larger range of boundary distances,
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with higher resolution in boundary distances, and with much greater precision than has been

previously reported. Our experiments also use an approach to eliminate finite size effects by using

Lee and Leal’s theory (user-friendly matlab and python GUI codes are provided in [41]) to calculate

the effect of all six boundaries in our tank for a given motion relative to a boundary: five solid

boundaries and one free surface. We assume that the effects of the six boundaries add linearly

even though the theory is for infinite plane walls and subtract the predicted effects of five of the

boundaries from our data. We can thereby compare our experimental measurements to the predicted

effect of a single boundary, which would otherwise be significantly affected by other boundaries in

some cases (see Sec. I below for more details).

We use the theory and experiments to precisely calibrate our GSIRS models, which include

two regularization functions: the commonly used φε developed by Cortez et al. [2] and a new

regularization function, ψε . We also use two methods of surface discretization: spherical centroidal

Voronoi tessellation (SCVT), as developed by Du et al. [22], and the 6-patch method [23]. We find

optimal regularization parameters by minimizing the percent error between simulations and theory

in free space and show that ψε improves the order of accuracy in the GSIRS. We also show that the

SCVT outperforms the 6-patch discretization scheme because it is less sensitive to the orientation of

the discretization to the boundary. However, we find that even the optimized GSIRS loses accuracy

when the gap between the sphere and the boundary is smaller than the average distance between

Stokeslets on the sphere. This result provides researchers with a new general rule of thumb: the

GSIRS may not be accurate within this distance and higher resolution is needed. Our library of

experimental measurements and numerical implementations of theory are also reference values to

aid researchers in precisely calibrating other numerical methods.

This article is organized as follows: Section I describes our dynamically similar experimental

techniques to obtain the forces and torques for the four fundamental motions including removing

finite size effects using theory. Section II describes our discretization and regularization schemes

including the regularization function ψε along with how we optimize the model using theory.

Section III compares the experiments and optimized simulations to theory and discuss how to

increase accuracy very near the boundary. Section IV summarizes the performance of our calibrated

model and our new empirical rule for establishing the minimum discretization needed for accuracy

near a boundary. Appendixes A and B provide additional details about the simulations and our

implementation of the theory.

I. EXPERIMENTAL METHODS

We used dynamically similar macroscopic tank experiments to test the four fundamental motions

of a sphere near an infinite plane: perpendicular translation, parallel translation, perpendicular

axis rotation, and parallel axis rotation [14]. Experiments were performed in a 225-liter tank

(0.61 m×0.61 m×0.61 m) filled with approximately 180 liters of silicone oil [24]. The fluid has a

density of 970 kg/m3 and dynamic viscosity of μ = 51.78 ± 0.32 Pa s at 25 ◦C. The viscosity was

measured using a rheometer [25]. The fluid temperature was measured each day of experimental

trials and the manufacturer’s temperature coefficient for the fluid (1.00×10−6 kg/(m s)/◦C) was

used to adjust the viscosity value. The high-viscosity fluid (>104 times the viscosity of water)

ensures that the Reynolds number was much less than unity in all experiments (Re ≈ 10−3) so that

the incompressible Stokes equations (1) were valid for the typical length and speed scales in the

experiments.

We used Lee and Leal’s theory to remove finite size effects in the experiments, which was

important because the scaled equivalent size of our tank would be about 10 µm and using 0.02-µm

spheres if the working fluid was water. To remove unwanted effects, we calculated the predicted

contribution of all six boundaries in the tank (five solid and one free surface) for a given motion

and then isolated the effects of one boundary by subtracting off the predicted effects of the other

five boundaries from our data. For example, spheres translating parallel to the vertical wall in

Fig. 1 were receding from the free surface above and approaching the solid surface at the bottom
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FIG. 1. Experimental setup: (a) Schematic of the tank experiments. For sedimentation experiments, spheres

were held in place using a neodymium magnet at the drop location. The 80-20 extruded aluminum was used

to locate the sphere relative to the front vertical wall, which was moved using the horizontal stage for parallel

translation experiments. A camera and tracking software measured the speed of the sedimenting sphere. For

torque experiments, vertical and horizontal stages positioned the sphere either near the bottom boundary for

perpendicular axis measurements or near the front vertical boundary for parallel axis measurements. Torque

was measured with a FUTEK torque sensor and the motor and magnetic encoder were housed inside a 3D-

printed structure that was mounted to the active side of sensor. (b) Example showing frequency data (solid blue

symbols) read with an Agilent counter at about 1.5 samples per second, and torque data (solid black curve)

were read using a DAQ at about 10 samples per second. Torque per frequency (solid red curve) was calculated

by interpolating frequency data to the time where torque was measured so that dimensionless torque could

be calculated. (c) Dimensionless drag for sphere motion parallel to the boundary, F‖, versus scaled boundary

distance, d/R, where R is the radius of the sphere and d is the distance from the center of the sphere to the

boundary. The solid black curve shows the theory by Lee and Leal [14]. F‖ is scaled using μ, the dynamic

viscosity, the speed v, and R. Blue triangles are the raw tracking data and the green circles are the same data

with the additional drag from the other five boundaries removed using Lee and Leal’s theory. The raw data

show a systematic difference from the theory at all boundary distances, whereas the green circles agree well

once the finite size effects are removed.

of the tank. These boundary effects were clearly evident in our data because the speed changed

as the sphere fell, whereas the theory predicts a constant drag at a given distance to the vertical

boundary. We used the theory to predict the additional drag at each depth from the upper and lower

boundaries and subtracted it from the experimental measurement. The sphere was also moving

parallel to three other vertical walls, which was calculated and subtracted from the data. We then

compared the experimental measurement to the theory for a sphere moving parallel to a single

infinite boundary. Our method assumed that the tank walls were large enough for the theory to be

accurate and that the effects of multiple boundaries added linearly, and it seemed to work very well.

For example, Fig. 1(c) shows how the raw data for parallel translation agrees much better with Lee

and Leal’s theory once the finite size effects are removed, whereas it would not otherwise agree

within uncertainty with the theory.

A. Perpendicular and parallel translation

Fluid drag was measured by sedimenting spheres with radius R = 12.70 ± 0.03 mm either

perpendicular toward a boundary or parallel to a boundary. The boundary was positioned relative to

the spheres using a stage, and the spheres released below the free surface using a magnet (see Fig. 1).
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We recorded motion tracking videos of falling spheres at approximately four frames per second

using a camera and a 25-mm focal length lens [26] positioned to minimize spherical aberration

where the tracking required the most precision.

The fluid drag was calculated as the difference between the buoyant and gravitational forces. The

uncertainty in the gravitational and buoyant forces were small and considered negligible. The fluid

drag in the z direction, F⊥ and F‖, was made dimensionless by dividing by μRv, where μ is dynamic

viscosity of the fluid, R is the radius of the sphere, and v is the instantaneous speed of the sphere.

The speed was calculated using a central difference between the tracked positions divided by the

time between frames.

Lee and Leal’s theory predicts an additional drag of about 10% from the other five boundaries

(four vertical and the upper free surface) in the location where drag measurements were made,

which was subtracted from the data. We present three trials in Fig. 7(a) showing very little scatter

in the perpendicular drag data, so no uncertainty was assigned for these data. When measuring

the parallel drag, we tracked the spheres for �z ≈ 70 mm after they were about 0.10 m below the

surface, where the additional drag from the upper and lower boundaries was approximately constant.

The uncertainty in the speed was typically �v ≈ 0.3 mm/s based on uncertainty in position of the

sphere, and the propagated error was plotted as vertical error bars.

B. Perpendicular and parallel rotation

Torque measurements used a Bal-Tec® ball gauge: a stainless steel sphere of radius R = 12.70 ±
0.01 mm with a precision hole drilled along a diameter. We removed the manufacturer’s supplied

shaft and attached a carbon steel rod with radius r = 4.763 ± 0.013 mm and length L = 304.8 ±
0.1 mm. The rod was attached to a DC motor with a magnetic encoder [27], which was mounted

inside of a 3D-printed enclosure. The shaft passed through a sleeve bearing, which reduced the

sphere’s precession to <0.25 mm.

We measured torque and rotation rate for 60–80 rotation periods in both the clockwise and coun-

terclockwise rotation directions at each boundary location, with the difference in the two values used

as the uncertainty. The DC motor was under computer control [28] and the motor frequency read

using a counter [29] that removed high-frequency noise. A reaction torque sensor [30] measured the

torque, and an amplifier [31] amplified the signal, which was fed into a data acquisition system [32]

and recorded using matlab software. The frequency and torque data were read at different rates, so

we interpolated frequency to the same time points that the torque was read [see Fig. 1(b)]. This

interpolation was necessary so that the torque could be expressed as a dimensionless quantity for

comparison to theory and simulations.

For perpendicular axis torque measurements, the rod-and-sphere assembly was in the middle of

the tank, as shown in Fig. 1. The distance to the bottom boundary was adjusted using a computer-

controlled vertical stage with a resolution ±0.01 mm. For parallel axis measurements, the sphere

was at a depth of 0.21z m and the distance to the front boundary was adjusted using computer-

controlled horizontal stage with resolution ±0.01 mm.

We used the theory of Jeffrey and Onishi [3,33] to calculate the torque on the rod and subtracted it

from the total to isolate the torque of the sphere. The work of Shindell et al. [3] verified the accuracy

of this theory for torque on a cylinder, but we made preliminary measurements to ensure that we

could reproduce that work before using the theory to remove the cylinder torque from the signal.

Those preliminary measurements showed percent differences between experiments and theory that

were generally � 1%.

Torque data were made dimensionless using μ�R3, where μ is the dynamic viscosity, � is

the angular speed of the rotating sphere, and R is the sphere’s radius. Plots of dimensionless

torque versus scaled boundary distance are shown in Figs. 7(c) and 7(d) along with the theory

and simulations. Lee and Leal’s theory predicts negligible contributions to the sphere’s torque from

finite size effects (< 0.1%), which were ignored.
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II. NUMERICAL METHODS

Our primary goal is to develop an optimized method for modeling spheres moving near a

boundary using experiments and Lee and Leal’s theory [14] to provide reference values for the

optimization. We sought to minimize the two primary sources of error in any fluid simulation of

a solid object: those from approximations in the method and those from discretizing the object.

We first used the MRS developed by Cortez et al. [2] to find optimal values for the regularization

parameter, ε, for a given discretization in free space and then used the GSIRS to simulate the four

fundamental motions of a sphere near a surface for comparison with the theory and experiments.

The MRS uses a regularization function ωε (r) to approximate singular point forces arranged

on a surface that represents a solid object in Stokes flow. Replacing the singular forcing with

a regularization function creates a linear system of equations that can be solved without using

specialized methods to accommodate the singularities. The GSIRS extends the MRS to include

a solid boundary by imposing a counter Stokeslet, a potential dipole, a Stokeslet doublet, and two

rotlets at the image point of each discrete point xk . The image system thereby imposes a no-slip

condition by canceling the fluid velocity at the boundary, as shown in [1].

The GSIRS simulations solve the incompressible Stokes equations with external forcing:

μ�u(x) − ∇p(x) = −F(x) and

∇ · u(x) = 0, (1)

where u is the fluid velocity, p is the pressure, and μ is the dynamic viscosity. The vector field F(x)

is a force density (force per volume) applied to the surface of the sphere.

The discretization of the sphere surface. In this work, we analyze two types of discretization: the

6-patch and the SCVT discretization schemes [see Fig. 2(b)]. The 6-patch method distributes points

from a bounding cube to the sphere’s surface [2,34–36]. The number of points, N , is determined

using the formula N = 6n2 − 12n + 8, where n is the number of points on each edge of the cube.

The 6-patch method is commonly used and is easy to implement, but the point distribution is not

uniform on the sphere’s surface, which may cause errors in the simulation.

Our SCVT simulations used the method of Du et al. [22] to produce a nearly uniform point

distribution on the sphere using the SCVT software available at Lili Ju’s website [37] with a constant

density function. Figure 2(b) compares the uniformity of the point distributions for the SCVT and

6-patch methods.

Regularized Stokeslets. Once the sphere is discretized, the forcing F in Eq. (1) is the sum of the

force density applied at the discrete points xk , k = 1, . . . , N , on the sphere model, defined by F(x) =
∑N

k=1 fkωε (x − xk ) where fk is a point force at xk and ωε (x) is a regularization function having an

integral equal to unity over R3. The MRS provides the exact solution of Stokes equations for this

forcing in open space. To enforce the zero-flow boundary condition at a nearby plane, the GSIRS

adds the fluid velocity due to several other regularized elements at the image point of xk , as described

above.

The choice of regularization function. In our work, we choose ωε (r) as either

φε (r) =
15ε4

8π (r2 + ε2)7/2

or ψε (r) =
15ε4(40ε6 − 132ε4r2 + 57ε2r4 − 2r6)

16π (r2 + ε2)13/2
,

where r = |x − xk| and ε represents the regularization parameter. Two-dimensional plots of φε (r)

and ψε (r) are shown in Fig. 2(a), for reference. We now provide the reasoning for this choice.

For a point force f applied at y, the regularized Stokeslet velocity, Sε (x, y), derived using the

MRS with an arbitrary regularization function ωε (r), can be expressed as follows:

Sε (x, y)f =
f

8πr
H1(r) +

(f · (x − y))(x − y)

8πr3
H2(r),
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FIG. 2. Finding optimal regularization parameters in free space: (a) Regularization functions φε and ψε

are normalized such that their values at the center are equal. (b) Surface discretizations (N = 296) on a

sphere using SCVT and 6-patch method showing the point distributions. Optimal regularization parameters for

(c) translation and (d) rotation in free space with N = 1000 (SCVT) and N = 1016 (6-patch): the minima of the

percent errors for the four different combinations are used to identify the value of the optimal regularization

parameters. The decay properties of the regularization functions φε and ψε are shown as black dash-dotted

lines that represent the slope of the best fit line used to determine the order m of the regularization error as the

regularization parameter, ε, is large compared to the average discetization length, h.

where the functions H1(r) and H2(r) contain the regularization and approach the value 1 as

r → ∞. The singular Stokeslet velocity S0(x, y), corresponding to the case without regularization,

is obtained by setting H1(r) = H2(r) ≡ 1 in the expression.

The functions corresponding to φε (r) are

H1(r) =
r(r2 + 2ε2)

(r2 + ε2)3/2
and H2(r) =

r3

(r2 + ε2)3/2

and the functions corresponding to ψε (r) are

H1(r) =
r(2r8 + 9r6ε2 + 18r4ε4 − 8r2ε6 + 16ε8)

2(r2 + ε2)9/2

and H2(r) =
r3(2r6 + 9r4ε2 + 12r2ε4 + 40ε6)

2(r2 + ε2)9/2
.

These functions are shown in Fig. 3.

The error in the computation can be decomposed into two terms: (1) the regularization error,

which depends only on the regularization function and the parameter ε, and (2) the discretization

error, which depends on the same parameters as the regularization error, as well as the average

discretization length, h =
√

4πR2

N
, where N is the number of discretization points and R is the sphere

radius. The regularization error dominates when ε is large compared to h. Consequently, even if ε

is small, provided that the ratio ε/h remains large, the overall error is O(εm).

To understand how our choice of a regularization function affects the errors, we consider the

convergence of the regularized Stokeslet to the singular one in the far field. We base this discussion
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FIG. 3. Regularization functions H1(r) and H2(r) for both regularizing functions φε (r) and ψε (r). These

functions all approach unity as r/ε → ∞, but ψε satisfies higher moments, so H1(r) and H2(r) approach one

more rapidly.

on analytical results presented in [38,39] that show that the regularization error can be reduced by

imposing moment conditions on ωε (r). Specifically, the second-moment condition

M2 =
∫ ∞

0

s4ωε (s)ds = 0

reduces the theoretical regularization error in the far field, although it does not necessarily affect the

discretization error. These moment conditions are present in both H1(r) and H2(r). As r → ∞, the

functions H1(r) and H2(r) converge to one at different rates, depending on the chosen regularization

function. In fact, assuming ωε (r) has integral equal to 1, the functions derived from ωε (r) satisfy

H1(r) − 1 =
M2

3r2
−

4π

3r2

∫ ∞

r

(3r2s2 − 4r3s + s4)ωε (s)ds,

H2(r) − 1 = −
M2

r2
−

4π

r2

∫ ∞

r

(r2s2 − s4)ωε (s)ds,

which helps show the rate of convergence to the singular solution as r → ∞. Note that when r is

sufficiently large compared to ε, the integration in the last terms is over the far field and the terms

containing the integrals decay at a rate related to the decay rate of ωε , which can be controlled in

the construction of the regularization functions. Additionally, when M2 	= 0, the terms containing

M2 decay as r−2 for all regularization functions ωε (r). This implies that the difference Sε (x, y) −
S0(x, y) approaches zero in the far field at a rate proportional to r−2, regardless of the decay rate

of ωε (r). This part of the error can be eliminated by designing a regularization function with zero

second moment, M2 = 0.

Furthermore, imposing the additional moment conditions

∫ ∞

0

s2k+1ωε (s)ds = 0, k � 1, (2)

reduces the theoretical regularization error for r/ε larger than a tolerance. This region includes the

far field but it can also affect the near field if ε is small enough. For example, the regularization

function ψε (r) has been designed to have a reduced regularization error for r/ε � 5/2 (see Fig. 3),

which generally corresponds to the far field but can also affect the near field for small enough ε.

A closer examination of the two regularization functions in our study reveals the source of

their differing decay properties. The regularization function ωε (r) = φε (r) is positive for all r and

integrates to 1, but does not satisfy any additional conditions. In contrast, the regularization function

ωε (r) = ψε (r) also integrates to 1 but further satisfies M2 = 0 and the moment condition in Eq. (2)
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FIG. 4. Optimal regularization parameters in free space for SCVT for different surface discretizations with

average discretization lengths, h =
√

4πR2

N
, where N is the number of discretization points and R is the sphere

radius. The optimal regularization parameter, εfree/R, for each regularization function can be estimated as

a function of the average SCVT discretization length, h, for both types of sphere motion. The fit function

estimates for the regularization parameters are shown as black dash-dotted curves. The relative difference

between optimal regularization parameters for rotation and translation is approximately the same for ψε and

φε but is exaggerated for ψε because of the scale in the plot. The means of the ratio (rotation to translation) of

the optimal regularization parameters are 0.91 ± 0.01 for ψε and 0.88± 0.01 for φε .

for k = 1 and k = 2. To meet these conditions, ψε (r) takes on both positive and negative values,

which increases the accuracy of the MRS. Moreover, because both functions integrate to one, ψε

must have a wider positive region to compensate for its negative contribution to the integral. This is

reflected in the size of the optimal regularization parameter found in Fig. 4 where we optimized the

MRS using the Stokes flow values of drag and torque on a sphere.

Figures 2(c) and 2(d) illustrate the differences in the convergence rates of the regularization

errors. Specifically, replacing φε with ψε increases the exponent in O(εm) from m = 2.56 to

m = 7.57 for the translation data and from m = 2.98 to m = 5.71 for the rotation data, using

N6-patch = 1016 and NSCVT = 1000 discretization points, respectively. Consequently, ψε achieves

a higher order of accuracy than φε , which we attribute to its satisfaction of the additional moment

conditions. The simulations in the following sections are designed to assess whether this enhanced

accuracy extends to the GSIRS once the images are included. We believe that the increased accuracy

observed with ψε highlights the significance of the error reduction.

III. RESULTS

A. Comparison of experiments with theory

Figure 7 shows the close agreement between experiments and the theory of Lee and Leal [14],

which provides a level of precision unmatched by previous experimental tests of theory. The

correspondence relied critically on removing any significant effects of other boundaries. The tank

was large enough (approximately 48R×48R×30R) that the predicted torque increase was negligible

and ignored. The smallness of the predicted effects is consistent with our expectation that the

boundary effects on the sphere torque will scale as 1/d2, where d is the boundary distance. However,

theory predicts a significant increase in the drag on a sedimenting sphere (≈10%) from the other

five boundaries. The scaling for increased drag force due to boundary effects we expect to be 1/d so

the contribution should be much larger for those data, which is what we found, as shown in Fig. 1(c).

Other unknown finite size effects such as corners, free surface motion, etc., were small enough that

the theory was still accurate in a tank experiment of the size we used.
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B. Optimizing the MRS and GSIRS

1. Comparison of optimal regularization parameters in free space

Figures 2(c) and 2(d) allowed us to find optimal regularization parameters for each type of motion

(translation or rotation) and each combination of discretization method and regularization function

in free space. Given a discretization with N points (and average discretization length, h), the optimal

value of ε minimizes the percent error relative to theory. The optimal value of ε for the SCVT

simulations varies smoothly as a function of the average discretization size, h, so we found fit

functions that relate ε and h for each of the regularization functions (see Fig. 4):

εest/R ≈
7

20
h/R for φε and εest/R ≈

3

2
(h/R)

4
5 for ψε . (3)

These formulas allow other researchers to bypass the free-space-optimization process and use the

fit functions instead. The 6-patch data have a nonuniform discretization length, so no comparable

formulas were calculated. The value of εest/R for φε is very different than the value found for

cylinders by Shindell et al. [3]. In their work, they found that ε/R = (h/R)/6.4, where h was

the discretization length between Stokeslets on a side surface of a cylinder. Thus, we confirm the

Shindell et al. result that the relationship between h and ε depends on the geometry of the solid

object being simulated.

2. Comparison of discretization methods

We used the GSIRS, the two regularization functions φε and ψε , and the free-space-optimized

regularization parameters found above to simulate drags and torques for the four fundamental

motions: perpendicular translation, parallel translation, perpendicular axis rotation, and parallel

axis rotation. We used a range of discretization points 100 � N � 1016 and randomly rotated the

discretized sphere with respect to the boundary to assess the importance of uniformity in the point

distribution. We evaluate the performance of the optimized 6-patch and SCVT simulations near

the boundary (d/R ∈ {1.089, 1.128, 3.0}) in Fig. 5 because both types perform well far from the

boundary. We ran 17 280 calculations in total: 4 motions, 2 regularization functions, 2 discretization

methods, 10 values of N , 3 distances, and 36 random rotations of each discretization. The SCVT

simulations (solid curves) generally outperform the 6-patch method (dashed curves), especially

as the number of discretization points increases. The 6-patch simulations show relative standard

deviations (RSDs) as high as 90% when the discretization is randomly rotated, while the SCVT has

an RSD of 1–2 % across all types of motion near the boundary.

Generally, the percent error decreases as N increases, as expected, but the rate at which this

occurs is different. Simulations using ψε (solid gold and dashed cyan curves) show a more rapid

decrease in percent error as N increases when compared to matched simulations using φε (solid red

and dashed dark blue curves). The data also show that SCVT simulations using either regularization

function (solid gold and solid red curves) return a lower mean percent error than the matched 6-patch

simulations (dashed cyan and dashed dark blue curves), especially when N ≈ 1000.

At the distance d/R = 1.089, the sphere’s edge is closer to the boundary than the average

discretization length for all simulations in the top row of Fig. 5. We discuss the importance of the

sphere being closer than the average discretization distance below in Sec. III B 3. The simulations

from the combination of SCVT and ψε (solid gold) show lower percent error in all panels except

Fig. 5(b). Furthermore, Table I lists the range of the percent errors for these simulations when

800 � N � 1016: the performance is especially poor for the translational motion perpendicular

to the wall as seen in Fig. 5(c) for all combinations. Near the boundary the percent error is very

sensitive to small changes in the regularization parameter ε as shown in Sec. III B 4.

When d/R = 1.128, as shown in the second row of Fig. 5, the SCVT simulations using ψε

generally converge more quickly, have lower variance, and achieve lower percent error at the highest

value of N , as shown in Figs. 5(e)–5(g), though there is no clearly superior method for simulating

the perpendicular torque shown in Fig. 5(h). Here we note that the simulated sphere is farther from
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 5. Percent errors relative to theory for the four fundamental sphere motions versus number of

discretization points, N , at three locations near a boundary: d/R = 1.089 (top row), d/R = 1.128 (middle row),

and d/R = 3 (bottom row): [(a), (e), (i)] drag when moving parallel to the boundary, [(b), (f), (j)] torque with

the rotation axis parallel to the boundary, [(c), (g), (k)] drag when moving perpendicular to the boundary, and

[(d), (h), (l)] torque with the rotation axis perpendicular to the boundary. Solid lines are SCVT simulations and

dashed lines show 6-patch data. Red and dark blue curves are simulations using the φε regularization function,

whereas the cyan and gold curves used the new ψε regularization function. Each motion was simulated 36

times with the discretization rotated along a random axis and a random angle. Percent error is the mean of the

36 random trials, and error bars are the standard deviation. The SCVT simulations show a lower variance when

compared with the 6-patch simulations (see Fig. 6), and the SCVT generally shows smaller percent errors at

the highest values of N . The top row shows that once the gap between the edge of the sphere and the boundary,

d/R − 1 = 0.089, is smaller than a discretization length, h/R ∈ [0.11, 0.35] for 98 � N � 1016, the percent

error and the variance are higher.

the boundary than the average discretization length once N > 800. Either the ψε percent error is

lower or it is very low for all simulation types. Thus, we consider ψε a better regularization function

whenever the sphere is sufficiently resolved in the simulations.

The last row of Fig. 5 when d/R = 3 shows that the percent error is less sensitive to changes in

the regularization function and discretization method when the sphere is far from the boundary. The

6-patch and SCVT show similar performance in mean percent error values, which are small for all

simulation types.

TABLE I. Range of percent errors for d/R = 1.089 and 800 � N � 1016 for four motions. The range

was determined by finding the smallest (min) and largest (max) percent errors of each combination of the

discretization method (SCVT or 6-patch) and the regularization function (φε or ψε) for all these values of N .

Min–max SCVT (φε) SCVT (ψε) 6-patch (φε) 6-patch (ψε)

F‖,trans 2.604–2.911 1.643–1.888 1.635–3.940 1.837–3.256

τ‖,rot 1.837–2.213 0.113–0.307 1.076–2.818 0.004–1.453

F⊥,trans 36.167–38.847 17.761–36.160 24.117–46.052 35.575–231.592

τ⊥,rot 0.023–0.076 0.007–0.018 0.005–0.137 0.0269–0.064
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 6. The plots show the relative standard deviation (RSD) as a percentage versus number of dis-

cretization points, N , at d/R ∈ {1.089, 1.128, 3.0}. [(a), (e), (i)] Drag for motion parallel to the boundary,

[(b), (f), (j)] torque for rotation with axis parallel to the boundary, [(c), (g), (k)] drag for motion perpendicular

to the boundary, and [(d), (h), (l)] torque for rotation with axis perpendicular to the boundary. Red and dark

blue curves are simulations that used the φε regularization function, whereas the gold and cyan curves used

the ψε regularization function. Each sphere motion was simulated 36 times with the sphere’s discretization

rotated randomly. The SCVT simulations show a lower RSD when compared with the 6-patch simulations

for most motion types especially when the sphere is close to the boundary. The SCVT simulations using the

ψε regularization function generally show the lowest RSD as N becomes large. Away from the boundary, all

simulation types in panels (i)–(l) show a low percent error relative to the theory.

We extended our analysis of the variance in the different simulation types by plotting the RSD

of the mean value of force and torque in Fig. 6. The plots of RSD versus number of discretization

points, N , show that the SCVT simulations are much less sensitive to the orientation of the sphere

with respect to the boundary at any boundary distance. The 6-patch simulations in Fig. 6(c) have

an RSD as high as 90% for the perpendicular translation data while the SCVT has an RSD of

1–2 %. The asymmetry of the 6-patch discretization method therefore requires care to ensure

the discretization does not skew results near the boundary and requires averaging of different

orientations for accuracy, whereas the SCVT shows very little variance in the computed force or

torque. Thus, the advantage of using a uniform discretization method is that averaging over different

orientations, as we have done for analysis, is not necessary.

3. Comparison of the optimized simulations with experiment and theory

We used the higher-order regularization function, ψε , the SCVT discretization method (N =
1000), and the free-space-optimized value for the regularization parameter to simulate sphere

motion for a large range of boundary distances for comparison with the experiments and theory,

as shown in Fig. 7.

The perpendicular translation, F⊥, data in Fig. 7(a) shows that the data all agree for most

boundary distances, except very near the boundary, which is consistent with what we found in

Fig. 5. Near the boundary, the dimensionless drag increases by a factor of nearly 104, and the

distance moved between frames in the experiment is around 10 µm, which highlights the precision

needed in the motion tracking. However, the inset in Fig. 7(a) shows that the numerical simulations
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FIG. 7. Dimensionless drag and torque versus scaled boundary distance, d/R, on a sphere, where R is the

radius of the sphere, and d is the distance from the center of the sphere to the boundary. The solid black curves

show the theory by Lee and Leal [14], the solid red curves are optimized GSIRS simulations, and the solid

green symbols are dynamically similar experiments. (a) Translation perpendicular to a boundary, F⊥/(μvR),

and (b) motion parallel to a boundary, F‖/(μvR), scaled using μ, the dynamic viscosity, v is the speed, and

R. [(c), (d)] Dimensionless torque versus boundary distance for rotation with the axis perpendicular to the

surface, τ⊥/(μ�R3), and with the rotation axis parallel to the boundary, τ‖/(μ�R3). Experiments, simulations,

and theory all agree very well outside of the near-boundary region. The experiments agree with theory at

most distances except for τ‖, which diverges from theory near the boundary. We attribute this difference to

locating the edge of the sphere (see text). However, the insets show the simulations diverge from theory in the

near-boundary region for three of the four motions, which occurs when the edge of the sphere is closer than

the average discretization size (h/R = 0.11) to the boundary. The inset in panel (c) shows that the simulations

perform better for τ⊥ than the other three motions.

diverge systematically from the theory and experiments when the sphere is near d/R ≈ 1.1. We find

the same systematic divergence from theory when using either φε or ψε and find a similar result for

other motions, as described below.

Figure 7(b) shows that the parallel translation, F‖, simulations perform better overall than the

simulations of perpendicular translation, but similarly, the inset shows deviation from theory in the

simulations at about d/R = 1.1. The maximum drag increase expected here is a factor of about 10

compared to about 104 in the perpendicular translation case, which may explain why the deviation

is less pronounced until about d/R = 1.05.

Figure 7(c) shows that the three data types—theory, experiments, and simulations—all agree

very well for torque with the rotation axis perpendicular to the boundary, τ⊥. The deviation of

the simulations from experiments and theory occurs much closer to the boundary and is smaller.

However, τ⊥ shows the least increase near the boundary among the four motions studied.

Torque with the rotation axis parallel to the boundary, τ‖, is shown in Fig. 7(d). The experiments

show some systematic deviation from theory, which we attribute to uncertainty in establishing when

d/R = 0 because the precession of the sphere (0.25 mm) is the same order as the closest boundary

distance (d = 0.5 mm). The simulations also show systematic deviation from theory at about d/R =
1.1 in these data.

In summary, none of the simulation types perform well when the sphere is located very near

the boundary (see insets in Fig. 7). Other researchers such as Zheng et al. [40] have suggested

that the method of images does not perform well when the gap between an object and the wall

is smaller than the size of the regularization parameter ε. In our data, the normalized gap where

numerical simulations diverge from theory (h/R = 0.11) is larger than the optimal value of ε/R =
0.042 for φε and smaller than the optimal value of ε/R = 0.27 for ψε . Instead, we find that the
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FIG. 8. Optimizing the regularization parameter ε when the edge of the sphere is one discretization length

h from the boundary. The simulations use the SCVT discretization method and the ψε regularization function

for eight values of N from 1000 to 2400 in increments of 200 corresponding to eight different discretization

lengths h. The solid curves are the percent error as the regularization parameter is varied for each value of

N , which all show a clear minimum that could be used to minimize the difference between simulations and

theory (see Fig. 9). By contrast, solid triangles are the free-space-optimized values of εfree/R found using the

MRS simulations, as described in Fig. 4. The solid circles are the estimated values of εest/R = 3/2(h/R)4/5

using the fit function as described in Fig. 4. Using either the free-space-optimized or the estimated value of the

regularization parameter introduces a small percent difference relative to theory near the boundary, but slightly

better performance farther from the boundary.

GSIRS simulations diverge from theory when the gap size is within the average discretization size.

Section III B 4 discusses options for minimizing the error very near the boundary, but our result

gives researchers an empirical rule to identify boundary distances where the GSIRS may not be

accurate, i.e., when d/R < 1 + h/R.

4. Minimizing error very near the boundary

Our approach to optimizing the simulations far from the boundary by using MRS calculations,

as described in Sec. II, results in small percent errors for all boundary distances except when the

sphere’s edge is closer to the boundary than a discretization length (insets of Fig. 7). We investigated

this limitation of our optimization method by varying N from 1000 to 2400 in increments of 200 and

placing the sphere at d = h + R to the wall. We simulated all four motions near the boundary using

the ψε regularization function for a range of ε values to find the optimal regularization parameter at

this distance, as shown in Fig. 8. The near-boundary optimal regularization parameter at the distance

d = h + R is the one that minimizes the percent error between the simulations and the theory.

The presence of the boundary breaks the symmetry of motion in free space and results in four

different optimal regularization parameters rather than two very similar values of εfree, as found for

translation and rotation (see Fig. 4). In free space, the values of εfree for translation (0.270) and

rotation (0.248) differ by about 9% for ψε with SCVT discretization of N = 1000, whereas near

the boundary the optimal values of ε vary by more than 50% for the different motions. Figure 8

also shows that the varying N changes the size of the optimal regularization parameter because the

minima occur at different locations h. Thus, not only does the average discretization size h provide

the threshold for the minimum gap between the edge of the sphere and the wall, but also the optimal

regularization parameter depends on h near the boundary.
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FIG. 9. Optimal regularization parameter ε plotted as a function of discretization length h. In these data,

the edge of the sphere is located at a distance h from the boundary. Optimal regularization parameters are found

for each of the four motion types by identifying the minima of the curves shown in Fig. 8. The solid lines are

linear fits to the data with coefficients shown. The data are fit very well except in the case of perpendicular

torque τ⊥, which shows some scatter from the linear fit for the three lowest resolutions: N = 1000, 1200, and

1400. The data show that there is no single optimal choice for the regularization parameter once the sphere is

near the boundary, whereas in free space, the optimal value of the regularization parameter is more similar for

translation and rotation, as shown in Fig. 4.

Assuming h is small, i.e., the sphere is moving near the boundary, we can use Taylor series to

expand the regularization parameter for each fundamental motion to first order,

ε(h) ≈ ε(0) +
dε

dh

∣

∣

∣

∣

h=0

h (4)

Figure 9 shows the results of optimizing ε at a boundary distance equal to the discretization

length h over a range of values and fitting Eq. (4) to the data. Near the boundary, small changes in

ε lead to large changes in the percent error, while far from the boundary, the percent error is less

sensitive to changes in ε (Fig. 2).

Therefore, when a particular simulation requires some motion to be near a boundary, an alter-

native approach to reduce error is to determine the closest distance desired a priori and then to

optimize the regularization parameter at that distance; motion farther from the surface using the

same regularization parameter value will also have small errors. For the motion of a sphere, the

fit values shown in Fig. 9 may be used to determine appropriate regularization parameters, though

each component of motion would have to be simulated separately with a different value of ε. This

requirement makes our free-space-optimization method a better choice in most situations.

IV. DISCUSSION

The goal of this work is to develop methods to precisely calibrate the method of images for

regularized Stokeslet simulations of spheres moving near a boundary. We used measurements of

forces and torques from macroscopic experiments to verify the theory by Lee and Leal [14] before

using it for optimization. We chose this theory because it includes all four motions even though other

analyses give the same predictions (see, for example [11–13]). Our results provide a comprehensive

experimental test of these theories, and Fig. 7 also shows that the theory can be used effectively to

remove the finite size effects in an experiment. Considering the significant finite size effects (≈10%)

and that the tank has corners, etc., the theory worked very well despite its underlying assumptions

of zero Reynolds number and an infinite plane boundary.
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Using the verified theory, we developed computational methods to accurately model a sphere

moving near a boundary. Our method of finding the optimal regularization parameter, εfree, provides

a computationally efficient way to optimize the GSIRS, whether using the φε or the ψε regularization

function, though we find the latter to be a better choice because of its higher order of accuracy for

the regularization error, as shown in Figs. 2 and 5. The fit functions in Eq. (3) allow researchers to

bypass the optimization process and set a value of ε when using either φε or ψε .

Our results also confirm the finding of Shindell et al. [3]: the relationship between discretization

size and regularization parameter depends on the shape of the simulated object. Thus, using a value

for the regularization parameter that is not optimized for a given geometry introduces unknown

errors into MRS and GSIRS simulations. However, researchers have three geometries for which the

regularization parameter has been optimized, which may help better estimate an appropriate value

for other geometries.

We also show that the SCVT discretization method is superior to the 6-patch method. The

asymmetry of the 6-patch point distribution causes significantly increased variance in the computed

values when the sphere is rotated with respect to the boundary (see Figs. 5 and 6). Thus, a dis-

cretization method that creates a more uniform point distribution should be chosen when simulating

a sphere moving near a boundary. The uniformity helps to reduce the numerical errors and variance

in the computed force or torque. Any mesh generator that can produce approximately equally spaced

points on a sphere (for example, a Fibonacci lattice) should produce results similar to those from

SCVT.

We found that the GSIRS lost accuracy when the sphere was near the boundary (see the insets in

Fig. 7). Zheng et al. [40] commented that the image system may suffer inaccuracy within distances

of order of the regularization parameter from nonzero values of the image sources crossing the

boundary. Our GSIRS simulations using φε , the same regularization function as used by Zheng

et al., show high percent errors from theory when the distance of the edge of the sphere (0.089R)

was larger than the size of the regularization parameter (ε = 0.042R) (see the top row of Fig. 5).

Furthermore, we found large differences relative to theory at the same distance when using ψε , and,

in this case, the gap is much smaller than the size of the regularization parameter, ε = 0.27R. The

force distribution is modified near the wall due to the presence of the image system, but we find that

a good empirical rule for establishing the number of discretization points needed is to determine

the closest distance to the boundary that will be simulated and ensure that the average discretization

length is smaller than this distance. Our method of optimizing the simulations in free space and

this discretization rule will give better results than using the size of the regularization parameter

to establish the limits of accuracy. These increased errors near the boundary are likely important

for other geometries, including simulations of compound objects that approach a boundary, which

implies increased care is needed whenever the GSIRS is used for very-near-boundary simulations.

In conclusion, using the GSIRS with a uniform point distribution such as the SCVT, a high-order

regularization parameter function such as ψε , and a free-space-optimized regularization parameter

provides an efficient and accurate method for simulating spheres moving near a boundary providing

the edge of the sphere is kept outside of the average discretization length. These results along with

our experimental validation of theory and matlab and python implementations of Lee and Leal’s

theory, MRS, and GSIRS provide important resources for other researchers using the GSIRS or other

simulation methods to assess the accuracy of their numerical results. Evaluation of our optimization

strategy and calibration process for other geometries including compound objects such as a sphere

with a helical flagellum is warranted. Future study might also explore the geometric dependence of

the regularization parameter on local curvature and other factors to provide general guidance in its

selection.
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APPENDIX A: NUMERICAL SIMULATION DETAILS

We used three sets of simulations to minimize the error relative to theory when simulating

the sphere motions we studied in our experiments. The first set of simulations used the MRS to

understand which regularization function, φε or ψε , converges most rapidly as the regularization

parameter size increases. These simulations were also used to find an optimal value for the

regularization parameter ε for each combination of the regularization function and discretization

method. The second set of simulations used GSIRS and the optimal regularization parameters from

the first set of simulations to assess how orientation relative to the boundary of the 6-patch and

SCVT discretizations affects the percent error when compared to theory. We then simulated sphere

motion for a large range of boundary distances using our free-space-optimized regularization param-

eters, SCVT, and the high-order regularization function ψε for comparison with the experiments

and theory. For the last set of simulations, we further explored how to optimize values for the

regularization parameter at very small boundary distances for the sphere motions.

We incremented the regularization parameters from ε/R = 0.01 to 0.7 in steps of 0.001 for

each motion, each type of regularization function, and each discretization method. We varied

the regularization parameter for each type of motion and found the value of ε that minimized

the difference between the simulation and theory. The range of simulation parameters used is

reported in Table II. We then computed the percent errors between the simulations and theory versus

regularization parameter size for each motion [see, for example, Figs. 2(c) and 2(d)]. Overall, 55 280

calculations were conducted: 2 motion types (translation and rotation), 2 regularization functions

(φε , ψε), 2 discretization methods (SCVT, 6-patch), 10 values of N , and 691 values of regularization

parameters, ε.

APPENDIX B: NUMERICAL IMPLEMENTATION OF LEE AND LEAL THEORY

The bipolar coordinate theory by Lee and Leal [14] gives a series solution to the force and

torque on a sphere moving near an infinite boundary and includes a slip coefficient λ that represents

the degree of slip at the boundary from no slip, λ = ∞, to free slip, λ = 0. We solve their

equations listed below using both matlab and python GUI programs for convenience. The matlab
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TABLE II. Parameters values used in numerical simulations.

Parameter Value

Dynamic viscosity μ = 10−3 Pa s

Sphere radius R = 1 µm

Translation speed U = 1 µm/s

Rotation rate �/(2π ) = 154 Hz

Discretization no. N(6-patch) ∈ {98, 152, 218, 296,

386, 488, 602, 728, 866, 1016}
N(SCVT) ∈ {100:100:2400}

code includes a GUI interface using matlab’s AppDesigner functionality tested on R2021 and later.

We also provide a python GUI program that contains the same basic features tested on python

3.12.1, which requires the PySimpleGUI, numpy, and pyperclip packages. The inputs to the GUI’s

are as follows:

(1) Radius of the sphere: The default is unity since all values are scaled using the radius.

(2) Viscosity ratio: The range is 0 > λ � ∞. The default is ‘‘inf’’, i.e., infinity, which

is equivalent to a no-slip boundary near the sphere. Implementing λ = 0 was only included for

perpendicular torque calculations since Lee and Leal developed an analytic expression. Otherwise,

a very small nonzero value should be used in this limit.

(3) Number of terms: This is the truncation value for the infinite sums.

(4) Boundary distances: The range is 1 < l = d/R � ∞. These are boundary distances at which

the theoretical values will be calculated. Dimensional values will be scaled by the sphere radius.

When l/R = 1, the theory diverges.

(5) Motion type: There are four radio buttons provided for selecting which of the four funda-

mental types of motion are to be calculated.

The MATLAB GUI calls one of three primary functions, for which we have also coded python

equivalents:

(1) motion_parallel.m and motion_parallel.py calculate the force and torque for rotation

or translation parallel to a plane interface. The inputs are l , λ, N , and motion, where motion=2 is

for translation and motion=4 is for rotation following the notation of Lee and Leal.

(2) rotation_perpendicular.m and rotation_perpendicular.py calculate the torque

for rotation perpendicular to the boundary. The inputs are l , λ, and N . Here all force components

are zero.

(3) translation_perpendicular.m and translation_perpendicular.py calculate the

additional drag force for motion perpendicular to a plane interface. The inputs are l , λ, and N . Here

all torques are zero.

The outputs from the function are the increase in the vector force and torque components so

conversion to dimensional units is done by multiplying all force values by the Stokes drag 6πμRv

and by multiplying all torque values by the torque on a sphere far from a boundary 8πμR3�, where

μ is the viscosity of the fluid, R the radius of the sphere, v is the speed of the sphere, and � is the

angular frequency.

Below is the system of equations developed by Lee and Leal that are solved in our matlab and

python codes [14]. We have preserved their numbering for easy reference and included comments

in the matlab and python codes that identify how each equation is used.

In their work, translation perpendicular to a plane interface or rotation with axis perpendicular to

the interface results in m = 0, whereas parallel motion results in m = 1, in the equations below.

The equations result in seven unknown coefficients: Am
n , Bm

n , Cm
n , Em

n , F m
n , Gm

n , and Hm
n . They note

that Dm
n = D̂m

n = Ĉm
n = 0 because of Eqs. (32) and (37) below. There are seven coefficients for the
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other fluid denoted as Âm
n , B̂m

n , D̂m
n , Êm

n , F̂ m
n , Ĝm

n , and Ĥm
n .

l ≡ d/R (2)

η0 = − cosh−1(l )(see p. 205 of [14])

For the upper fluid and all n and m:

Âm
n = −B̂m

n , Ĉm
n = −D̂m

n , Êm
n = −F̂ m

n , and Ĝm
n = −Ĥm

n . (B1)

For m = 0

− 1
2
nA0

n−1 + 5
2
A0

n + 1
2
(n + 1)A0

n+1 − nD0
n−1 + (2n + 1)D0

n − (n + 1)D0
n+1

+n(n − 1)E0
n−1 − 2n(n + 1)E0

n + (n + 1)(n + 2)E0
n+1 = 0

and

− 1
2
nB0

n−1 + 5
2
B0

n + 1
2
(n + 1)B0

n+1 − nC0
n−1 + (2n + 1)C0

n − (n + 1)C0
n+1

+n(n − 1)F 0
n−1 − 2n(n + 1)F 0

n + (n + 1)(n + 2)F 0
n+1 = 0,

while for m � 1,

− 1
2
(n − m)Am

n−1 + 5
2
Am

n + 1
2
(n + m + 1)Am

n+1 − (n − m)Dm
n−1 + (2n + 1)Dm

n

−(n + m + 1)Dm
n+1 + 1

2
(n − m)(n − m − 1)Em

n−1 − (n − m)(n + m + 1)Em
n

+ 1
2
(n + m + 1)(n + m + 2)Em

n+1 − 1
2
Gm

n−1 + Gm
n − 1

2
Gm

n+1 = 0

and

− 1
2
(n − m)Bm

n−1 + 5
2
Bm

n + 1/2(n + m + 1)Bm
n+1 − (n − m)Cm

n−1 + (2n + 1)Cm
n

−(n + m + 1)Cm
n+1 + 1

2
(n − m)(n − m − 1)F m

n−1 − (n − m)(n + m + 1)F m
n

+ 1
2
(n + m + 1)(n + m + 2)F m

n+1 − 1
2
Hm

n−1 + Hm
n − 1

2
Hm

n+1 = 0

Dm
n = D̂m

n = 0 for all n, m. (B2)

For all m, η, and ξ , we require

−
(n − m − 1)

2n − 1

(

F m
n−1 − F̂ m

n−1

)

+
(

F m
n − F̂ m

n

)

−
n + m + 2

2n + 3

(

F m
n+1 − F̂ m

n+1

)

= −
1

2

[

1

2n − 1

(

Bm
n−1 − B̂m

n−1

)

−
1

2n + 3

(

Bm
n+1 − B̂m

n+1

)

]

,

for m = 0: H0
n = Ĥ0

n . (B3a)

For m � 1,

−
(n − m + 1)

2n − 1

(

Hm
n−1 − Ĥm

n−1

)

+
(

Hm
n − Ĥm

n

)

−
n + m

2n + 3

(

Hm
n+1 − Ĥm

n+1

)

= −
1

2

[

−
(n − m)(n − m + 1)

2n − 1

(

Bm
n−1 − B̂m

n−1

)

+
(n + m)(n + m + 1)

2n + 3

(

Bm
n+1 − B̂m

n+1

)

]

.

(B3b)

For m = 0,

G0
n = λĜ0

n. (B3c)
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For all m,

Em
n sinh (n + 1/2)η0 + F m

n cosh (n + 1/2)η0

= X m
n (η0) −

1

(2n + 3) sinh η0

[

−Zm
n+1(η0) + Cm

n+1 sinh (n + 3/2)η0

]

+
1

(2n − 1) sinh η0

[

−Zm
n−1(η0) + Cm

n−1 sinh (n − 1/2)η0

]

.

For m = 0,

G0
n sinh (n + 1/2)η0 + H0

n cosh (n + 1/2)η0 = Y 0
n (η0). (B3d)

For m � 1,

Gm
n sinh (n + 1/2)η0 + Hm

n cosh (n + 1/2)η0

= Y m
n (η0) +

(n + m)(n + m + 1)

(2n + 3) sinh η0

[

−Zm
n+1(η0) + Cm

n+1 sinh (n + 3/2)η0

]

−
(n − m)(n − m + 1)

(2n − 1) sinh η0

[

−Zm
n−1(η0) + Cm

n−1 sinh (n − 1/2)η0

]

. (B3e)

For all m,

Am
n sinh (n + 1/2)η0 + Bm

n cosh (n + 1/2)η0 =
−2

sinh η0

[

(n − m)

2n − 1

{

Zm
n−1(η0) −Cm

n−1 sinh (n − 1/2)η0

}

− cosh η0

{

Zm
n (η0) − Cm

n sinh (n + 1/2)η0

}

+
n + m + 1

2n + 3

{

Zm
n+1(η0) − Cm

n+1 sinh (n + 3/2)η0

}

]

and

Am
n = λÂm

n , Em
n = λÊm

n and Gm
n = λĜm

n . (B4)

The equations are rewritten so that the left-hand side has only coefficients, and all other terms

are on the right-hand side. The matrix is constructed using a for loop, where each column is built

as shown in Eq. (B5). The first column (n = m − 1) and last column (n = N + 1) are removed after

construction because the sums should range from
∑N

n=m, where N is a truncation value chosen for

a desired accuracy. The result is a square, banded matrix of size N×N . The rows and columns are

constructed as
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n − 1 n n + 1 . . . N + 2

Am
(n−1) . . .

Am
n . . .

Am
(n+1) . . .

Bm
(n−1) . . .

Bm
n . . .

Bm
(n+1) . . .

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (B5)

The resulting matrix is inverted and multiplied times the right-hand side to solve for the

coefficients. The force and/or torque for the four fundamental motions are calculated using the

following equations.
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(1) Force for perpendicular translation:

Fx = Fy = 0,

Fz =
−

√
2

3
sinh η0

∑

n

[

C0
n − (n + 1/2)

(

A0
n − B0

n

)]

, (B6)

τx = τy = τz = 0. (B7)

(2) Force and torque for parallel translation:

Fy = Fz = 0,

Fx =
−

√
2

6
sinh η0

∑

n

[

G1
n − H1

n + n(n + 1)
(

A1
n − B1

n

)]

, (B8)

τx = τz = 0,

τy =
sinh2 ηo

12
√

2

∑

n

[(

2 + e(2n+1)η0
){

n(n + 1)
(

−2C1
n − A1

n coth η0

)

− (2n + 1 + coth η0)G1
n

}

+
(

2 − e(2n+1)η0
){

n(n + 1)B1
n coth η0 + (2n + 1 + coth η0)H1

n

}]

. (B9)

(3) Torque for perpendicular axis rotation:

Fx = Fy = Fz = 0, (B10)

τx = τy = 0,

τz =
sinh2 η0√

2

∑

n

n(n + 1)
(

−G0
n + H0

n

)

. (B11)

(4) Force and torque for parallel axis rotation:

Fx =
−

√
2

6
sinh η0

∑

n

[

G1
n − H1

n + n(n + 1)
(

A1
n − B1

n

)]

,

Fy = Fz = 0, (B12)

τx = τz = 0,

τy = −
1

3
−

sinh2 η0

12
√

2

∑

n

[(

2 + e(2n+1)η0
){

n(n + 1)
(

− 2C1
n − A1

n coth η0

)

− (2n + 1 + coth η0)G1
n

}

+
(

2 − e(2n+1)η0
){

n(n + 1)B1
n coth η0 + (2n + 1 + coth η0)H1

n

}]

. (B13)

The MATLAB and PYTHON codes can solve the series solutions quickly even when 104 terms

are included using a computer with 16 GB of RAM. This number of terms is only necessary for

very small boundary distances and changes the result in five or six digits, whereas for many cases

N = 100 is sufficient.

We compared our results from Lee and Leal [14] with the values from our calculations using N =
500 terms and found that the maximal difference is in the sixth digit of accuracy and is generally

in the seventh or eighth digit. Our code does not implement λ = 0, so the values used λ = 10−8.

At this level of precision, it is unclear whose calculations are correct, but the results show that the

numerical implementation matches the work of Lee and Leal to a high degree of accuracy. We note

that they appear to have a mistake in the value for λ = 10 and l = 1.6, which we believe should

be τ = −5.26852×10−5 but is reported as being τ = −5.26852×10−3. The former value matches
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our results very well, as do all of the other values in the table, so we believe the value in the table

is incorrect. Additional materials include a matlab script (Lee_and_Leal_tabulated_values.m) that

calculates these differences [41].
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