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A B S T R A C T

Industrial systems and chemical plants heavily rely on automation and control systems for seamless operations.
However, the susceptibility of these systems to various faults poses threats to processes, leading to economic
losses and safety risks. Here, a robust fault-tolerant control (FTC) strategy is developed that can take proactive
measures during faults involving in-time activation of a backup controller, to ensure that the system remains
within safe operational limits. It is based on the Dynamic Safe Set (DSS) which is the set of initial process states
that meet safety constraints at all times, and the dynamic safety margin (DSM) which is the minimum distance
from the DSS boundary. For just-in-time corrective action, a critical fault function is introduced, defined as the
time required by the system to cross the DSS boundary under the nominal controller only. This critical fault
function is calculated offline and is integrated with a real-time fault size estimation to formulate the controller
reconfiguration logic to keep system within DSS. A linear functional observer is used to estimate fault size,
combined with a predictive scheme, to enhance robustness during the transient period of fault estimation. This
configuration avoids unnecessary control actions while ensuring timely intervention. The proposed FTC strategy
is tested on an exothermic Continuous Stirred Tank Reactor (CSTR) case study. The results demonstrate the
strategy’s effectiveness in handling process faults, ensuring both stability and safety constraints are met. Thus,
this paper contributes to the advancement of FTC ensuring the resilience of industrial systems in the face of
unforeseen challenges.

1. Introduction

Modern-day industrial processes which are inherently nonlinear and
multivariable interacting systems under closed-loop control are highly
complex due to increased high performance demand and production
efficiency requirements. The increasing complexity make systems more
and more vulnerable to faults and malfunctions [1]. The consequences
of such failures can be severe, leading to detrimental outcomes that can
affect economic, safety, environment, and overall operational efficiency.
Therefore, resilience to system malfunctioning to maintain safety is
crucial requirement of today’s industrial automation [2]. In order to
make system gain such ability, a fault tolerant control design needs to be
considered to ensure an efficient and timely response to mitigate safety
risks [3]. More precisely, a closed-loop control system that can accom-
modate component (actuators, sensors, process and controller) failure
automatically while maintaining desirable performance and system
overall stability is known as fault tolerant control systems (FTCS) [4,5].
The survey papers in [6–8] have reviewed the development and

advancement of active and passive FTCS and investigated the challenges
and advantages of them.

The active FTCS consists of the following subsystems: Fault detection
and isolation (FDI) module, a reconfiguration mechanism and a recon-
figurable controller. It reacts in real-time by immediately reconfiguring
the controller based on the information provided by FDI module. On the
other hand, in a passive FTCS design, potential failure modes are
assumed first, and the controller is synthesized to deal with these failure
modes together with the normal operating conditions [6]. It refers to a
control system that is inherently robust to certain predefined faults or
disturbances without the need for dynamic fault compensation. Thus,
the "passive" in passive FTCS refers to a control strategy that does not
actively reconfigure or adjust itself in response to detected faults. The
adaptive nature of active FTCS equip it with a greater capability to
handle different types of faults, making it more applicable and flexible as
compared to the passive approach which can handle only predefined
fault sets used in its design stage. Thus, passive FTCS becomes less
effective and suffers from conservative performance as the number of
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potential fault cases increases. The robust control methods such as
quantitative feedback theory, H∞ norm optimization method, μ syn-
thesis, Linear-Quadratic control, variable structure control are used for
passive FTCS whereas strategies of active FTCS are based on switching
and tuning, control law rescheduling, adaptive control, parameter space
approach, eigen structure assignment [9].

The success of the active FTC mainly depends on the accuracy of the
FDI unit in the design structure. Over the last three decades, extensive
research has been devoted in developing FDI methods to integrate with
FTCS. There are several techniques including model based (Kalman fil-
ter, Unknown input observer) and knowledge based (statistical and non-
statistical analysis) for FDI [10,11]. The authors of these works have
mentioned advantages and disadvantages of individual FDI methods.
The observer-based fault diagnosis for designing residual generation and
residual evaluation is the most common technique where the process
model is incorporated in an observer to deliver an estimate by com-
parison of output with measurements [12]. The survey papers [13,14]
briefly outline the theoretical framework mostly based on Luenberger
observer for fault diagnosis. The existence conditions of functional
observer for linear systems are derived in [15]. Also, the concept and
design of functional observers for fault detection which has the advan-
tage over full-state observers is provided in [16]. As most of the indus-
trial process are nonlinear, focus to design nonlinear observer for FDI is
considered in [17,18]. The exact observer error linearization is the
powerful method for designing nonlinear observer [17,18]. Recently,
there have been efforts to develop data-driven FDI approaches whenever
raw historical data are available from the distributed control system.
The various data-driven approach including Bayesian network, random
forest, neural network and their challenges and opportunities for smart
fault diagnosis are discussed in [19,20].

Once the fault information is available from FDI, online controller
parameter adaptation and switching to alternative controllers to
accommodate faults is common in active FTCS. Since PID controllers
dominate industry for half a century, several auto-tuning methods based
on minimum variance, pole placement or linear quadratic gaussian
design methods and adaptive parameter estimation is proposed. The
auto-tuning algorithm is combined with adaptive neural network (NN)
model to learn the post-faults dynamics to tune PID parameters online
[21]. However, due to the limitations of PID under multivariable
interaction, most of the works focused on integrating advanced con-
trollers like model predictive control (MPC) with FTC scheme [22–24].
The authors of these works employ Lyapunov based techniques to
handle uncertainty, constraints and explicitly characterize the stability
region from level sets associated with each fallback control configura-
tion for switching policy during faults. Recently, more studies are
focused on the application of FTC for nonlinear system integrating with
FDI [25–30]. The assumption of these methods is that the states need to
be in stability region of any backup controller at the time of fault. To
solve the problem of non-existence of stability region for any backup
controller during fault, a safe parking method is proposed in [31–34]

where the system is maintained at temporary equilibrium point until
fault rectifies. Despite these advancements, the industrial application of
these methods is challenged by the complexity of integrating MPC,
whose interpretability and trust is questioned by industry [35] and the
conservative estimate of Lyapunov stability region for each controller
that can restrict the flexibility and responsiveness of the control system.

More recently, a simple concept dynamic safety margin (DSM)
defined as minimum distance of current states from safety boundaries is
used in designing the control strategy including MPC to achieve FTCS
[36–40]. Also, dynamic safe set (DSS) defined as maximal output ad-
missible set is considered for designing control schemes capable of
handling disturbances in safety-critical processes [41]. The DSS is
leveraged for developing FTC strategy used as overall safety region for
the overall process satisfying safety constraints where the goal of the
control configuration is to keep the system within that region all the
time, even in the presence of faults based on DSM [42].

The conclusion from reviewing available literature is that it is still an
open question how to build a general and practical FTCS design method
providing controller reconfiguration just in time, which is crucial for
safety-critical processes. The just-in-time controller reconfiguration
happens precisely at the time it is needed, ensuring safe operation, while
avoiding unnecessary actions that could impact performance. It does not
proactively reconfigure the controller unless necessary. This study fo-
cuses on overcoming the limitations of existing Fault-Tolerant Control
Systems (FTCS) methods, where only FDI is integrated with controller
reconfiguration techniques, mostly based on Lyapunov functions, to
maintain stability. In the presence of nonlinear dynamics and multiple
interacting variables, constructing the Lyapunov stability region, often
conservative for each controller, is challenging. Also, without estimating
fault size, the control system could overreact, potentially leading to
unnecessary corrective actions or premature trips that result in eco-
nomic losses (see [43] for an analysis of the economic operability of a
processing plant in the presence of faults is essential when considering
the balance between safety and productivity). The solution proposed in
this paper involves the integration of a single DSS and a fault identifi-
cation module in transient phase. Keeping the system within DSSs
guarantees satisfaction of all safety constraints, considering the capa-
bilities of both nominal and backup controllers. As DSS keeps the system
close to its operating parameters, it prevents the process from reaching
alarm states that would otherwise trigger the emergency shutdown
system (ESD). By avoiding trips that result in costly downtimes, the DSS
helps maintain economic efficiency while ensuring that safety-critical
thresholds are not breached. The proposed approach simplifies the
FTC control strategy and improves its adaptability to various fault sce-
narios. The switching criteria for controller reconfiguration are based on
fault size estimated from a linear functional fault estimator. Using fault
estimator in transient stage helps in taking corrective action before
system crosses the DSS boundary and avoids any unnecessary control
action in presence of faults. Thus, the main contribution of this paper is
an active FTC scheme which is more robust and flexible, facilitating the
applicability in real-world industrial settings as compared to existing
FTC schemes mentioned in the literature. It provides just-in-time
controller reconfiguration on the basis of fault size, keeping the sys-
tem within DSS. The FTC strategy aims to maximize safety and perfor-
mance while minimizing unnecessary control actions. Specifically, this
work implements the proposed active FTC scheme for an exothermic
CSTR focusing on faults such as feed overheating, which pose significant
safety risks.

This paper is organized as follows: Section 2 presents the problem
formulation to develop FTC strategy of a nonlinear process system in
presence of faults. Section 3 reviews necessary background on functional
observers for fault estimation as well as DSS and DSM concepts to
calculate safe operating set and a safety index. Section 4 outlines the
necessary offline information that will be used by the proposed FTC
system. Section 5 details the proposed FTC strategy, including the real-
time predictive feature and decision logic. Section 6 implements the

Fig. 1. The FTC structure.
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proposed FTC approach on a safety-critical process involving an
exothermic reaction handled in a continuous stirred tank reactor
(CSTR). Section 7 discusses the simulation results for different fault
types and sizes. Section 8 outlines conclusions and future directions.

2. Problem statement

In safety-critical processes, maintaining system stability and pre-
defined constraints in the presence of faults and disturbances is para-
mount. An active FTC structure as shown in Fig. 1 ensures an efficient
and timely response to faults in order to keep the system within safety
limits. The components of an active FTC structure include fault detection
and estimation (FDE) module, nominal and backup controller, and a
controller accommodation law (decision logic). The process has nominal
controller with manipulating input U1, operating alone under fault-free
conditions, and a backup controller with manipulating input U2 that
only gets activated in response to faults. When a fault occurs, the FDE
module detects, isolates, and estimates the size of fault. Based on the
fault size, the decision logic, in general, determines whether the system
can remain safe at all future times. If not, the nominal controller is
accommodated with activation of backup controller to keep system

within safe operating region.
To help define the problem of designing a FTC system, a motivating

example of a chemical reactor where fault in feed temperature happens
as shown in Fig. 2 is briefly discussed here. A well-mixed, non-
isothermal CSTR where an exothermic reaction takes place is consid-
ered. For exothermic reactions which release heat, the temperature must
be precisely controlled to prevent runaway reaction that has the po-
tential to cause explosive accidents. Faults such as cooling system fail-
ures or unexpected feed temperature increase can cause the reactor
temperature to rise uncontrollably, posing severe safety risks. An active
FTC strategy is essential to maintain temperature within safe operating
limits even in the presence of faults. The control strategy would involve
the use of a nominal controller (NC) manipulating cooling, designed for
normal operating conditions to handle small faults and disturbances. On
the other hand, the backup controller (BC) manipulating feed flowrate is
to be designed to handle large-size faults size and to be only activated in
response to faults, operating together with NC. The BC should be more
aggressive, aiming to maintain the system within a safe operating re-
gion, but should not be activated unnecessarily, as changes in the feed
flow rate might drive the reactor away from proper design conditions. As
shown in Fig. 3, in the presence of a fault, the temperature starts
increasing and crosses the safety upper limit when NC alone is active.
Therefore, BC is needed to provide additional control action to coun-
teract the fault and keep system below the upper limit. This combined
controller action approach helps to maintain safety constraints in pres-
ence of both small and large faults. Activating the backup controller at
time t2 which is later than t1, increases the potential of the system tra-
jectory crossing the upper limit. It highlights the importance of the
activating the BC in a timely manner. Delays in activation can result in
the system crossing safety boundaries, and this indicates the need for
timely intervention via the BC to ensure the system remains within the
safe operating region.

Another important factor is fault size, since it determines the speed
by which the system might cross the upper limit; larger faults drive the
system more quickly out of the safe operating region. For smaller fault
size, it is not needed to activate BC as it can be handled by NC. So, it is
important to estimate the fault size for determining proper activation
time for the BC to avoid any unnecessary actions. In practice, the fault
estimator takes time to converge, and waiting until it converges, might
be too late. Therefore, the fault estimate must be utilized in transient,
even though it might be underestimating the fault size. This difficulty
motivates to use an extra online indicator to provide a quantitative
measure of safeness, aiding in the timely activation of BC. A potential
indicator, which will be discussed in Section 3.2, is the dynamic safety
margin (DSM) that measures how far the system state is from a specified
safety boundary. In our approach, the safe operating region will be the
Safe Operating Set (SOS) defined in Section 4.1, which is a positively
invariant set and stable in the sense of Lyapunov stability. The meaning
of the safe operating region is that as long as the system operates within
this region, all the safety constraints are satisfied. In Fig. 4, the system
trajectory starting from the initial condition x0 ends at the steady state
xs, traversing the state space with varying distance δ(t) from the safety
boundary. As long as the trajectory remains within the set, the system is
safe, but if it crosses the safety boundary, it enters an unsafe territory.
The DSM is the distance of the current state of system from the safety
boundary i.e. δ(t) shown in the Figure in this case.

The size of the safe region shown in Fig. 4 is expected to decrease as
fault size increases, and may even become an empty set under the
nominal controller alone, when the fault is too large. However,
including the backup controller, could result in a reasonably-sized safety
region even for large faults. As long as the fault size can be estimated, a
decision can bemade whether and when the backup controller should be
activated: not unnecessarily and not too late. The switching must
happen before the system is ready to cross the safety boundary, so that
the combined action of nominal and backup controllers can keep it safe
at all times. The goal of the proposed FTC strategy is to keep system safe

Fig. 2. Schematic of CSTR process.

Fig. 3. Trajectory when BC is activated at different time when fault occurs.

Fig. 4. Safe operating region.
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in the presence of faults and disturbances by activating the backup
controller in optimum only when necessary and just-in-time.

3. Background

In this section, a brief necessary review of two key tools is provided
that are critical to the proposed fault-tolerant control (FTC) strategy.
These are: (a) functional observers for detection, isolation, and estima-
tion of the fault, to assess its potential impact on system performance
and (b) the dynamic safe set (DSS) and dynamic safety margin (DSM) to
ensure that the system’s trajectory remains within specified input and
output constraints, even in the presence of faults or disturbances, and
this will enable defining the Safe Operating Set (SOS) in the next section.

3.1. Functional observer for fault estimation

Consider a nonlinear process that could be subject to faults and
disturbances, of the form:

dx
dt

= F(x)+G(x)f +E(x)W (1)

y = H(x)+ J(x)f +K(x)W (2)

where F(x),G(x),E(x),H(x), J(x),K(x) are smooth nonlinear functions,
x ∈ Rn stands for stands for the state vector, y ∈ Rp are the output
measurements, W ∈ Rm is a disturbance, f ∈ R is a potential fault acing
on the system. Without loss of generality, f is understood to be
nonnegative, with f = 0 indicating no fault and f = fmax indicating
complete failure. The dynamics of the fault can be assumed to originates
from a linear exo-system of the form:

dxo
dt

= Rxo (3)

f = Mxo (4)

where xo ∈ Rn0 and R, M are constant matrices. Examples of such faults

are ramp (R =

[
0 1
0 0

]

,M= [1 0]) and step (R = 0,M= 1) which will be

considered in our case study. The linear functional observer is built for
estimating fault f is [44]:

dξ̂
dt

= Aξ̂ + By (5)

f̂ = Cξ̂ +Dy (6)

The observer has the following properties:

• f̂ −f asymptotically approaches zero, under any initial conditions
• f̂ is disturbance-decoupled, i.e. unaffected by W

Such observer can be designed if and only if there exist constant row
vectors called parity vectors βo, β1,…βv ∈ Rp satisfying:

LvFe(βo(H(x) + J(x)Mxo ) ) + Lv−1Fe (β1(H(x) + J(x)Mxo ) ) + …

+ LFe(βv−1(H(x) + J(x)Mxo ) ) + (βv(H(x) + J(x)Mxo ) )

= M(Rv + α1Rv−1 + … + αv−1R+ αvI)xo (7)

whereLFe =
∑n

i=1
Fk(x)

∂
∂xk

+Mxo
∑n

i=1
Gk(x)

∂
∂xk

+
∑no

i=1
Rkxo

∂
∂xok

and λv +α1λv−1+…+αv−1λ+ αv is the characteristic polynomial of the
linear error dynamics and disturbance decoupling conditions:

∑v−k

l=0
LELv−k−lFe (β1(H(x)+ J(x)Mxo))+ βv−k+1(K(x)) = 0 (8)

k = 1,…v

βo(K(x) ) = 0 (9)

When the above conditions are satisfied, the linear functional
observer of the form (5−6) with A, B, C, D matrices given by:

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 −αv
1 0 … 0 −αv−1
⋮ ⋱ ⋱ ⋮ ⋮
0 … 1 0 −α2
0 … 0 1 −α1

⎤

⎥
⎥
⎥
⎥
⎦
, B =

⎡

⎢
⎢
⎢
⎢
⎣

βv − αvβ0
βv−1 − αv−1β0

βv−2 − αv−2 − β0
⋮

β1 − α1β0

⎤

⎥
⎥
⎥
⎥
⎦

(10)

C = [ 0 0 ⋯ 0 1 ], D = β0 (11)

has all the required properties and the eigenvalues of A are the roots of
the λv + α1λv−1 + … + αv−1λ + αv[44].

Under full state measurements, without sensor faults or disturbances
(y = x), it is often possible to design a first-order (v = 1) functional
observer. The design conditions are:

βo(F(x) + G(x)Mxo ) + β1x = M(R+ α1I)xo (12)

β1E(x) = 0

and, if they are satisfied for some constant row vectors βo, β1 ∈ Rn, the
dynamic system:

dξ̂
dt

= −α1 ξ̂ + (β1 − α1β0)x (13)

f̂ = ξ̂ + β0x

is a functional observer.
The functional observer method presented here will form the basis of

the fault estimation component of our proposed FTC algorithm. Note
that the functional observer will have dynamics, and there will be a
transient period until the fault estimate converges. The lag in fault
estimation will be an issue to be addressed in the development of our
FTC algorithm.

3.2. Quantification of dynamic safety: dynamic safe set (DSS) and
dynamic safety margin (DSM)

The DSS is defined as a set of initial states that guarantee the satis-
faction of all input/output safety constraints at any time in the future,
even in the presence of unknown disturbances. It is a closed, positively
invariant set calculated around a steady-state operating condition. To
evaluate the DSS, the established theory of maximal output admissible
sets is leveraged. The system dynamics of controlled nonlinear system
are:

ẋ = F(x)+E(x)w (14)

z0 = h(x)

where, F(x),E(x), h(x) are smooth nonlinear functions, x ∈ Rn denotes
the state, z0 ∈ Rp denotes constrained output which is subject to boun-
ded specified constraints z0(t) ∈ Z ⊂ Rp and bounded disturbance inputs
w(t) ∈W for all t. The maximal output admissible set (O∞) can be
defined in analogy to discrete nonlinear system[45]:

O∞ = {x(0) ∈ Rn : z0(t; x(0),w ) ∈ Z,∀ w(t) ∈W,∀ t > 0 } (15)

The, finite characterisation of O∞ has the property of Lyapunov
stability(see proof in [46]). Although the criteria for finite
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characterisation of O∞ are well established for discrete linear and
nonlinear systems, there are no results available for continuous
nonlinear systems [46]. In what follows, available results are reviewed
for linear discrete-time systems, where specific ready-to-use computa-
tional algorithms are available for computing the O∞. After linearization
and discretization of our nonlinear system, these algorithms can provide
a useful approximation of the O∞.

Consider a linear, time-invariant, discrete system of the form (16),
(17) which represents the closed loop system under a feedback
controller, and is subject to bounded disturbance inputs w(t) ∈W and
the output y must lie in a set Y in order to satisfy safety constraints.

x(t+1) = Ax(t)+Bw(t) (16)

y(t) = Cx(t)+Dw(t) (17)

y(t) = Cx(0)+Dw(0), t = 0

y(t) = CAtx(0)+
∑t−1

k=0
CA(t−k−1)Bw(t)+Dw(t), t ≥ 1 (18)

Then the maximal output admissible set [47,48]:

O∞ = {x(0) ∈ Rn : y(t) ∈ Y,∀ w(t) ∈W,∀ t ∈ N+ } (19)

is the set of all initial conditions such that the output y(t) lies within Y at
all times, for all disturbance inputs w(t) in W. In general Y is represented
by inequalities:

Y = {y ∈ ℝp : fi(CAtx) ≤ 0, i = 1,…, s} (20)

O∞ = {x ∈ ℝn : fi(CAtx) ≤ 0, i ∈ {1,…, s}, t ∈ {0,…, t∗} } (21)

For O∞ represented by (21) there exists a nonempty set of integers
S*⊂ {1,…, s} and indexes ti*, i ∈ S*, such that t*=max {ti*, i ∈ S*}. The
conditions necessary for finite determination and the recursive optimi-
zation algorithm for calculating O∞.

Ot+1 = Ot ∩ {x ∈ ℝn : (CAtx) ∈ Y }, O0 = {x ∈ ℝn : (Cx) ∈ Y } (22)

The assumptions for finite determination of O∞ for linear discrete
system are: i) A is asymptotically stable ii) the pair C,A is observable iii)
Y is bounded iv) 0 ∈ int Y[48]. Thus, finite characterisation of O∞ in-
cludes Lyapunov stability property for both linear and nonlinear discrete
systems [47–49]. The computational algorithm for set O∞ provides
safety boundaries for DSS, based on system dynamics, control strategies,
and safety requirements. Typically, the safety critical constraints include
bounds on output variables like the onset temperature of a runaway
reaction, the level of liquid in vessel and the limits on controller
actuator.

The safety boundary, DSS calculated around steady state is the set of
linear inequalities given by[41]:

DSS = {ϕi(x) = aix− ci ≤ 0|i = 1,…, q} (23)

where q is the number of boundaries constraint. By providing a quan-
titative measure of how close a system is to violating safety constraints,
the DSM helps in making timely decisions to maintain safe operations. It
can be calculated as:

DSM(δ(t)) = min
ci−aix
||ai||2

{> 0 iff ϕi(x) ≤ 0 and < 0 iff ϕi(x)

≥ 0}
(24)

In the presence of different units of the state variables, appropriate
normalisation is necessary to define a norm to calculate DSM [41]. The
DSM is positive when system remains inside DSS whereas it becomes
negative when trajectory crosses the DSS. At steady state DSM attains a
constant value, and the rate of change of DSM becomes zero. Further-
more, when the system is approaching unsafe region, the rate of change
of DSM becomes negative. Consequently, the sign of DSM or the rate of
change of DSM exhibits sensitivity to the occurrence of faults. This
sensitivity makes these parameters suitable for the development of
switching rules for controller based on them. They serve as reliable in-
dicators for identifying and responding to faults as the system operates.

The concept of DSS will enable defining the safe operating set in the
next section, which will be a key element of our FTC algorithm, which
will also involve DSM monitoring, once a large-size fault is detected.

4. Key offline information incorporated in the FTC algorithm

The objective of the proposed FTC algorithm will be to keep the
system within an appropriately defined DSS, after the fault happens.
This will be called the Safe Operating Set (SOS) and it will be a DSS for
the combined NC+ BC system in the presence of fault. The decision logic
of the FTC algorithm will determine whether and when BC will be
activated, given the transient fault size estimate from the functional
observer, so that the system does not go outside the SOS. In particular,
activation of BC will have to happen if and when the Dynamic Safety
Margin (DSM), which is the distance from the boundary of SOS gets too
small. Monitoring of the DSM will be initiated when the fault size esti-
mate grows too fast as a function of time, and exceeds a certain threshold
level. This threshold will be called Critical Fault Function (CFF) and it
will be a function of the time elapsed after the fault occurrence.

Both the SOS and the CFF will have to be calculated offline and will
be like design parameters of the proposed FTC algorithm. They will be
defined and discussed in the present section.

4.1. The Safe Operating Set (SOS)

Every control system has its own DSS, which depends on the absence
or presence of a fault, and in particular on the fault size. As the fault size
increases, the size of the DSS typically decreases. This is because larger
faults require more aggressive corrective actions to maintain system
stability and safety, thereby reducing the range of initial states that can
be safely controlled. Under only the nominal controller, as the fault size
increases, the DSS shrinks andmay become empty when the fault is large
enough. This is when the backup controller can make a difference:
operating together with the nominal controller, it can provide a decent-
size DSS, enabling the safe operation of the process despite the presence
of a large fault. The situation is illustrated in Fig. 5. In the absence of
fault, the nominal controller is designed with a comfortably large ONC∞ ,
when there is a small fault ONC∞ shrinks but might still be adequate, in the
presence of a large fault ONC∞ might be void, but the combined nominal
plus backup controller actions can give a decent-size DSS, ONC+BC∞ . Note
that ONC+BC∞ might be smaller than ONC∞ under zero fault, but this not a
problem as long as it gives enough “room” for the process to operate
safely. The important aspect is that ONC+BC∞ is strongly dependent upon
the fault size, and it should be reasonably large irrespective of the fault

Fig. 5. The effect of fault size on DSS.
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size.
In practice, faults are bounded, 0 ≤ f ≤ fmax, where fmax represents

the worst-case scenario of fault size (corresponding to 100 % failure a
piece of equipment), and the combination NC+BC must be capable of
protecting the system over the entire range of faults. For this reason, is
defined the Safe Operating Set (SOS) as the set Φ which is the inter-
section of all DSS’s over the entire fault range:

Φ = ∩0≤f≤fmaxONC+BC∞ (f) (25)

where ONC+BC∞ (f) denotes the DSS under a constant fault f when both NC
and BC are active. Thus, the SOS reflects the capability of combined
control effort of NC+BC to keep all constraints satisfied for any fault size
within the fault range, and the NC and BC controllers should be designed
so that Φ is large enough. The SOS will play a critical role on the pro-
posed FTC algorithm: activation of the backup controller will happen
while the system is still in SOS, so that it can remain in SOS in subse-
quent times.

It should be noted here that typically ONC+BC∞ (f1)⊃ONC+BC∞ (f2) when
f1 < f2, in which case Φ = ONC+BC∞ (fmax), and this facilitates the
computation of Φ.

Note however that, as pointed out in Section 3.2, the computation of
O∞ for general nonlinear systems is very challenging, and off-the-shelf
computational algorithms are for discrete-time linear systems. This
means that in practice, only an approximate O∞ can be obtained based
upon the linearized and discretized system, which might represent an
underestimation of the actual DSS [47]. Therefore, some fine-tuning of
fmax will be needed through simulation, in order to improve the accuracy
of the approximation of Φ. In reality, the system can tolerate faults that
exceed fmax by a small degree due to the inherent conservatism in the
DSS.

4.2. Critical fault function

It is necessary to develop a method to extract physically meaningful
information from determined SOS that is relevant to find optimum time
to activate BC. For this purpose, a concept of critical time (tc) and critical
fault (fc) is proposed. Suppose a SOS is defined and only the nominal
controller is active. When the system is initially at the design steady state
(xs) with no fault (f = 0), but suddenly there is a step fault of size f , the
system will react to it and the system trajectory might cross the
boundary of SOS. For small fault size it might not cross, but as the fault
gets larger, it will cross at smaller and smaller times. As shown in Fig. 6
(a), the trajectory does not cross the SOS for smaller fault f1 whereas
increasing fault size lead to touch the boundary and further trajectory
crosses the boundary for fault f3. The time at which the system trajectory
crosses the SOS when only nominal controller is operating during step
fault is defined as critical time corresponding to that step fault, known as
critical fault. Thus, for different critical fault size, there is a corre-
sponding tc which decreases as the step fault size increase.

Consider the closed loop system under the nominal controller only
and suppose it is described by a state space model of the form:

ẋ = F(x)+G(x)f +E(x)W (26)

Also, suppose that the system is initially (t = 0) at the design steady
state, operating in the absence of fault or disturbances. Suddenly, a step
fault happens, assuming a constant value of f > 0, for t > 0. Denote by
x(t; f) the solution of (26) and Φ the Safe Operating Set (SOS) defined in
the previous subsection, and assume that Φ includes the design steady
state. The time to cross the SOS boundary is defined as:

tc = sup{τ ∈ R+|x(t; f) ∈ Φ∀ t ∈ [0, τ]} (27)

In other words, the time to cross tc is the largest time for which x(t; f)
∈ Φ∀t < tc, with the understanding that if the entire state trajectory lies
inside Φ ∀t > 0, then tc = + ∞.

The above defines a mapping between fault size and time to cross: f→
tc(f). Alternatively, one could define the inverse mapping t → fc(t),
where fc is the fault size for which the time to cross is equal to t. fc will be
called critical fault size and fc(t) critical fault function.

Intuitively, it is expected that tc(f) is a monotonically decreasing
function of f or equivalently that fc(t) is a monotonically decreasing
function of t; this will be a standing assumption throughout this paper.
Fig. 6(b) depicts the qualitative shape of the critical fault function.

The critical fault function fc(t) will be a critical ingredient of the
proposed FTC algorithm, and it will have to be calculated offline. An
analytical calculation will not be feasible in general; however, one can
numerically calculate pairs

(
tc, fc

)
, and thus generate a piecewise

approximation of the function that will be used in the algorithm.

Fig. 6. Critical time-Critical fault definition.

Fig. 7. The FTC algorithm.
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A very important parameter in the critical fault function is its lower
bound: fnc = inft>0fc(t).

fnc is the maximum fault size for which the state trajectory under
nominal controller touches the SOS boundary but does not cross it.
When f < fnc, there is no need to activate the backup controller as it will
be effectively handled by nominal controller, which will keep the system
within SOS.

5. Proposed FTC strategy

In this section, an active FTC strategy is proposed capable of
providing more accurate and timely information for decision-making
and maintaining system functionality in the presence of faults. The
FTC structure comprises three components as shown in Fig. 7, (i) fault
estimation via functional observer (ii) fault prediction (iii) decision logic
for activating the backup controller (BC).

The functional observer component has been discussed in subsection
3.1. In the present section the following will be derived: 1. the fault
prediction algorithm, based on the fault estimate from the functional
observer; 2. the decision logic for activating the backup controller. Also,
the properties of the closed loop system under the proposed FTC algo-
rithm as well as tuning issues are discussed.

5.1. Fault prediction

The basis for fault prediction will be a linear first order functional
observer with tuneable eigen value (α1), that generates a fault estimate
f̂ , following subsection 3.1. From (13), the rate of change of estimated
fault follows:

df̂
dt

= −α1 f̂ + β1x+ β0
dx
dt

(28)

But because β0 and β1 satisfy (12), this implies that

df̂
dt

= −α1 f̂ +M(R+α1I)xo (29)

For the case of a step fault (M= 1, R= 0), the fault estimate is related
to the actual fault according to:

df̂
dt

+ α1 f̂ = α1f (30)

From (30), it is evident that if the rate of change of the fault (d̂fdt) can

be estimated from the online data of f̂ (t) from the functional observer
over a small time interval, an improved fault estimate may be derived as:

( 1α1
d̂f
dt + f̂ ). This is based on the assumption that the fault follows a nearly

constant slope during this time interval. The time derivative
(
d̂f
dt

)

may

be estimated through linear regression (LR) on the on line f̂ data over a
pre-defined time interval [t − ts, t] of length ts, and then a projected fault
estimate ( f̂e(t)) can be derived:

f̂e (t) = f̂ (t)+
m(t)
α1

(31)

where, m(t) =
(
d̂f
dt

)

LR
is the estimated rate of change of fault through

LR. The above projected estimate corrects for the lag between estimated
and actual faults, making f̂e(t) closer to the actual fault. Moreover, (30)
may be used to extrapolate the fault estimate into the future, as follows.

If p is a small enough time horizon, such that the time derivative (d̂fdt)
remains approximately constant over the time interval [t, t + p], (30)
implies that the change in f will be approximately equal to the change in
f̂ :

f(t + p) − f(t) ≈ f̂ (t + p) − f̂ (t) ≈
(
df̂
dt

)

approx
• p (32)

The above approximation allows to predict f(t+p) considering f̂e (t)

to be an accurate estimate of f(t) and using the estimate m(t) =
(
d̂f
dt

)

LR
obtained through LR as an approximation of the derivative, as follows:

fp(t + p) = f̂e (t + p) = f̂e(t) +m(t)p (33)

Fig. 8 shows the fault prediction scheme with estimated fault and its
rate of change.

5.2. Decision logic for activating the backup controller

The decision logic involves real-time actions guided by the results of
offline calculations. The offline calculations as discussed in Section 4
include computation of:

(a) A predefined set Φ, the Safe Operating Set (SOS), that reflects the
capabilities of the backup controller over the entire range of

Fig. 8. Fault prediction scheme.
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possible fault sizes (see subsection 4.1). The algorithm will
involve real-time monitoring of the Dynamic Safety Margin
(DSM), which is the distance from the boundary of Φ, to decide
when the backup controller will be activated.

(b) A precalculated function fc(t), the Critical Fault Function (CFF),
that will define the time-dependent threshold for initiating real-
time monitoring of the DSM.

To set up a criterion for activating DSMmonitoring and subsequently
the backup controller, consider a fault constant size f > 0, occurring at t
= 0, under only the nominal controller operating. Then, it is known that
the safety constraints will be violated after time tc = f−1c (f). Therefore,
activation of the backup controller must occur before the above tine tc so
that trajectory cannot go outside of SOS:

tactivation < f−1c (f) (34)

or equivalently

fc(tactivation) < f (35)

If the projected, lag-corrected fault estimate f̂e(t) is used and action is
taken at time t when f̂e (t) = fc(t), it could be too late. To be able to act
cautiously and ahead of time, the fault prediction fp(t+p), over a pre-
diction horizon p > 0, is used and to get alert and initiate real-time
monitoring of the DSM, at the first-time instant t such that

fp(t+ p) > fc(t) (36)

Because of the positivity of the fault f , the estimate f̂ (t) from the
linear first-order functional observer will be an increasing function of

time and therefore fp(t+p)will be larger than f , and this guarantees that
action is taken ahead of time, before the system trajectory crosses SOS
boundary. The prediction horizon p is a robustness parameter in the FTC
scheme. Fig. 9 depicts the application of criterion (36): when the pre-
dicted fault fp(t+p) exceeds the critical fault fc(t), DSM monitoring is
activated at that moment. The backup controller is activated if and when
DSM ≤ ε, where ε > 0 is a tunable parameter, which represents a
robustness margin.

Note that in general, it is not possible to do an analytical calculation
of the function fc(t) or tc = f−1c (f). The best approach is to numerically
calculate pairs

(
tc, fc

)
, and thus generate a piecewise approximation of

the function:

fapproxc (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fc1, if 0 < t ≤ tc1
fc2, if tc1 < t ≤ tc2
fc3, if tc2 < t ≤ tc3

⋮
fcn, if tc(n−1) < t ≤ tcn

(37)

the understanding being that a reasonable number of points
(
tc, fc

)
have

been calculated, sufficiently close to each other, for accuracy. The
approximation has the property that fapproxc (t) ≤ fc(t) ∀t > 0, therefore it
provides a conservative estimate: if DSM monitoring is initiated once
fp(t+p) > fapproxc (t), this will happen earlier than the time when
fp(t+p) > fc(t). Thus, the discretized decision logic will be:

fp(t+ p) > fapproxc (t) (38)

fp(t+ p) > fcn(tcn),∀ t ∈ {tc(n−1), tcn}

and it will be effective in ensuring in-time action. The discretization of
fc(t) and the discretized logic are illustrated in Fig. 10. Condition (38)
ensures that the decision to take action is made within the time interval
between the previous critical time tc(n−1) and the current critical time
tcn. If the predicted fault surpasses the critical fault size within this in-
terval, corrective action needs to be initiated to maintain system safety.
In this formulation, the decision logic provides a clear criterion for
activating fault-tolerant measures based on the comparison between
predicted and critical fault sizes within the specified time window. Thus,
the FTC algorithm keep the systemwithin SOS in the presence of fault by
activating BC in timely manner.

5.3. Properties of the FTC control system – Tuning considerations

The proposed FTC algorithm detailed in the previous subsections was
built in such a way, so that it does not let the system state escape out of
the set Φ. In particular, one can prove the following:

Proposition: Suppose that the following assumptions are satisfied:
(A1) The fault is initially zero and then it undergoes an ideal step increase

to the value of f ∈ [0, fmax];
(A2) Full state measurement without noise or systematic error;
(A3) The functional observer is linear and first-order;
(A4) The set Φ is a positively invariant closed set, for the closed-loop

system under NC+BC, for every constant f ∈ [0, fmax]; the design steady
state lies in the interior of the set Φ;

(A5) The function fc(t) is a monotonically decreasing continuous function
such that for every constant f ∈ [0, fmax] , the inverse function tc = f−1c (f)
represents the time it takes, after the occurrence of a fault f , for the closed
loop system under NC to cross the boundary of Φ;

(A6) The set Φ is a subset of the DSS of the closed-loop system under NC
alone, for all f ∈ [0, inft>0f c(t)];

Then the FTC algorithm guarantees that the state of the system lies in the
set Φ for all t > 0.

Proof: The functional observer will generate a fault estimate that
follows (30), hence for a step fault f , the estimate will be f̂ (t) =

(1− e−α1 t)f , which is a strictly increasing positive function, from which

Fig. 9. Decision logic for activating DSM monitoring in continuous-time.

Fig. 10. Decision logic for activating DSM monitoring in discrete-time.
Remark: In the above, it was assumed, without loss of generality, that the fault
occurred at time t = 0. The time of occurrence of the fault to is determined by
the estimate from the functional observer, and the elements of the tc sequence
must be shifted to tc + to.
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the prediction is fp(t+p) = f̂e(t) + p d̂fdt (t) = (1+pα1e−α1t)f .
Because α1 > 0 and p > 0, the prediction fp(t+p) > f for all t > 0,

therefore if there is an intersection of fp(t+p)with fc(t), it will be at time
less than tc = f−1c (f), i.e. while the system state lies in the interior of Φ.
From that moment, DSM monitoring will start, and the BC will be
activated when DSM reaches the value ε > 0, i.e. while the system is still
in the interior of Φ. And it will remain in Φ in subsequent times under
the action of BC+NC.

On the other hand, if there is no intersection of fp(t+p)with fc(t), this
means that the system state lies in the interior of Φ. □

Of course, there will be non-idealities in practice, including sensor
noise, non-ideal step fault, errors in estimating the time derivative of the
fault estimate, errors in calculating fc, etc., however the FTC algorithm
has two robustness parameters, p and ε, that may be appropriately tuned
to cover for these errors.

The FTC algorithm has the following tunable parameters that need to
be properly selected:

• Eigenvalue of the functional observer: It must be selected to strike a
balance between the convergence speed of the estimator and mini-
mizing the impact of noise on overshoot.

• Sampling interval for linear regression: It represents a fraction of the
time constant and should be shorter than the prediction horizon.

• Prediction horizon: This parameter should be small enough to prevent
over-reaction, but at the same time large enough to cover for possible
calculation errors in the critical faults.

• DSM threshold: It should be set small enough to prevent unnecessary
activation of backup controller, but large enough to cover for
modelling error.

Table 1
Process parameters.

Parameter description Symbol Value Unit

Pre-exponential factor k10 4 × 1014 lit/mol hr
Pre-exponential factor k20 1×1084 hr−1

Activation energy E1 1.28×105 J/mol
Activation energy E2 8×105 J/mol
Heat of reaction ΔH1 −45400 J/mol
Heat of reaction ΔH2 −3.2×105 J/mol
Universal gas constant R 8.314 J/mol K
Average density of feed ρ 12.4 mol/lit
Average specific heat of feed Cp 254 J/mol K
Volume of reactor V 5000 lit
Flowrate of A FA0 1250 mol/hr
Flowrate of S FS0 750 mol/hr
Flowrate of B FB0 1400 mol/hr
Coolant temperature Tc 300 K
Heat transfer surface area A 5.3 m2

Overall heat transfer coefficient Us 11000 J/ m2 hr K
Reactor temperature Ts 468 K
Concentration of A CAs 0.16 mol/lit
Feed temperature T0 416 K
Total feed volumetric flowrate V0 s 274.2 lit/hr

Note that in the vicinity of normal operating conditions, with the reactor tem-
perature below 480 K, the side reaction does not go and the process model is

reduced to a two-state model as:
dCA
dt

=
V0
V

(CA0 −CA) − R1(CA,T) and
dT
dt

=
V0
V

(T0−T) −
UA(T − Tc)

ρVCp
+

( − ΔH1)R1(CA,T)
ρCp

.

Fig. 11. T2-process schematic.

Table 2
Controller parameters.

Controller Parameter Value Unit

k1 −106 J lit/ m2 hr K mol
k2 −7×106 J / m2 hr K2

l1 −100 lit2/mol hr
l2 60 lit/ hr K
Umax 25000 J/ m2 hr K
V0max 1.5×v0s lit/hr
Umin 0 J/ m2 hr K
V0 min 0 lit/hr

Fig. 12. Fault estimation in open loop.

Table 3
Steady state at upper and lower limit of input.

State Umax Umin

Ts 453 K 759.6 K
CAs 0.36mol/lit 0mol/lit
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Offline computation of SOS and tc are based on an ideal step fault,
providing a conservative estimate of the time left for crossing the SOS
without activating BC. The fault estimation scheme closely resembles
the actual fault size and the prediction horizon in the decision logic
provides early fault identification that guide decision logic for activating
DSM monitoring. The positive threshold value for DSM to activate
backup controller, serves as a real-time indicator of the system’s safety
level implying that the system is well within the SOS. These features
ensure there is sufficient time to take corrective action for step and even
for step- like faults.

Fig. 13. Response of functional observer in closed loop under input constraints (a) without noise (b) with noise in measurement.

Fig. 14. DSS under NC, (b). DSS of combined NC+ BC, (c). DSM for different fault sizes under NC, (d). Trajectory under NC.

Table 4
Pairs of critical fault, fc and critical time, tc.

n fc (K) tc (hr)

1 20 1.1
2 18 1.2
3 15 1.75
4 10 6.5 (to touch the boundary)
5 5 Does not cross the DSS
6 0 Does not cross the DSS
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6. Case study: fault-tolerant control of an exothermic chemical
reactor

In what follows, a case study will be used to illustrate the proposed
FTC strategy in terms of offline computation and real-time decision-
making to keep system within SOS. It will involve designing the nominal
(fault-free) and backup controller for maintaining the reactor tempera-
ture at a target set point. The backup controller will be activated only in
the presence of faults of significance size. The reactions include one
primary desired reaction and a secondary undesired reaction, both of
which are exothermic. The undesired reaction has a reaction rate that is
negligible under normal operating conditions but becomes significant at
elevated temperatures. In other words, the undesirable side reaction can
be triggered under transient conditions, when the reactor temperature is
not maintained within safety limits. This aspect allows to elucidate the
advantages of the proposed FTC strategy. The fault estimator and the
necessary offline computations for the design of FTC scheme will be
derived in this section.

6.1. Process description

The process is the T2 Laboratories production of Methyl-
Cyclopentadienyl Manganese Tri-carbonyl (MCMT) through two
exothermic reactions, which take place in a CSTR [41]

Reaction 1: A+ B ̅̅ →K1A C + ½ D
Reaction 2: S ̅̅→K2S 3D+ byproducts
where A (methylcyclopentadiene), B (liquid sodium) are the re-

actants, C (sodium methylcyclopentadiene) is the desired product, S

(diglyme) is the solvent, and D is hydrogen. Reaction 2, identified as the
side reaction, has a negligible rate at temperatures below 480 K. How-
ever, it becomes significant above 480 K due to its activation energy
being over eight times greater than that of the desired main reaction.
Consequently, this leads to an uncontrolled increase in reaction rate at
elevated temperatures. Given that both reactions produce hydrogen gas,
there is a potential for a sharp increase in pressure, that can result in the
rupture of the reactor wall. Hence, it is imperative to enforce the safety
constraint of reactor temperature below 480 K, to prevent thermal
runaway. The open loop dynamic model considering mass and energy
balance in the absence of faults and disturbances are:

dCA
dt

=
V0
V

(CA0−CA)−R1(CA,T) (39)

dCS
dt

=
V0
V

(CS0−CS)−R2(Cs,T)

dT
dt

=
V0
V

(T0 −T)−
UA(T − Tc)

ρVCp

+
( − ΔH1)R1(CA,T) + ( − ΔH2)R2(Cs,T)

ρCp

where cooling duty, Q, can be represented by: UA(T−Tc)
The reaction rates of the two reactions are given by [50]:

R1(CA,T) = k10e−
E1
RTCA(CA +CB0−CA0) (40)

R2(Cs,T) = k20 e−
E2
RTCS

The process parameter is given in Table 1 where subscript lower-case
s refers to their steady state.

The feed streams reactant (A) in solvent (S) and liquid (B), are heated
in a preheater before being fed to the reactor as shown in Fig. 11. The
process has full state measurement for monitoring. A static state feed-
back controller is designed to ensure efficient real-time control with
minimal computational complexity. This approach is particularly suited
for the proposed FTC algorithm, allowing for rapid fault estimation and
reconfiguration without relying on internal dynamics or integrators.
Although techniques like bumpless transfer or anti-windup could further
smooth transitions, the static feedback design effectively handles system
stability under fault conditions. The reactor temperature is controlled at
the desired set-point using a nominal state feedback controller manip-
ulating the heat transfer coefficient by adjusting the flowrate of the
cooling water; this is the only controller to operate in the absence of
faults. Additionally, a backup state feedback controller manipulating
feed flowrate is designed to operate when fault happens. Thus, a nom-
inal controller is capable of handling disturbances and small fault size,
and a backup controller capable of handling large fault sizes. Table 2
shows the controller gain parameters: feedback gains and input satura-
tion limits. The controller equations are given by (41) below:

Qs = UsA(Ts−Tc) (41)

Q = − k1(CA −CAs)− k2(T−Ts)+Qs

U = max(Umin,min(
(
−k1(CA − CAs) − k2(T − Ts) + Qs

A(T − Tc)

)

,Umax))

V0 = max(V0min,min((− l1(CA−CAS)− l2(T−Ts)+V0s ),V0max) )

6.2. Fault estimation

The functional observer algorithm is applied for fault estimation
described in subsection 3.2, using the two-state model, with the equa-
tions expressed in deviation form in terms of Cʹ

A = CA −CAs, Tʹ = T −

Ts , Qʹ = Q − Qs. The process fault considered is overheating in the feed

Fig. 15. Critical time / critical fault pairs (for fault occurrence time to =0).

Table 5
Tunable parameters.

Parameter Value

α1 1 hr
ts 0.25 hr
p 0.25 hr
ε 0.01

Table 6
Decision logic for activating DSM monitoring.

Condition Time interval (hr)

fp(t+p) > 20 2 < t ≤ 3.1
fp(t+p) > 18 3.1 < t ≤ 3.2
fp(t+p) > 15 3.2 < t ≤ 3.75
fp(t+p) > 10 3.75 < t ≤ 8.5
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pre-heater, which directly impacts fault (f) in feed temperature (f is the
deviation of feed temperature from its normal value), also a disturbance
of size w = 0.05 is considered. Thus, the open-loop model in deviation
form is given by (42).

dCÁ
dt

=
−V0
V
CÁ + (1+ w)(R1(CAs,Ts)−R1

(
Cʹ
A +CAs,T

ʹ+Ts
)
) (42)

y1́ = Cʹ
A

y2́ = T́

The following parity vectors satisfy the conditions of (7−9) for v =

1 in open loop, where Qʹ = 0.

β0 = α1
V
V0

[
−ΔH1

ρCp
, 1

]

(43)

β1 = α1
[
−ΔH1

ρCp
, 1

]

The linear functional observer along with the pertinent design pa-
rameters in open loop are:

A = − α1 = −1,B = β1− α1β0,C = 1,D = β0,α1 = 1 (44)

dξ̂
dt

= −α1 ξ̂ + α1
−ΔH1

ρCp

(

1− α1
V
V0

)

y1́ + α1(1− α1
V
V0

)y2́

f̂ = ξ̂ +α1
V
V0

(−ΔH1)
ρCp

y1́ +α1
V
V0
y2́

The following step-like fault scenario was simulated and the result is
shown in Fig. 12.

f(t) =

⎧
⎨

⎩

0, t < 6
3t − 16, t ≥ 6
20, t ≥ 12

(45)

Fig. 16. (a). Fault estimation, (b). Predicted fault, (c). DSM response, (d). Trajectory with activating BC at 3.05 hr for step fault.

dT́
dt

=
V0
V

(−Tʹ+ f)+
( − ΔH1)(1+ w)(R1

(
Cʹ
A + CAs,Tʹ + Ts

)
− R1(CAs,Ts))

ρCp
−

Q́
ρVCp
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The following parity vectors satisfy the conditions of (7−9) for v =

1 in closed loop Qʹ =−k1Cʹ
A −k2T́ and the functional observer equations

are:

β0 = α1
V
V0

[
−ΔH1

ρCp
, 1

]

(46)

β1 = α1
[
−ΔH1

ρCp
−

k1
ρCpV0

, 1−
k2

ρCpV0

]

dξ̂
dt

= −α1 ξ̂ + α1
( − ΔH1)

ρCp

(

1−
k1

( − ΔH1)V0
− α1

V
V0

)

y1́ + α1(1−
k2

ρCpV0

− α1
V
V0

)y2́

f̂ = ξ̂ +α1
V
V0

(−ΔH1)
ρCp

y1́+α1
V
V0
y2́

The above equations are used when the manipulated input does not
saturate. At the moment it saturates to Umax or Umin, switch to the cor-
responding open-loop Eq. (44), but with new steady-state values cor-
responding to the respective limiting of input given in Table 3.

The fault scenario (48) was simulated and the response is shown in
Fig. 13 (a). Also, the response of the functional observer in the presence
of measurement noise (47) for the fault scenario (49) is shown in Fig. 13
(b). The simulation results indicate that the functional observer’s per-
formance is excellent in the presence of any fault size in closed loop,

considering input constraints and noise.

y1́ = Cʹ
A +0.03C

ʹ
Ar

y2́ = T́ +0.03T́ r (47)

where, r is the random number from uniform distribution in the interval
(0,1). Fast Fourier transform is used for noise filtering in estimating
fault. The FFT is fast and efficient in noise filtering for large noisy data
sets.

f(t) =

⎧
⎨

⎩

0, t < 2
5t − 5, t ≥ 2
25, t ≥ 6

(48)

f(t) =

⎧
⎨

⎩

0, t < 2
4t − 4, t ≥ 2
16, t ≥ 5

(49)

6.3. Offline calculations for the FTC algorithm

As discussed in Section 4, it is necessary to determine the SOS and the
(
tc, fc

)
pairs offline, to implement the FTC strategy. The results of the

calculations of DSS as discussed in subsection 3.2 for different fault sizes
under (a) nominal controller alone (b) combined nominal and backup
controllers are shown in Fig. 14(a) and (b) respectively. Under NC alone,
the size of the DSS decreases with increasing fault size and becomes
empty for faults exceeding 15 K. whereas under combined NC + BC, the

Fig. 17. (a). Fault estimation, (b). Predicted fault, (c). DSM response, (d). Trajectory with activating BC at 3.78 hr for fault given by (50).
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DSS exists and becomes extremely small for fault exceeding 18 K. For the
FTC algorithm, the DSS corresponding to fault of 18 K under both con-
trollers is selected, as the SOS (the setΦ) which has reasonable size. This
set will be used for critical fault calculations and for online DSM
monitoring. It turns out that the calculated approximation of DSS is an
underestimation, and it is adequate to manage faults greater than 18 K,
keeping the system below the upper boundary of DSS (which is
approximately constant for different fault sizes, as shown in Fig. 14. (b)).

The critical time tc to cross the boundary of the SOS for different step
fault sizes is calculated by identifying time when trajectory touches the
safety boundary, making DSM equal to zero. Fig. 14 (c) shows DSM
decreases down to zero for fault size of 10 K but dips into negative values
for larger fault sizes. In this case, fault size of 10 K is the fnc below which
the backup controller is not needed (see subsection 4.2). As DSM be-
comes negative for faults greater than 10 K, trajectory crosses the SOS as
shown in Fig. 14.(d), if the backup controller is not activated. Thus, take
corrective actions for faults greater than 10 K. Table 4 provides some

(
tc,

fc
)
pairs, considering the fault occurrence time, to to be zero. The cor-

responding discretized critical fault function is depicted in Fig. 15
showing how critical time decreases with increasing fault size, indi-
cating a reduced window for intervention as faults escalate. Finally, the
tunable parameters used in the FTC algorithm for fault estimation,
projection, prediction and DSM tolerance are listed in Table 5.

7. Results

In the previous section, the linear functional observer is derived for
estimating fault size and the offline calculation results, including SOS
and the discretized critical fault function. Now, the decision logic will be
developed to implement the FTC scheme in real time. In this section,
four sets of simulation results are provided for ideal step and step-like
faults of different sizes given by (50−52). The time of occurrence of
fault (to) is 2 hr in the simulations and therefore the critical time shown
in Table 4 has been shifted to (tc + 2) hr in the formulation of decision
logic shown in Table 6. Thus, the offline

(
tc, fc

)
pairs and decision logic

give conditions to check for the predicted fault for different time in-
tervals, as shown in Table 6.

Fig. 16 illustrates the first scenario, when an ideal step fault of size
20 K occurs at t=2 hr. Firstly, the fault estimate is calculated from the
functional observer and then linear regression is performed on 15 min
data to calculate the rate of change of fault estimate (m). The projected
fault closely resembles the real fault with minimal overshoot and noise
indicating tunable parameters are well chosen. When current time
t=2.75 hr and predicted fault at t=3 hr is larger than 20 K, the decision
logic dictates to start monitoring DSM. Therefore, monitoring DSM starts
at 2.75 hr and the backup controller is activated at t= 3.05 hr when DSM
reaches its threshold. Fig. 16(d) shows that trajectory remains inside
SOS for all times, indicating accommodation of the fault.

The next scenario is a step-like fault given by (50), involving an

Fig. 18. (a). Fault estimation, (b). Predicted fault, (c). DSM response, (d). Trajectory with activating BC at 5 hr for fault given by (51).
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initial growth phase and settling at its final value at a time close to tc1.
Again, linear regression is performed on 15 min data of fault estimate to
calculate the rate of change of fault estimate (m). Here, the predicted
fault is less than fc1(20 K) and fc2(18 K) in their respective time in-
terval. However, at current time t=3.25 hr, the predicted fault at
t=3.5 hr, is greater than fc3 (15K), which satisfies the condition of the
decision logic. So, start monitoring the DSM at t=3.25 hr, and activate
the backup controller at t=3.78 hr according to the DSM threshold
value, to keep trajectory within SOS as shown in Fig. 17(d). Similarly,
Fig. 18 shows the results for the step-like fault scenario given by (51),
where the settling time is larger than tc1. The predicted fault at t=3 is
6.22 K that can be handled by nominal controller. This indicates
although the fault has occurred but its rate of change is slow. Here, the
predicted fault is less than fc1(20 K), fc2(18 K) and fc3(15 K) for their
respective time interval. However, at current time t=3.75 hr and pre-
dicted fault at t=4 hr, is greater than fc4(10K) which crosses the CFF as
shown in Fig. 18(b). So, start monitoring the DSM at t=3.75 hr, and
activate backup controller at t=5 hr according to DSM threshold to keep
trajectory within SOS as shown in Fig. 18(d).

The last scenario simulated involves a small-size step-like fault given
by (52), as shown in Fig. 19. Here, the predicted fault is always less than
fnc(10K) that results in no activation of backup controller. This fault size
is handled by nominal controller to keep the systemwithin SOS as shown
in Fig. 19(c).

In all cases, the algorithm is able to handle the faults and keep system
within SOS. When the rate of change of fault is slow, although the DSM

monitoring is activated early, the backup controller is only engaged just-
in-time due to the two levels of safety embedded in the algorithm. The
scheme involves first activating DSM monitoring, and then, when the
DSM threshold is reached, the backup controller is triggered. This
feature makes the proposed FTC algorithm effective for a wide range of
fault scenarios.

f(t) =

⎧
⎨

⎩

0, t < 2
6t − 2, t ≥ 2
16, t ≥ 3

(50)

f(t) =

⎧
⎨

⎩

0, t < 2
4t − 4, t ≥ 2
16, t ≥ 5

(51)

f(t) =

⎧
⎨

⎩

0, t < 2
4t − 6, t ≥ 2
6, t ≥ 3

(52)

8. Conclusions and future directions

In this work, a comprehensive framework for fault-tolerant control
systems (FTCS) in the context of modern industrial processes charac-
terized by nonlinear and multivariable interactions is proposed. Unlike
existing methods for FTC schemes in the literature that rely on Fault
Detection and Isolation (FDI) and Lyapunov-based methods for

Fig. 19. (a). Fault estimation, (b). Predicted fault, (c). Trajectory without activating BC for fault given by (52).
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controller reconfiguration, our proposed method simplifies the process
by focusing on maintaining system stability within a single SOS using
information from fault estimator. The proposed approach integrates a
dynamic safe set (DSS) and dynamic safety margin (DSM) concepts with
fault estimation techniques to provide a robust FTCS that ensures system
stability and safety in the presence of faults. A linear functional observer
to estimate the fault is combined with a fault prediction scheme to
predict the fault size. This helps in early identification of fault, so that a
fault estimator in transient can be utilized and apply switching logic for
controller accommodation, before it is too late. The formulation of de-
cision logic to activate a backup controller just-in-time to accommodate
the fault, is the key contribution of this paper.

The DSS is based on the theoretical concept of maximal output ad-
missible set which is a collection of all initial states for which the output
satisfies safety constraints at all times, even in the presence of faults and
disturbances. It helps to determine a Safe Operating Set (SOS), which is
the intersection of DSS over a range of different fault sizes. The SOS is a
conservative estimate as it accounts for maximum step fault scenario.
The SOS is the region within which the system can operate safely under
combined nominal and backup controller actions. The SOS provides a
critical boundary that guides the system’s response to faults, ensuring
that corrective actions are taken in a timely and appropriate manner.

A critical aspect of the proposed FTC scheme is the introduction of
critical fault and critical time functions. The critical time is the time for
state trajectory to cross SOS boundary in the presence of a step fault
known as critical fault, under the nominal controller only. These func-
tions are used to determine the timing for activating backup controllers,
based on the predicted fault size. When the predicted fault size is larger
than the critical fault, DSM is monitored. The DSM provides insight on
the safeness level of system by real-time evaluation of safety margins
from the boundary of SOS. The backup controller is activated when DSM
crosses a positive threshold, in order to keep the process within SOS in
the event of a fault. This approach helps in preventing unnecessary
control actions while maintaining system safety and performance.

The application of the FTC algorithm to an exothermic CSTR, an
example of a safety-critical process, illustrates its effectiveness in
handling a fault due to overheating in the pre-heater of the feed stream,
by activating a backup controller manipulating feed flowrate, which is
cutting the fuel line for the exothermic reaction. The results highlight
the FTC algorithm’s ability to adaptively respond to faults, maintaining
the system within the SOS and enforcing stability and safety constraints.

Future research will focus on extending this FTC scheme to other
types of processes and fault scenarios, and refining the integration of
DSS and DSM with various control strategies. Actuator and sensor faults
will be considered in the FTC scheme. Key areas of improvement include
improving fault identification techniques including error, and opti-
mizing the decision-making criteria for controller reconfiguration. Our
objective is to contribute to the ongoing development of more resilient
and reliable industrial automation systems, capable of maintaining
safety and efficiency in increasingly complex operational environments.

CRediT authorship contribution statement

Ritu Ranjan: Writing – original draft, Visualization, Software,
Methodology, Conceptualization. Costas Kravaris: Writing – review &
editing, Visualization, Supervision, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

Financial assistance from the National Science Foundation through

the grant CBET- 2133810 is gratefully acknowledged.

Data Availability

Data will be made available on request.

References

[1] D. Theilliol, Y.M. Zhang, J.C. Ponsart, Fault tolerant control system against
actuator failures based on re-configuring reference input, 2009 Int. Conf. Adv.
Comput. Tools Eng. Appl. (Jul. 2009) 480–485, https://doi.org/10.1109/
ACTEA.2009.5227904.

[2] M. Blanke, M. Staroswiecki, N.E. Wu, Concepts and methods in fault-tolerant
control, Proc. 2001 Am. Control Conf. (Cat. No. 01CH37148) (Jun. 2001)
2606–2620 vol.4, https://doi.org/10.1109/ACC.2001.946264.

[3] P. Mhaskar, J. Liu, and P.D. Christofides, Fault-Tolerant Process Control: Methods and
Applications. Springer Science & Business Media, 2012.

[4] Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control
systems, Annu. Rev. Control 32 (2) (Dec. 2008) 229–252, https://doi.org/10.1016/
j.arcontrol.2008.03.008.

[5] F. Guenab, P. Weber, D. Theilliol, Y.M. Zhang, Design of a fault tolerant control
system incorporating reliability analysis and dynamic behaviour constraints, Int. J.
Syst. Sci. 42 (1) (Jan. 2011) 219–233, https://doi.org/10.1080/
00207720903513319.

[6] J. Jiang, X. Yu, Fault-tolerant control systems: a comparative study between active
and passive approaches, Annu. Rev. Control 36 (1) (Apr. 2012) 60–72, https://doi.
org/10.1016/j.arcontrol.2012.03.005.

[7] X. Yu, J. Jiang, A survey of fault-tolerant controllers based on safety-related issues,
Annu. Rev. Control 39 (Jan. 2015) 46–57, https://doi.org/10.1016/j.
arcontrol.2015.03.004.

[8] A.A. Amin, K.M. Hasan, A review of fault tolerant control systems: advancements
and applications, Measurement 143 (Sep. 2019) 58–68, https://doi.org/10.1016/j.
measurement.2019.04.083.

[9] A. Fekih, Fault diagnosis and Fault Tolerant Control design for aerospace systems: a
bibliographical review, 2014 Am. Control Conf. (Jun. 2014) 1286–1291, https://
doi.org/10.1109/ACC.2014.6859271.

[10] A. Abbaspour, S. Mokhtari, A. Sargolzaei, K.K. Yen, A survey on active fault-
tolerant control systems, Art. no. 9, Electronics 9 (9) (Sep. 2020), https://doi.org/
10.3390/electronics9091513.

[11] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process
fault detection and diagnosis: part I: Quantitative model-based methods, Comput.
Chem. Eng. 27 (3) (Mar. 2003) 293–311, https://doi.org/10.1016/S0098-1354
(02)00160-6.

[12] S.X. Ding, Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and
Tools. Springer Science & Business Media, 2008.

[13] P.M. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-
based redundancy: a survey and some new results, Automatica 26 (3) (May 1990)
459–474, https://doi.org/10.1016/0005-1098(90)90018-D.

[14] P.M. Frank, X. Ding, Survey of robust residual generation and evaluation methods
in observer-based fault detection systems, J. Process Control 7 (6) (Dec. 1997)
403–424, https://doi.org/10.1016/S0959-1524(97)00016-4.

[15] M. Darouach, Existence and design of functional observers for linear systems, IEEE
Trans. Autom. Control 45 (5) (May 2000) 940–943, https://doi.org/10.1109/
9.855556.

[16] K. Emami, T. Fernando, B. Nener, H. Trinh, Y. Zhang, A functional observer based
fault detection technique for dynamical systems, J. Frankl. Inst. 352 (5) (May
2015) 2113–2128, https://doi.org/10.1016/j.jfranklin.2015.02.006.

[17] P.M. Frank, Advanced fault detection and isolation schemes using nonlinear and
robust observers, Part 3, IFAC Proc. Vol. 20 (5) (Jul. 1987) 63–68, https://doi.org/
10.1016/S1474-6670(17)55353-7.

[18] N. Kazantzis, C. Kravaris, Nonlinear observer design using Lyapunov’s auxiliary
theorem, Syst. Control Lett. 34 (5) (Jul. 1998) 241–247, https://doi.org/10.1016/
S0167-6911(98)00017-6.

[19] S.A.A. Taqvi, H. Zabiri, L.D. Tufa, F. Uddin, S.A. Fatima, A.S. Maulud, A review on
data-driven learning approaches for fault detection and diagnosis in chemical
processes, ChemBioEng Rev. 8 (3) (2021) 239–259, https://doi.org/10.1002/
cben.202000027.

[20] X. Bi, R. Qin, D. Wu, S. Zheng, J. Zhao, One step forward for smart chemical
process fault detection and diagnosis, Comput. Chem. Eng. 164 (Aug. 2022)
107884, https://doi.org/10.1016/j.compchemeng.2022.107884.

[21] D.-L. Yu, T.K. Chang, D.-W. Yu, Fault tolerant control of multivariable processes
using auto-tuning PID controller, IEEE Trans. Syst. Man Cybern. Part B Cybern. 35
(1) (Feb. 2005) 32–43, https://doi.org/10.1109/TSMCB.2004.839247.

[22] P. Mhaskar, N.H. El-Farra, P.D. Christofides, Predictive control of switched
nonlinear systems with scheduled mode transitions, IEEE Trans. Autom. Control 50
(11) (Nov. 2005) 1670–1680, https://doi.org/10.1109/TAC.2005.858692.

[23] P. Mhaskar, Robust model predictive control design for fault-tolerant control of
process systems, Ind. Eng. Chem. Res. 45 (25) (Dec. 2006) 8565–8574, https://doi.
org/10.1021/ie060237p.

[24] R. Liu, Y. Li, 2022, A review of fault tolerant control based on Model Predictive
Control, in 2022 37th Youth Academic Annual Conference of Chinese Association
of Automation (YAC), Nov., pp. 818–823. doi: 10.1109/
YAC57282.2022.10023667.

R. Ranjan and C. Kravaris Journal of Process Control 144 (2024) 103329 

16 

https://doi.org/10.1109/ACTEA.2009.5227904
https://doi.org/10.1109/ACTEA.2009.5227904
https://doi.org/10.1109/ACC.2001.946264
https://doi.org/10.1016/j.arcontrol.2008.03.008
https://doi.org/10.1016/j.arcontrol.2008.03.008
https://doi.org/10.1080/00207720903513319
https://doi.org/10.1080/00207720903513319
https://doi.org/10.1016/j.arcontrol.2012.03.005
https://doi.org/10.1016/j.arcontrol.2012.03.005
https://doi.org/10.1016/j.arcontrol.2015.03.004
https://doi.org/10.1016/j.arcontrol.2015.03.004
https://doi.org/10.1016/j.measurement.2019.04.083
https://doi.org/10.1016/j.measurement.2019.04.083
https://doi.org/10.1109/ACC.2014.6859271
https://doi.org/10.1109/ACC.2014.6859271
https://doi.org/10.3390/electronics9091513
https://doi.org/10.3390/electronics9091513
https://doi.org/10.1016/S0098-1354(02)00160-6
https://doi.org/10.1016/S0098-1354(02)00160-6
https://doi.org/10.1016/0005-1098(90)90018-D
https://doi.org/10.1016/S0959-1524(97)00016-4
https://doi.org/10.1109/9.855556
https://doi.org/10.1109/9.855556
https://doi.org/10.1016/j.jfranklin.2015.02.006
https://doi.org/10.1016/S1474-6670(17)55353-7
https://doi.org/10.1016/S1474-6670(17)55353-7
https://doi.org/10.1016/S0167-6911(98)00017-6
https://doi.org/10.1016/S0167-6911(98)00017-6
https://doi.org/10.1002/cben.202000027
https://doi.org/10.1002/cben.202000027
https://doi.org/10.1016/j.compchemeng.2022.107884
https://doi.org/10.1109/TSMCB.2004.839247
https://doi.org/10.1109/TAC.2005.858692
https://doi.org/10.1021/ie060237p
https://doi.org/10.1021/ie060237p


[25] N.H. El-Farra, P.D. Christofides, Coordinating feedback and switching for control of
hybrid nonlinear processes, AIChE J. 49 (8) (2003) 2079–2098, https://doi.org/
10.1002/aic.690490817.

[26] N.H. El-Farra, P. Mhaskar, P.D. Christofides, Output feedback control of switched
nonlinear systems using multiple Lyapunov functions, Syst. Control Lett. 54 (12)
(Dec. 2005) 1163–1182, https://doi.org/10.1016/j.sysconle.2005.04.005.

[27] P. Mhaskar, A. Gani, N.H. El-Farra, C. McFall, P.D. Christofides, J.F. Davis,
Integrated fault-detection and fault-tolerant control of process systems, AIChE J. 52
(6) (2006) 2129–2148, doi: 10.1002/aic.10806.

[28] P. Mhaskar, A. Gani, P.D. Christofides, Fault-tolerant control of nonlinear
processes: performance-based reconfiguration and robustness, Int. J. Robust.
Nonlinear Control 16 (3) (2006) 91–111, doi: 10.1002/rnc.1045.

[29] P. Mhaskar, C. McFall, A. Gani, P.D. Christofides, J.F. Davis, Fault-tolerant control
of nonlinear systems: fault-detection and isolation and controller reconfiguration,
2006 Am. Control Conf. (Jun. 2006) 8, pp.-. doi: 10.1109/ACC.2006.1657534.

[30] P. Mhaskar, A. Gani, C. McFall, P.D. Christofides, J.F. Davis, Fault-tolerant control
of nonlinear process systems subject to sensor faults, AIChE J. 53 (3) (2007)
654–668, doi: 10.1002/aic.11100.

[31] R. Gandhi, P. Mhaskar, Safe-parking of nonlinear process systems, Comput. Chem.
Eng. 32 (9) (Sep. 2008) 2113–2122, https://doi.org/10.1016/j.
compchemeng.2008.03.002.

[32] M. Mahmood, R. Gandhi, P. Mhaskar, Safe-parking of nonlinear process systems:
handling uncertainty and unavailability of measurements, Chem. Eng. Sci. 63 (22)
(Nov. 2008) 5434–5446, https://doi.org/10.1016/j.ces.2008.07.033.

[33] M. Du, P.M haskar, Uniting safe-parking and reconfiguration-based approaches for
fault-tolerant control of switched nonlinear systemsProc. 2010 Am. Control Conf.
Jun. 20102829283410.1109/ACC.2010.5531434.

[34] M. Du, P. Mhaskar, A safe-parking and safe-switching framework for fault-tolerant
control of switched nonlinear systems,”, Int. J. Control 84 (1) (Jan. 2011) 9–23,
https://doi.org/10.1080/00207179.2010.536852.

[35] R. Ranjan, L. Das, N.S. Kaisare, R. Srinivasan, A testbed for studying the
interactions between human operators and advanced control systems, Comput.
Chem. Eng. 178 (Oct. 2023) 108377, https://doi.org/10.1016/j.
compchemeng.2023.108377.

[36] E.Badreddin, M.Abdel-Geliel, Dynamic safety margin principle and application in
control of safety critical systemsProc. 2004 IEEE Int. Conf. Control Appl.,
2004.1Sep. 200468969410.1109/CCA.2004.1387293.

[37] M.Abd-Elgeliel, E.Badreddin, Adaptive controller using dynamic safety margin for
hybrid laboratory plantProc. 2005, Am. Control Conf., 2005.2Jun.
20051443144810.1109/ACC.2005.1470168.

[38] M.Abdel-Geliel, E.Badredden, A.Gambier, Application of Dynamic Safety Margin in
robust fault detection and fault tolerant control,”2006 IEEE Conf. Comput. Aided
Control Syst. Des., 2006 IEEE Int. Conf. Control Appl., 2006 IEEE Int. Symp. . Intell.
ControlOct. 200633734210.1109/CACSD-CCA-ISIC.2006.4776669.

[39] M.Abdel-Geliel, E.Badreddin A.Gambier, Application of model predictive control
for fault tolerant system using dynamic safety margin2006 Am. Control Conf.Jun.
20066 pp.10.1109/ACC.2006.1657598.

[40] M.Abdel-Geliel, “Controller design and adaptation based on Dynamic Safety
Margin,”2008 12th Int. Middle-East Power Syst. Conf. Mar. 200817217710.1109/
MEPCON.2008.4562338.

[41] J. Ariamuthu Venkidasalapathy, C. Kravaris, Safety-centered process control
design based on dynamic safe set, J. Loss Prev. Process Ind. 65 (May 2020) 104126,
https://doi.org/10.1016/j.jlp.2020.104126.

[42] P. Du, J.A. Venkidasalapathy, S. Venkateswaran, B. Wilhite, C. Kravaris, Model-
based fault diagnosis and fault tolerant control for safety-critical chemical reactors:
a case study of an exothermic continuous stirred-tank reactor, Ind. Eng. Chem. Res.
62 (34) (Aug. 2023) 13554–13571, https://doi.org/10.1021/acs.iecr.3c01205.

[43] L.E. Olivier, I.K. Craig, “Should I shut down my processing plant? An analysis in the
presence of faults,” Journal of Process Control, Volume 56, 2017, Pages 35-47,
ISSN 0959-1524, https://doi.org/10.1016/j.jprocont.2017.05.005.

[44] S. Venkateswaran, C. Kravaris, Disturbance decoupled functional observers for
fault estimation in nonlinear systems, Am. Control Conf. (ACC), Tor., Can. (July
2024) 1518–1524, https://doi.org/10.23919/ACC60939.2024.10644495.

[45] K. Hirata, Y. Ohta, Exact determinations of the maximal output admissible set for a
class of nonlinear systems, Automatica 44 (2) (Feb. 2008) 526–533, https://doi.
org/10.1016/j.automatica.2007.06.016.

[46] M. Rachik, A. Tridane, M. Lhous, O.I. Kacemi, Z. Tridane, Maximal output
admissible set and admissible perturbations set for nonlinear discrete systems,
Appl. Math. Sci. 1 (32) (2007) 1581–1598.

[47] I.Kolmanovsky, E.G.Gilbert, Maximal output admissible sets for discrete-time
systems with disturbance inputsProc. 1995 Am. Control Conf. - ACC’95, Seattle,
WA, USA: Am. Autom. Control Counc.19951995199910.1109/ACC.1995.531239.

[48] E.G. Gilbert, K.T. Tan, Linear systems with state and control constraints: the theory
and application of maximal output admissible sets, IEEE Trans. Autom. Control 36
(9) (Sep. 1991) 1008–1020, doi: 10.1109/9.83532.

[49] K.Hirata, Y.Ohta, The maximal output admissible set for a class of uncertain
systems,” in , Dec. 2004, pp. 2686-2691vol.3. doi: 10.1109/
CDC.2004.1428866.2004 43rd IEEE Conference on Decision and Control (CDC)
(IEEE Cat. No.04CH37601).

[50] H.S. Fogler, Elements of chemical reaction engineering, 5th ed, Prentice Hall, 2016.

R. Ranjan and C. Kravaris Journal of Process Control 144 (2024) 103329 

17 

https://doi.org/10.1002/aic.690490817
https://doi.org/10.1002/aic.690490817
https://doi.org/10.1016/j.sysconle.2005.04.005
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref24
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref24
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref24
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref25
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref25
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref25
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref26
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref26
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref26
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref27
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref27
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref27
https://doi.org/10.1016/j.compchemeng.2008.03.002
https://doi.org/10.1016/j.compchemeng.2008.03.002
https://doi.org/10.1016/j.ces.2008.07.033
https://doi.org/10.1080/00207179.2010.536852
https://doi.org/10.1016/j.compchemeng.2023.108377
https://doi.org/10.1016/j.compchemeng.2023.108377
https://doi.org/10.1016/j.jlp.2020.104126
https://doi.org/10.1021/acs.iecr.3c01205
https://doi.org/10.23919/ACC60939.2024.10644495
https://doi.org/10.1016/j.automatica.2007.06.016
https://doi.org/10.1016/j.automatica.2007.06.016
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref36
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref36
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref36
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref37
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref37
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref37
http://refhub.elsevier.com/S0959-1524(24)00169-0/sbref38

	Model-predictive fault-tolerant control of safety-critical processes based on dynamic safe set
	1 Introduction
	2 Problem statement
	3 Background
	3.1 Functional observer for fault estimation
	3.2 Quantification of dynamic safety: dynamic safe set (DSS) and dynamic safety margin (DSM)

	4 Key offline information incorporated in the FTC algorithm
	4.1 The Safe Operating Set (SOS)
	4.2 Critical fault function

	5 Proposed FTC strategy
	5.1 Fault prediction
	5.2 Decision logic for activating the backup controller
	5.3 Properties of the FTC control system – Tuning considerations

	6 Case study: fault-tolerant control of an exothermic chemical reactor
	6.1 Process description
	6.2 Fault estimation
	6.3 Offline calculations for the FTC algorithm

	7 Results
	8 Conclusions and future directions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	datalink4
	References


