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Abstract. Reachability analysis for dynamical systems typically relies
on the system’s Jacobian to bound sensitivity of solutions. This method
fails for nonsmooth dynamical systems as the Jacobian becomes unde-
fined at the points where the vector field is non-differentiable. Such mod-
els can be hybridized by gluing together several smooth subsystems or
modes via transitions, but the accuracy of reachability degrades when
reachable sets are propagated across the mode boundaries. We propose
an alternative approach based on lexicographic differentiation . Lexico-
graphic differentiation was introduced by Nesterov as a foundation for
calculus for nonsmooth functions. Our algorithm computes linear bounds
on sets of lexicographic Jacobians, which give bounds on trajectory sen-
sitivities. This avoids hybridization, eliminates mode transition compu-
tations, and yields more accurate reachsets. On nonsmooth models, our
method improves accuracy on average by 50%, compared to hybrid algo-
rithms. It is also one of the first methods to effectively handle reachability
of ReLU neural ODEs.

1 Introduction

Systems described by ordinary differential equations (ODEs), dx
dt

= f(x), where
the function f is continuous but not differentiable are called nonsmooth dy-
namical systems . Nonsmooth systems arise in various real-world scenarios. For
instance, in describing the motion of autonomous vehicles f could encompass
the physics of the car as well as the decision logic of the autonomy software.
A toy example of this type is illustrated at the end of this section. Sharp deci-
sions, whether implemented through if-then-else conditions or ReLU activation
functions, introduce nonsmoothness. This paper is concerned with reachability
analysis for such nonsmooth dynamical systems.

Reachability analysis aims to compute the set of states that can be reached
from a given set of initial states through trajectories of a dynamical system.
This reachable set can be used to automatically verify safety with respect to
uncertainties in the initial conditions. Various algorithms and software tools
have been developed for the reachability analysis of linear, nonlinear, and hybrid
dynamical systems (see, for example, [12,31,35,32]). Extending these ideas to
nonsmooth systems presents two barriers.
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First, with the hybrid systems [25] point of view1, a nonsmooth system can be
partitioned into several smooth subsystems (or modes) glued together by mode
transitions (see Figure 1). Reachability analysis of such hybrid models proceeds
by performing reachability within each smooth subdomain, followed by care-
fully propagating the reachable set across the mode transitions or the decision
boundaries [4,39,7,11]. The solutions from different initial states may encounter
the mode boundaries (e.g., xf − xr = d ± a

c
in Example 1) at different points

or at different times. Consequently, the entire set of reachable boundary states
from the initial set must be computed before propagating it forward into the
next mode. In practice, this reachable boundary set is determined by computing
reachable states in small time increments, checking nonempty intersections with
the boundary conditions, and then aggregating these non-empty intersections.
Some variation of this approach underlies most of the hybrid verification tools
such as CORA [1,2,3], JuliaReach [9,7,10], Flow* [11], C2E2 [16], SpaceEx [23],
DryVR [21], and Verse [32]. This process often results in overtly conservative
over-approximations due to the “wrapping effect” of combining pieces of the
reachable boundary set [5]. Our proposed method effectively addresses this chal-
lenge by avoiding explicit computation of the reachable boundary sets.

Secondly, the standard method for reachability analysis of smooth nonlin-
ear ODEs uses the sensitivity of solutions to initial conditions [13,17]. Given a
time-varying (sensitivity) function β : R≥0×R≥0 → R that bounds the distance
between two solutions as a function of their initial distance (i.e. |x1(t)−x2(t)|p ≤
β(|x1(0) − x2(0)|p, t)), the reachable set can be approximated by a sphere cen-
tered around a reference solution, with a radius defined by β [18]. For smooth
ODEs, the sensitivity function β can be computed from the Jacobian Jf of
system dynamics or the associated matrix measures [20,34]. This strategy is not
applicable for nonsmooth functions, because the Jacobian matrix Jf is undefined
at the non-differentiable points.

To tackle the above challenges, we introduce a novel algorithm that lever-
ages directional derivatives, which provide valuable first-order information even
at non-differentiable points. Our approach employs the notion of lexicographic
differentiation which was introduced by Nesterov in [36]. This method computes
a sequence of directional derivatives defined by a matrix M (see Definition 2),
transforming the original nonsmooth function into a differentiable one and ex-
tracting first-order information in specific directions from the newly constructed
differentiable function. The Lexicographic Jacobian JL offers directional first-
order information that can be computed using a generalized chain rule [30],
unlike the Clarke Jacobian [14]—which is an alternative set-valued Jacobian
used for nonsmooth systems.

1 Every nonsmooth dynamical system can be represented as a hybrid system by par-
titioning its state space into differentiable subspaces with transitions occurring at
nonsmooth boundaries. However, not all hybrid systems can be considered nons-
mooth systems, as hybrid systems may include discontinuous vector fields, whereas
in this paper, nonsmooth systems specifically refer to systems with continuous but
non-differentiable vector fields.
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The algorithm provides sound over-approximations of the reachable set by
propagating the initial set using an optimized exponential sensitivity function,
calculated over a set of lexicographic Jacobians. Lexicographic Jacobians allow us
to circumvent the problem of explicitly computing the reachable boundary set as
is needed with the hybrid approach. The correctness proof (Theorem 1) extends
the fundamental theorem of calculus to nonsmooth functions (see Lemma 1),
which may be of independent interest. A key innovation of our algorithm is
the use of polytopic approximations for sets of L-Jacobians, replacing the tradi-
tional rectangular approximations [20]. This significantly improves the precision
of reachability analysis and allows the linear approximations to leverage efficient
linear bound propagation tools like CROWN [46,45,41].

A particularly challenging class of nonsmooth systems are ReLU Neural
ODEs—systems with dynamics defined by neural networks (NN) with ReLU
activations. These models have found applications in modeling irregular time
series data, system identification, and generative tasks [37,38,44]. Because of the
nonsmoothness of these ODEs the Taylor model-based approaches for Neural
ODEs with smooth activations (e.g., tanh or sigmoid) cannot be directly applied
here [43,33,27,26]. Secondly, the large number of mode boundaries make the com-
putation of reachable boundary set and the hybrid approach challenging [3,8]. It
is important to note here that the neural ODE reachability requires the bounds
to be propagated through an integral of the NN-defined function, which is dif-
ferent from the NN Control System (NNCS) reachability [28,42,47,19,22], which
only requires bounds to be propagated through a NN at discrete times. In this
paper, we bound the L-Jacobian of any ReLU network by taking the product
of the bounds on the Clarke Jacobians of its individual layers. This approach is
validated by the generalized chain rule for nonsmooth functions [30] and the fact
that the L-Jacobian of any ReLU layer is included within its Clarke Jacobian
(Proposition 3). We subsequently utilize this bound in our framework to obtain
the reachability of ReLU neural ODEs.

We present a software implementation that uses CROWN to compute linear
bounds on sets of Lexicographic Jacobians and then solves an optimal expan-
sion rate satisfying a quadratic constraint over each element within the bounds.
The initial set is then expanded by an exponential sensitivity function based
on this rate and evolution time, yielding a sound over-approximation of the
reachable set. Our experimental results on 12 benchmark nonsmooth dynamical
models show that this algorithm outperforms state-of-the-art reachability tools
(CORA [1] and JuliaReach [7]) on most problems. On average, our method is
50% more accurate, and in some cases, up to 4 times more accurate. Our ap-
proach enables reachability analysis of Neural ODEs with ReLU activations for
models up to 12 dimensions and 200 neurons—an essential class of nonsmooth
systems. To our knowledge, this is the first method capable of such analysis.

An Illustrative Example. Consider a car following a leader car moving at a
constant speed. Let xf , xr, vf , and vr be the positions and velocities of the front
and rear cars. The dynamics of this system with a simple rule to maintain safe
following distance can be written as ẋf = vf , v̇f = 0, ẋr = vr, and
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2 Preliminaries

Notations. For x ∈ R
n and a positive definite matrix P , define ||x||P =

√
xTPx.

The set EP,c(x) = {x′ ∈ R
n | ||x′ − x||2P ≤ c} denotes the ellipsoid centered

at x with shape matrix P and size c. The standard 2-norm is ||x||2 = ||x||I
and Bc(x) = EI,c(x) represents the Euclidean ball centered at x of radius c.
We also define Bc(S) =

⋃

x∈S Bc(x), for a set S ⊆ R
n. For a set S ⊆ R

n,
dia(S) = supx,x′∈S(||x− x′||2). For a matrix A, ||A||2 denotes its 2-norm; A ≻ 0
and A � 0 indicate that A is a positive definite and positive semi-definite,
respectively. For a differentiable function f : R

n → R
n, Jf ∈ R

n×n is the
Jacobian of f . Given a set of n × n matrices A, its convex hull is defined as,
conv(A) = {sA1 + (1 − s)A2|A1, A2 ∈ A, s ∈ [0, 1]}, which collects matrices
representable as linear combinations of those in A.

Dynamical System. The continuous evolution of a system is mathematically
described as a dynamical system. Consider an n-dimensional dynamical system:

ẋ = f(x) (1)

where f : Rn → R
n is a locally Lipschitz continuous function describing the

continuous evolution of the state variables. A nonsmooth system implies that f is
continuous and piecewise continuously differentiable (PC1), but not necessarily
differentiable. A solution or trajectory of the system starting at x0 is a function
x : R≥0 → R

n where x(0) = x0 and for any t ∈ R≥0, x(t) satisfies Equation (1).

Reachability. For the dynamical system defined as Eq. (1), a state y ∈ R
n is

called reachable within time interval [t1, t2] from initial set X if there exists
x0 ∈ X and a time t ∈ [t1, t2] such that y = x(t) with x(0) = x0. The set of all
such states is the reach set, denoted Reach(X , [t1, t2]). Similarly, Reach(X , t1)
represents the states reachable precisely at t1. Reachability analysis seeks to
over-approximate Reach(X0, [0, T ]) for an initial set X0 ⊂ R

n over [0, T ]. While
traditional methods use Jacobian-based sensitivity functions for smooth systems,
for nonsmooth systems the Jacobians are undefined at the non-differentiable
points, and those methods are unsound. The Clarke Jacobian [14] is a related
notion that is well-defined for nonsmooth functions.

Clarke Jacobian. For a locally Lipschitz continuous function f : Rn → R
m, the

Clarke Jacobian, denoted JCf(x), is the convex hull of Jacobians near x where
f is differentiable:

JCf(x) = conv

{

lim
xk→x

Jf(xk) | f is differentiable at xk

}

.

It is important to note that Clarke Jacobian does not satisfy the chain rule,
complicating its computation for ReLU networks, where layer functions are ex-
plicit but the overall expression is not. We introduce the L-Jacobian next, which
follows the generalized chain rule [30] and allows for layer-by-layer computation.
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3 Lexicographical Derivatives

Lexicographical differentiation was introduced by Nesterov in [36] and the rules
for automatic differentiation were later developed by Barton et al. in [6]. In this
section, we fix f : Rn → R

m to be a continuous function.

Definition 1. The directional derivative of f at x ∈ R
n in the direction d ∈ R

n

is given by the following limit, provided it exists:

f ′(x; d) = lim
α→0+

f(x+ αd)− f(x)

α
.

For example, the ReLU function f = max(x, 0) is not differentiable at 0, but
its directional derivative f ′(0; d) = 0 for d ≤ 0 and f ′(0; d) = 1 for d > 0 exist.
A function is directionally differentiable at x if f ′(x; d) exists for all directions
d. The notion of lexicographic smoothness (L-smoothness) uses a sequence of
higher-order directional derivatives, at points given by the rows of a matrix M .

Definition 2. If the following sequence of directional derivatives are well-defined
for any k ∈ N and M = [m1,m2, . . . ,mk] ∈ R

n×k then f is lexicographically
smooth (L-smooth) at x ∈ R

n.

f
(0)
x,M : Rn → R

n : d → f ′(x; d),

f
(1)
x,M : Rn → R

n : d → [f
(0)
x,M ]′(m1; d),

...

f
(k)
x,M : Rn → R

n : d → [f
(k−1)
x,M ]′(mk; d).

Here, f ′(x; d) represents the standard directional derivative of f at state x in

the direction d, while f
(0)
x,M refers to the mapping that assigns each input d to its

corresponding value of f ′(x; d). Similarly, [f
(i)
x,M ]′(mi+1; d) presents the standard

directional derivative of f
(i)
x,M estimated at mi+1 in the direction d, while f

(i+1)
x,M

refers to the mapping that assigns each input d to its corresponding value of

[f
(i)
x,M ]′(mi+1; d).

Consider an example function f(x1, x2) = |x2
1−x2

2|, which is non-differentiable
at x0 = (1, 1)T . For different 2 × 2 M matrices, the directional derivatives of f
as a function of the direction d = (d1, d2) are shown in Table 1 alongside the
L-and Clarke Jacobians.

Piece-wise continuously differentiable functions PC1 and their compositions
and integrals, are L-smooth [30]. Furthermore, the solution to any L-smooth
ODE is also L-smooth [30,36,29]. The next proposition is one of the key prop-
erties of lexicographic differentiation and it states that for any k and a full row

rank n×k matrix M , the kth directional derivative f
(k)
x,M (d) is linear w.r.t. d [36].

For the above example, indeed f
(2)
x,M (d) is linear, but only for the first three M ’s

which are full row rank.
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M =

(

1, 0
0, 1

) (

−1, 0
0, 1

) (

1, 1
0, 1

) (

1, 1
1, 1

)

f
(0)
x0;M (d) |2d1 − 2d2|

f
(1)
x0;M (d) 2d1 − 2d2 −2d1 + 2d2 |2d1 − 2d2| |2d1 − 2d2|

f
(2)
x0;M (d) 2d1 − 2d2 −2d1 + 2d2 −2d1 + 2d2 |2d1 − 2d2|

JLf(x;M)
(

2, −2
) (

−2, 2
) (

−2, 2
)

Undefined
JCf(x) {(4s − 2,−4s + 2)|s ∈ [0, 1]}

Table 1: Directional derivatives, L and Clarke Jacobians of f(x1, x2) = |x
2
1 − x2

2|.

Proposition 1. For an L-smooth f and a full row rank matrix M ∈ R
n×k, the

kth directional derivative f
(k)
x,M (d) is linear w.r.t direction d.

For any linear function, and particularly f
(k)
x,M in Proposition 1, its regular

derivative is well-defined, which then justifies the following definition of Lexico-
graphic derivative or the L-Jacobian for L-smooth functions.

Definition 3. Given a L-smooth function f and a full row rank matrix M ∈
R

n×k, the L-Jacobian of f at x in the direction given by M is

JLf(x;M) = Jf
(k)
x;M (~0) ∈ R

m×n. (2)

That is, the L-Jacobain of f corresponds to normal derivative of kth direc-

tional function f
(k)
x;M . Since f

(k)
x;M is linear w.r.t its input d according to Propo-

sition 1, its normal Jacobian function therefore must be a constant function.
Thus, we replace the arbitrary input d with a particular direction, namely ~0. We
introduce the definition of the Lexicographic subdifferential, denoted as ∂Lf(X ),
which captures the generalized derivative information of the function f over a
set X ⊆ R

n in terms of the L-Jacobian [30].

Definition 4. For an L-smooth function f , a set X ⊆ R
n, its Lexicographic

subdifferential (L-subdifferential) over X is a set of m× n matrices given by:

∂Lf(X ) =
⋃

x∈X

{

{JLf(x;M) | M ∈ R
n×n, det(M) 6= 0} if fnot differentiable at x,

Jf(x) otherwise.

This subdifferential captures the generalized derivative information across
both smooth and nonsmooth regions of X. The following proposition from [30]
relates the standard directional derivative with L-Jacobian.

Proposition 2. For any L-smooth f and full row rank matrix M ∈ R
n×k with

first column d, the directional derivative of f at x in the direction d is f ′(x; d) =
JLf(x;M) · d.

For an L-smooth function f , we derived the following lemma, which is an ana-
log of the fundamental theorem of calculus in terms of the L-Jacobian JLf(x;M).

Lemma 1. For any L-smooth function f , for any full row rank matrix M ∈
R

n×k with first column d, for any x ∈ R
n,

f(x+ d)− f(x) =
(

∫ 1

0

JLf(x+ sd;M)ds
)

· d. (3)
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Proof. We use i’s in the subscript to denote the ith component of a vector or a
function. For any s ∈ [0, 1], i ∈ {1, · · · ,m}, we define gi(s) = fi(x + sd). Then
we have ∀s ∈ [0, 1],

fi(x+ d)− fi(x) = gi(1)− gi(0), f ′
i(x+ sd; d) = g′i(s; 1). (4)

Since f is L-smooth, fi is Lipschitz over closed interval [x, x+d]. Thus, gi is also
Lipschitz over s ∈ [0, 1]. All Lipschitz continuous functions over a closed interval
have bounded variation. It follows that gi is a bounded variation function over
s ∈ [0, 1]. By Corollary 6 in Chapter 6.3 of [40], since gi is of bounded varia-
tion over [0, 1], gi is differentiable almost everywhere w.r.t s over open interval

(0, 1) and is integrable over [0, 1]. Thus, we have gi(1) − gi(0) =
∫ 1

0
g′i(s)ds =

∫ 1

0
g′i(s; 1)ds. Considering all i ∈ {1, · · · ,m}, we have g(1)−g(0) =

∫ 1

0
g′(s; 1)ds.

By substituting g back to f , we have f(x + d) − f(x) =
∫ 1

0
f ′(x + sd; d)ds. By

applying Proposition 2 (f ′(x+sd; d) = JLf(x+sd;M)·d), the result follows.

We close this section with a proposition relating the Clarke Jacobian with
the lexicographic subdifferential. This relationship is relevant for the reachability
analysis of ReLU neural ODEs (see Section 5).

Proposition 3. The L-subdifferential of an n-dimensional ReLU function σ :
R

n → R
n satisfies ∂Lσ(X ) ⊆ JC(X ) for any X ⊆ R

n.

Proposition 3 indicates that the Clarke Jacobian over-approximates the L-
subdifferential of any n-dimensional ReLU layer. According to the generalized
chain rule for L-smooth functions [30], the L-Jacobian of a ReLU network is
the product of the L-Jacobians of its individual layers, enabling a layer-by-layer
bound on the network’s L-subdifferential. By applying Proposition 3, tools that
bound the Clarke Jacobian of ReLU layers can conservatively over-approximate
the network’s L-subdifferential. It is important to note that this layer-by-layer
bound does not guarantee an over-approximation of the network’s Clarke Jaco-
bian due to the inapplicability of chain rule for the Clarke Jacobian.

4 Reachability from Lexicographic Subdifferentials

In the rest of this paper, we fix f : Rn → R
n to be a L-smooth (Definition 2)

function. In this section, our goal is to compute the reachable set of the dynamical
system (1) from X0 over time t ∈ [0, T ]. Our method, first computes a numerical
simulation x(·) from a specific initial state x(0) ∈ X0, and then expands a set
around x(·) containing all trajectories from X0. In Section 4.1, we introduce a
method to bound distance between any two solutions (trajectories) by computing
bounds on quadratic constraints of L-subdifferentials. In Sections 4.2 and 4.3, we
present two methods to relax number of quadratic constraints for cases where
the L-subdifferential can be linearly approximated. In Section 4.4, we present
the overall reachability algorithm.
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4.1 Bounding the Displacement between Solutions

Proposition 4. Given any convex compact set X ∗ ⊆ R
n, if ∂Lf(X ∗) is a convex

set, then ∀x1, x2 ∈ X ∗, full row rank M ∈ R
n×k, then

∫ 1

0

JLf(x1 + s(x2 − x1);M)ds ∈ ∂Lf(X ). (5)

Proof. Since X ∗ is a convex set, for any x1, x2 ∈ X ∗, any s ∈ [0, 1], JLf(x1 +
s(x2−x1);M) ∈ ∂Lf(X ). Further, since ∂Lf(X ) is convex, the result follows.

In the following, we denote y(·) = x1(·)−x2(·) as the difference between two
solutions of (1). Theorem 1 states that the norm of y(t) can be bounded in term
of its initial value y(0) and time t.

Theorem 1. Given X0 ⊆ R
n, let X ∗ be a compact convex set such that ∀x(0) ∈

X0, ∀t ∈ [0, T ], x(t) ∈ X ∗. Assume ∂L(X ∗)is convex, and there exists a positive
definite matrix P ∈ R

n×n and a real γ such that ATP + PA � γP for all
A ∈ ∂L(X ∗). Then, ∀x1(0), x2(0) ∈ X0, ∀t ∈ [0, T ],

||x1(t)− x2(t)||P ≤ e
γ
2 t||x1(0)− x2(0)||P . (6)

Proof. Let us fix x1(0), x2(0) ∈ X0 and denote y(t) = x1(t)−x2(t). For a positive
definite matrix P ≻ 0, ||y(t)||2P = yT (t)Py(t). By differentiating ||y(t)||2P , we
have that for any t ∈ [0, T ],

d||y(t)||2P
dt

=
d(yT (t)Py(t))

dt
= ẏT (t)Py(t) + yT (t)P ẏ(t), (7)

According to Lemma 1, ẏ(t) can be written as:

ẏ(t) =

(
∫ 1

0

JLf
(

x1(t) + sy(t));M
)

ds

)

· y(t), (8)

According to Proposition 4, the parenthetic term of the RHS of (8) belongs to
∂Lf(X ∗). By combining Equations (7), (8), we have

d||y(t)||2P
dt

= yT (t)(AT (t)P + PA(t))y(t), (9)

for someA(t) ∈ ∂Lf(X ∗). Using the assumption about γ, it follows that
d||y(t)||2P

dt
≤

γyT (t)Py(t) = γ||y(t)||2P . By applying Grönwall’s inequality, we have ∀t ∈ [0, T ],
||y(t)||P ≤ ||y(0)||P e

γ
2 t. After substituting y(t) = x1(t) − x2(t), the result fol-

lows.

Theorem 1 bounds the displacement of two solutions in terms of their initial
distance, the exponential factor γ, and the matrix P which defines the norm.
Thus, we can compute an ellipsoid centered at x1(t) (computed by numerical
integration of (1)), to get an over-approximation of the reachable states at time
t. The conservativeness of this over-approximation depends on the choice of the
matrix P and γ. Ideally, we would like to pick the optimal P ≻ 0 to minimize
γ, which can be written as:

min
γ∈R,P≻0

γ subject to ATP + PA � γP, ∀A ∈ ∂Lf(X ∗). (10)
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4.2 Relaxation to Finite Number of Constraints

The optimization problem in (10) contains over uncountably infinite constraints—
one for each A in ∂Lf(X ∗). Next, we present a method that replaces this infinite
collection of constraints with a relaxed finite collection.

Lemma 2. Given a set of matrices A ⊂ R
n×n, assume there exists a set of

finite matrices V ⊂ R
n×n such that A ⊆ conv(V). If there exist γ ∈ R and

positive definite P ∈ R
n×n such that V TP + PV � γP for all V ∈ V, then

ATP + PA � γP, ∀A ∈ A. (11)

Lemma 2 suggests that the optimization problem (10) can be simplified as
the following optimization problem.

min
γ∈R,P≻0

γ subject to V TP + PV � γP, ∀V ∈ V . (12)

Note that if γ is fixed, the optimization problem (12) becomes a semi-definite
programming (SDP), and a feasible solution can be obtained by SDP solver.
Thus, we can solve (12) by a linear search strategy, where a SDP is solved at
each step. This strategy may not lead to optimal γ, but we can get a sufficient
close estimation of optimal γ by starting linear search from a negative enough
lower bound γ with a small enough search step ∆γ.

We present a second method to solve optimization problem (10), which con-
tains only one constraint and calculates a remainder term. This makes it much
more computationally efficient, especially on higher dimensional examples.

Lemma 3. Given a set of matrices A ⊂ R
n×n, assume there exists a set of

finite matrices V ⊂ R
n×n such that A ⊆ conv(V). For any Ac ∈ R

n×n, if there
exists γ̂ ∈ R and positive definite P ∈ R

n×n such that AT
c P + PAc � γ̂P , then

ATP + PA � (γ̂ +
δ

λmin(P )
)P, ∀A ∈ A, (13)

where δ = max
V ′∈V′

||V ′||2, V ′ = {(V − Ac)
TP + P (V − Ac)|V ∈ V} and λmin(P )

refers the minimum eigenvalue of P .

Lemma 3 suggests that the optimization problem (10) can be simplified as
the following optimization problem.

min
γ̂∈R,P≻0

γ̂ subject to AT
c P + PAc � γ̂P (14)

To minimize the expansion rate γ̂+ δ
λmin(P ) , we heuristically select Ac as the

average value of V. Additionally, by leveraging Lemma 3 with Theorem 1, we
derive a sensitivity function that provides a bound on the displacement between
trajectories:

||y(t)||P ≤ e
( γ̂
2 +

δ
2λmin(P )

)t||y(0)||P . (15)



374 C. Ji et al.

This center matrix based method is significantly less computationally resource-
intensive than the vertices based method (Lemma 2) at the price of decreasing
the accuracy, due to the positive error term δ that is added to γ̂ in (13). In
practice, we want to make the compact sets X ∗ (in Theorem 1) small so that δ
and γ̂ + δ

λmin(P ) (the expansion rate) remains small.

4.3 Linear Over-Approximations of L-Subdifferentials

When we apply either Lemmas 2 or 3 to simplify the semidefinite constraints in
Theorem 1, A refers to ∂Lf(X ∗). Notice that both lemmas require constructing
a finite set V whose convex hull contains ∂Lf(X ∗), which can be reframed as
first constructing a polytopic superset of ∂Lf(X ∗) by linear approximation, then
extracting its vertices for V.

Linear approximation bounds each output coordinate with two linear func-
tions (lower and upper) concerning the input variables. This method offers better
accuracy than constant approximations and superior computational efficiency
compared to polynomial approximations, especially when dealing with complex
computation graphs like those found in neural networks. In this work, we utilize
CROWN, which takes the computation graph of the L-Jacobian and computes
linear bounds on each nonsmooth or nonlinear component. It then propagates
these bounds layer by layer to derive the linear approximation of ∂Lf(X ∗) over
a specified input region.

Specifically, for an L-smooth function f : R
n → R

n over a bounded set
X ∗ ⊂ R

n, CROWN generates matrices A,A ∈ R
n2×n and vectors b, b ∈ R

n2

so
that for all i and x ∈ X ∗,

Aix+ bi ≤ [vec(G)]i ≤ Aix+ bi, ∀G ∈ ∂Lf(x). (16)

Here, [vec(G)]i denotes the i-th element of the vectorized matrix G.
Next, we present an algorithm that constructs a polytopic superset of L-

subdifferential of f and extracts its vertices using the linear approximations
derived from CROWN over the region X ∗.

Algorithm 1 Compute Over-approximation of L-subdifferentials (COL)

Input: X ∗

Output: V

1: compute A,A ∈ R
n2

×n and b, b ∈ R
n2

satisfying (16) // Using CROWN

2: vecV ← {V ∈ R
n2

|Vi = Aix+ bi, where A ∈ {A,A}, b ∈ {b, b}, x ∈ vertex(X ∗), i ∈
{1, 2, · · · , n2}}

3: reshape vecV to V into a set of n× n matrices by stacking.

The input to Algorithm 1 is a convex compact polytope X ∗ ⊂ R
n and the

output is a set of finite matrices V ⊂ R
n×n. Algorithm 1 proceeds as follows: At

Line 1, it utilizes CROWN to compute coefficients of linear bounds {A,A, b, b},
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which satisfies Inequality (16). At Line 2, it constructs a vector set, vecV , con-
taining n2 length vectors derived from the linear equations Vi = Aix+ bi. Here,
A can be either A or A, b can be either b or b, and x belong to the vertices
of input polytope X ∗. Each vector in vecV corresponds to evaluations of the
L-subdifferential at the vertices of the input polytope X ∗. Finally, at Line 3, it
reshapes vecV into V by reorganizing its elements into a set of n× n matrices.

Proposition 5. If X ∗ ⊂ R
n is a convex compact polytope, Algorithm 1 outputs

V ⊂ R
n×n such that conv(V) is an over-approximation of ∂Lf(X ∗).

4.4 Reachability Algorithm

Theorem 1 outlines a method to compute sensitivity functions over given convex
compact initial set within bounded time horizon. For unstable systems, comput-
ing a single sensitivity function over the entire time duration may lead to signif-
icant over-approximations due to the large set of L-subdifferentials. To mitigate
this, we divide the time horizon into smaller intervals and compute piecewise
sensitivity functions. In the following, we present an algorithm based on Theo-
rem 1 and Lemma 2 to compute an over-approximation of Reach(X0, [0, T ]) for
system (1).

Algorithm 2 Reachable Set Computation

Input: X0, T , Lf , k
Output: R
1: R← ∅; ∆t← T/k; t0 ← 0
2: x0, P0, c0 ← argmin(vol(EP0,c0(x0))) such that X0 ⊆ EP0,c0(x0)
3: d0 ← dia(EP0,c0(x0))
4: for i=1:k do

5: ti ← ti−1 +∆t; xi ← x(ti)
6: Xi ← conv({x(t)|t ∈ [ti−1, ti]}); X

∗

i ← Bdi−1 exp(Lf∆t)(Xi)
7: V ← COL(X ∗

i )
8: γi, Pi ← argmin(OPT.12(V))
9: c′i−1 ← argmin(Pi−1c

′

i−1 � Pici−1); ci ← c′i−1 exp(
γi∆t

2
)

10: di ← dia(EPi,ci(xi))
11: d′i ← max{di, dia(EPi,c

′

i−1
(xi−1)))}

12: Ri ← Bd′
i
/2(Xi); R← R ∪Ri

13: end for

Algorithm 2 takes the inputs: (1) an initial set X0 ⊂ R
n; (2) time bound

T > 0; (3) Lipschitz constant Lf of f (can be replaced by a local Lipschitz
constant for each time interval); (4) the number of time subintervals k. The
output is a set R contains Reach(X0, [0, T ]).

Initially, the overall R is initialized to be an empty set; the time step for each
iteration ∆t is T

k
. An ellipsoid EP0,c0(x0), centered at x0 with shape matrix P0

and size c0, is computed to ensure that it contains X0, is computed (Line 2).
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In each iteration, the algorithm sets ti as the endpoint of current time interval;
and computes a solution of (1) from initial state x0 evaluated at time instance
ti, denoted as xi; (Line 5). It then computes a convex compact set Xi containing
the solution starting from x0 and evolving within [ti−1, ti], and enlarging set
Xi by a factor of di−1e

Lf t to obtain X ∗
i (Line 6); and computes a set of finite

matrices V by Algorithm 1 (Line 7). Locally optimal γi and Pi is calculated
by solving optimization problem (12) using linear search strategy (Line 8). To
ensure that the ellipsoid in shape Pi−1 is included within the ellipsoid in new
shape Pi, it computes the minimum temporary scalar c′i−1 and updates it to get
ci accordingly (Line 9). Subsequently, the diameter di of the ellipsoid at time
ti is computed (Line 10). d′ is assigned as the maximum diameter of ellipsoid-
shape over-approximations of reachable sets evolving within [ti−1, ti] (Line 11).
Finally, the reachable set for time interval [ti−1, ti] is obtained by expanding Xi

with half of d′i (Line 12), and the resulting set is added to the overall reachable
set R. This process continues until all time intervals are processed. Theorem 2
confirms the soundness of Algorithm 2 and Proposition 6 indicates that the
accuracy of computed reachable set can be improved by finer subdivisions of X0.

Theorem 2. For any L-smooth function f , initial set X0 and time duration T ,
the output R of Algorithm 2 over-approximates Reach(X0, [0, T ]).

Proposition 6. For each i, as dia(Xi) → 0 the bloating factor di → 0.

This proposition indicates that the over-approximation error from expansion
can be minimized by reducing the initial set’s uncertainty. As the initial set X0

approaches zero, the size c0 of the initial ellipsoid in shape matrix P0 and the
bloating factors di, both converge to zero.

5 Experimental Results

We implemented Algorithm 1 using CROWN to compute linear bounds on L-
subdifferentials and Algorithm 2 with CVXPY [15] to solve Optimization 12.
In this section, we discuss the results of reachability analysis performed using
this implementation compared with several other tools on a set of benchmark
problems.

Benchmarks. For nonsmooth systems, we use three types of benchmark mod-
els: (1) hybrid models that are also nonsmooth dynamical systems (e.g. the
CarFollowing model); (2) nonsmooth systems created by adding switch condi-
tions to standard smooth system benchmarks from the ARCH competition [24]
(Switch-〈.〉 models); (3) small ReLU neural ODEs with manually-set weights
(SmallNN-〈.〉 models). For ReLU neural ODEs, we use models with randomly
initialized weights (randNN-〈.〉 models) and neural ODEs trained to approxi-
mate standard smooth benchmarks (Approx-〈.〉 models). For smooth systems,
we focus on benchmark from the ARCH competition. Full descriptions are given
in Appendix.
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System Dim ID TH(s)
Our Algorithm CORA [1] JuliaReach [7]

A/I(↓) F/I(↓) RT(↓) A/I(↓) F/I(↓) RT(↓) A/I(↓) F/I(↓) RT(↓)
Switch-Bruss 2 0.2 3 1.43 1.13 19.62 1.82 1.59 15.48 1.32 0.97 16.63
Switch-VDP 2 0.2 10 1.77 5.13 75.27 29.75 63.24 120.33 6.79 10.22 102.90
Switch-LV 2 0.02 3.64 0.86 1.03 38.08 0.52 0.87 23.73 0.73 0.94 24.41
SmallNN-1 2 0.01 7.5 2.82 4.39 6.00 8.94 15.39 10.01 5.54 9.27 11.83
SmallNN-2 2 0.1 10 1.63 2.04 7.49 1.86 2.35 9.31 2.10 2.99 6.32
SmallNN-3 3 0.1 5 0.31 1.48 12.31 0.43 1.61 24.41 1.55 2.03 8.98
Switch-Rob 3 0.02 10 2.67 3.11 50.79 3.94 5.83 159.58 3.33 4.98 135.28

Switch-CVDP 4 0.02 5 28.46 87.06 91.01 30.31 92.24 268.86 42.09 126.75 214.52
CarFollowing 4 0.1 5 15.83 70.38 64.61 38.27 415.30 252.41 30.66 295.13 179.41
Switch-Sat 6 0.02 10 50.99 336.52 256.16 68.04 420.18 482.31 73.34 465.11 396.03
Switch-Bio 7 0.002 2 92.73 400.18 501.36 232.16 621.30 894.86 202.88 583.35 607.22
Switch-LL 7 0.02 2 7.09 7.50 446.05 19.20 34.08 590.62 25.54 58.13 376.02

Table 2: Comparison of reachability tools (Ours, CORA, and JuliaReach) on nonsmooth models.
Our method outperforms CORA and JuliaReach on most cases in terms of accuracy (lower A/I
and F/I), especially for higher-dimensional systems or those with increased mode transitions. Dim:
System Dimension; ID: Initial Diameter; TH: Time Horizon; A/I: Average-to-Initial Volume Ratio;
F/I: Final-to-Initial Volume Ratio; RT: Running Time.

Robertson, and Switch-Vanderpol. Table 2 indicates that on lower-dimensional
models (Dim ≤ 3), our algorithm generally outperforms CORA and JuliaReach
in both accuracy and runtime, except for two models with brief transitions
(Switch-Bruss and Switch-Lotka-Volterra, Line 1 and 3 in Table 2). For higher-
dimensional models (Dim ≥ 4), our algorithm consistently provides a more ac-
curate over-approximation, achieving up to 4 times better results on the Car-
Following model (Line 9 in Table 2). This advantage is expected, as traditional
hybrid reachability methods become more conservative on higher-dimensional
systems due to over-approximation at transition boundaries. Overall, these re-
sults demonstrate that our approach provides greater accuracy and efficiency,
particularly for high-dimensional systems and those with numerous transitions
and nonsmooth boundaries.

First Reachability Method for ReLU Neural ODEs According to Propo-
sition 3, we use CROWN [41] to compute the product of bounds on the Clarke
Jacobians of individual layers, which serves as a conservative bound on the L-
subdifferential of the entire ReLU neural ODE. We then integrate this bound into
the framework outlined in Algorithms 1 and Algorithm 2 to achieve reachability.

As shown in Table 3 and Figure 3, the computed sets (blue ellipsoids) encom-
pass all sampled trajectories (black), illustrating their role as over-approximations
within acceptable time consumption. Additionally, their close proximity to the
sampled trajectories demonstrates low conservativeness on low-dimensional mod-
els (Dim ≤ 3).

Tighter Over-Approximation on Smooth Models. Our Algorithm 2, using
CROWN, achieves tighter Jacobian bounds for smooth dynamical systems, re-
sulting in less conservative reachable sets than the method from [20]. As shown
in Table 4, our approach consistently demonstrates improved accuracy (smaller
A/I and F/I) across all examples, especially for higher-dimensional models (Lines
7-9).
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System Dim ID TH(s)
Our Algorithm Interval Matricies [20]

A/I(↓) F/I(↓) RT(↓) A/I(↓) F/I(↓) RT(↓)
Bruss 2 0.02 10 1.23 0.31 55.79 1.25 0.33 23.00
Engine 2 0.1 5 0.51 0.13 34.27 1.32 0.99 85.54

Inv-Vanderpol 2 0.04 10 0.29 0.010 21.20 0.32 0.012 16.43
Diode 2 0.1 5 0.94 1.05 160.34 4.00 5.59 120.45

RobotArm 4 0.01 10 0.23 1.01e-3 42.54 0.39 8.15e-3 32.77
Powertrain 4 0.01 5 7.73 0.46 30.11 9.86 0.74 19.48
Saturation 6 0.02 10 15.93 34.10 495.83 16.72 47.53 348.77
Biology 7 0.02 2 148.21 203.80 79.08 171.30 344.10 21.78

Laub-Loomis 7 0.05 2 5.86 5.25 40.04 10.36 19.55 37.73

Table 4: Comparison of reachability tools (our method and the method in [20]) on benchmark
smooth systems. Results show that our approach achieves higher accuracy on all benchmarks. Dim:
System Dimension; ID: Initial Diameter; TH: Time Horizon; A/I: Average-to-Initial Volume Ratio;
F/I: Final-to-Initial Volume Ratio; RT: Running Time.

6 Conclusion and Future Directions

We have presented a new algorithm for reachability analysis of a general class
of nonsmooth dynamical systems using the recently developed notion of lexi-
cographic differentiation. Our implementation employs CROWN for computing
linear approximations of lexicographic Jacobians, which are used to bound the
sensitivity of solutions to initial conditions. This method, which does not require
hybridization or partitioning the state space into differentiable subdomains, in-
troduces a new approach for analyzing a broad class of hybrid systems and neural
ODEs. Our experiments suggest that this method can be more accurate than
alternative hybrid reachability algorithms.

Applications of Lexicographic differentiation in formal verification and con-
troller synthesis are worth exploring further. For instance, higher order direc-
tional derivatives could enable Taylor model-based reachability analysis for non-
smooth systems. More detailed, potentially compositional analysis of neural
ODEs and dynamical systems with neural network controllers is another di-
rection of emerging interest.
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