
Published as a conference paper at ICLR 2025

BAB-ND: LONG-HORIZON MOTION PLANNING WITH

BRANCH-AND-BOUND AND NEURAL DYNAMICS

Keyi Shen1∗, Jiangwei Yu1∗, Jose Barreiros2, Huan Zhang1, Yunzhu Li3

1University of Illinois Urbana-Champaign 2Toyota Research Institute 3Columbia University
{keyis2, jy79}@illinois.edu, jose.barreiros@tri.global,

huan@huan-zhang.com, yunzhu.li@columbia.edu

ABSTRACT

Neural-network-based dynamics models learned from observational data have
shown strong predictive capabilities for scene dynamics in robotic manipulation
tasks. However, their inherent non-linearity presents significant challenges for effec-
tive planning. Current planning methods, often dependent on extensive sampling or
local gradient descent, struggle with long-horizon motion planning tasks involving
complex contact events. In this paper, we present a GPU-accelerated branch-and-
bound (BaB) framework for motion planning in manipulation tasks that require
trajectory optimization over neural dynamics models. Our approach employs a
specialized branching heuristics to divide the search space into subdomains, and
applies a modified bound propagation method, inspired by the state-of-the-art neu-
ral network verifier α,β-CROWN, to efficiently estimate objective bounds within
these subdomains. The branching process guides planning effectively, while the
bounding process strategically reduces the search space. Our framework achieves
superior planning performance, generating high-quality state-action trajectories and
surpassing existing methods in challenging, contact-rich manipulation tasks such
as non-prehensile planar pushing with obstacles, object sorting, and rope routing
in both simulated and real-world settings. Furthermore, our framework supports
various neural network architectures, ranging from simple multilayer perceptrons
to advanced graph neural dynamics models, and scales efficiently with different
model sizes. Project page: https://robopil.github.io/bab-nd/ .

1 INTRODUCTION

Learning-based predictive models using neural networks reduce the need for full-state estimation and
have proven effective across a variety of robotics-related planning tasks in both simulations (Li et al.,
2018; Hafner et al., 2019c; Schrittwieser et al., 2020; Seo et al., 2023) and real-world settings (Lenz
et al., 2015; Finn & Levine, 2017; Tian et al., 2019; Lee et al., 2020; Manuelli et al., 2020; Nagabandi
et al., 2020; Lin et al., 2021; Huang et al., 2022; Driess et al., 2023; Wu et al., 2023; Shi et al., 2023).
While neural dynamics models can effectively predict scene evolution under varying initial conditions
and input actions, their inherent non-linearity presents challenges for traditional model-based planning
algorithms, particularly in long-horizon scenarios.

To address these challenges, the community has developed a range of approaches. Sampling-based
methods such as the Cross-Entropy Method (CEM) (Rubinstein & Kroese, 2013) and Model Predictive
Path Integral (MPPI) (Williams et al., 2017) have gained popularity in manipulation tasks (Lowrey
et al., 2018; Manuelli et al., 2020; Nagabandi et al., 2020; Wang et al., 2023) due to their flexibility,
compatibility with neural dynamics models, and strong GPU support. However, their performance
in more complex, higher-dimensional planning problems is limited and requires further theoretical
analysis (Yi et al., 2024). Alternatively, more principled optimization approaches, such as Mixed-
Integer Programming (MIP), have been applied to planning problems using sparsified neural dynamics
models with ReLU activations (Liu et al., 2023b). Despite achieving global optimality and better
closed-loop control performance, MIP is inefficient and struggles to scale to large neural networks,
limiting its ability to handle larger-scale planning problems.

In this work, we introduce a branch-and-bound (BaB) based framework that achieves stronger
performance on complex planning problems than sampling-based methods, while also scaling to

∗Equal contribution.

1

Published as a conference paper at ICLR 2025

applied to robotic manipulation tasks (Shi et al., 2023; Wang et al., 2023). Neural dynamics models
can be learned directly from pixel space (Finn et al., 2016; Ebert et al., 2017; 2018; Yen-Chen et al.,
2020; Suh & Tedrake, 2020) or low-dimensional latent space (Watter et al., 2015; Agrawal et al.,
2016; Hafner et al., 2019b;a; Schrittwieser et al., 2020; Wu et al., 2023). Other approaches use more
structured scene representations, such as keypoints (Kulkarni et al., 2019; Manuelli et al., 2020; Li
et al., 2020), particles (Li et al., 2018; Shi et al., 2022; Zhang et al., 2024), and meshes (Huang et al.,
2022). Our work employs keypoint or object-centric representations, and the proposed BaB-ND
framework is compatible with various architectures, ranging from multilayer perceptrons (MLPs) to
graph neural networks (GNNs) (Battaglia et al., 2016; Li et al., 2019).

Model-based planning with neural dynamics models. The highly non-linear and non-convex
nature of neural dynamics models hinders the effective optimization of model-based planning
problems. Previous works (Yen-Chen et al., 2020; Ebert et al., 2017; Nagabandi et al., 2020;
Finn & Levine, 2017; Manuelli et al., 2020; Sacks et al., 2023; Han et al., 2024) utilize sampling-
based algorithms like CEM (Rubinstein & Kroese, 2013) and MPPI (Williams et al., 2017) for online
planning. Despite their flexibility and ability to leverage GPU support, these methods struggle with
large input dimensions due to the exponential growth in the number of required samples. Previous
work (Yin et al., 2022) improved MPPI by introducing dynamics model linearization and covariance
control techniques, but their effectiveness when applied to neural dynamics models remains unclear.
Other approaches (Li et al., 2018; 2019) have used gradient descent to optimize action sequences but
encounter challenges with the local optima and non-smooth objective landscapes. Recently, methods
inspired by neural network verification have been developed to achieve safe control and robust
planning over systems involving neural networks (Wei & Liu, 2022; Liu et al., 2023b; Hu et al., 2024a;
Wu et al., 2024; Hu et al., 2024b), but their scalability to more complex real-world manipulation tasks
is still uncertain. Moreover, researchers are also exploring the promising direction of performing
planning over graphs of convex sets (GCSs) for contact-rich manipulation tasks Marcucci (2024);
Graesdal et al. (2024). However, these approaches do not incorporate neural networks.

Neural network verification. Neural network verification ensures the reliability and safety of
neural networks (NNs) by formally proving their output properties. This process can be formulated
as finding the lower bound of a minimization problem involving NNs, with early verifiers utilizing
MIP (Tjeng et al., 2019) or linear programming (LP) (Bunel et al., 2018; Lu & Kumar., 2020). These
approaches suffer from scalability issues (Salman et al., 2019; Zhang et al., 2022b; Liu et al., 2021)
because they have limited parallelization capabilities and fail to fully exploit GPU resources. On
the other hand, bound propagation methods such as CROWN (Zhang et al., 2018) can efficiently
propagate bounds on NNs (Eric Wong, 2018; Singh et al., 2019; Wang et al., 2018; Gowal et al., 2019)
in a layer-by-layer manner, with the ability to be accelerated on GPUs. Combining bound propagation
with BaB leads to successful approaches in NN verification (Bunel et al., 2020a; De Palma et al., 2021;
Kouvaros & Lomuscio, 2021; Ferrari et al., 2022), and notably, the α,β-CROWN framework (Xu
et al., 2021; Wang et al., 2021; Zhang et al., 2022a) achieved strong verification performance on
large NNs (Bak et al., 2021; Müller et al., 2022). In our model-based planning setting, we utilize
the lower bounds from verification, with modifications and specializations, to guide our systematic
search procedure to find high-quality feasible solutions.

3 BRANCH-AND-BOUND FOR PLANNING WITH NEURAL DYNAMICS MODELS

Formulation. We formulate the planning problem as an optimization problem in Eq. 1, where c is
the cost function, t0 is the current time step, and H is the planning horizon. x̂t is the (predicted) state
at time step t, and the current state x̂t0 = xt0 is known. ut ∈ {u | u ≤ u ≤ u} ⊂ R

k is the robot’s
action at each step. fdyn is the pre-trained neural dynamics model (Please refer to Section D.3 for
details about learning the neural dynamics model.), which takes state and action at time t and predicts
the next state x̂t+1. The goal of the planning problem is to find a sequence of optimal actions ut

that minimize the sum of step costs:

min
{ut∈U}

t0+H∑

t=t0

c(x̂t, ut) s.t. x̂t+1 = fdyn(x̂t, ut) =⇒ min
u∈C

f(u). (1)

This problem can be challenging due to its long planning horizon H , complex cost function c, and the
non-linear neural dynamics model fdyn with recursive dependencies at every step. Existing sampling-
based and gradient-based methods may converge to sub-optima without systematic searching, while
MIP-based methods fail to scale up with the size of fdyn and the planning horizon H .

3

Published as a conference paper at ICLR 2025

Algorithm 1 Branch and bound for planning. Comments are in brown.

1: Function: bab_planning
2: Inputs: f , C, n (batch size), terminate (Termination condition)

3: {(f
∗

, ũ)} ← batch_search (f, {C}) ⊲ Initially search on the whole C
4: {f∗} ← batch_bound (f, {C}) ⊲ Initially bound on the whole C

5: P← {(C, f∗, f
∗

, ũ)} ⊲ P is the set of all candidate subdomains

6: while length(P) > 0 and not terminate do

7: {(Ci, f
∗

Ci
, f

∗

Ci
, ũCi

)} ← batch_pick_out (P, n) ⊲ Pick out subdomains to split from P

8: {C lo
i , C

up
i } ← batch_split ({Ci}) ⊲ Splits each Ci into two subdomains C lo

i and Cup
i

9: {f∗

Clo
i

, f∗

C
up
i

} ← batch_bound
(

f, {C lo
i , C

up
i }

)

⊲ Estimate lower bounds on new subdomains

10: {(f
∗

Clo
i
, ũ

Clo
i
), (f

∗

C
up
i
, ũ

C
up
i
)} ← batch_search

(

f, {C lo
i , C

up
i }

)

⊲ Search new solutions

11: if min
(

{f
∗

Clo
i
, f

∗

C
up
i
}
)

< f
∗

then

12: f
∗

← min
(

{f
∗

Clo
i
, f

∗

C
up
i
}
)

, ũ← argmin
(

{f
∗

Clo
i
, f

∗

C
up
i
}
)

⊲ Update the best solution if needed

13: P← P
⋃

Pruner

(

f
∗

, {(C lo
i , f

∗

Clo
i

, f
∗

Clo
i
), (Cup

i , f∗

C
up
i

, f
∗

C
up
i
)}
)

⊲ Prune bad domains using f
∗

14: Outputs: f
∗

, ũ

subdomains from the remaining N ones, using softmax, with the probability pi defined in Eq. 2,
where T is the temperature and f∗

Ci,scaled
represents f∗

Ci
after min-max normalization for numerical

stability. A smaller f∗

Ci
may indicate potentially better solutions in Ci, which should be prioritized:

pi =
exp(−f∗

Ci,scaled
/T)

∑N
j=1 exp(−f∗

Cj ,scaled
/T)

. (2)

Note that this heuristic was not discussed in the neural network verification literature, which requires
verifying all subdomains, making the order of subdomain selection less critical.

Heuristic for splitting subdomains. batch_split ({Ci}) partitions every Ci to help search for
good solutions. For a box-constrained subdomain Ci := {uj | uj ≤ uj ≤ uj ; j = 0, . . . , d − 1}

(subscript i omitted for brevity), it is natural to split it into two subdomains C lo
i and Cup

i along a

dimension j∗ by bisection. Specifically, C lo
i = {uj | uj∗ ≤ uj∗ ≤

uj∗+uj∗

2 }, Cup
i = {uj |

uj∗+uj∗

2 ≤ uj∗ ≤ uj∗}. In both C lo
i and Cup

i , uj ≤ uj ≤ uj , ∀j 6= j∗ holds.

One native way to select j∗ is to choose the dimension with the largest input range uj − uj . This
efficient strategy can help identify promising solutions since dimensions with a larger range often
indicate greater variability or uncertainty in f . However, it does not consider the specific landscape
of f , which may indicate dimensions better suited for splitting.

We additionally consider the distribution of top w% samples with the best objectives from searching
to partition Ci into promising subdomains worth further searching. Specifically, for every dimension

j, we record the number of top samples satisfying uj ≤ uj ≤
uj+uj

2 and
uj+uj

2 ≤ uj ≤ uj as

nlo
j and nup

j , respectively. Then, |nlo
j − nup

j | indicates the distribution bias of top samples along a

dimension j. A dimension with large |nlo
j − nup

j | is critical to objective values in Ci and should be
prioritized to split due to the imbalanced samples on two sides. In this case, it is often possible that
one of the two subdomains (C lo

i and Cup
i) contains better solutions, whereas the other has a larger

lower bound for the objective and can be pruned.

Based on the discussion above, we rank input dimensions descendingly by (uj − uj) · |n
lo
j − nup

j |,
select the top one as j∗, and then split Ci into two subdomains evenly on dimension j∗. This heuristic
is notably different from those discussed in neural network verification literature (Bunel et al., 2018;
2020b), since we aim to find better feasible solutions, not better lower bounds.

3.2 BOUNDING METHOD FOR BAB-ND PLANNING

Our bounding procedure aims to provide a tight lower bound for the objective function f(u) in any
subdomain, enabling the pruning of unpromising subdomains and the identification of promising

6

Published as a conference paper at ICLR 2025

ones. While this component is crucial to the effectiveness of BaB, grasping this high-level idea is
sufficient to understand our main algorithm.

To guide the search with tight bound estimation, an important insight is that in the planning problem,
a strictly sound lower bound is not required, as the lower bound is used to evaluate the quality of
subdomains rather than to provide a provable guarantee of f(u), as in neural network verification.
Based on this observation, we propose two approaches, propagation early-stop and searching-
integrated bounding, to obtain an efficient estimation of the lower bound f∗

Ci
, leveraging popular

bound propagation-based algorithms like CROWN (Zhang et al., 2018).

Approach 1: Propagation early-stop. CROWN is a bound propagation algorithm that propagates
a linear lower bound (inequality) through the neural network and has been successfully used in
BaB-based neural network verifiers for the bounding step (Xu et al., 2021; Wang et al., 2021). In
CROWN, the linear bound will be propagated backward from the output (in our case, f(u)) to the
input of the network (in our case, u), and be concretized to a concrete lower bound value using the
constraints on inputs (in our case, Ci).

However, this linear bound can become increasingly loose in deeper networks and may result in
vacuous lower bounds. In our planning setting with the neural dynamics model fdyn, the long planning
horizon H in Eq. 1 requires unrolling fdyn H times to form f(u), leading to excessively loose bounds
that are ineffective for pruning unpromising domains during BaB.

To address this challenge, we stop the bound propagation process early to avoid the excessively loose
bound when propagated through multiple layers to the input u. The linear bound will be concretized
using intermediate layer bounds, as discussed in Approach 2, rather than the constraints on the inputs.
A more formal description of this technique (with technical details on how CROWN is modified) is
presented in Appendix B.2 with an illustrative example.

Approach 2: Search-integrated bounding. In CROWN, the propagation process requires re-
cursively computing intermediate layer bounds (often referred to as pre-activation bounds). These
pre-activation bounds represent the lower and upper bounds for any intermediate layer that is followed
by a nonlinear layer. The time complexity of this process is quadratic with respect to the number
of layers. Directly applying the original CROWN-like bound propagation is both ineffective and
inefficient for long-horizon planning, as the number of pre-activation bounds increases with the
planning horizon. This results in overly loose lower bounds due to the accumulated relaxation errors
and high execution times.

To quickly obtain the pre-activation bounds, we can utilize the by-product of extensive sampling
during searching to form the empirical bounds instead of recursively using CROWN to calculate
these bounds. Specifically, we denote the intermediate layer output for layer v as gv(u), and
assume we have M samples u

m (m = 1, . . . ,M) from the searching process. We calculate the
pre-activation lower and upper bounds as minm gv(u

m) and maxm gv(u
m) for each dimension of

gv(u). Although these empirical bounds may underestimate the actual bounds, they are sufficient for
CROWN to get a good estimation of f∗ to guide the search.

3.3 SEARCHING APPROACH FOR BAB-ND PLANNING

Given an objective function f and a batch of subdomains {Ci}, batch_search(f, {Ci}) explores

these subdomains to find solutions, returning the best objectives and associated inputs {(f
∗

Ci
, ũCi

)}.
A large variety of sampling-based methods can be utilized and we currently adopt CEM as the
underlying method. Other existing methods, such as MPPI or projected gradient descent (PGD), can
be alternatives. In typical neural network verification literature, searching is often ignored during
BaB (Wang et al., 2021; Bunel et al., 2020b) since these approaches do not seek feasible solutions.

To cooperate with the bounding component, we need to additionally record the outputs of needed
intermediate layer v, and obtain their bounds as described in Section 3.2. Since we require the lower
bound of the optimal objective f∗

Ci
for every Ci, the outputs of layer v must be calculated for every

Ci, using the samples within the subdomain.

Considering that the subdomains {Ci} will become progressively smaller, it is expected that sampling-

based methods could provide good solutions. Moreover, since we always record f
∗

Ci
and its associated

ũCi
, they can initialize future searches on at least one of the split subdomains (C lo

i and Cup
i) from Ci.

7

Published as a conference paper at ICLR 2025

6 ACKNOWLEDGMENT

This work is supported by the Toyota Research Institute (TRI). We thank Hongkai Dai, Aykut
Onol, and Mengchao Zhang for their constructive suggestions on the paper manuscript. We also
thank Mingtong Zhang, Haozhe Chen, Baoyu Li, and Binghao Huang for their help with real-world
experiments and simulation environment development. This article reflects solely the opinions and
conclusions of its authors, not those of TRI or any other Toyota entity.

REFERENCES

Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by
poking: Experiential learning of intuitive physics. arXiv preprint arXiv:1606.07419, 2016.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Programming,
183(1):3–39, 2020.

Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint arXiv:2109.00498,
2021.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Victor Blomqvist. Pymunk. https://pymunk.org, November 2022.

Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar. A unified view
of piecewise linear neural network verification. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,
Philip H. S. Torr, and M. Pawan Kumar. Lagrangian decomposition for neural network verification.
Conference on Uncertainty in Artificial Intelligence (UAI), 2020a.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar.
Branch and bound for piecewise linear neural network verification, 2020b.

Eduardo F Camacho and Carlos Bordons Alba. Model Predictive Control. Springer Science &
Business Media, 2013.

Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
Scaling the convex barrier with active sets. International Conference on Learning Representations
(ICLR), 2021.

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
dynamics with compositional neural radiance fields. In Conference on robot learning, pp. 1755–
1768. PMLR, 2023.

Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning with
temporal skip connections. In CoRL, pp. 344–356, 2017.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

J. Zico Kolter Eric Wong. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning (ICML), 2018.

Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. arXiv preprint arXiv:2205.00263, 2022.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786–2793. IEEE, 2017.

11

Published as a conference paper at ICLR 2025

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. arXiv preprint arXiv:1605.07157, 2016.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation
for training verifiably robust models. Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2019.

Bernhard Paus Graesdal, Shao Yuan Chew Chia, Tobia Marcucci, Savva Morozov, Alexandre Amice,
Pablo A. Parrilo, and Russ Tedrake. Towards tight convex relaxations for contact-rich manipulation,
2024. URL https://arxiv.org/abs/2402.10312.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565, 2019c.

Tyler Han, Alex Liu, Anqi Li, Alex Spitzer, Guanya Shi, and Byron Boots. Model predictive control
for aggressive driving over uneven terrain, 2024.

Hanjiang Hu, Jianglin Lan, and Changliu Liu. Real-time safe control of neural network dynamic
models with sound approximation, 2024a.

Hanjiang Hu, Yujie Yang, Tianhao Wei, and Changliu Liu. Verification of neural control barrier
functions with symbolic derivative bounds propagation. In 8th Annual Conference on Robot
Learning, 2024b. URL https://openreview.net/forum?id=jnubz7wB2w.

Zixuan Huang, Xingyu Lin, and David Held. Mesh-based dynamics model with occlusion reasoning
for cloth manipulation. In Robotics: Science and Systems (RSS), 2022.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Panagiotis Kouvaros and Alessio Lomuscio. Towards scalable complete verification of relu neural
networks via dependency-based branching. In IJCAI, pp. 2643–2650, 2021.

Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew
Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for perception and
control. Advances in neural information processing systems, 32:10724–10734, 2019.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47), 2020.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for model
predictive control. In Robotics: Science and Systems, volume 10, pp. 25. Rome, Italy, 2015.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018.

Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake.
Propagation networks for model-based control under partial observation. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 1205–1211. IEEE, 2019.

Yunzhu Li, Antonio Torralba, Anima Anandkumar, Dieter Fox, and Animesh Garg. Causal discovery
in physical systems from videos. Advances in Neural Information Processing Systems, 33, 2020.

12

Published as a conference paper at ICLR 2025

Xingyu Lin, Yufei Wang, Zixuan Huang, and David Held. Learning visible connectivity dynamics
for cloth smoothing. In Conference on Robot Learning, 2021.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, and Mykel J.
Kochenderfer. Algorithms for verifying deep neural networks. Foundations and Trends® in
Optimization, 4(3-4):244–404, 2021.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang,
Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection, 2023a.

Ziang Liu, Genggeng Zhou, Jeff He, Tobia Marcucci, Li Fei-Fei, Jiajun Wu, and Yunzhu Li. Model-
based control with sparse neural dynamics. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023b. URL https://openreview.net/forum?id=ymBG2xs9Zf.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Jingyue Lu and M. Pawan Kumar. Neural network branching for neural network verification. In
International Conference on Learning Representations (ICLR), 2020.

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified particle physics
for real-time applications. ACM Transactions on Graphics (TOG), 33(4):1–12, 2014.

Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ Tedrake. Keypoints into the future:
Self-supervised correspondence in model-based reinforcement learning. arXiv preprint
arXiv:2009.05085, 2020.

Tobia Marcucci. Graphs of Convex Sets with Applications to Optimal Control and Motion Planning.
PhD thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2024.

Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. The third
international verification of neural networks competition (vnn-comp 2022): Summary and results.
arXiv preprint arXiv:2212.10376, 2022.

Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation. In Conference on Robot Learning, pp. 1101–1112. PMLR, 2020.

Alessandro De Palma, Rudy Bunel, Aymeric Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,
Philip H. S. Torr, and M. Pawan Kumar. Improved branch and bound for neural network verification
via lagrangian decomposition. arXiv preprint arXiv:2104.06718, 2021.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combina-
torial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2013.

Jacob Sacks, Rwik Rana, Kevin Huang, Alex Spitzer, Guanya Shi, and Byron Boots. Deep model
predictive optimization, 2023.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
barrier to tight robustness verification of neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter Abbeel.
Masked world models for visual control. In Conference on Robot Learning, pp. 1332–1344. PMLR,
2023.

Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see,
simulate, and shape elasto-plastic objects with graph networks. arXiv preprint arXiv:2205.02909,
2022.

13

Published as a conference paper at ICLR 2025

Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. Robocook: Long-horizon
elasto-plastic object manipulation with diverse tools, 2023.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages (POPL), 2019.

HJ Suh and Russ Tedrake. The surprising effectiveness of linear models for visual foresight in object
pile manipulation. arXiv preprint arXiv:2002.09093, 2020.

Stephen Tian, Frederik Ebert, Dinesh Jayaraman, Mayur Mudigonda, Chelsea Finn, Roberto Calandra,
and Sergey Levine. Manipulation by feel: Touch-based control with deep predictive models. In
2019 International Conference on Robotics and Automation (ICRA), pp. 818–824. IEEE, 2019.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming, 2019.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
2018.

Shiqi Wang, Huan Zhang, Kaidi Xu, Suman Jana, Xue Lin, Cho-Jui Hsieh, and Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for complete and incomplete
neural network robustness verification. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Yixuan Wang, Yunzhu Li, Katherine Driggs-Campbell, Li Fei-Fei, and Jiajun Wu. Dynamic-
Resolution Model Learning for Object Pile Manipulation. In Proceedings of Robotics: Science
and Systems, Daegu, Republic of Korea, July 2023. doi: 10.15607/RSS.2023.XIX.047.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. arXiv preprint
arXiv:1506.07365, 2015.

Tianhao Wei and Changliu Liu. Safe control with neural network dynamic models, 2022.

Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral
control: From theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):
344–357, 2017.

Junlin Wu, Huan Zhang, and Yevgeniy Vorobeychik. Verified safe reinforcement learning for neural
network dynamic models, 2024. URL https://arxiv.org/abs/2405.15994.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In Conference on Robot Learning, pp. 2226–2240.
PMLR, 2023.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. International Conference on Learning Representations (ICLR), 2021.

Lin Yen-Chen, Maria Bauza, and Phillip Isola. Experience-embedded visual foresight. In Conference
on Robot Learning, pp. 1015–1024. PMLR, 2020.

Zeji Yi, Chaoyi Pan, Guanqi He, Guannan Qu, and Guanya Shi. Covo-mpc: Theoretical analysis of
sampling-based mpc and optimal covariance design, 2024.

Ji Yin, Zhiyuan Zhang, Evangelos Theodorou, and Panagiotis Tsiotras. Trajectory distribution
control for model predictive path integral control using covariance steering. In 2022 International
Conference on Robotics and Automation (ICRA), pp. 1478–1484, 2022. doi: 10.1109/ICRA46639.
2022.9811615.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

14

Published as a conference paper at ICLR 2025

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. Advances in
Neural Information Processing Systems, 2022a.

Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. A
branch and bound framework for stronger adversarial attacks of ReLU networks. In International
Conference on Machine Learning (ICML), pp. 26591–26604. PMLR, 2022b.

Kaifeng Zhang, Baoyu Li, Kris Hauser, and Yunzhu Li. Adaptigraph: Material-adaptive graph-based
neural dynamics for robotic manipulation. In Proceedings of Robotics: Science and Systems (RSS),
2024.

Zichen Zhang, Jun Jin, Martin Jagersand, Jun Luo, and Dale Schuurmans. A simple decentralized
cross-entropy method, 2022c. URL https://arxiv.org/abs/2212.08235.

15

Published as a conference paper at ICLR 2025

A EXTENDED FORMULATION AND METHOD OVERVIEW

A.1 ILLUSTRATION OF BAB-ND ON A SIMPLIFIED TASK

We refer to Figure 3 to introduce theoretical concepts in Section 3 and to illustrate BaB-ND on a
simplified robotic manipulation task.

Configuration. In Figure 3.a, we first define the configuration of the task, where the robot moves
left or right to push an object toward the target.

The 1D action u ∈ C in this case represents the movement of the robot pusher, with C = [−l, l] as
its domain, where l is the maximum movement distance (e.g., 1 cm in practice). A value of u < 0
means the robot moves left, while u > 0 means the robot moves right.

The objective f(u) measures the distance between the object and the target under a specific action u.
In this case, f(u) = d21 + d22, where d1 is the distance between a keypoint (P1) on the object and the
corresponding keypoint (P1,T) on the target, and d2 is the distance between another keypoint pair
(P2 and P2,T). For example, if the robot moves left (u < 0), d2 decreases while d1 increases.

The values of d1 and d2 depend on a neural network dynamics model fdyn. This model takes as input
the current positions of P1 and P2 relative to the pusher, along with an action u, to predict the next
positions of P1 and P2. Based on these predictions, d1 and d2 are updated accordingly, and f(u)
may exhibit non-convex behavior.

Formulation of BaB. Our goal in planning is to find the optimal action u
∗ that minimizes f(u).

To achieve this, we propose a branch-and-bound-based method. In Figure 3.b, c, and d, we illustrate
three components of our method. We first introduce some concepts below.

A subdomain Ci ∈ C is a subset of the entire input domain C. For example, in Figure 3.b, we initially
split C = [−l, l] into two subdomains: C1 = [−l, 0] and C2 = [0, l], to separately analyze left and
right movements.

Each subdomain Ci has associated lower and upper bounds of the best objective in it: f∗

Ci
and f

∗

Ci
.

These represent the bounds of the best objective in Ci (f∗
Ci

:= minu∈Ci
f(u)). For example, if the

optimal objective (the sum of the squared distances between keypoint pairs, d21 + d22) given by the

best action in Ci is 2, we might estimate f∗

Ci
= 1 and f

∗

Ci
= 3 (1 ≤ minu∈Ci

d21 + d22 = 2 ≤ 3).

Intuitively, f∗

Ci
underestimates the minimum objective in Ci, while f

∗

Ci
overestimates it.

We split the original domain C into multiple subdomains Ci with branching, compute f∗

Ci
using

bounding (Figure 3.c), and f
∗

Ci
using searching (Figure 3.d). These bounds allow us to determine

whether a subdomain Ci is promising for containing the optimal action u
∗ or whether it can be pruned

as unpromising. For instance, in Figure 3, assume f∗

C1

= 4 and f
∗

C2
= 3. This means that no objective

better than 4 can be achieved in C1, while no objective worse than 3 can occur in C2. In this case, we
can directly prune C1 without further exploration.

Branching. In Figure 3.b, we visualize the branching process, which constructs a search tree
iteratively. We first split C = [−l, l] into two subdomains: C1 = [−l, 0] and C2 = [0, l], allowing us
to consider left and right movements separately. We can iteratively split any subdomain into smaller
subdomains. For example, C2 can be further split into C3 and C4.

Naively, we could search every subdomain and select the best action among all subdomains as our
final best action. However, this approach is computationally expensive, especially when C is divided
into many small subdomains. Therefore, we need to prune unpromising subdomains to reduce the
search space and computational overhead.

Bounding. Pruning relies on the bounding component (Figure 3.c), which provides f∗, the lower

bound of f(u) within a given input domain. In our simplified case, f∗ represents the lower bound of
the sum of the squared distances between keypoint pairs.

16

Published as a conference paper at ICLR 2025

This bounding process is performed for every subdomain. Within a specific subdomain, such as
C1, we estimate a linear function g(u) that is always smaller than or equal to f(u) in C1 (i.e.,
g(u) ≤ f(u), ∀u ∈ C1). We then use the minimum value of g(u) in C1 as the lower bound of f(u) in
C1 (i.e., f∗

C1

:= minu∈C1
g(u)). This estimation is based on CROWN and our adaptations.

Intuitively, subdomains with large lower bounds can be treated as unpromising, while those with small
lower bounds are considered promising. Using these lower bounds, we can prioritize the promising

subdomains and prune unpromising subdomains whose lower bounds exceed f
∗
, the best objective

found so far.

Searching. The best objective found, f
∗
:= mini f

∗

Ci
, is the best objective among all subdomains,

where f
∗

Ci
represents the upper bound of the best objective in Ci, obtained through the searching

process using sampling-based methods, as shown in Figure 3.d.

Specifically, f
∗

Ci
:= minuk∈Ci

f(uk) is the best objective among all input samples uk in Ci. This is

valid because ∀uk ∈ Ci, f
∗
≤ f(uk) holds. Thus, any f(uk) can serve as an upper bound for f

∗

Ci
,

but we select the best one to achieve a tighter bound on f
∗

Ci
.

With more subdomains being pruned in the branch-and-bound process, sampling-based methods can
be applied to progressively smaller input spaces, enabling the discovery of better objectives. This
process may ultimately converge to the actual optimal value f∗ and identify the optimal action u

∗.

A.2 ALGORITHM OF BAB-ND

The BaB-ND algorithm Algorithm 2 takes an objective function f with neural networks, a domain C
as the input space, and a termination condition if necessary. The sub-procedure batch_search seeks

better solutions on domains {Ci}. It returns the best objectives {f
∗

Ci
} and the corresponding solutions

{ũCi
} for n selected subdomains simultaneously. The sub-procedure batch_bound computes the

lower bounds of f∗ on domains {Ci} as described in Section 3.2. It operates in a batch and returns
the lower bounds {f∗

Ci
}.

In the algorithm, we maintain f
∗

and ũ as the best objective and solution we can find. We also

maintain a global set P storing all the candidate subdomains where f∗

Ci
≥ f

∗
. Initially, we only have

the whole input domain C, so we perform batch_search and batch_bound on C and initialize the

current f
∗
, ũ, and P (Lines 2-4).

Then we utilize the power of GPUs to branch, search, and bound subdomains in parallel while main-
taining P (Lines 6-11). Specifically, batch_pick_out selects n (batch size) promising subdomains
from P. If the length of P is less than n, then n is reduced to the length of P. batch_split splits
each selected Ci into two subdomains C lo

i and Cup
i according to a branch heuristic in parallel. Pruner

filters out bad subdomains (proven with f∗

Ci
> f

∗
), and the remaining ones are inserted into P.

The loop breaks if there are no subdomains left in P or if some other pre-defined termination

conditions, such as timeout or finding a good enough objective f
∗
≤ fth, are satisfied (Line 5). We

finally return the best objective f
∗

and the corresponding solution ũ.

A.3 DISTINCTIONS BETWEEN BAB-ND AND NEURAL NETWORK VERIFICATION ALGORITHMS

Goals. BaB-ND aims to optimize an objective function involving neural dynamics models to solve
challenging planning problems, seeking a concrete solution ũ (a near-optimal action sequence) to
an objective-minimization problem minu∈C f(u). In contrast, neural network verification focuses
on proving a sound lower bound of f(u) in the space C, where a concrete solution ũ is not needed.
These fundamental distinctions in goals lead to different algorithm design choices.

Branching Heuristics. In BaB-ND, branching heuristics are designed to effectively guide the
search for better concrete solutions, considering both the lower and upper bounds of the best objective.
In neural network verification, branching heuristics focus solely on improving the lower bounds.

17

Published as a conference paper at ICLR 2025

Algorithm 2 Branch and bound for planning. Comments are in brown.

1: Inputs: f , C, n (batch size), terminate (Termination condition)

2: {(f
∗

, ũ)} ← batch_search (f, {C}) ⊲ Initially search on the whole C
3: {f∗} ← batch_bound (f, {C}) ⊲ Initially bound on the whole C

4: P← {(C, f∗, f
∗

, ũ)} ⊲ P is the set of all candidate subdomains

5: while length(P) > 0 and not terminate do

6: {(Ci, f
∗

Ci
, f

∗

Ci
, ũCi

)} ← batch_pick_out (P, n) ⊲ Pick subdomains to split and remove them from P

7: {C lo
i , C

up
i } ← batch_split ({Ci}) ⊲ Each Ci splits into two subdomains C lo

i and Cup
i

8: {(f
∗

Clo
i
, ũ

Clo
i
), (f

∗

C
up
i
, ũ

C
up
i
)} ← batch_search

(

f, {C lo
i , C

up
i }

)

⊲ Search new solutions

9: {f∗

Clo
i

, f∗

C
up
i

} ← batch_bound
(

f, {C lo
i , C

up
i }

)

⊲ Compute lower bounds on new subdomains

10: if min
(

{f
∗

Clo
i
, f

∗

C
up
i
}
)

< f
∗

then

11: f
∗

← min
(

{f
∗

Clo
i
, f

∗

C
up
i
}
)

, ũ← argmin
(

{f
∗

Clo
i
, f

∗

C
up
i
}
)

⊲ Update the best solution if needed

12: P← P
⋃

Pruner

(

f
∗

, {(C lo
i , f

∗

Clo
i

, f
∗

Clo
i
), (Cup

i , f∗

C
up
i

, f
∗

C
up
i
)}
)

⊲ Prune bad domains using f
∗

13: Outputs: f
∗

, ũ

Bounding Approaches. While existing bounding approaches, such as CROWN from neural net-
work verification, can provide provable lower bounds for objectives, they are neither effective nor
efficient for planning problems. To address this, we adapt the CROWN algorithm with propagation
early-stop and search-integrated bounding to efficiently obtain tight bound estimations.

Searching Components. BaB-ND includes an additional searching component in the branch-and-
bound procedure to find the optimal solution to planning problems. Neural network verifiers typically
do not have this component, as they focus solely on obtaining lower bounds of objectives over an
input space rather than identifying objective values for specific inputs. We further adapt the searching
component to benefit from the BaB procedure while also guiding BaB for improved searching.

A.4 LIMITATIONS AND FUTURE DIRECTIONS

In this section, we discuss a few limitations of our work and potential directions for future work.

• Planning performance depends on the prediction errors of neural dynamics models.

The neural dynamics model may not perfectly match the real world. As a result, our optimization
framework, BaB-ND, may achieve a low objective as predicted by the learned dynamics model but
still miss the target (e.g., the model predicts that a certain action reaches the target, but in reality, the
pushing action overshoots). While improving model accuracy is not the primary focus of this paper,
future research could explore more robust formulations that account for potential errors in neural
dynamics models to improve overall performance and reliability.

• Optimality of our solution may be influenced by the underlying searching algorithms.

The planning performance of BaB-ND is inherently influenced by the underlying sampling-based
searching algorithms (e.g., sampling-based methods may over-exploit or over-explore the objective
landscape, resulting in suboptimal solutions in certain domains). Although our branch-and-bound
procedure can mitigate this issue by systematically exploring the input space and efficiently guiding
the search, incorporating advanced sampling-based searching algorithms with proper parameter
scheduling into BaB-ND could improve its ability to tackle more challenging planning problems.

• Improved branching heuristics and strategies are needed for more efficiently guiding the search for
more challenging settings.

There is still room for improving the branching heuristics and bounding strategies to generalize across
diverse tasks (e.g., our current strategy may not always find the optimal axis to branch). Future
efforts could focus on developing more generalizable strategies for broader applications, potentially
leveraging reinforcement learning approaches.

18

Published as a conference paper at ICLR 2025

B MORE DETAILS ABOUT BOUNDING

B.1 PROOFS OF CROWN BOUNDING

In this section, we first share the background of neural network verification including its formulation
and a efficient linear bound propagation method CROWN (Zhang et al., 2018) to calculate bounds
over neural networks. We take the Multilayer perceptron (MLP) with ReLU activation as the example
and CROWN is a general framework which is suitable to different activations and model architectures.

Definition. We define the input of a neural network as x ∈ R
d0 , and define the weights and

biases of an L-layer neural network as W(i) ∈ R
di×di−1 and b(i) ∈ R

di (i ∈ {1, · · · , L}) re-

spectively. The neural network function f : R
d0 → R is defined as f(x) = z(L)(x), where

z(i)(x) = W(i)ẑ(i−1)(x) + b(i), ẑ(i)(x) = σ(z(i)(x)) and ẑ(0)(x) = x. σ is the activation function

and we use ReLU throughout this paper. When the context is clear, we omit ·(x) and use z
(i)
j and

ẑ
(i)
j to represent the pre-activation and post-activation values of the j-th neuron in the i-th layer.

Neural network verification seeks the solution of the optimization problem in Eq. 3:

min f(x) := z(L) s.t. z(i) = W(i)ẑ(i−1) + b(i), ẑ(i) = σ(z(i)), x ∈ C, i ∈ {1, · · · , L− 1} (3)

The set C defines the allowed input region and our aim is to find the minimum of f(x) for x ∈ C, and
throughout this paper we consider C as an ℓp ball around a data example x0: C = {x | ‖x−x0‖p ≤ ǫ}.

First, let we consider the neural network with only linear layers. in this case, it is easily to get a
linear relationship between x and f(x) that f(x) = Wx+ b no matter what is the value of L and
derive the closed form of f∗ = min f(x) for x ∈ C. With this idea in our mind, for neural networks
with non-linear activation layers, if we could bound them with some linear functions, then it is still
possible to bound f(x) with linear functions.

Then, we show that the non-linear activation ReLU layer ẑ = ReLU(z) can be bounded by two linear
functions in three cases according to the range of pre-activation bounds l ≤ z ≤ u: active (l ≥ 0),
inactive (u ≤ 0) and unstable (l < 0 < u) in Lemma B.1.

Lemma B.1 (Relaxation of a ReLU layer in CROWN). Given pre-activation vector z ∈ R
d, l ≤ z ≤

u (element-wise), ẑ = ReLU(z), we have

Dz + b ≤ ẑ ≤ Dz + b,

where D,D ∈ R
d×d are diagonal matrices defined as:

Dj,j =





1, if lj ≥ 0

0, if uj ≤ 0

αj , if uj > 0 > lj

Dj,j =





1, if lj ≥ 0

0, if uj ≤ 0
uj

uj−lj
, if uj > 0 > lj

(4)

α ∈ R
d is a free vector s.t., 0 ≤ α ≤ 1. b,b ∈ R

d are defined as

bj =

{
0, if lj > 0 or uj ≤ 0

0, if uj > 0 > lj .
bj =

{
0, if lj > 0 or uj ≤ 0

− uj lj

uj−lj
, if uj > 0 > lj .

(5)

Proof. For the j-th ReLU neuron, if lj ≥ 0, then ReLU(zj) = zj ; if uj < 0, then ReLU(zj) = 0.
For the case of lj < 0 < uj , the ReLU function can be linearly upper and lower bounded within this
range:

αjzj ≤ ReLU(zj) ≤
uj

uj − lj
(zj − lj) ∀ lj ≤ zj ≤ uj

where 0 ≤ αj ≤ 1 is a free variable - any value between 0 and 1 produces a valid lower bound.

Next we apply the linear relaxation of ReLU to the L-layer neural network f(x) to further derive

the linear lower bound of f(x). The idea is to propagate a weight matrix W̃ and bias vector b̃ from
the L-th layer to 1-th layer. Specifically, when propagate through ReLU layer, we should greedily

select upper bound of ẑj when W̃i,j is negative and select lower bound of ẑj when W̃i,j is positive

to calculate the lower bound of f(x). When propagate through linear layer, we do not need to do
such selection since there is no relaxation on linear layer.

19

Published as a conference paper at ICLR 2025

Theorem B.2 (CROWN bound propagation on neural network). Given the L-layer neural network
f(x) as defined in Eq. 3, we could find a linear function with respect to input x.

f(x) := z(L) ≥ W̃
(1)

x+ b̃
(1)

(6)

where W̃ and b̃ are recursively defined as following:

W̃
(l)

= A(l)W(l), b̃
(l)

= A(l)b(l) + d(l), ∀l = 1 . . . L (7)

A(L) = I ∈ R
dL×dL , b̃

(L)
= 0 (8)

A(l) = W̃
(l+1)

≥0 D(l) + W̃
(l+1)

<0 D
(l)

∈ R
dl+1×dl , ∀l = 1 . . . L− 1 (9)

d(l) = W̃
(l+1)

≥0 b(l) + W̃
(l+1)

<0 b
(l)

+ b̃
(l)
, ∀l = 1 . . . L− 1 (10)

where ∀l = 1 . . . L− 1,D(l),D
(l)

∈ R
dl×dl and b(l),b

(l)
∈ R

dl are defined as in Lemma B.1. And
subscript “≥ 0” stands for taking positive elements from the matrix while setting other elements to
zero, and vice versa for subscript “< 0”.

Proof. First we have

f(x) := z(L) = A(L)z(L) + d(L)

= A(L)W(L)ẑ(L−1) +A(L)b(L) + d(L)

= W̃
(L)

ẑ(L−1) + b̃
(L)

(11)

Refer to Lemma B.1, we have

D(L−1)z(L−1) + b(L−1) ≤ ẑ(L−1) ≤ D
(L−1)

z(L−1) + b
(L−1)

(12)

Then we can form the lower bound of z(L) element by element: we greedily select the upper

bound ẑ
(L−1)
j ≤ D

(L−1)

j,j z
(L−1)
j + b

(L−1)

j when W̃
(L)

i,j is negative, and select the lower bound

ẑ
(L−1)
j ≥ D

(L−1)
j,j z

(L−1)
j + b

(L−1)
j otherwise. It can be formatted as

W̃
(L)

ẑ(L−1) + b̃
(L)

≥ A(L−1)z(L−1) + d(L−1) (13)

where A(L−1) ∈ R
dL×dL−1 is defined as

A
(L−1)
i,j =




W̃

(L)

i,j D
(L−1)

j,j , if W̃
(L)

i,j < 0

W̃
(L)

i,j D
(L−1)
j,j , if W̃

(L)

i,j ≥ 0
(14)

for simplicity, we rewrite it in matrix form as

A(L−1) = W̃
(L)

≥0D
(L−1) + W̃

(L)

<0D
(L−1)

(15)

And d(L−1) ∈ R
dL is similarly defined as

d(L−1) = W̃
(L)

≥0 b
(L−1) + W̃

(L)

<0 b
(L−1)

+ b̃
(L)

(16)

Then we continue to replace z(L−1) in Eq. 13 as W(L−1)ẑ(L−2) + b(L−1)

W̃
(L)

ẑ(L−1) + b̃
(L)

≥ (A(L−1)W(L−1))ẑ(L−2) +A(L−1)b(L−1) + d(L−1)

= W̃
(L−1)

ẑ(L−2) + b̃
(L−1)

(17)

By continuing to propagate the linear inequality to the first layer, we get

f(x) ≥ W̃
(1)

ẑ(0) + b̃
(1)

= W̃
(1)

x+ b̃
(1)

(18)

20

Published as a conference paper at ICLR 2025

After getting the linear lower bound of f(x), and given x ∈ C, we could solve the linear lower bound
in closed form as in Theorem B.3. It is given by the Hölder’s inequality.

Theorem B.3 (Bound Concretization under ℓp ball Perturbations). Given the L-layer neural network
f(x) as defined in Eq. 3, and input x ∈ C = Bp(x0, ǫ) = {x | ‖x − x0‖p ≤ ǫ}, we could find

concrete lower bound of f(x) by solving the optimization problem minx∈C W̃
(1)

x + b̃
(1)

and its
solution gives

min
x∈C

f(x) ≥ min
x∈C

W̃
(1)

x+ b̃
(1)

≥ −ǫ‖W̃
(1)

‖q + W̃
(1)

x0 + b̃
(1)

(19)

where 1
p
+ 1

q
= 1 and ‖ · ‖q denotes taking ℓq-norm for each row in the matrix and the result makes

up a vector.

Proof.

min
x∈C

W̃
(1)

x+ b̃
(1)

(20)

= min
λ∈Bp(0,1)

W̃
(1)

(x0 + ǫλ) + b̃
(1)

(21)

=ǫ(min
λ∈Bp(0,1)

W̃
(1)

λ) + W̃
(1)

x0 + b̃
(1)

(22)

=− ǫ(max
λ∈Bp(0,1)

−W̃
(1)

λ) + W̃
(1)

x0 + b̃
(1)

(23)

≥− ǫ(max
λ∈Bp(0,1)

|W̃
(1)

λ|) + W̃
(1)

x0 + b̃
(1)

(24)

≥− ǫ(max
λ∈Bp(0,1)

‖W̃
(1)

‖q‖λ‖p) + W̃
(1)

x0 + b̃
(1)

(Hölder’s inequality) (25)

=− ǫ‖W̃
(1)

‖q + W̃
(1)

x0 + b̃
(1)

(26)

B.2 DETAILS ABOUT BOUND PROPAGATION EARLY-STOP

Algorithm 3 Bound Propagation w/ Early-stop.

1: Function: compute_bound
2: Inputs: computational graph G, output node o,

early-stop set S
3: CROWN_init(G, o)
4: Q← Queue(), Q.push(o)
5: while length(Q) > 0 do
6: v ← Q.pop()
7: for w ∈ In(v) do
8: dw −= 1
9: if dw = 0 and w /∈ I then

10: Q.push(w)

11: if v ∈ S then
12: continue
13: CROWN_prop(v)

14: f∗ ← CROWN_concretize(I,S)

15: Outputs: f∗

We parse the objective function f into a compu-
tational graph G = (V,E), where V and E are
the sets of nodes and edges, respectively. This
process can be accomplished using popular deep
learning frameworks, such as PyTorch, which sup-
port not only neural networks but also more general
functions. In the graph G, any mathematical op-
eration is represented as a node v ∈ V, and the
edges e = (w, v) ∈ E define the flow of compu-
tation. The input u, constant values, and model
parameters constitute the input nodes of G, form-
ing the input set I = {v | In(v) = ∅}, where
In(v) = {w | (w, v) ∈ E} denotes the set of input
nodes for a node v. Any arithmetic operation, such
as ReLU, which requires input operands, is also rep-
resented as a node in G but with a non-empty input
set. The node o is the sole output node of G and
provides the scalar objective value f in our case.

Our method (Algorithm 3) takes as input the graph G of f , the output node o to bound, and a set
of early-stop nodes S ⊂ V. It outputs the lower bound of the value of o, i.e., f∗. It first performs
CROWN_init to initialize dv for all nodes v, representing the number of output nodes of v that have
not yet been visited.

The algorithm maintains a queue Q of nodes to visit and performs a Breadth First Search (BFS) on G,
starting from o. When visiting a node v, it traverses all input nodes w of v, decrementing dw. If all

21

Published as a conference paper at ICLR 2025

In contrast, the original CROWN algorithm continues propagating through NL−1 and eventually to
the input Nu, then calls CROWN_concretize using the linear relation between Nu and Nf and the
lower and upper bounds of Nu, as described in Theorem B.3.

Improvement of our approaches. Here, we discuss why our bounding approaches (Propagation
early-stop and Search-integrated bounding) achieve much tighter bound estimations and greater
efficiency compared to the original CROWN.

Efficiency: The original CROWN performs bound propagation through every layer and recursively
computes each intermediate layer bound by propagating it back to the input. This process results in a
quadratic time complexity with respect to the number of layers. In contrast, our method conducts
bound propagation only from Nf to a few early-stop nodes and derives the input bounds of these
nodes from prior sampling-based searching without recursively calling CROWN. As a result, the
time complexity of our approach can be linear with respect to the number of layers and even constant
under certain configurations of early-stop nodes.

Effectiveness: As introduced earlier, the looseness in bound estimation stems from the linear relaxation
of non-linear layers. In the original CROWN, the number of linear relaxations is quadratic with
respect to the number of non-linear layers. In our approach, the bounding procedure involves far
fewer linear relaxations. Furthermore, the empirical bounds obtained from searching, which may
slightly underestimate the actual bounds, contribute to further tightening the bound estimation.

23

Published as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENT RESULTS

C.1 SCALABILITY ANALYSIS

Comparison with sampling-based methods. We conducted an experiment to compare the scala-
bility of our BaB-ND with sampling-based methods on complex planning problems. We used the
same model sizes and planning horizons as in Figure 7 (a), optimizing the complex objective function
applied in the Pushing w/ Obstacles task. Parameters for all methods were adjusted to ensure similar
runtimes for the largest problems.

The results in Figure 9 show that the runtime of our BaB-ND is less sensitive to the increasing
complexity of planning problems compared to sampling-based methods. While BaB-ND incurs
additional overhead from initializing α,β-CROWN and performing branching and bounding, it is less
efficient than sampling-based methods for small problems.

Figure 9: Comparison of runtime with sampling-based methods. Although our BaB-ND is less efficient on
small planning problems than baselines, it achieves similar efficiency on larger planning problems.

We also report the average objectives for all methods on the largest four planning problems to evaluate
their effectiveness in Table 1. Overall, the performance gaps between our BaB-ND and the baselines
increase with the size of the problem, highlighting the ineffectiveness of sampling-based methods for
large, complex planning problems.

Table 1: Comparison of planning performance across different configurations

Method
Planning Problem Size

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 57.2768 64.4789 54.7078 60.2575
MPPI 47.4451 53.7356 45.1371 45.6338
CEM 47.0403 47.6487 43.8235 38.8712
Ours 46.0296 46.1938 41.6218 34.6972

Additionally, we evaluate the planning performance of sampling-based methods and our approach
on the same simple synthetic planning problems as those in Figure 7. We report only the six cases
that MIP can solve optimally within 300 seconds. The results in Table 2 show that, under these
much simpler settings compared to those of our main experiments, all methods perform similarly.
Sampling-based methods (MPPI, CEM, and ours) achieve a gap under the order of 1×10−4 compared
to MIP with an optimality guarantee.

Table 2: Comparison of planning performance on simple synthetic planning problems

Method
Planning Problem Size

(0.232K,1) (0.712K,1) (2.440K,1) (0.232K,3) (0.712K,3) (0.232K,5)

MIP 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
GD 30.3622 32.9750 33.5496 22.3242 28.1404 17.0681
MPPI 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
CEM 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
Ours 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069

24

Published as a conference paper at ICLR 2025

Figure 10: Comparison of runtime on CPU and GPU.
GPU acceleration improves the scalability of BaB-ND much.

Comparison with CPU version. We
evaluate the performance improvement
from CPU to GPU in Figure 10. We use the
same test cases as in Figure 7 and report
“NaN” if the process does not terminate
within 300 seconds.

The results clearly demonstrate that our
implementation benefits significantly from
GPU acceleration, achieving over 10x
speedup compared to the CPU version,
even for small planning problems.

C.2 COMPARISON WITH CONVENTIONAL MOTION PLANNING APPROACHES

We conduct an additional experiment on the task Pushing with Obstacle to compare the planning
performance of our sampling-based baselines, our BaB-ND, and two conventional motion planning
approaches: 1. Rapidly-exploring Random Tree (RRT); 2. Probabilistic Roadmap (PRM). In Table 3.
Since RRT and PRM do not optimize the objective as we did in sampling-based methods and our
BaB-ND, we only report the step cost at planning horizon H as the final step cost instead of the
planning objective.

Table 3: Comparison of planning performance with RRT and PRM

GD MPPI CEM RRT PRM Ours

Final step cost (↓) 4.1238 1.5082 1.0427 10.6472 1.6784 0.2339

The results demonstrate that our method significantly outperforms all other approaches. Imple-
mentation details for RRT and PRM have been included in Appendix D. The main reasons for the
performance gap are as follows: 1. The search space in our task is complex and continuous, making
it challenging for discrete sampling methods like RRT and PRM to achieve effective coverage. 2.
These methods are prone to getting stuck on obstacles, often failing to reach the target state.

C.3 ABLATION STUDY AND HYPER-PARAMETER ANALYSIS

Ablation Study. We conduct an additional ablation study on the Pushing w/ Obstacles and Object
Sorting tasks to evaluate how different design choices impact planning performance in Table 4.

Table 4: Ablation study on branching and bounding components

(a) Heuristics for Selecting subdomains to Split

f∗

Ci
and f

∗

Ci
f
∗

Ci
only f∗

Ci
only

Pushing w/ Obstacles 31.9839 32.2777 32.6112
Object Sorting 31.0482 32.1249 33.2462

(b) Heuristics for Splitting subdomains

(uj − uj) · ‖n
lo
j − nup

j ‖ (uj − uj) ‖nlo
j − nup

j ‖

Pushing w/ Obstacles 31.9839 32.3869 32.6989
Object Sorting 31.0482 34.5114 32.8438

(c) Bounding Component

Ours Zero f∗

Ci
Zero f∗

Ci
+ f∗

Ci
only

Pushing w/ Obstacles 31.9839 32.3419 34.6227
Object Sorting 31.0482 33.6110 34.4535

(a) Heuristics for selecting subdomains to split: 1. Select based on both lower and upper bounds f∗

Ci

and f
∗

Ci
. 2. Select based only on f

∗

Ci
. 3. Select based only on f∗

Ci
. Among these heuristics, selecting

25

Published as a conference paper at ICLR 2025

promising subdomains based on both f∗

Ci
and f

∗

Ci
achieves better planning performance by balancing

exploitation and exploration effectively compared to the other strategies.

(b) Heuristics for splitting subdomains: 1. Split based on the largest (uj − uj) · |n
lo
j − nup

j |. 2. Split

based on the largest (uj − uj). 3. Split based on the largest |nlo
j − nup

j |. Our heuristic demonstrates
superior planning performance by effectively identifying important input dimensions to split.

(c) Bounding components: 1. Use our bounding approach with propagation early-stop and search-
integrated bounding. 2. Use constant zero as trivial lower bounds to disable the bounding component.
3. Disable both the bounding component and the heuristic for selecting subdomains to split. Our
bounding component improves planning performance by obtaining tight bound estimations, helping
prune unpromising subdomains to reduce the search space, and prioritizing promising subdomains
for searching.

Hyper-parameter Analysis. We adjust three hyper-parameters in BaB-ND for the tasks Pushing
w/ Obstacles and Object Sorting to evaluate its hyper-parameter sensitivity:

• η = n1

n
∈ [0, 1], the ratio of the number of subdomains picked with the best upper bounds (n1) to

the number of all picked subdomains (n) in the heuristic used for selecting subdomains to split. A
larger η promotes exploitation, while a smaller η encourages exploration.

• T ∈ R, the temperature of softmax sampling in the heuristic for subdomain selection. A larger
T results in more uniform and random sampling, whereas a smaller T leads to more deterministic
selection of subdomains with smaller lower bounds.

• w ∈ (0, 100], the percentage of top samples used in the heuristic for splitting subdomains. A larger
w results in more conservative decisions by considering more samples, while a smaller w leads to
more aggressive splitting.

We report the mean objectives under different hyper-parameter configurations in Table 5. The base
hyper-parameter configuration is η = 0.75, T = 0.05, and w = 1. For benchmarking, we vary at
most one hyper-parameter at a time while keeping the others fixed at the base configuration.

Table 5: Planning performance under different hyper-parameter configurations

(a) hyper-parameter η

η = 0.25 η = 0.50 η = 0.75

Pushing w/ Obstacles 31.8574 31.9828 31.9839
Object Sorting 30.1760 30.2795 31.0482

(b) hyper-parameter T

T = 0.05 T = 1 T = 20

Pushing w/ Obstacles 31.9839 32.3990 32.1267
Object Sorting 31.0482 31.2366 31.8263

(c) hyper-parameter w

w = 0.1 w = 1 w = 10

Pushing w/ Obstacles 32.0068 31.9839 32.0599
Object Sorting 30.5953 31.0482 31.1545

The results show that different hyper-parameter configurations produce slight variations in objectives,
but the gaps are relatively small. This indicates that our BaB-ND is not highly sensitive to these
hyper-parameters. Consequently, it is feasible in practice to use a fixed hyper-parameter configuration
that delivers reasonable performance across different test cases and tasks.

C.4 QUANTITATIVE ANALYSIS ON SEARCH SPACE

We conducted an experiment to measure the normalized space size of pruned subdomains over
iterations. In Table 6, we report three metrics over the branch-and-bound iterations: 1. the normalized
space size of pruned subdomains, 2. the size of the selected subdomains, and 3. the improvement in
the objective value.

26

Published as a conference paper at ICLR 2025

With increasing iterations, the average and best total space size of pruned subdomains increases
rapidly and then converges, demonstrating the effectiveness of our bounding methods. Once the
pruned space size reaches a plateau, the total space size of selected promising subdomains continues
to decrease, indicating that the estimated lower bounds remain effective in identifying promising
subdomains. The decreasing objective over iterations further confirms that BaB-ND focuses on the
most promising subdomains, reducing space size to the magnitude of 1× 10−4.

Table 6: Performance Metrics Over Iterations

Metric
Iterations

0 4 8 12 16 20

Pruned space size (Avg, ↑) 0.0000 0.7000 0.8623 0.8725 0.8744 0.8749
Pruned space size (Best, ↑) 0.0000 0.8750 0.9921 0.9951 0.9951 0.9952
Selected space size (Avg, ↓) 1.0000 0.3000 0.0412 0.0048 0.0005 0.0003
Best objective (Avg, ↓) 41.1222 36.0511 35.5091 34.8024 33.8991 33.3265

C.5 PERFORMANCE CHANGE WITH VARYING INPUT DISCONTINUITIES

We conducted a follow-up experiment by removing the obstacles (non-feasible regions) in the problem
of Pushing w/ Obstacles, simplifying the objective function. Below, we report the performance of
different methods on the simplified objective function (w/o obstacles) and the original objective
function (w/ obstacles) in Table 7.

The results show that in simple cases, although our BaB-ND consistently outperforms baselines, MPPI
and CEM provide competitive performance. In contrast, in complex cases, BaB-ND significantly
outperforms the baselines, demonstrating its effectiveness in handling discontinuities and constraints.

Table 7: Performance comparison varying input discontinuities

(a) Objective w/o obstacles

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 64.5308 64.2956 63.0130 60.6300
MPPI 34.4295 26.9970 33.8077 26.1204
CEM 34.3864 26.7688 33.6669 25.9599
Ours 34.2347 26.4841 33.6144 25.6603

(b) Objective w/ obstacles (Table 1)

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 57.2768 64.4789 54.7078 60.2575
MPPI 47.4451 53.7356 45.1371 45.6338
CEM 47.0403 47.6487 43.8235 38.8712
Ours 46.0296 46.1938 41.6218 34.6972

C.6 FURTHER SCALABILITY ANALYSIS ON THE SYNTHETIC EXAMPLE

We extend our experiment on the synthetic example shown in Figure 4, as this allows us to easily
scale up the input dimension while knowing the optimal objectives. We vary the input dimension N
from 50 to 300 and compare our BaB-ND with MPPI and CEM.

Although this synthetic example is simpler than practical cases, it provides valuable insights into
the expected computational cost and solution quality as we scale to high-dimensional problems. It
demonstrates the potential of BaB-ND in handling complex scenarios such as 3D tasks. We report
the gaps between the best objective found by different baseline methods and the optimal objective
value below.

The results in Table 8 show that our BaB-ND much outperforms baselines when the input dimension
increases. These results are expected since existing sampling-based methods search for solutions
across the entire input space, requiring an exponentially increasing number of samples to achieve

27

Published as a conference paper at ICLR 2025

sufficient coverage. In contrast, our BaB-ND strategically splits and prunes unpromising regions of
the input space, guiding and improving the effectiveness of existing sampling-based methods.

Table 8: Performance comparison across different input dimensions (Metric: Gap to f∗, ↓)

Method
Input dimension N

50 100 150 200 250 300

MPPI 7.4467 45.1795 105.1584 181.1274 259.1044 357.3273
CEM 5.1569 15.6328 26.3735 39.3862 61.6739 92.4286
Ours 0.0727 0.2345 0.4210 0.6976 1.2824 1.7992

We further report the following metrics about our BaB-ND in Table 9 to better understand the behavior
of BaB-ND under high-dimensional cases: 1. The gap between the best objective found and the
optimal objective value as above, 2. The normalized space size of pruned subdomains at the last
iteration, 3. The normalized space size of selected subdomains at the last iteration, and 4. The total
runtime.

The results demonstrate that our BaB-ND effectively focuses on small regions to search for better
objectives, while the runtime increases approximately linearly with input dimension under GPU
acceleration.

Table 9: Performance metrics across different input dimensions N

Metric
Input Dimensions N

50 100 150 200 250 300

Gap to f∗ (↓) 0.0727 0.2345 0.4210 0.6976 1.2824 1.7992
Selected Space Size (↓) 0.0002 0.0017 0.0026 0.0042 0.0064 0.0040
Pruned Space Size (↑) 0.8515 0.6073 0.3543 0.1762 0.0579 0.0113
Runtime (↓) 4.2239 6.5880 9.5357 11.6504 13.7430 15.8053

28

Published as a conference paper at ICLR 2025

Figure 12: Simulation environments used for data collection. We use Pymunk to simulate environments
involving only rigid body interactions. For manipulating the deformable rope, we utilize NVIDIA FleX to
simulate the interactions between the rope and the robot gripper.

Object Merging. As shown in Figure 12.b, the pusher is simulated as a 5mm cylinder. The leg of
the “L”-shaped object has a length of 30mm and a width of 30mm, while the foot has a length of
90mm and a width of 30mm. The pushing action along the x-y axis is limited to 30mm. We generated
64,000 episodes, each containing 40 pushing actions between the pusher and the two “L”-shaped
objects.

Rope Routing. As shown in Figure 12.c, we use an xArm6 robot with a gripper to interact with the
rope. The rope has a length of 30cm and a radius of 0.03cm. One end of the rope is fixed while the
gripper grasps the other end. We randomly sample actions in 3D space, with the action bound set to
30cm. The constraint is that the distance between the gripper position and the fixed end of the rope
cannot exceed the rope length. We generated 15,000 episodes, each containing 6 random actions. For
this task, we post-process the dataset and split each action into 2cm sections.

Object Sorting. As shown in Figure 12.d, the pusher is simulated as a rectangle measuring 45mm
by 3.5mm. The radius of the object pieces is set to 15mm. For this task, we use long push as our
action representation, which generates the start position and pushing action length along the x-y axis.
The pushing action length is bounded between -100mm and 100mm. We generated 32,000 episodes,
each containing 12 pushing actions between the pusher and the object pieces.

D.3 DETAILS OF NEURAL DYNAMICS MODEL LEARNING

We learn the neural dynamics model from the state-action pairs collected from interactions with
the environment. Let the state and action at time t be denoted as xt and ut. Our goal is to learn
a predictive model fdyn, instantiated as a neural network, that takes a short sequence of states and
actions with l-step history and predicts the next state at time t+ 1:

x̂t+1 = fdyn(xt, ut). (27)

To train the dynamics model for better long-term prediction, we iteratively predict future states over a
time horizon Th and optimize the neural network parameters by minimizing the mean squared error
(MSE) between the predictions and the ground truth future states:

L =
1

Th

l+Th∑

t=l+1

‖xt+1 − fdyn(x̂t, ut)‖
2
2. (28)

For different tasks, we choose different types of model architecture and design different inputs and
outputs. For Pushing w/ Obstacles, Object Merging, and Rope Routing tasks, we use an MLP as our
dynamics model. For the Object Sorting task, we utilize a GNN as the dynamics model, since the
pieces are naturally modeled as a graph. Below is the detailed information for each task.

Pushing w/ Obstacles. We use a four-layer MLP with [128, 256, 256, 128] neurons in each
respective layer. The model is trained with an Adam optimizer for 7 epochs, using a learning rate of
0.001. A cosine learning rate scheduler is applied to regularize the learning rate. For the model input,
we select four keypoints on the object and calculate their relative coordinates to the current pusher
position. These coordinates are concatenated with the current pusher action (resulting in an input
dimension of 10) and input into the model. For the loss function, given the current state and action
sequence, the model predicts the next 6 states, and we compute the MSE loss with the ground truth.

30

Published as a conference paper at ICLR 2025

Object Merging. We use the same architecture, optimizer, training epochs, and learning rate
scheduler as in the Pushing w/ Obstacles setup. For the model input, we select three keypoints for
each object and calculate their relative coordinates to the current pusher positions. These coordinates
are then concatenated with the current pusher action (resulting in a state dimension of 12) and input
into the model. We also use the same loss function as in the Pushing w/ Obstacles setup.

Rope Routing. We use a two-layer MLP with 128 neurons in each layer. The model is trained with
an Adam optimizer for 50 epochs, with a learning rate of 0.001, and a cosine learning rate scheduler
to adjust the learning rate. For the model input, we use farthest point sampling to select 10 points
on the rope, reordered from closest to farthest from the gripper. We then calculate their relative
coordinates to both the current and next gripper positions, concatenate these coordinates, and input
them into the model. For the loss function, given the current state and action sequence, the model
predicts the next 8 states, and we compute the MSE loss with the ground truth.

Object Sorting. We use the same architecture as DPI-Net (Li et al., 2018). The model is trained
with an Adam optimizer for 15 epochs, with a learning rate of 0.001, and a cosine learning rate
scheduler to adjust the learning rate. For the model input, we construct a fully connected graph neural
network using the center position of each piece. We then calculate their relative coordinates to the
current and next pusher positions. These coordinates are concatenated as the node embedding and
input into the model. For the loss function, given the current state and action sequence, the model
predicts the next 6 states, and we compute the MSE loss with the ground truth.

D.4 DEFINITION OF COST FUNCTIONS

In this section, we introduce our cost functions for model-based planning Eq. 1 across different tasks.
For every task, we assume the initial and target states x0 and xtarget are given. We denote the position
of the end-effector at time t as pt. In tasks involving continuous actions like Pushing w/ Obstacles,
Object Merging, and Rope Routing, the action ut is defined as the movement of the end-effector,
pt = pt−1 + ut, and p0 is given by the initial configuration. In the task of Object Sorting involving
discrete pushing, pt is given by the action ai as the pusher position before pushing. In settings with
obstacles, we set the set of obstacles as O. Each o ∈ O has its associated static position and size as
po and so. Our cost functions are designed to handle discontinuities and constraints introduced by
obstacles, and BaB-ND can work effectively on these complex cost functions.

Pushing w/ Obstacles. As introduced before, we formalize the obstacles as penalty terms rather
than explicitly introducing them in the dynamics model. Our cost function is defined by a cost to the
goal position plus a penalty cost indicating whether the object or pusher collides with the obstacle.
The detailed cost is listed in Eq. 29.

ct = c(xt, ut) = wt ‖xt − xtarget‖

+ λ
∑

o∈O

(ReLU(so − ‖pt − po‖) + ReLU(so − ‖xt − po‖)) (29)

where ‖xt − xtarget‖ gives the difference between the state at time t and the target. ‖pt − po‖ and
‖xt − po‖ give the distances between the obstacle o and the end-effector and the object, respectively.
Two ReLU items yield positive values (penalties) when the pusher or object is located within the
obstacle o. wt is a weight increasing with time t to encourage alignment to the target. λ is a large
constant value to avoid any collision. In implementation, xt is a concatenation of positions of
keypoints, and ‖xt − po‖ is calculated keypoint-wise. Ideally, cT can be optimized to 0 by a strong
planner with the proper problem configuration.

Object Merging. In this task requiring long-horizon planning to manipulate two objects, we do not
set obstacles and only consider the difference between the state at every time step and the target. The
cost is shown in Eq. 30.

ct = wt ‖xt − xtarget‖ (30)

Rope Routing. In this task involving a deformable rope, we sample keypoints using Farthest Point
Sampling (FPS). xtarget is defined as the target positions of sampled keypoints. The cost is defined
in Eq. 31, similar to the one in Pushing w/ Obstacles. Here, two obstacles are introduced to form
the tight-fitting slot. In implementation, naively applying such a cost does not always achieve our

31

Published as a conference paper at ICLR 2025

target of routing the rope into the slot since a trajectory greedily translating in the z-direction without
lifting may achieve optimality. Hence, we modify the formulation by assigning different weights for
different directions (x, y, z) when calculating ‖xt − xtarget‖ to ensure the desirable trajectory yields
the lowest cost.

ct = wt ‖xt − xtarget‖+ λ
∑

o∈O

(ReLU(so − ‖pt − po‖) + ReLU(so − ‖xt − po‖)) (31)

Object Sorting. In this task, a pusher interacts with a cluster of object pieces belonging to different
classes. We set xtarget as the target position for every class. Additionally, for safety concerns to
prevent the pusher from pressing on the object pieces, we introduce obstacles defined as the object
pieces in the cost as Eq. 32. For each object piece o, its size so is set as larger than the actual size in
the cost, and its position po is given by xt. The definition of the penalty is similar to that in Pushing
w/ Obstacles.

ct = wt ‖xt − xtarget‖+ λ
∑

o∈O

ReLU(so − ‖pt − po‖) (32)

D.5 DETAILS OF REAL WORLD DEPLOYMENT

We have four cameras observing the environment from the corners of the workspace. We implemented
task-specific perception modules to determine the object states from the multi-view RGB-D images.

Pushing w/ Obstacles and Object Merging. We use a two-level planning framework in these
two tasks, involving both long-horizon and short-horizon planning. First, given the initial state (s0)
and pusher position, we perform long-horizon open-loop planning to obtain a reference trajectory
(s0, a0, s1, a1, . . . , sN). Next, an MPPI planner is used as a local controller to efficiently track this
trajectory. Since the local planning horizon is relatively short, the local controller operates at a higher
frequency. In the local planning phase, the reference trajectory is treated as a queue of subgoals.
Initially, we set s1 as the subgoal and use the local controller to plan a local trajectory. Once s1 is
reached, s2 is set as the next subgoal. By iterating this process, we ultimately reach the final goal
state.

For perception, we filter the point cloud based on color from four cameras, and align it with iterative
closest point (ICP) to determine the object states.

Rope Routing. For the Rope Routing task, we observe that the sim-to-real gap is relatively small.
Therefore, the long-horizon planned trajectory is executed directly in an open-loop manner.

For perception, we begin by using Grounding DINO (Liu et al., 2023a) and Segment Anything
Model (SAM) (Kirillov et al., 2023) to generate the mask for the rope and extract its corresponding
point cloud. Subsequently, we apply farthest point sampling to identify 10 key points on the rope,
representing its object state.

Object Sorting. There are relatively large observation changes after each pushing action. This
creates a noticeable sim-to-real gap for the planned long-horizon trajectory. As a result, we replan the
trajectory after each action.

For perception, we filter the point cloud based on color from four cameras and use K-means clustering
to separate different object pieces.

D.6 HYPERPARAMETERS OF BASELINES

We follow previous works (Li et al., 2018; 2019) to implement gradient descent (GD) for planning
and enhance it through hyperparameter tuning of the step size. Specifically, we define a base step
size and multiply it by varying ratios to launch independent instances with different step sizes.
The best result among all instances is recorded for performance comparison. Similarly, we adapt
MPPI (Williams et al., 2017) by tuning its noise level and reward temperature. We also implement
the Decentralized Cross-Entropy Method (CEM) (Zhang et al., 2022c), which enhances CEM using
an ensemble of independent instances. The specific hyperparameter settings for these methods are
provided in Table 10.

32

Published as a conference paper at ICLR 2025

Table 10: Hyperparameter setting for baselines

(a) Hyperparameter setting for GD

Hyperparameters Pushing w/ Obstacles Object Merging Rope Routing Object Sorting

Number of samples 320000 160000 50000 24000
Number of iterations 16 18 16 15
Base step size 0.01 0.01 0.01 0.01
Step size ratios [0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 5, 10]

(b) Hyperparameter setting for MPPI

Hyperparameters Pushing w/ Obstacles Object Merging Rope Routing Object Sorting

Number of samples 320000 160000 64000 32000
Number of iterations 20 22 50 18
Base temperature 20 20 20 50
Temperature ratios [0.1, 0.5, 1, 1.5, 2] [0.1, 0.5, 1, 1.5, 2] [0.1, 0.5, 1, 5] [0.1, 1, 5]
Base noise std 0.15 0.15 0.12 0.3
Noise ratios [0.1, 0.5, 1, 1.5, 2] [0.1, 0.5, 1, 1.5, 2] [0.1, 0.5, 1, 2, 5] [0.5, 1, 1.5]

(c) Hyperparameter setting for CEM

Hyperparameters Pushing w/ Obstacles Object Merging Rope Routing Object Sorting

Number of samples 320000 160000 64000 32000
Number of iterations 20 55 50 16
Jitter item 0.001 0.0005 0.001 0.0005
Number of elites 10 10 10 10
Number of agents 10 10 10 10

D.7 IMPLEMENTATION DETAILS OF CONVENTIONAL MOTION PLANNING APPROACHES

RRT. As shown in Algorithm 4, in each step, we sample a target state and find the nearest node in
the RRT tree. We sample 1000 actions and use the dynamics model to predict 1000 future states. We
select the state that is closest to the sampled target and does not collide with obstacles, then add it to
the tree. We allow it to plan for 60 seconds, during which it can expand a tree with about 4000 nodes
(Nmax = 4000). To avoid getting stuck in local minima, we randomly sample target states 50% of the
time, and for the other 50%, we select the goal state as the target.

PRM. As shown in Algorithm 5, the PRM construction algorithm generates a probabilistic roadmap
by sampling N pairs of object states and pusher positions from the search space, adding these pairs
as nodes, and connecting nodes within a defined threshold δ. Here, we set N = 100K and δ = 0.15.
The roadmap is represented as a graph G = (V,E), where V includes the sampled nodes, and E
contains edges representing feasible connections. The planning over PRM Algorithm 6 uses this
roadmap to find a path from the initial state to the goal state. It first integrates the initial state into the
graph and connects it to nearby nodes, removes any nodes and edges colliding with obstacles, and
applies A* search to find an optimal path.

33

Published as a conference paper at ICLR 2025

Algorithm 4 Rapidly-Exploring Random Tree (RRT)

1: Input: Initial state x0, goal state xgoal, search space X (X is object state space), maximum
iterations Nmax, action upper and lower bounds {u, u}, threshold δ

2: Output: A path from x0 to xgoal or failure
3: Initialize tree T with root node x0

4: for i = 1 to Nmax do
5: Sample a random state xrand from X
6: Find the nearest node xnear in T to xrand

7: Sample 1000 actions within {u, u} as a set U , and compute the corresponding next states
Xnew = fdyn(xnear,U)

8: Select the nearest, collision-free next state from Xnew as xnew

9: Add xnew to T with an edge from xnear

10: if xnew is within δ of xgoal then
11: Add xgoal to T with an edge from xnew

12: return Path from x0 to xgoal in T

13: return Failure (No valid path found within Nmax iterations)

Algorithm 5 Probabilistic Roadmap (PRM) Construction

1: Input: Search space {X ,P} (X : object state space, P : pusher position space), number of nodes
N , connection threshold δ

2: Output: A constructed PRM G = (V,E)
3: Initialize the roadmap G = (V,E) with V = ∅ and E = ∅
4: Randomly sample N pairs (x, p) from {X ,P}
5: Add the sampled pairs as nodes in G: V = {vi | i ≤ N}, where vi = (xi, pi)
6: for i = 1 to N do
7: for j = 1 to N do
8: if i 6= j then
9: Compute action u = pj − pi

10: Predict the next state xnew = fdyn(xi, u)
11: if distance(xnew, xj) < δ then
12: Add an edge eij = {vi → vj} to E

13: return G = (V,E)

Algorithm 6 Planning over PRM

1: Input: Initial state xinit, initial pusher position pinit, goal state xgoal, obstacle space {Xobs,Pobs},
constructed PRM G = (V,E), connection threshold δ

2: Output: A path from xinit to xgoal or failure
3: Add (xinit, pinit) to V
4: for each node vj ∈ V do
5: Compute action u = pj − pinit

6: Predict the next state xnew = fdyn(xinit, u)
7: if distance(xnew, xj) < δ then
8: Add an edge {vinit → vj} to E

9: Remove all edges and nodes in G that collide with obstacles {Xobs,Pobs}
10: Use the A* search algorithm to find a path from vinit = (xinit, pinit) to xgoal in G
11: Identify the node vnearest closest to xgoal

12: Extract the path from vinit to vnearest

13: return the extracted path

34

