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Abstract

Contraction metrics are crucial in control theory because they provide a powerful framework for an-

alyzing stability, robustness, and convergence of various dynamical systems. However, identifying

these metrics for complex nonlinear systems remains an open challenge due to the lack of scalable

and effective tools. This paper explores the approach of learning verifiable contraction metrics

parametrized as neural networks (NNs) for discrete-time nonlinear dynamical systems. While prior

works on formal verification of contraction metrics for general nonlinear systems have focused on

convex optimization methods (e.g. linear matrix inequalities, etc) under the assumption of con-

tinuously differentiable dynamics, the growing prevalence of NN-based controllers, often utilizing

ReLU activations, introduces challenges due to the non-smooth nature of the resulting closed-loop

dynamics. To bridge this gap, we establish a new sufficient condition for establishing formal neu-

ral contraction metrics for general discrete-time nonlinear systems assuming only the continuity

of the dynamics. We show that from a computational perspective, our sufficient condition can be

efficiently verified using the state-of-the-art neural network verifier α,β-CROWN, which scales up

non-convex neural network verification via novel integration of symbolic linear bound propagation

and branch-and-bound. Built upon our analysis tool, we further develop a learning method for syn-

thesizing neural contraction metrics from sampled data. Finally, our approach is validated through

the successful synthesis and verification of NN contraction metrics for various nonlinear examples.

Keywords: Contraction Metrics, Formal Verification, Neural Networks, Nonlinear Systems

1. Introduction

Contraction theory is a prominent framework for analyzing the stability and safety of control sys-

tems. It examines how trajectories of a system remain close and converge to each other (Lohmiller

and Slotine, 1998; Tran et al., 2018; Giesl et al., 2022; Manchester and Slotine, 2017; Tsukamoto

et al., 2021; Bullo, 2022; Dawson et al., 2023). In contrast to Lyapunov theory, which assesses

stability with respect to a specific equilibrium point (Lyapunov, 1992), contraction analysis focuses

on the existence of a Riemannian-type metric d in which the system is contracting (Simpson-Porco

and Bullo, 2014). This approach certifies that the distance between any pair of trajectories dimin-

ishes over time, ensuring that all solutions converge toward each other regardless of their initial

conditions. Contraction theory has been applied to analyze and synthesize controllers for both

continuous-time (Tsukamoto and Chung, 2020; Manchester and Slotine, 2017; Sun et al., 2021;
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Tsukamoto et al., 2021) and discrete-time systems (Wei et al., 2021, 2022). However, many of these

approaches are often heuristic-based methods and lack formal verification.

In this paper, we focus on synthesizing and formally verifying a neural network (NN) parametrized

contraction metric that is valid over the largest possible domain for a given discrete-time non-

linear dynamical system. Although previous studies such as Giesl and Wendland (2019), Giesl

et al. (2024), Pokkakkillath and Giesl (2024), and Fitzsimmons and Liu (2024) employ numeri-

cal quadrature or learning-based approaches to synthesize contraction metrics, they share common

limitations. First, they all implicitly assume the smoothness of the system dynamics. However,

with the advancements of deep learning, NN-based controllers have been popularized (Chang et al.,

2019; Dai et al., 2021; Wu et al., 2023; Yang et al., 2024; Wang and Fazlyab, 2024), and the use of

ReLU/LeakyReLU activations (Dai et al., 2021; Wu et al., 2023; Yang et al., 2024) just naturally

introduce non-smoothness into the closed-loop dynamics. Consequently, traditional synthesis and

verification techniques that rely on the Jacobian matrix of the dynamics are no longer applicable.

Second, many existing works depend on convex optimization techniques such as linear matrix in-

equalities for the verification and learning of contraction metrics, which unavoidably increases the

conservativeness of the resulting metrics.

To overcome these challenges, we devise a novel verification condition for discrete-time con-

traction analysis that depends neither on matrix inequalities nor on the Jacobian of the dynamics.

Besides handling nonsmooth systems, this novel formulation also significantly reduces the com-

plexity of verification conditions. It allows the reformulation of contraction certification into a

verification problem within a bounded set on a computation graph, making it well-suited for ad-

vanced neural network verification tools like α,β-CROWN (Zhang et al., 2018; Xu et al., 2020,

2021; Wang et al., 2021), which has demonstrated its exceptional scalability in the verification of

neural network controllers (Everett et al., 2023; Yang et al., 2024). In contrast to traditional SMT

and MIP solvers, α,β-CROWN is far more efficient for this task, as it leverages the neural network

architecture and benefits from GPU acceleration. By combining our novel verification formulation

with the efficient neural network verifier, we achieved the first formally verified contraction metrics

for a state feedback system with an NN controller. To summarize, our main contributions include:

• We develop a theoretical framework for formal contraction certificates applicable to potentially

non-smooth discrete-time systems, proposing a novel verification condition for contraction met-

rics that eliminates the need for both matrix inequalities and the Jacobian of the dynamics;

• Unlike previous work with verified contraction metrics (Fitzsimmons and Liu, 2024), which uses

expensive verifiers like SMT, our new formulation allows the combination of advanced neural net-

work verification tool α,β-CROWN, enabling us to use effective learning-based NN contraction

metrics while ensuring efficient formal verification of contraction;

• Our experiments on several autonomous and NN-controlled systems demonstrate that our learned

NN contraction metric can produce a large verified region of contraction, sometimes close to the

upper bound. For the first time in literature, we present verified neural contraction metrics for a

neural network-controlled state-feedback pendulum system.

2. Preliminaries

Notations Our paper primarily focuses on a discrete time-invariant closed-loop control system

xk+1 = g(xk, π(xk)) = f(xk) (1)
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where xk is the system state, g denotes the open-loop dynamics, π denotes the policy, and f denotes

the closed-loop nonlinear dynamics. We are interested in two cases: i) f involves neural networks,

or ii) f is just a general nonlinear system. We denote the solution of the system starting with

initial condition x = x0 to be φ(k, x0), i.e. it satisfies φ(k + 1, x0) = f(φ(k, x0)). We denote

the set of all positive semi-definite/positive definite matrices by S
n×n
+ and S

n×n
++ respectively. For

two matrices A and B, we write A ≺ B or A � B to indicate that B − A is positive definite or

positive semi-definite, respectively. A function d : X × X → R≥0 is said to be a metric on X if

the following conditions holds: (1) d(x, x) = 0, ∀x ∈ X ; (2) d(x, y) = d(y, x), ∀x, y ∈ X ; (3)

d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X . We denote the norm induced by a matrix P ∈ S
n×n
++ as

‖ · ‖P such that ‖x‖P =
√
x⊤Px, and we denote B(x; ǫ) as the infinity norm ball around x with

radius ǫ, i.e. B(0; ǫ) = {y : ‖y − x‖∞ ≤ ǫ}.

Contraction Metrics This paper focuses on contraction metrics, which describe the asymptotic

property of the differences between two solutions of a system. The formal definition goes as follows.

Definition 1 (Contraction) The system (1) is said to be contracting on a forward invariant set

X ⊂ R
n if there exists a metric d : X × X → R≥0 and a scalar ρ ∈ (0, 1) such that

d(f(x), f(y)) ≤ ρd(x, y), ∀x, y ∈ X (2)

We call d the corresponding contraction metric and ρ the contraction rate.

Clearly, if a system is contracting with some metric d, the distance between any two trajectories

of the system will converge to 0 with respect to the metric d. In the simplest setting, one can

adopt d(x, y) = ‖x− y‖2, and the contraction analysis just reduces to standard Lipschitz constant

analysis (Fazlyab et al., 2019; Huang et al., 2021; Araujo et al., 2023; Wang et al., 2024). However,

general nonlinear systems typically require using contraction metrics in more general forms. If

the closed loop dynamics f on the right hand side of system (1) is continuously differentiable, the

existence of a metric d in which the system is contracting can be reduced to existence of a matrix-

valued function as covered in Lohmiller and Slotine (1998). The formal statement goes as follows.

Theorem 2 The system (1) is contracting in X if there exists a nonsingular matrix-valued function

Θ : X → R
n×n and positive constants µ, η, ρ such that for all x ∈ X we have

ηI ≤ Θ(x)⊤Θ(x) � ρI, F (x)⊤F (x)− I � −µI (3)

where F (x) = Θ(f(x))∂f
∂x

(x)Θ−1(x).

For the proof of this theorem, we refer the readers to Tran et al. (2018). This criterion has several

drawbacks. First of all, the verification of matrix inequalities can be hard for verifiers. The most

common way of verifying matrix inequalities relies on Sylvester’s criterion, as used by Fitzsimmons

and Liu (2024). As can be seen from theorem 2, we need to verify multiple semi-definite conditions,

and each of them requires us to verify a determinant condition for each of the 2n − 1 principal mi-

nors. Therefore, the verification problem cannot scale when we consider higher-dimension systems.

Secondly, this condition requires the system to be continuously differentiable as it requires the Jaco-

bian of the dynamics. However, currently, many state-of-the-art results have controllers synthesized

by ReLU networks (Yang et al., 2013; Wu et al., 2023), which makes this theorem inapplicable.
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The α, β-CROWN Verifier α, β-CROWN (Zhang et al., 2018; Xu et al., 2020, 2021; Wang et al.,

2021; Zhang et al., 2022) is a state-of-the-art neural network verification tool that aims to rigorously

verify properties of neural networks. For a box B and a general function F (which could involve

NNs), it aims to prove F (x) ≥ 0 for all x ∈ B. The α,β-CROWN verifier implements an efficient

linear bound propagation method and branch-and-bound. The verification problem is solved if this

linear lower bound is greater than zero on the domain B. Otherwise, it splits the domain into

subdomains and further computes bounds for each subdomain until the condition is verified. More

generally, if the problem contains multiple constraints such as (F1(x) ≥ 0) ∨ · · · ∨ (Fn(x) ≥ 0),
α,β-CROWN will compute a linear lower bound for each of F1, · · · , Fn, and claim successful

verification of the problem if at least one of the lower bounds is greater than 0. Besides regular

neural networks, the α,β-CROWN toolbox supports many operations crucial in control applications

such as trigonometric and polynomial functions. Compared to traditional SMT and MIP solvers,

α,β-CROWN offers better scalability since its core linear bound propagation procedure exploits the

structure of NNs and computation graphs. This procedure does not rely on an external mathematical

programming solver and can be efficiently accelerated on GPUs.

3. Contraction for Non-Smooth Dynamics

In this section, we aim to establish a condition that avoids the reliance on the Jacobian of the dy-

namics f and can be efficiently handled by α,β-CROWN. To achieve this, we propose conditions

that guarantee contraction of the closed-loop dynamics under a Riemannian metric only assuming

the continuity of f and mild conditions on the domain of interest X . This approach bridges contrac-

tion theory with our practical verification methodology and enables us to efficiently learn and verify

neural contraction metrics without the computational limitations imposed by matrix inequalities.

Theorem 3 Assume that X is an open, connected, and forward invariant subset in R
n, and the dy-

namics f is continuous. Given ǫ > 0 a positive threshold. Suppose there exists uniformly continuous

M(x) : X → S
n×n
++ with a uniform lower bound µI �M(x) that satisfies

√

(f(x)− f(y))⊤M(f(x))(f(x)− f(y)) ≤ ρ
√

(x− y)⊤M(x)(x− y) (4)

for all x ∈ X and y ∈ B(x; ǫ) ∩ X and some 0 < ρ < 1. For every pair of nonnegative real

numbers a ≤ b, we define the space of admissible curves with starting time a and end time b as

Γa,b := {γ : [a, b]→ X , γ is continuous and piecewise regular} (5)

where piecewise regular means that on each piece we have γ ∈ C1 and ||γ′(t)|| 6= 0 for all t. The

length of an admissible curve γ : [a, b]→ X under the metric M is defined as

L(γ) :=

∫ b

a

√

γ′(t)⊤M(γ(t))γ′(t) dt =

∫ b

a

‖γ′(t)‖M(γ(t)) dt (6)

For each x, y, we then define Γx,y :=
⋃

a,b{γ ∈ Γa,b, γ(a) = x, γ(b) = y}. It is then guaranteed

that the system (1) is contracting on X in the metric d(x, y) = infγ∈Γx,y L(γ).

Lemma 4 For any continuous curve γ : [a, b] → X that connects x, y ∈ X , there exists an

admissble curve γs : [a, b]→ X connecting x, y and ||γ(t)− γs(t)|| ≤ ǫ for any ǫ > 0 and any t.
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Proof: Fix ǫ > 0. Since γ is continuous, the image γ([a, b]) is compact. Since X is assumed to

be open, for each t ∈ [a, b], there exists an ǫt > 0 such that B(γ(t); ǫt) ⊂ X . Now we consider

the open cover of γ([a, b]) by {B(γ(t); ǫt2 )}t. By compactness, it must admit a finite subcover

B(γ(tk);
ǫtk
2 ). Now pick r > 0 such that r < min(mink

ǫtk
2 , ǫ). As γ is uniformly continuous

on [a, b], there exists a δ such that |t − s| < δ implies that |γ(t) − γ(s)| < r
4 . Now we take a

partition of [a, b] into N subintervals {[ti, ti+1]}Ni=1 with γ(t1) = a and γ(tN+1) = b such that
δ
2 < |ti+1 − ti| < δ for any i. We now consider the curve that is a piecewise straight line on

each subinterval [ti, ti+1]. More formally, with the partition at hand, we first construct N + 1
points inductively as follows: We first choose φ0 = γ(0). For i ≤ N , we choose φi = γ(ti) if

γ(ti) 6= φi−1, and otherwise we chose φi in B(γ(ti);
r
16) such that φi 6= φi−1. For i = N we

additionally need to make sure that φi 6= γ(tN+1). And finally we pick φN+1 = γ(tN+1). Now for

t ∈ [ti, ti+1] we define

γs(t) = φi +
t− ti

ti+1 − ti
(φi+1 − φi) (7)

Notice that the above construction makes sure that φi+1 6= φi for all i. Therefore, on each piece we

have γ′s(t) =
φi+1−φi

ti+1−ti
6= 0. We can now estimate that on each subinterval, we have

‖γs(t)− γ(t)‖ ≤ ‖γs(t)− γ(ti)‖+ ‖γ(t)− γ(ti)‖
≤ ‖φi+1 − γ(ti+1)‖+ ‖γ(ti+1)− γ(ti)‖+ ‖γ(ti)− φi‖+ ‖φi − γ(ti)‖+

r

4
< r ≤ ǫ

(8)

Finally we check that γs(t) ∈ X for any t. As each γ(t) lies in some B(γ(tk);
ǫtk
2 ), we have

‖γs(t)− γ(tk)‖ ≤ ‖γs(t)− γ(t)‖+ ‖γ(t)− γ(tk)‖ ≤ r +
ǫtk
2
≤ ǫtk (9)

So clearly by construction we have γs(t) ∈ B(γ(tk); ǫtk) ⊂ X . �

Proof of Thm 3: For the proof that the d is indeed a metric, we refer the readers to the text Lee

(2018). We shall now show that the verification condition (4) implies the contraction in the defined

metric. For any γ ∈ Γx,y, since γ is assumed to be regular on each piece, there exists a γu : [c, d]→
X such that γu ∈ Γx,y, L(γ) = L(γ′), and ‖γ′u(t)‖ = 1 for almost every t (this is arclength

parametrization, see Lee (2018)). Now we consider the curve f(γu). As X is forward invariant,

f(γu) also belongs to X . Now the difficulty arises since f(γu) might not be admissible, since we

only assume f is continuous. However, a small perturbation on f(γu) is always possible to make

it admissible without affecting its length too much. More formally, we fix a ρ′ ∈ (ρ, 1). By the

verification condition (4), we know that for all small enough δt we always have

(f(γu(t+ δt))− f(γu(t)))
⊤M(f(γu(t+ δt)))(f(γu(t+ δt))− f(γu(t)))

≤ ρ2(γu(t+ δt)− γu(t))
⊤M(γu(t+ δt))(γu(t+ δt)− γu(t))

< ρ′2(γu(t+ δt)− γu(t))
⊤M(γu(t+ δt))(γu(t+ δt)− γ(t))

(10)

Notice that per our assumption, for every fixed t we can bound

(ρ′2 − ρ2)(γu(t+ δt)− γu(t))
⊤M(γu(t+ δt))(γu(t+ δt)− γu(t)) ≥ µ(ρ′2 − ρ2)

δ2t
2

(11)

5



LI ZHONG HU ZHANG

for all small δt. Therefore, we see that after dividing by δ2t , the margin of the strict inequality (10)

is at least µ
2 (ρ

′2 − ρ2). Now fix an ǫ > 0, we know that f(γu) is a continuous curve, so that we can

construct an admissible curve γp : [c, d]→ X such that ‖f(γu(t))− γp(t)‖ ≤ ǫ for any t. Now we

see that we have

|(f(γu(t+ δt))− f(γu(t)))− (γp(t+ δt)− γp(t))|
≤ |f(γu(t+ δt))− γp(t+ δt)|+ |f(γu(t))− γp(t)| ≤ 2ǫ.

(12)

Now by (10), the inequality is strict when the contraction factor is ρ′. This gives us room to wiggle

the curve f(γu) to be γp, which clearly belongs to the set Γf(x),f(y). When ǫ is chosen to be small

enough, we shall still have the inequality condition 10 for any t and small enough δt, i.e.

‖γp(t+ δt)− γp(t)‖2M(γp(t+δt))
≤ ρ′2‖γu(t+ δt)− γu(t)‖2M(γu(t+δt))

, (13)

as M is uniformly continuous. Now send δ2t → 0 we get ‖γ′p(t)‖M(γp(t)) ≤ ρ′‖γ′u(t)‖M(γu(t)). This

then implies

d(f(x), f(y)) ≤
∫ d

c

‖γ′p(t)‖M(γp(t)) dt ≤ ρ′
∫ d

c

‖γ′u(t)‖M(γu(t)) dt = ρ′L(γ) (14)

Now, taking infimum over γ on the right-hand side gives the desired contraction result. �

4. Methodology

In this section, we present techniques to bridge our novel contraction theory in Section 3 and α, β-

CROWN to efficiently learn and verify neural contraction metrics.

4.1. Invariant Set Finding

We first need to identify a forward invariant set X where the computation of contraction metrics

will be performed. We adopt a method that demonstrates state-of-the-art results in certifying the

region of exponential attraction to an equilibrium point in discrete-time systems (Yang et al., 2024).

We use the following theorem to find a forward invariant set X inside a box of interest B:

Theorem 5 Let F (x) := V (f(x))− (1− κ)V (x) where κ > 0. If the condition

(−F (x) ≥ 0 ∧ f(x) ∈ B) ∨ (V (x) ≥ ρ) (15)

holds for any x ∈ B, the closed loop dynamics (1) is Lyapunov stable with V being a valid Lyapunov

function and the set X := {x : V (x) < ρ} ∩ B is certified forward invariant set as well as an

exponential region of attraction.

The proof can be found in Yang et al. (2024). Eq. (15) is then converted into a loss function and

trained with a counterexample-guided (CEGIS) approach to obtain the region of attraction.

4.2. Formal Verification of Contraction Metrics

Given a candidate metric M(x) (possibly a NN), following our theory in Sec. 4, we now derive

the verification formulation such that a verifier like α,β-CROWN can formally check if M(x) is

a contraction metric on the forward invariant domain X . We introduce the auxiliary set B as α,β-

CROWN cannot handle implicitly defined domains like {V (x) < ρ} directly. The verification

condition for contraction can be formalized as follows.

6



NEURAL CONTRACTION METRICS WITH FORMAL GUARANTEES FOR DISCRETE-TIME SYSTEMS

Theorem 6 Suppose we have already formally verified the forward invariance of the set X = {x :
V (x) < ρ} ∩ B. We define

G(x, δ) := (f(x)− f(x+ δ))⊤M(f(x))(f(x)− f(x+ δ))− ρ2δ⊤M(x)δ. (16)

If the condition

(−G(x, δ) ≥ 0) ∨ (x+ δ 6∈ B) ∨ (V (x) ≥ ρ) ∨ (V (x+ δ) ≥ ρ) (17)

holds for any (x, δ) ∈ B × B(0; ǫ) where ǫ > 0, the system (1) is certifiably contracting on the

domain S with metric d and contraction rate ρ′ ∈ (ρ, 1).

Proof: Condition (17) enforces equation (16) to hold for all x ∈ X and y ∈ B(0; ǫ) ∩ X . The

contraction is then implied by Theorem 3. �

This verification condition (4) allows us to verify contraction without relying on any Jacobian type

condition or matrix inequality conditions, which enables the efficient verification by α,β-CROWN.

Each term of the condition (4) can be represented as constraints on general functions. We then

leverage α,β-CROWN’s efficient bound propagation and branch-and-bound method to verify these

constraints over the domain B. While existing solvers like SMT solvers struggle with scalability,

our approach is inherently more scalable and benefits from GPU acceleration as a byproduct, further

enhancing its efficiency.

4.3. Learning Neural Network based Contraction Metrics

We now present a learning-based approach to synthesize the contraction metric M(x). Given a

forward invariant domain X , we desired to synthesize a uniformly continuous M : X → R
n×n

that has a uniform positive lower bound. To ease the learning and verification, we enforce the

definiteness condition and the lower bound condition by parametrizing M to be

M(x) := µI +R(x)⊤R(x) (18)

where µ > 0, and R is a learnable function parametrized by a neural network. This ensures that

M is symmetric and M(x) ≥ µI for every x ∈ X . The learning objective of M(x) should be the

satisfaction of the condition (17), as demonstrated in the numerical condition below:

Theorem 7 Except the condition x+ δ ∈ B, the rest of the verification condition (17) is equivalent

to the following numerical condition:

Lviolate(x, δ;V, ρ) := min(G(x, δ), ρ− V (x), ρ− V (x+ δ)) ≤ 0, ∀x ∈ X (19)

As the condition x+δ ∈ B can be easily verified posthoc, this numerical condition provides a simple

training loss for the training of contraction metrics M , which is encoded in the function G(x, δ). We

then adopt a counterexample-guided approach, where counterexamples of condition (19) are found

and act as a dataset for the training. Instead of involving a sound verifier to generate the counterex-

amples as in Chang et al. (2019), we utilized cheap projected gradient descent (PGD) attacks to find

counterexamples rather than involving an inefficient verifier at this stage. We found that the cheap

attacker will effectively find counterexamples without damaging the learning performance. Also,

since it is unknown how large the region where the system can be certified to be contracting is, we

7
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Algorithm 1 Learning Contraction Metrics

Input: metrics parameter θ, dynamics f , region of interest B, Lyapunov function V , levelset threshold ρ,

learning rate η, PGD steps and stepsize n and β, epochs m
Output: A learned contraction metric, parameterized by θ

1: for scale = 0.1, 0.2, · · · , 1.0 do

2: ρ′ = scale× ρ // Scale the threshold to adjust the contraction region

3: Training dateset D = ∅ // Initialize new empty dataset

4: for iter = 1, 2, · · · do

5: (ξix, ξ
i
δ)← a batch of random PGD initializations

6: for descent = 1, 2, · · · , n do

7: L← Lviolate(ξ
i
x, ξ

i
δ;V, ρ

′)
8: ξix ← Project

B
(ξix + β · ∂L

∂ξi
x

) // PGD update for x

9: ξiδ ← ProjectB(0;ǫ)(ξ
i
δ + β · ∂L

∂ξi
δ

) // PGD update for δ

10: D ← D ∪ {(ξix, ξiδ)} // Update Dataset with counterexamples

11: for epoch = 1, 2, · · · ,m do

12: Ltrain ←
∑

D
Lviolate(ξ

j
x, ξ

j
δ ;V, ρ) // Summing over all the violations in the dataset

13: θ ← θ − η∇θLtrain // Gradient Descent to optimize metric parameters

gradually increase the size of the forward invariant set X during training. The training algorithm is

shown in algorithm 1.

Remark: We note that it is better not to include a strong regularization term on the parameters

of the NN metric. Intuitively, suppose in addition that the forward invariant set X is convex and

bounded, the contraction metric admits an upper bound M(x) � ηI , in addition to the lower bound

µI � M(x). One can then prove that
√
µ‖x − y‖ ≤ d(x, y) ≤ √η‖x − y‖ and ‖φ(k, x0) −

φ(k, x′0)‖ ≤ ρ
√

η
µ
‖φ(k − 1, x0) − φ(k − 1, x′0)‖. The regularization encourages |η − µ| to be

smaller, potentially enforcing a contraction condition with respect to the Euclidean norm. This

condition is much stricter than contraction in metric d, and thus could be harmful to the learning.

5. Experiments

To demonstrate the effectiveness of our method, we evaluate four different discrete-time systems

that contain both smooth autonomous systems and a nonsmooth neural network state feedback sys-

tem. All four systems are discretized with the explicit Euler method with a step size of 0.05. For

each system, we first identify a Lyapunov function and a verified region of attraction using the

method described in section 4.1. Next, we train a contraction metric M(x) following the proce-

dure described in section 4.3. The local contraction condition (17) is verified using α,β-CROWN

with the specification described in 4.2. For comparison, we also compute a constant contraction

metric for each system by directly using M(x) = P provided by a quadratic Lyapunov function

V (x) = x⊤Px of the system. We shall demonstrate that by combining our training and verification,

a large certified region of contraction can be achieved in all cases. In table 1, we summarize the

verified region of the learned NN contraction metric and its runtime.

5.1. Nonlinear Autonomous Dynamical System

Van der Pol Equation. We consider the Euler discretization of the reverse Van der Pol equation:

ẋ1 = −x2, ẋ2 = x1 − µ
(

1− x21
)

x2 (20)
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System ROA NN metric (ours) Constant metric (baseline) Verification Runtime

ρ ρ (↑) r (↑) ρ (↑) r (↑) NN Metric

Van der Pol 0.119 0.119 100% 0.04 33.7% 109s

polynomial 10.8 10.0 92.8% 1.5 13.8% 290s

two-machine power 0.086 0.086 100% 0.027 31.3% 62s

inverted pendulum 672 580 88.6% invalid invalid 5.8hrs

Table 1: Verified regions of contraction of neural contraction metrics and verification runtime for

different systems. These results demonstrate the effectiveness of the neural network contraction

metrics, as well as the efficiency in terms of verification. The ρ of ROA is the largest region we

consider, and thus serves as an upper bound of what we can achieve. The ratio of the volume of

each verified region to the volume of ROA is also presented, denoted as r. We can see that the NN

metric achieves a significantly larger verified region compared to the baseline (illustrated in Fig. 1).

“Invalid” means that the synthesized metric does not provide a nontrivial region of contraction.

with a step size of 0.05. Here we set µ = 3 following Fitzsimmons and Liu (2024). On the domain

B = [−1.2, 1.2] × [−2.3, 2.3], a quadratic Lyapunov function is employed to identify a forward

invariant subset of the form Vρ = {x | V (x) < ρ} with ρ = 0.119. A metric that certifies

contraction over the entire set Vρ is found. Figure 1 shows the verified invariant sets where the

contraction condition given by the learned NN contraction metric is satisfied (blue ellipse), which

occupies the full forward invariant set (dashed black ellipse). In comparison, the largest verified

invariant set satisfying the contraction condition given by the constant metric (depicted in the bottom

row) is significantly smaller. Figure 1 further illustrates the regions where the contraction condition

given by the learned metric is satisfied (white) and unsatisfied (grey).

Polynomial System. We consider the Euler discretization of the polynomial system from Fitzsim-

mons and Liu (2024):

ẋ1 = x2, ẋ2 = −2x1 +
1

3
x31 − x2 (21)

with a step size of 0.05. On a domain B = [−4, 4]× [−4, 4], we first compute a quadratic Lyapunov

function with verified ROA given by sublevel set Vρ with ρ = 10.8. With a NN contraction metric,

we’re able to verify contraction on a sublevel set with ρ = 10.0, which occupies over 90 percent

of the ROA. In contrast, with a constant metric, the largest sublevel set satisfying the contraction

condition is only ρ = 1.5, as shown in Figure 1.

Two-machine Power System. We consider the Euler discretization of the two-machine power

system from Fitzsimmons and Liu (2024), using a step size of 0.05. The system is described by

ẋ1 = x2, ẋ2 = −0.5x2 − (sin(x1 + δ)− sin(δ)) (22)

with δ = π/3. Similar to the examples above, on B = [−1, 1] × [−1, 1], we identify a quadratic

Lyapunov function with verified ROA Vρ given by ρ = 0.086. With a NN contraction metric, we’re

able to verify contraction on the whole ROA. In comparison with a constant metric, the largest

sublevel Vρ satisfying the contraction is the one with ρ = 0.027, which occupies only 30 percent of

the ROA as shown in Figure 1.
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