

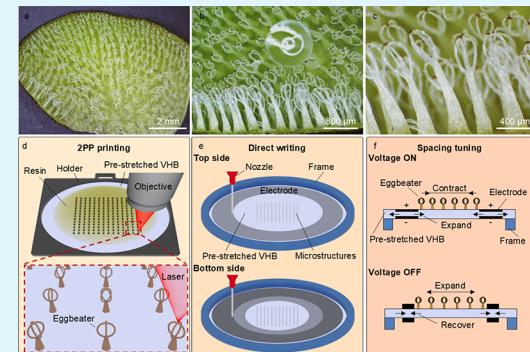
Two-Photon Polymerization of Bioinspired Microstructure with Tunable Wettability Controlled by Dielectric Elastomer Actuator

Zefu Ren,[#] Zhuoyuan Yang,[#] Rishikesh Srinivasaraghavan Govindarajan, Kehao Tang, Sida Xu,
Meng Chen,* Yizhou Jiang,* and Daewon Kim*

Cite This: <https://doi.org/10.1021/acsami.5c10911>

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Bioinspired functional surfaces with tunable wettability have garnered significant attention in surface engineering due to their potential in applications, such as self-cleaning and microfluidic control. However, existing wettability modulation methods often face limitations in response time, control precision, and repeatability. Herein, this study presents a biomimetic design for active wettability control by integrating 3D-printed *Salvinia molesta*-inspired microstructures controlled by dielectric elastomer actuators (DEAs). Using two-photon polymerization, hierarchical eggbeater microstructures were precisely fabricated on a flexible, stretchable, and transparent polymer film, achieving robust interfacial bonding and demonstrating 90.8% shape recovery after deformation. Systematic evaluation of the hydrophobic properties revealed that designs with a higher number of concentric rings and reduced center-to-center spacing exhibited enhanced water droplet adhesion while maintaining Cassie–Baxter state suspension. The fabricated microstructures demonstrated tunable hydrophobicity, achieving contact angles of $140.8 \pm 1.4^\circ$ to $149.7 \pm 1.8^\circ$ in the Cassie–Baxter state and roll-off angles of $5.7 \pm 0.9^\circ$ to $30.0 \pm 1.6^\circ$, indicating precise control over wetting behavior. The DEA system enabled dynamic wettability modulation through voltage-controlled adjustment of microstructure spacing, facilitating rapid transitions from Cassie–Baxter to Wenzel states. In addition, the DEA-induced programmable microstructure enabled surface adhesion modification, allowing droplet manipulation and transportation. This innovative integration of biomimetic microstructures with DEA technology offers significant potential for advanced applications requiring fast, reversible wettability control, including droplet-based microfluidics and active self-cleaning surfaces.

KEYWORDS: *bioinspired microstructures, two-photon polymerization, controllable wettability, droplet transportation, DEA, additive manufacturing*

1. INTRODUCTION

Natural hydrophobic surfaces, such as those found on lotus leaves, rose petals, and *Salvinia molesta* (*S. molesta* hereafter), exhibit remarkable functional properties, including self-cleaning, microfluidic manipulation, and anti-icing capabilities.^{1–4} Particularly, *S. molesta* stands out for its superhydrophobicity, high water contact angle (CA), long-term air retention underwater, and low-friction fluid transport.^{5,6} The unique eggbeater structure on the leaf surface consists of a stalk and a crown-like head with four connected branches. *S. molesta* surfaces achieve their superhydrophobic performance through hierarchical structures with a nanoscopic wax crystal layer that creates Cassie–Baxter wetting, forming a near-spherical droplet suspended on the surface.⁷ Air pockets are trapped beneath water droplets, minimizing the liquid–solid interface and enhancing the liquid–air interface.⁸ On the other hand, a water droplet that fully penetrates surface structures is in the Wenzel state, resulting in lower contact angles with strong adhesion.⁹

Replicating such a complex eggbeater structure of *S. molesta* is essential for reproducing its exceptional superhydrophobic properties, which require high-resolution spatial fabrication. Recent advances in high-resolution 3D printing, particularly ultraviolet (UV)-based photopolymerization, have enabled accurate biomimicry of these complex structures.^{10–13} For instance, a 1:1 scale reproduction of *S. molesta*-inspired microstructures was successfully achieved using a projector-based UV 3D printer with a resolution of $2.5 \mu\text{m}$.¹⁴ The printed structure demonstrated superhydrophobic (CA: 152° – 170°) and the ability to hold the water droplet upside down, known as the Petal effect. For applications in microfluidics and other miniaturized systems, the fabrication of reduced-scale

Received: June 3, 2025

Revised: October 17, 2025

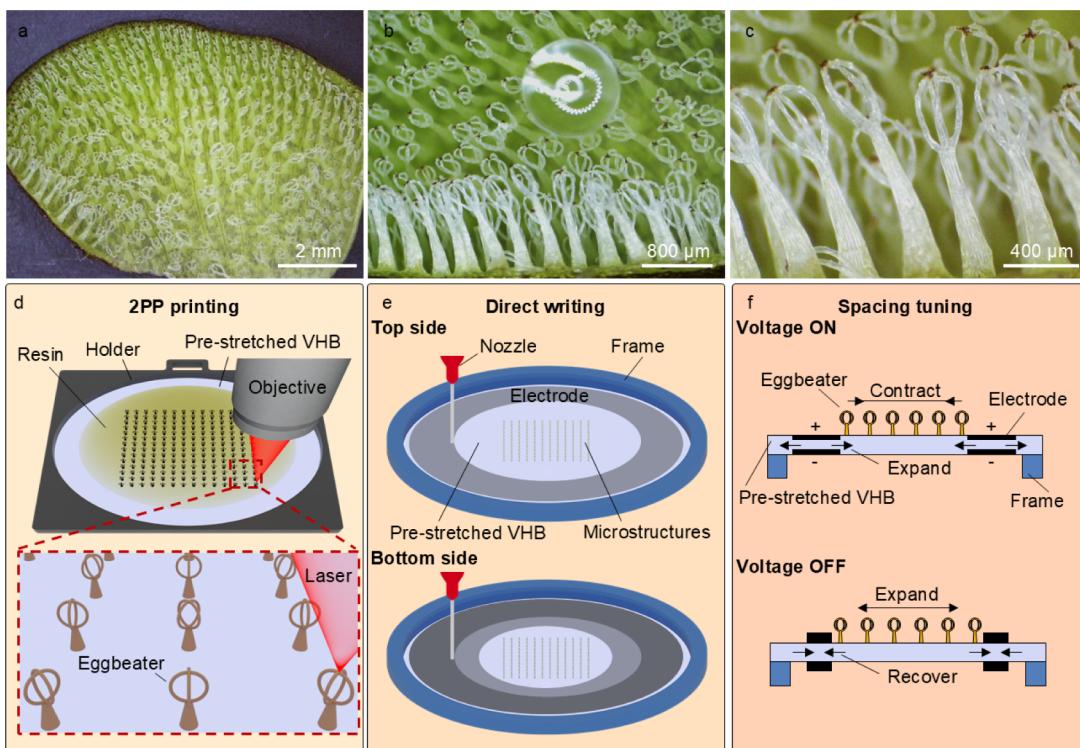
Accepted: October 26, 2025

58 structures becomes particularly advantageous. This need has
59 driven the adoption of two-photon polymerization (2PP),
60 capable of micro- and submicroscale fabrication. This process
61 relies on simultaneous two-photon absorption in photo-
62 sensitive resin, where polymerization initiates only when the
63 laser's focal point exceeds a material-specific energy thresh-
64 old.^{15–17} Ellipsoidal voxels (typically 100–400 nm in size) are
65 periodically arranged along the laser path to build a
66 microstructure.^{18–20} Remarkably, eggbeater structures were
67 successfully fabricated at 17.5 \times and 100 \times reduced scales while
68 maintaining the functionalities of natural *S. molesta*, including
69 underwater air retention and hydrophobicity demonstrated by
70 CA of 170° with Teflon coating and 122° without
71 modification.^{21,22}

72 In recent years, microstructured surfaces exhibited fixed
73 wettability characteristics and demonstrated superior mechan-
74 ical robustness, thermal stability, and chemical resistance.^{23–28}
75 With the development of responsive systems incorporating
76 thermal, magnetic, and electrowetting-on-dielectric (EWOD)
77 actuation mechanisms,^{29–37} dynamically tunable wettability
78 patterns are achieved. Thermal-responsive wetting surfaces
79 were typically fabricated from thermosensitive materials such
80 as shape memory polymers or waxes.^{38–41} While they can
81 reversibly change surface wettability, their response rate is
82 inherently limited because heating and cooling processes are
83 relatively slow. In contrast, magnetic-responsive exhibited fast
84 response and excellent stability. Microstructures infused with
85 magnetic particles could be reconfigured by an external
86 magnetic field to manipulate droplets.^{42–45} However, the
87 presence of a magnetic field gradient resulted in spatially
88 nonuniform wettability changes, which may reduce control
89 precision across the surface. EWOD provides highly precise,
90 localized control of droplet motion by electrically modulating
91 the solid–liquid contact angle.^{46–48} By applying voltage to
92 patterned electrodes beneath a dielectric layer, droplets on the
93 dielectric layer could be transported, merged, split, or steered
94 along predefined pathways. However, the intense electric field
95 generated by the applied voltage at the droplet interface may
96 induce secondary droplet formation, which can disrupt
97 transport accuracy.³⁷ In contrast, dielectric elastomer actuators
98 (DEAs) overcome these limitations by offering millisecond-
99 scale responsiveness, high repeatability, and voltage-driven
100 programmability, making them ideal for on-demand wettability
101 switching.^{49,50} A DEA consists of a soft dielectric elastomer
102 layer sandwiched between two compliant electrodes. When
103 voltage is applied across the electrode layers, Maxwell stress is
104 induced, leading to a reduction in the dielectric thickness and a
105 corresponding in-plane expansion of the actuator.⁵¹ This
106 electromechanical actuation results in rapid and reversible
107 surface deformation, allowing dynamic modulation of micro-
108 structural geometry for controllable wettability. To achieve
109 optimal electromechanical performance, the dielectric materi-
110 als need to exhibit low moduli, high electrical breakdown
111 strength, and high dielectric constant.⁵² Acrylic elastomers,
112 such as VHB 4910 and VHB 4905 (3M, Minnesota, USA),
113 have become common materials due to their commercial
114 availability, low cost, and exceptional stretchability. In addition,
115 these elastomers are typically prestretched to reduce the
116 thickness before electrode deposition, which allows DEAs to
117 lower operational voltages and mitigate the electromechanical
118 instability.^{53,54} Moreover, the compliant electrodes, such as
119 carbon grease, liquid metal, and Poly(3,4-
120 ethylenedioxythiophene):poly(styrenesulfonic acid) (PE-

121 DOT:PSS), exhibit high conductivity and are feasible for 3D 121
122 printing.^{55–57} Among these electrode materials, carbon grease- 122
123 based electrode ink offers distinct advantages, including 123
124 environmental stability and exceptional crack tolerance for 124
125 high-strain applications.⁵⁸

126 This study introduces a novel planar DEA integrated with 126
127 3D-printed *S. molesta*-inspired microstructures, capable of 127
128 rapidly adjusting surface wettability in response to electrical 128
129 stimuli. The fabrication process employed optimized 2PP to 129
130 precisely replicate bioinspired eggbeater microstructures on a 130
131 flexible, stretchable, and transparent VHB film substrate while 131
132 ensuring robust interfacial bonding for enhanced durability. 132
133 The hydrophobic properties of these microstructures were 133
134 systematically characterized through water CA and roll-off 134
135 angle (RA) measurements across various crown designs and 135
136 spacing configurations. For electromechanical control, carbon 136
137 grease-based compliant electrodes were patterned onto the 137
138 VHB film using direct writing (DW) techniques, enabling 138
139 voltage-dependent adjustment of microstructure spacing for 139
140 on-demand wettability tuning. A comparison of our work with 140
141 existing literature is shown in *Supporting Information Table* 141
142 **S1**. This innovative integration of biomimetic microstructures 142
143 with DEA technology offers significant potential for advanced 143
144 applications in droplet-based active droplet transportation and 144
145 manipulation, where fast, reversible wettability control is 145
146 essential.


2. EXPERIMENTAL SECTION

2.1. Eggbeater Microstructure and DEA Fabrication.

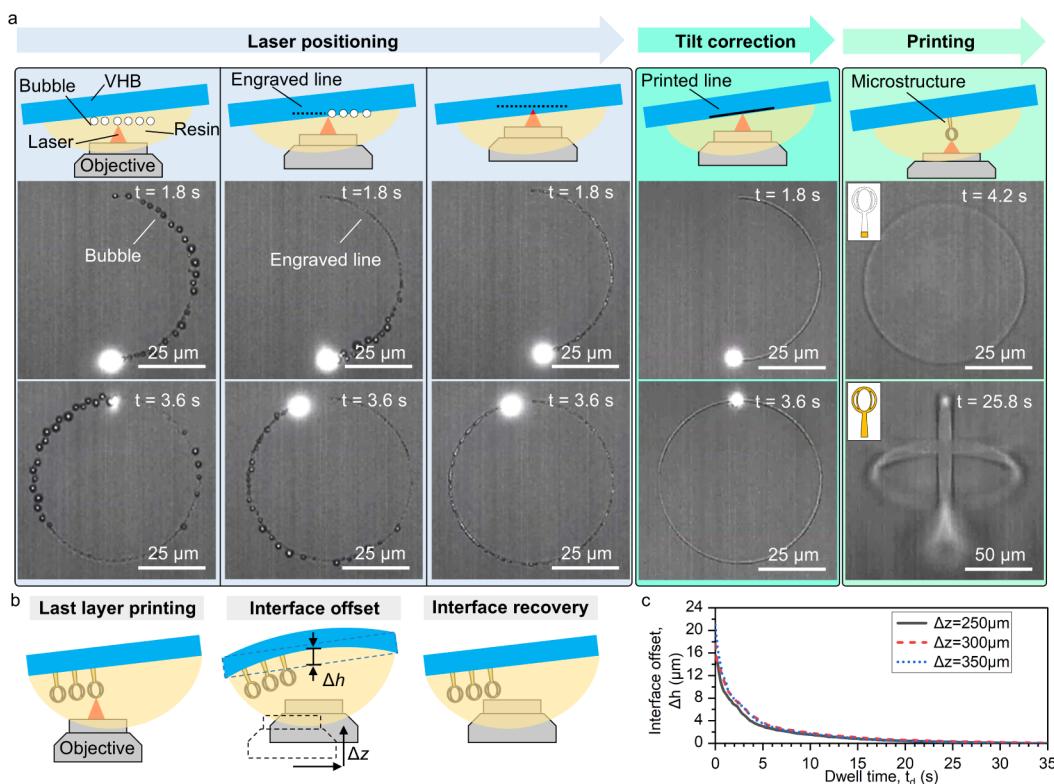
147 The eggbeater microstructures were fabricated using a 148
149 Nanoscribe GT2 printer (Eggstein-Leopoldshafen, Ger- 149
150 many), which operates with a 780 nm laser featuring a pulse 150
151 duration of 100 fs and a repetition rate of 80 MHz. The 151
152 computer-aided design model of the *S. molesta*-inspired 152
153 microstructure was processed using DeScribe software with 153
154 default printing parameters for the 25 \times objective lens and IP-S 154
155 photoresist (Nanoscribe, Eggstein-Leopoldshafen, Ger- 155
156 many). The slicing and hatching distances were set to 1 and 156
0.5 μm , respectively.

157 To prepare for the 2PP process, a VHB 4905 film (50 mm in 158
159 diameter and 0.5 mm in thickness) was stretched to three 159
160 times its original diameter, and the thickness was measured to 160
161 be $52.8 \pm 1.3 \mu\text{m}$ (*Supporting Information Figure S1*). The 161
162 prestretched VHB was then secured onto the substrate holder 162
163 of a 2PP printer using polyimide tape. A drop of IP-S 163
164 photoresist was deposited at the center of the prestretched 164
165 VHB. After installing a cleaned 25 \times objective lens in the 165
166 printer (Nanoscribe, Eggstein-Leopoldshafen, Germany), 166
167 the substrate holder was positioned above the objective lens. 167
168 Five base layers were printed on the interface at 80% laser 168
169 power (a maximum power of 50 mW) with a scanning speed of 169
170 100 mm/s. Subsequently, the laser power was increased to 170
171 95% to fabricate the remaining layer. These laser powers were 171
172 adjusted to avoid overexposure while maintaining structural 172
173 integrity. The VHB substrate with fabricated microstructures 173
174 was removed from the printer and developed in isopropanol 174
175 (IPA) for 5 min to dissolve any uncured excess photosensitive 175
176 resin (*Supporting Information Figure S2*).

177 Following the 2PP printing process, the DEA was fabricated 177
178 by depositing electrode material on the patterned VHB film 178
179 using a DW 3D printer (5552202-Dispensing Robot, 179
180 Integrated Dispensing Solutions, USA). The electrode material 180
181 consisted of 97 wt % carbon conductive grease (MG 181

Figure 1. Design, manufacturing, and actuation of bioinspired DEA with tunable spacing. (a) Optical image of a natural *S. molesta* leaf. (b) A droplet was suspended on superhydrophobic eggbeater microstructures. (c) Detailed view of eggbeater hairs. (d) 2PP printing process for fabricating biomimetic microstructures on prestretched VHB substrate. (e) DEA assembly with compliant electrodes by direct writing. (f) Voltage-induced tunable spacing mechanism.

182 Chemicals, Canada) and 3 wt % carbon black (Timical Super
183 C65, MTIKorea, Korea), mixed using a THINKY ARM-310
184 planetary mixer (Laguna Hills, CA, USA) at 2000 rpm for 2
185 min. The mixture demonstrated DW printing capability and
186 excellent conductivity for DEA application (Supporting
187 Information Figures S3 and S4). The electrode material was
188 loaded into a 30 mL syringe with a 19-gauge nozzle. It was
189 then patterned using DW, with the printed line width set to
190 0.55 mm and the initial nozzle height set to 0.2 mm. The air
191 pressure was maintained at 0.5 MPa, and the nozzle was moved
192 at a speed of 2 mm/s during printing.


193 **2.2. Scanning Electron Microscopy.** The printed micro-
194 structures were examined using an FEI Quanta 650 scanning
195 electron microscope (SEM). Before imaging, a thin gold
196 coating was applied to the samples with a 108 Manual sputter
197 coater (Ted Pella, Redding, USA).

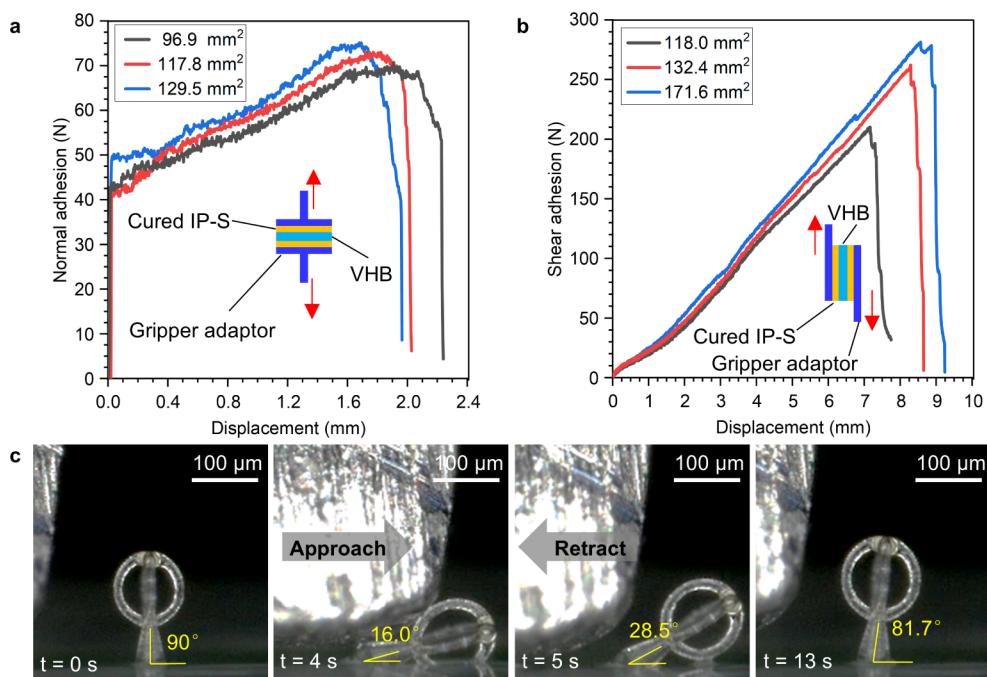
198 **2.3. Normal Bonding Strength, Shear Bonding
199 Strength, and Flexibility Evaluation.** Bonding strength
200 was evaluated to ensure reliable microstructure integration. A
201 layer of IP-S resin (500 μm in thickness) was coated on both
202 sides of the prestretched VHB substrate (2.5 cm × 2.5 cm, 50
203 μm in thickness), which was then sandwiched between
204 transparent acrylic plates. The samples were exposed to 400
205 W UV light for 60 s. The normal and shear bonding strengths
206 between the cured IP-S resin and the prestretched VHB film
207 were evaluated under normal tensile test and lap shear test,
208 respectively, using a universal test machine MTS C43.504
209 (MTS Systems Corporation, USA) at a rate of 0.2 mm/min.
210 The adhesive strength was calculated by dividing the maximum
211 sustained load by the VHB contact area. The durability of the
212 printed microstructure on the VHB substrate was evaluated by
213 the tilt recovery test. The printed microstructure on the VHB

214 film was tilted to touch the base. The corresponding level of
215 retraction was observed under the digital microscope VHX-X1
216 (Keyence, Japan).

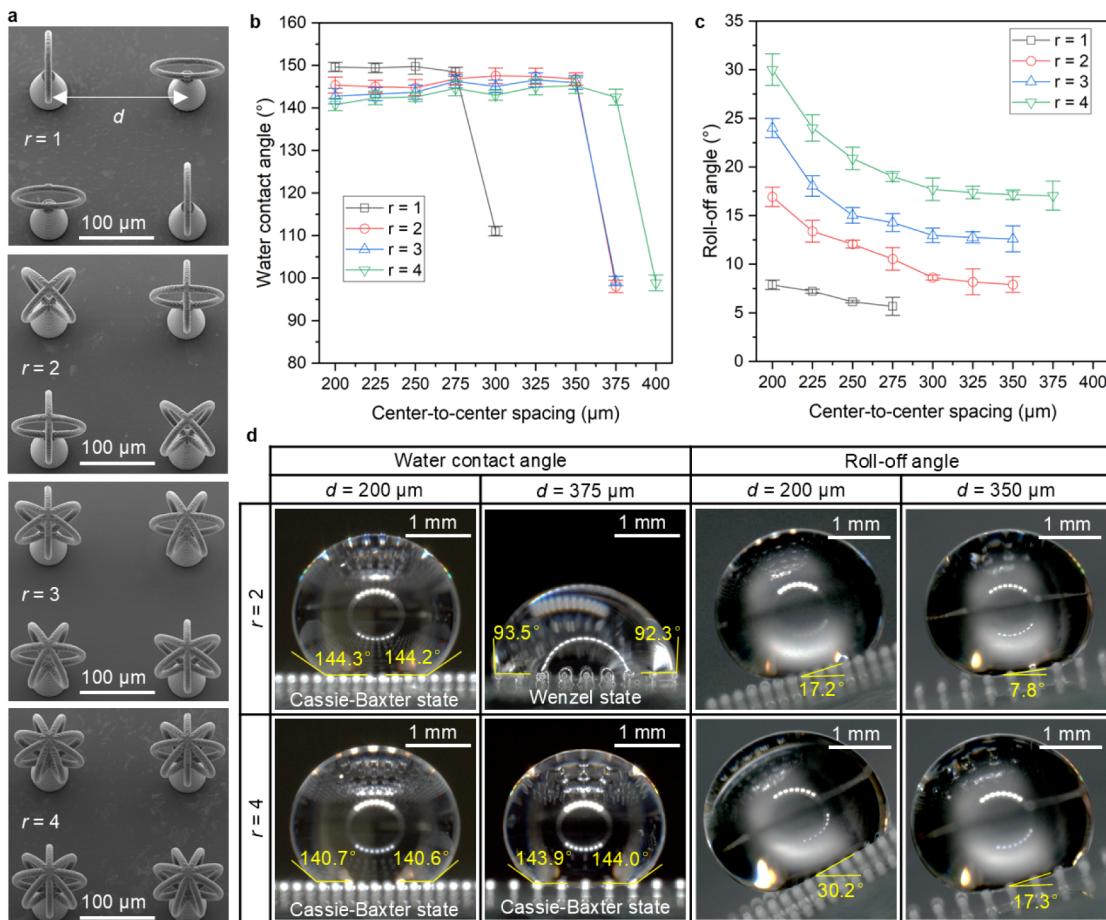
217 **2.4. Water Contact Angle and Roll-Off Angle**
218 **Measurement.** The water CA measurements were performed
219 5 times for each sample using a digital microscope VHX-X1
220 (Keyence, Japan) under controlled ambient conditions (23.5 ± 0.5 °C, $50 \pm 2\%$ relative humidity). Different volumes of
221 deionized (DI) water droplets ranging from 8 to 80 μL were
222 tested, and the result indicated a limited influence on
223 wettability (Supporting Information Figure S5). A water
224 droplet was deposited onto the microstructures with a
225 micropipette, and the CA was determined using ImageJ
226 software. A custom-made VHB film holder was fixed to the
227 rotational stage, which was securely mounted vertically on a
228 flat wall surface. The VHB film containing the printed
229 microstructures was then placed horizontally on the holder,
230 ensuring that the center of the microstructures aligned with the
231 stage's rotation axis. A water droplet was deposited onto the
232 microstructure, and the RA was recorded when the droplet slid
233 off as the stage rotated.

234 **2.5. Characterization of DEA Controllability and
235 Durability.** The dielectric strength of the prestretched VHB
236 films was measured with a high-voltage amplifier, TREK 20/
237 20C-HS (Denver, CO, USA), and a dielectric breakdown test
238 system, PK-CPE1901 (PolyK Technologies, LLC, PA, USA),
239 according to ASTM D149.59. The applied voltage was
240 increased by 200 V/s until breakdown occurred. The
241 deformation of the DEA was measured using a VHX-X1
242 digital microscope while the voltage gradually increased from 0
243 V to its maximum voltage before breakdown with an increment
244 of 200 V. The response time of the DEA was examined at 3 kV
245

Figure 2. (a) Interface finding process on a tilted transparent VHB substrate for 2PP printing. (b) Schematic of the deflected flexible substrate's recovery process while the objective moves. (c) Representative curves of interface offset vs dwell time at various objective vertical movements.


246 (below breakdown voltage) from 1 s to 50 ms (Supporting
 247 Information Video S1). In addition, the durability of DEA was
 248 examined by conducting long-term cycling tests at 6 Hz and 3
 249 kV (Supporting Information Video S2).

3. RESULTS AND DISCUSSION


250 **3.1. Design and Fabrication of Eggbeater Micro-
 251 structures.** To develop compact artificial structures mimick-
 252 ing *S. molesta*'s hydrophobic functionality, its natural
 253 morphology was observed through microscopic imaging. The
 254 upper surface of the leaf was covered by millimetric
 255 hierarchical hairs (Figure 1a). The dense arrangement of
 256 these structures creates a superhydrophobic surface that
 257 suspends a water droplet while maintaining spherical shape
 258 (Figure 1b,c). Notably, the water droplet made direct contact
 259 with the crown structures, demonstrating its dominant role in
 260 maintaining surface hydrophobicity. To balance fabrication
 261 efficiency with wettability performance, these synthetic
 262 structures were designed about 5× smaller compared to their
 263 natural counterparts (Supporting Information Figure S6). The
 264 artificial hair consisted of a 100 μm -high taper-shaped stalk,
 265 featuring a base diameter of 50 μm for robust substrate
 266 adhesion and a 30 μm tip diameter for a smooth transition to
 267 the upper structure. The crown structures were composed of
 268 multiple concentric torus, having 50 μm major and 10 μm
 269 minor radii, arranged with uniform angular distribution
 270 (Supporting Information Figure S7). The 2PP fabrication
 271 process employed a 25 \times objective immersed in IP-S resin
 272 deposited on a prestretched VHB 4905 substrate firmly
 273 adhered to the substrate holder. Through laser-induced
 274 polymerization, precise biomimetic microstructure arrays
 275 were created (Figure 1d). Following development and transfer
 276 to a circular frame, the DEA was completed by pneumatically

277 depositing compliant carbon grease electrodes on both surfaces 278 of the prestretched VHB film (Figure 1e). When voltage is 279 applied, Maxwell stress is generated between the compliant 280 electrodes, causing the VHB dielectric layer to be compressed 281 in thickness while being expanded in-plane. This deformation 282 results in reduced spacing between adjacent microstructures. 283 Upon voltage removal, the original dimensions of the VHB 284 elastomer are elastically recovered, with the microstructure 285 spacing being fully restored (Figure 1f). 285

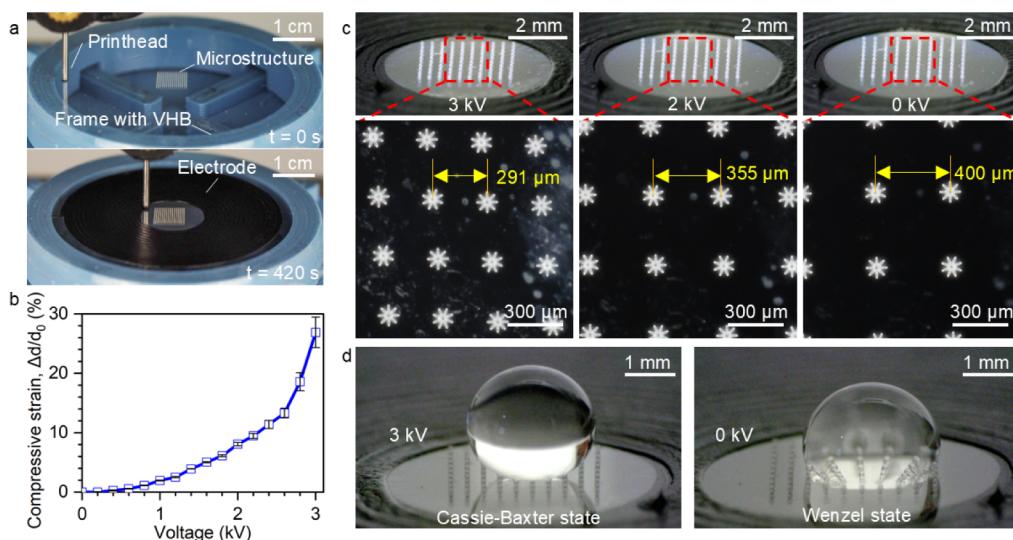

286 While the DEA enabled microstructure spacing adjustment, 286 precise fabrication of these microstructures via 2PP first 287 required solving a critical interfacial challenge. Unlike printing 288 on rigid substrates, the compliant nature and optical 289 transparency of prestretched VHB films created significant 290 difficulties in locating the resin-substrate interface during 2PP 291 printing. This positioning uncertainty risked producing either 292 floating microstructures (if printed above the substrate) or 293 incomplete structures (if printed too deep within the 294 substrate). The resin-substrate interface could be automatically 295 identified by the GT2 printer when a minimum reflectance 296 existed near the focal plane of the 25 \times objective. Since the 297 refractive indices of IP-S resin and VHB film were 1.486 and 298 1.483, respectively,^{60,61} resulting in a reflectance of approx- 299 imately 1×10^{-6} based on the Fresnel reflection coefficient at 300 normal incidence,⁶² manual interface detection is required. As 301 illustrated in Figure 2a, after the objective reached the air- 302 liquid interface, a laser was activated and scanned at a speed of 303 0.1 mm/s with 80% laser power along a horizontal circular 304 path to polymerize the IP-S resin. Compared to normal 305 printing speed, the relatively low scanning speed was chosen 306 because it generated bubbles in IP-S resin at the laser focal 307 point. However, when the laser focal point reached the resin- 308 VHB interface, a partial circular pattern composed of an 309

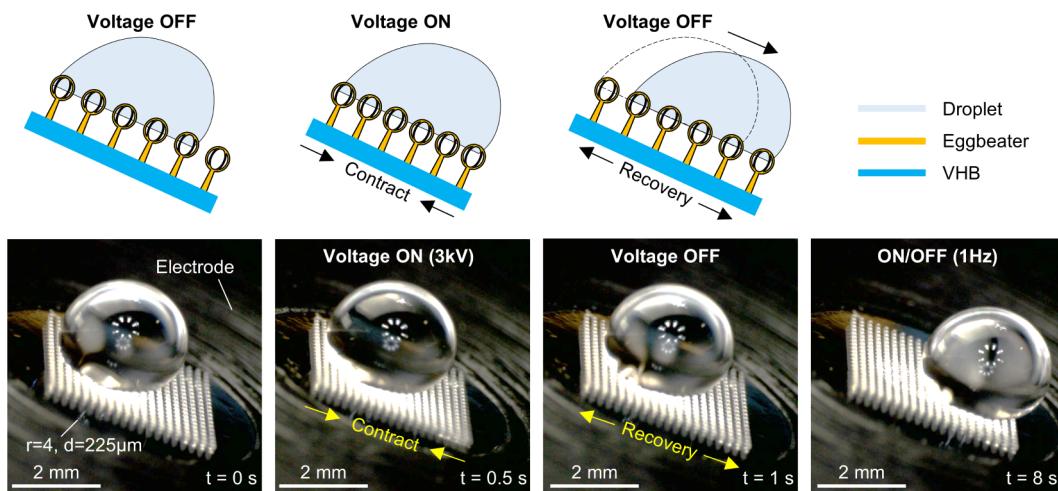
Figure 3. (a) Representative force–displacement curves of the normal adhesion test. (b) Representative force–displacement curves of the lap shear test. (c) Tilt recovery test of a printed microstructure.

Figure 4. Wettability performance of *S. molesta* inspired crown-like microstructures. (a) SEM image of fabricated microstructures with various numbers of concentric rings. (b) Water CA versus center-to-center spacing for all ring configurations. (c) RA versus center-to-center spacing for all configurations, maintaining Cassie–Baxter state. (d) Representative droplet profiles during water CA and RA tests, droplet size: 8.0 μL.

Figure 5. Fabrication and electromechanical characterization of the DEA. (a) DW process for electrode patterning. (b) Voltage-dependent compressive strain at the center-to-center spacing of the eggbeater microstructures. (c) Tunable center-to-center spacing during voltage release (d) Wettability transition from Cassie–Baxter to Wenzel states via voltage control, droplet size: 8.0 μ L.

310 engraved line and bubbles was formed on the nonlevel
 311 substrate. Once a complete circular line was engraved, the solid
 312 interface was found, and the XYZ coordinates of the center
 313 were recorded for tilt correction (Supporting Information eqs
 314 S1–S4). By repeating this laser positioning method to obtain
 315 three different coordinates, the rotation angles between the
 316 substrate and the XY-plane were calculated. The circular path
 317 was then corrected using the computed rotation angles, and
 318 the final interface was determined. Finally, the microstructure
 319 was successfully printed and firmly adhered to the VHB
 320 substrate.

321 After completing one microstructure fabrication, the
 322 objective moved to a new starting position (Figure 2b).
 323 However, due to the stretchable nature of VHB film, high
 324 viscous properties of IP-S resin, and the objective vertical
 325 displacement (Δz), the substrate-resin interface experienced
 326 vertical shifting, resulting in interface offset (Δh). Following a
 327 dwell time (t_d), the VHB film gradually returned to its original
 328 position, allowing the laser focal point to realign with the
 329 interface. Experimental results indicated that a 25-s t_d provided
 330 over 99.5% offset recovery (Figure 2c), balancing print
 331 efficiency and quality across various Δz values caused by
 332 microstructure height and substrate tilt.


333 **3.2. Mechanical Performance of Eggbeater Micro-
 334 structure on VHB Substrate.** To ensure the durability of the
 335 printed microstructure on the VHB substrate, the interfacial
 336 adhesion between polymerized IP-S resin and the VHB film
 337 was evaluated. Both normal adhesion and lap shear tests were
 338 performed (Figure 3a,b). Distinct failure modes were
 339 observed: the normal test exhibited adhesive failure at the
 340 interface, while the shear test showed cohesive failure within
 341 the VHB layer. The calculated normal and shear bonding
 342 strengths reached 0.6 ± 0.1 MPa (normal) and 1.8 ± 0.2 MPa
 343 (shear).

344 To verify the microstructure's ability to retain its designed
 345 configuration under external lateral forces, tilt recovery
 346 experiments were conducted (Figure 3c). An eggbeater
 347 microstructure was displaced to 16.0° , and it adhered to the
 348 VHB substrate. During this process, the substrate bonded to
 349 the stem structure's base exhibited significant stretching. Upon

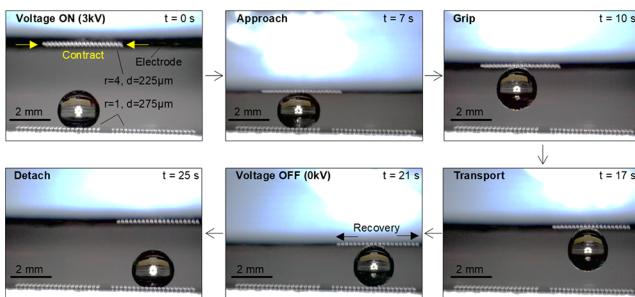
350 load removal, the stretched VHB film elastically contracted,
 351 restoring the microstructure to its original position with 90.8%
 352 recovery. Notably, the adhesive force generated between the
 353 crown structure and the VHB substrate remained below the
 354 bonding established at the eggbeater's root during 3D printing,
 355 enabling shape recovery after full tilting deformation. In
 356 addition, the eggbeater microstructure demonstrated 87.4%
 357 shape recovery after continuous 10,000 cycles of VHB
 358 actuation (Supporting Information Figure S8), with only a
 359 3.4% decrease in recoverability.

360 **3.3. Evaluation of Eggbeater Microstructure Surfaces'**
361 Wettability. Since the crown architecture governs the wetting
 362 performance of *S. molesta*'s eggbeater hairs, strategic
 363 modifications to its geometry, including the number of
 364 concentric rings (r) and center-to-center spacing distances
 365 (d), enable precise wettability tuning for targeted applications.
 366 Drawing inspiration from the natural morphology of *S. molesta*,
 367 four distinct crown-like architectures were developed by
 368 varying the number of r , ranging from 1 to 4, with uniform
 369 radial distribution (Figure 4a). In addition, multiple d values
 370 were incorporated into the designs to investigate wettability
 371 modification. Each adjacent microstructure was rotationally
 372 offset by $90^\circ/r$ along its vertical axis, mitigating anisotropic
 373 wetting effects that were particularly crucial for designs with
 374 fewer rings.

375 The CA and RA were measured for all the designs with
 376 varying r , with representative cases of $r = 2$ and $r = 4$ (Figure
 377 4b-d). The $r = 2$ configuration was selected to mimic the
 378 natural morphology of *S. molesta*, while $r = 4$ was chosen to
 379 provide a controlled comparison at twice the natural ring
 380 number. For all configurations, CA measurement was initiated
 381 at $d = 200 \mu\text{m}$, progressively increasing in $25 \mu\text{m}$ increments
 382 until an abrupt CA reduction indicating the wetting state
 383 transition from Cassie–Baxter to Wenzel state (Figure 4b). All
 384 ring designs exhibited hydrophobicity ($140.8 \pm 1.4^\circ$ – $149.7 \pm$
 385 1.8°) in Cassie–Baxter mode, transitioning to Wenzel mode
 386 with reduced CA ($98.1 \pm 1.5^\circ$ – $111.0 \pm 1.1^\circ$) when structural
 387 support failed. The critical d required to trigger wetting state
 388 transitions exhibited a positive correlation with r . Specifically,
 389 higher r values necessitated larger d thresholds to induce the
 390

Figure 6. Schematic and demonstration of precise droplet manipulation by cyclically actuated DEA with microstructure arrays ($r = 4$, $d = 225 \mu\text{m}$) with 20° inclination, droplet size: $8.0 \mu\text{L}$.

390 Cassie-to-Wenzel transition. While in the Cassie–Baxter state, designs with lower r values demonstrated
 391 enhanced hydrophobic performance, consistent with previous
 392 studies.^{14,22} This correlation was explained by the enhanced
 393 solid–liquid interfacial contact resulting from increased
 394 accessible surface area at higher r values. As the water droplet
 395 was subjected to a more microstructural surface area, the
 396 consequent reduction of the air–liquid interface directly
 397 decreases the CA. In contrast, no correlation was observed
 398 between spacing and CA in the Cassie–Baxter state.


400 In addition, the RA was subsequently measured exclusively
 401 for designs maintaining Cassie–Baxter wetting state (Figure
 402 4c). The RA analysis revealed that both designs with higher r
 403 values and those with smaller d spacing exhibited increased RA
 404 ($5.7 \pm 0.9^\circ$ – $30.0 \pm 1.6^\circ$). This observation can be explained
 405 by the elevated solid–liquid interfacial density per unit area,
 406 which enhances water droplet adhesion to the microstructural
 407 arrays.²²

408 **3.4. Functional Performance of DEA-Actuated Wettability.** The prestretched VHB film containing $4 \text{ mm} \times 4 \text{ mm}$
 409 microstructure arrays was mounted on a custom frame. A DEA
 410 was then produced by patterning electrodes on both VHB
 411 surfaces via DW. The deposited concentric conductive rings
 412 (20 mm outer and 8 mm inner diameters) were designed to
 413 prevent contact between the printhead, holder rim, and central
 414 microstructures, as shown in Figure 5a. The prestretched VHB
 415 breakdown at 3.2 kV, resulting in $64 \text{ V}/\mu\text{m}$ breakdown
 416 strength. When voltage was applied, the generated electric field
 417 across the prestretched VHB caused electrostatic attraction
 418 between the opposing conductive layers. This Maxwell stress
 419 induced radial compression of the elastomer film, simulta-
 420 neously producing two counteracting effects. While the
 421 conductive ring's outer perimeter expanded outward due to
 422 the elastomer's incompressible nature, its inner diameter
 423 contracted as the prestretch deformation partially recovered.
 424 The deformation of DEA from 0 to 3 kV was simulated based
 425 on the hyperelastic model in ANSYS (Supporting Information
 426 Figure S9 and eqs S5–S8). In addition, the strain in the center-
 427 to-center distance of the eggbeater microstructures was
 428 measured under applied voltages from 0 to 3 kV in 0.2 kV
 429 increments (Figure 5b). The measured strain exhibited
 430 nonlinear, accelerated progression with increasing voltage,
 431 reaching 28% maximum compression at 3 kV before dielectric

432 breakdown. The reversible contraction of the microstructure
 433 array was observed (Figure 5c) as the voltage was decreased
 434 from 3 kV to 0 kV, with a corresponding increase in center-to-
 435 center spacing being illustrated. Additionally, the crown
 436 structures retained their original geometry when the VHB
 437 substrate was deformed. To demonstrate wettability modu-
 438 lation, a 3 kV voltage was applied to a DEA incorporating an $r = 4$
 439 microstructure array with $400 \mu\text{m}$ center-to-center spacing.
 440 Initially, the deposited droplet was supported by the
 441 contracted microstructures in the Cassie–Baxter state (3
 442 kV). Subsequently, the transition to the Wenzel state occurred
 443 as the spacing increased (0 kV). This bioinspired wettability
 444 tuning process was achieved through electrically controlled
 445 center-to-center spacing adjustment using DEA (Supporting
 446 Information Video S3).

447 The spacing of the microstructures was modulated to
 448 achieve precise droplet displacement, as shown in Figure 6 and
 449 Supporting Information Video S4. A DI water droplet was
 450 placed on a DEA-actuated bioinspired microstructure array ($r = 4$,
 451 $d = 225 \mu\text{m}$) and was tilted to 20° slightly below the roll-
 452 off threshold. Due to gravity, the advancing angle of the
 453 droplet increased, and the receding angle decreased as the tilt
 454 angle increased. Upon voltage application, the spacing between
 455 microstructures was reduced, causing the lower edge of the
 456 droplet to come into contact with the neighboring eggbeater
 457 microstructures. The reduced spacing increased the overall RA
 458 of the surface, allowing the droplet to remain securely pinned
 459 in place while maintaining the Cassie–Baxter state. When the
 460 voltage was removed, the lower edge of the droplet advanced
 461 with the newly contacted microstructure, while the upper edge
 462 detached from the previous one. By applying 1 Hz and 3 kV,
 463 continuous and precise droplet displacement was achieved,
 464 with resolution determined by the design of the microstructure
 465 array.

466 To demonstrate tunable hydrophobic properties, a DEA-
 467 actuated bioinspired microstructure array ($r = 4$, $d = 225 \mu\text{m}$)
 468 was inverted and mounted on an XYZ positioner, placing it
 469 above a DI water droplet resting on the left base micro-
 470 structure array ($r = 1$, $d = 275 \mu\text{m}$), as shown in Figure 7. The
 471 design of the base microstructure arrays was selected to create
 472 a hydrophobic surface with low droplet adhesion. Not only the
 473 selected design on the voltage-activated DEA was required to
 474 generate sufficient adhesion force to overcome both the
 475

Figure 7. Tunable droplet gripper via bioinspired microstructure arrays. Two microstructure arrays ($r = 1$, $d = 275 \mu\text{m}$) on a base substrate with a $5.0 \mu\text{L}$ water droplet deposited on the left, and a DEA-controlled microstructure array ($r = 4$, $d = 225 \mu\text{m}$) on the top.

476 droplet's weight and the base microstructures' adhesion but
 477 also guaranteed reliable droplet release upon DEA deactiva-
 478 tion. Upon voltage application, the microstructure arrays
 479 contracted to enhance droplet adhesion, and then the system
 480 successfully gripped and transported the water droplet. During
 481 deposition on the right base microstructure array ($r = 1$, $d =$
 482 $275 \mu\text{m}$), voltage deactivation reduced the adhesion, enabling
 483 droplet release upon retraction, showcasing a successful water
 484 droplet manipulation utilizing novel tunable DEA with
 485 bioinspired structures. This actively controlled system
 486 demonstrates significant potential for liquid gripping (Support-
 487 ing Information Video S5).⁵⁹

4. CONCLUSIONS

488 This study established a novel approach integrating *S. molesta*-
 489 inspired microstructure fabrication and electromechanically
 490 tunable wettability control. Bioinspired microstructures were
 491 successfully fabricated on a prestretched VHB film (flexible,
 492 stretchable, and transparent) through 2PP using a laser
 493 positioning method with balanced printing efficiency and
 494 quality. The fabricated microstructures demonstrated excellent
 495 bonding with the VHB substrate and exhibited 90.8% shape
 496 recovery after deformation. The hydrophobic properties of the
 497 printed microstructure arrays were systematically evaluated
 498 through water CA ($140.8 \pm 1.4^\circ - 149.7 \pm 1.8^\circ$) and RA (5.7
 499 $\pm 0.9^\circ - 30.0 \pm 1.6^\circ$) measurements across varying ring
 500 numbers and center-to-center spacing. Microstructure arrays
 501 with higher ring numbers and reduced spacing exhibited
 502 enhanced water droplet adhesion while maintaining the
 503 Cassie–Baxter state, leading to lower water CA and higher
 504 roll-off angle. Programmable droplet manipulation was
 505 achieved by integrating the microstructure arrays into the
 506 DEA system, which offers fast response, precise control, and
 507 exceptional repeatability. It enabled voltage-induced wetting
 508 state transitions (Cassie–Baxter to Wenzel) and controlled
 509 droplet transportation. The developed 2PP-printed bioinspired
 510 surfaces combined with DEA actuation offer significant
 511 potential for applications in tunable surface wetting, micro-
 512 fluidic transport, and self-cleaning surfaces. Future research
 513 directions include developing multi-DEA systems for localized
 514 wettability control and expanding the functional bioinspired
 515 area by directly fabricating microstructures on stretchable
 516 conductive electrodes.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acsami.Sc10911>.

VHB stretching device; eggbeater microstructures development duration; electrode ink's viscosity and moduli; electrode ink's conductivity; effect of droplet size on microstructure; effect of eggbeater scaling ratio on wettability; tilt recovery test of a printed microstructure after cyclic test; simulation of DEA deformation (PDF)

DEA response time ranges from 1 s to 50 ms (MP4)

Cyclic actuation test of the DEA conducted for 10,000 cycles (MP4)

Wetting state transition from Cassie–Baxter to Wenzel state using a DEA (MP4)

Droplet manipulation system with precise control on an inclined surface (MP4)

Tunable droplet gripper via DEA and bioinspired microstructure arrays (MP4)

■ AUTHOR INFORMATION

Corresponding Authors

Meng Chen – Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; Email: chengmeng@wust.edu.cn

Yizhou Jiang – Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, United States; orcid.org/0009-0009-4802-8217; Email: yizhou.jiang@erau.edu

Daewon Kim – Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, United States; orcid.org/0000-0003-3885-3925; Email: kimd3c@erau.edu

Authors

Zefu Ren – Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, United States

Zhuoyuan Yang – Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, United States

Rishikesh Srinivasaraghavan Govindarajan – Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, United States; Department of Mechanical Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States

Kehao Tang – Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China

Sida Xu – Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/acsami.Sc10911>

Author Contributions

⁵⁷²Z.R. and Z.Y. contributed equally to this work. The manuscript was written through contributions from all authors. All authors have approved the final version of the manuscript.

576 Notes

577 The authors declare no competing financial interest.

578 ■ ACKNOWLEDGMENTS

579 This material is based upon work supported partially by the
580 National Science Foundation under grant no. 2229155. The
581 opinions, findings, and conclusions or recommendations
582 expressed are those of the authors and do not necessarily
583 reflect the views of the National Science Foundation.

584 ■ REFERENCES

585 (1) He, M.; Yang, J.; Gu, M.; Wu, Y.; Chen, K.; Sun, Y.; Qi, D. 642
586 Bioinspired interfacial engineering of multiscale micro/nano-structured 643
587 surfaces with robust superhydrophobic and tunable adhesion. 644
588 *Chem. Eng. J.* **2024**, *501*, 157482. 645

589 (2) Wijerathne, B.; Liao, T.; Jiang, X.; Zhou, J.; Sun, Z. Plant- 646
590 inspired surfaces and interfaces for sustainable technologies. *Mater. 647*
591 *Futures* **2025**, *4* (1), 012301. 648

592 (3) Wijerathne, B.; Liao, T.; Ostrikov, K.; Sun, Z. Bioinspired 649
593 Robust Mechanical Properties for Advanced Materials. *Small Struct.* 650
594 **2022**, *3* (9), 2100228. 651

595 (4) Mei, J.; Liao, T.; Peng, H.; Sun, Z. Bioinspired Materials for 652
596 Energy Storage. *Small Methods* **2022**, *6* (2), 2101076. 653

597 (5) Barthlott, W.; Schimmel, T.; Wiersch, S.; Koch, K.; Brede, M.; 654
598 Barczewski, M.; Walheim, S.; Weis, A.; Kaltenmaier, A.; Leder, A.; 655
599 Bohn, H. F. The *Salvinia* Paradox: Superhydrophobic Surfaces with 656
600 Hydrophilic Pins for Air Retention Under Water. *Adv. Mater.* **2010**, 657
601 *22* (21), 2325–2328. 658

602 (6) Silvestre, M. L. T.; Zambrano, A. R. C.; Linis, V. C.; Janairo, J. I. 659
603 B. Surface morphological and wetting characterization of the 660
604 hydrophobic and superhydrophobic leaves of *Pistia stratiotes* L., 661
605 *Salvinia molesta* D.Mitch., *Ananas comosus* (L.) Merr. and *Dyckia* 662
606 *platyphylla* L.B. Smith for bioinspired oil adsorbent materials. *IOP* 663
607 *Conf Ser. Mater. Sci. Eng.* **2019**, *479* (1), 012003. 664

608 (7) Zhang, D.; Ji, J.; Yan, C.; Zhang, J.; An, Z.; Shen, Y. Research 665
609 advances in bio-inspired superhydrophobic surface: Bridging nature to 666
610 practical applications. *J. Ind. Eng. Chem.* **2024**, *140*, 20–46. 667

611 (8) Speichermann-Jägel, L.; Dullenkopf-Beck, S.; Droll, R.; Gandyra, 668
612 D.; Barczewski, M.; Walheim, S.; Schimmel, T. Stable Air Retention 669
613 under Water on Artificial *Salvinia* Surfaces Enabled by the Air Spring 670
614 Effect: The Importance of Geometrical and Surface-Energy Barriers, 671
615 and of the Air Spring Height. *Adv. Mater. Interfaces* **2024**, *11* (36), 672
616 2400400. 673

617 (9) Huang, C.; Qian, L. Effect of groove sizes on the dynamic 674
618 behavior of droplets impacting grooved cylindrical superhydrophobic 675
619 surfaces. *Int. J. Multiphase Flow* **2025**, *185*, 105134. 676

620 (10) Tian, F.; Yu, R.; Zuo, X.; Zhang, M.; Zhao, L.; Zhao, X.; Yang, 677
621 X.; Zhang, Y.; Huang, W. Bioinspired 3D printed elastomer-hydrogel 678
622 hybrid with robust interfacial bonding for flexible iontronics. *Chem. 679*
623 *Eng. J.* **2024**, *489*, 151164. 680

624 (11) Sparks, S. S.; Obando, A. G.; Li, Y.; Chen, S.; Yao, S.; Qiu, K. 681
625 3D-printed biomimetic and bioinspired soft actuators. *IET Cyber-Syst.* 682
626 *Robot.* **2024**, *6* (4), No. e70001. 683

627 (12) Xu, Y.; Mao, H.; Liu, C.; Du, Z.; Yan, W.; Yang, Z.; Partanen, 684
628 J.; Chen, Y. Hopping Light Vat Photopolymerization for Multiscale 685
629 Fabrication. *Small* **2023**, *19* (11), 2205784. 686

630 (13) Shi, Z.; Zhang, Z.; Huang, W.; Zeng, H.; Mandić, V.; Hu, X.; 687
631 Zhao, L.; Zhang, X. Spontaneous Adsorption-Induced *Salvinia*-like 688
632 Micropillars with High Adhesion. *Langmuir* **2021**, *37* (22), 6728– 689
633 6735. 690

634 (14) Yang, Y.; Li, X.; Zheng, X.; Chen, Z.; Zhou, Q.; Chen, Y. 3D- 691
635 Printed Biomimetic Super-Hydrophobic Structure for Microdroplet 692
636 Manipulation and Oil/Water Separation. *Adv. Mater.* **2018**, *30* (9), 693
637 1704912. 694

638 (15) Sikulskyi, S.; Srinivasaraghavan Govindarajan, R.; Stark, T.; 695
639 Ren, Z.; Reed, N.; Kim, D. Two-photon polymerized wetting 696
640 morphologies for tunable external and internal electrode micro- 697
641 patterning. *Addit. Manuf.* **2024**, *86*, 104220. 698

642 (16) Lantada, A. D.; Hengsbach, S.; Bade, K. Lotus-on-chip: 699
643 computer-aided design and 3D direct laser writing of bioinspired 700
644 surfaces for controlling the wettability of materials and devices. 701
645 *Bioinspiration Biomimetics* **2017**, *12* (6), 066004. 702

646 (17) He, Q.; Tang, T.; Zeng, Y.; Iradukunda, N.; Bether, B.; Li, X.; 703
647 Yang, Y. Review on 3D Printing of Bioinspired Structures for Surface/ 704
648 Interface Applications. *Adv. Funct. Mater.* **2024**, *34* (11), 2309323. 705

649 (18) Ren, Z.; Yang, Z.; Srinivasaraghavan Govindarajan, R.; Madiyar, 706
650 F.; Cheng, M.; Kim, D.; Jiang, Y. Two-Photon Polymerization of 707
651 Butterfly Wing Scale Inspired Surfaces with Anisotropic Wettability. 708
652 *ACS Appl. Mater. Interfaces* **2024**, *16* (7), 9362–9370. 709

653 (19) Jiang, L. J.; Campbell, J. H.; Lu, Y. F.; Bernat, T.; Petta, N. 710
654 Direct Writing Target Structures by Two-Photon Polymerization. 711
655 *Fusion Sci. Technol.* **2016**, *70* (2), 295–309. 712

656 (20) Jiang, L. J.; Maruo, S.; Osellame, R.; Xiong, W.; Campbell, J. 713
657 H.; Lu, Y. F. Femtosecond laser direct writing in transparent materials 714
658 based on nonlinear absorption. *MRS Bull.* **2016**, *41* (12), 975–983. 715

659 (21) Tricinci, O.; Terencio, T.; Mazzolai, B.; Pugno, N. M.; Greco, 716
660 F.; Mattoli, V. 3D Micropatterned Surface Inspired by *Salvinia molesta* 717
661 via Direct Laser Lithography. *ACS Appl. Mater. Interfaces* **2015**, *7* (46), 25560–25567. 718

662 (22) Tricinci, O.; Pignatelli, F.; Mattoli, V. 3D Micropatterned 719
663 Functional Surface Inspired by *Salvinia molesta* via Direct Laser 720
664 Lithography for Air Retention and Drag Reduction. *Adv. Funct. Mater.* 721
665 **2023**, *33* (39), 2206946. 722

666 (23) Sun, Y.; Guo, Z. Recent advances of bioinspired functional 723
667 materials with specific wettability: from nature and beyond nature. 724
668 *Nanoscale Horiz.* **2019**, *4* (1), 52–76. 725

669 (24) Chi, J.; Zhang, X.; Wang, Y.; Shao, C.; Shang, L.; Zhao, Y. Bio- 726
670 inspired wettability patterns for biomedical applications. *Mater. Horiz.* 727
671 **2021**, *8* (1), 124–144. 728

672 (25) Shi, Z.; Zeng, H.; Yuan, Y.; Shi, N.; Wen, L.; Rong, H.; Zhu, D.; 729
673 Hu, L.; Ji, L.; Zhao, L.; Zhang, X.; et al. Constructing Super- 730
674 hydrophobicity by Self-Assembly of SiO₂@Polydopamine Core-Shell 731
675 Nanospheres with Robust Oil-Water Separation Efficiency and Anti- 732
676 Corrosion Performance. *Adv. Funct. Mater.* **2023**, *33* (16), 2213042. 733

677 (26) Zhu, D.; Liu, W.; Zhao, R.; Shi, Z.; Tan, X.; Zhang, Z.; Li, Y.; Ji, 734
678 L.; Zhang, X. Microscopic insights into hydrophobicity of cerium 735
679 oxide: Effects of crystal orientation and lattice constant. *J. Mater. Sci. 736*
680 *Technol.* **2022**, *109*, 20–29. 737

681 (27) Zhu, D.; Hu, C.; Zhao, R.; Tan, X.; Li, Y.; Mandić, V.; Shi, Z.; 738
682 Zhang, X. Fabrication of cerium oxide films with thickness and 739
683 hydrophobicity gradients. *Surf. Coat. Technol.* **2022**, *430*, 127985. 740

684 (28) Zhu, D.; Tan, X.; Ji, L.; Shi, Z.; Zhang, X. Preparation of 741
685 transparent and hydrophobic cerium oxide films with stable 742
686 mechanical properties by magnetron sputtering. *Vacuum* **2021**, *184*, 743
687 109888. 744

688 (29) Sun, Y.; Wang, Y.; Sui, X.; Liang, W.; He, L.; Wang, F.; Yang, B. 745
689 Biomimetic Multiwalled Carbon Nanotube/Polydimethylsiloxane 746
690 Nanocomposites with Temperature-Controlled, Hydrophobic, and 747
691 Icephobic Properties. *ACS Appl. Nano Mater.* **2021**, *4* (10), 10852– 748
692 10863. 749

693 (30) Li, D.; Liang, X.; Li, S.; Wang, T.; Han, G.; Guo, Z. Bioinspired 750
694 textile with dual-stimuli responsive wettability for body moisture 751
695 management and signal expression. *New J. Chem.* **2021**, *45* (27), 752
696 12193–12202. 753

697 (31) Wu, Y.; Sun, R.; Ren, J.; Zhang, S.; Wu, S. Bioinspired Dynamic 754
698 Camouflage in Programmable Thermochromic-Patterned Photonic 755
699 Films for Sophisticated Anti-Counterfeiting. *Adv. Funct. Mater.* **2023**, 756
700 *33* (7), 2210047. 757

701 (32) Yang, K.; Chen, S.; Liu, Y.; Liang, Y.; Zhang, Z.; Liu, C. 758
702 Adhesion switchable transition on bio-inspired Janus surface for 759
703 multi-directional droplet manipulation. *Chem. Eng. J.* **2024**, *496*, 760
704 154254. 761

705 (33) Wei, C.; Zong, Y.; Jiang, Y. Bioinspired Wire-on-Pillar 762
706 Magneto-Responsive Superhydrophobic Arrays. *ACS Appl. Mater. 763*
707 *Interfaces* **2023**, *15* (20), 24989–24998. 764

708

709 (34) Wang, L.; Zhang, C.; Wei, Z.; Xin, Z. Bioinspired Fluoride-Free
710 Magnetic Microcilia Arrays for Anti-Icing and Multidimensional
711 Droplet Manipulation. *ACS Nano* **2024**, *18* (1), 526–538.

712 (35) Wang, J.; Gao, W.; Zhang, H.; Zou, M.; Chen, Y.; Zhao, Y.
713 Programmable wettability on photocontrolled graphene film. *Sci. Adv.*
714 **2018**, *4* (9), No. eaat7392.

715 (36) Yilmaz, M.; Kuloglu, H. B.; Erdogan, H.; Cetin, S. S.; Yavuz, M.
716 S.; Ince, G. O.; Demirel, G. Light-driven unidirectional liquid motion
717 on anisotropic gold nanorod arrays. *Adv. Mater. Interfaces* **2015**, *2*
718 (12), 1500226.

719 (37) Shao, H.; Yin, K.; Xu, N.; Zhang, Y.; Shi, Z.; Zhou, Y.; Luo, Z.;
720 Wang, D.; Deng, X. Adaptive Surfaces with Stimuli-Responsive
721 Wettability: From Tailoring to Applications. *ACS Nano* **2025**, *19* (7),
722 6729–6747.

723 (38) Leverant, C. J.; Zhang, Y.; Cordoba, M. A.; Leo, S.-Y.;
724 Charpota, N.; Taylor, C.; Jiang, P. Macroporous Superhydrophobic
725 Coatings with Switchable Wettability Enabled by Smart Shape
726 Memory Polymers. *Adv. Mater. Interfaces* **2021**, *8* (13), 2002111.

727 (39) Okada, K.; Miura, Y.; Chiya, T.; Tokudome, Y.; Takahashi, M.
728 Thermo-responsive wettability via surface roughness change on
729 polymer-coated titanate nanorod brushes toward fast and multi-
730 directional droplet transport. *RSC Adv.* **2020**, *10* (47), 28032–28036.

731 (40) Zheng, J.; Yang, B.; Wang, H.; Zhou, L.; Zhang, Z.; Zhou, Z.
732 Temperature-Responsive Femtosecond Laser-Ablated Ceramic Surfa-
733 ces with Switchable Wettability for On-Demand Droplet Transfer.
734 *ACS Appl. Mater. Interfaces* **2023**, *15* (10), 13740–13752.

735 (41) Zheng, L.; Li, H.; Huang, W.; Lai, X.; Zeng, X. Light Stimuli-
736 Responsive Superhydrophobic Films for Electric Switches and Water-
737 Droplet Manipulation. *ACS Appl. Mater. Interfaces* **2021**, *13* (30),
738 36621–36631.

739 (42) Park, S.; Bang, J.; So, H. 3D printing-assisted and magnetically-
740 actuated superhydrophobic surfaces for droplet control. *Surf. Interfaces*
741 **2023**, *37*, 102678.

742 (43) Hanosh, S.; Lekshmi, B. S.; Varanakkottu, S. N.; George, S. D.
743 Simple Fabrication of PDMS-Grafted Hydrophobic Iron Oxide
744 Particles for Oil–Water Separation and Stimuli-Responsive Liquid
745 Marbles. *ACS Appl. Polym. Mater.* **2023**, *5* (5), 3507–3514.

746 (44) Chen, G.; Dai, Z.; Li, S.; Huang, Y.; Xu, Y.; She, J.; Zhou, B.
747 Magnetically Responsive Film Decorated with Microcilia for Robust
748 and Controllable Manipulation of Droplets. *ACS Appl. Mater.*
749 *Interfaces* **2021**, *13* (1), 1754–1765.

750 (45) Su, Y.; Fan, X.; Zhu, S.; Li, Z.; Bian, Y.; Li, C.; Zhang, Y.; Liu,
751 L.; Hu, Y.; Li, J.; Wu, D. Magnetism-Actuated Superhydrophobic
752 Flexible Microclaw: From Spatial Microdroplet Maneuvering to
753 Cross-Species Control. *ACS Appl. Mater. Interfaces* **2021**, *13* (29),
754 35165–35172.

755 (46) Jia, Z.; Chang, C.; Hu, S.; Li, J.; Ge, M.; Dong, W.; Ma, H.
756 Artificial intelligence-enabled multipurpose smart detection in active-
757 matrix electrowetting-on-dielectric digital microfluidics. *Microsyst.*
758 *Nanoeng.* **2024**, *10* (1), 139.

759 (47) Tan, J.; Fan, Z.; Zhou, M.; Liu, T.; Sun, S.; Chen, G.; Song, Y.;
760 Wang, Z.; Jiang, D. Orbital Electrowetting-on-Dielectric for Droplet
761 Manipulation on Superhydrophobic Surfaces. *Adv. Mater.* **2024**, *36*
762 (24), 2314346.

763 (48) Cao, J.; Zeng, X.; Shen, S.; Feng, H.; Qin, X.; Jin, M.; Liu, Z.;
764 Yan, Z.; Shui, L. Replaceable Dielectric Film for Low-Voltage and
765 High-Performance Electrowetting-Based Digital Microfluidics. *Lang-*
766 *muir* **2023**, *39* (29), 10189–10198.

767 (49) Li, Y.; Li, J.; Liu, L.; Yan, Y.; Zhang, Q.; Zhang, N.; He, L.; Liu,
768 Y.; Zhang, X.; Tian, D.; et al. Switchable Wettability and Adhesion of
769 Micro/Nanostructured Elastomer Surface via Electric Field for
770 Dynamic Liquid Droplet Manipulation. *Adv. Sci.* **2020**, *7* (18),
771 2000772.

772 (50) Jun, K.; Kim, D.; Ryu, S.; Oh, I.-K. Surface Modification of
773 Anisotropic Dielectric Elastomer Actuators with Uni- and Bi-axially
774 Wrinkled Carbon Electrodes for Wettability Control. *Sci. Rep.* **2017**, *7*
775 (1), 6091.

776 (51) Sikulskyi, S.; Ren, Z.; Mekonnen, D. T.; Holyoak, A.;
777 Srinivasaraghavan Govindarajan, R.; Kim, D. Additively manufactured
unimorph dielectric elastomer actuators: Design, materials, and
778 fabrication. *Front. Rob. AI* **2022**, *9*, 1034914. 779

(52) Guo, Y.; Liu, L.; Liu, Y.; Leng, J. Review of Dielectric Elastomer 780
Actuators and Their Applications in Soft Robots. *Adv. Intell. Syst.* **2021**, *3* (10), 2000282. 782

(53) Wang, H.; Yang, L.; Zhang, X.; Ang, M. H. Effect of different 783
prestretching index and preloading on actuation behaviors of 784
dielectric elastomer actuator. *J. Mater. Res. Technol.* **2021**, *15*, 785
4064–4073. 786

(54) Iannarelli, A.; Niasar, M. G.; Ross, R. The effects of static pre- 787
stretching on the short and long-term reliability of dielectric elastomer 788
actuators. *Smart Mater. Struct.* **2019**, *28* (12), 125014. 789

(55) Wiranata, A.; Ishii, Y.; Hosoya, N.; Maeda, S. Simple and 790
Reliable Fabrication Method for Polydimethylsiloxane Dielectric 791
Elastomer Actuators Using Carbon Nanotube Powder Electrodes. 792
Adv. Eng. Mater. **2021**, *23* (6), 2001181. 793

(56) de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H. High- 794
cycle electromechanical aging of dielectric elastomer actuators with 795
carbon-based electrodes. *Smart Mater. Struct.* **2018**, *27* (7), 074002. 796

(57) Wang, D.; Wang, J.; Shen, Z.; Jiang, C.; Zou, J.; Dong, L.; Fang, 797
N. X.; Gu, G. Soft Actuators and Robots Enabled by Additive 798
Manufacturing. *Annu. Rev. Control. Rob. Auton. Syst.* **2023**, *6*, 31–63. 799

(58) Guo, Z.; Yu, P.; Li, B.; Xuan, F.; Zhao, J. Direct wire writing 800
technique benefitting the flexible electronics. *Virtual Phys. Prototyping* **2024**, *19* (1), No. e2286514. 802

(59) Mansour, S. A.; Elsad, R. A.; Izzularab, M. A. Dielectric 803
properties enhancement of PVC nanodielectrics based on synthesized 804
ZnO nanoparticles. *J. Polym. Res.* **2016**, *23* (5), 85. 805

(60) Shrestha, M.; Asundi, A.; Lau, G.-K. Smart Window Based on 806
Electric Unfolding of Microwrinkled TiO₂ Nanometric Films. *ACS* **2018**, *5* (8), 3255–3262. 808

(61) Li, Y.; Park, S.; McLamb, M.; Lata, M.; Schöche, S.; Childers, 809
D.; Aggarwal, I. D.; Poutous, M. K.; Boreman, G.; Hofmann, T. UV to 810
NIR optical properties of IP-Dip, IP-L, and IP-S after two-photon 811
polymerization determined by spectroscopic ellipsometry. *Opt. Mater.* **2019**, *9* (11), 4318–4328. 813

(62) Feigl, G.; Zaugg, D.; Hinum-Wagner, J. W.; Hörmann, S. M.; 814
Bergmann, A. Refractive index characterization and modeling of 815
polymerization-dependent refractive index variations in two-photon 816
polymerization resins. *Opt. Continuum* **2025**, *4* (5), 996–1005. 817