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Abstract

Image-based BRDF matching is a special case of inverse rendering, where the parameters of a BRDF model are

optimized based on a photograph of a homogeneous material under natural lighting. Using a perceptual image

metric, directly optimizing the difference between a rendering and a reference image can provide a close visual

match between the model and reference material. However, perceptual image metrics rely on image-features and

thus require full resolution renderings that can be costly to produce especially when embedded in an non-linear

search procedure for the optimal BRDF parameters. Using a pixel-based metric, such as the square difference,

can approximate the image error from a small subset of pixel. Unfortunately, pixel-based metrics are often a poor

approximation of human perception of the material’s appearance. We show that comparable quality results to a

perceptual metric can be obtained using an adaptive pixel-based metric that is optimized based on the appearance

similarity of the material. As the core of our adaptive metric is pixel-based, our method is amendable to image-

subsampling, thereby greatly reducing the computational cost.

1. Introduction

Matching the appearance of an isotropic homogeneous ma-

terial with an analytic BRDF model is not straightforward. It

is extremely unlikely that there exists a set of parameter val-

ues that will cause the model to behave exactly like the real

reflection function of an object. Even if the material’s BRDF

has been exhaustively measured, directly minimizing the dif-

ference (according to some predetermined cost function) be-

tween measured BRDF samples and the model’s predictions

does not always produce a perceptually close match [BP20].

Furthermore, it may be the case that the only available in-

formation about the BRDF of a material is one or more pho-

tographs of an object composed of the material under natural

lighting. If scene properties such as object shape and envi-

ronment lighting are known, then the process of reproduc-

ing the material’s appearance with a BRDF model becomes

an inverse rendering problem where the parameters of the

appearance model are optimized to minimize the difference

between reference images of the material and corresponding

synthesized images using the analytic model. Using a per-

ceptual image-difference metric instead of a simple squared

error typically results in a more faithful reproduction of the

visual appearance of the material. Matching the appearance

from a photograph based on a perceptual metric is com-

putationally expensive because a perceptual metric gauges

the image quality based on image features. Consequently, in

each step of the non-linear search algorithm (for the optimal

BRDF parameters), the entire scene must be rendered. Fur-

thermore, perceptual image metrics often result in a more

difficult to navigate error-landscape.

In this paper we investigate a two-stage adaptive metric

for BRDF matching inspired by [BP20]. In our first stage, we

will use a pixel-wise adaptive metric to generate candidate

BRDF parameters by inverse rendering. In the second stage,

we use a perceptual metric to select the best candidate based

on the visual difference as predicted by the perceptual image

difference metric. We will show that the first stage can be

greatly accelerated by approximating the pixel-wise metric

on a small subset of pixels with out adversely affecting the

quality of the BRDF match. Furthermore, our experiments

indicate that it is essential to adapt pixel-based metrics to

the materials and the scene, giving clue to why an L2 metric

alone is not adequate for accurate BRDF matching.

2. Related Work

Inverse Rendering BRDF matching can be seen as a spe-

cialized application of inverse rendering which optimizes

any subset of scene parameters such that the difference be-

tween the reference photographs and corresponding render-

ings is minimized [Mar98]. We refer to [PP03] for a gen-
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does. Figure 2 shows the relationship between γ and the

CSSIM error for three materials.

The above observation yields the following potential two-

stage algorithm: first, for each γ value in some range (i.e.,

[1.0,1.1, · · · ,2.9,3.0] in our implementation), optimize the

BRDF parameters with C as the cost function. Then, choose

the resulting BRDF match with the lowest CSSIM error from

among all the γ’s checked. The computational cost of this

algorithm exceeds directly using CSSIM as our cost function

because C requires the same rendering costs as optimizing

with CSSIM directly, but the pixel-wise nature of C presents

a potential solution.

Subsampling We find that performing our first-stage opti-

mizations of C over a subset of the pixels in A and B per-

forms similarly to using all the pixels in the images. This

makes our strategy practical, as we can drastically reduce the

computation cost of our 21 non-linear optimizations with C

by rendering only a fraction of the pixels, and then we ren-

der the all the BRDF candidates at full resolution and use

CSSIM to select the best match.

We generate our subset of pixels once per scene, and reuse

it for all first-stage optimizations. We use a Monte Carlo im-

portance sampling strategy: we select pixel positions pro-

portionally to the pixel’s intensity in the reference photo-

graph, and weight each pixels’ contribution to the error by

one over the PDF of choosing that pixel, to avoid biasing.

The key idea is that errors are most likely to be significant

in bright areas. Figure 3 compares our BRDF fitting results

on 6 selected materials with 256 samples compared to a full

image sampling. The inverse rendering, as well as visualiza-

tion, was performed under lighting used in the figure.

The speed-up of this subsampling scheme is directly pro-

portional to how many pixels we need to render. The ideal

number of samples depends on the scene properties and

lighting. We found that 256 pixels was a ”safe" choice. How-

ever, we empirically found that even at only 32 samples good

results can still be obtained. Table 1 summarizes the average

CSSIM error of the BRDF fits obtained with our subsam-

pling technique over the 6 materials in Figure 3 under three

different lighting conditions.

With 256 pixels this technique gives a factor 10 speed-up

compared with directly optimizing CSSIM. The cost of our

first stage is 21 optimizations at only 1
256 of the rendering

cost. The fixed cost of 21 full resolution renders and CSSIM

on those images are negligible.

4. Discussion

We validate our two-stage adaptive metric for BRDF match-

ing using synthetic target photographs of a material from the

MIT-MERL BRDF database [MPBM03] of spherical shapes

under known natural lighting. Figure 4 shows results for our

method for five materials matched under two lighting con-

ditions and visualized under a third. Note that our two-stage

Table 1: Average CSSIM error of our two-stage inverse-

rendering results over 6 selected materials (Figure 3) under

three different lighting conditions and for varying number of

samples.

32 64 256 Full Image

Grace Cathedral 0.0735 0.0656 0.0631 0.6282

Uffizi Gallery 0.0684 0.0579 0.0532 0.6115

Eucalyptus Grove 0.0449 0.0410 0.0410 0.0436

approach not only outperforms a naive L2 based approach,

but it is also considerably faster. We observe that while the

lighting under which the inverse rendering is performed has

a clear impact on the BRDF match, our method is much

more robust to changes in lighting.

We observed that the optimal γ value depends not only on

the material and lighting as in [BP20] but also on the sub-

set of pixels selected for our stage one BRDF fits. For 32

pixel rendering under the Grace Cathedral light probe the

effect was especially noticeable. This remained true when

we added a clamping to a [0,1] range, though the visual im-

pact was lessened. From this we conclude that the second

stage of our algorithm helps regularize the solutions from

our first stage which may be biased towards more specular

or diffuse dominated solutions depending on the particular

pixels chosen.

We also tested the impact of speeding up the inverse ren-

dering process by reducing the resolution of our scene. Fig-

ure 5 shows the results of brute force CSSIM optimization

at different resolutions, all rendered at the same resolution.

Sampling a small fraction of the image to fit using our vari-

able metric and then choosing the best BRDF fit at full reso-

lution proved not only faster than fitting at low resolution, it

also gave more accurate results.

5. Conclusion

The method described in [BP20] can extend to appearance

matching, and we find that the optimal γ varies with material

and scene properties. We found that using even a small sam-

pling of pixels in an HDR image, results of similar quality to

directly optimizing the full image with a perceptual metric

can be obtained in only a fraction of the time. This perhaps

implies that more measurements are not always the answer

to better BRDF acquisition; the metric(s) used should also

be considered. Using less data with multiple metrics might

improve BRDF capture in the wild.
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Figure 3: Comparison between our two-stage inverse rendering approach executed on the full image (top row) versus only 256

selected pixels (bottom row) on a selection of 6 materials performed under the lighting shown. The difference image (inset) and

CSSIM error (middle row) are between the full image solution and the corresponding importance sampled solution.
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Figure 4: The adverse effect of suboptimal lighting demon-

strated on our method (with 256 samples) compared with L2

under the Uffizi Gallery and Grace Cathedral lighting.
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