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Abstract

Image-based BRDF matching is a special case of inverse rendering, where the parameters of a BRDF model are
optimized based on a photograph of a homogeneous material under natural lighting. Using a perceptual image
metric, directly optimizing the difference between a rendering and a reference image can provide a close visual
match between the model and reference material. However, perceptual image metrics rely on image-features and
thus require full resolution renderings that can be costly to produce especially when embedded in an non-linear
search procedure for the optimal BRDF parameters. Using a pixel-based metric, such as the square difference,
can approximate the image error from a small subset of pixel. Unfortunately, pixel-based metrics are often a poor
approximation of human perception of the material’s appearance. We show that comparable quality results to a
perceptual metric can be obtained using an adaptive pixel-based metric that is optimized based on the appearance
similarity of the material. As the core of our adaptive metric is pixel-based, our method is amendable to image-
subsampling, thereby greatly reducing the computational cost.

1. Introduction

Matching the appearance of an isotropic homogeneous ma-
terial with an analytic BRDF model is not straightforward. It
is extremely unlikely that there exists a set of parameter val-
ues that will cause the model to behave exactly like the real
reflection function of an object. Even if the material’s BRDF
has been exhaustively measured, directly minimizing the dif-
ference (according to some predetermined cost function) be-
tween measured BRDF samples and the model’s predictions
does not always produce a perceptually close match [BP20].
Furthermore, it may be the case that the only available in-
formation about the BRDF of a material is one or more pho-
tographs of an object composed of the material under natural
lighting. If scene properties such as object shape and envi-
ronment lighting are known, then the process of reproduc-
ing the material’s appearance with a BRDF model becomes
an inverse rendering problem where the parameters of the
appearance model are optimized to minimize the difference
between reference images of the material and corresponding
synthesized images using the analytic model. Using a per-
ceptual image-difference metric instead of a simple squared
error typically results in a more faithful reproduction of the
visual appearance of the material. Matching the appearance
from a photograph based on a perceptual metric is com-
putationally expensive because a perceptual metric gauges
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the image quality based on image features. Consequently, in
each step of the non-linear search algorithm (for the optimal
BRDF parameters), the entire scene must be rendered. Fur-
thermore, perceptual image metrics often result in a more
difficult to navigate error-landscape.

In this paper we investigate a two-stage adaptive metric
for BRDF matching inspired by [BP20]. In our first stage, we
will use a pixel-wise adaptive metric to generate candidate
BRDF parameters by inverse rendering. In the second stage,
we use a perceptual metric to select the best candidate based
on the visual difference as predicted by the perceptual image
difference metric. We will show that the first stage can be
greatly accelerated by approximating the pixel-wise metric
on a small subset of pixels with out adversely affecting the
quality of the BRDF match. Furthermore, our experiments
indicate that it is essential to adapt pixel-based metrics to
the materials and the scene, giving clue to why an L; metric
alone is not adequate for accurate BRDF matching.

2. Related Work

Inverse Rendering BRDF matching can be seen as a spe-
cialized application of inverse rendering which optimizes
any subset of scene parameters such that the difference be-
tween the reference photographs and corresponding render-
ings is minimized [Mar98]. We refer to [PP03] for a gen-
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eral overview of inverse rendering methods, and to [WKI15]
and [DRSO08] for an overview geared towards appearance
modeling. The majority of inverse rendering methods rely
on a squared image difference metric in order to use fast
linear or non-linear optimization methods often accompa-
nied with hand-crafted regularization terms to local minima
to avoid ambiguities in the solution space (e.g. [DCP* 14,
LN16,BM12]). However, some researchers have used dif-
ferent image difference metrics. For example, Khungurn et
al. [KSZ*15] avoid the need for exact per-pixel matching
of photographs of fabric and renderings when matching the
parameters of micro-appearance models by comparing the
error on the average of the images. Another example is
Shacked and Liskinski’s [SLO1] lighting design by inverse
rendering with a custom perceptual error metric.

CSSIM  We have opted to use Color Structural Similarity
Metric (CSSIM) [LPU* 13] as the whole-image metric due to
its proven effectiveness for appearance modeling [HFM16,
BP20].

Variable Error Metric Bieron and Peers [BP20] intro-
duced a novel adaptive BRDF fitting metric for reflectance
data. They propose a two stage approach where in the first
stage an adaptive metric with a free parameter 7 is used to
fit BRDF parameters to match densely sampled reflectance
measurements, generating candidate BRDF fits. In the sec-
ond stage, the best BRDF fit from among the candidates is
selected according to the perceptual difference between ren-
derings of the measured reflectance and the BRDF fit. Build-
ing on this approach, we consider the problem of fitting a
BRDF model to a target image through inverse rendering
without access to the underlying reflectance of the target ma-
terial.

3. Method

Cost Function We desire a pixel-wise image-to-image com-
parison metric that does not rely on image structure in any
way (i.e., the error for each pixel is independent of all neigh-
boring pixels). Thus, we want an cost function C that can
be expressed in terms of the difference between correspond-
ing pixels p in A and B. For this we borrow the compression
function used in [BP20] and apply it to images. This gives
us

1 1.9
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which can also be seen as the squared difference of
tonemapped images without clamping to [0, 1]. It is not the
case that the best BRDF fit corresponds with the tonemap-
ping function used for displaying the images. As in [BP20]
the metric tends to give BRDF matches with sharper specular
highlights and brighter (often miscolored) diffuse reflectance
for low values of . For higher y values, the BRDF matches

exhibit more color fidelity but blurry highlights.

Two-Stage Approach The first question we must answer
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Figure 1: Comparison between brute force CSSIM optimiza-
tion and our two-stage approach using Eucalyptus Grove
lighting. While the two-stage approach does not achieve the
optimal CSSIM error, the error and appearance are close.
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Figure 2: CSSIM error versus Y value plotted for Gold
Metallic Paint 3, Aluminium, and Red Metallic Paint. The
minimum CSSIM error is circled for each graph.

is whether or not for some 7 our cost function C(A, B) will
give a BRDF match which is close to the result of directly
optimizing a perceptual metric P(A,B), where P is CSSIM
in our case. We observe that for some Y optimizing to mini-
mize C gives a good match to directly minimizing P (we use
Matlab’s patternsearch for both). Figure 1 shows the results
of minimizing CSSIM directly compared with the choosing
BRDF match with an optimal .

Secondly, we examine whether the 7y that leads to the low-
est CSSIM error varies between materials. We find that it
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does. Figure 2 shows the relationship between y and the
CSSIM error for three materials.

The above observation yields the following potential two-
stage algorithm: first, for each y value in some range (i.e.,
[1.0,1.1,---,2.9,3.0] in our implementation), optimize the
BRDF parameters with C as the cost function. Then, choose
the resulting BRDF match with the lowest CSSIM error from
among all the y’s checked. The computational cost of this
algorithm exceeds directly using CSSIM as our cost function
because C requires the same rendering costs as optimizing
with CSSIM directly, but the pixel-wise nature of C presents
a potential solution.

Subsampling We find that performing our first-stage opti-
mizations of C over a subset of the pixels in A and B per-
forms similarly to using all the pixels in the images. This
makes our strategy practical, as we can drastically reduce the
computation cost of our 21 non-linear optimizations with C
by rendering only a fraction of the pixels, and then we ren-
der the all the BRDF candidates at full resolution and use
CSSIM to select the best match.

We generate our subset of pixels once per scene, and reuse
it for all first-stage optimizations. We use a Monte Carlo im-
portance sampling strategy: we select pixel positions pro-
portionally to the pixel’s intensity in the reference photo-
graph, and weight each pixels’ contribution to the error by
one over the PDF of choosing that pixel, to avoid biasing.
The key idea is that errors are most likely to be significant
in bright areas. Figure 3 compares our BRDF fitting results
on 6 selected materials with 256 samples compared to a full
image sampling. The inverse rendering, as well as visualiza-
tion, was performed under lighting used in the figure.

The speed-up of this subsampling scheme is directly pro-
portional to how many pixels we need to render. The ideal
number of samples depends on the scene properties and
lighting. We found that 256 pixels was a ”safe" choice. How-
ever, we empirically found that even at only 32 samples good
results can still be obtained. Table 1 summarizes the average
CSSIM error of the BRDF fits obtained with our subsam-
pling technique over the 6 materials in Figure 3 under three
different lighting conditions.

With 256 pixels this technique gives a factor 10 speed-up
compared with directly optimizing CSSIM. The cost of our
first stage is 21 optimizations at only ﬁ of the rendering
cost. The fixed cost of 21 full resolution renders and CSSIM
on those images are negligible.

4. Discussion

We validate our two-stage adaptive metric for BRDF match-
ing using synthetic target photographs of a material from the
MIT-MERL BRDF database [MPBMO3] of spherical shapes
under known natural lighting. Figure 4 shows results for our
method for five materials matched under two lighting con-
ditions and visualized under a third. Note that our two-stage
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Table 1: Average CSSIM error of our two-stage inverse-
rendering results over 6 selected materials (Figure 3) under
three different lighting conditions and for varying number of
samples.

32 64 256 Full Image

Grace Cathedral 0.0735  0.0656  0.0631 0.6282
Uffizi Gallery 0.0684  0.0579  0.0532 0.6115
Eucalyptus Grove | 0.0449  0.0410 0.0410 0.0436

approach not only outperforms a naive L, based approach,
but it is also considerably faster. We observe that while the
lighting under which the inverse rendering is performed has
a clear impact on the BRDF match, our method is much
more robust to changes in lighting.

We observed that the optimal y value depends not only on
the material and lighting as in [BP20] but also on the sub-
set of pixels selected for our stage one BRDF fits. For 32
pixel rendering under the Grace Cathedral light probe the
effect was especially noticeable. This remained true when
we added a clamping to a [0, 1] range, though the visual im-
pact was lessened. From this we conclude that the second
stage of our algorithm helps regularize the solutions from
our first stage which may be biased towards more specular
or diffuse dominated solutions depending on the particular
pixels chosen.

We also tested the impact of speeding up the inverse ren-
dering process by reducing the resolution of our scene. Fig-
ure 5 shows the results of brute force CSSIM optimization
at different resolutions, all rendered at the same resolution.
Sampling a small fraction of the image to fit using our vari-
able metric and then choosing the best BRDF fit at full reso-
lution proved not only faster than fitting at low resolution, it
also gave more accurate results.

5. Conclusion

The method described in [BP20] can extend to appearance
matching, and we find that the optimal y varies with material
and scene properties. We found that using even a small sam-
pling of pixels in an HDR image, results of similar quality to
directly optimizing the full image with a perceptual metric
can be obtained in only a fraction of the time. This perhaps
implies that more measurements are not always the answer
to better BRDF acquisition; the metric(s) used should also
be considered. Using less data with multiple metrics might
improve BRDF capture in the wild.
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Figure 3: Comparison between our two-stage inverse rendering approach executed on the full image (top row) versus only 256
selected pixels (bottom row) on a selection of 6 materials performed under the lighting shown. The difference image (inset) and
CSSIM error (middle row) are between the full image solution and the corresponding importance sampled solution.
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Figure 4: The adverse effect of suboptimal lighting demon-
strated on our method (with 256 samples) compared with L,
under the Uffizi Gallery and Grace Cathedral lighting.
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