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A B S T R A C T

Plant canopies are integrated units that coordinate their functional (e.g., foliar biochemistry) and structural 
properties. This coordination affects remote sensing observations of canopy re�ectance and solar-induced 
chlorophyll �uorescence (SIF). One key canopy structural property is leaf angle. Despite the fact that radia
tive transfer models have shown the crucial role of leaf angle in modulating remote sensing signals, methodo
logical and technological barriers have prevented detailed investigations of how leaf angle covaries with canopy 
function and remote sensing observations. In this study, we employ a novel uncrewed aerial system (UAS) called 
FluoSpecAir to study the spatial patterns in far-red (FR) SIF (SIFobs,FR), near-infrared re�ectance and radiance of 
vegetation (NIRV and NIRVR), normalized difference vegetation index (NDVI), and chlorophyll:carotenoid index 
(CCI), across individual tree canopies during two separate time periods. Additionally, we collected 3D scans of 
individual tree canopies using terrestrial laser scanning (TLS) and estimated foliar pigment content from leaf 
re�ectance spectra. We used the 3D scans to calculate the leaf angle distribution (LAD) and leaf area voxel 
density (LAVD) of each canopy. We modeled LAD using a beta distribution, which is parameterized by μ and ν, 
and the leaf inclination distribution function (LIDF), which is parameterized by LIDFa and LIDFb. We found that 
ν and μ, which are inversely related to the variance in leaf angle, covaried with spatial patterns in peak growing 
season canopy CCI, NDVI, SIFobs,FR, and SIFobs,FR

NIRVR , and leaf chlorophyll content. Canopies with greater variation in 
LAD, thus lower ν and μ, have larger values of NDVI, CCI, SIFobs,FR, SIFobs,FR

NIRVR , and leaf chlorophyll content, while 
LAVD is not correlated with these remote sensing metrics. We found positive correlations between leaf chloro
phyll content and canopy NDVI, SIFobs,FR, and SIFobs,FR

NIRVR , as well. Together, our results show that across our study 
site during the peak growing season, spatial variability in remote sensing variables is driven by the coordination 
between LAD and leaf chlorophyll content. These 9ndings provide important context for how we interpret 
landscape level variability in SIF and SIFobs,FR

NIRVR , and how spatial variation in both can be used to infer differences in 
plant metabolism.

1. Introduction

The spectral re�ectance of vegetative canopies is determined by 
plant functional and structural properties (Ollinger, 2011). Plant func
tion, which includes eco-physiological processes such as photosynthesis, 
is linked to foliar biochemical traits (e.g., pigments, proteins). In turn, 
the optical properties of foliar biochemistry shape spectral re�ectance 
(Gates et al., 1965). Plant canopy structure – the three-dimensional (3D) 

orientation, density, and vertical distribution of stems and leaves – also 
affects spectral re�ectance across the entire solar domain, particularly 
enhancing scattering across the near-infrared (NIR) wavelengths 
(Sellers, 1987; Sellers, 1985), and also affecting the relative contribu
tions of sunlit and shaded vegetation and soil background (Asner, 1998; 
Myneni and Ross, 1991). Plants have converged on a range of evolu
tionarily viable combinations of function and structure (Grime, 1977; 
Mooney and Gulmon, 1979), which create detectable differences in 
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canopy re�ectance among individuals and species. The effects on 
re�ectance can be direct, such as varying levels of chlorophyll among 
species, or they can be indirect. For example, differences in nitrogen 
content and photosynthetic capacity will affect NIR albedo, primarily as 
a result of the in�uence of foliar nitrogen on canopy structure 
(Knyazikhin et al., 2013; Townsend et al., 2013). Recent advances in 
remote sensing have provided new ways to measure canopy function 
and structure. Methods to retrieve solar-induced chlorophyll �uores
cence (SIF) have provided a tool to directly measure photosynthetic 
physiology (Frankenberg et al., 2011; Li et al., 2018; Sun et al., 2017; 
Yang et al., 2015). Similarly, developments in terrestrial laser scanning 
(TLS) have allowed canopy structure to be measured in ways previously 
not possible (Calders et al., 2020; Disney, 2019; Stovall et al., 2021). 
These tools allow us to connect spectral re�ectance to canopy function 
and structure in a manner that can inform ecological theory.

SIF is an emission of red and far-red photons (640 nm – 850 nm) 
originating from the excitation of chlorophyll a from absorbed sunlight. 
In principle, remote sensing observations of SIF (SIFobs) at the canopy 
scale can be de9ned when only 9rst-order scattering is considered as: 
SIFobs,(λ,Ω) = PAR×

(i0,green ×(1−ωPAR)
)

×ϕF,λ × fesc
(λ,Ω) (1) 

where PAR is photosynthetically active radiation, i0,green is the canopy 
directional interceptance of green components with chlorophyll (Zeng 
et al., 2022), ωPAR is the single scattering albedo for PAR (transmittance 
+ re�ectance). The i0,green × (1 − ωPAR) term comprises FPARchl, the 
fraction of PAR absorbed by chlorophyll and PAR× FPARchl = APAR. 
ϕF,λ is the quantum yield of steady-state �uorescence at a given wave
length (λ), and fesc

(λ,Ω) is the photon escape probability at the viewing 
angle of the sensor (Ω). fesc

(λ,Ω) acts as a scaling factor, ranging from 0 to 1, 
on the total SIF emission. From Eq. 1, canopy observations of SIF are 
affected by 1) steady-state biochemistry in the form of canopy chloro
phyll content; 2) photosynthetic physiology in the form of ϕF,λ; 3) can
opy structure, which is represented as i0 and fesc

(λ,Ω) in Eq. 1. From Eq. 1, it 
becomes evident that to isolate ϕF,λ from SIFobs,FR, the effects of canopy 
structure (i0 and fesc

(λ,Ω)) must accounted for. These effects include the leaf 
area index (LAI), leaf angle distribution (LAD), and foliar clumping.

Early studies showed empirical relationships between SIF and gross 
primary productivity (GPP) across scales, from local (Yang et al., 2015) 
to regional and global (Frankenberg et al., 2011; Li et al., 2018; Sun 
et al., 2017). Additional studies showed that the relationship between 
SIF and GPP is more attributable to the APAR and structural terms in 
Eq.1 than ϕF (Dechant et al., 2020; Wieneke et al., 2018; Yang et al., 
2018a). In order to use SIF as a photosynthetic proxy, ϕF must be con
nected to the quantum yield of photochemistry (ϕP), which controls the 
electron supply for the light-independent reactions of photosynthesis 
(Frankenberg and Berry, 2018; Magney et al., 2020; van der Tol et al., 
2014). This is not a straightforward endeavor, as ϕF competes with ϕP 
and non-photochemical quenching (NPQ) for excitation energy from 
APAR. The competition among these processes is complex and dynamic, 
operating at timescales of milliseconds to minutes (Sun et al., 2023a). 
Moreover, the relationship between ϕF and ϕP exhibits non-linearity that 
is affected by light intensity and environmental stress (Gu et al., 2019; 
Magney et al., 2020; Porcar-Castell et al., 2014; Sun et al., 2023b; van 
der Tol et al., 2014). Under light-saturating conditions ϕF and ϕP are 
linearly related, but this linearity can be disrupted due to sudden ad
justments in photosynthesis (Helm et al., 2020; Marrs et al., 2020; Wu 
et al., 2022). Interestingly, the same sensitivity to changes in photo
synthetic physiology that decouples ϕF and ϕP enables SIF measure
ments to be used to detect stress responses of vegetation (Damm et al., 
2022; Martini et al., 2022; Sun et al., 2023b; Wang et al., 2022). SIF and 
ϕF also covary with foliar biochemical properties related to photosyn
thesis (Sun et al., 2023b, Sun et al., 2023a; Zhang et al., 2014). Nitrogen 
treatment experiments have shown differences in SIF in crops and nat
ural systems (Ač et al., 2015; Jia et al., 2021; Migliavacca et al., 2017). 

SIF and ϕF,λ are correlated with chlorophyll content at the leaf scale 
(Tubuxin et al., 2015), while canopy scale observations covary with 
pigment pools (Kim et al., 2021; Pierrat et al., 2022) using the chloro
phyll:carotenoid index (CCI, Gamon et al., 2016), an optical proxy for 
chlorophyll (Wong et al., 2020).

Optical proxies of canopy structure have also been important for SIF 
and inferring photosynthetic productivity. NIR wavelengths have long 
been known to be sensitive to canopy structure, dating back to formative 
studies on NDVI and its precursors (Colwell, 1974; Jordan, 1969; 
Tucker, 1979). It was recognized that NDVI could be used to estimate 
FPAR, a key parameter in light-use ef9ciency models of GPP (Running 
et al., 2004). In principle NIRV is a better proxy for FPAR than NDVI 
(Sellers, 1987), but non-vegetative components are often an appreciable 
fraction of total scene NIR re�ectance (NIRT), particularly at the coarse 
resolutions of satellite imagery. Recently, Badgley et al. (2017) showed 
that NIRV can be approximated as the product of NDVI and NIRT, with 
NDVI representing the proportion of NIR re�ectance attributable to 
vegetation. This approach for approximating NIRV has been found to be 
a stronger predictor of GPP than NDVI or SIF across vegetation types and 
across spatial scales (Badgley et al., 2019; Baldocchi et al., 2020; 
Dechant et al., 2022, Dechant et al., 2020). Importantly, NIRV shares a 
physical basis with far-red SIF which allows fesc

(λ,Ω) to be approximated 
(Zeng et al., 2019). Additional modeling and 9eld-based analyses 
showed that ϕF can be derived using the radiance equivalent of NIRV 
(NIRVR, Zeng et al., 2022).

When considering the spatial patterns of canopy re�ectance and SIF, 
it is important to recognize that plants are biological organisms that 
have been shaped by evolutionary and ecological principles (Field, 
1991; Gamon et al., 2019; Ollinger, 2011). Plants coordinate canopy 
function and structure to maximize whole-plant carbon gain given the 
biotic and abiotic environments in which they are growing (Givnish, 
2020; Hirose, 2005; Horn, 1971; Monsi and Saeki, 1953). Foliar re
sources such as nitrogen and other elements are distributed based on the 
spatial arrangement of leaves through the canopy (Ellsworth and Reich, 
1993; Niinemets, 2010; Yang et al., 2023). This distribution leads to a 
coordination between function and structure that modulates photosyn
thetic capacity and leaf chlorophyll content (Croft et al., 2017; Kattge 
et al., 2009). The result of this coordination has important implications 
for vegetation re�ectance, derived spectral indices, and SIF. For 
example, NDVI is affected by NIR scattering from canopy structure and 
by leaf chlorophyll content (Gamon et al., 1995; Gitelson and Merzlyak, 
1997). Since the arrangement of canopy structure also affects leaf 
chlorophyll content, NDVI and other vegetation indices can be viewed as 
indicators of different functional-structural con9gurations that evolu
tion has selected for across individuals and species. These biophysical 
linkages also extend to SIF. Canopy structure directly affects i0,green and 
fesc
(λ,Ω) in Eq. 1. The coordination between function and structure indi

rectly affects (1 − ωPAR) and ϕF via the in�uence chlorophyll and foliar 
nitrogen (Kof9 et al., 2015; Migliavacca et al., 2017; Verrelst et al., 
2016).

Given the connections between canopy function and structure, one 
might expect that remotely sensed observations of pigments and 
photosynthetic physiology covary with canopy structure. Studies 
investigating these covariations have been lacking, largely due to the 
dif9culty in measuring canopy structure. TLS instrument quality and 
data processing has improved dramatically in the last decade (Calders 
et al., 2020; Disney, 2019), allowing accurate and rapid estimates of 
LAD and LAI (Jupp et al., 2009; Stovall et al., 2021; Vicari et al., 2019). 
In particular, leaf angle and LAD is an understudied component of 
canopy structure that is essential for plant ecophysiology (Close and 
Beadle, 2006; Hirtreiter and Potts, 2012) and is known to affect remote 
sensing observations (McNeil et al., 2023; Yang et al., 2023). However, 
no empirical studies have examined the relationship between LAD and 
remote sensing data. Additionally, there are few studies examining the 
spatial patterns in SIF and re�ectance at the canopy or landscape scale 
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(Maguire et al., 2021; Zeng et al., 2022). These questions require high 
spatial resolution data that can only be obtained from a 9xed-wing 
aircraft or uncrewed aerial system (UAS). Most canopy-scale studies of 
SIF rely on tower-based observation systems, which have a high tem
poral resolution but only measure either one canopy, or multiple can
opies, typically with inconsistencies in viewing zenith angle (Dechant 
et al., 2020; Kimm et al., 2021; Pierrat et al., 2022, Pierrat et al., 2021). 
In this study, we combine a novel UAS-based system with concurrent 
TLS data and foliar sampling to answer the question, “Does canopy 
structure covary with re�ectance indices, SIF, and ϕF,λ, across individual 
tree canopies?” We hypothesize that LAD and LAI will be correlated with 
remotely sensed variables of NIRV, re�ectance indices, SIF, and ϕF,λ. We 
examine these relationships across two datasets collected under con
trasting phenological stages; one dataset collected during the peak 
growing season, and another collected during autumn leaf senescence 
when nutrients are being remobilized and reallocated to other tissues in 
preparation for winter dormancy.

2. Materials and methods

2.1. Overview

Our study site was Milton Air9eld (37.9941◦N, −78.3976◦W, Fig. 1) 
– an abandoned air9eld now used by radio-controlled aircraft hobbyists 
with adjacent regenerated stands of deciduous broadleaf (DBF) and 
evergreen needleleaf (ENF) trees. We developed a novel UAS called 
FluoSpecAir (Fig. 2, Section 2.2) to measure spatiotemporal patterns in 
SIF and VNIR re�ectance (400 nm – 850 nm) across individual tree 
canopies at Milton Air9eld on clear-sky days. For this study, we collected 
two datasets – one collected at the onset of foliar senescence in 2020, 
and another during the peak growing season of 2021. We refer to these 
datasets as “foliar senescence” and “peak growing season” respectively. 
For each dataset, we supplemented FluoSpecAir �ights with 3D struc
tural data from a subset of canopies using terrestrial laser scanning 
(Section 2.3) and foliar sampling (Section 2.4).

The foliar senescence dataset was collected on three separate weeks, 
spaced approximately 14 days apart. Measurements began on DOY 251, 

267, and 282, respectively. FluoSpecAir was �own at four separate time 
intervals: 7:00–8:00, 11:00–12:00, 12:00–13:00, and 15:00–16:00 EST. 
Each �ight �ew predetermined waypoints that covered individual can
opies of American sycamore, black cherry, red maple, and tulip poplar 
from the DBF stand, and canopies of eastern white pine from the ENF 
stand (Fig. 1, Table 1). Flights were repeated across 2–3 days to ensure 
suf9cient spatiotemporal coverage and good data quality. Following the 
completion of �ights, a subset of canopies targeted by FluoSpecAir were 
scanned using TLS. We collected foliar samples for the �ights pertaining 
to DOY 267 and 282.

The peak growing season dataset was collected on four separate 
weeks (DOY 133, 148, 188, and 217). FluoSpecAir �ights were made 
hourly from 7:00–16:00 EST, with another repeat day of �ights. The 
peak growing season dataset was collected from a different but nearby 
set of waypoints with some canopy overlap, including black cherry, 
eastern white pine, red maple, and tulip poplar (Table 1). FluoSpecAir 
suffered a malfunction on the week pertaining to DOY 148, and thus, we 
were only able to make two �ights at 7:00 and 8:00. For each week of 
FluoSpecAir �ights, we scanned a subset of canopies using TLS. Foliar 
traits were sampled on days following DOY 148 and 188.

2.2. FluoSpecAir

The UAS used in FluoSpecAir is a DJI Matrice 600 Pro (M600 Pro) 
with a D-RTK real-time kinematics mobile GNSS station, and a Zenmuse 
X2 camera. Autonomous �ight and data acquisition were controlled 
using an onboard Raspberry Pi 3 Model B connected to the A3 �ight 
controller on the M600 Pro. Using the DJI Onboard SDK (version 3.9), 
we developed an autonomous �ight script that 1) centered on co
ordinates for each canopy, with the UAS positioned 15 m above the 
canopy and the aircraft “nose” always oriented north; 2) made mea
surements of downwelling irradiance and upwelling radiance at nadir; 
3) initiated video capture from the Zenmuse X2 camera for the entirety 
of the upwelling radiance measurement. Coordinates for each canopy 
were selected by manually �ying the M600 Pro over individual can
opies. Using the Zenmuse X2 video feed, we recorded the coordinates 
from the RTK antenna onboard the M600 Pro when the 9ber 9eld of 

Fig. 1. Aerial view of the 9eld site at Milton Air9eld. Individual canopies measured in this study are shown, with the white lettering corresponding to the ID listed in 
Table 1. Light blue circles indicate deciduous broadleaf forest (DBF) canopies and light yellow triangles represent evergreen needleleaf forest (ENF) canopies. The 
takeoff and landing location of FluoSpecAir is outlined in black. (For interpretation of the references to colour in this 9gure legend, the reader is referred to the web 
version of this article.)
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view (FOV) was covering the targeted canopy (see the following para
graphs for details). Using RTK positioning for FluoSpecAir measure
ments is critical – we compared the accuracies of the RTK antennas and 
standard A3 antennas on the M600 Pro against 10 surveyed points and 
noted X/Y/Z accuracies of ≤5 cm using RTK, while A3 accuracy was ≥1 
m (data not shown). For time and safety considerations, the take-off and 
landing of the M600 Pro were performed manually by the M600 Pro 
pilot.

FluoSpecAir uses a modi9ed FluoSpec2 (Yang et al., 2018b) dual- 
spectrometer system consisting of an Ocean Insight (Dunedin, Florida, 
United States) QEPro spectrometer, which measures wavelengths be
tween 730 nm – 785 nm (100 μm slit, 0.31 nm full-width half maximum 
(FWHM)), and an Ocean Insight Flame spectrometer, which measures 
between 340 nm – 1040 nm (25 μm slit, 3.28 nm FWHM at 546 nm). 
Fiber optics for measuring downwelling irradiance and upwelling radi
ance were connected to a rotating prism, which selectively directs 
incoming light from either 9ber to a BF19Y2LS02 bifurcated 9ber 
(Thorlabs Inc., Newton, NJ, USA) connected to the two spectrometers. 
The downwelling irradiance 9ber used an Ocean Insight CC-3 cosine 
corrector and was calibrated for irradiance using an Ocean Insight HL-3 
light source. The upwelling radiance 9ber used a Gershun tube kit 
(Ocean Insight) to restrict the 9eld of view to 6◦, and was calibrated for 
radiance using a Labsphere 8 in. HELIOS integrating sphere (15.24 cm) 
(Labsphere, North Sutton, New Hampshire, United States). The QEPro 
had a thermoelectric cooler which kept the detector temperature stable 
around −10 ◦C. For correcting the dark signal on the QEPro we used the 
method by Yang et al. (2018a, 2018b), which creates a lookup table of 

dark current spectra across temperature values and integration times, 
and assumes dark current is linearly correlated with integration time at a 
given temperature. The Flame instrument lacked a TEC cooler and thus 
could not be temperature stabilized. To account for the dark current, we 
made measurements of dark spectra using the Flame before and after 
each �ight, and averaged both values for the dark spectra. We assumed 
that the temperature of the Flame spectrometer stayed constant before, 
during, and after each �ight. Inspection of pre-�ight and post-�ight dark 
spectra showed no noticeable differences between the two, providing 
some basis for this assumption.

The downwelling radiance 9ber was mounted on a bracket in order 
to maintain a 9xed position relative to the Zenmuse X2 camera and 
gimbal – this enabled alignment of the 9ber FOV with the video output 
from the camera. Projecting the 9ber FOV onto the video output was 
achieved by shining a light through the 9ber in a dark room while 
recording video feed from the camera. As a result, for every recorded 
video of upwelling radiance data collection, we were able to accurately 
identify if measurements were made from the targeted canopies for this 
study. With each measurement taken at a distance of 15 m above each 
canopy, the spot size was approximately 2 m2 for all canopies.

We used the QEPro data to retrieve far-red SIF (SIFobs,FR) in mW m−2 

sr−1 nm−1 in the O2-A band using the spectral 9tting method (Meroni 
et al., 2010). We used a 9tting window of 759.5 nm – 761.5 nm (Chang 
et al., 2020) with linear functions. In our retrieval of SIF, we did not 
account for any atmospheric attenuation of the SIF signal based on the 
distance from each target to the sensor. We measured this effect to be 
minimal based on an experimental �ight where we examined how SIFobs, 
FR changed as a function of height against a non-�uorescence target of 
asphalt pavement (Fig. S2). We used re�ectance from the Flame to 
calculate NDVI and CCI using the equations: 

Fig. 2. Panel A) Picture of the FluoSpecAir observation platform used in this 
study. FluoSpecAir uses a M600 Pro hexacopter with a modi9ed FluoSpec2 
payload to measure SIF and VNIR re�ectance of individual plant canopies. 
Panel B) Still frame taken from a video during upwelling radiance collection. 
The red circle overlays the 9ber optic FOV with respect to the Zenmuse X2 
camera. We ensured that FluoSpecAir was positioned over all targeted canopies 
by checking each recorded video feed (see Fig. S1 for examples). Panel C) Daily 
pattern of SIFobs,FR (mW m−2 sr−1 nm−1) and NIRVR (W m−2 sr−1 nm−1) for the 
canopy shown on the day of �ight. (For interpretation of the references to 
colour in this 9gure legend, the reader is referred to the web version of 
this article.)

Table 1 
The list of canopies measured with FluoSpecAir in this study. The ID 9eld is a 
unique 9eld-assigned identi9er for a given individual. DOY coverage signi9es 
when FluoSpecAir data is available for a canopy. T Signi9es TLS scan of canopy on DOY.

ID Species Common name PFT DOY coverage
1 Acer rubrum Red maple DBF 251, 267, 282
3 Platanus 

occidentalis
American 
sycamore

DBF 251, 267, 282

4 Acer rubrum Red maple DBF 133T, 148, 217T, 251, 267, 
282

7 Acer rubrum Red maple DBF 267T, 282T

8 Liriodendron 
tulipifera

Tulip poplar DBF 133T, 148, 188T, 217T, 
267T, 282T

10 Liriodendron 
tulipifera

Tulip poplar DBF 133T, 148, 188T, 217T, 
267T, 282T

11 Prunus serotina Black cherry DBF 133T, 188T, 217T, 251, 
267T, 282T

12 Prunus serotina Black cherry DBF 133, 148, 188, 251, 267
13 Prunus serotina Black cherry DBF 267, 282
14 Acer rubrum Red maple DBF 133T, 148, 188T, 217T, 251, 

267T, 282T

15 Liriodendron 
tulipifera

Tulip poplar DBF 251, 267T, 282T

16 Pinus strobus Eastern white 
pine

ENF 133, 148, 188T, 217T, 251, 
282T

17 Pinus strobus Eastern white 
pine

ENF 251, 267T, 282T

18 Pinus strobus Eastern white 
pine

ENF 251, 267T, 282T

19 Pinus strobus Eastern white 
pine

ENF 251

20 Pinus virginiana Virginia pine ENF 133, 188T, 217T

21 Liriodendron 
tulipifera

Tulip poplar DBF 133T, 148, 188T, 217T

22 Acer rubrum Red maple DBF 133T, 148, 188T, 217T

26 Pinus strobus Eastern white 
pine

ENF 188T, 217T

30 Pinus resinosa Red pine ENF 217
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NDVI = r858 − r648
r858 + r648 (2) 

CCI = r530 − r670
r530 + r670 (3) 

Where r represents re�ectance at a wavelength in nm. Additionally, 
we calculated NIRV and NIRVR as: 
NIRV = NDVI× r780 (4) 

NIRVR = NDVI× L780 (5) 
Where L780 is radiance at 780 nm. For radiance and re�ectance at 

780 nm, we used data from the QEPro.
Data were quality controlled and 9ltered out based on 1) whether 

upwelling radiance measurements occurred over the targeted canopy 
and were free of shadows based on the video feed (see Fig. S1 for ex
amples); 2) whether there were clear and stable sky conditions based on 
the video feed and irradiance values; 3) spectral shape (was there a peak 
in green re�ectance, red edge, and NIR plateau, indicating a vegetative 
spectral signature) and magnitude of NIR re�ectance (0.2 ≤ NIR 
re�ectance ≤0.6); 4) SIFobs,FR values <0 mW m−2 sr−1 nm−1. We made 
no corrections for any potential roll and pitch effects on upwelling or 
downwelling measurements. These effects were observed to be minimal 
based on observing the video feed from each measurement.

We estimated ϕF,FR using the conceptual approach by Zeng et al. 
(2022), who showed that SIFobs,FR

NIRVR is proportional to ϕF,FR. NIRVR and 
SIFobs,FR are known to be strongly correlated with each other – the 
reason for this being they share a physical basis that can be seen when 
comparing Eq. 1 to the following equation: 
NIRVR = SNIR ×

(i0,green ×ωNIR
)

× fesc
(λ,Ω) (6) 

NIRVR and SIFobs,FR are dependent on incoming solar radiation (PAR 
for SIF, incoming solar radiation in the NIR (SNIR) for NIRV), canopy 
interceptance, and fesc

(λ,Ω). One key difference is that NIRVR is affected by 
the single scattering albedo for NIR wavelengths (ωNIR), whereas for SIF, 
(1 − ωPAR) is the absorbance in the visible domain. Although fesc

(λ,Ω) de
pends upon wavelength, NIR photons absorb and scatter similarly to far- 
red photons from SIF, particularly at wavelengths ≥750 nm. Thus, fesc

(λ,Ω)

should functionally be similar for both. This approach is contingent on 
NIRVR and SIFobs,FR being measured from the same 9eld of view, 
otherwise mismatches in Ω and/or the ratio of diffuse radiation will 
introduce uncertainty into the estimation of ϕF,FR. Additionally, an im
plicit assumption is that the ratio between (1 − ωPAR) and ωN is constant 
within and across taxa, and throughout time. We explain how all vari
ables in Eqs. 1 and 6 are calculated in Section 2.5.

2.3. Terrestrial laser scanner

In this study, we made 3D scans using a Faro Focus 120 (Faro 
Technologies, Lake Mary, FL, USA) for all measurement weeks, with the 
exception of one week (week 31) in the peak growing season where we 
used a Leica RTC 360 (Leica Geosystems, St. Gallen, CH) TLS. The dif
ference in data collected by each instrument has not been reported in the 
literature, nor was it possible to do so for this study. We note that the 
Leica TLS collected approximately 9ve times as many points per second 
than the Faro TLS, creating denser and more detailed point clouds. 
FluoSpecAir canopies were scanned from multiple positions to create a 
360◦ reconstruction. In some instances, a 360◦ reconstruction was not 
possible due to occlusion from surrounding canopies. Scans were made 
along a track that was designed to maximize coverage of FluoSpecAir 
canopies from each scan position. We staked a grid of 14.7 cm diameter 
reference balls to co-register individual TLS scans to one another. On 
average, each individual scan shared six reference balls with any other 
scan, and no scans shared fewer than four reference balls. Registration of 

TLS scans was performed using the instrument’s respective software 
package – for the Focus 3D we used Faro SCENE and for the Leica RTC 
360, we used Register 360. Reported alignment error averaged around 5 
mm for registered scans. Individual trees from registered point clouds 
were then manually extracted.

We applied the TLSLeAF algorithm (Stovall et al., 2021) to create 10 
cm3 voxels of leaf inclination angles (θL) from the tree point clouds. 
Using the mean θL for each voxel, we quanti9ed LAD using; 1) a beta 
distribution (Goel and Strebel, 1984) parameterized by ν and μ; 2) the 
leaf inclination distribution function LIDF (Verhoef, 1997) which is 
parameterized by LIDFa and LIDFb – these are parameters used in 
radiative transfer models (RTMs) of canopies such as SCOPE (van der Tol 
et al., 2009); 3) the mean and standard deviation of θL of all voxels. We 
used a voxel-based method (Hosoi and Omasa, 2006) to calculate ver
tical pro9les of leaf area voxel density (LAVD). The contact frequency 
for each vertical slice was calculated using points classi9ed as vegetation 
from the TLSLeAF output. We then multiplied the contact frequency by a 
correction factor of 1.1 that accounts for leaf inclination angle to 
calculate the leaf area voxel density (Li et al., 2017). We used the same 
voxel resolution for LAD and LAVD calculations (10 cm3 as recom
mended by TLSLeAF). We computed the LAI by summing LAVD across 
all vertical bins.

We calculated LAD parameters as a function of the cumulative ver
tical LAVD to account for differences in vertical foliage density (Fig. 3). 
Representing the top of the canopy as 0 %, we calculated the canopy 
height where a speci9ed cumulative LAVD is found. Next, we selected all 
angle voxels greater than or equal to the calculated height, and calcu
lated the corresponding beta distribution and LIDF parameters, and the 
mean and standard deviation of angle voxels. Optimal LIDF parameters 
were calculated by applying a numerical minimization to an algorithm 
provided by Verhoef (1997), which generates the cumulative leaf 
inclination distribution for any combination of LIDFa and LIDFb. We 
used the lm9t package in Python 3.8 to apply a least-squares minimi
zation using the trust region re�ective method. LIDFa and LIDFb were 
constrained such that |LIDFa| + |LIDFb| ≤ 1 (Verhoef, 1997). The opti
mization was performed on the probability density of observed leaf 
angles using one-degree bins. We calculated the probability density from 
the algorithm provided by Verhoef (1997) by taking the difference in 
cumulative distribution between inclination intervals θ1 and θ2, where 
the interval was one degree.

2.4. Field and foliar sampling

We collected a limited set of foliar samples for the foliar senescence 
and peak growing season datasets. Foliar samples were collected on 
�ights corresponding to DOY 148, 188, 267, and 282. Sun-exposed, top 
of canopy, foliar samples were collected from canopies using a modular 
pole pruner. We selected 1–5 non-chlorotic leaves per canopy. Foliar 
sampling occurred in the morning and midday; upon obtaining samples, 
they were immediately placed into plastic bags and stored in a dark 
cooler with ice. In the afternoon, samples were returned to the labora
tory where they were measured for the projected area using a LI-3000C 
(LiCor Biosciences, Lincoln, NE, USA) leaf area meter. Foliar samples 
were then measured for spectral re�ectance – for the foliar senescence 
dataset we used an ASD FieldSpec 3 (ASD Inc., Boulder, CO, USA) and 
the peak growing season dataset used an SVC HR-1024i (Spectra Vista 
Corp, Poughkeepsie, NY, USA). The leaf re�ectance was measured by 
each instrument using a plant contact probe with an external light 
source. For ENF species, fresh spectra were measured by arranging 
needles together in a singular mat with no open spaces between needles. 
We measured re�ectance spectra at 9ve positions for each leaf, and 
averaged all scans. Following projected area and re�ectance measure
ments, foliar samples were oven-dried at 60 ◦C for 48 h to measure the 
dry mass and calculate LMA.

Spectral re�ectance from 400 nm – 950 nm was inverted using 
PROSPECT-D (Féret et al., 2017) to retrieve estimates of chlorophyll a +
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b (leaf chlorophyll content) and leaf carotenoid content. PROSPECT-D 
was inverted using a numerical minimization, with a least-squares 
curve 9t with a trust region re�ective algorithm using the lm9t pack
age. We estimated the mesophyll thickness, the chlorophyll a + b con
tent, the carotenoid content, the anthocyanin content, brown pigments, 
and water thickness, parameters. We used the leaf LMA as the dry mass 
parameter. We calculated leaf ωPAR averaging re�ectance + trans
mittance from 400 nm – 700 nm. Leaf ωNIR was calculated by averaging 
re�ectance + transmittance from 777 nm – 783 nm.

2.5. Analysis

We examined the spatial distributions of canopy NDVI, canopy NIRV, 
canopy CCI, SIFobs,FR, and SIFobs,FR

NIRVR , ν, and μ, across all individuals, and how 
they varied diurnally, across the foliar senescence and peak growing 
season datasets. We used the Tukey-Kramer approach to compare how 
distributions of each variable changed for DBF species within and across 
each dataset. We did not make statistical comparisons of ENF distribu
tions because of limited observations. We then analyzed the relation
ships of SIFobs,FR and SIFobs,FR

NIRVR with canopy NDVI, canopy NIRV, and canopy 
CCI. For each dataset, we show the relationships among variables for 
each week of FluoSpecAir measurements. We used all data from all 
�ights and averaged observations from multiple days on an hourly basis. 
Additionally, we examined if the relationships among variables vary 
diurnally by averaging observations for certain times of the day. Spe
ci9cally, we examined relationships during the morning (7:00–9:00), 
midday (11:00–13:00), and afternoon (14:00–16:00).

We used linear mixed effects models to understand the spatiotem
poral relationship of cumulative LAVD and LAD with our remote sensing 
observations. We chose this method because a simple linear regression 
analysis would violate the assumption of independence. The foliar 
senescence and peak growing season datasets consist of repeat canopy 
observations across different weeks, thus our analysis needed to account 
for effect of each canopy at different points in time. We used the model 
structure: 
y = Хβ+ Ζμ+ ε (7) 

Where y is the outcome variable (canopy NDVI, canopy CCI, SIFobs, 
FR, or SIFobs,FR

NIRVR ), Х is the predictor variable vector (cumulative LAVD, ν, μ, 
LIDFa, and LIDFb), β is the 9xed-effects regression coef9cients, Ζ is the 
design matrix for the random effect (tree ID), μ is the vector for the 
random effects (the random complement to the 9xed β), and ε is the 
model residuals not explained by the model Хβ + Ζμ. We constructed 
models for the foliar senescence and peak growing season datasets, using 
canopies that had concurrent FluoSpecAir and TLS observations 
(Table 1). The outcome variables were calculated as the mean daily 
value using all hourly data for each canopy and week. Linear mixed 
effects models were generated in R using the lme4 package. We report 
the marginal R2 (R2

m), which is the proportion of total variance explained 
by the 9xed effect, and the conditional R2 (R2

c ), which is the proportion 
of variance explained by both 9xed and random effects (Nakagawa et al., 
2017). Model evaluation and calculation of R2

m and R2
C was done using 

the mlmtools package in R.
We present the model relationships using 10 % of the cumulative 

LAVD (LAVD10%). We report these variables with the percentage sub
scripted, such that ν10% and μ10% would represent ν and μ at 10 % of the 
cumulative LAVD. This percentage was chosen based on an analysis to 
determine what portion of the canopy is most relevant to our remote 
sensing data. Using the same model structure described in the previous 
paragraph, we built models using 1 % increments of the cumulative 
LAVD, starting from 1 % and ending at 100 %. The highest R2

c values for 
models using μ were found approximately between 10%–20 % of the 
cumulative LAVD, while R2

c values for ν typically reached their 
maximum between 50 % – 70 % (Fig. S3).

We performed an exploratory analysis to provide greater contextual 
meaning to beta distribution parameters ν and μ. Using the underlying 
equations for ν and μ (Eq. A1 – A3), we showed how the mean and 
variance affect the shape of the beta distribution. We developed a more 
intuitive equation for explaining μ. To test the generality of our 9ndings, 
we compared our results to 100 randomly generated beta distributions, 
constraining the range of ν and μ in our simulated data to the range of 
our observational data.

As a check on the assumption that SIFobs,FR
NIRVR is proportional to ϕF,FR, we 

rearranged Eq. 1 and Eq. 6 to the following: 

Fig. 3. A visualization of how LAD parameters were calculated using our point cloud data. In this example, we used ID 10 from DOY 217 (Table 1). For an isolated 
tree (left panel), we calculated the vertical LAVD pro9le using all co-registered point cloud data. In this example, we show the height of the tree at which corresponds 
to 5 %, 10 %, 25 %, 50 %, and 100 %, of the cumulative LAVD (m2 m−3). The probability density function using the beta and LIDF distributions, and the observed 
distribution, for each cumulative LAVD is shown on the right panels.
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SIFobs,FR
NIRVR =

PAR
SNIR

×
1 − ωPAR

ωNIR
×ϕF,FR (8) 

We used our 9eld observations to examine the potential in�uence of 
the 9rst two terms in eq. 3 on SIFobs,FR

NIRVR . Snir was calculated as incoming 
irradiance at 780 nm from the QEPro, while foliar samples were used to 
calculate 1−ωPAR

ωNIR . ωPAR was calculated by averaging re�ectance + trans
mittance from 400 nm – 700 nm. ωNIR was calculated by averaging 
across wavelengths 777 nm – 783 nm. PAR

SNIR was approximated by aver
aging all daily values of PAR/Snir for individual plant canopies with 
concurrent foliar measurements of ωPAR and ωNIR during a sampling 
week.

Finally, we analyzed relationships between leaf chlorophyll content 
and remote sensing variables and canopy structural parameters. Due to 
limited foliar sampling during the peak growing season dataset, we show 
relationships from data collected on DOY 188. For the foliar senescence 
dataset, we show relationships from data collected on DOY 267. When 
examining relationships between leaf chlorophyll content and our 
structural metrics, we used whole-canopy values (e.g. LAVD100%, ν100% 
and μ100%). Whole-canopy values are more representative of coordina
tion between leaf chlorophyll content and canopy structure, as they 
re�ect the patterns of resource allocation made at the level of the 
individual.

3. Results

3.1. Spatiotemporal patterns of optical remote sensing data and LAD

Canopy NDVI, canopy CCI, SIFobs,FR, and SIFobs,FR
NIRVR , were larger in the 

peak growing season than during foliar senescence for DBF canopies 
(Fig. 4). Canopy NIRV, LAVD10% and beta distribution parameters ν10% 
and μ10% did not differ as much between the two datasets (Fig. 4). We 
note that for SIFobs,FR, and SIFobs,FR

NIRVR , the last week of �ights for the peak 
growing season dataset tended to show no differences against observa
tions from the foliar senescence dataset (Fig. 4d – 4e). LAVD10% and ν10% 
values were slightly higher during the peak growing season, but not 
large enough to differ signi9cantly from measurements made during 
foliar senescence, except for DOY 217 (Fig. 4f, h). We observed no dif
ferences in the mean or standard deviation of leaf angle (mean10%, 
sd10%, Fig. S4f – S4g), though peak growing season distributions had 
comparatively more canopies with a higher mean leaf angle. TLS ob
servations for this week were made using the Leica RTC 360, which as 
mentioned, collected 5× as many points compared to the Faro Focus TLS 
used on all other weeks.

During the peak growing season, canopy NDVI was constant among 
DBF species, with a mean value of 0.88 for �ights on DOY 133,148, and 
217. Canopy NDVI was larger on DOY 188, with a mean value of 0.91 
(Fig. 4a). Canopy NIRV peaked on DOY 148 and declined the following 
weeks, with DOY 217 showing the lowest mean canopy NIRV. Canopy 
CCI declined throughout the peak growing season for DBF species, with 
a lower mean value for DOY 217 compared to DOY 133, though we note 
that DOY 133 exhibited larger variation (Fig. 4c). Similarly, SIFobs,FR and 
SIFobs,FR
NIRVR declined across the peak growing season (Fig. 4c – 4d), although 
we observed an increase in both for DOY 148. We observed decreases in 
canopy NDVI among DBF species during foliar senescence (Fig. 4a). 
Mean canopy NDVI declined by approximately 9 % from DOY 251 
(canopy NDVI = 0.87) to DOY 282 (canopy NDVI = 0.79). Canopy NIRV, 
canopy CCI, SIFobs,FR, and SIFobs,FR

NIRVR did not change across the sampling 
period for DBF species (Fig. 4b – 4e), though the distributions changed, 
particularly when comparing DOY 251 and DOY 282. Given the limited 
number of ENF canopies for both datasets, we opted not to make any 
statistical or qualitative comparisons with either dataset.

During the peak growing season, spatial variation in SIFobs,FR was 
more strongly related to canopy CCI than canopy NDVI (Fig. 5). We 
observed signi9cant relationships between SIFobs,FR and NIRV, though 
they were mostly weaker compared to canopy NDVI or canopy CCI. With 
respect to SIFobs,FR

NIRVR ; canopy NDVI had a stronger relationship with SIFobs,FR
NIRVR 

than canopy CCI, while no relationship with canopy NIRV was observed. 
These patterns were consistent across the morning, midday, and after
noon (Fig. S5). The R2 values of spatial relationships at individual times 
were larger compared to Fig. 5, which pools all data across all times. The 
R2 of spatial relationships declined as the peak growing season pro
gressed – this is particularly noticeable when examining relationships of 
canopy NDVI and canopy CCI with SIFobs,FR

NIRVR . We observed no signi9cant 
relationships across canopy NDVI, and canopy CCI, with SIFobs,FR or 
SIFobs,FR
NIRVR across the foliar senescence dataset (Fig. 6). Canopy NIRV was 
signi9cantly correlated with SIFobs,FR on DOY 251. Similarly, we 
observed minimal correlations between variables when looking at data 
across individual times of day. Of note, midday observations, which 
minimize solar angle issues, showed only one signi9cant correlation 
between canopy NDVI and SIFobs,FR

NIRVR on DOY 282 (Fig. S6).

Fig. 4. Violin plots of canopy (a) NDVI, (b), NIRV, (c) CCI, (d) SIFobs,FR (mW 
m−2 sr−1 nm−1), (e) SIFobs,FR

NIRVR , (f) ν10%, (g) μ10%, and (h) LAVD10% (m2 m−3), for 
DBF and ENF canopies, using all observations for each week that FluoSpecAir 
was �own. Signi9cant differences in mean values between observation weeks 
are indicated by lowercase letters in gray (P < 0.001) for DBF canopies. The red 
outlined box in panels f – h denote TLS measurements made with a Leica RTC 
360. Observations from the peak growing season are shown to the left of the 
vertical line and observations from foliar senescence are shown to the right of 
the line. (For interpretation of the references to colour in this 9gure legend, the 
reader is referred to the web version of this article.)
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3.2. Relationships between LAD parameters and remote sensing 
observations

For full results of our exploratory analysis on interpreting beta dis
tribution parameters, we refer readers to Appendix A. However, we 
identi9ed several important points about ν and μ. First, ν and μ are 
inversely related to variance – lower values indicate greater variability 
in leaf angle while higher values indicate low variability. Furthermore, 
when the mean leaf angle is greater than 45◦, as is the case for all can
opies in this study (Table S1), ν and μ have speci9c interpretations; 1) ν is 
mainly affected by the variance in leaf angle (Fig. A1); 2) μ is sensitive to 
both the mean and variance of leaf angle (Fig. A1), and is conceptualized 
as the variance in leaf angle when controlling for the effects of mean 
angle on the variance (Fig. A4) – as leaf angles are constrained from 0◦ to 
90◦, mathematically, variation in angle must be relatively lower the 
closer distribution mean is to either extreme. Another noteworthy point 
arising from the calculation of ν and μ is that when the mean leaf angle is 

greater than 45◦, ν will be larger than μ, with the opposite being true at 
mean leaf angles lower than 45◦.

In the peak growing season, we observed a negative relationship 
between beta distribution parameters and remote sensing variables, 
indicating that canopies with greater variation in leaf angle had larger 
canopy NDVI, CCI, SIFobs,FR, and SIFobs,FR

NIRVR (Fig. 7). We did not 9nd any 

Fig. 5. Scatterplots of canopy NDVI, NIRV, and CCI, against SIFobs,FR (mW m−2 

sr−1 nm−1) and SIFobs,FR
NIRVR , for the peak growing season dataset. Each column rep

resents a week where FluoSpecAir was �own, with the day of year (DOY) dis
played at the top of the column. Data across all hourly intervals (7:00–16:00) 
are shown. The linear regression lines for signi9cant relationships (Bonferroni 
adjusted P ≤ 0.008) are shown in black, with the corresponding coef9cient of 
determination (R2) displayed in the upper left.

Fig. 6. Scatterplots of canopy NDVI, NIRV, and CCI, against SIFobs,FR (mW m−2 

sr−1 nm−1) and SIFobs,FR
NIRVR , for the foliar senescence dataset. Each column represents 

a week where FluoSpecAir was �own, with the day of year (DOY) displayed at 
the top of the column. Data across all hourly intervals (7:00–16:00) are shown. 
The linear regression lines for signi9cant relationships (Bonferroni adjusted P 
≤ 0.008) are shown in black, with the corresponding coef9cient of determi
nation (R2) displayed in the upper left.
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signi9cant models between LAVD and our remote sensing variables, or 
for models using beta distribution LAD parameters and canopy NIRV. 
Linear mixed models using ν10% or μ10% produced similar a R2

c , but 
differed considerably in their values of R2

m, which is the proportion of 
variance explained by the 9xed (i.e. ν10% or μ10%) effect only. Models 
using μ10% had a larger R2

m and a smaller difference between R2
c and R2

m, 
compared to ν10%. Canopy NDVI and SIFobs,FR

NIRVR had the strongest relation
ships with ν10% and μ10%, with R2

c ≥ 0.75. The 9xed effect of μ10% 
accounted for 80 % and 73 % of the variation in canopy NDVI and SIFobs,FR

NIRVR . 
No signi9cant models were generated using LIDFa10% as a predictor 
variable, while LIDFb10% was positively related to canopy NDVI and 
SIFobs,FR
NIRVR . R2

c values for LIDFb10% were lower compared to ν10% and μ10%, 
while R2

m values were in-between ν10% and μ10%. No signi9cant models 
were found using LAVD10%, though we note that one ENF canopy (red 
pine, ID 30) had a large LAVD10% while its LAD parameters were 
consistent with other ENF canopies.

When examining relationships in the foliar senescence dataset, we 
did not observe any signi9cant relationships (Fig. S7). However, models 
using μ10% and LIDFb were trending signi9cant (P ≤ 0.05) for canopy 
NDVI and SIFobs,FR

NIRVR . Relationships with mean and SD leaf angle varied 
between the two datasets (Figs. S8, S9). In the peak growing season, 
models using SD10% were trending signi9cant for all remote sensing 

variables (Fig. S8). In the foliar senescence dataset, mean10% was 
trending signi9cant for canopy NDVI and NIRV (Fig. S9), with mean10% 
being positively related to canopy NDVI and negatively related to NIRV. 
Beta distribution parameter μ was highly related to LIDFb (R2 ≥ 0.90, 
not shown), while the relationship between LIDFa and mean leaf angle 
was nearly a perfect line (R2 ≥ 0.98 not shown).

3.3. Relationships between remote sensing metrics and leaf chlorophyll 
content

PROSPECT-D inversions were able to accurately replicate our mea
surements of leaf re�ectance spectra using a leaf clip (Fig. S10) from 
400 nm – 950 nm. When comparing the measured re�ectance spectra to 
the simulated, we report a median root mean square error (RMSE) and 
standard error of 0.0086 ± 0.0004. During the peak growing season, leaf 
chlorophyll content ranged from 52 to 86 μg cm2 with a median and 
standard deviation of 67 ± 9. During the foliar senescence dataset, leaf 
chlorophyll content ranged from 35 to 78 μg cm2 with a median and 
standard deviation of 53 ± 13. When correlating leaf chlorophyll con
tent to midday observations of SIFobs,FR

NIRVR for a given sampling week, we 
found positive relationships between both variables for both datasets 
(Fig. 8). While we did not see signi9cant relationships between leaf 
chlorophyll content and LAVD100% and μ100% (data not shown), we 
observe a negative relationship with ν100% for both datasets (Fig. 9).

Fig. 7. Spatial relationships between LAVD10% (m2 m−3), leaf angle distribution parameters from the beta distribution (ν10%, μ10%), and LIDF distribution (LIDFa10%, 
and LIDFb10%), and canopy NDVI, NIRV, CCI, SIFobs,FR (mW m−2 sr−1 nm−1), and SIFobs,FR

NIRVR , for the peak growing season. We show the “between-group” associations from 
our linear mixed models, where each data point is the mean value for each canopy (n = 11) across all weeks of measurements (see Table 1). The error bars represent 
one standard deviation. The R2

m (marginal R2) and R2
c (conditional R2) for each signi9cant linear-mixed model (Bonferroni adjusted P ≤ 0.002) are displayed in the 

upper left.
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3.4. Assessing the relationship between SIFobs,FR
NIRVR and ϕF,FR

When we tested the assumption that SIFobs,FR
NIRVR is proportional to ϕF,FR, 

we did not see any apparent relationship between SIFobs,FR
NIRVR , PAR

SNIR , and 1−ωPAR
ωNIR 

(Fig. S11). 1−ωPAR
ωNIR exhibited little variation among DBF canopies in both 

datasets. There was a difference in 1−ωPAR
ωNIR when comparing DBF vs ENF 

canopies in the foliar senesce dataset, with ENF canopies having a 1−ωPAR
ωNIR 

around 0.9, while DBF species were around 1 (Fig. S11). No ENF can
opies were sampled for the peak growing season dataset. PAR

SNIR varied 
more within the foliar senescence dataset (Fig. S11) compared to the 
peak growing season data, but overall, variation in PAR

SNIR was low. 
Furthermore, for any given �ight, all remote sensing observations are 
made within ~10 min each other, thus PAR

SNIR should not vary signi9cantly. 
As our analyses in Figs. 4–9 are separated by individual weeks, variation 
in PAR

SNIR should will be minimal. Based on these results, we concluded that 

variability in SIFobs,FR
NIRVR is driven primarily by differences in ϕF,FR across the 

peak growing season dataset.

4. Discussion

4.1. Coordination between function and structure drive remote sensing 
relationships

Our results show that during the peak growing season, canopies 
exhibiting greater variation in leaf angle have a larger NDVI, CCI, SIFobs, 
FR, and SIFobs,FR

NIRVR (Fig. 7), and they have higher leaf chlorophyll content 
(Fig. 9). We attribute this 9nding to the coordination between canopy 
function and structure – assemblages of biochemical and structural traits 
are coordinated to facilitate a particular growth strategy (McNeil et al., 
2023; Reich, 2014). We propose that increasing intra-canopy leaf angle 
variability enhances light interception in the visible wavelengths, 
allowing canopies to invest in greater concentrations of foliar pigments. 

Fig. 8. Relationships between leaf chlorophyll content and canopy NDVI, CCI, SIFobs,FR (mW m−2 sr−1 nm−1), and SIFobs,FR
NIRVR , for the peak growing season (n = 8) and 

foliar senescence (n = 14) datasets. No ENF canopies were sampled during the peak growing season. The linear regression lines for signi9cant relationships 
(Bonferroni adjusted P ≤ 0.05) are shown in black, with the corresponding coef9cient of determination (R2) displayed in the upper left.

Fig. 9. The relationship between ν100% and leaf chlorophyll content for DBF canopies in the peak growing season (n = 7) and foliar senescence (n = 6) datasets. The 
number of points for each dataset is smaller than in Fig. 8 due to TLS data being unavailable for some canopies. Solid black lines are the linear regressions, with the 
coef9cient of determination (R2) displayed in the lower left.
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The exact con9gurations of leaf placement within a canopy that leads to 
increased variability in leaf angle and enhanced light interception are 
unknown, but this could be addressed in future studies using 3D radia
tive transfer models (Gastellu-Etchegorry et al., 2017). As we discuss 
further on in Section 4.2., the radiative transfer mechanisms driving the 
strong coupling between LAD and our remote sensing variables likely 
include factors beyond the relationship between LAD and leaf chloro
phyll content. Furthermore, the relationships in Fig. 7 were strength
ened by a separation between DBF and ENF canopies, particularly with 
respect to LAD parameters. ENF canopies are known to be biochemically 
and spectrally distinct from DBF canopies – consistent with our under
standing of plant strategies (Guillén-Escribà et al., 2021; Lusk et al., 
2003; Serbin et al., 2014). Our data suggest that DBF and ENF canopies 
also differ in their LAD, although to what degree DBF and ENF species 
might overlap in their range of LAD values remains to be seen. However, 
given suf9cient sample sizes for each, we would still expect comparable 
relationships within each PFT when comparing LAD with the same 
remote sensing variables.

Enhanced light interception increases whole-canopy photosynthesis, 
and the positive covariation of SIFobs,FR

NIRVR with leaf chlorophyll and LAD may 
be indicative of these larger photosynthetic rates. Model simulations 
have shown that the �uorescence yield increases with photosynthetic 
capacity under light-saturating conditions (Johnson and Berry, 2021). 
The model results in Johnson and Berry (2021) are also consistent with 
the positive correlation between leaf chlorophyll and SIFobs,FR

NIRVR observed in 
our data (Fig. 8). Furthermore, leaf chlorophyll content is positively 
related to foliar nitrogen and photosynthetic capacity (Croft et al., 2017) 
in some DBF species, including red maple, which we measured in our 
study. Thus, an exciting implication is that our remote sensing data are 
capturing differences in whole-canopy photosynthesis among individual 
tree canopies, although we do not have measurements of leaf gas ex
change or foliar nitrogen to con9rm this.

One curiosity is that our data showed a stronger relationship be
tween canopy NDVI and SIFobs,FR compared to canopy NIRV (Fig. 5). This 
is surprising, as empirical studies and RTM simulations have shown a 
strong relationship between SIF and NIRV (Badgley et al., 2017; Du et al., 
2023; Zeng et al., 2019). The reasons for this discrepancy are unclear, 
but one possibility merits discussion. Prior studies showed a strong 
coupling between NIRV and SIF from coarse spatiotemporal resolutions 
(Badgley et al., 2017) or stationary tower observations from a 9xed FOV 
across ecosystems (Du et al., 2023), while our study examines re
lationships at a previously unstudied spatiotemporal scale of individual 
tree canopies at hourly intervals. This may suggest that scaling affects 
the relationship between NIRV and SIF – a phenomenon that has been 
previously reported in Arctic Boreal vegetation using 30 m2 airborne 
imagery (Maguire et al., 2021). Similar to Maguire et al. (2021), our 
results may indicate that spatial variability in canopy SIFobs,FR is driven 
more by leaf chlorophyll than canopy structure, as NDVI is sensitive to 
chlorophyll and canopy structure, while NIRV is primarily sensitive to 
canopy structure. The correlations of SIFobs,FR with leaf chlorophyll 
content (Fig. 8) and canopy CCI (Fig. 5) are consistent with this view as 
well. Our data can also contradict this hypothesis, as notably NIRV was 
more strongly coupled with SIFobs,FR than NDVI in our foliar senescence 
dataset on DOY 251, and perhaps suggests potential measurement un
certainties associated with our FluoSpecAir system. Future studies that 
explicitly address questions of scaling with remote sensing observations 
may be able to de9nitively resolve this particular 9nding.

Leaf chlorophyll content is also a strong driver of SIFobs,FR
NIRVR in our study. 

It was previously shown that when using NIRv × PAR (NIRVP), SIFobs,FR
NIRVP 

and canopy CCI are tightly coupled seasonally in a boreal ENF forest 
(Kim et al., 2021). Surprisingly, in our data, we found that canopy NDVI 
had roughly comparable, or stronger, correlations with SIFobs,FR

NIRVR compared 

to canopy CCI. This is a novel 9nding within our dataset, and could be 
related to canopy NDVI acting as a better indicator of photosynthetic 
capacity than CCI. In our data, the in�uence of chlorophyll on NDVI, as 
well as the indirect effect of foliar nitrogen on NIR albedo (Knyazikhin 
et al., 2013; Townsend et al., 2013), could lead to the stronger rela
tionship with SIFobs,FR

NIRVR . However, we caution that additional 9eld studies 
are needed to verify the connections between canopy NDVI, SIFobs,FR

NIRVR , and 
photosynthetic capacity.

4.2. The direct and indirect effects of LAD on remote sensing observations

Here, we distinguish the effects of LAD, and canopy structural traits 
more broadly, on remote sensing observations as both direct and indi
rect. The direct effects relate to how canopy structural traits impact 
radiative transfer properties such as i0,green and fesc

(λ,Ω). The indirect effects 
of canopy structural traits are related to the coordination between 
function and structure. In our study, we found that within-canopy 
variability in leaf angle is more strongly related to our remote sensing 
observations than the mean leaf angle of the canopy (Fig. 7, Fig. S7 – S9). 
As we discussed in 4.1., this appears to be an indirect effect that is 
predicated on the relationship between LAD and leaf chlorophyll 
(Fig. 9). However, within-canopy variability in LAD should also affect 
i0,green and fesc

(λ,Ω) as well, and these factors are likely to be contributing to 
the strength of the relationships in Fig. 7. This can be reasoned by 
observing that the relationships between LAD and our remote sensing 
variables are considerably stronger compared to the relationships with 
leaf chlorophyll content, and the relationship between LAD and leaf 
chlorophyll content. Thus, changes in i0,green and fesc

(λ,Ω) as LAD changes, 
are likely contributing additional explanatory power – however this 
would need to be more thoroughly investigated using RTM simulation.

Our 9ndings are contrasted with RTM-based studies, which have 
illustrated the direct effects of mean leaf angle on canopy re�ectance 
(Hase et al., 2022; Jacquemoud et al., 2009; Kattenborn et al., 2024; 
Zeng et al., 2019). Our results are not inconsistent with RTM simulations 
however – we observed a negative relationship between mean leaf angle 
and canopy NIRV (Fig. S9) that mirrors studies using RTM simulations 
(Kattenborn et al., 2024; Zeng et al., 2019). In other instances, re
lationships among remote sensing variables with mean leaf angle were 
not signi9cant, but small sample sizes are limiting our power (Fig. S8). 
We also stress that our understanding of the direct effects of LAD on 
radiative transfer, particularly within complex canopies such as forests, 
is incomplete and limited, partly due to a lack of observational data. For 
example, no RTM-based studies have examined how canopy variability 
in leaf angle affects i0,green × f esc

(λ,Ω), and resulting observations of re�ec
tance and SIF. Thus, while it may be surprising that our dataset shows a 
much stronger relationship between parameters of leaf angle variability 
and remote sensing observations compared to the mean leaf angle, our 
9ndings are within reason.

We also found the relationship between LAD and canopy NDVI to be 
appreciably stronger than the relationship between LAD and canopy CCI. 
This is likely because canopy CCI was designed to measure the relative 
concentrations of chlorophyll to carotenoids (Gamon et al., 2016). In-situ 
9eld observations have shown positive relationships between total- 
chlorophylls and canopy CCI (Wong et al., 2020), but our own data did 
not corroborate this 9nding (Fig. 8). However, the relationship between 
chlorophyll and canopy CCI found by Wong et al. (2020) were species 
dependent. The limited number of individuals per species in our study 
may prevent a clearer relationship from being present in our dataset. 
Furthermore, given the consistent pattern between LAD, canopy NDVI, 
and canopy CCI, and canopy NDVI and canopy CCI with SIF and SIFobs,FR

NIRVR , we 
believe it is still reasonable to assume larger CCI values correspond to a 
greater leaf chlorophyll content in our data.
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4.3. Phenological stage affects coordination between function and 
structure

While our peak growing season data showed coordination between 
function and structure, data collected during foliar senescence (2020) 
showed no signi9cant relationships among our remote sensing variables 
(Fig. 6, Fig. S7). This result is not unexpected, as the main physiological 
function of plants during this time is remobilization and reallocation of 
nutrients in preparation for growth during the following spring rather 
than resource acquisition at that moment (Chapin, 1980; Killingbeck, 
1996). This process is characterized by the breakdown of chlorophyll 
and leaf proteins (Christ and Hörtensteiner, 2014; Hörtensteiner and 
Feller, 2002; Kuai et al., 2018), resulting in the decline and eventual 
termination of photosynthetic processes, including leaf gas exchange 
and ϕPSII (McConnaughay et al., 1996; Weng et al., 2005). These changes 
in leaf biochemistry affect spectral re�ectance, which we observed in 
our FluoSpecAir data (Fig. 4.). The onset of senescence creating changes 
in leaf optical properties and photosynthesis likely explains why canopy 
CCI and canopy NDVI were not correlated with SIFobs,FR or SIFobs,FR

NIRVR in the 
foliar senescence dataset (Fig. 6). We also attribute the lower values of 
SIFobs,FR observed in the foliar senescence dataset (Fig. 4d) to functional 
changes more than structural ones. The physiological breakdown of 
chlorophyll will reduce APAR, leading to lower values of SIFobs,FR. 
Additionally, we observed lower values of SIFobs,FR

NIRVR (Fig. 4e), indicating 
that ϕF,λ was also lower during this time period, which would also 
contribute to lower values of SIFobs,FR. Canopy structural metrics how
ever remained comparatively stable between the two datasets (Fig. 4f – 

4h, Fig. S4f, S4g), further pointing to functional changes driving the 
lower values in SIFobs,FR.

Despite the lack of relationships with SIF variables from either 
remote sensing indices or LAD, we still observed positive relationships 
between leaf chlorophyll content, SIF, and SIFobs,FR

NIRVR (Fig. 8). Our foliar 
sampling preferentially selected non-chlorotic leaves and tissues for 
spectral measurements, as senescing leaves would have a signi9cantly 
reduced SIF emission. As the canopy SIF emission would predominantly 
be from the remaining green vegetation, it is unsurprising to see corre
lations between leaf chlorophyll and SIF variables. From a statistical 
perspective, there is an even stronger decoupling between leaf chloro
phyll and SIFobs,FR in the foliar senescence dataset. Compared to the 
peak growing season, leaf chlorophyll content had a larger range and 
was more variable, while SIFobs,FR was less variable with a smaller range. 
While the greater variability in leaf chlorophyll content should lead to 
stronger correlations, we 9nd a weaker R2 with SIFobs,FR – in part due to 
the smaller range and variability of SIFobs,FR.

4.4. SIFobs,FR
NIRVR is a proxy for ϕF,λ

As indicated by Eq. 8, the constitutive components of SIFobs,FR
NIRVR are 

related to the light environment (PAR
SNIR ), leaf albedo (1−ωPAR

ωNIR ), and ϕF,λ. As 
we observed no relationship between SIFobs,FR

NIRVR and the light environment 
or leaf albedo terms (Fig. S11), our conclusion was that SIFobs,FR

NIRVR ≈ ϕF,FR. 
However, we were unable to make leaf-level measurements of ϕF to 
compare against SIFobs,FR

NIRVR , preventing us from making a de9nitively vali
dating the approach suggested by Zeng et al. (2022). There are also 
several assumptions and uncertainties using this method that merit 
discussion. First, this method is slightly sensitive to soil background 
brightness (Zeng et al., 2022), although we note that all FluoSpecAir 
measurements completely covered each tree canopy – minimizing the 
contribution of soil background. Another noteworthy point is that the 
ENF and DBF leaves exhibited separation in the 1−ωPAR

ωNIR term, suggesting 
that neither ωPAR or ωNIR should be assumed to be constant across plant 

functional types. Lastly, acknowledge the possibility that SIFobs,FR
NIRVR could 

show no correlation with PAR
SNIR , 1−ωPAR

ωNIR , or ϕF, while still showing a corre
lation between the product of the three.

4.5. The potential in3uence of clumping index

While TLS processing algorithms are rapidly advancing, it should be 
noted that no methods exist to estimate the clumping index of individual 
trees from TLS. Canopy clumping, which describes the spatial deviation 
of foliage with respect to a random distribution (Nilson, 1971), is a 
critical structural parameter and is essential for understanding canopy 
radiative transfer processes. Contemporary methods rely on using the 
entire TLS scan to derive a plot level estimate of clumping index (Ma 
et al., 2018; Schraik et al., 2023). While clumping index is known to vary 
by species, there is some limited evidence suggesting that clumping 
covaries vertically with leaf angle (Béland and Baldocchi, 2020). Thus, 
it’s possible that our relationships between LAD and remote sensing 
observations include some effects of clumping index.

4.6. Leaf angle distribution – contextualizing our measurements

Our study is one of a handful of studies that have quanti9ed the LAD 
of tree crowns from multiple species with TLS. Most studies that report 
LAD rely on a leveled digital photography method (Chianucci et al., 
2018; Pisek et al., 2022; Raabe et al., 2015) which is more labor and time 
intensive, and cannot measure whole canopies. Despite these draw
backs, these approaches yield comparable results to TLS-derived 
methods (see Kattenborn et al., 2022; Pisek et al., 2022). When 
comparing LAD from our deciduous broadleaf species, we observed 
higher mean values of leaf angle, and lower standard deviations in leaf 
angle in Acer rubrum and Prunus serotina compared to other species in 
their respective genus (Table S1, Pisek et al., 2022). Values of ν are also 
larger in our data, while μ falls within reported ranges for comparable 
species. LAD reported in Pisek et al. (2022), the most comprehensive 
dataset available, predominantly comes from European trees. There are 
considerable differences in environment and latitude with our data 
collected in the mid-Atlantic region of the U.S. Thus, we would expect to 
observe differences in mean angle and beta parameters.

4.7. Leaf angle distribution – reporting and choice of parameters matter

It is important to report a suite of parameters related to LAD as they 
are important for the remote sensing and forest structure communities. 
Tabular data reporting means, standard deviation, ν, and μ, are rela
tively scarce and should be standard output for future studies that 
quantify LAD. These metrics are important because of their strong tie 
with remote sensing observations (Figs. 7, 8). Studies often assign 
observed LAD to a “best-9t” theoretical LAD (e.g., plagiophile, Raabe 
et al., 2015), but variation in LAD falls along a gradient that has no clear 
boundaries between these types. We also suggest that, when possible, 
the vertical pro9le of these values should be provided. Additionally, the 
choice of distribution parameters (i.e., beta distribution, LIDF, or mean 
and standard deviation) matters. RTMs such as SCOPE rely on LIDF, 
which is parameterized by LIDFa and LIDFb. However, the LIDF pro
duces leaf angle distributions that are different compared to those based 
on beta distribution parameters. We observed this in our observational 
data (Fig. S12) and when replicating theoretical leaf angle distributions 
(e.g., spherical, plagiophile, etc., Fig. S13). When using the LIDF, the leaf 
angle distribution was overestimated at the tails, whereas the beta dis
tribution underestimated the peak (Fig. S12). Furthermore, the beta 
distribution 9t to observational data better than the LIDF, with an 
average NRMSE of 6.4 % and 10.9 %, respectively. Given these points, 
including beta distributions as an alternative to LIDF parameters in 
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RTMs would allow for LAD to be more realistically represented, poten
tially creating more accurate model output. LIDF parameters are still 
useful however, particularly as their meaning is more interpretable than 
beta distribution parameters (e.g. LIDFa is closely related to mean leaf 
angle).

5. Conclusion

We used a novel remote sensing platform to study the spatial vari
ability in SIF and canopy re�ectance across two phenological periods 
(foliar senescence in 2020, the peak growing season in 2021). These 
remote sensing measurements were combined with TLS and foliar 
sampling to examine how functional and structural attributes of plant 
canopies spatially covary. Our study is the 9rst to examine the empirical 
relationships between LAD, SIF, canopy re�ectance indices, leaf chlo
rophyll content. Across the peak growing season, LAD parameters ν and 
μ were negatively related to canopy NDVI, CCI, SIF, SIFobs,FR

NIRVR (Fig. 7, 
Fig. S3), and ν was negatively related to leaf chlorophyll content (Fig. 9). 
Canopy NDVI and CCI were also positively related with SIF and SIFobs,FR

NIRVR 
(Fig. 5). Our results highlight that canopies with greater variation in leaf 
angle have more chlorophyll and larger remote sensing values, as ν and μ 

are inversely related to variance in leaf angle (Fig. A1). These 9ndings 
are consistent with ecological principles regarding coordination be
tween canopy function and structure. We hypothesize that greater intra- 
canopy variation in leaf angle enhances light interception, driving a 
demand for greater allocation of foliar resources and enhancing whole- 
canopy photosynthesis. We also found that parameters from the beta 
distribution 9t to real world distributions of leaf angle better than LIDF 
parameters, which are commonly used in radiative transfer models. Our 

results illustrate the importance of direct versus indirect effects of can
opy structure when interpreting spatial variability in canopy re�ectance 
and SIF across a landscape.
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Appendix A. Interpreting beta distribution parameters ν and μ

Using a beta distribution, the probability density function for leaf angle (θL) distribution is calculated as, 

f(t) = 1
B(ν, μ)

(1 − t)μ−1tν−1 (A1) 

where t = 2θL/π and B(ν, μ) = (Γ(ν)Γ(μ) )/(Γ(ν + μ) ), where Γ is the gamma function. Parameters ν and μ are related to the mean (t) and variance 
(σ2) of leaf angle distribution through the equations, 

ν = t
(

σ2
0

σ2 −1
)

(A2) 

μ = (1− t)
(

σ2
0

σ2 −1
)

(A3) 

with σ20 representing the maximum variance, calculated as σ20 = t(1 − t). Effectively, ν and μ incorporate the mean and variability of t, and are 
complements, with their sum being equal to the concentration 

(

σ2
0

σ2 − 1
)

. To better understand the biophysical interpretation of ν and μ, we performed 
an exploratory analysis using simulated data and our in-situ observations from all TLS data collected in this study. 
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Fig. A1. First column: The relationship between σ2 and beta distribution parameters ν and μ at 9ve different mean values, starting from 45◦ and increasing in 
increments of 10◦. The blue shaded region represents the range of σ2 observed from our empirical data. Second column: The same plot as the 9rst column, but the 
range of σ2 is constrained to the blue shaded region in the 9rst column. Third column: Scatterplots between σ2 and ν and μ using empirical data from this study (blue 
dots), and simulated data (light gray triangles). (For interpretation of the references to colour in this 9gure legend, the reader is referred to the web version of 
this article.)

First, we examined how σ2 is related to ν and μ at 9ve different values of t (θL = 45◦, 55◦,65◦, 75◦, 85◦, 9rst two columns of Fig. A1.). While the 
overall curvature of the relationship between σ2 and ν and μ is similar across different means, the relationship between σ2 and μ is more affected by t, 
particularly in the range of our in-situ observations (shaded rectangle in the 9rst column, the middle column shows the relationship within the 
constraints of our observed data). As a result, our in-situ observations between σ2 and ν show a strong relationship (top rightmost panel, blue circles), 
while σ2 and μ show considerably more scatter (bottom rightmost panel, blue circles). To check these relationships, we simulated 100 random points 
constrained by the observed values of t and the concentration, and overlayed those points with our in-situ observations (rightmost panels, gray 
triangles). The patterns from our simulated data track with our in-situ data. As the relationship between σ2 and μ is poor, simplifying the interpretation 
of μ as σ2 is largely incorrect. From Eq. A3, the concentration is likely a stronger driver of variation in μ. However, when checking the relationship 
between the concentration and μ, considerable scatter was still apparent (not shown, r2 = 0.59). Thus, we explored further formulations to explain μ 

while retaining parsimony. 
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Fig. A2. The relationship between t and σ20.

The concentration is the ratio between σ20 and σ2; conceptually it represents how much variation there is with respect to the maximum variance 
allowed for a given t. This a purely a mathematical construct based on the beta transformation which restricts values between 0 and 1. When t ap
proaches 0 or 1 (θL = 0◦ and 90◦ respectively) σ20 decreases; variances larger than σ20 would create values outside the bounds of 0 and 1. From Fig. A2, 
σ2 is maximized at 45◦ – an interesting question arises as to the extent to which actual maximum variation in leaf angle tracks with this statistical 
constraint. We note the lowest observed value of concentration in our data was 7.7. 
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Fig. A3. Simulated leaf angle distributions under different values of concentration and mean leaf angle. From columns moving left to right, values of concentration 
increase, starting at a concentration of 2 and ending with a concentration of 30. From columns moving from top to bottom, mean leaf angle increases, starting at 45◦

and ending at 85◦.
To visualize how variation in concentration affects leaf angle distribution at different levels of t, we simulated leaf angle distributions with the 

same 9ve t from before, while varying the concentration (from 2 to 30) at each value of t. Lower values of concentration increase the spread of t, and as 
θL approaches 45◦, the spread of t becomes more uniform across all angles. 
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Fig. A4. Left panel: The relationship between the ratio of concentration to t and μ at 9ve different mean values. Right panel: Scatterplots between the ratio of 
concentration to t and μ using empirical data from this study (blue dots), and simulated data (light gray triangles). (For interpretation of the references to colour in 
this 9gure legend, the reader is referred to the web version of this article.)

As the interaction between t and the concentration can change the shape of leaf angle distribution in both directions, we examined whether 
normalizing concentration by t would provide a greater contextualization of μ. While the slope of the relationship changes by θL (left panel), deviation 
in the slopes gets smaller as θL moves further away from 45◦. This approximation tracks fairly well with our in-situ and simulated data (right panel) – 

low values of μ describe canopies that have greater variation in leaf angle when adjusting for some effects of θL. The effect of θL isn’t entirely removed, 
as the concentration contains the σ20 term, which is governed by θL.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2025.114996.

Data availability

Field data, leaf spectra, canopy spectra, retrieved SIF, and leaf angle 
distribution data, will be made publicly available in the EcoSIS spectral 
repository (https://ecosis.org/) upon manuscript acceptance. Point 
cloud data from TLS will be made publicly available on the global TLS 
database (https://www.global-tls.net).
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Noormets, A., Peñuelas, J., 2016. A remotely sensed pigment index reveals 
photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. 113, 
13087–13092. https://doi.org/10.1073/pnas.1606162113.

Gamon, J.A., Somers, B., Malenovský, Z., Middleton, E.M., Rascher, U., Schaepman, M. 
E., 2019. Assessing vegetation function with imaging spectroscopy. Surv. Geophys. 
40, 489–513. https://doi.org/10.1007/s10712-019-09511-5.

Gastellu-Etchegorry, J.-P., Lauret, N., Yin, T., Landier, L., Kallel, A., Malenovský, Z., 
Bitar, A.A., Aval, J., Benhmida, S., Qi, J., Medjdoub, G., Guilleux, J., Chavanon, E., 
Cook, B., Morton, D., Chrysoulakis, N., Mitraka, Z., 2017. DART: recent advances in 
remote sensing data modeling with atmosphere, polarization, and chlorophyll 
�uorescence. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 10, 2640–2649. 
https://doi.org/10.1109/JSTARS.2017.2685528.

Gates, D.M., Keegan, H.J., Schleter, J.C., Weidner, V.R., 1965. Spectral properties of 
plants. Appl. Opt, 4, 11–20. https://doi.org/10.1364/AO.4.000011.

Gitelson, A.A., Merzlyak, M.N., 1997. Remote estimation of chlorophyll content in higher 
plant leaves. Int. J. Remote Sens. 18, 2691–2697. https://doi.org/10.1080/ 
014311697217558.

Givnish, T.J., 2020. The adaptive geometry of trees revisited. Am. Nat. 195, 935–947. 
https://doi.org/10.1086/708498.

Goel, N.S., Strebel, D.E., 1984. Simple Beta distribution representation of leaf orientation 
in vegetation Canopies1. Agron. J. 76, 800–802. https://doi.org/10.2134/ 
agronj1984.00021962007600050021x.

Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its 
relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194.

Gu, L., Han, J., Wood, J.D., Chang, C.Y.-Y., Sun, Y., 2019. Sun-induced Chl �uorescence 
and its importance for biophysical modeling of photosynthesis based on light 
reactions. New Phytol. 223, 1179–1191. https://doi.org/10.1111/nph.15796.
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