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Plant canopies are integrated units that coordinate their functional (e.g., foliar biochemistry) and structural
properties. This coordination affects remote sensing observations of canopy reflectance and solar-induced
chlorophyll fluorescence (SIF). One key canopy structural property is leaf angle. Despite the fact that radia-
tive transfer models have shown the crucial role of leaf angle in modulating remote sensing signals, methodo-
logical and technological barriers have prevented detailed investigations of how leaf angle covaries with canopy
function and remote sensing observations. In this study, we employ a novel uncrewed aerial system (UAS) called
FluoSpecAir to study the spatial patterns in far-red (FR) SIF (SIF,ps rr), near-infrared reflectance and radiance of
vegetation (NIRy and NIRyR), normalized difference vegetation index (NDVI), and chlorophyll:carotenoid index
(CCD), across individual tree canopies during two separate time periods. Additionally, we collected 3D scans of
individual tree canopies using terrestrial laser scanning (TLS) and estimated foliar pigment content from leaf
reflectance spectra. We used the 3D scans to calculate the leaf angle distribution (LAD) and leaf area voxel
density (LAVD) of each canopy. We modeled LAD using a beta distribution, which is parameterized by p and v,
and the leaf inclination distribution function (LIDF), which is parameterized by LIDFa and LIDFb. We found that
v and p, which are inversely related to the variance in leaf angle, covaried with spatial patterns in peak growing

SIFobs Fr

season canopy CCI, NDVI, SIFqps rr, and NR,R ?

and leaf chlorophyll content. Canopies with greater variation in

LAD, thus lower v and p, have larger values of NDVI, CCI, SIFyps rr, SI};;;\%, and leaf chlorophyll content, while

LAVD is not correlated with these remote sensing metrics. We found positive correlations between leaf chloro-
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site during the peak growing season, spatial variability in remote sensing variables is driven by the coordination

between LAD and leaf chlorophyll content. These findings provide important context for how we interpret
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phyll content and canopy NDVI, SIFysrr, and as well. Together, our results show that across our study

landscape level variability in SIF and

and how spatial variation in both can be used to infer differences in
plant metabolism.

1. Introduction

The spectral reflectance of vegetative canopies is determined by
plant functional and structural properties (Ollinger, 2011). Plant func-
tion, which includes eco-physiological processes such as photosynthesis,
is linked to foliar biochemical traits (e.g., pigments, proteins). In turn,
the optical properties of foliar biochemistry shape spectral reflectance
(Gates et al., 1965). Plant canopy structure — the three-dimensional (3D)

orientation, density, and vertical distribution of stems and leaves — also
affects spectral reflectance across the entire solar domain, particularly
enhancing scattering across the near-infrared (NIR) wavelengths
(Sellers, 1987; Sellers, 1985), and also affecting the relative contribu-
tions of sunlit and shaded vegetation and soil background (Asner, 1998;
Myneni and Ross, 1991). Plants have converged on a range of evolu-
tionarily viable combinations of function and structure (Grime, 1977;
Mooney and Gulmon, 1979), which create detectable differences in
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canopy reflectance among individuals and species. The effects on
reflectance can be direct, such as varying levels of chlorophyll among
species, or they can be indirect. For example, differences in nitrogen
content and photosynthetic capacity will affect NIR albedo, primarily as
a result of the influence of foliar nitrogen on canopy structure
(Knyazikhin et al., 2013; Townsend et al., 2013). Recent advances in
remote sensing have provided new ways to measure canopy function
and structure. Methods to retrieve solar-induced chlorophyll fluores-
cence (SIF) have provided a tool to directly measure photosynthetic
physiology (Frankenberg et al., 2011; Li et al., 2018; Sun et al., 2017;
Yang et al., 2015). Similarly, developments in terrestrial laser scanning
(TLS) have allowed canopy structure to be measured in ways previously
not possible (Calders et al., 2020; Disney, 2019; Stovall et al., 2021).
These tools allow us to connect spectral reflectance to canopy function
and structure in a manner that can inform ecological theory.

SIF is an emission of red and far-red photons (640 nm - 850 nm)
originating from the excitation of chlorophyll a from absorbed sunlight.
In principle, remote sensing observations of SIF (SIFps) at the canopy
scale can be defined when only first-order scattering is considered as:

SIFobs.(}».Q) = PAR x (iO,green X (1 - UJPAR) ) X ¢F,A X fT)SLCQ) (1)

where PAR is photosynthetically active radiation, iggreen is the canopy
directional interceptance of green components with chlorophyll (Zeng
et al., 2022), wpag is the single scattering albedo for PAR (transmittance
+ reflectance). The ipgreen X (1 — par) term comprises FPARqy, the
fraction of PAR absorbed by chlorophyll and PAR x FPAR., = APAR.
¢p,, is the quantum yield of steady-state fluorescence at a given wave-

length (A), and f(;%, is the photon escape probability at the viewing
angle of the sensor (Q). (ffg) acts as a scaling factor, ranging from 0 to 1,
on the total SIF emission. From Eq. 1, canopy observations of SIF are
affected by 1) steady-state biochemistry in the form of canopy chloro-
phyll content; 2) photosynthetic physiology in the form of ¢y ;; 3) can-
opy structure, which is represented as ip and f{;, in Eq. 1. From Eq. 1, it
becomes evident that to isolate ¢, from SIFops rr, the effects of canopy
structure (io and f{; ) must accounted for. These effects include the leaf

area index (LAI), leaf angle distribution (LAD), and foliar clumping.
Early studies showed empirical relationships between SIF and gross
primary productivity (GPP) across scales, from local (Yang et al., 2015)
to regional and global (Frankenberg et al., 2011; Li et al., 2018; Sun
et al., 2017). Additional studies showed that the relationship between
SIF and GPP is more attributable to the APAR and structural terms in
Eq.1 than ¢ (Dechant et al., 2020; Wieneke et al., 2018; Yang et al.,
2018a). In order to use SIF as a photosynthetic proxy, ¢ must be con-
nected to the quantum yield of photochemistry (¢p), which controls the
electron supply for the light-independent reactions of photosynthesis
(Frankenberg and Berry, 2018; Magney et al., 2020; van der Tol et al.,
2014). This is not a straightforward endeavor, as ¢ competes with ¢,
and non-photochemical quenching (NPQ) for excitation energy from
APAR. The competition among these processes is complex and dynamic,
operating at timescales of milliseconds to minutes (Sun et al., 2023a).
Moreover, the relationship between ¢ and ¢, exhibits non-linearity that
is affected by light intensity and environmental stress (Gu et al., 2019;
Magney et al., 2020; Porcar-Castell et al., 2014; Sun et al., 2023b; van
der Tol et al., 2014). Under light-saturating conditions ¢ and ¢, are
linearly related, but this linearity can be disrupted due to sudden ad-
justments in photosynthesis (Helm et al., 2020; Marrs et al., 2020; Wu
et al., 2022). Interestingly, the same sensitivity to changes in photo-
synthetic physiology that decouples ¢ and ¢, enables SIF measure-
ments to be used to detect stress responses of vegetation (Damm et al.,
2022; Martini et al., 2022; Sun et al., 2023b; Wang et al., 2022). SIF and
¢p also covary with foliar biochemical properties related to photosyn-
thesis (Sun et al., 2023b, Sun et al., 2023a; Zhang et al., 2014). Nitrogen
treatment experiments have shown differences in SIF in crops and nat-
ural systems (Ac et al., 2015; Jia et al., 2021; Migliavacca et al., 2017).
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SIF and ¢y, are correlated with chlorophyll content at the leaf scale
(Tubuxin et al., 2015), while canopy scale observations covary with
pigment pools (Kim et al., 2021; Pierrat et al., 2022) using the chloro-
phyll:carotenoid index (CCIL, Gamon et al., 2016), an optical proxy for
chlorophyll (Wong et al., 2020).

Optical proxies of canopy structure have also been important for SIF
and inferring photosynthetic productivity. NIR wavelengths have long
been known to be sensitive to canopy structure, dating back to formative
studies on NDVI and its precursors (Colwell, 1974; Jordan, 1969;
Tucker, 1979). It was recognized that NDVI could be used to estimate
FPAR, a key parameter in light-use efficiency models of GPP (Running
et al., 2004). In principle NIRy is a better proxy for FPAR than NDVI
(Sellers, 1987), but non-vegetative components are often an appreciable
fraction of total scene NIR reflectance (NIRt), particularly at the coarse
resolutions of satellite imagery. Recently, Badgley et al. (2017) showed
that NIRy can be approximated as the product of NDVI and NIRt, with
NDVI representing the proportion of NIR reflectance attributable to
vegetation. This approach for approximating NIRy has been found to be
a stronger predictor of GPP than NDVI or SIF across vegetation types and
across spatial scales (Badgley et al., 2019; Baldocchi et al., 2020;
Dechant et al., 2022, Dechant et al., 2020). Importantly, NIRy shares a
physical basis with far-red SIF which allows f;;5, to be approximated
(Zeng et al., 2019). Additional modeling and field-based analyses
showed that ¢ can be derived using the radiance equivalent of NIRy
(NIRyR, Zeng et al., 2022).

When considering the spatial patterns of canopy reflectance and SIF,
it is important to recognize that plants are biological organisms that
have been shaped by evolutionary and ecological principles (Field,
1991; Gamon et al., 2019; Ollinger, 2011). Plants coordinate canopy
function and structure to maximize whole-plant carbon gain given the
biotic and abiotic environments in which they are growing (Givnish,
2020; Hirose, 2005; Horn, 1971; Monsi and Saeki, 1953). Foliar re-
sources such as nitrogen and other elements are distributed based on the
spatial arrangement of leaves through the canopy (Ellsworth and Reich,
1993; Niinemets, 2010; Yang et al., 2023). This distribution leads to a
coordination between function and structure that modulates photosyn-
thetic capacity and leaf chlorophyll content (Croft et al., 2017; Kattge
et al., 2009). The result of this coordination has important implications
for vegetation reflectance, derived spectral indices, and SIF. For
example, NDVI is affected by NIR scattering from canopy structure and
by leaf chlorophyll content (Gamon et al., 1995; Gitelson and Merzlyak,
1997). Since the arrangement of canopy structure also affects leaf
chlorophyll content, NDVI and other vegetation indices can be viewed as
indicators of different functional-structural configurations that evolu-
tion has selected for across individuals and species. These biophysical
linkages also extend to SIF. Canopy structure directly affects i green and
firq) in Eq. 1. The coordination between function and structure indi-
rectly affects (1 — wpar) and ¢ via the influence chlorophyll and foliar
nitrogen (Koffi et al., 2015; Migliavacca et al., 2017; Verrelst et al.,
2016).

Given the connections between canopy function and structure, one
might expect that remotely sensed observations of pigments and
photosynthetic physiology covary with canopy structure. Studies
investigating these covariations have been lacking, largely due to the
difficulty in measuring canopy structure. TLS instrument quality and
data processing has improved dramatically in the last decade (Calders
et al., 2020; Disney, 2019), allowing accurate and rapid estimates of
LAD and LAI (Jupp et al., 2009; Stovall et al., 2021; Vicari et al., 2019).
In particular, leaf angle and LAD is an understudied component of
canopy structure that is essential for plant ecophysiology (Close and
Beadle, 2006; Hirtreiter and Potts, 2012) and is known to affect remote
sensing observations (McNeil et al., 2023; Yang et al., 2023). However,
no empirical studies have examined the relationship between LAD and
remote sensing data. Additionally, there are few studies examining the
spatial patterns in SIF and reflectance at the canopy or landscape scale
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(Maguire et al., 2021; Zeng et al., 2022). These questions require high
spatial resolution data that can only be obtained from a fixed-wing
aircraft or uncrewed aerial system (UAS). Most canopy-scale studies of
SIF rely on tower-based observation systems, which have a high tem-
poral resolution but only measure either one canopy, or multiple can-
opies, typically with inconsistencies in viewing zenith angle (Dechant
et al., 2020; Kimm et al., 2021; Pierrat et al., 2022, Pierrat et al., 2021).
In this study, we combine a novel UAS-based system with concurrent
TLS data and foliar sampling to answer the question, “Does canopy
structure covary with reflectance indices, SIF, and ¢y, across individual
tree canopies?” We hypothesize that LAD and LAI will be correlated with
remotely sensed variables of NIRy, reflectance indices, SIF, and ¢y ,. We
examine these relationships across two datasets collected under con-
trasting phenological stages; one dataset collected during the peak
growing season, and another collected during autumn leaf senescence
when nutrients are being remobilized and reallocated to other tissues in
preparation for winter dormancy.

2. Materials and methods
2.1. Overview

Our study site was Milton Airfield (37.9941°N, —78.3976°W, Fig. 1)
- an abandoned airfield now used by radio-controlled aircraft hobbyists
with adjacent regenerated stands of deciduous broadleaf (DBF) and
evergreen needleleaf (ENF) trees. We developed a novel UAS called
FluoSpecAir (Fig. 2, Section 2.2) to measure spatiotemporal patterns in
SIF and VNIR reflectance (400 nm — 850 nm) across individual tree
canopies at Milton Airfield on clear-sky days. For this study, we collected
two datasets — one collected at the onset of foliar senescence in 2020,
and another during the peak growing season of 2021. We refer to these
datasets as “foliar senescence” and “peak growing season” respectively.
For each dataset, we supplemented FluoSpecAir flights with 3D struc-
tural data from a subset of canopies using terrestrial laser scanning
(Section 2.3) and foliar sampling (Section 2.4).

The foliar senescence dataset was collected on three separate weeks,
spaced approximately 14 days apart. Measurements began on DOY 251,

Remote Sensing of Environment 330 (2025) 114996

267, and 282, respectively. FluoSpecAir was flown at four separate time
intervals: 7:00-8:00, 11:00-12:00, 12:00-13:00, and 15:00-16:00 EST.
Each flight flew predetermined waypoints that covered individual can-
opies of American sycamore, black cherry, red maple, and tulip poplar
from the DBF stand, and canopies of eastern white pine from the ENF
stand (Fig. 1, Table 1). Flights were repeated across 2-3 days to ensure
sufficient spatiotemporal coverage and good data quality. Following the
completion of flights, a subset of canopies targeted by FluoSpecAir were
scanned using TLS. We collected foliar samples for the flights pertaining
to DOY 267 and 282.

The peak growing season dataset was collected on four separate
weeks (DOY 133, 148, 188, and 217). FluoSpecAir flights were made
hourly from 7:00-16:00 EST, with another repeat day of flights. The
peak growing season dataset was collected from a different but nearby
set of waypoints with some canopy overlap, including black cherry,
eastern white pine, red maple, and tulip poplar (Table 1). FluoSpecAir
suffered a malfunction on the week pertaining to DOY 148, and thus, we
were only able to make two flights at 7:00 and 8:00. For each week of
FluoSpecAir flights, we scanned a subset of canopies using TLS. Foliar
traits were sampled on days following DOY 148 and 188.

2.2. FluoSpecAir

The UAS used in FluoSpecAir is a DJI Matrice 600 Pro (M600 Pro)
with a D-RTK real-time kinematics mobile GNSS station, and a Zenmuse
X2 camera. Autonomous flight and data acquisition were controlled
using an onboard Raspberry Pi 3 Model B connected to the A3 flight
controller on the M600 Pro. Using the DJI Onboard SDK (version 3.9),
we developed an autonomous flight script that 1) centered on co-
ordinates for each canopy, with the UAS positioned 15 m above the
canopy and the aircraft “nose” always oriented north; 2) made mea-
surements of downwelling irradiance and upwelling radiance at nadir;
3) initiated video capture from the Zenmuse X2 camera for the entirety
of the upwelling radiance measurement. Coordinates for each canopy
were selected by manually flying the M600 Pro over individual can-
opies. Using the Zenmuse X2 video feed, we recorded the coordinates
from the RTK antenna onboard the M600 Pro when the fiber field of

Fig. 1. Aerial view of the field site at Milton Airfield. Individual canopies measured in this study are shown, with the white lettering corresponding to the ID listed in
Table 1. Light blue circles indicate deciduous broadleaf forest (DBF) canopies and light yellow triangles represent evergreen needleleaf forest (ENF) canopies. The
takeoff and landing location of FluoSpecAir is outlined in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 2. Panel A) Picture of the FluoSpecAir observation platform used in this
study. FluoSpecAir uses a M600 Pro hexacopter with a modified FluoSpec2
payload to measure SIF and VNIR reflectance of individual plant canopies.
Panel B) Still frame taken from a video during upwelling radiance collection.
The red circle overlays the fiber optic FOV with respect to the Zenmuse X2
camera. We ensured that FluoSpecAir was positioned over all targeted canopies
by checking each recorded video feed (see Fig. S1 for examples). Panel C) Daily
pattern of SIFops pr (MW m ™2 sr ' nm ') and NIRyR (W m~2 st nm™?) for the
canopy shown on the day of flight. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)

view (FOV) was covering the targeted canopy (see the following para-
graphs for details). Using RTK positioning for FluoSpecAir measure-
ments is critical — we compared the accuracies of the RTK antennas and
standard A3 antennas on the M600 Pro against 10 surveyed points and
noted X/Y/Z accuracies of <5 cm using RTK, while A3 accuracy was >1
m (data not shown). For time and safety considerations, the take-off and
landing of the M600 Pro were performed manually by the M600 Pro
pilot.

FluoSpecAir uses a modified FluoSpec2 (Yang et al., 2018b) dual-
spectrometer system consisting of an Ocean Insight (Dunedin, Florida,
United States) QEPro spectrometer, which measures wavelengths be-
tween 730 nm - 785 nm (100 pm slit, 0.31 nm full-width half maximum
(FWHM)), and an Ocean Insight Flame spectrometer, which measures
between 340 nm — 1040 nm (25 pm slit, 3.28 nm FWHM at 546 nm).
Fiber optics for measuring downwelling irradiance and upwelling radi-
ance were connected to a rotating prism, which selectively directs
incoming light from either fiber to a BF19Y2LS02 bifurcated fiber
(Thorlabs Inc., Newton, NJ, USA) connected to the two spectrometers.
The downwelling irradiance fiber used an Ocean Insight CC-3 cosine
corrector and was calibrated for irradiance using an Ocean Insight HL-3
light source. The upwelling radiance fiber used a Gershun tube kit
(Ocean Insight) to restrict the field of view to 6°, and was calibrated for
radiance using a Labsphere 8 in. HELIOS integrating sphere (15.24 cm)
(Labsphere, North Sutton, New Hampshire, United States). The QEPro
had a thermoelectric cooler which kept the detector temperature stable
around —10 °C. For correcting the dark signal on the QEPro we used the
method by Yang et al. (2018a, 2018b), which creates a lookup table of
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Table 1

The list of canopies measured with FluoSpecAir in this study. The ID field is a
unique field-assigned identifier for a given individual. DOY coverage signifies
when FluoSpecAir data is available for a canopy. T Signifies TLS scan of canopy on DOY.

ID Species Common name PFT DOY coverage
1 Acer rubrum Red maple DBF 251, 267, 282
3 Platanus American DBF 251, 267, 282
occidentalis sycamore
4 Acer rubrum Red maple DBF 1337, 148, 2177, 251, 267,
282
7 Acer rubrum Red maple DBF 2677, 2827
8 Liriodendron Tulip poplar DBF 1337, 148, 188", 2177,
tulipifera 2677, 2827
10  Liriodendron Tulip poplar DBF 1337, 148, 188", 2177,
tulipifera 2677, 282"
11 Prunus serotina Black cherry DBF 1337, 1887, 2177, 251,
267", 282"
12 Prunus serotina Black cherry DBF 133, 148, 188, 251, 267
13 Prunus serotina Black cherry DBF 267, 282
14 Acer rubrum Red maple DBF 1337, 148, 188", 2177, 251,
2677, 2827
15  Liriodendron Tulip poplar DBF 251, 2677, 2827
tulipifera
16  Pinus strobus Eastern white ENF 133,148, 188", 2177, 251,
pine 2827
17 Pinus strobus Eastern white ENF 251, 267", 2827
pine
18  Pinus strobus Eastern white ENF 251, 2677, 282"
pine
19  Pinus strobus Eastern white ENF 251
pine
20  Pinus virginiana Virginia pine ENF 133,188, 2177
21  Liriodendron Tulip poplar DBF 1337, 148, 188", 2177
tulipifera
22 Acer rubrum Red maple DBF 1337, 148, 1887, 2177
26  Pinus strobus Eastern white ENF 188", 2177
pine
30  Pinus resinosa Red pine ENF 217

dark current spectra across temperature values and integration times,
and assumes dark current is linearly correlated with integration time at a
given temperature. The Flame instrument lacked a TEC cooler and thus
could not be temperature stabilized. To account for the dark current, we
made measurements of dark spectra using the Flame before and after
each flight, and averaged both values for the dark spectra. We assumed
that the temperature of the Flame spectrometer stayed constant before,
during, and after each flight. Inspection of pre-flight and post-flight dark
spectra showed no noticeable differences between the two, providing
some basis for this assumption.

The downwelling radiance fiber was mounted on a bracket in order
to maintain a fixed position relative to the Zenmuse X2 camera and
gimbal — this enabled alignment of the fiber FOV with the video output
from the camera. Projecting the fiber FOV onto the video output was
achieved by shining a light through the fiber in a dark room while
recording video feed from the camera. As a result, for every recorded
video of upwelling radiance data collection, we were able to accurately
identify if measurements were made from the targeted canopies for this
study. With each measurement taken at a distance of 15 m above each
canopy, the spot size was approximately 2 m? for all canopies.

We used the QEPro data to retrieve far-red SIF (SIFops pr) in mW m2
st™! nm™! in the Oy-A band using the spectral fitting method (Meroni
et al., 2010). We used a fitting window of 759.5 nm — 761.5 nm (Chang
et al., 2020) with linear functions. In our retrieval of SIF, we did not
account for any atmospheric attenuation of the SIF signal based on the
distance from each target to the sensor. We measured this effect to be
minimal based on an experimental flight where we examined how SIF s,
rr changed as a function of height against a non-fluorescence target of
asphalt pavement (Fig. S2). We used reflectance from the Flame to
calculate NDVI and CCI using the equations:
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r858 — r648

NDVI = r858 +r648 2
r530 — r670
[=—

ce r530 + 1670 &)

Where r represents reflectance at a wavelength in nm. Additionally,
we calculated NIRy and NIRyR as:

NIRy = NDVI x r780 ()]

NIRyR = NDVI x Lygg (5)

Where Lygg is radiance at 780 nm. For radiance and reflectance at
780 nm, we used data from the QEPro.

Data were quality controlled and filtered out based on 1) whether
upwelling radiance measurements occurred over the targeted canopy
and were free of shadows based on the video feed (see Fig. S1 for ex-
amples); 2) whether there were clear and stable sky conditions based on
the video feed and irradiance values; 3) spectral shape (was there a peak
in green reflectance, red edge, and NIR plateau, indicating a vegetative
spectral signature) and magnitude of NIR reflectance (0.2 < NIR
reflectance <0.6); 4) SIFps pr values <0 mW m~2sr ! nm™'. We made
no corrections for any potential roll and pitch effects on upwelling or
downwelling measurements. These effects were observed to be minimal
based on observing the video feed from each measurement.

We estimated ¢ using the conceptual approach by Zeng et al.

(2022), who showed that slfﬁ"R"\j;;R is proportional to ¢ppz. NIRyR and
SIFobs,rr are known to be strongly correlated with each other — the
reason for this being they share a physical basis that can be seen when

comparing Eq. 1 to the following equation:

NIRVR = SNIR X (io.green X U)NIR) X f?,s\cg) (6)

NIRyR and SIFps pr are dependent on incoming solar radiation (PAR
for SIF, incoming solar radiation in the NIR (Syr) for NIRy), canopy
interceptance, and f{;, . One key difference is that NIRyR is affected by
the single scattering albedo for NIR wavelengths (onr), whereas for SIF,
(1 — wpar) is the absorbance in the visible domain. Although ffi_‘m de-
pends upon wavelength, NIR photons absorb and scatter similarly to far-
red photons from SIF, particularly at wavelengths >750 nm. Thus, f{;,
should functionally be similar for both. This approach is contingent on
NIRyR and SIF,pspr being measured from the same field of view,
otherwise mismatches in Q and/or the ratio of diffuse radiation will
introduce uncertainty into the estimation of ¢ zz. Additionally, an im-
plicit assumption is that the ratio between (1 — wpar) and oy is constant
within and across taxa, and throughout time. We explain how all vari-
ables in Egs. 1 and 6 are calculated in Section 2.5.

2.3. Terrestrial laser scanner

In this study, we made 3D scans using a Faro Focus 120 (Faro
Technologies, Lake Mary, FL, USA) for all measurement weeks, with the
exception of one week (week 31) in the peak growing season where we
used a Leica RTC 360 (Leica Geosystems, St. Gallen, CH) TLS. The dif-
ference in data collected by each instrument has not been reported in the
literature, nor was it possible to do so for this study. We note that the
Leica TLS collected approximately five times as many points per second
than the Faro TLS, creating denser and more detailed point clouds.
FluoSpecAir canopies were scanned from multiple positions to create a
360° reconstruction. In some instances, a 360° reconstruction was not
possible due to occlusion from surrounding canopies. Scans were made
along a track that was designed to maximize coverage of FluoSpecAir
canopies from each scan position. We staked a grid of 14.7 cm diameter
reference balls to co-register individual TLS scans to one another. On
average, each individual scan shared six reference balls with any other
scan, and no scans shared fewer than four reference balls. Registration of
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TLS scans was performed using the instrument’s respective software
package — for the Focus 3D we used Faro SCENE and for the Leica RTC
360, we used Register 360. Reported alignment error averaged around 5
mm for registered scans. Individual trees from registered point clouds
were then manually extracted.

We applied the TLSLeAF algorithm (Stovall et al., 2021) to create 10
cm® voxels of leaf inclination angles (01) from the tree point clouds.
Using the mean 6y, for each voxel, we quantified LAD using; 1) a beta
distribution (Goel and Strebel, 1984) parameterized by v and p; 2) the
leaf inclination distribution function LIDF (Verhoef, 1997) which is
parameterized by LIDFa and LIDFb - these are parameters used in
radiative transfer models (RTMs) of canopies such as SCOPE (van der Tol
et al., 2009); 3) the mean and standard deviation of 4y, of all voxels. We
used a voxel-based method (Hosoi and Omasa, 2006) to calculate ver-
tical profiles of leaf area voxel density (LAVD). The contact frequency
for each vertical slice was calculated using points classified as vegetation
from the TLSLeAF output. We then multiplied the contact frequency by a
correction factor of 1.1 that accounts for leaf inclination angle to
calculate the leaf area voxel density (Li et al., 2017). We used the same
voxel resolution for LAD and LAVD calculations (10 c¢cm® as recom-
mended by TLSLeAF). We computed the LAI by summing LAVD across
all vertical bins.

We calculated LAD parameters as a function of the cumulative ver-
tical LAVD to account for differences in vertical foliage density (Fig. 3).
Representing the top of the canopy as 0 %, we calculated the canopy
height where a specified cumulative LAVD is found. Next, we selected all
angle voxels greater than or equal to the calculated height, and calcu-
lated the corresponding beta distribution and LIDF parameters, and the
mean and standard deviation of angle voxels. Optimal LIDF parameters
were calculated by applying a numerical minimization to an algorithm
provided by Verhoef (1997), which generates the cumulative leaf
inclination distribution for any combination of LIDFa and LIDFb. We
used the Imfit package in Python 3.8 to apply a least-squares minimi-
zation using the trust region reflective method. LIDFa and LIDFb were
constrained such that [LIDFa| + |[LIDFb| < 1 (Verhoef, 1997). The opti-
mization was performed on the probability density of observed leaf
angles using one-degree bins. We calculated the probability density from
the algorithm provided by Verhoef (1997) by taking the difference in
cumulative distribution between inclination intervals #; and 6, where
the interval was one degree.

2.4. Field and foliar sampling

We collected a limited set of foliar samples for the foliar senescence
and peak growing season datasets. Foliar samples were collected on
flights corresponding to DOY 148, 188, 267, and 282. Sun-exposed, top
of canopy, foliar samples were collected from canopies using a modular
pole pruner. We selected 1-5 non-chlorotic leaves per canopy. Foliar
sampling occurred in the morning and midday; upon obtaining samples,
they were immediately placed into plastic bags and stored in a dark
cooler with ice. In the afternoon, samples were returned to the labora-
tory where they were measured for the projected area using a LI-3000C
(LiCor Biosciences, Lincoln, NE, USA) leaf area meter. Foliar samples
were then measured for spectral reflectance — for the foliar senescence
dataset we used an ASD FieldSpec 3 (ASD Inc., Boulder, CO, USA) and
the peak growing season dataset used an SVC HR-1024i (Spectra Vista
Corp, Poughkeepsie, NY, USA). The leaf reflectance was measured by
each instrument using a plant contact probe with an external light
source. For ENF species, fresh spectra were measured by arranging
needles together in a singular mat with no open spaces between needles.
We measured reflectance spectra at five positions for each leaf, and
averaged all scans. Following projected area and reflectance measure-
ments, foliar samples were oven-dried at 60 °C for 48 h to measure the
dry mass and calculate LMA.

Spectral reflectance from 400 nm — 950 nm was inverted using
PROSPECT-D (Féret et al., 2017) to retrieve estimates of chlorophyll a +
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Fig. 3. A visualization of how LAD parameters were calculated using our point cloud data. In this example, we used ID 10 from DOY 217 (Table 1). For an isolated
tree (left panel), we calculated the vertical LAVD profile using all co-registered point cloud data. In this example, we show the height of the tree at which corresponds
to 5 %, 10 %, 25 %, 50 %, and 100 %, of the cumulative LAVD (m? m~%). The probability density function using the beta and LIDF distributions, and the observed

distribution, for each cumulative LAVD is shown on the right panels.

b (leaf chlorophyll content) and leaf carotenoid content. PROSPECT-D
was inverted using a numerical minimization, with a least-squares
curve fit with a trust region reflective algorithm using the Imfit pack-
age. We estimated the mesophyll thickness, the chlorophyll a + b con-
tent, the carotenoid content, the anthocyanin content, brown pigments,
and water thickness, parameters. We used the leaf LMA as the dry mass
parameter. We calculated leaf wpsr averaging reflectance + trans-
mittance from 400 nm - 700 nm. Leaf ongr was calculated by averaging
reflectance + transmittance from 777 nm — 783 nm.

2.5. Analysis

We examined the spatial distributions of canopy NDVI, canopy NIRy,

canopy CCI, SIF,ps rr, and SIEIFI‘}’{;{{“, v, and y, across all individuals, and how

they varied diurnally, across the foliar senescence and peak growing
season datasets. We used the Tukey-Kramer approach to compare how
distributions of each variable changed for DBF species within and across
each dataset. We did not make statistical comparisons of ENF distribu-

tions because of limited observations. We then analyzed the relation-

ships of SIFps rr and SgR"Vf{‘ with canopy NDVI, canopy NIRy, and canopy

CCL For each dataset, we show the relationships among variables for
each week of FluoSpecAir measurements. We used all data from all
flights and averaged observations from multiple days on an hourly basis.
Additionally, we examined if the relationships among variables vary
diurnally by averaging observations for certain times of the day. Spe-
cifically, we examined relationships during the morning (7:00-9:00),
midday (11:00-13:00), and afternoon (14:00-16:00).

We used linear mixed effects models to understand the spatiotem-
poral relationship of cumulative LAVD and LAD with our remote sensing
observations. We chose this method because a simple linear regression
analysis would violate the assumption of independence. The foliar
senescence and peak growing season datasets consist of repeat canopy
observations across different weeks, thus our analysis needed to account
for effect of each canopy at different points in time. We used the model
structure:

y=Xp+Zu+e 7

Where y is the outcome variable (canopy NDVI, canopy CCI, SIFps,

STF b R . . . .
FR, OF R ), X is the predictor variable vector (cumulative LAVD, v, j,

LIDFa, and LIDFb), B is the fixed-effects regression coefficients, Z is the
design matrix for the random effect (tree ID), p is the vector for the
random effects (the random complement to the fixed p), and ¢ is the
model residuals not explained by the model Xp + Zu. We constructed
models for the foliar senescence and peak growing season datasets, using
canopies that had concurrent FluoSpecAir and TLS observations
(Table 1). The outcome variables were calculated as the mean daily
value using all hourly data for each canopy and week. Linear mixed
effects models were generated in R using the Ime4 package. We report
the marginal R? (R2%), which is the proportion of total variance explained
by the fixed effect, and the conditional R? (Rf), which is the proportion
of variance explained by both fixed and random effects (Nakagawa et al.,
2017). Model evaluation and calculation of RZ and RZ was done using
the mlmtools package in R.

We present the model relationships using 10 % of the cumulative
LAVD (LAVDjgy). We report these variables with the percentage sub-
scripted, such that v19, and 1309, would represent v and p at 10 % of the
cumulative LAVD. This percentage was chosen based on an analysis to
determine what portion of the canopy is most relevant to our remote
sensing data. Using the same model structure described in the previous
paragraph, we built models using 1 % increments of the cumulative
LAVD, starting from 1 % and ending at 100 %. The highest R? values for
models using p were found approximately between 10%-20 % of the
cumulative LAVD, while R? values for v typically reached their
maximum between 50 % - 70 % (Fig. S3).

We performed an exploratory analysis to provide greater contextual
meaning to beta distribution parameters v and p. Using the underlying
equations for v and p (Eq. A1 — A3), we showed how the mean and
variance affect the shape of the beta distribution. We developed a more
intuitive equation for explaining p. To test the generality of our findings,
we compared our results to 100 randomly generated beta distributions,
constraining the range of v and p in our simulated data to the range of
our observational data.

SIFobs FR
NIRyR

rearranged Eq. 1 and Eq. 6 to the following:

As a check on the assumption that is proportional to ¢ g, We
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SIFopspr ~ PAR 1 — opar
= — X ——X (8)
NIRyR Snir WNIR Perm

We used our field observations to examine the potential influence of

SIFops Fr
NIRyR *

irradiance at 780 nm from the QEPro, while foliar samples were used to
1’“’;":‘“. wpar Was calculated by averaging reflectance + trans-

(&N
mittance from 400 nm - 700 nm. oyr Was calculated by averaging

across wavelengths 777 nm — 783 nm. % was approximated by aver-

aging all daily values of PAR/Sy;; for individual plant canopies with
concurrent foliar measurements of wpar and wyr during a sampling
week.

Finally, we analyzed relationships between leaf chlorophyll content
and remote sensing variables and canopy structural parameters. Due to
limited foliar sampling during the peak growing season dataset, we show
relationships from data collected on DOY 188. For the foliar senescence
dataset, we show relationships from data collected on DOY 267. When
examining relationships between leaf chlorophyll content and our
structural metrics, we used whole-canopy values (e.g. LAVD100%, V100%
and p100%).- Whole-canopy values are more representative of coordina-
tion between leaf chlorophyll content and canopy structure, as they
reflect the patterns of resource allocation made at the level of the
individual.

the first two terms in eq. 3 on

Snir was calculated as incoming

calculate

3. Results

3.1. Spatiotemporal patterns of optical remote sensing data and LAD

SIFops FR
NIRyR ’

peak growing season than during foliar senescence for DBF canopies
(Fig. 4). Canopy NIRy, LAVD; (9, and beta distribution parameters vy,

and 109 did not differ as much between the two datasets (Fig. 4). We

SIFobs.Fr
NIRyR ?

growing season dataset tended to show no differences against observa-
tions from the foliar senescence dataset (Fig. 4d — 4e). LAVD1 (g, and v1gy
values were slightly higher during the peak growing season, but not
large enough to differ significantly from measurements made during
foliar senescence, except for DOY 217 (Fig. 4f, h). We observed no dif-
ferences in the mean or standard deviation of leaf angle (meanjgo,
sdigu, Fig. S4f — S4g), though peak growing season distributions had
comparatively more canopies with a higher mean leaf angle. TLS ob-
servations for this week were made using the Leica RTC 360, which as
mentioned, collected 5x as many points compared to the Faro Focus TLS
used on all other weeks.

During the peak growing season, canopy NDVI was constant among
DBEF species, with a mean value of 0.88 for flights on DOY 133,148, and
217. Canopy NDVI was larger on DOY 188, with a mean value of 0.91
(Fig. 4a). Canopy NIRy peaked on DOY 148 and declined the following
weeks, with DOY 217 showing the lowest mean canopy NIRy. Canopy
CCI declined throughout the peak growing season for DBF species, with
a lower mean value for DOY 217 compared to DOY 133, though we note
that DOY 133 exhibited larger variation (Fig. 4c). Similarly, SIFps rr and

SIFqps Fr
NIRvR

we observed an increase in both for DOY 148. We observed decreases in
canopy NDVI among DBF species during foliar senescence (Fig. 4a).
Mean canopy NDVI declined by approximately 9 % from DOY 251
(canopy NDVI = 0.87) to DOY 282 (canopy NDVI = 0.79). Canopy NIRy,

SIFobs Fr
NIRyR

period for DBF species (Fig. 4b — 4e), though the distributions changed,
particularly when comparing DOY 251 and DOY 282. Given the limited
number of ENF canopies for both datasets, we opted not to make any
statistical or qualitative comparisons with either dataset.

Canopy NDVI, canopy CCI, SIFqpsr, and

were larger in the

note that for SIF,psrr, and the last week of flights for the peak

declined across the peak growing season (Fig. 4c — 4d), although

canopy CCI, SIFpsrr, and did not change across the sampling
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Fig. 4. Violin plots of canopy (a) NDVI, (b), NIRy, (c) CCI, (d) SIFopsrr (mW

m 2 st nm ), () =R, () viow, (8) Haow, and (h) LAVD1qs, (m? m~), for
DBF and ENF canopies, using all observations for each week that FluoSpecAir
was flown. Significant differences in mean values between observation weeks
are indicated by lowercase letters in gray (P < 0.001) for DBF canopies. The red
outlined box in panels f — h denote TLS measurements made with a Leica RTC
360. Observations from the peak growing season are shown to the left of the
vertical line and observations from foliar senescence are shown to the right of
the line. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

During the peak growing season, spatial variation in SIFgpsrr Was
more strongly related to canopy CCI than canopy NDVI (Fig. 5). We
observed significant relationships between SIFps pr and NIRy, though

they were mostly weaker compared to canopy NDVI or canopy CCI. With

SIFopsFr . SIFobs FR
NIRyR NIRyR

than canopy CCI, while no relationship with canopy NIRy was observed.
These patterns were consistent across the morning, midday, and after-
noon (Fig. S5). The R? values of spatial relationships at individual times
were larger compared to Fig. 5, which pools all data across all times. The
R2 of spatial relationships declined as the peak growing season pro-

gressed — this is particularly noticeable when examining relationships of
SIFobs rr
NIRyR *

relationships across canopy NDVI, and canopy CCI, with SIF,pspr Or

STFobs FR
NIRyR

significantly correlated with SIFghpr on DOY 251. Similarly, we
observed minimal correlations between variables when looking at data
across individual times of day. Of note, midday observations, which
minimize solar angle issues, showed only one significant correlation

between canopy NDVI and SIEFI"R"j;“ on DOY 282 (Fig. S6).

respect to canopy NDVI had a stronger relationship with

canopy NDVI and canopy CCI with

We observed no significant

across the foliar senescence dataset (Fig. 6). Canopy NIRy was
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resents a week where FluoSpecAir was flown, with the day of year (DOY) dis-
played at the top of the column. Data across all hourly intervals (7:00-16:00)
are shown. The linear regression lines for significant relationships (Bonferroni
adjusted P < 0.008) are shown in black, with the corresponding coefficient of
determination (R?) displayed in the upper left.

st ! nm ') and for the peak growing season dataset. Each column rep-

3.2. Relationships between LAD parameters and remote sensing
observations

For full results of our exploratory analysis on interpreting beta dis-
tribution parameters, we refer readers to Appendix A. However, we
identified several important points about v and p. First, v and p are
inversely related to variance — lower values indicate greater variability
in leaf angle while higher values indicate low variability. Furthermore,
when the mean leaf angle is greater than 45°, as is the case for all can-
opies in this study (Table S1), vand p have specific interpretations; 1) vis
mainly affected by the variance in leaf angle (Fig. A1); 2) p is sensitive to
both the mean and variance of leaf angle (Fig. A1), and is conceptualized
as the variance in leaf angle when controlling for the effects of mean
angle on the variance (Fig. A4) — as leaf angles are constrained from 0° to
90°, mathematically, variation in angle must be relatively lower the
closer distribution mean is to either extreme. Another noteworthy point
arising from the calculation of v and p is that when the mean leaf angle is
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STFobs Fr
NIRyR ?

a week where FluoSpecAir was flown, with the day of year (DOY) displayed at
the top of the column. Data across all hourly intervals (7:00-16:00) are shown.
The linear regression lines for significant relationships (Bonferroni adjusted P
< 0.008) are shown in black, with the corresponding coefficient of determi-
nation (R?) displayed in the upper left.

st 'nm 1) and for the foliar senescence dataset. Each column represents

greater than 45°, v will be larger than p, with the opposite being true at
mean leaf angles lower than 45°.

In the peak growing season, we observed a negative relationship
between beta distribution parameters and remote sensing variables,
indicating that canopies with greater variation in leaf angle had larger

canopy NDVI, CCI, SIF,psrr, and S;I};l”,\b\j‘;“ (Fig. 7). We did not find any




A.D. Jablonski et al.

Remote Sensing of Environment 330 (2025) 114996

|R2 =0.41
R2 =0.74
0.7
0.8 - - - -

- &8 T - T - ?
o84 G & S &
= ﬁ* O flo o o 29 61
0 | T
0.8 — - —
R2 =0.27 R2, =0.47
R2 =0.64 R2 =0.60
[ ’ 8 5 &
0 -  ar SRR I o VY. - 204
o ot | o, %% o0
—h— i —a— &
04 T T T \ \ T
2.8 — — -
R2 =0.32 R2 =0.45
& R2 =0.32 R2 =0.45
)
2 — —
[$]
9
=
%)

0.015 — — —~
©
3[4 —
g2 2%\?
2B 0.075 it - -
= Z t*ﬁf' "
0 T 1 T \ \ \ \
0 0.3 06 0 12 24 0 6 12 -1 -0.5 0 -1 -0.5 0
LAVDj09 V1i0% H10% LIDFa; oy LIDFbjo%
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SIFobs kR
NIRvR ’

for the peak growing season. We show the “between-group” associations from

our linear mixed models, where each data point is the mean value for each canopy (n = 11) across all weeks of measurements (see Table 1). The error bars represent
one standard deviation. The Rﬁl (marginal R?) and Rﬁ (conditional R?) for each significant linear-mixed model (Bonferroni adjusted P < 0.002) are displayed in the

upper left.

significant models between LAVD and our remote sensing variables, or
for models using beta distribution LAD parameters and canopy NIRy.
Linear mixed models using vi1g9 Or pigy produced similar a R?, but
differed considerably in their values of R2, which is the proportion of
variance explained by the fixed (i.e. V100, OT p109) effect only. Models

using 100, had a larger R% and a smaller difference between R? and R2,

SIFqps Fr
NIRyR

ships with v1g9, and p1gw, with R? > 0.75. The fixed effect of gy

SIFobs Fr
NIRyR *

No significant models were generated using LIDFajgy, as a predictor

variable, while LIDFbg, was positively related to canopy NDVI and

SIFobsFR
NIRyR *

while R values were in-between vy, and pi19s. No significant models
were found using LAVD; ¢y, though we note that one ENF canopy (red
pine, ID 30) had a large LAVDjqy while its LAD parameters were
consistent with other ENF canopies.

When examining relationships in the foliar senescence dataset, we
did not observe any significant relationships (Fig. S7). However, models

using P10y and LIDFb were trending significant (P < 0.05) for canopy
SIFobs

NDVI and e

between the two datasets (Figs. S8, S9). In the peak growing season,

models using SDjgy, were trending significant for all remote sensing

compared to vigy. Canopy NDVI and had the strongest relation-

accounted for 80 % and 73 % of the variation in canopy NDVI and

Rf values for LIDFb; gy, were lower compared to vy0y and P10,

Relationships with mean and SD leaf angle varied

variables (Fig. S8). In the foliar senescence dataset, meanjgy was
trending significant for canopy NDVI and NIRy (Fig. S9), with mean; oo,
being positively related to canopy NDVI and negatively related to NIRy.
Beta distribution parameter p was highly related to LIDFb (R? > 0.90,
not shown), while the relationship between LIDFa and mean leaf angle
was nearly a perfect line (R2 > 0.98 not shown).

3.3. Relationships between remote sensing metrics and leaf chlorophyll
content

PROSPECT-D inversions were able to accurately replicate our mea-
surements of leaf reflectance spectra using a leaf clip (Fig. S10) from
400 nm - 950 nm. When comparing the measured reflectance spectra to
the simulated, we report a median root mean square error (RMSE) and
standard error of 0.0086 + 0.0004. During the peak growing season, leaf
chlorophyll content ranged from 52 to 86 pg cm? with a median and
standard deviation of 67 + 9. During the foliar senescence dataset, leaf
chlorophyll content ranged from 35 to 78 pg cm? with a median and
standard deviation of 53 + 13. When correlating leaf chlorophyll con-

tent to midday observations of S;II;‘)R"S';“ for a given sampling week, we
found positive relationships between both variables for both datasets
(Fig. 8). While we did not see significant relationships between leaf
chlorophyll content and LAVDjgoy and pipoy (data not shown), we

observe a negative relationship with v;ggo, for both datasets (Fig. 9).
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SIFops FR

3.4. Assessing the relationship between "

and rrr

STFobs kR

When we tested the assumption that =g

is proportional to ¢g g,

1-wpar
and
4 ONIR

SIFobsrr  PAR
NIRyR ’ Snir

exhibited little variation among DBF canopies in both

we did not see any apparent relationship between >
(Fig. §11). 1

datasets. There was a difference in

OJPAR

(ﬂpAR

when comparing DBF vs ENF

—@pAR
ONIR

around 0.9, while DBF species were around 1 (Fig. S11). No ENF can-

opies were sampled for the peak growing season dataset. £2% varied

canopies in the foliar senesce dataset, w1th ENF canopies having a 1

more within the foliar senescence dataset (Fig. S11) compared to the
PAR

SNIR
Furthermore, for any given flight, all remote sensing observations are

€28 should not vary significantly.

peak growing season data, but overall, variation in was low.
made within ~10 min each other, thus ¢*
As our analyses in Figs. 4-9 are separated by individual weeks, variation

in ﬂ should will be minimal. Based on these results, we concluded that

10

SIFqbs FR
NIRy

peak growing season dataset.

variability in is driven primarily by differences in ¢y zg across the

4. Discussion

4.1. Coordination between function and structure drive remote sensing
relationships

Our results show that during the peak growing season, canopies
exhibiting greater variation in leaf angle have a larger NDVI, CCI, SIFps,

STFobs FR
NIRyR

(Fig. 9). We attribute this finding to the coordination between canopy
function and structure — assemblages of biochemical and structural traits
are coordinated to facilitate a particular growth strategy (McNeil et al.,
2023; Reich, 2014). We propose that increasing intra-canopy leaf angle
variability enhances light interception in the visible wavelengths,
allowing canopies to invest in greater concentrations of foliar pigments.

FR» and

(Fig. 7), and they have higher leaf chlorophyll content
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The exact configurations of leaf placement within a canopy that leads to
increased variability in leaf angle and enhanced light interception are
unknown, but this could be addressed in future studies using 3D radia-
tive transfer models (Gastellu-Etchegorry et al., 2017). As we discuss
further on in Section 4.2., the radiative transfer mechanisms driving the
strong coupling between LAD and our remote sensing variables likely
include factors beyond the relationship between LAD and leaf chloro-
phyll content. Furthermore, the relationships in Fig. 7 were strength-
ened by a separation between DBF and ENF canopies, particularly with
respect to LAD parameters. ENF canopies are known to be biochemically
and spectrally distinct from DBF canopies — consistent with our under-
standing of plant strategies (Guillén-Escriba et al., 2021; Lusk et al.,
2003; Serbin et al., 2014). Our data suggest that DBF and ENF canopies
also differ in their LAD, although to what degree DBF and ENF species
might overlap in their range of LAD values remains to be seen. However,
given sufficient sample sizes for each, we would still expect comparable
relationships within each PFT when comparing LAD with the same
remote sensing variables.

Enhanced light interception increases whole-canopy photosynthesis,

Sﬁ;{’ég‘ with leaf chlorophyll and LAD may
be indicative of these larger photosynthetic rates. Model simulations
have shown that the fluorescence yield increases with photosynthetic
capacity under light-saturating conditions (Johnson and Berry, 2021).
The model results in Johnson and Berry (2021) are also consistent with

SIFobs Fr
NIRyR

our data (Fig. 8). Furthermore, leaf chlorophyll content is positively
related to foliar nitrogen and photosynthetic capacity (Croft et al., 2017)
in some DBF species, including red maple, which we measured in our
study. Thus, an exciting implication is that our remote sensing data are
capturing differences in whole-canopy photosynthesis among individual
tree canopies, although we do not have measurements of leaf gas ex-
change or foliar nitrogen to confirm this.

One curiosity is that our data showed a stronger relationship be-
tween canopy NDVI and SIF s pr compared to canopy NIRy (Fig. 5). This
is surprising, as empirical studies and RTM simulations have shown a
strong relationship between SIF and NIRy (Badgley et al., 2017; Du et al.,
2023; Zeng et al., 2019). The reasons for this discrepancy are unclear,
but one possibility merits discussion. Prior studies showed a strong
coupling between NIRy and SIF from coarse spatiotemporal resolutions
(Badgley et al., 2017) or stationary tower observations from a fixed FOV
across ecosystems (Du et al., 2023), while our study examines re-
lationships at a previously unstudied spatiotemporal scale of individual
tree canopies at hourly intervals. This may suggest that scaling affects
the relationship between NIRy and SIF — a phenomenon that has been
previously reported in Arctic Boreal vegetation using 30 m? airborne
imagery (Maguire et al., 2021). Similar to Maguire et al. (2021), our
results may indicate that spatial variability in canopy SIFgps pr is driven
more by leaf chlorophyll than canopy structure, as NDVI is sensitive to
chlorophyll and canopy structure, while NIRy is primarily sensitive to
canopy structure. The correlations of SIFg,spr With leaf chlorophyll
content (Fig. 8) and canopy CCI (Fig. 5) are consistent with this view as
well. Our data can also contradict this hypothesis, as notably NIRy was
more strongly coupled with SIFp rr than NDVI in our foliar senescence
dataset on DOY 251, and perhaps suggests potential measurement un-
certainties associated with our FluoSpecAir system. Future studies that
explicitly address questions of scaling with remote sensing observations

may be able to definitively resolve this particular finding.

SIFobs rr
NIRvR

and the positive covariation of

the positive correlation between leaf chlorophyll and observed in

Leaf chlorophyll content is also a strong driver of in our study.

SIFobs rR
> NIRyP

and canopy CCI are tightly coupled seasonally in a boreal ENF forest

(Kim et al., 2021). Surprisingly, in our data, we found that canopy NDVI

SIFobs kR
NIRyR

It was previously shown that when using NIR, x PAR (NIRyP)

had roughly comparable, or stronger, correlations with compared
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to canopy CCI. This is a novel finding within our dataset, and could be
related to canopy NDVI acting as a better indicator of photosynthetic
capacity than CCI. In our data, the influence of chlorophyll on NDVI, as
well as the indirect effect of foliar nitrogen on NIR albedo (Knyazikhin

et al., 2013; Townsend et al., 2013), could lead to the stronger rela-

SIFobs rr
NIRyR

. However, we caution that additional field studies

SIFobs rr
> NIRyR?

tionship with

are needed to verify the connections between canopy NDVI and

photosynthetic capacity.

4.2. The direct and indirect effects of LAD on remote sensing observations

Here, we distinguish the effects of LAD, and canopy structural traits
more broadly, on remote sensing observations as both direct and indi-
rect. The direct effects relate to how canopy structural traits impact
radiative transfer properties such as ig green and f(eicﬂ) The indirect effects

of canopy structural traits are related to the coordination between
function and structure. In our study, we found that within-canopy
variability in leaf angle is more strongly related to our remote sensing
observations than the mean leaf angle of the canopy (Fig. 7, Fig. S7 - S9).
As we discussed in 4.1., this appears to be an indirect effect that is
predicated on the relationship between LAD and leaf chlorophyll
(Fig. 9). However, within-canopy variability in LAD should also affect
i0,green and f‘(*zcg) as well, and these factors are likely to be contributing to

the strength of the relationships in Fig. 7. This can be reasoned by
observing that the relationships between LAD and our remote sensing
variables are considerably stronger compared to the relationships with
leaf chlorophyll content, and the relationship between LAD and leaf
chlorophyll content. Thus, changes in ig green and ff{cg) as LAD changes,

are likely contributing additional explanatory power — however this
would need to be more thoroughly investigated using RTM simulation.

Our findings are contrasted with RTM-based studies, which have
illustrated the direct effects of mean leaf angle on canopy reflectance
(Hase et al., 2022; Jacquemoud et al., 2009; Kattenborn et al., 2024;
Zeng et al., 2019). Our results are not inconsistent with RTM simulations
however — we observed a negative relationship between mean leaf angle
and canopy NIRy (Fig. S9) that mirrors studies using RTM simulations
(Kattenborn et al., 2024; Zeng et al., 2019). In other instances, re-
lationships among remote sensing variables with mean leaf angle were
not significant, but small sample sizes are limiting our power (Fig. S8).
We also stress that our understanding of the direct effects of LAD on
radiative transfer, particularly within complex canopies such as forests,
is incomplete and limited, partly due to a lack of observational data. For
example, no RTM-based studies have examined how canopy variability
in leaf angle affects ig green X< ]‘(eji,)), and resulting observations of reflec-

tance and SIF. Thus, while it may be surprising that our dataset shows a
much stronger relationship between parameters of leaf angle variability
and remote sensing observations compared to the mean leaf angle, our
findings are within reason.

We also found the relationship between LAD and canopy NDVI to be
appreciably stronger than the relationship between LAD and canopy CCI.
This is likely because canopy CCI was designed to measure the relative
concentrations of chlorophyll to carotenoids (Gamon et al., 2016). In-situ
field observations have shown positive relationships between total-
chlorophylls and canopy CCI (Wong et al., 2020), but our own data did
not corroborate this finding (Fig. 8). However, the relationship between
chlorophyll and canopy CCI found by Wong et al. (2020) were species
dependent. The limited number of individuals per species in our study
may prevent a clearer relationship from being present in our dataset.

Furthermore, given the consistent pattern between LAD, canopy NDVI,

SIFobs R
NIRyR °

believe it is still reasonable to assume larger CCI values correspond to a
greater leaf chlorophyll content in our data.

and canopy CCI, and canopy NDVI and canopy CCI with SIF and

we
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4.3. Phenological stage affects coordination between function and
structure

While our peak growing season data showed coordination between
function and structure, data collected during foliar senescence (2020)
showed no significant relationships among our remote sensing variables
(Fig. 6, Fig. S7). This result is not unexpected, as the main physiological
function of plants during this time is remobilization and reallocation of
nutrients in preparation for growth during the following spring rather
than resource acquisition at that moment (Chapin, 1980; Killingbeck,
1996). This process is characterized by the breakdown of chlorophyll
and leaf proteins (Christ and Hortensteiner, 2014; Hortensteiner and
Feller, 2002; Kuai et al., 2018), resulting in the decline and eventual
termination of photosynthetic processes, including leaf gas exchange
and ¢pg; (McConnaughay et al., 1996; Weng et al., 2005). These changes
in leaf biochemistry affect spectral reflectance, which we observed in
our FluoSpecAir data (Fig. 4.). The onset of senescence creating changes

in leaf optical properties and photosynthesis likely explains why canopy

STFobs Fr
NIRyR

foliar senescence dataset (Fig. 6). We also attribute the lower values of
SIF,bs,rr Observed in the foliar senescence dataset (Fig. 4d) to functional
changes more than structural ones. The physiological breakdown of

chlorophyll will reduce APAR, leading to lower values of SIFypsFr.

SIFobs Fr
NIRyR

that ¢y, was also lower during this time period, which would also
contribute to lower values of SIF,ps rr. Canopy structural metrics how-
ever remained comparatively stable between the two datasets (Fig. 4f —
4h, Fig. S4f, S4g), further pointing to functional changes driving the
lower values in SIFqps pr.
Despite the lack of relationships with SIF variables from either
remote sensing indices or LAD, we still observed positive relationships
S;ﬁ'ﬁ% (Fig. 8). Our foliar
sampling preferentially selected non-chlorotic leaves and tissues for
spectral measurements, as senescing leaves would have a significantly
reduced SIF emission. As the canopy SIF emission would predominantly
be from the remaining green vegetation, it is unsurprising to see corre-
lations between leaf chlorophyll and SIF variables. From a statistical
perspective, there is an even stronger decoupling between leaf chloro-
phyll and SIF,s R in the foliar senescence dataset. Compared to the
peak growing season, leaf chlorophyll content had a larger range and
was more variable, while SIF,ps rr Was less variable with a smaller range.
While the greater variability in leaf chlorophyll content should lead to
stronger correlations, we find a weaker R? with SIFgbs,rr — in part due to
the smaller range and variability of SIF;ps pr.

CCI and canopy NDVI were not correlated with SIF,ps pr OF in the

Additionally, we observed lower values of

(Fig. 4e), indicating

between leaf chlorophyll content, SIF, and

SIFobs Fr
NIRyR

4.4. is a proxy for ¢

STFobs rr
NIRyR

related to the light environment (ﬁ ), leaf albedo (l;ﬁ[’;“‘), and ¢, . As

As indicated by Eq. 8, the constitutive components of are

obs.FR

we observed no relationship between sgm and the light environment

SIFobsFr ¢
NIRyR ~ PFFR:

However, we were unable to make leaf-level measurements of ¢y to

STFobs kR
NIRyR

dating the approach suggested by Zeng et al. (2022). There are also
several assumptions and uncertainties using this method that merit
discussion. First, this method is slightly sensitive to soil background
brightness (Zeng et al., 2022), although we note that all FluoSpecAir
measurements completely covered each tree canopy — minimizing the
contribution of soil background. Another noteworthy point is that the
ENF and DBF leaves exhibited separation in the 1;;% term, suggesting

or leaf albedo terms (Fig. S11), our conclusion was that

compare against

preventing us from making a definitively vali-

that neither wpar or wyr should be assumed to be constant across plant
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STFobs R
NIRyR

or ¢y, while still showing a corre-

functional types. Lastly, acknowledge the possibility that could

1—wpar
ONR

show no correlation with %:,

lation between the product of the three.

4.5. The potential influence of clumping index

While TLS processing algorithms are rapidly advancing, it should be
noted that no methods exist to estimate the clumping index of individual
trees from TLS. Canopy clumping, which describes the spatial deviation
of foliage with respect to a random distribution (Nilson, 1971), is a
critical structural parameter and is essential for understanding canopy
radiative transfer processes. Contemporary methods rely on using the
entire TLS scan to derive a plot level estimate of clumping index (Ma
etal., 2018; Schraik et al., 2023). While clumping index is known to vary
by species, there is some limited evidence suggesting that clumping
covaries vertically with leaf angle (Béland and Baldocchi, 2020). Thus,
it’s possible that our relationships between LAD and remote sensing
observations include some effects of clumping index.

4.6. Leaf angle distribution — contextualizing our measurements

Our study is one of a handful of studies that have quantified the LAD
of tree crowns from multiple species with TLS. Most studies that report
LAD rely on a leveled digital photography method (Chianucci et al.,
2018; Pisek et al., 2022; Raabe et al., 2015) which is more labor and time
intensive, and cannot measure whole canopies. Despite these draw-
backs, these approaches yield comparable results to TLS-derived
methods (see Kattenborn et al., 2022; Pisek et al., 2022). When
comparing LAD from our deciduous broadleaf species, we observed
higher mean values of leaf angle, and lower standard deviations in leaf
angle in Acer rubrum and Prunus serotina compared to other species in
their respective genus (Table S1, Pisek et al., 2022). Values of v are also
larger in our data, while p falls within reported ranges for comparable
species. LAD reported in Pisek et al. (2022), the most comprehensive
dataset available, predominantly comes from European trees. There are
considerable differences in environment and latitude with our data
collected in the mid-Atlantic region of the U.S. Thus, we would expect to
observe differences in mean angle and beta parameters.

4.7. Leaf angle distribution — reporting and choice of parameters matter

It is important to report a suite of parameters related to LAD as they
are important for the remote sensing and forest structure communities.
Tabular data reporting means, standard deviation, v, and p, are rela-
tively scarce and should be standard output for future studies that
quantify LAD. These metrics are important because of their strong tie
with remote sensing observations (Figs. 7, 8). Studies often assign
observed LAD to a “best-fit” theoretical LAD (e.g., plagiophile, Raabe
etal., 2015), but variation in LAD falls along a gradient that has no clear
boundaries between these types. We also suggest that, when possible,
the vertical profile of these values should be provided. Additionally, the
choice of distribution parameters (i.e., beta distribution, LIDF, or mean
and standard deviation) matters. RTMs such as SCOPE rely on LIDF,
which is parameterized by LIDFa and LIDFb. However, the LIDF pro-
duces leaf angle distributions that are different compared to those based
on beta distribution parameters. We observed this in our observational
data (Fig. S12) and when replicating theoretical leaf angle distributions
(e.g., spherical, plagiophile, etc., Fig. S13). When using the LIDF, the leaf
angle distribution was overestimated at the tails, whereas the beta dis-
tribution underestimated the peak (Fig. S12). Furthermore, the beta
distribution fit to observational data better than the LIDF, with an
average NRMSE of 6.4 % and 10.9 %, respectively. Given these points,
including beta distributions as an alternative to LIDF parameters in
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RTMs would allow for LAD to be more realistically represented, poten- results illustrate the importance of direct versus indirect effects of can-

tially creating more accurate model output. LIDF parameters are still opy structure when interpreting spatial variability in canopy reflectance

useful however, particularly as their meaning is more interpretable than and SIF across a landscape.

beta distribution parameters (e.g. LIDFa is closely related to mean leaf
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Appendix A. Interpreting beta distribution parameters v and p

Using a beta distribution, the probability density function for leaf angle (6.,) distribution is calculated as,

ft) = B(my)(l — et (A1)

where t = 260 /rand B(v,u) = (I'(v)['(x) )/(I'(v + ) ), where I is the gamma function. Parameters v and j are related to the mean (f) and variance
(62) of leaf angle distribution through the equations,

v:7<Z—§— ) (A2)
jp=(1-9 (”—3—1> A3)
0-2

with o2 representing the maximum variance, calculated as 63 = £(1 —t). Effectively, v and p incorporate the mean and variability of t, and are
2
complements, with their sum being equal to the concentration (;'72 - 1) . To better understand the biophysical interpretation of v and p, we performed

an exploratory analysis using simulated data and our in-situ observations from all TLS data collected in this study.
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Fig. Al. First column: The relationship between 6> and beta distribution parameters v and p at five different mean values, starting from 45° and increasing in
increments of 10°. The blue shaded region represents the range of 6> observed from our empirical data. Second column: The same plot as the first column, but the
range of 62 is constrained to the blue shaded region in the first column. Third column: Scatterplots between 62 and v and p using empirical data from this study (blue
dots), and simulated data (light gray triangles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

First, we examined how o2 is related to v and p at five different values of t (6, = 45°, 55°,65°, 75°, 85°, first two columns of Fig. A1.). While the
overall curvature of the relationship between 62 and v and  is similar across different means, the relationship between ¢ and p is more affected by £,
particularly in the range of our in-situ observations (shaded rectangle in the first column, the middle column shows the relationship within the
constraints of our observed data). As a result, our in-situ observations between ¢ and v show a strong relationship (top rightmost panel, blue circles),
while 62 and p show considerably more scatter (bottom rightmost panel, blue circles). To check these relationships, we simulated 100 random points
constrained by the observed values of t and the concentration, and overlayed those points with our in-situ observations (rightmost panels, gray
triangles). The patterns from our simulated data track with our in-situ data. As the relationship between o2 and p is poor, simplifying the interpretation
of p as o2 is largely incorrect. From Eq. A3, the concentration is likely a stronger driver of variation in p. However, when checking the relationship
between the concentration and , considerable scatter was still apparent (not shown, r*> = 0.59). Thus, we explored further formulations to explain y
while retaining parsimony.
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Fig. A2. The relationship between t and o3.

The concentration is the ratio between 6% and ¢2; conceptually it represents how much variation there is with respect to the maximum variance
allowed for a given t. This a purely a mathematical construct based on the beta transformation which restricts values between 0 and 1. When ¢ ap-
proaches 0 or 1 (f; = 0° and 90° respectively) 62 decreases; variances larger than 63 would create values outside the bounds of 0 and 1. From Fig. A2,
62 is maximized at 45° — an interesting question arises as to the extent to which actual maximum variation in leaf angle tracks with this statistical
constraint. We note the lowest observed value of concentration in our data was 7.7.
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Fig. A3. Simulated leaf angle distributions under different values of concentration and mean leaf angle. From columns moving left to right, values of concentration
increase, starting at a concentration of 2 and ending with a concentration of 30. From columns moving from top to bottom, mean leaf angle increases, starting at 45°
and ending at 85°.

To visualize how variation in concentration affects leaf angle distribution at different levels of t, we simulated leaf angle distributions with the
same five t from before, while varying the concentration (from 2 to 30) at each value of £. Lower values of concentration increase the spread of t, and as
0, approaches 45°, the spread of t becomes more uniform across all angles.
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Fig. A4. Left panel: The relationship between the ratio of concentration to ¢ and p at five different mean values. Right panel: Scatterplots between the ratio of
concentration to £ and p using empirical data from this study (blue dots), and simulated data (light gray triangles). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

As the interaction between t and the concentration can change the shape of leaf angle distribution in both directions, we examined whether
normalizing concentration by t would provide a greater contextualization of . While the slope of the relationship changes by ; (left panel), deviation
in the slopes gets smaller as 6; moves further away from 45°. This approximation tracks fairly well with our in-situ and simulated data (right panel) —
low values of p describe canopies that have greater variation in leaf angle when adjusting for some effects of 0;. The effect of §; isn’t entirely removed,
as the concentration contains the ¢ term, which is governed by ;.
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