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Abstract

Storage cache hierarchies include diverse topologies, assorted parameters and policies, and
devices with varied performance characteristics. Simulation enables efficient exploration of their
configuration space while avoiding expensive physical experiments. Miss Ratio Curves (MRCs)
efficiently characterize the performance of a cache over a range of cache sizes, revealing “key
points” for cache simulation, such as knees in the curve that immediately follow sharp cliffs.
Unfortunately, there are no automated techniques for efficiently finding key points in MRCs, and
the cross-application of existing knee-detection algorithms yields inaccurate results.

We present a multi-stage framework that identifies key points in any MRC, for both stack-
based (e.g., LRU) and more sophisticated eviction algorithms (e.g., ARC). Our approach quickly
locates candidates using efficient hash-based sampling, curve simplification, knee detection, and
novel post-processing filters. We introduce Z-Method, a new multi-knee detection algorithm that
employs statistical outlier detection to choose promising points robustly and efficiently.

We evaluated our framework against seven other knee-detection algorithms, identifying key
points in multi-tier MRCs with both ARC and LRU policies for 106 diverse real-world work-
loads. Compared to naive approaches, our framework reduced the total number of points needed
to accurately identify the best two-tier cache hierarchies by an average factor of approximately
5.5% for ARC and 7.7x for LRU.

We also show how our framework can be used to seed the initial population for evolution-
ary algorithms. We ran 32,616 experiments requiring over three million cache simulations, on
151 samples, from three datasets, using a diverse set of population initialization techniques,
evolutionary algorithms, knee-detection algorithms, cache replacement algorithms, and stopping
criteria. Our results showed an overall acceleration rate of 34% across all configurations.
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1. Introduction

A cache’s miss ratio is one of the most important predictors of its performance. A miss-ratio
curve (MRC) for a given cache and replacement algorithm plots the cumulative miss ratio for
all accesses as a function of the cache size, providing a powerful tool for analyzing the perfor-
mance of live systems and dynamically adjusting cache configurations as workload conditions
change [1, 2]. MRCs can also inform offline evaluations such as comparing caching algorithms
or analyzing monetary cost vs. storage-system performance [3].

There are many efficient techniques for generating MRCs [1, 4-10]. MRC-reported miss ra-
tios are good indicators of expected performance (e.g., throughput), but real system performance
can vary due to additional factors including device characteristics, write policies, and admission
policies [3]. Alas, repeatedly reconfiguring and testing a real caching system, with all possible
cache sizes, is prohibitively expensive due to the slowness of storage I/O.

Since experimenting with physical devices is costly and time-consuming, simulation offers a
more practical way to explore this large search space and evaluate trade-offs such as latency vs.
cost. A common first step is to sample a workload: approximation algorithms enable accurate
simulation of cache behavior using only a fraction of the original trace data. Small sampled
traces can then be used to construct an MRC accurately, enabling quick evaluation of cache
performance [1, 7]. Many storage-cache simulators have been developed that replay traces while
attempting to faithfully reproduce real system behavior [11-13]. However, even simulations can
be too expensive to allow exploring a large number of configurations or optimizing live systems
in real time. For example, consider a cache with a maximum size of 100GB. Simulating every
1GB size step would require 100 experiments. In a multi-tier setup, the number of simulations
grows with the number of tiers; a two-tier configuration would require 100> experiments, three
tiers would need 100°, and so on. Thus, it is essential to explore this vast configuration space
efficiently.

Creating an MRC requires a sequence of cache references. In a multi-tier cache, references
to level n+ 1 come from misses in—and write evictions and flushes from—Ilevel #; thus the MRC
for n + 1 directly depends on the cache size chosen for level n. A naive exploration of multi-tier
configurations would require a separate simulation for each point in level n’s MRC to identify
misses that become references at level n+ 1, and hence to compute the level n+ 1 MRC. Since an
MRC may contain hundreds of points (one for each potential cache size), this approach quickly
becomes intractable. Thus, a crucial second step for evaluating multi-tier caches is to limit the
number of simulations by intelligently selecting the cache sizes to evaluate at each level.

Intuitively, the most promising candidates are points where a little extra cache space produces
a relatively large drop in the miss ratio; such points are often visible as “knees” in MRCs—e. g.,
points A, C, and D in Figure 1. (Note that although B has sharp curvature, it is not of interest
since C provides a much lower miss rate.) Given enough computational resources, we may
be interested in also selecting some points in the large gradually sloping regions that cover a
significant range of cache sizes. We refer to both types of points as key points from here on.

In this article we describe a multi-stage framework designed to pick an appropriate yet small
number of key points in MRCs: (1) We first approximate the MRC accurately using a hash-based
sampling technique [1, 7]; (2) Next, we use the Ramer-Douglas-Peucker (RDP) line simplifica-
tion algorithm [14] to reduce noise by eliminating minor variations in the curve; (3) We then
run a multi-knee detection algorithm on the remaining points to find cache sizes that provide
the greatest miss-ratio improvement for the lowest cost. Our framework currently implements
eight different knee-detection algorithms, including our novel Z-Method and modified, multi-
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Figure 1: MRC for trace w10, annotated to illustrate several key points: useful “knees” (points A, C, and D), a useless
“cliff” (B), and a large range of cache sizes with relatively gradual miss-ratio improvement.

knee versions of five widely used single-knee detection algorithms [15-18]; and (4) Finally, in
post-processing we remove less interesting points, add points in gradually-sloped regions (if de-
sired), and then select the final points based on a ranking that uses hierarchical clustering and
relevance metrics.

This article is an extension of our previous work [19]: we additionally provide a more in-
depth analysis of our Z-Method algorithm and we demonstrate how our framework can accelerate
the optimization of multi-tier caching systems using evolutionary algorithms. This collective
work makes several contributions:

1. We establish the novel methodology of using multi-knee detection to efficiently identify
optimal multi-tier cache configurations;

2. We present a framework that combines several techniques to find a minimal number of key
points in MRCs for both stack and non-stack caching algorithms;

3. We introduce Z-Method, a new multi-knee detection algorithm that uses statistical outlier
detection;

4. We demonstrate that, compared to naive approaches, our framework significantly reduces
the number of 2-tier cache evaluations needed to identify good configurations by a factor
of 5.5% for ARC and 7.7x for LRU;

5. We evaluate our framework for the additional application of seeding the initial population
of evolutionary algorithms. Our results show an overall acceleration rate of 34% across a
highly diverse set of configurations and datasets; and

6. We release the code library containing all techniques used in this work [19].

The next section provides some background on MRCs, knee-detection algorithms, and MRC
cliff removal techniques. Section 3 presents the point-selection techniques used in our frame-
work, leading to the design of the Z-Method algorithm in Section 4. We evaluate all of our
techniques ability to find key points in MRCs in Section 5. We then present an additional evalua-
tion of how our framework can be used to optimize multi-tier caching systems using evolutionary
algorithms in Section 6. Finally, we summarize our conclusions and highlights in Section 7.
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2. Background

2.1. Miss Ratio Curves (MRCs)

A key feature of some MRCs is their monotonicity. Cache replacement algorithms such as
LRU are stack-based, which means they satisfy the cache-inclusion property: the content of a
cache of size n is always a subset of a cache of size n + 1. Ultimately, this property ensures that
the miss ratio will never degrade as we increase the size of the cache, producing a monotonically
decreasing curve. However, more sophisticated algorithms such as ARC [20] are not stack-
based and thus the inclusion property does not hold, causing them to produce MRCs that may
contain both convex and concave regions [1]. Thus, non-stack-based MRCs need not be strictly
decreasing.

2.2. Knee-Detection Algorithms

Many heuristic algorithms have been developed that find a single knee in a curve, although
the precise definition of a “knee” varies. One can define a knee point as the point with the
maximum curvature in a function. For continuous functions, curvature [21] is mathematically
defined as follows:

1" (%)
(1+ ()
However, knee-detection algorithms are applied to discrete sets of points, instead of a well-
defined continuous function. As such, there are several methods to measure the curvature of the
discrete sequence. Menger curvature [16, 18] defines the curvature for a sequence of three points
as the curvature of the circle circumscribed by those points. This method relies only on a local
criterion, using only three points to estimate the knee point without considering any others. As
such, noisy data can lead to poor accuracy when estimating the knee point. We use this method
as a baseline reference to compare with other methods.

The L-method [17] fits two straight lines from the head of a curve to a candidate point, and
from the candidate point to the curve’s tail. The candidate that minimizes the Root Mean Squared
Error (RMSE) between the straight lines and the points of the curve is returned as the knee point;
this represents the sharpest angle in the curve.

Similar to the L-method, Dynamic First Derivative Thresholding (DFDT) [15, 22] tries to
identify the point where the function has a sharp angle. Instead of fitting two straight lines, this
method relies on the first derivative of the curve. After computing that derivative, a thresholding
algorithm is used to identify the value that separates the derivative values as “high” or “low.” The
knee is then the point with a derivative value that is closest to the previously computed threshold.

Kneedle [16] uses the point on the curve that is furthest away from a line defined by the head
and tail points of the curve. Both axes of the original curve are normalized to [0, 1] to easily find
the point with maximum curvature. Kneedle was designed for single or multi-knee detection in
a streaming scenario where new data is arriving continuously. The authors used this technique to
detect relevant points for network congestion control and latency.

There are several algorithms that can find multiple knee points in a curve, but they have
limitations that make them unsuitable for MRCs. The Kneedle algorithm’s primary use case is
anomaly detection, where it serves as an initial filter to reduce the number of candidates needing
further analysis. As such, for Kneedle, recall is more important than precision: it aggressively
captures all anomalies, producing many false positives. In some cases it is possible to reduce the
number of false positives, but doing so requires extensive tuning of its sensitivity parameter.
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A few multi-knee detection algorithms have been developed for use in multi-objective opti-
mization problems, where the notion of a knee guides the exploration of meaningful candidate
solutions [23]. However, these problems use a stricter definition of a knee that assumes a set of
well-behaved, Pareto-optimal points. Several other knee-detection methods [15, 17, 18, 22, 24]
are only effective at finding a single knee in a small and relatively smooth set of points. In con-
trast, MRCs can consist of a relatively large number of points, can be noisy or non-monotonic,
and commonly contain more than one significant knee. In this work, we had to develop tech-
niques to overcome these limitations (see Section 3) by enabling these algorithms to find multiple
knee points.

2.3. Cliff Removal Techniques

An alternative to detecting knees in an MRC is to modify the underlying cache-replacement
policy so that it does not have any cliffs, yielding a convex MRC. Talus [25] removes cache
performance cliffs by dividing the cache into two shadow partitions, each receiving a fraction
of the input load. Varying the sizes and input loads of each partition emulates the behavior of
smaller or larger caches. Given an MRC as input, Talus computes the partition sizes and their
respective input fractions to ensure that their combined aggregate miss ratio lies on the convex
hull of the original MRC. Originally proposed for processor caches, Talus inspired the SLIDE [1]
technique for removing performance cliffs from software caches that employ sophisticated non-
LRU replacement policies. CliffHanger [26] applied a similar idea to key-value web caches, but
instead estimated the MRC gradient without explicitly constructing one.

The recent eMRC [27] technique generalized Talus’s cliff removal to multi-dimensional miss
ratio functions, such as the three-dimensional miss-ratio surface for a two-tier cache. The eMRC
convex-hull approximation technique leverages the absence of cliffs to efficiently generate the
miss ratio function for a multi-tier cache. However, eMRC requires convexity, which limits
its applicability to modeling multi-tier cache systems that employ cliff removal. As real-world
multi-tier cache systems do not yet perform cliff removal, eMRC is unable to approximate their
non-convex MRCs. In contrast, our approach does not require convexity to accelerate multi-tier
cache evaluations, making it broadly applicable to production deployments of existing caches.

2.4. Evolutionary Algorithms: Population Initialization

The initial population of an evolutionary algorithm functions as the first guess at a set of good
solutions to an optimization problem. The quality of this first set can significantly influence the
quality of the final solution and the speed at which an algorithm converges [28, 29]. Studies have
shown that some evolutionary algorithms, such as Genetic Algorithms, are more sensitive to the
initial population, while other algorithms like Particle Swarm Optimization are less dependent
on the initial population [30]. This sensitivity has also been shown to be problem-dependent,
such that an algorithm may be influenced by the initial population for certain functions, numbers
of dimensions, or population sizes [28].

There are several categories of population-initialization techniques. Common stochastic vari-
ants, such as random initialization, are favored for their simplicity, generic nature, and applica-
bility to a wide range of problems [31]. They are also popular because they produce a relatively
uniform distribution as the population size increases. But statistical methods such as Latin Hyper-
cube sampling [32] and quasi-random sequences (e.g., Halton sequence [33]) have been shown
to outperform random initialization for most problems [34].

There are also application-specific techniques aimed at specific, narrow problems. They
often exploit domain knowledge or use a problem’s characteristics with specific evolutionary
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algorithms. These methods have been applied to improve convergence speed in problems such as
grammar-guided genetic programming [35] and flexible job-shop scheduling [36]. Initialization
techniques in this class typically perform better than more generic variants, but they are usually
limited to specific problems.

Lastly, there are domain-agnostic, general heuristics applicable to problems that meet some
set of conditions. Examples include approaches developed to optimize any two-stage stochastic
mixed-integer problem [37]. Such techniques can be applied to any problem where some of the
variables are constrained to integer values.

The techniques described in this article focus on a domain-agnostic, generic approach that
can be applied to any problem where a curve that is correlated to the solution can be derived
from features of the input data. We show how such techniques can be used on miss ratio curves
to optimize a cache with evolutionary algorithms.

3. Point Selection Techniques

In this section, we introduce our framework for finding multiple key points in MRCs. We
first designed a pre-processing stage to deal with the large volume of data (Section 3.1). Next,
we made substantial modifications to each point-selection technique, enabling them to output a
set of multiple knees instead of just one (Section 3.2). Finally, we added a post-processing stage
(Section 3.3) that filters and ranks knees based on an appropriate definition.

3.1. Pre-Processing

A curve can contain an arbitrary number of data points. The largest MRC that we evaluated
contains 276K points even after sampling-based size reduction [1]; the original MRC is 10,000x
larger. However, the knee-detection algorithms evaluated in this work were originally designed
to work with small or partial data, such as for clustering optimizations. Our main idea is to
reduce the number of points while preserving those that follow the shape of the curve; this
greatly reduces the computational costs of subsequent steps while also improving knee-detection
accuracy by minimizing irrelevant fine-grained variation.

The Ramer-Douglas-Peucker (RDP) algorithm modifies a curve by finding a similar one
with fewer points [14]. RDP fits a line between the curve’s endpoints and then finds the point in
between that is farthest from this line. If the distance between that point and the line is over a
given threshold, the curve is split there and the algorithm is reapplied recursively on the two new
segments. Once the distance is smaller than the threshold, all intermediate points are removed.
The main drawback of RDP is the need to define a threshold, which can be understood as the
maximum allowed reconstruction error. The choice of threshold is difficult because it depends
on the curve’s complexity.

We modified the original RDP algorithm to address this difficulty. Instead of defining a
threshold for the maximum allowed perpendicular distance between a point and the fitted straight
line, we use a relevance-based cost metric that computes the difference between the fitted straight
line and the data points in the current segment.

We evaluated four different metrics that assess how far our linear reduction is from the
original data: Root Mean Squared Log Error (RMSLE), Root Mean Squared Percentage Er-
ror (RMSPE), Relative Percent Difference (RPD), and symmetric mean absolute percentage
error (SMAPE). Of these four, the best performance came from SMAPE: it found the smallest
set of points that minimized the reconstruction error.
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(a) Undesirable knee filter. (b) Cliff-point removal filter. (c) Knee clustering and ranking.

Figure 2: Graphical representation of the post-processing methods. (a) Representation of the filter that removes unwanted
knees, knee K is removed since knee K achieved better performance. (b) Representation of the overlapping rectangles
used by the corner detection algorithm. Point C is identified as a cliff point and then removed. (c) Representation of the
clustering and ranking elements. The orange ellipse represents the cluster of knee candidates. The orange candidates are
filtered out, while the green knee is selected as the best representative based on Equation 2.

3.2. Methods

Except for Kneedle, the algorithms we evaluate in this work (see Section 2.2) were not de-
signed to detect multiple knees. Thus, we developed a recursive algorithm that can be used to
adapt any single-knee detection technique to handle multiple knees. The basic idea is to use a
single-knee technique to select the best knee in a segment. We then split the current segment at
that knee, and for each new segment check whether it is sufficiently linear (computed using the
SMAPE metric). If not, we repeat the process recursively. Apart from applying this recursive
generalization, we do not alter the core knee-detection technique, using it as a black box. All of
the methods we evaluated, even Kneedle, require our pre- and post-processing methods to work
properly on MRCs.

3.3. Post-Processing

Given the differences between single- and multi-knee detection and the large number of
points produced by using our recursive strategy on some of the knee-detection algorithms, we
developed three different filters to further reduce and select the most relevant knees.

The first filter, shown in Figure 2a, removes useless knees. When dealing with non-mono-
tonic curves, a knee-detection algorithm can incorrectly choose a knee that is above a previously
detected one. We remove such knees since they are sub-optimal and do not add useful informa-
tion.

The second filter, shown in Figure 2b, removes cliff points located after a smooth, near-
horizontal area that precedes a sharp descent. These points are found using a corner-detection
algorithm that computes the overlapping area of two rectangles. The first rectangle, shown in
green, is drawn from the neighbor points Py and P; (assuming that RDP pre-processing was
used, these are the previous and following points) that are adjacent to the knee candidate point
C. The second rectangle, drawn in orange, has its corners placed at C and the lower left of the
green rectangle. The filter computes the percentage overlap between these two rectangles, and a
knee candidate is removed if the overlap exceeds a threshold.

The third and final filter, shown in Figure 2c, uses a hierarchical clustering algorithm to
group knees by their distance along the x-axis, using a percentage of the x range as a threshold.
After grouping the knees into clusters, the knees within each cluster are ranked based on their
relevance score, computed from two metrics: (i) the improvement given by each knee (i.e., how
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much it decreases on the y-axis from the highest knee in the cluster) and (ii) the smoothness of the
improvement, computed using the coefficient of determination (R?). Specifically, the relevance
score S is given by Equation (2):

S(Ki, L) = |K), — Ki| - R(L), 2)

where K; is the i knee, and K, is the knee with the highest value on the y-axis (in a single
cluster). L is a vector containing all the knees in the cluster up to and including the i one:
L = [Ky, ..., K;]. The highest-ranked knee in each cluster is selected as its representative knee.

4. Z-Method

4.1. Design Concepts

Our design for Z-Method was inspired by the DFDT [15] and DSDT [22] knee-detection
algorithms, which use first and second derivatives, respectively. In statistics, a z-score (also
known as a standard score) is a transformation that normalizes a data value by quantifying how
many standard deviations away it is from the mean; typically, a point whose z-score has an
absolute value greater than three is considered an outlier [38]. For the purpose of detecting
knees, such outliers in the second derivative indicate a significant change in the y-axis. The
foundation of our Z-Method technique is in detecting such outliers and intelligently selecting
knees among them.

Although the second derivative is useful, we found that large and small knees often tend
to cluster, causing several points in close proximity to be selected, rather than the single most
optimal knee in the vicinity. To remedy this, we introduced two hyper-parameters, dx and dy,
that specify the minimum x and y distances, respectively, between all selected points. These
parameters limit the total number of knees selected and give users control over the algorithm.
For example, users interested only in large knees can give relatively high values for dx and dy to
minimize the number of points.

Z-Method was designed to function independently of the techniques described in Sections 3.1
and 3.3. As such, it works for curves that are non-monotonic, with both convex and concave
regions (see Section 2.1).

4.2. Algorithm Description

As shown in Algorithm 1, Z-Method takes as input a discrete curve D consisting of an or-
dered list of (x,y) points, along with parameters dx, dy, and dz. The parameters dx and dy both
influence the size and number of selected knees, while dz controls the maximum number of
iterations in the main selection loop (lines 7-20).

We first convert dx and dy, specified as percentages, into absolute values Ax and Ay for
the input curve (lines 1-2). This normalization ensures that these parameters function similarly
for different curves. We then approximate a list of second derivatives of the curve, D", using
second-order polynomial fitting [39]; next we calculate the z-scores of all points in D" as Z,
both of which are found in linear time (lines 3—4). We initialize a list K to contain all selected
knees, and set our starting value of zLimit to 3, since a z-score > 3 is a widely accepted value for
outliers [38] (lines 5-6).

We then enter the main selection loop (lines 7-20), which selects points and progressively
decrements the zLimit value. First, we create a new list C that contains candidate points: points
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Algorithm 1: Z-Method Multi-Knee Detection

Input: Data D with (x, y) points, dx, dy, dz
Output: List of (x,y) points corresponding to knees
1 Ax « length(D) - (dx/100)
2 Ay « (max(y) — min(y)) - (dy/ 100)
3 D” « calculate second derivative of D
4 Z « calculate z-scores for D"’
5 K « empty list
6 zLimit < 3 # standard outlier threshold [38]
7 while TRUE do

8 C « points in Z with z-score > zLimit
9 and at least Ax and Ay apart from all points in K
10 Z—7-C
11 if zLimit < 0 and length(C) == 0 then
12 Remove points from K to ensure that y always decreases as x increases
13 L return K
14 G « group all points in C such that all adjacent points in each group are < Ax apart
15 sort G in descending order by max z-score of each group
16 foreach group in G do
17 p < point in group with the lowest y value
18 if p is at least Ay from all points in K then
19 L K.append(p)
20 zLimit < zLimit — dz




in Z that have a z-score greater than the current zLimit and are at least a minimum Ax and
Ay distance from all other already-selected points (lines 8-9). The complexity of this step is
O(|C| x |K]). All candidate points C are removed from Z so that we will not consider them again
in future iterations (line 10). The termination clause is then checked (lines 11-13) to ensure that
we have candidate points to operate on.

We next group the candidate points C into G, such that the adjacent points in each group
are less than Ax apart, based on the dx parameter constraint (line 14). This takes O(|C|) time,
effectively forming groups of points such that there is at least Ax distance between every group.
We then sort the groups in G in descending order by the maximum z-score of each group (line
15). Here, we are sorting the location of each group in the list of groups G rather than the points
within each group. From each group, we select the point with the lowest y value (line 17); we
then check that the selected point is not within a minimum Ay distance from other points that
have already been selected, enforcing the dy parameter (line 18). The complexity of this loop is
O(|G| x|K]|). A point is added to the list of knees K if it satisfies this constraint (line 19). We then
decrement the zLimit by dz and continue with the next loop iteration (line 20).

This loop terminates only after we have reached a zLimit < 0 and there are no remaining
points that can be selected given the dx and dy parameters (line 11). At zLimit = 0, we consider
all points in D that have not already been considered in previous iterations. By starting at z-
score > 3 and iteratively approaching 0, we select the largest knees first and gradually lower our
threshold for how big a knee should be.

Finally, we eliminate any points that may have been poorly selected due to non-monotonicity
in the curve. A final pass removes points where increasing the x value makes the y value worse
(line 12); in our MRC application, such points are clearly undesirable. This simple pass requires
time linear in the size of K. The overall complexity of this algorithm is therefore O(|D| X |K]),
where D is the size of the input curve and K is often a trivially small value. For example, with
dx set to 5%, enforcing at least 5% distance on the x-axis between each selected knee point, the
maximum size of K would be 20.

4.3. Parameters

We present qualitative evaluations of the algorithm’s parameters dx and dy, as well as its
overall success at finding key points. Furthermore, we demonstrate that Z-Method is effective
for both stack and non-stack algorithms, by evaluating with LRU and ARC cache replacement
policies.

Parameter: dx. The dx parameter has several functions within Z-Method. It is provided as a
percentage of the maximum cache size in the given MRC. The most transparent effect of dx
is that it constrains the minimum x distance, or cache size, between selected points. Since no
two points can have an x distance less than dx between them, this provides an upper bound on
the total number of selected points, and also influences the number of points that are actually
selected. Because it affects the “grouping” stage of the algorithm, dx also effectively defines the
width of the knees.

Figure 3a shows the effects of dx on workload w09 with LRU cache replacement, with dy
fixed and dx set to 1%, 5%, and 10%. The black line in each plot represents the MRC for LRU
cache replacement. The green dots are the points selected by Z-Method when using the dx and dy
parameters indicated in the legend. The vertical orange lines show the second derivative z-score
of the MRC at each cache size. Because the z-score values have a large, workload-dependent
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Figure 3: (a) Effects of dx = 1% (top panel), 5%, and 10% on trace w09. Red arrows denote points in a panel that were
not selected when the dx value increased (next panel down). (b) Effects of dy = 1% (top panel), 5%, and 10% on trace
w62. Red arrows denote points in a panel that were not selected when the dy value increased (next panel down). The
minimum distance that Z-Method enforces between points is shown below the legends in green.

dynamic range, we truncate them at 10 in this plot and for the remainder of this article. A z-score
range up to 10 is sufficient to identify all points considered as outliers (e.g., z-score > 3).

For the MRC plotted in Figure 3a, we will focus on the knee(s) in the region of cache sizes
between approximately 425GB and 475GB. In the top plot with dx = 1%, Z-Method considers
this region to contain four separate knees, since their distances from each other are at least 1%
of the maximum cache size. When we move from 1% to 5% in the middle plot, we can see
that points A and B from the top plot have been removed. Those points are no longer within
dx of each other, so they are grouped together; we are now left with two points at wider, more
prominent, knees.

A similar effect is seen when we increase dx from 5% to 10% in the bottom plot. The two
knees at points C and E are grouped together and C is removed. Point D is also removed, since
its cache size is less than 10% away from point E. Significantly, the knee point E was favored
rather than the less interesting point D.

Parameter: dy. The dy parameter is also specified as a relative percentage, which is then con-
verted into an absolute value for the given MRC. It functions similarly to dx, except that it
constrains the y distance, or delta miss ratio, between any two selected points. This effectively
influences the height of knees and how many points are selected, while providing an upper bound
on the total number of points that can be selected.
Figure 3b shows the effects of dy using workload w62 with LRU cache replacement by fixing
dx and varying dy between 1%, 5%, and 10%. The format is otherwise the same as in Figure 3a.
In the top and middle plots, the most interesting change occurs at point C. With dy = 1% in
11



the top plot, this very small knee is considered significant and is selected. However, when we
increase dy from 1% to 5% in the middle plot, points A, B, and C are removed, as the y distance
between these points and adjacent points is no longer less than dy. Similarly, point E is removed
when we move from 5% to 10% in the bottom plot, while the taller knee point F is retained. We
can also see that point D is removed as well, as increasing dy reduces the number of selected
points.

It is important to note that for both of these parameters, we are not guaranteed to always have
a point that is dx or dy apart from every other point. Enforcing a hard separation rule would add a
great deal of complexity and would provide little benefit, since we already select points by their
order of importance.

Parameter: dz. The dz parameter controls the amount that the zLimit variable is decremented in
each iteration of Z-Method. This affects the overall running time by influencing the total number
of iterations. It can also affect the size of candidate point groups. For example, with a starting
zLimit of 3, dz = 0.1 would only consider points with a z-score > 2.9 on the second iteration,
but dz = 0.5 would consider a potentially larger set of points that have a z-score > 2.5. While
this may seem significant, the dx and dy parameters are still the predominant influence on how
groups are formed, so we did not observe any trends or significant changes when modifying dz.

Finding key points. In Figure 4, we show the points selected by Z-Method with dx and dy set to
5%, for multiple workloads using both LRU and ARC cache replacement policies. We evaluated
these plots based on whether or not they selected all of the points that we consider key points.
To reiterate, Z-Method should first select the largest knee points and then eventually select those
within any regions that cover at least 5% of the x and y axes. The first row of plots (LRU1-3)
shows examples where Z-Method performed well for LRU. All prominent knees were selected
and large ranges of cache space with gradual decreases in miss ratio also contained an adequate
number of points. The second row of plots (LRU4-6) shows examples where Z-Method missed
key points. For example, in plot LRU4, points A and B missed the knee points directly to their
left. There were similar issues in LRUS and LRU®6.

We show how to improve the lower-quality points A and B in LRU4 by modifying Z-Method
parameters. The green points were selected using the default dx of 5%, while the blue points
were selected using a dx of 3.2%. These blue points more accurately capture these two knees,
and are more optimal than A and B.

There were also cases where Z-Method could pick slightly less optimal points due to extreme
shapes in a curve and the nature of the z-score metric. This can be observed in plot LRUS5, which
exhibits a nearly flat region followed by a massive, steep knee, then another nearly flat region.
Point C is not quite at the bottom of the knee because the z-score at the very bottom was slightly
below the standard threshold for an outlier of 3. This could be remedied by lowering the threshold
(and modifying Z-Method’s parameters if needed). It should be noted that Z-Method will still
pick a point that is relatively close to the knee in these edge cases.

The third row of plots (ARC1-3) shows where Z-Method performed well for ARC. In ad-
dition to always selecting prominent knees and points in gradually sloped regions, we also see
that points were never selected in concave regions where the miss ratio increased due to the non-
monotonicity of ARC. A key feature of Z-Method is that it will never select points with a higher
miss ratio that any other previously selected points with a lower cache size.

The fourth row of plots (ARC4-6) depicts a situation where Z-Method missed key points.
In cases such as ARCS5, modifying the parameters was sufficient for identifying higher quality
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Figure 4: From the top: the first row shows LRU plots where Z-Method picked fairly good points; the second row has
LRU plots where Z-method missed a few, better points. The third and fourth rows are the same but for ARC (third row
good points selected; fourth row missed some points). The plot labeled LRU4 shows points selected by Z-Method using
a dx of both 5% (green) and 3.2% (blue). Sub-optimal points A and B in LRU4 were selected using dx of 5%, missing
nearby knee points. The knees were appropriately selected when dx was lowered to 3.2%. Sub-optimal point C in LRUS
was selected due to the extreme shape of the curve and the standard z-score threshold of 3. The knee was appropriately
selected when lowering the threshold. Sub-optimal point D in ARC4 was selected due to the ARC MRC being generated
with too few points. The knee point to the immediate right was selected when the number of points in the MRC was
increased from 100 to 220.

points, but plots ARC4 and ARC6 exhibit a problem that is unique to non-stack-based cache
eviction algorithms (i.e., ARC). Unlike stack-based algorithms (e.g., LRU), we cannot easily
generate a fine-grained MRC that includes every potential cache size. Instead, best practice is to
sample the workload [1] and then generate the MRC using a subset of points that still preserves
the shape of the curve. This is typically done using 100 points. We used 100 points to generate
all ARC MRC:s during the point selection process throughput this work, but plotted the z-score
and points selected against MRCs generated using 1000 points to better show how Z-Method
selects points in MRCs that more closely represent the “true” curves. This value worked well
for the majority of our workloads, but there were edge cases (e.g., ARC4 and ARC6) where
the z-score did not accurately capture important knees present at the very end of the curve. For
example, point D in ARC4 was selected because there was a very small knee with a positive z-
score at the top of the cliff, but there was a much larger knee to its immediate right. This could be
remedied by increasing the number of points used to generate the MRC. 220 points were enough
to remedy this value for both ARC4 and ARC6 (not shown in the plots due to complexity). The
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task of generating an MRC is separate from Z-Method, so we did not include this value as a
parameter.

In all cases where Z-Method missed key points, there were slight modifications that enabled
those points to be be selected. We fixed dx and dy to 5%, the z-score outlier threshold to 3,
and generated ARC MRCs using 100 points for this evaluation, since we do not yet have a way
of automatically selecting the ideal values. Even so, the overwhelming majority of MRCs we
looked at still found all key points with these values.

5. Evaluation: Miss Ratio Curves

In this section, we evaluate our framework’s ability to find key points in miss ratio curves.
We first compared the accuracy of 8 different knee-detection algorithms, including Z-Method,
for identifying knees in single-tier MRCs, and then evaluated our framework’s ability to quickly
find optimal multi-tier configurations.

5.1. Experimental Setup

We evaluated our techniques on 106 real-world block traces collected by CloudPhysics [7],
each representing a week of virtual disk activity from production VMware environments. We
used hash-based spatial sampling [1, 7], with a size-based sampling rate ranging from 0.1 to
0.0001, to reduce these workloads and thus the running time while maintaining an accurate rep-
resentation of the originals. We dynamically varied the rate by powers of 10, such that each
sampled trace was guaranteed to contain between 100K and 1M requests. The traces contain het-
erogeneous request sizes, so we also transformed all requests into 4KB block-aligned operations
to facilitate accurate sampling, consistent with previous work [27].

To evaluate multi-tier systems, we extended PyMimircache [13], a cache simulator with an
easily modifiable Python front end and an efficient C back end. Our extension generates two-tier
MRCs by simulating an L1 cache with the original sampled trace, then simulating L2 with the
requests that missed in L1. L1 cache sizes were selected using the MRC of the original trace,
while L2 sizes were chosen using the MRCs of each intermediate trace. The total miss ratio of
the two-tier configuration was calculated as the product of the miss ratios of L1 and L2. We
modeled a simple write-back policy by treating both reads and writes as cache references, as
done in previous work [27]. The cache eviction policy was configured as either LRU or ARC
and was the same in both tiers. We generated two-tier MRCs for each trace, for both LRU and
ARC replacement policies, resulting in a total of 212 MRCs.

5.2. Knee-Detection Algorithms

We evaluated the accuracy of our framework using Z-Method and several other knee-de-
tection algorithms: Curvature, DFDT, Kneedle, L-Method, and Menger. We also included the
Fusion method, which considers all points retained by RDP and relies on our post-processing
filters to select relevant knees.

Kneedle finds knees using peak-detection methods, and can be used for single-knee detec-
tion by selecting only the highest possible peak; we call that approach Kneedle Recursion. We
analyzed each method’s ability to find knee points that had been manually curated in the 212
single-tier MRCs by four domain experts.

Most of our techniques have one or more hyper-parameters that can influence which points
are selected. To achieve the best performance for each MRC, it is necessary to tune the hyper-
parameters of each algorithm appropriately. While the default parameters offered acceptable
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Figure 5: An MCC evaluation of 8 knee detection algorithms using our optimized hyper-parameters for accurately
identifying knees that were manually selected by experts. Higher MCC values and lower standard deviations are better.
Kneedle and Z-Method have the highest median MCC values of 0.45 and 0.5, respectively, with Z-Method achieving
much tighter bounds.

performance, a more complete evaluation requires optimized parameters [40]. Therefore, we
developed a cost function and ran an optimization algorithm for each knee-detection method
using all 212 MRCs.

When designing the cost function, we carefully considered the target use case of our frame-
work. We want to find the ideal parameters that have the lowest error globally across all MRCs,
while keeping the number of knees as close as possible to the number of knees identified man-
ually. Constraining the number of knees is necessary since our framework is designed to pick
only the most relevant points. A technique that finds parameters that correctly identify all knee
points but also selects many non-relevant points, while having a high precision score, would be
inefficient for our use case.

We use the Matthews correlation coefficient (MCC) [41] as the basis of our cost function.
MCC measures classification quality by considering the balance ratios of the four confusion
matrix categories: true positives and negatives, and false positives and negatives. Although the
knee-detection problem is better modeled as a regression, we based our evaluation on binary
classification, since we wanted to control the impact of false positives and negatives (i.e., non-
relevant points being classified as knees and vice-versa). Prior work [41] has shown that the MCC
is more informative than an F1-score for evaluating accuracy in binary classification problems.
As such, the cost function we used was the following:

1 & 1 &
Cost(E,K) = — Z MCC(E;, K;) + max [[— Z |1<i|] - K, 0], 3)
n i=0 n i=0

where E represents the expected (manually selected) knees for all MRCs, and K represents knees

picked for all MRCs (n defines the number of MRCs) by our framework using some configuration

of hyper-parameters and a knee-detection algorithm. MCC(E;, K;) represents the MCC computed

from the expected and detected knees of the " MRC. Finally, |K;| represents the number of knees

detected in the i”# MRC, and K; represents a threshold for the acceptable number of knees.
Figure 5 shows our evaluation. Three techniques stand out: Fusion, Kneedle, and Z-Method.

Fusion achieves tighter margins than all other techniques, spanning only 0.23 MCC between the
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upper and lower quartiles, suggesting that the expected performance in unseen traces would be
well-bounded. Kneedle and Z-Method achieve the highest median MCC values of 0.45 and 0.50,
respectively, with Z-Method having a smaller standard deviation when compared with Kneedle.
The much tighter bounds of Z-Method are more significant than the improvement in median,
making Z-Method the ideal candidate for our multi-tier evaluation.

We also experimentally measured the time and memory usage of our framework using each
knee-detection algorithm for all MRCs. We used the default hyper-parameters for each algo-
rithm, as they do not significantly impact the overheads. The results of the running-time bench-
marks are shown in Figure 6.

All of the algorithms have comparable execution times across all MRCs with the exception
of L-method. This is especially true for the upper quartile of L-Method, which is 1307.79 ms.
The second highest upper quartile is Kneedle Recursion, which is 74.4% lower than L-Method
at 334.62 ms. This is expected since L-method uses straight-line fitting (O(n?)) for each point
to detect the ideal knee, leading to a time complexity of O(n*). Combined with our recursive
algorithm that enables it to detect multiple knees, the expected time complexity for L-method
is O(n® log n). Note that Kneedle (non-recursive version) and Z-Method have the lowest median
running times of 38.59 ms and 40.81 ms, respectively.

The memory overhead is nearly linear in the file size for each MRC, ranging from approxi-
mately 53KB to 71MB after sampling. There were no significant differences across any of the
techniques, so we do not present any further memory overhead analysis.

5.3. Multi-Tier MRCs

Miss-ratio curves are typically used to find configurations that minimize both miss ratio and
cache size(s). We seek multiple configurations that are optimal in two or more objectives.

Consider designing a multi-tier cache, with many device options, for a large workload. With
an unlimited budget, one could simply purchase enough DRAM to hold the entire data set, but
that is rarely economical. Instead, most system administrators will want to trade cost off against
performance, meaning that they will be interested in Pareto-optimal solutions, i.e., those where
a given objective cannot be improved without making one or more others worse.
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Figure 7: An example of how the HyperVolume Indicator (HVI) is calculated for a single point of a 3-dimensional data
series. A cube is drawn from the reference point (10,10,10) to the data point (5,5,5) creating a 5 X 5 X 5 cube with a
hypervolume of 125.

Only a subset of all possible cache configurations are Pareto-optimal. When a set contains
every Pareto-optimal configuration for a given workload and no others, it is called the true Pareto-
optimal front. Any point in this front minimizes the cache size(s) and the miss ratio; the front as
a whole can be considered to mark the “best” points.

However, it is often not feasible to find the true Pareto front for a large configuration space.
Instead, the space can be sampled in an attempt to find optimal points, creating a Pareto ap-
proximation. Our work aims to find a minimal number of key points in MRCs. Thus, we are
trying to find the most significant Pareto-optimal points by efficiently generating accurate Pareto
approximations of multi-tier MRCs.

There are multiple metrics for evaluating the quality of Pareto approximations [42]; the most
commonly used is the HyperVolume Indicator (HVI) [43], which measures the size of the space
between the points in a front and a user-defined reference point; a larger space is better.

Figure 7 shows an example of how HVI is measured in a 3-dimensional space. The blue
shape represents a simple linear series descending from (0,0,10) to (10,10,0). If this were a two-
tier MRC, the x-axis would be the L1 size, y-axis the L2 size, and the z-axis the miss ratio. The
hypervolume is the volume between points on the Pareto front (here, the blue shape) and a user-
defined reference point, here the nadir point1 at (10,10,10), where all objectives are maximized.
To find the hypervolume of the point at (5,5,5), we draw a rectangular prism from it to the
reference point. The resulting 5 X 5 X 5 cube has a hypervolume of 125. If we were to instead
find the hypervolume of the point (4,4,4), we would have a 6 X 6 X 6 cube with a hypervolume of
216. Thus, configurations with lower cache sizes and miss ratios result in larger hypervolumes.
The total hypervolume of a dataset is the non-overlapping hypervolume of all points on its Pareto
front, making HVI a useful metric for our multi-knee detection framework.

Another metric highly relevant to our problem is the Ratio of Non-Dominated Individu-
als (RNI) [44], which is the fraction of dataset points that are on the Pareto front. As discussed

! Although the reference point is placed at the largest coordinates, prior literature on hypervolume indicators uses the
term “nadir” rather than “zenith” because it represents the worst performance; we follow that convention.
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Avg. Points Avg. HVI Y}, Avg. RNI
Method "ARCTLRU| ARC | LRU |ARC]|LRU
Evend| 20| 20| 59.63 | 61.00 | 0.30| 0.28
Evenl0| 110| 110| 8643 | 8331 | 0.39| 0.40
Evenl3| 182] 182 9041 | 91.07 | 041 0.34
Even50| 2550 | 2550 |100.00 | 100.00 | 0.33| 0.34

Z-Method | 23.33|20.33| 86.99 | 90.75 | 0.94] 0.97

Table 1: Evaluation results of our framework using Z-Method across 2-tier ARC and LRU MRCs, derived from 106 real-
world block traces collected from CloudPhysics. The averages of 3 metrics are presented for each algorithm: number of
points (lower is better), HyperVolume (HVI) as a percentage of Even50’s HyperVolume (higher is better), and Ratio of
Non-Dominated Individuals (RNI) (higher is better).

earlier, points not on the front represent sub-optimal configurations, so a higher ratio is better.
RNI does not measure the magnitude of quality; instead, it informs us of a point selection tech-
nique’s efficiency. Therefore, evaluating HVI and RNI together is a comprehensive approach to
analyzing techniques that find the minimal number of key points in MRCs.

We evaluated our framework across all 212 two-tier MRCs using Z-Method, compared to
a naive approach of selecting evenly-spaced points. We also tried geometrically-spaced points,
but this yielded worse results than even spacing so we omit them from this analysis. It was not
practical to evaluate every point in MRCs containing thousands of points, so we used 50 evenly-
spaced points (Even50) as a reasonable approximation of the full configuration space and the true
Pareto front. We varied the number of evenly-spaced points to most closely match Z-Method’s
average HVI or number of points, resulting in Even4, 10, and 13.

In Table 1, we show the averages across all 212 MRCs of the number of points selected, HVI
as a percentage of Even50’s HVI, and RNI. When measuring the efficiency of a method, a lower
number of points and a higher RNI are better; when measuring the accuracy of a method, higher
HVI is better. The number of points for even spacing is always constant, calculated as X + X
for two-tier MRCs using EvenX. Z-Method has HVI similar to that of Even10 for ARC and to
Evenl13 for LRU, but Z-Method evaluates 5.5x fewer points for ARC and 7.7x for LRU to get
those results. This efficiency is also reflected in Z-Method’s RNI of 0.94 for ARC and 0.97 for
LRU. Conversely, the RNI of the evenly-spaced methods ranges from 0.28 to 0.41, meaning that
the majority of points they select are sub-optimal and uninteresting to explore.

In Figure 8, we show box plots for all 212 MRCs. Figure 8a displays the number of points
selected by each technique. We can see that Z-Method and Even4 selected approximately the
same median number of points. A significant result is that in the worst case, Z-Method still
picked fewer points than Even10. We can also see cases where Z-Method picked very few points.
There are times when such a low number of points is appropriate, but this can also represent cases
where the default parameters were too conservative, resulting in too few points and a low HVI.

Figure 8b displays the HVI as a percentage of Even50’s HVI. This figure reveals several
outliers where Z-Method performed poorly, but also many cases where it had a higher HVI than
Even50. These results inform us about Z-Method’s sensitivity to its hyper-parameters. The
default parameters worked well for the majority of our workloads, but needed to be tuned better
for others. With the right parameters, Z-Method performed better than naive approaches while
selecting a minimal number of points. Lastly, Figure 8c displays the RNI. Z-Method consistently
had a greater RNI than all of the evenly spaced methods, indicating that it properly identified key
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Figure 8: Evaluation results of our framework using Z-Method across 2-tier ARC and LRU MRCs, derived from 106
real-world block traces collected from CloudPhysics. Box plots of 3 metrics are presented: (a) number of points (lower
is better), (b) HyperVolume (HVI) as a percentage of Even50’s HyperVolume (higher is better), and (c) Ratio of Non-
Dominated Individuals (RNI) (higher is better).

points. We can also see that there were diminishing returns when increasing the number of
evenly spaced points. The median RNI decreased from Even13 to Even50, meaning that Even50
selected many points that did not contribute to the Pareto front.

In Figure 9, we show visualizations of the points chosen by each method for a few selected
two-tier MRCs with fairly different characteristics.? Figure 9a (top row) displays the MRCs for
workload w04 using LRU replacement, where several knees of various sizes are followed by
gradually-sloped regions. We can see that Z-Method accurately selects each knee, achieving
92% of Even50’s HVI while evaluating over 100X fewer points. Conversely, Even13 and Even4
perform poorly, selecting points at the tops of the cliffs before the knees, resulting in lower
HVI’s of 86% and 49%, respectively. When several knees are present, Z-Method has more
opportunities to exploit these significant improvements in miss ratio, performing much better
than evenly-spaced points.

Figure 9b (middle row) displays the MRCs of workload w66 using ARC replacement, which
exhibits large amounts of non-monotonicity, creating several hilly regions. Z-Method finds the
interesting knee points at the hill bottoms, while the post-processing filter prevents selecting any
points at the hilltops. Z-Method is even more efficient here than in the previous figure while still
being highly accurate, selecting only 20 points and achieving 93% of Even50’s HVI. Evenl3
gets close to Z-Method’s HVI, but requires 9.1x more points.

Finally, Figure 9¢ (bottom row) displays the MRCs of workload w06 using ARC replacement,
which contains only a couple of interesting points at the very beginning of the plot. Z-Method
finds 3 points in this tiny space that are more optimal than those found by Even4 or Even13; it
also does not waste time exploring the large, flat MRC region that offers almost no improvement
in miss ratio. With only 9 points, Z-Method achieves 97% of Even50’s HVI, while Evenl3

2 A similar figure that appeared as Figure 4 in an earlier version of this paper [19] inadvertently showed visualizations
for EvenS5 instead of Even4.
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Figure 9: Examples of point selection on two-tier MRCs that highlight three different commonly observed scenarios.
Each point represents the total miss ratio of a configuration of some L1 and L2 sizes. The x and y axes are the normalized
L1 and L2 sizes, respectively, while the z-axis is the miss ratio. Axis labels are omitted to reduce clutter. Each row
contains MRCs of a single workload using 4 different point-selection methods, listed at the bottom of each column. The
P value indicates the total of number of points (lower is better), H is the HyperVolume as a percentage of Even50 (higher
is better), and R is the Ratio of Non-Dominated Individuals (higher is better).

evaluates 20.2x more points but achieves only 94% of Even50’s HVI. MRCs that contain only
a handful of good points are fairly common, even in multi-tier settings, and our framework
dramatically reduces the time spent exploring them.

6. Evaluation: Population Initialization

In this section, we show how our multi-tier knee detection framework can also be applied to
population initialization for evolutionary algorithms, to search large configuration spaces more
efficiently [45, 46]. In many cases, evaluating the fitness of a configuration is an expensive
operation, making the speed of convergence particularly important. The initial population of an
evolutionary algorithm functions as the first guess at a set of good solutions, so the population’s
quality can significantly influence the quality of the final solution and the speed at which an
algorithm converges [28, 29]. As such, heuristics to intelligently select a population have been
developed for a variety of scenarios and optimization problems [33, 34]. Evaluating multi-tier
caching systems fits this scenario well; replaying a workload repeatedly on numerous cache
configurations can be costly in both time and money. We demonstrate how the key points found
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by our multi-knee detection framework can be used to seed the initial population of evolutionary
algorithms.

6.1. Experimental Setup

We configured each experiment with choices for an input I/O trace, a population-initialization
technique, an evolutionary algorithm, a knee-detection algorithm, a cache-replacement algo-
rithm, and two parameters controlling the stopping criteria for the optimization. For each config-
uration, we analyzed the convergence of an evolutionary algorithm with each of the population-
initialization techniques and with our multi-knee detection framework.

We used our PyMimircache [13] cache simulator extension (see Section 5.1) for all experi-
ments. Simulation enabled us to study a wide variety of configurations, as trace replay on real
hardware would be far too slow and would limit the configuration space we could explore. We
optimized a single variable, cache size, for the performance metric of I/O operations per second
(IOPS) per dollar ($), or IOPS/$. We calculated theoretical values for the IOPS using the same
methodology as eMRC [27], and computed dollar costs from a given configuration’s cache size
and current market values for that type of device [47, 48]. We normalized both the IOPS and
dollar cost and then combined them to determine IOPS/$.

We evaluated this use case on three different sets of real-world block traces obtained from
CloudPhysics [7] and the publicly available FIU [49] and MSR [50] traces, for a total of 151 in-
dividual traces. We used uniform randomized spatial sampling [1, 7] with a size-based sampling
rate R (ranging from 0.1 to 0.0001) on the larger traces to reduce the running time while main-
taining an accurate representation of the original trace. Our sampling produced a fairly diverse
set of MRC sizes, with a mean of 70, 446 + 110, 014 blocks, ranging from 263 to 829,424 blocks.

We evaluated the speed of convergence of evolutionary algorithms using four population-
initialization techniques: our multi-knee detection framework, random initialization, Latin Hy-
percube sampling (LHS) [32], and Halton sequences [33]. For techniques that include random-
ization (all but multi-knee), we ran them three times with different random seeds to obtain stable
results. Three seeds is generally considered the minimum acceptable number for this type of
analysis. However, given the size of our dataset and configuration space, even three random
seeds resulted in experiments that required significant running time while still remaining viable.
We ran a total of over 3M experiments, which sufficiently covers the search space, allowing us to
evaluate our proposed solution with statistical confidence. We experimented with three types of
evolutionary algorithms: Generalized Differential Evolution 3 (GDE3) [51], a Genetic Algorithm
(GA) [52], and Particle Swarm Optimization (PSO) [53]. We focused on a subset of the knee-
detection algorithms available in our framework: Menger, Kneedle, and Z-Method. We selected
these three because Menger represents a baseline knee-detection method that uses a local feature,
Kneedle is a well-known algorithm that greatly benefits from our framework, and Z-Method is
our novel algorithm designed for this specific application.

We used both Adaptive Cache Replacement (ARC) and Least-Recently Used (LRU) cache
replacement policies. These two popular policies present interesting scenarios for multi-knee
detection since the MRCs produced by LRU are guaranteed to be monotonically decreasing,
while ARC’s MRCs can contain both convex and concave regions (see Section 2.1). Lastly, we
enforced two types of stopping criteria for the optimization: (1) the number of evaluations and
(2) an objective value that was some percentage of the “best” value for that configuration. The
number-of-evaluations stopping criterion was fixed at 300. We found this value sufficient to allow
approximately 99% of our experiments to converge. To handle the objective-based stopping
criterion, for each trace we simulated 1,000 cache sizes evenly spaced from the minimum to
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the maximum and calculated their IOPS and dollar costs. We obtained the maximum IOPS/$
from these simulations, and treated it as the “best” value when calculating the objective stopping
criterion for all optimizations involving that trace.

A rule of thumb for the population size is to use ten times the number of parameters in the
solution [54]. Since we are only trying to optimize a single parameter (cache size), this implies
a minimum population of size 10. If our framework picks fewer points, we iteratively selected
points in the center of the largest gap in the curve until we reached 10. It is also possible to
optimize the hyper-parameters of the techniques in our framework to select a desired number of
points, but we did not explore hyper-parameter optimization in this work.

6.2. Acceleration Rate

We evaluated our experiments using the overall acceleration rate (AR) [55] to quantify the
increased convergence speed when using our framework to select an initial population for evo-
lutionary algorithms. This metric compares the number of function calls (NFCs) made by two
separate sets of optimization problems. For our purpose, the NFCs will correspond to the number
of epochs (iterations) an evolutionary algorithm takes to converge. Each optimization problem
uses an evolutionary algorithm to optimize the IOPS/$ of a cache and has several parameters:
an input trace, an evolutionary algorithm, a knee-detection algorithm, a population-initialization
technique, a threshold for the value-based stopping criterion, and a cache-replacement algorithm.
The AR compares two sets of problems and reports the percent difference in convergence speed.
For all of our evaluations, we compared a set of problems PM that use our multi-knee detec-
tion framework for population initialization, against a set PO that uses some other technique for
initialization. The AR is calculated as follows:

SIPMINEC(PM;)

Sl P Ix100% 4)

SPINFC(PO)

AR =

i.e., an X% AR implies an x% reduction in running time.

We evaluated 151 traces, four population initialization techniques, two cache-replacement
algorithms, and three variations of all other parameters, resulting in 32,616 total problems and
over three million cache simulations. The overall AR achieved using our multi-knee detection
framework for population initialization was 34%. In the remainder of this section, we show the
effects of each configuration parameter by creating subsets of the total problems via parameter
constraints.

Figure 10 presents bar plots showing the AR achieved using our multi-knee detection frame-
work for population initialization. Each bar represents a comparison between two sets of opti-
mization problems, PM and PO, which are different sets for each bar, depending on the con-
straints of the axes and legend. PM uses our multi-knee detection framework for population
initialization with a knee-detection algorithm identified by the color of the bar (Menger, Knee-
dle, or Z-Method). PO uses the initialization technique shown on the x2-axes (top of figure):
a pseudo-random number generator (Random), Latin Hypercube sampling (LHS), or Halton se-
quences. The value of the objective threshold ¢ stopping criterion for both problem sets is shown
on the y2-axes.

In each plot, we show three knee-detection algorithms: Menger, Kneedle, and Z-Method.
The bars labeled “Menger” represent a baseline knee-detection method; it was the least accurate
of those depicted. “Kneedle” is the robust version that we optimized for this scenario; we em-
ployed Global RDP (gRDP) before using Menger or Kneedle, reducing noise in the MRCs and
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Figure 10: The acceleration rate (AR) achieved using our multi-knee detection framework for population initialization vs.
other techniques. The height of each bar represents the acceleration rate (y-axis), where higher is better. The bottom row
represents experiments using the objective threshold # = 95%; the top row is those using # = 99% (the most challenging
threshold to meet). Each group of bars, from left to right, shows the AR using our framework for population initialization
with the baseline (Menger, in blue), with Kneedle (orange), and with our Z-Method (green), each evaluated against three
different initialization methods on the x2-axis (Random, LHS, and Halton, at the top of the figure). (a) shows the AR for
three different Evolutionary Algorithms on the x-axis (GA, GDE3, and PSO), with results included from both LRU and
ARC cache replacement algorithms. (b) shows the same results as in (a) but separated by LRU vs. ARC, with results
included from all three Evolutionary Algorithms.

improving knee detection. After the knee-detection phase, we applied the post-processing filters
described in Section 3.1 to refine the selected knees.

We varied the objective-threshold stopping criterion ¢ between 99%, 98% (omitted in Fig-
ure 10 for brevity), and 95% for all configurations. We observed that a lower threshold usually
yielded a lower AR. A higher threshold makes optimization more difficult by requiring a solution
closer to the most optimal value. Thus, a lower threshold increases the number of acceptable
solutions, giving less-informed population initialization techniques a better chance at finding a
solution.

Figure 10a shows the effects of using different evolutionary algorithms. The optimization
problems analyzed in each group of bars are shown on the x-axis: Genetic Algorithm (GA),
Generalized Differential Evolution 3 (GDE3), and Particle Swarm Optimization (PSO). Results
in this figure include problem sets with configurations using both ARC and LRU cache replace-
ment. Therefore, in the upper leftmost subfigure of Figure 10a, the first blue bar on the left
represents, for the 151 traces, the AR for all optimization problems using: (1) our framework
with Menger for population initialization vs. Random, (2) using a Genetic Algorithm (GA), (3)
with either ARC or LRU cache replacement, and (4) an objective threshold t = 99%.

Z-Method is our novel method designed for this task; it outperformed Kneedle in most cases.
Kneedle was still competitive, usually only a few percent behind Z-Method and even winning by
a small margin in three out of the 18 configurations displayed. (It should be noted that Kneedle
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benefited greatly from our framework’s pre- and post-processing filters, and that Kneedle on its
own yielded much poorer results; see Section 2.2). We also saw a wide range of AR values in
these configurations, from under 10% AR (Menger with PSO) to over 50% AR (Z-Method with
GA). Lastly, ranking the AR from highest to lowest yields GA (best), GDE3, and then PSO. We
attribute this ranking to the difference in efficiency of the evolutionary algorithms. The more
efficient algorithms have a lower AR because they are less sensitive to the initial population.

Figure 10b shows the effects of using either ARC or LRU cache replacement. Results in this
figure include problem sets with configurations using any of the three evolutionary algorithms.
The most relevant difference between ARC and LRU is that LRU MRCs always decrease mono-
tonically, while ARC can have both convex and concave regions (i.e., can go up and down).
This poses a unique challenge for knee detection, since a curve can have a knee that is less op-
timal than a previous point. Said differently, in ARC and similar non-stack cache algorithms,
counterintuitively, adding more cache can actually hurt performance. This non-monotonic prop-
erty can also distort many metrics that knee-detection algorithms use to detect or rank points.
Z-Method significantly outperformed Kneedle for all ARC cases in Figure 10b, while Kneedle
beat Z-Method somewhat for all but one of the LRU configurations. This is to be expected, as
Z-Method was originally designed with cache optimization for non-monotonic MRCs in mind,
enforcing constraints in a grid-like pattern to prevent proximal knees. Conversely, Kneedle was
designed under the assumption of monotonicity. Again, we note that our pre- and post-processing
filters were essential to Kneedle’s good results.

The population-initialization techniques did not alter any of the previous trends we observed
in Figure 10, but we did see an approximately 5% difference in AR between the worst and best
case: Random performed the worst, followed by Halton, and then LHS. These results are consis-
tent with those seen in previous studies [32—-34].

7. Conclusion

The many configurations of multi-tier caching systems produce a wide range of performance
and costs. As the configuration space continues to grow due to advancements in caching and
storage technology, exploring the space through physical experiments or traditional simulation
becomes infeasible.

We introduced the novel concept of applying multi-knee detection to MRCs using a frame-
work for selecting key points, reducing the cost of exploration significantly. We present Z-
Method, an algorithm that robustly and efficiently identifies multiple key points in MRCs with
minimal overhead. We also designed a recursive algorithm that enables any single-knee-detection
algorithm to find multiple knees. We demonstrated that our framework using Z-Method can be
applied to reduce the total number of points required to identify optimal two-tier cache config-
urations by an average factor of approximately 5.5x for ARC and 7.7x for LRU compared to
naive approaches. Finally, we evaluated our framework across a highly diverse set of configura-
tions and datasets for the additional application of seeding the initial population of evolutionary
algorithms, showing an overall acceleration rate of 34% compared to commonly used population-
initialization techniques.
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