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 A B S T R A C T

Computational thinking (CT) is key in STEM and computer science (CS) education. Recently, 
there has been a surge in studies inquiring about the factors that predict the CT development 
of young students. We extend these prior works by inquiring about the factors that predict the 
CT of students (n = 932) in a constructionist game-based learning (GBL) STEM curriculum. 
Specifically, after addressing missing data through imputation, we apply Multilevel Modeling 
(MLM) to identify these potential factors in Scratch games and students’ CT. We found 
that teachers’ experience implementing game-based curricula, students’ Scratch experience, 
student choice of game genre, and the interaction between teacher experience and game genre 
significantly predicted CT. Instead, students’ gender did not emerge as a significant predictor 
of CT. We provide recommendations for curricula that support CT through constructionist GBL.

1. Introduction

Computational thinking (CT) is key to contemporary education (Barr & Stephenson, 2011). Nevertheless, implementing CT in 
school curricula remains challenging for various reasons, including a lack of consensus on CT definitions and standard assessment 
methods. Among other challenges, ongoing inquiries in CT education concern the factors that predict CT uptake. Amidst potential
factors, there is prominent interest in how and if students’ gender may predict CT (Román-González et al., 2017). Such inquiries
support a discussion of gender representation in computer science (CS, Beyer 2014). Prior work in STEM showed how males’ and 
females’ CT is generally alike (Chongo et al., 2020; Hutchins et al., 2017). Other research found differences between genders,
showing how female students showed a risk-averse, curiosity-driven, and disciplined attitude toward CT, while male students
showed a risk-taking attitude and felt confident in their understanding of CT (Sovey et al., 2022). These inquiries considered other 
predictors, including computational creativity (Israel-Fishelson et al., 2021), programming self-efficacy (Kong et al., 2018), academic 
achievement (Sun et al., 2022), and teacher support (Jin et al., 2021). By revealing factors likely to predict CT development in 
young students, these inquiries provided critical insights that can be used to improve educational approaches to scaffolding CT 
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strategically. Here, we inquire about factors predicting CT in constructionist game-based learning (GBL). We focus on constructionist 
GBL because designing games benefits CT the most among other project-based learning activities (Moreno-León et al., 2017). As 
part of a constructionist GBL STEM curriculum, 932 middle-school (i.e., 8th-grade) students designed games about climate change 
topics (e.g., ice-albedo feedback) in Scratch (Resnick et al., 2009). The factors under analysis, among others, include students’
demographics, teachers’ experience implementing the curriculum, and students’ prior experience with Scratch.

Through Multilevel Modeling (MLM, Roberts 2004), we analyze a secondary dataset comprising 483 games designed by dyads 
(pairs) of 8th-grade students to gauge potential factors predicting CT, their hierarchical structure, and potential interactions between 
them. We employ MLM because it can effectively analyze data organized at multiple hierarchical levels (e.g., Khine 2022). This
approach not only facilitates the examination of predictive factors, akin to Structural Equation Modeling (SEM, Markus 2012), but 
also clarifies the hierarchical relationships among these factors and determines the levels—whether group or individual—at which 
they exert influence. Our results are relevant to STEM and CS research, educators, and curriculum designers who wish to empower
educators in teaching CT and further refine professional development (PD) for scaffolding successful CT learning.

1.1. CT in constructionist game-based learning

In a recent paper, Troiano et al. (2020b) described GBL as either (1) instructionist, characterized by a teacher-centered or
direct instruction method, to impart knowledge and skills to students through structured lectures or (2) constructionist, which is 
learner-centered and encourages active engagement, hands-on activities, and emphasizes students as active creators (Honey, 2013). 
The curriculum providing the data for our MLM (Section 2.1) used GBL to have students construct knowledge of climate change 
and validate it through game design in Scratch (Resnick et al., 2009). In essence, GBL that leverages game design embodies 
the constructionist principles of ‘‘learn-by-creating’’ purveyed by Seymour Papert and underpinned by Jean Piaget’s cognitive 
development theory (Papert, 1980; Piaget, 1959) and can greatly facilitate the development of problem-solving skills—thus of CT. 
Further, game design is shaped by design thinking (Lockwood, 2010), which maps well with the scope and practices of CT and can 
support CT uptake by fostering critical thinking, problem-solving, decision-making, and the nurturing of creativity (Kafai, 1995).

Recent work on CT via constructionist GBL (Troiano et al., 2020a) has observed that factors such as the game genre of student-
designed games predict CT uptake and shape students’ CT development. They found that storytelling games consistently scored 
lower than other game genres due to less frequent use of logical statements (e.g., if, if-else). However, the authors discussed how
these results might inadvertently hinder female students, who generally prefer storytelling games to engage with game design
and CT development in game-based learning (Troiano et al., 2020a)—a trend that has been discussed in the literature of CS
education (Werner et al., 2009). These findings resonate with a surging wave of studies investigating factors predicting CT uptake, 
which call for further and similar inquiries to contribute to discussions relevant to CT, STEM, and broadening participation in
CS (Peckham et al., 2007).

1.2. Factors predicting CT

Prior work has examined multiple factors predicting CT, where affective attitudes, personal attitudes, creative thinking, 
mathematical proficiency, socio-economic status, and resilience emerged as significant predictors (Atman Uslu, 2023; Durak & 
Saritepeci, 2018; Guggemos, 2021; Israel-Fishelson et al., 2021; Korucu et al., 2017; Moon & Cheon, 2023; Polat et al., 2021).
Teaching methods and cultural contexts also predict CT, with studies showing the impact of physics curricula, peer collaboration,
and age on developing CT skills (Kong et al., 2018; Latifah et al., 2022; Lei et al., 2020; Werner et al., 2012). Among CT’s potential 
predicting factors, students’ gender and its interaction with CT in STEM and CS education were prominent and analyzed through
SEM, cross-lagged regression, and logistic regression (Atman Uslu, 2023; Durak & Saritepeci, 2018; Kong & Lai, 2022; Peugh, 2010; 
Relkin et al., 2020; Sun et al., 2022). MLM was not employed. Studies considering how and if gender predicts CT contributed to 
a broader discussion on representation in STEM and CS (Baser, 2013; Czerkawski & Lyman, 2015; Funke & Geldreich, 2017; Kiss,
2010; Sax et al., 2017; Seiter & Foreman, 2013; Serkan & Karalar, 2018; Stein, 2004; Stoilescu & Egodawatte, 2010; Werner et al.,
2004). These studies produced mixed results, with some finding males more confident and proficient in computer-based CT tasks,
while others found females excel more in collaborative and unplugged tasks, but most found that students’ gender does not predict 
CT (Ardito et al., 2020; Del Olmo-Muñoz et al., 2020; Delal & Oner, 2020; Gao et al., 2022; Hutchins et al., 2017; Niousha et al., 
2022; Rojas López & García-Peñalvo, 2021; Sovey et al., 2022). Notably, prior work did not always consider or discuss how social, 
cultural, and historical factors might have determined gendered inclinations toward CT, as exemplified by Wang et al. (2015), who
showed how social encouragement is key for women pursuing careers in STEM and CS. While we acknowledge its importance, 
discussing sociocultural and historical determinants of CT is out of scope here.

1.3. Research questions

We extend prior work by inquiring about the factors predicting CT in constructionist game-based learning (GBL) through 
Multilevel Modeling (MLM) (Dedrick et al., 2009) and guided by the following research questions:

RQ1 What factors, at group or individual level, predict CT in a constructionist GBL STEM curriculum?
RQ2 Do factors predicting CT interact?
2 
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2. Methods

For our inquiry, we leverage a constructionist GBL STEM curriculum dataset focused on learning climate science, systems 
thinking, and CT in parallel  (Puttick & Tucker-Raymond, 2018). As our inquiry accounts for students’ gender, we do not stigmatize 
‘‘pre-defined’’ gender roles in CS (Michell et al., 2018) by asserting that gender determines success in CT. Rather, we inquire how
gender and other variables, including students’ prior experience with Scratch and teachers’ experience with the curriculum, might
predict CT in interaction with hierarchical factors that shape CT learning. Compared to prior work (Kong et al., 2018), we explore 
factors predicting CT via MLM (Dedrick et al., 2009). Hence, to prior work showing one-dimensional, linear predictions between 
factors (e.g., thinking style, Durak and Saritepeci 2018) and CT, we integrate a comprehensive picture of how they are nested 
within the hierarchical structure of a learning environment, and to what extent the grouping factors within this hierarchy predict 
students’ CT. The secondary dataset includes 483 games designed by pairs of 8th grade students in Scratch (Resnick et al., 2009)
from 50 middle school science classes spread across five schools and taught by 11 teachers. Variables in this dataset include students’ 
demographics (e.g., gender), student-designed game genre classification (e.g., puzzle, simulation), prior Scratch experience, and CT 
as scored by Dr. Scratch (Moreno-León et al., 2015). To compensate for missing data on gender and prior Scratch experience in 
the dataset, we perform data imputation (Song & Shepperd, 2007). Next, we describe (1) the STEM curriculum and its classroom 
activities, the student-designed games in Scratch, and their CT assessment via Dr. Scratch, and (2) data collection, data imputation 
techniques, and MLM analysis.

2.1. Constructionist game-based learning STEM curriculum for CT

The curriculum strongly emphasized artifact creation through Scratch and participatory pedagogy (Tucker-Raymond et al., 2019). 
The constructionist approach allowed students to actively shape their learning experience and engage in collaborative problem-
solving through pair programming (Werner et al., 2004). This encouraged them to draw inspiration from their peers’ creations and 
nurtured a sense of self-efficacy. Further, the resulting student-designed games and CT were assessed and monitored through Dr.
Scratch (Moreno-León et al., 2015). Over three years, the curriculum was deployed in 35 middle school science classes spread across 
five distinct schools. This initiative involved the dedicated efforts of 11 teachers and saw an average of 20–30 students in each class,
for an estimated 932 8th grade2 students actively engaged in the curriculum. Notably, in our MLM, we consider only years two and 
three of the curriculum (i.e., cohorts 1 and 2), as year one was implemented by two teachers only and was considered a pilot.

2.1.1. Professional development, curriculum design, & classroom activities
Teachers underwent professional development (PD) to familiarize themselves with Scratch and CT and integrate climate science

and systems thinking. The teachers explored Scratch and its block-based programming with technology integration specialists
and invested four hours experimenting with Scratch. The PD aligned with a participatory ethos (Rosebery & Puttick, 1997) and 
allowed teachers to (1) appreciate how systems thinking enriches students’ comprehension of climate science and (2) identify 
strategies to tailor curriculum activities based on student’s prior exposure to Scratch and attitudes towards CT. Nurturing distributed
expertise (Cassidy et al., 2020) was facilitated by the curriculum. This approach was enhanced by online and physical materials 
covering climate change topics and principles underpinning computational problem-solving. The curriculum material also included
instructional cards from Scratch, which facilitated the creation of coding routines and links to the Scratch community forums for 
addressing various queries. Also, the Creative Computing guide provided by ScratchED3 allowed students to gather knowledge
of scripting routines and access examples of code remixing. The curriculum encouraged creativity and cultivated a collaborative 
learning culture fostering students’ peer critique, including pair programming and jigsaw grouping. Pair programming was 
supervised by teachers, who also helped sort students into pairs of either male–male (MM), female–female (FF), or male–female 
(MF) to balance gender mixing. Also, teachers publicly identified students with prior Scratch expertise to help others when asked, 
promoting remixing publicly accessible Scratch projects to practice coding (Kafai & Burke, 2017). Finally, the Triadic Game Design
(TGD) framework for serious game design (Harteveld, 2011) was employed to help students articulate reality, meaning, and play
in their gamified adaptation of climate science.

Students and teachers explored climate change, such as global warming and energy consumption. With the supervision of
teachers, the students selected a climate change topic to represent in their Scratch projects. For inspiration, students played existing 
video games on climate change from NASA’s ClimateKids.4 Students critically analyzed the design elements of these games that 
convey educational messages to discern the distinctive characteristics of serious games. They participated in a 10-block challenge 
following the ScratchED guide to familiarize themselves with Scratch by programming a simple application using only ten blocks.
After the 10-block challenge, the students collaboratively refined their ideas for climate science games and worked on their Scratch
projects in pairs.

2 In this paper, we adopt the US conventional school grade system (e.g., 5th grade and beyond) when referencing different levels of learning.
3 https://scratched.gse.harvard.edu/index.html
4 https://climatekids.nasa.gov/menu/play/
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Fig. 1. Examples of student-designed games about climate change in Scratch, title, and game genre (in Italics).

Fig. 2. The distribution of game genres for student-designed games, from more (clicker) to less (shooter) popular.

2.1.2. Student-designed games
The students assigned distinct tags/names to their projects and did not include their real names to comply with IRB requirements. 

The games were saved in an external repository, enabling us to access the data for analysis. We leveraged the Scratch developers’ 
API to capture and gather information from the compressed .sb2 files, including block usage and timestamps. The student-designed 
game genres were previously coded through emergent and a priori codes using TGD and Heintz and Law’s categorization of game
genres (Heintz & Law, 2015). The game genres were assigned a primary and secondary game genres, as action games were prominent
in the dataset (68%) compared to the rest (32%). Such a breakdown of action genre into secondary game genres allowed for balance 
within our MLM analysis. The original coding underwent several iterations across the entire dataset until refined coding. Fig.  1
shows four examples of student-designed games and their game genre. Among the 483 games we collected, 102 games were either
unplayable, had less than ten games within a game genre (i.e., adventure and strategy), or were missing from the repository. Fig.  2
shows the genre distribution of the 381 student-designed games included in the MLM.

2.1.3. Assessing CT via automated metrics
Automated metrics can help monitor students’ progress in CT (Troiano et al., 2019), give scholars a rubric that can systematically

score CT (Moreno-León et al., 2015), and provide visual feedback to examine CT skill development at a glance (Vieira, 2020). We 
assessed student-designed using Dr. Scratch (Moreno-León et al., 2015), which was previously used to assess CT in game-based 
STEM curricula (Troiano et al., 2020a). Dr. Scratch quantifies CT within Scratch projects on a scale from 0 to 3 concerning seven 
designated CT dimensions (Table  1). Each assigned score defines a level of CT proficiency: 0 null, 1 basic CT, 2 developing CT, and
3 CT proficiency. The cumulative score is computed as the sum of individual scores across each CT dimension, yielding a maximum 
of 21. These scores are based on observed coding practices within Scratch. For instance, Dr. Scratch assigns 1 point for using basic 
logic (e.g., if  blocks), while 3 points are assigned when using more complex logic operators (e.g., AND/OR).

2.2. Data collection

For our MLM, we use a secondary dataset aggregating the curriculum data (i.e., student-designed games and CT scores as 
assessed by Dr. Scratch) with survey data completed by students and their teachers. School-district-based technology specialists 
and curriculum teachers designed the curriculum survey. The survey gathered students’ (1) race/ethnicity, (2) gender, (3) preferred 
game to play, (4) prior experience with Scratch and game design, (5) average weekly hours for internet usage, (6) average weekly 
hours spent playing video games, and (7) technology use. The survey combined dichotomous scales (i.e., yes/no), multiple and single 
4 
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Table 1
Dr. Scratch metric scale, showing competence level for each CT dimension and relative Scratch practices.
 Term CT Dimension Competence level
 Definition Null (0) Basic (1) Developing (2) Proficient (3)  
 Abstraction The ability to conceptualize 

and then represent an idea or 
a process in more general 
terms (Weintrop et al., 2016)

– More than one script and 
more than one sprite

Definition of blocks Use of clones  

 Data representation Representing data through 
abstractions, such as models 
and simulations (Barr & 
Stephenson, 2011)

– Modifiers of sprite properties Operations on variables Operations on lists  

 Flow control A high-level way of 
programming a computer to 
make decisions, simple or 
complicated, executed once or 
multiple times (Scopatz & 
Huff, 2015)

– Sequence of blocks Repeat, forever Repeat until  

Logic Conditionals and rules that 
allow building up and 
representing complex ideas 
(Scopatz & Huff, 2015)

– If If else Logic operations  

Parallelism Handling multiple scripts or 
sequences of code that run 
simultaneously (Park & Shin, 
2019)

– Two scripts on green flag Two scripts on key 
pressed, two scripts on 
sprite clicked on the same 
sprite

Two scripts on when I 
receive message, create 
clone, two scripts when %s 
is >%s, two scripts on 
when backdrop change to

 

 Synchronization The coordination of 
simultaneous threads or 
processes

– Wait Broadcast, when I receive 
message, stop all, stop 
program, stop programs 
sprite

Wait until, when backdrop 
change to, broadcast and 
wait

 

 User interactivity Designing and programming 
for user input

– Green flag Key pressed, sprite clicked, 
ask and wait, mouse blocks

When %s is >%s, video, 
audio

 

answers, and open box answers (see Appendix  A). Previous experience with Scratch used a 5-point Likert scale, where each point
of the scale was matched to a statement formulated by teachers that students could easily understand. Scratch experience refers to 
the experience students had with Scratch programming before the curriculum. They self-assessed their experience on a scale from 
less (Huh?) to more experienced (A lot of experience, see Table  3, Class column). Notably, students’ prior experience with Scratch
was not gathered through the survey but by teachers during pair formation and later added to the survey results (see Appendix  B). 
Such an ‘‘ad hoc’’ form of surveying (or questioning) is common practice in children and education research (Greig et al., 2007), 
and while it may hinder replicability, it is often needed to fit inquiries to specific contexts.

We wrote software scripts to assist with combining the information related to the curriculum data and the student demographics 
into one dataset. Since the games were stored on the Scratch website, information about the project name, student names, and 
IDs could be retrieved by running short JavaScript snippets. These snippets could read the HTML code and automatically gather 
information. Game scores were assessed by Dr. Scratch, and we used the student-designed game ID as a key and assigned the 
computed scores to the student pairs whose IDs matched the project ID. Two researchers and a data analyst performed, inspected, 
and verified this process.

2.2.1. Data imputation of missing data
In the curriculum dataset, missing data comprised gender and Scratch experience, which are key variables to be considered

for our analysis. Of 483 projects to be analyzed, 18.7% gender data and 43.3% prior Scratch experience data were missing
(Table  2). Notably, participation in the curriculum was voluntary. Hence, factors like absenteeism (a common issue in education 
research, Cheema 2014) may have contributed to missing data. To address the missing data, we performed data imputation.

We searched for models that could reliably infer gender based on the students’ names and leveraged the work of Karimi et al. 
(2016) using the R package provided in their paper5 and Gender API.6 The API was ranked first in performance and error rate in 
several studies where gender data was absent (Prana et al., 2021; Santamaría & Mihaljević, 2018; Sebo, 2021) and uses database
lookup and classification algorithms that proved effective for missing data retrieval. While name-based gender retrieval models are
far from perfect and are being scrutinized for their potential biases (Mihaljević et al., 2019), Karimi et al.’s Gender API is trusted by 
the scientific community, as it incorporates a retrieval method that ‘‘takes into account how gendered naming practices have changed
over time’’ (Blevins & Mullen, 2015, p. 24). The sources used to create the package’s dataset are derived from the U.S. Social Security 

5 https://www.rdocumentation.org/packages/gender/versions/0.6.0
6 https://gender-api.com/en/about-us
5 
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Table 2
The predicted prior experience with Scratch of students vs their predicted gender, along with 
the total count of their projects (also expressed in percentage %).
 Gender_Predicted Experience_Predicted Total  
 N Y  
 N 237 (49.0%) 156 (32.3%) 393 (81.3%) 
 Y 37 (7.7%) 53 (11%) 90 (18.7%)  
 Total 274 (56.7%) 209 (43.3%) 483 (100%)  

Table 3
Precision and recall table for the five levels of prior experience with Scratch.
 Class Precision Recall 
 Huh? 76% 78%  
 I have heard of it 79% 83%  
 Hour of code 79% 74%  
 Created a project 75% 70%  
 A lot of experience 64% 67%  

Administration, the U.S. Census Bureau, and the North Atlantic Population Project. While limited to American names, the sources 
did not hinder our gender inference as the students involved in the curriculum were all based in the U.S.

We initially queried students’ genders using the API V1.0, retrieving the majority of missing genders. We then used the V2.0
endpoint to fix the remaining missing genders. We first validated the Gender API with a sample of 820 students whose gender
information was already known, and the API correctly classified 96.7% of the cases (793 out of 820 students). For the 207 students
with missing gender data, the Gender API provided results with a confidence level of 70% or higher in 93.7% of cases. For missing
data on prior Scratch experience, which affected 43.3% of the dataset, we used data imputation with classifiers specifically designed
to predict missing values. Among the models tested—(1) softmax classifier (Wang et al., 2019), (2) decision tree (Nikfalazar et al., 
2020), and (3) random forest (Tang & Ishwaran, 2017)—the random forest method provided the most robust results. With 80
estimators and stratified K-fold cross-validation (k = 5, Camacho and Ferrer 2012), the model achieved an accuracy of 76.8%, 
as shown in Table  3, and a ‘‘Receiver Operating Characteristics - Area Under the Curve’’ (ROC-AUC) score of 92.1%. This approach 
ensured that the imputation process was reliable, aligned with observed data patterns, and mitigated the risk of overfitting.

While imputing 43.3% of the Scratch experience data may raise concerns, excluding such a large proportion of the data would 
have significantly reduced the representativeness of our analysis. Our imputation strategy followed best practices in education
research (Cheema, 2014), and the random forest model’s superior performance provides a reliable foundation for this approach.
To validate the inclusion of imputed data, we conducted parallel analyses of our MLM models with and without missing data. 
As shown in Appendix  C, the results were consistent across both approaches, indicating that imputing the data did not alter the 
findings’ overall trends or statistical significance. By including imputed data, we ensured that a larger portion of the dataset could
be utilized, thereby increasing the statistical power and robustness of the modeling. Importantly, this decision did not affect the 
interpretation of key results. We acknowledge that imputation introduces assumptions about missing data, and we encourage future 
work to replicate and extend our findings by exploring alternative approaches.

2.3. Multilevel modeling (MLM) of factors predicting CT

MLM is a statistical method for analyzing complex hierarchical data (Gelman, 2006) and is suited for analyzing nested data 
structures, such as the context of students within classrooms or schools. MLM also extends linear regression to analyze hierarchical 
structures implicit in a dataset (Hox & Roberts, 2011). As such, it effectively captures the hierarchy of factors interacting with
CT by modeling individual and group-level variations, either fixed or random effects. Compared to Structural Equation Modeling 
(SEM, Kong et al. 2018), MLM better aligns with the hierarchical configuration inherent in the dataset and our need to inquire 
about individual and group-level predicting factors. By incorporating group-level (e.g., teacher) and individual-level (e.g., game 
genre) attributes, MLM effectively captures shared attributes among observations within the same group. In that respect, it allows
us to (1) understand how context may affect individual outcomes (here, the CT score of student-designed games) and (2) identify
subgroups within the data with different relationships between predicting factors and the CT score (Leyland & Groenewegen, 2020).

We start by identifying what group-level attributes significantly predict the CT score of student-designed games based on the 
natural hierarchy in the dataset, namely (1) individual observations (i.e., student games), (2) cohort, (3) teacher, and (4) school (see 
Fig.  3). Once we identified levels that significantly predict CT scores at the group level, we looked for factors that are fixed effects 
(i.e., independent variables) and may predict CT at the individual level—these include (1) students’ gender (here, gender pairing
as MM, FF, or MF), (2) student’s race/ethnicity, (3) teacher experience implementing a game-based STEM curriculum, (4) student 
prior experience with Scratch, (5) game genre of student-designed games, (6) average weekly hours spent on playing video games 
(7) average weekly hours of internet usage, (8) prior experience in game development, (9) use of technology, and (10) preferred 
game to play at home.
6 
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Fig. 3. The hierarchical structure in the dataset analyzed through MLM (left) and the nested structure in our MLM (right); the number n represents the end
number of games in a cohort and varies based on teacher/cohort.

Table 4
P-value and ICC for potential attributes in grouping observations (levels).
 Independent variable P value ICC  
 School 1 0.00 
 Teacher 1.4e−08 *** 0.10 
 Cohort 0.245 0.01 
*** Significant at 𝑝 < 0.001.

2.3.1. MLM implementation and analysis
The hierarchical MLM structure we test for the significance of predicting CT scores is depicted in Fig.  3. The lowest level comprises

each observation (i.e., a student game), which can be hierarchically nested within cohort, teacher, or school. Among the schools
analyzed, two schools involved four teachers each, while the remaining three schools had one teacher each, totaling five schools 
and 11 teachers across two cohorts. Notably, these schools and teachers did not participate uniformly across all cohorts. Specifically,
four teachers in two schools were actively involved in both cohorts (i.e., deemed as experienced teachers in cohort 2 and new in cohort
1). By contrast, an additional seven teachers contributed only to cohort 2 (i.e., deemed as new). Consequently, we observe a total of 
15 distinct teacher–cohort combinations. For our MLM, the dependent variable is the aggregated CT score (ranging from 0 to 21) as 
assessed by Dr. Scratch. Independent variables include the 10 mentioned at the end of Section 2.3. As recommended by prior work
with MLM (Hox et al., 2017; Hox & Roberts, 2011), we start by (1) constructing a baseline model including only significant levels, 
then (2) incorporating significant independent variables, and finally (3) assessing interaction effects among independent variables.

Model 0: Baseline—We followed Hox et al. (2017, 2011) and constructed MLM models incrementally. We started by building a
random intercept model with only the cohorts at the second level to group the observations (i.e., student games). We added further
levels to the model and retained only those demonstrating statistical significance. In this phase, we focused on identifying potential
levels (i.e., school, teacher, cohort) that show statistical significance at the group level. After evaluating all potential grouping 
variables for significance (Table  4), we found that only teacher was statistically significant (𝑝 = 1.4e−08) and included it in the next 
models. Notably, none of the models with more than two levels exhibited statistical significance (all having p >.05). Consequently, 
we devised our baseline model, denoted as Model 0, constituting a multilevel framework comprising two levels: (1) student games
at the first level and (2) teachers as the grouping factor at the second level.

Model 1: Intermediate—Keeping teachers and games as distinct levels (same as Model 0), we incorporated all candidate 
independent variables and expanded the model. Following recommendations from Hox, since cohort and school didn’t prove 
significant in Model 0, we added them at the individual level along with the other 10 independent variables mentioned in Section 2.3.
We focused on determining whether any independent variables significantly predict CT scores during this stage. We retained only 
the statistically significant independent variables, employing a backward elimination approach, leading to a refined Model 1. This 
streamlined model encompasses (1) game genre, (2) students’ prior experience with Scratch, (3) teachers’ experience implementing 
the constructionist GBL curriculum, and (4) cohort as predictors of CT, with teacher as a significant grouping level. This approach 
enabled us to validate the model’s capacity to incorporate hierarchical levels and independent variables.

Model 2: Final—The difference between Model 1 and Model 2 is that Model 1 only considered independent variables without
their interactions. We generated extended versions of Model 1 that incorporate interactions between different independent variables, 
evaluating the statistical significance of six possible interactions:

• Students’ prior experience with Scratch<—>Teachers’ experience implementing the curriculum
• Students’ prior experience with Scratch<—>Student-designed game genres
• Students’ prior experience with Scratch<—>Cohort
• Teachers’ experience implementing the curriculum<—>Student-designed game genres
• Teachers’ experience implementing the curriculum<—>Cohort
• Student-designed game genres<—>Cohort
7 
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Table 5
The three MLM models and their statistical comparison.
 Model npar AIC BIC logLik Chisq Df Pr(>Chisq) 
 Model 0 3 2288.7 2301.3 −1141.4  
Model 1 19 2208.9 2288.3 −1085.4 111.871 16 2e-16 ***  

 Model 2 29 2208.4 2329.7 −1075.2 20.417 10 0.02555 * 

Fig. 4. Actual distribution and estimated normal distribution (KDE plot) of CT scores for student-designed games.

We tested the correlation between these interactions and CT scores, finding only the interaction between teacher experience and 
game genre to be statistically significant (p = .026). Consequently, Model 2, which incorporates this interaction into Model 1, was 
selected as the final model, capturing the significant correlation of grouping levels and independent variables with CT score while
accounting for significant interactions (see Table  6).

2.3.2. MLM models comparison
Table  5 compares the three models from our MLM. Notably, Model 1 and Model 2 show a better fit to the data than our baseline

Model 0, with p-values less than .05. We also consider Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 
While the AIC imposes a linear penalty on the number of variables in the models, the BIC applies a logarithmic penalty (Hox et al.,
2017; James et al., 2013). These metrics assess how well the models fit the data while considering their complexity. Model 1 and
Model 2 are more complex than Model 0 as they include more variables (19 and 29, respectively; only 3 for Model 0). Hence, through
AIC and BIC, we evaluate if the improved fit is worth the increased complexity. As complexity is integrated into the model, the AIC 
decreases (from 2288.7 to 2208.9 to 2208.4). Conversely, the BIC initially declines from Model 0 to Model 1 (from 2301.3 to 2288.3) 
but subsequently rises due to a more stringent penalty (reaching 2329.7). Through a comprehensive fitness evaluation, along with 
AIC and BIC, we find merit in Model 1 and Model 2. By incorporating independent variables and their interactions, these models
offer valuable insights into the factors predicting CT while addressing overfitting. Further, following James et al. (2013), we assessed
the absence of multicollinearity among variables of Model 1 and Model 2 by employing a variance inflation factor (VIF) metric. The 
requirement was that each variable have a VIF value of less than 5. In Model 1, the maximum VIF value was 1.63; in Model 2, it
reached 3.21, both linked to teacher experience. This confirms the absence of multicollinearity, as all VIFs in both models are below 
5.

3. Results

Among 932 students, 440 (47%) were female, and 492 (53%) were male. Fig.  5 shows the distribution of gender pairing 
characterizing pair programming, while Fig.  4 shows the distribution of CT scores for student-designed games. We show the 
distribution of scores (yellow bars) and an estimated normal distribution (blue line) through a Kernel Density Estimation (KDE) plot 
in Fig.  4. We integrate a smooth curve overlaying the histogram to approximate the probability density function. By juxtaposing
these two distributions, we highlight central tendencies (M = 14.33) and variations (SD = 2.59) in CT score. Finally, Fig.  6 shows the 
distribution of student-designed games organized by gender pairs. Here, design preferences within specific game genres are evident, 
where FF designed quiz and clicker games frequently. By contrast, MM designed more pong games.
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Fig. 5. The distribution of gender pairings across the two cohorts in analysis.

Fig. 6. The distribution of student-designed games based on gender pairs and game genres.

Fig. 7. The MLM structure of factors predicting CT.

3.1. Predicting factors and their hierarchy (RQ1)

Fig.  7 shows the hierarchical structure of predicting factors, highlighting how teacher predicts CT at the group level and mediates 
other significant factors at the individual level. Table  6 shows the resulting MLM models, fixed effects (independent variables), 
random effects (teacher as grouping variable), and statistical significance metrics (p-values) for each variable and model. We 
identified four main predictors: (1) teachers and their experience implementing the constructionist GBL curriculum; (2) students’ prior
Scratch experience; (3) student-designed game genre; and (4) interaction between teacher experience and game genre with predictions by
teachers at the group level (Fig.  7).
9 
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Table 6
The resulting MLM models, fixed effects (independent variables), and statistical values.
 Fixed effects Model 0: Baseline Model 1: Intermediate Model 2: Final
 Estimate P-value Estimate P-value Estimate P-value  
  Intercept 14.26 2.21e−14 *** 16.53 3.16e−06 *** 14.83 1.74e−05 *** 
 Main Effects  
 Experience-2 0.17 0.563 0.21 0.457  
 Experience-3 0.45 0.145 0.37 0.224  
 Experience-4 1.69 3.32e−06 *** 1.47 4.82e−05 *** 

  Experience-5 2.11 5.80e−06 *** 1.91 3.11e−05 *** 
  Teacher Experience-New −0.42 0.345 2.21 0.011 *  
  Genre-Clicker 0.85 0.027 * 2.85 0.0003 ***  
  Genre-Maze 0.74 0.151 3.00 0.0021 **  
  Genre-Platform 0.61 0.275 2.94 0.001 ***  
  Genre-Pong 0.20 0.614 2.53 0.0005 ***  
  Genre-Puzzle 1.86 0.004 ** 4.66 6.12e−06 *** 
  Genre-Quiz −1.13 0.015 * 1.08 0.225  
 Genre-Shooter 1.90 0.007 ** 3.43 0.007 **  

  Genre-Simulation 1.27 0.013 * 3.81 8.28e−06 *** 
  Genre-Storytelling −0.18 0.744 −0.06 0.973  
 Genre-Swipe elimination 0.28 0.601 2.46 0.005 **  

  Cohort-2 −1.00 0.044 * −1.09 0.069  
Interaction Effects  
 Teacher Experience-New: Genre-Clicker −2.73 0.002 **  

  Teacher Experience-New: Genre-Maze −3.13 0.006 **  
  Teacher Experience-New: Genre-Platform −3.33 0.005 **  
  Teacher Experience-New: Genre-Pong −3.35 0.0001 ***  
  Teacher Experience-New: Genre-Puzzle −4.10 0.002 **  
  Teacher Experience-New: Genre-Quiz −2.90 0.005 **  
  Teacher Experience-New: Genre-Shooter −1.93 0.201  
 Teacher Experience-New: Genre-Simulation −3.71 0.0007 ***  

  Teacher Experience-New: Genre-Storytelling −0.73 0.685  
 Teacher Experience-New: Genre-Swipe elimination −3.15 0.005 **  

 Model 0 Model 1 Model 2
 Random Effects logLik P-value logLik P-value logLik P-value  
  Level 2: Teacher −1144.2 1.43e−08 *** −1088.0 0.025 * −1081.1 0.0006 ***  

3.1.1. Teachers and their experience with curriculum implementation
Model 0 is based on a two-level structure. The first level considers individual observations (i.e., student-designed games). The 

second level groups these observations based on teacher. We have listed the attributes used for grouping games at this second 
level in Table  4. When applying MLM to this structure, we found that the teacher has a significant influence on how games are
grouped among the attributes we consider at the second level (p = 1.4×10−8 as indicated in Table  4). Simply put, different teachers
guide students’ game design differently. We measure this through Intraclass Correlation Coefficient (ICC).7 ICC tells us how similar 
or different the games are within the same teacher’s group. ICC for teacher level indicated that the teacher’s influence on game 
grouping is substantial (ICC = 0.10). When introducing school as another level in the model, we encountered challenges as the 
model struggled to converge, showing how school was not as effective as teacher as a level for grouping.

Fig.  8 highlights the contrast between experienced teachers (in green) and new teachers (in orange, limited to cohort 2). The data 
reveals that most teacher groups exhibit normally distributed CT scores. On average, experienced teachers demonstrate higher CT 
scores compared to new teachers. However, an exception is observed with T-5 (a new teacher), who achieves the highest average CT 
score (15.45). In contrast, T-7 (also a new teacher) records the lowest average score (12.26), with a variability of 1.23 SD observed 
across the average Dr. Scratch scores for all teacher groups. We analyzed score distribution across cohorts, revealing a notable 
decrease (p = .04, based on Model 1 in Table  6 and Fig.  9) in CT scores within cohort 2 when compared to cohort 1. In Model 1,
teacher experience was not statistically significant (p = .35, Table  6). However, it becomes significant when including interactions
in Model 2 (p = .01, Table  6). The MLM shows that the significant prediction of CT score using cohort in Model 1 is a result of its
correlation with teacher experience. Furthermore, this is accentuated by the disparate genre distributions observed within cohort 
1 and cohort 2. We then compared the scores of experienced and new teachers within cohort 2 to look for further clarification and 
unfold this complexity. We found teacher experience predicting CT, showing that games supervised by experienced teachers yielded
higher CT scores than new teachers (Fig.  9).

7 ICC is used in MLM to quantify the similarity among units of the same group. It applies to data organized into groups (see Hox et al. 2017).
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Fig. 8. Significant difference in CT scores across different groups (teachers): T-5 shows the highest average score of 15.45, while T-7 shows the lowest average
of 12.26.

Fig. 9. Comparing CT scores between cohort 1 and cohort 2 (left), showing a significant decrease in CT scores for cohort 2 (p = .04, Model 1 in Table  6). 
Within cohort 2 only (right), students supervised by experienced teachers achieved a higher average CT score, consistent with our MLM results that incorporate
interaction effects (Model 2 in Table  6).

3.1.2. Student prior experience with scratch
Fig.  10 shows a red dotted line representing the average CT score of students. Students with prior Scratch experience at levels

4 and 5 significantly have higher CT scores (p <.001), while students at levels 1, 2, and 3 do not significantly deviate from the 
average CT score and tend to have similar CT performances.

3.1.3. Game genre
We found that game genre predicts CT, consistent with prior HCI work (Troiano et al., 2020a). Further, we found discrepancies 

in CT scores across game genres, as depicted in Fig.  11 and detailed in Table  6. This trend is observable in Model 1. Among game
genres, shooter, puzzle, simulation, and clicker stand out with their higher CT score compared to other genres; quiz has the lowest 
score. Notably, the correlation of these game genres with CT scores is statistically significant, as highlighted in green in Fig.  11.

3.2. The interaction between teacher experience and game genre (RQ2)

We found that Model 2 incorporating interaction between teacher experience and game genre proved statistically significant (p
= .026). Notably, shooter and storytelling did not interact significantly with teacher experience (p = .20 and .69, respectively). This 
interaction is observable in Fig.  13, where game genres predict CT scores in conjunction with teaching experience. The interaction 
effect underscores that experienced and new teachers yield diverse effects on CT scores across game genres. Specifically, puzzle stands 
out among the genres with significant interaction, showing the highest average difference of CT scores between experienced and new
teachers. In puzzle, games crafted under the guidance of experienced teachers garnered +1.88 CT points on average compared to new
teachers. Similarly, simulation and pong show notable differences (i.e., +1.50 and +1.14 in average CT scores for experienced teachers, 
respectively). Instead, on average new teachers showed better performance in shooter (+0.28 CT points) and storytelling (+1.48 CT 
points); this, however, did not show statistical significance (p = .20, and .69 respectively, Fig.  13 and Table  6). The relationship 
11 
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Fig. 10. The distribution of CT score across different levels of students’ prior experience with Scratch.

Fig. 11. Significant difference in CT score across student games: shooter and puzzle had the highest median CT score (Median = 17), while quiz had the lowest
(Median = 13). (M) = primary game genres; (S) = sub-genres of action.

between the presence of experienced teachers in distinct genres and the higher CT scores for games overseen by experienced teachers 
becomes more evident when combining Figs.  13 and 12.

These visualizations highlight the statistical relationship between teacher experience and CT scores, as well as differences in 
genre selection among students supervised by experienced versus new teachers. However, the mechanisms driving these differences 
remain unclear and are beyond the scope of this quantitative analysis, as we later elaborate in Sections 4.2 and 4.3. We organized 
the genres in Fig.  12 according to the same sequence seen in Fig.  13, with descending order based on the difference of CT score
for experienced and new teachers. Fig.  12 reveals that the first five genres exhibit a higher selection probability among experienced 
teachers, while the subsequent five genres show a higher selection probability among new teachers.

4. Discussion

In response to our initial research questions, the results of our MLM lead to the following insights:

RQ1 What factors, at group or individual level, predict CT in a constructionist GBL STEM curriculum?

• Group Factors: within the implicit hierarchy in the secondary dataset under analysis, teachers emerged as a significant 
predictor, while cohort and school did not;

• Individual Factors: with teachers as the grouping factor, (1) teacher experience with implementing a GBL STEM 
curriculum, (2) students’ prior experience with Scratch, and (3) the game genre in student-designed games emerged 
as significant predictors of CT uptake.
12 
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Fig. 12. The variability in game genre preferences among experienced and new teachers. Notably, puzzle, simulation, pong, platform, and swipe elimination, are 
avored by experienced teachers, who exhibit a positive probability difference (pink line).  (For interpretation of the references to color in this figure legend, the 
eader is referred to the web version of this article.)

Fig. 13. CT score tendencies across all game genres based on teacher and using experienced teachers as a baseline. Notably, new teachers performed better in
shooter and storytelling, although statistical analysis did not show significance.

RQ2 Do factors predicting CT interact?

• Our MLM shows that teacher experience and student-designed game genres interact significantly in predicting students’
CT.

4.1. Lessons learned from using MLM to assess CT in constructionist GBL

While MLM is widely used in education, psychology, and social science research (Dedrick et al., 2009), it was not used before
to inquire about factors predicting students’ CT in constructionist GBL. The hierarchical relationships and interactions predicting 
CT emerging from our MLM meaningfully extend prior research inquiring about factors predicting CT through SEM (Durak & 
Saritepeci, 2018), multiple regressions (Relkin et al., 2021), and multinomial logistic regression (Atman Uslu, 2023). Compared
to these prior inquiries, our MLM revealed the structural and hierarchical nuances of the relationships among factors predicting 
CT, providing novel insights into what actors (e.g., teachers) and features (e.g., game genres) may impact CT development in a 
constructionist GBL curriculum. In that respect, MLM allows for effective and appropriate modeling of these relationships within
the nested data structure, while avoiding potential statistical errors from violating independence assumptions, which may be the case 
with statistical models used in prior similar work, such as multiple linear regressions (Relkin et al., 2021) or multinomial logistic 
regression (Atman Uslu, 2023; Hox & Roberts, 2011). In particular, MLM allowed us to partition the variance, highlighting the role
of significant individual-level predictors of CT in constructionist GBL that teachers mediate. Below, we discuss the mediating role of
teachers and the role of game genres, which is the individual-level predictor with the most significant role out of the individual-level
predictors.
13 
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4.2. Role of game genres

Our MLM revealed the structural and hierarchical nuances of the relationships among factors predicting CT compared to prior
work. Particularly, we showed how the game genre of student-designed games was a prominent predictor (see Figs.  7 and 11). 
Considering the strong emphasis on game design in the GBL curriculum, certain outcomes, such as the significance of game genre, 
are somewhat anticipated and align with earlier studies (Troiano et al., 2020a). However, we extend these studies by revealing 
a statistically significant interaction between teacher experience and game genre (highlighted in Fig.  13 and Table  6), showing
their potential combined impact on CT uptake. We provide quantitative evidence (highlighted in Fig.  12) to shed more light on the
interaction between teacher experience and game genre, indicating that experienced teachers may subtly influence students’ choices, 
potentially favoring genres with higher CT demands, like puzzles and simulations. However, the mechanisms underpinning this
relationship remain unclear and are beyond the scope of our quantitative analysis. Future research may use classroom observations
and teacher interviews to explore how pedagogical strategies shape GBL and CT uptake—for example, understanding how and if 
experienced teachers steer students toward certain genres, and how they guide students differently compared to less experienced 
teachers will meaningfully extend the interpretation of our results.

Furthermore, whether these predicting factors will change based on curriculum structure and core learning activities, either 
game-based or non-game design curricula, should be further inquired. For instance, consider CT uptake through educational 
robotics (Angeli & Valanides, 2020), unplugged activities (Rijke et al., 2018), or music (Freeman et al., 2019)—what would be 
the relative of game genre? While we do not have an answer, we encourage researchers to use MLM across diverse CT curricula to
unpack hierarchical structures and extend an understanding of what factors predict CT. While we evidenced a possible influence of 
game genre on CT scores, establishing causation is challenging. Simple click-based games may demand less complex logic than more
intricate genres like shooter games. Hence, it is reasonable that certain game genres would ‘‘naturally boost’’ CT as they require
advanced programming and CT skills. Our final MLM model provides valuable insights into this matter. The analysis revealed that
the interaction between students’ prior Scratch experience and game genres lacked statistical significance. In short, no discernible
pattern emerged, suggesting that students with higher prior Scratch experience, a potential proxy for advanced CT skills, did not
choose to design games that potentially lead to high CT scores. Additionally, we did not find significance in CT score differences
across genre-experience combinations. Future work should investigate the relationship between students’ CT and game complexity 
to help explain further the relationship between game genre and CT score.

4.3. Role of teachers

Our MLM further shows that teacher experience implementing a game-based curriculum for CT uptake predicts students’ CT 
performance. These results resonate with prior work on CT uptake through educational robotics (Angeli & Valanides, 2020) and
game-based learning (Jin et al., 2021). To understand the implications of our MLM results, we must consider the correlation of 
game genre with CT uptake contingent on teachers’ prior experience implementing the curriculum—this is particularly relevant to 
educators who engage with the adoption of (1) ‘‘new’’ learning technologies like Scratch and (2) implement constructionism (Papert,
1980). Prior work on educational pedagogy and 21st century teaching argued that ‘‘educators need to be knowledgeable about these 
new tools and develop ways of integrating them into their curriculum’’ (Koehler et al., 2011, p. 150). We may see evidence of this with
experienced teachers in our MLM, whose classes showed higher CT compared to new teachers (Fig.  13). Such improved performance
may be the byproduct of refined curriculum implementation, additional PD between year one and year two of the curriculum, and
more careful consideration of how game design impacts CT. However, our quantitative focus limits our ability to move beyond 
conjectures to explain the mechanisms through which teacher experience may affect genre selection and GBL practices. In the
future, more qualitative work can capture how teacher experience was refined through PD or how curriculum refinement may 
impact teachers’ decision-making and classroom dynamics.

Despite this, we suggest that when introducing students to novel curriculum components, teachers take their time to engage with
the new technology themselves while thoroughly reflecting on the implications of introducing such new components on content 
uptake and pedagogy (Tucker-Raymond et al., 2021). To that end, and based on the statistical evidence of teachers interacting
with genres in student games, we recommend that future PD engaging CT and game design allow teachers to (1) understand how 
idiosyncratic design choices predict CT via game design (Troiano et al., 2020a) by exploring different genres of student-designed
games related to their affordances in specific CT practices (2) engage with deep-play to engage with technology while reflecting 
on content and pedagogy (Koehler et al., 2011), having teachers spend at minimum 4–8 h designing games—and playtesting each 
other’s games—and (3) become experienced with CT (Tagare, 2023) through game design and playtesting, ideally already in pre-
service (İlic, 2021). This will allow them to understand how game design supports CT development, for which we recommend they
reflect on how to balance their need to address CT learning objectives while supporting students’ individual game design choices
and preferences—without sapping ‘‘all the spirit from the activity’’ (Resnick & Rosenbaum, 2013).

Furthermore, as teachers engage in deep play, scaffolds should be created to support teachers’ familiarity with advanced CT 
practices. For example, teachers need opportunities to explore logic, variables, and other advanced Scratch programming. A clear
rubric should be created to highlight the importance of game genres and block usage in Scratch to encourage their understanding.
Additionally, during PD, teachers should explore specific genres to become aware of how the type of game designed by their students 
can affect CT assessment. Consequently, to ‘‘level the computational playing field’’, teachers may ensure that students (1) acquire 
the foundations of programming and CT, including the use of logical statements, which may be scarce in certain game genres 
(e.g., storytelling and quiz), and (2) require that student games, regardless of genre, achieve at least a developing CT level in all CT 
dimensions.
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4.4. Limitations

Our MLM was limited to a GBL, constructionist STEM curriculum. The secondary dataset employed in our MLM was pronounced 
overrepresented in specific demographics. For instance, White students were prevalent, creating imbalances in the dataset under 
analysis. Further, our gender analysis was also limited to our secondary dataset, which featured only males and females. Our results 
are also limited to Dr. Scratch. However, as shown in Fig.  4, the assessment of Dr. Scratch approximates a normal distribution in the 
data, which, although slightly skewed, suggests that the tool is measuring CT reliably. Prior work (Troiano et al., 2020a) showed that 
Dr. Scratch may inherently favor game genres (e.g., action) that require developing or proficient logical thinking (e.g., if-else blocks in 
Scratch), potentially assigning higher CT scores to students based on their design choices. As our MLM confirms these prior findings,
we acknowledge that they might be contingent on the CT metrics we used to score CT in our analysis (i.e., Dr. Scratch) and highlight 
this as a limitation in our methodological approach. Future work may use other metric assessments (e.g., DWES; Chai et al. 2021) to 
confirm or challenge our results, as well as further scrutinize existing automated CT metrics for their inherent biases towards design
choices in constructionist GBL. We used a random forest model as a data imputation strategy, limited to data availability, namely 
55% of the dataset. Hence, it suffers from data imbalance, which we mitigated using stratified folds via cross-validation. Despite 
this, we could still classify correctly about 80% of the missing data, which produced a better performance than softmax (Wang 
et al., 2019), decision tree (Nikfalazar et al., 2020), and baseline imputation methods. While we used a proven gender classification, 
we acknowledge that these algorithms may be biased and that best practices for their ethical use are still debated (Lockhart et al., 
2023).

Student pairs also limit our results, and we do not know to what extent each student has contributed to Scratch projects and 
their impact on CT scores. We showed how prior experience with Scratch and the game genre predicts CT. These results may be 
contingent on block usage in Scratch (Troiano et al., 2020a), which was not included in our MLM and should be inquired about in 
future work. While our findings highlight the predictive role of teacher experience and game genre in CT development, unexamined 
factors such as students’ prior exposure to other forms of digital literacy or differences in instructional quality may also influence
these outcomes, warranting further investigation. Last but not least, we did not inquire about remixes, Bad Smells (Vargas-Alba et al., 
2019), or the use of ‘‘design shortcuts’’ like copy-pasting code snippets (Robles et al., 2017), all of which might have affected the
MLM and resulting predictors of CT—we plan on extending our future work by including the aforementioned.

5. Conclusion

In this paper, we inquired about multiple factors that predict computational thinking (CT) performance in young students in a 
game-based learning (GBL) STEM curriculum. Specifically, we studied these factors in Scratch games designed by n = 932 students 
and assessed by Dr. Scratch. We performed a Multilevel Modeling (MLM) for our inquiry, using a natural hierarchical structure (i.e., the 
inherent organization of data into nested or hierarchical levels) and tested models consisting of four hierarchical levels for statistical 
significance in ascending order: (1) student-designed games, (2) cohort, (3) teachers, and (4) school. Through MLM, we revealed 
a hierarchical structure of predicting factors that included (1) teachers and their experience implementing the game-based STEM 
curriculum, (2) students’ prior Scratch experience, (3) student-designed game genre, and (4) interaction between teacher experience 
and game genre. The influence of teachers emerged as prominent, who mediated the degree and the extent to which other factors, 
such as game genre and student experience with Scratch, predict CT score. With these findings, we advance ongoing efforts exploring 
factors predicting CT in young students and emphasize the hierarchical structure of the educational context in which they develop 
CT. Our discussion reveals implications for the design of CT and CS curricula, outlining avenues and needs to better support teachers
in articulating CT uptake via GBL through further professional development.
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Appendix A. Demographic survey

Pre-Survey 2017–2018 Student Demographics
We would like to find out a little bit more about you. . .Why are we asking you for information about yourself? This is a research 

project, funded by the National Science Foundation that is interested in learning. Knowing a bit more about you and the other 
students in the class will help us to improve the curriculum we are designing and testing in this project. If you wish not to take this 
survey, you do not have to. You can stop participation at any time.
The survey will take about 10 min to complete.
Student ID Number:

Teacher’s Name:

1. What types of videogames do you like to play? Please choose up to 3 types of videogames you like to play the most. If none, please 
click ‘‘Not applicable’’ and explain. If you play other types of videogames, please comment below.

 Preference Role playing Sports Board/Card Online multiplayer Puzzles 
 Most □ □ □ □ □  
2nd Most □ □ □ □ □  
3rd Most □ □ □ □ □  

□ Not Applicable

2. On average, how many hours do you play video games each week? Check one

□ 0 h
□ 1–3 h
□ 4–6 h
□ 7–9 h
□ 10–12 h
□ 15–17 h
□ 18+ h

If other, please specify

3. What do you use computers for? Please choose up to 3 uses for computers. If none, please click ‘‘Not applicable’’ and explain. If you
use computers for another reason, please comment below. 

 Preference Finding information Games Watching videos Socializing 
 Most □ □ □ □  
 2nd Most □ □ □ □  
 3rd Most □ □ □ □  

□ Not Applicable

If other, please specify

4. What are the kinds of technology you use? Please choose up to 3 types of technology you use. If none, please click ‘‘Not applicable’’ 
and explain. If you use different types of technology, please comment below.
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□ Not Applicable

 Preference Phone Tablet Game consoles Laptops Desktops 
 Most □ □ □ □ □  
 2nd Most □ □ □ □ □  
 3rd Most □ □ □ □ □  

If other, please specify

5. Do you have Internet access at home? Check one

□ Yes
□ No

6. On average, how many hours do you use the Internet at home each week? Check one

□ 0 h
□ 1–3 h
□ 4–6 h
□ 7–9 h
□ 10–12 h
□ 15–17 h
□ 18+ hours

7. Have you made a computer game before? Check one

□ Yes
□ No

8. What is your gender? If you do not wish to answer, you don’t have to.

□ Male
□ Female

9. Do you identify as Hispanic or Latino? If you do not wish to answer, you don’t have to.

□ Yes
□ No

10. Race/ethnic group If you do not wish to answer, you don’t have to.

□ American Indian or Alaskan Native
□ Asian
□ Black or African American
□ Native Hawaiian or Other Pacific Islander
□ White
□ Multiracial

If other, please specify

11. Is English your first language?

□ Yes
□ No
17 
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12. Do you speak a language other than English at home?

□ Yes
□ No

If yes, what language?

Appendix B. Prior experience with scratch

How much experience do you have using the software Scratch? Check one

□ Huh?
□ I have heard of it
□ Hour of code
□ Created a project
□ A lot of experience

Appendix C. MLM (without data imputation)

Table  7 presents a comparative analysis of three models in our MLM study, focusing on a refined dataset that excludes all the
imputed data. Notably, Model 1 demonstrates superior data fitting compared to the baseline Model 0, while Model 2 does not exhibit 
an enhanced fit over Model 1. This finding contrasts with the results from the complete dataset, where Model 2 outperformed Model 
1. The limited dataset, excluding imputed data, results in a compromise of model robustness as it neglects approximately 51% of 
the data. The removal of projects with missing data on gender and experience does not hinder the model’s prediction solely for 
these predictors but leads to a reduction in data points across other predictors of CT. Hence, especially for Model 2 introducing the 
interaction of genre and teacher experience compared to Model 1, the limited dataset may lack sufficient data points for different
genres and teacher experience levels, limiting the model’s capacity to identify robust correlations and statistically significant trends 
in the interactive influence of these predictors on CT uptake. For instance, the absence of projects initiated under the guidance of new
teachers in the storytelling genre in the new dataset precludes an examination of its interaction with teacher experience. Moreover,
when employing AIC and BIC to assess the trade-off between the fitness of models and the model complexity, the performance in the 
new dataset diminishes more. AIC initially decreases from Model 0 to Model 1 but subsequently rises from Model 1 to Model 2 (for
the complete version of the data discussed in the paper, it decreases entirely), and BIC exhibits an upward trend (at least initially
decreasing for the complete version). These trends underscore the challenges of applying models to limited data when evaluating 
the trade-off between improved fit and increased complexity using AIC and BIC on the limited version of the data.

Additionally, in the new dataset, similar to the significant levels observed in the complete version, our thorough analysis of 
potential grouping variables revealed that only ‘‘teacher’’ reached statistical significance (Table  8) with a p-value of 4.3e−07. 
Subsequently, we examined the baseline model, denoted as Model 0, and two more complex models (Model 1 and Model 2) within 
the new dataset. As discussed in the overall comparison of these models (Table  7) and detailed further (Tables  8 and 9), all models 
experienced a decrease in fit when applied to the new limited dataset. Certain predictors, such as student experience and specific 
genres, maintained their significant predictive power for CT uptake even in this restricted data, underscoring their robust correlation 
(though compromised compared to the complete dataset). Meanwhile, some less robust predictors became statistically insignificant
in this updated version.

In summary, a comprehensive assessment of model fitness, considering both AIC and BIC, underscores the significance of utilizing 
the more complete version of the data, even when encountering missing data for gender and experience levels of students in certain 
projects. These models, particularly Model 2 with its consideration of interaction effects, provide more valuable insights into the 
factors influencing CT when applied to the complete data. Simultaneously, they address concerns about overfitting, as evidenced 
by AIC and BIC assessments. This comparative analysis reinforces the rationale for favoring the complete dataset, as restricting the 
analysis to projects with complete data not only hinders model performance but also discards valuable information available for 
those projects.

Data availability

Data will be made available on request.
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Table 7
The three MLM models and their statistical comparisons — without imputed data.
 Model npar AIC BIC logLik Chisq Df Pr(>Chisq)  
 Model 0 3 1338.8 1349.8 −666.40  
 Model 1 19 1309.8 1379.5 −635.89 61.017 16 3.52e−07 *** 
 Model 2 28 1320.5 1423.3 −632.27 7.237 9 0.613  

Table 8
P-value and ICC for potential attributes in grouping observations (levels)- without 
imputed data.
 Independent variable P value ICC  
 School 0.92 0.05 
 Teacher 4.3e−07 *** 0.10 
 Cohort 1 0.01 
*** Significant at 𝑝 < 0.001.

Table 9
The resulting MLM models, fixed effects (independent variables), and statistical values — without imputed data.
 Fixed effects Model 0: Baseline Model 1: Intermediate Model 2: Final
 Estimate P-value Estimate P-value Estimate P-value  
  Intercept 13.96 4.06e−13 *** 18.74 2.81e−05 *** 16.36 6.07e−05 *** 
 Main Effects  
 Experience-2 0.29 0.409 0.29 0.419  
 Experience-3 0.56 0.165 0.55 0.174  
 Experience-4 1.24 0.006 ** 1.11 0.015 *  

  Experience-5 1.71 0.003 ** 1.57 0.006 **  
  Teacher Experience-New −1.07 0.127 1.97 0.243  
 Genre-Clicker −0.41 0.452 1.92 0.232  
 Genre-Maze −0.02 0.975 2.86 0.097  
 Genre-Platform −0.54 0.462 2.48 0.129  
 Genre-Pong −0.97 0.084 1.93 0.228  
 Genre-Puzzle 0.49 0.564 3.58 0.043 *  

  Genre-Quiz −2.38 9.35e−05 *** 0.16 0.923  
 Genre-Shooter 1.96 0.071 3.68 0.085  
 Genre-Simulation 0.37 0.606 3.35 0.040 *  

  Genre-Storytelling −1.17 0.112 −1.59 0.034 *  
  Genre-Swipe elimination −1.50 0.048 * 1.35 0.492  
 Cohort-2 −1.35 0.063 −1.45 0.070  
Interaction Effects  
 Teacher Experience-New: Genre-Clicker −2.62 0.127  
 Teacher Experience-New: Genre-Maze −3.39 0.073  
 Teacher Experience-New: Genre-Platform −4.14 0.034 *  

  Teacher Experience-New: Genre-Pong −3.43 0.048 *  
  Teacher Experience-New: Genre-Puzzle −4.01 0.061  
 Teacher Experience-New: Genre-Quiz −2.83 0.111  
 Teacher Experience-New: Genre-Shooter −1.28 0.606  
 Teacher Experience-New: Genre-Simulation −4.19 0.037 *  

  Teacher Experience-New: Genre-Storytelling  
 Teacher Experience-New: Genre-Swipe elimination −3.32 0.121  

 Model 0 Model 1 Model 2
 Random Effects logLik P-value logLik P-value logLik P-value  
  Level 2: Teacher −679.2 4.31e−07 *** −639.3 0.008 ** −636.2 0.005 **  
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