
OpenFLAME: Federated Visual Positioning System
to Enable Large-Scale Augmented Reality Applications

Sagar Bharadwaj*† Harrison Williams*† Luke Wang*† Michael Liang† Tao Jin†

Srinivasan Seshan† Anthony Rowe†

Carnegie Mellon University

VPS services maintained by
independent parties for
separate spaces.

Federation of VPS servicesAR device

VPS Discoverer
Discovers VPS services at a GPS

location

VPS Selector
Selects the best VPS out of the

discovered services

VPS Stitcher
Stitches coordinate frames of

multiple VPS services

Individual VPS service

Place Recognizer -- Determines if the image sent by
the device belongs to its coverage

Image Masker – Performs semantic segmentation of
the image to remove mobile objects. E.g., chairs, tables.

Localizer – Localizes the masked image against a pre-
built 3D masked map.

Confidence Calculator – Estimates confidence in
the localization result

Figure 1: OpenFLAME federates the creation and maintenance of Visual Positioning Systems (VPS) allowing independent orga-
nizations to support VPS services for their own spaces enabling privacy and distributed maintenance. Its client-side components
enable VPS discovery, selection and seamless transition across service boundaries.

ABSTRACT

World-scale augmented reality (AR) applications need a ubiqui-
tous 6DoF localization backend to anchor content to the real world
consistently across devices. Large organizations such as Google
and Niantic are 3D scanning outdoor public spaces in order to
build their own Visual Positioning Systems (VPS). These central-
ized VPS solutions fail to meet the needs of many future AR
applications—they do not cover private indoor spaces because of
privacy concerns, regulations, and the labor bottleneck of updat-
ing and maintaining 3D scans. In this paper, we present Open-
FLAME, a federated VPS backend that allows independent orga-
nizations to 3D scan and maintain a separate VPS service for their
own spaces. This enables access control of indoor 3D scans, dis-
tributed maintenance of the VPS backend, and encourages larger
coverage. Sharding of VPS services introduces several unique
challenges—coherency of localization results across spaces, qual-
ity control of VPS services, selection of the right VPS service for a
location, and many others. We introduce the concept of federated
image-based localization and provide reference solutions for man-
aging and merging data across maps without sharing private data.

Index Terms: Localization, augmented reality.

1 INTRODUCTION

Building world-scale persistent Augmented Reality (AR) applica-
tions has been the goal of the community for several decades. Such
applications require a ubiquitous, continually updated localization

*Equal contribution.
†e-mail addresses:{skalasib, hwillia2, ainiuw, mliang4, taojin, srini,

agr}@andrew.cmu.edu

backend [33, 49, 41, 42] so that 3D content can be anchored any-
where in a continuously changing world. Furthermore, such an-
choring must be consistent across devices to enable collaborative
AR applications. To support such applications, Visual Positioning
Systems (VPS) are being increasingly deployed in public spaces by
many organizations (e.g., Google [12], Niantic [16], and Apple [1]).

VPS determines the location and orientation of a device with re-
spect to a 3D map using visual features. Existing VPS solutions
are usually provided by organizations that have the resources to
scan and host vast spans of public spaces. For example, Geospatial
API [12], Google’s VPS solution, is based on the 3D world map cre-
ated by Google’s street view imagery collected over 15 years [14].
These types of VPS solutions fail to meet the expectations of future
AR applications in two important ways:

• Lack of ubiquitous coverage – Private spaces would not host
their scans on centralized servers due to privacy concerns and
lack of fine-grained access control of their data. As a result,
existing VPS solutions are limited to public spaces that such
organizations can access and scan [16, 12].

• Staleness of visual data – Real-world scenes evolve over
time. Constantly updating scans of dynamic environments re-
quires massive cartography efforts, which are cost-prohibitive
for centralized organizations. As a result, the scans get stale,
reducing localization accuracy.

A crowdsourced VPS solution accepting contributions from in-
dependent parties could perhaps address these limitations [13, 17].
However, not all spaces (e.g., sensitive spaces like private offices
and national labs) would consider uploading their maps to crowd-
sourced VPS services. Furthermore, crowdsourcing all of the data
into a handful of large VPS services makes future AR applications
reliant on these central organizations. This introduces central points

1

of failure that could bring down a large number of AR applications
and concentrates control over future AR applications.

A federated VPS infrastructure that allows independent organi-
zations to collect and host their own scans can overcome these lim-
itations. Federation encourages larger coverage as private data can
be independently hosted and access-controlled. It also unlocks the
ability to maintain and frequently update a ubiquitous VPS solu-
tion in a distributed fashion. Federation enables the system to scale
organically, as new VPS services can be added independently with-
out the need for centralized coordination or shared infrastructure.
We present OpenFLAME1, a federated VPS solution that can en-
able world-scale 6 Degrees-of-Freedom (DoF) localization across
dynamically changing private and public spaces. In OpenFLAME,
a device that wants to localize itself first discovers VPS services
available to it at the given GPS location. The device then contacts
each of these VPS services, potentially hosted by independent or-
ganizations, and sends visual cues to all of them. Once localization
results are received from these VPS services, the device will select
the best VPS service for the location. The device also calculates and
applies transformations to VPS results to ensure they are coherent
across service boundaries. Federation of VPS services introduces
some unique challenges absent in today’s centralized solutions:

• Coherent localization across spaces – The localization tra-
jectory exposed to AR applications has to be coherent across
spaces, even if the individual 3D scans of spaces are in their
own separate coordinate frames of reference. To maintain pri-
vacy, the VPS system cannot rely on sharing visual features
between different VPS services to stitch these disparate coor-
dinate frames.

• High variability in service quality – The quality of VPS ser-
vices hosted on OpenFLAME could have a wide range from
scans made using low-quality RGB images to high-quality
lasers. We need a solution for devices to dynamically pick
the highest-quality VPS service at a location.

• Irrelevant queries to services – Individual VPS services in
OpenFLAME might receive localization requests from de-
vices outside of their coverage, resulting in a waste of re-
sources used for localization. We need a lightweight solution
to weed out requests that are outside the coverage area of a
server before triggering the localization pipeline.

In this paper, we introduce the concept of federated VPS and
provide effective solutions to the above challenges. To summarize,
our contributions are as follows:

• We present the design of a distributed federated VPS infras-
tructure called OpenFLAME, where independent organiza-
tions maintain their own VPS services for their own spaces.

• We present simple solutions to solve challenges unique to fed-
erated VPS—a VPS Stitcher to enable coherent trajectories
across VPS services without exposing visual features, a VPS
Selector to dynamically select the highest quality VPS service
at a location, a Place Recognizer to filter out requests outside
of a server’s VPS coverage, and a Pose Confidence Calcula-
tor to estimate the confidence of pose estimates. While the
solutions to these individual components are borrowed from
existing fields of study, their integration enables our vision of
a federated VPS backend.

• At individual VPS services, we present a localization pipeline
based on scene understanding that enables the handling of dy-
namically changing scenes.

1OpenFLAME stands for Open Federated Localization and Mapping
Engine. https://www.open-flame.com/

We evaluate each of the proposed components in dynamically
changing large-scale indoor environments in § 8. We implement
an AR 3D indoor navigation application on top of OpenFLAME to
show that it can support the development of large-scale AR appli-
cations. The implementations of the VPS pipeline, AR application,
client-side library, and supplementary tools will be open-sourced
after publication.

2 EXAMPLE WORKFLOW

Consider an AR cultural heritage guided tour application that dis-
plays infographics overlaid on real-world objects indoors and out-
doors. For example, outdoors, it might show fact bubbles and time-
lines of landmark historical buildings, while indoors, it might de-
scribe museum artifacts and paintings. To accurately anchor 3D
content against the real world, such an application would need a
localization solution that works across indoor and outdoor spaces
while seamlessly transitioning between environments.

Existing VPS solutions, mostly limited to public areas, can-
not support such applications. Even if some museums have 3D-
scanned their floors, no convenient system today can integrate these
scans with outdoor 3D localization systems (e.g., Google Geospa-
tial APIs) to provide coherent VPS solutions to applications. While
the museum could request one of the large providers to integrate
their scans with the larger system, it would deter the museum from
implementing fine-grained access control to their scans (e.g., only
people with tickets can view and localize against museum scans).
Furthermore, the process of updating the map would be bottle-
necked at the large VPS provider.

In OpenFLAME, the VPS services for specific regions are main-
tained by independent organizations. In our example, the museums
would maintain their own 3D scans, and the localization service
would be provided against those scans. When outdoors, the AR
application would use a large VPS provider, such as Google, to lo-
calize and anchor 3D content. Once the user enters the museum,
OpenFLAME will discover and switch to the VPS service main-
tained by the museum. The application would rely on OpenFLAME
to discover VPS services, select the best VPS service for a location,
get 6DoF poses, and stitch results from multiple VPS services.

Furthermore, individual VPS services in OpenFLAME imple-
ment a pipeline to support dynamically changing environments. We
use simple image segmentation to remove frequently moving ob-
jects from the scan and visual cues while localizing. For example,
the pipeline allows furniture and people to be removed from mu-
seum scans while retaining the predominantly stationary artifacts,
increasing the scan’s longevity and relevance.

3 BACKGROUND

3.1 Visual positioning
Visual Positioning Systems aim to estimate the 6 DoF pose of a de-
vice camera using visual input. Early VPS methods often rely on
visual markers such as AprilTags [40] and ArUco [7], where known
2D templates with pre-defined geometry are detected in the image
and mapped to corresponding 3D points. This enables 6-DoF pose
estimation by solving the Perspective-n-Point (PnP) problem [35].
However, deploying visual markers throughout a space is often im-
practical. Hence, extensive work has been focusing on markerless
visual localization using hand-crafted feature descriptors such as
SIFT[37], SURF[26], and ORB[45] to detect and describe visual
features. These features are typically matched against a database
of 3D points constructed via Structure-from-Motion [49] or Simul-
taneous Localization and Mapping [39]. Once 2D-3D feature cor-
respondences are established, the camera pose can be estimated by
solving the PnP problem. Learning-based methods have recently
improved the localization pipeline, with keypoint detectors and de-
scriptors like SuperPoint [28], and matchers such as SuperGlue [48]
and LightGlue [36] boosting reliability and accuracy.

2

https://www.open-flame.com/

(a) Outdoor scan by Google. (b) Indoor scan by a university.

(c) OpenFLAME integrates multiple VPS services.

Figure 2: OpenFLAME integrates independent VPS services.

3.2 VPS services with ubiquitous coverage
VPS services with ubiquitous coverage aim to localize users in ex-
pansive environments such as city streets, parks, and commercial
venues. Unlike indoor VPS, which can rely solely on visual in-
put due to its relatively small search space, large-scale VPS typi-
cally adopts a hybrid approach—using GPS and IMU data to ob-
tain a coarse initial 6 DoF pose estimate, which is then refined
through visual observations captured by the device’s camera. Sev-
eral commercial systems have successfully implemented this ap-
proach. Google’s Geospatial API [12] allows users to determine
precise device poses by combining GPS data with visual local-
ization against Google Street View imagery as a global reference.
Similarly, Apple’s ARKit ARGeoAnchor [3] also leverages loca-
tion and camera input to anchor AR content in real-world locations.
Niantic Lightship [16] has taken a crowdsourced approach by ask-
ing users to scan public spaces at various times of day and from
multiple viewpoints, building a rich and diverse database that en-
ables robust localization under varying lighting conditions. These
large-scale VPS services demonstrate the feasibility of global visual
localization, enabling persistent AR experiences and navigation as-
sistance in complex real-world environments.

4 CHARACTERISTICS OF INDIVIDUAL VPS SERVICES

Figure 2 shows two 3D scans from independent organizations—
Google (2a) and a private university (2b). The two scans, and as
a result, the VPS services provided on top of these scans, vary in
multiple ways, such as reconstruction quality (which in turn affects
pose estimation accuracy) and the coordinate system used. In this
section, we explore the characteristics of individual VPS services
and how they differ from one another.

Quality – OpenFLAME supports VPS services of varying qual-
ities. For example, in Figure 2a, Google’s scan is created with data
from high-quality cameras and LiDARs mounted on Google Street
View cars and aerial imagery. In contrast, the university’s indoor
scan in Figure 2b is created using the Polycam application [18] on
an iPhone. Admitting VPS services of varying quality encourages
incremental deployment of VPS without expecting perfection from
the start, thereby increasing VPS coverage.

Disparate coordinate systems – OpenFLAME allows individ-
ual 3D scans to be in their own coordinate systems and does not
require alignment with the global geographic coordinate system.
Precise alignment with latitude, longitude, and altitude requires
expensive survey equipment such as Total Stations [21] and RTK
GNSS [20], increasing the barrier to deployment. For example, the
university indoor scan in 2b is in its own coordinate system, un-

like Google’s scan, which is laid out in the system of latitudes and
longitudes.

Overlap of VPS coverages – We do not enforce spatial
exclusivity—different VPS services can cover the same area.

5 LOCALIZATION PIPELINE

VPS Service 1AR device

VPS Discoverer
1

Addresses of nearby
VPS services

Capture and
send images to
all discovered
VPS services

2

Image
Place Recognizer

3

Within
coverage?

No
Error, out of

coverage

VPS Selector

Yes

Semantic image masking
4

Masked image

Localization against
masked map

5

Pose

Pose Confidence
Calculator

6
Pose,

Confidence7

VPS Stitcher
8

VPS Service 2

VPS Service 3

Pose from best VPS

GPS
location

Local
tracking
pose

Figure 3: Localization pipeline on OpenFLAME.

Figure 3 shows the localization pipeline of OpenFLAME. The
device first uses OpenFLAME’s VPS Discoverer module to iden-
tify all VPS services offered at the device location. The device
then sends visual cues to a select subset of these services. Indi-
vidual OpenFLAME VPS services perform image-based localiza-
tion while ignoring dynamic parts of the map, such as furniture
and people. Individual VPS services return the estimated pose and
confidence scores to the device. The device then selects the best
localization results and transforms it to stitch it with the coordinate
system of previous pose estimates from other VPS services.

The localization pipeline shown in Figure 3 is run periodically at
a pre-configured interval (1 second by default). Results from local
tracking libraries (e.g., ARCore [11], ARKit [2], and WebXR [23])
are used to anchor 3D elements in the intermediate frames. Fur-
thermore, we do not trigger the entire localization pipeline every
cycle. Since devices are not expected to frequently cross VPS ser-
vice boundaries, we assume that a selected VPS service can be used
for multiple consecutive localization cycles. The device continues
to use the current service until the pose confidence scores drop; at
this point, a new discovery query is triggered to identify a more
suitable service. The remainder of this section describes in detail
each of the components in Figure 3.

5.1 VPS Discoverer
The VPS Discoverer module is responsible for identifying the VPS
services available at a given GPS location. To accomplish this, it re-
quires access to data that maps geographic regions to corresponding
lists of VPS services. This data can be stored and queried in vari-
ous ways using existing systems, including spatial databases (e.g.,
GeoFire [10], PostGIS [19], MongoDB [15]), Geographic Informa-
tion Systems (GIS) such as ArcGIS [4] or Carto [5], or even through
DNS-based approaches [32, 27, 31]. In our implementation, we re-
purpose the Domain Name System (DNS) to function as the VPS
discoverer. This approach offers several advantages: it leverages
widely available infrastructure, supports caching mechanisms, is
straightforward to implement, and naturally enables federation. In
this paper, we specifically focus on the challenges of image-based
localization in a federated setting. A detailed treatment of the orga-
nization and querying of spatial data for VPS service discovery is
out of scope of this paper.

5.2 Capture and send images
Once the VPS services at a given location are discovered, Open-
FLAME requests the device to capture an image. It then broadcasts

3

the image to a subset of the discovered VPS services. The filter-
ing mechanisms used to select a subset of VPS services are con-
figurable by the AR applications using OpenFLAME. For example,
the application can whitelist a subset of Top Level Domains (TLDs)
that are acceptable. An AR campus navigation application, for in-
stance, can choose to use only VPS services hosted on .edu do-
mains. The application can also choose to limit the number of VPS
services that are being contacted every discovery cycle, in which
case a subset is arbitrarily chosen. After a few discovery and local-
ization cycles, OpenFLAME eventually locks in on the VPS service
that is the most accurate for a location using the VPS Selector mod-
ule described later. OpenFLAME provides parameter settings that
the applications can use to configure the method of filtering VPS
services.

5.3 Place Recognizer
Unlike centralized VPS services that have to satisfy all localization
requests from devices, the VPS services on OpenFLAME might re-
ceive requests from devices outside of their VPS coverage. This is
especially true indoors, where GPS errors are high, and the device
might discover and make requests to multiple maps before narrow-
ing down its location to a single map. In OpenFLAME, VPS ser-
vices include the Place Recognizer module that takes in an image
and determines if it belongs to a place that is within the VPS cov-
erage of the server. This is run before triggering the localization
pipeline to conserve system resources.

The Place recognizer module is primarily based on the CLIP [6]
model—a neural network trained on a large dataset of image-text
pairs. We specifically use the image encoder layer of CLIP, which
converts an image to an image embedding (i.e., a vector), expected
to represent the semantic information in the image. To ensure dis-
criminability between spatially close and visually similar spaces
(e.g., office areas used by different groups in a university), we fine-
tune CLIP for specific VPS services. We construct a dataset of
images from such neighboring locations. We modify the original
CLIP model by appending a projection head—a fully connected
layer—that maps CLIP’s high-dimensional image embeddings to a
new 256-dimensional embedding space. During training, we freeze
CLIP’s parameters and train only the projection layer using a triplet
loss. This encourages embeddings of images from the same room to
have lower cosine distance, while pushing apart embeddings from
different rooms. The result is a model that produces more discrim-
inative representations suited for fine-grained place recognition.
While such fine-tuning enhances performance in areas where data
sharing between VPS services is possible, we observe that even the
pre-trained CLIP model—without any fine-tuning—performs well
in settings where cross-service data access may be restricted.

A CLIP image embedding data set is constructed offline for all
the images in the 3D map database—the database embeddings. To
determine if a given query image lies within the VPS service’s cov-
erage, we first get the CLIP embedding of the query image. The
query embedding is compared to the database embeddings to find
the one with the smallest cosine distance. If the smallest cosine dis-
tance exceeds a pre-configured threshold, the image is discarded,
and the rest of the localization pipeline is skipped. The threshold
can be changed based on how resource-conserving the VPS ser-
vice wants to be. At low thresholds, most images are discarded. If
the minimum Euclidean distance is high, the VPS service responds
with an error code that indicates to the device that the queried im-
age is out of coverage. § 8.5 evaluates the performance of the Place
Recognizer module.

5.4 Semantic image masking
Individual VPS services might be hosted in dynamically changing
spaces with many objects that frequently change their positions,
such as chairs, keyboards, backpacks, and people. As visual po-

Original image Semantic mask 2D features removed

Figure 4: Semantic image masking is used to ignore features
from typically dynamic objects, making localization more robust
to changes in the environment.

sitioning is sensitive to the position of visual features, the localiza-
tion quality drastically reduces because of the frequent motion of
such objects. In our pipeline, we address this issue by masking out
classes of objects that frequently move in an environment and not
considering them in pose estimation.

Figure 4 shows two examples of semantic masking. The left
column shows the original image. To generate the semantic mask
in the middle column, we use YOLOv8 [24]—a real-time object
detection system. The classes of objects to be detected are config-
urable and can be set by individual VPS services. The figure shows
a typical university office environment, and objects such as chairs,
keyboards, and backpacks are detected. In a different environment,
a different set of object classes can be used. Once 2D image fea-
tures are detected in the pose estimation step (§ 5.5), the features
inside the boundaries of the detected objects are removed and are
not considered in the rest of the localization pipeline. The rightmost
column in Figure 4 shows the set of 2D features that are removed.
§ 8.2 evaluates the benefits of masking dynamic features.

5.5 Pose estimation
We use hloc (Hierarchical Localization) [47] to estimate the pose
of the given query image against a 3D map. The process of con-
structing the masked 3D map is described in § 6. hloc uses Su-
perPoint [28] feature detector and descriptor, and SuperGlue [48]
feature matcher. The combination of learned feature detector, de-
scriptor, and matcher makes the pose estimation robust to lighting
changes. To support large maps, hloc also adds a global retrieval
layer that uses NetVLAD [25] to isolate pose estimation to a small
portion of the map that is relevant to the query image.

We optimize the implementation of hloc to integrate well with
OpenFLAME. Specifically, the default implementation of the lo-
calization pipeline on hloc loads the neural network weights of all
models (i.e., SuperPoint, SuperGlue, and NetVLAD) into memory
for every localization request. We persist the weights in memory
across multiple localization queries to speed up pose estimation.
Furthermore, the implementation was not written with support for
concurrent executions. We made modifications to the way the query
image is loaded to enable concurrent pose estimations. While our
implementation uses hloc, this component can be replaced by any
vision-based localization method, including the recent synthesize-
and-localize [46, 44, 34, 56] methods. We build the rest of the com-
ponents in OpenFLAME to be agnostic to the method used for pose
estimation, which enables VPS services to take advantage of the
rapid advances in the field of vision-based localization.

5.6 Pose Confidence Calculator
Individual VPS services return a confidence score along with their
pose estimates to enable the devices to make an informed selection

4

CLIP network

Query
embedding

Render
embedding

Render Image

Query Image

Cosine
Similarity

Pose Confidence

Figure 5: The Pose Confidence component estimates how reliable
the calculated pose is by comparing the query image with one ren-
dered from that pose.

and switch to a different VPS service once the device moves outside
of the coverage area. The Pose Confidence Calculator module helps
estimate the confidence of the computed pose.

In image-based localization, common pose confidence metrics
include the number of feature inliers [30], reprojection error [22],
and the ratio of inliers to detected keypoints. However, these
feature-based metrics are tightly coupled to the specific pose es-
timation method and cannot be reliably compared across different
VPS services. This coupling would also limit the ability of VPS ser-
vices to independently adopt new localization techniques, such as
emerging synthesize-and-localize methods [44, 34], which do not
rely on feature matching. Additionally, feature-based metrics can
fail in indoor environments with repetitive textures (e.g., floor tiles,
carpets), where incorrect poses may still yield high inlier counts.
To address these limitations, we instead use image similarity be-
tween the query image and a rendered view from the 3D scan,
enabling consistent and technology-agnostic confidence estimation
across VPS services.

Figure 5 shows our pipeline to estimate pose confidence. Once
we estimate the pose of the query image, we render the correspond-
ing pose from our 3D scan at the estimated pose. CLIP embeddings
for both the rendered image and the query image are generated. The
cosine similarity between the embeddings of the rendered and query
images is returned as pose confidence. Our pose confidence scores
are independent of repeating textures and the number of features
as CLIP compares semantic differences between the images. To
improve performance, we extend CLIP with a projection layer and
fine-tune it so that the final embeddings of the query image and the
3D render at the estimated pose are close in the embedding space.
As in § 5.3, we train this model using triplet loss on a dataset of
query and rendered image pairs. In § 8.3, we justify our choice of
using a fine-tuned CLIP model by comparing it to other similarity
metrics.

5.7 VPS Selector
Once the device has all pose estimations from all the VPS services
that it sent images to, it has to select one VPS service that is the
most accurate for the current location. If all the VPS services im-
plement the pose confidence module (§ 5.6), and the device trusts
these VPS services, it can use these scores for its selection (e.g., a
museum AR application would trust the VPS service hosted by the
museum administrators and use its pose confidence scores). How-

Trajectory from VPS 1 Trajectory from VPS 2

Trajectory from local VIO tracking

VPS Selector
Selects the VPS with
trajectory that best

matches VIO trajectory

VPS 1

Figure 6: VPS Selector chooses the best VPS service by comparing
different VPS trajectory results against on-device VIO tracking.

ever, in our federated setting, not all VPS services can be trusted.
Some services might return high confidence—either accidentally
or with malicious intent—to entice devices to continue using them.
Some might only return pose estimates without an attached con-
fidence score. Therefore, devices need a VPS selection method
that is independent of the server estimated confidence. If the de-
vice consistently finds discrepancies between the device-calculated
score and the VPS service returned score, it can mark the VPS ser-
vice as undesirable and avoid it in future localization cycles.

Figure 6 shows our server-independent VPS selection method.
This method can work after the device has captured and collected
pose estimates for at least 3 images. The trajectories estimated by
all the VPS services are first aligned with the local device trajec-
tory calculated using VIO (Visual Inertial Odometry) algorithms.
The trajectories need alignment, as local tracking and tracking with
the VPS services each run in their own coordinate systems. Once
trajectories are aligned, we calculate the Absolute Trajectory Er-
ror (ATE) between server-provided and on-device trajectories. The
VPS service with the least trajectory error is selected. § 8.4 shows
that this technique selects the correct VPS service in almost all
cases.

5.8 Visual features-free dynamic VPS Stitcher
Once the device obtains a pose from the selected VPS service, it
must align this result with poses from other VPS services encoun-
tered in previous cycles, as each service operates in its own coor-
dinate frame. Although stitching 3D scans using visual features at
region boundaries is a well-studied problem [43, 52], we cannot
rely on such feature sharing between VPS services due to privacy
constraints and pose estimation technology variations.

𝐶𝐷

𝑂𝐷

𝑂′𝐷

𝐶′𝐷

𝐷 -- Device
coordinate frame

Room 1

Room 2

𝐶𝑉1

𝑂𝑉1
𝑉1 -- VPS service 1
coordinate frame

𝑂′𝑉2

𝐶′𝑉2

𝑉2 -- VPS service 2
coordinate frame

VPS Service 1

VPS Service 2

Figure 7: Dynamically stitching coordinate systems.

5

To understand how OpenFLAME dynamically stitches coordi-
nate systems together without requiring visual features, consider
two rooms, Room 1 and Room 2 shown in Figure 7. Room 1 and
2 are covered by different VPS services (VPS 1 and VPS 2). The
two VPS services have their own scans of the respective rooms in
their own coordinate systems—V1 and V2 (shown on the right side
of Figure 7.) A device running an AR application is also building
its own local coordinate system, D. For example, such a coordinate
system is built by ARCore [11] in Android applications, ARKit [2]
in Apple devices, or WebXR [23] in web applications. The left side
of Figure 7 shows the layout of the rooms in the real world and
the trajectory of the device determined by local AR tracking in the
coordinate frame D.

Consider an object O in Room 1. Let the 4X4 pose matrix of
the object in the V1 coordinate frame be OV1 . Similarly, the pose
matrix of the same object O in the local coordinate frame D is OD.
A device camera moves from Room 1 to Room 2 as shown on the
left side of Figure 7. The initial position of the device, as calcu-
lated in the local tracking coordinate frame, is CD. The device also
sends a localization request to VPS server 1 to get its pose in the
V1 coordinate frame, CV1 . The pose of the object O with respect to
the camera is the same irrespective of which coordinate system is
considered. Therefore, we have:

C→1
D OD =C→1

V1
OV1 =↑ OD =CD C→1

V1
OV1 (1)

Let the final position of the device camera in Room 2, in the
local tracking coordinate frame D, be C↓

D. The pose of the camera
as calculated by VPS service 2, in the V2 coordinate frame is CV2 .
Following the same argument as above, for a different object O↓ in
Room 2, we have:

C↓→1
D O↓

D =C↓→1
V2

O↓
V2

=↑ O↓
D =C↓

D C↓→1
V2

O↓
V2

(2)

Now we know the poses of the objects O and O↓ in the same
frame, D. The relative positions of these objects will remain the
same in any coordinate frame of reference:

O→1
D O↓

D = O→1
M O↓

M , ↔M (3)

Although the objects O and O↓ are in different rooms and
scanned by different VPS services, we now know the relative pose
of one with respect to the other.

O→1
D O↓

D = (CD C→1
V1

OV1)
→1 (C↓

D C↓→1
V2

O↓
V2
)

= O→1
V1

CV1 C→1
D C↓

D C↓→1
V2

O↓
V2

As the locations of objects O and O↓ in V1 and V2 is arbitrary,
we choose OV1 = O↓

V2
= I. In other words, the relative transform

between the origins of the two coordinate frames V1 and V2 is:

CV1 C→1
D C↓

D C↓→1
V2

(4)

The matrices CV1 , CV2 , and CD can be repeatedly measured by
the device and collected from the VPS services as the device moves
between rooms 1 and 2. As the matrices are noisy because of lo-
calization errors, it might take a few iterations of measurements to
get the right transform. Figure 8 shows the relative transform (i.e.,
Transform 4) between the 3D scans of two independent VPS ser-
vices. We show a green outline around one of the scans. In § 8.1,
we show that only one observation from the second room is suffi-
cient, in most cases, to align the two coordinate frames of reference,
resulting in seamless transitions between VPS services.

It is important to note that the transformation described in this
section applies only to linear transformations between 3D scans and
does not account for non-linear warps. However, in our 3D map

Before transform After transform

Figure 8: Example of stitching coordinate systems.

construction pipeline, we remove distortion from our input images
and use the corrected images to generate the maps, effectively re-
moving non-linear distortions.

6 3D SCANNING PIPELINE

This section outlines the 3D scanning pipeline used for constructing
the VPS map in OpenFLAME. Our pipeline consists of data acqui-
sition with mobile devices, filtering dynamic elements, and building
a feature database for localization.

Collecting posed images: We begin by scanning the target en-
vironment using an iPad equipped with a LiDAR sensor, captur-
ing data through the Polycam app. This provides us with RGB-D
images alongside 6-DoF camera poses. To ensure geometric ac-
curacy, the iPad’s camera intrinsics are calibrated using Zhang’s
method [55]. The RGB-D images exported by Polycam are already
undistorted to conform to the pinhole camera model, which is es-
sential for accurate 3D to 2D projection.

Dynamic object removal: To improve map stability over time,
we remove dynamic elements from the scene. We use YOLO-
v8 [24] for semantic segmentation and classification, generating
masks that identify potentially dynamic objects such as people,
chairs, and cars. These masks are applied to the RGB images to
exclude dynamic regions from the mapping process, ensuring the
VPS map captures only the static structure of the scene.

Feature database construction: The masked images are then
processed using COLMAP [49] to generate a 3D reconstruction
and image feature database. We replace COLMAP’s default feature
pipeline with SuperPoint for keypoint extraction and SuperGlue for
matching, which provides more robust performance. Additionally,
we compute a NetVLAD global descriptor for each image to accel-
erate image retrieval during localization.

7 IMPLEMENTATION AND SUPPORT TOOLS

We will open-source OpenFLAME—both device-side and VPS ser-
vice implementations. We also present supplementary tools that
help with 3D scan visualization and verification of pose estimation.
Additionally, we have implemented a 3D indoor navigation applica-
tion that uses OpenFLAME as the underlying localization backend
to show that it can support large-scale AR applications.

VPS service (9a): Our implementation of VPS service uses an
optimized version of hloc [47] for pose estimation (§ 5.5), along
with CLIP and YOLO models for other components described in
§ 5. In our evaluations, it runs on an Intel Core i9-13900K CPU
and an NVIDIA GeForce RTX 4090 GPU.

Scan visualization and tagging (9b): We present a web-based
tool built using the A-Frame Inspector [9] that can visualize 3D
scans generated for the VPS service (§ 6). It also allows tagging
regions in these scans. These tags can be downloaded and rendered
against the real-world using our AR verifier tool below.

AR localization verifier (9c): An A-Frame [8] application that
uses camera RGB images and the selected VPS service to localize.
It overlays the tags created using the above tool onto the real world.

6

(a) VPS Service landing page. (b) Scan Visualizer and tagging.

(c) AR localization verifier. (d) AR Navigation application.

Figure 9: Supplementary tools.

It enables quick verification that the VPS service can correctly an-
chor virtual objects to the physical environment. Figure 9c shows
the tags in 9b overlaid on the real-world.

AR 3D indoor navigation application(9d): A-Frame applica-
tion that uses OpenFLAME as the localization backend to navigate
large indoor spaces. Between remote localization calls to Open-
FLAME, it uses WebXR for local VIO tracking. The data for route
calculation is generated using the scan visualizer tool above. De-
tails on routing and navigation in our application is out of scope of
this paper.

8 EVALUATION

In this section, we evaluate our techniques to demonstrate the feasi-
bility of a federated VPS system. While each method can be further
optimized in future work, we believe our results show that a fed-
erated VPS solution is viable and can support the needs of future
augmented reality applications.

Dataset: To evaluate OpenFLAME, we 3D-scanned and set up
30 VPS services for various indoor locations on a university cam-
pus. The locations are diverse, including conference rooms, office
cubicles, building lobbies, and classrooms. We used the raw data
export from the Polycam application on an iPad Pro to collect our
scans. We avoid using expensive scanning equipment to demon-
strate that our techniques are effective, even with low-quality, easily
obtainable scans. Each indoor location contains many movable ob-
jects, such as chairs, tables, keyboards, backpacks, etc., that change
position over time. For each location, we collect two sets of query
images—one immediately after the scan, and another after moving
the objects in the scene. We use these query sets to show that our
technique works for dynamic spaces without imposing the need to
re-scan them. Each query image has an AprilTag [53] to get base-
line pose estimates. To evaluate our techniques that rely on local
VIO traces, we record WebXR poses in our AR application as a test
device moves through spaces.

8.1 Visual features-free dynamic VPS stitcher
In § 5.8, we described our technique for dynamically stitching co-
ordinate systems from independent VPS services, without requir-
ing the VPS services to share visual features with each other. This
technique requires pose matrices from three sources—the two VPS
services being stitched and the local VIO tracking results.

Ideally, the device should determine the correct transform be-
tween two VPS systems as soon as it transitions from one service

0 1 2 3 4 5
0

2

4

6

poses in map 2

Er
ro

r
(m

)

1 2 3 4 5
0

0.5

1

1.5

poses in map 2

Er
ro

r
(m

)

(a) Translation Error.

0 1 2 3 4 5
0
50
100
150
200

poses in map 2

Er
ro

r
(d

eg
re

es
)

1 2 3 4 5
0

5

10

poses in map 2

Er
ro

r
(d

eg
re

es
)

(b) Rotation Error.

Figure 10: Error in the stitching transform estimated by the VPS
Stitcher component compared to the true stitching transform—
transform calculated by manually stitching the two maps.

(a) Image used for map creation. (b) Query image.

Figure 11: Differences between the query image and the image used
for map creation to evaluate our masked localization pipeline.

to the other, without needing numerous localizations in the new ser-
vice. We use the VIO traces and localization results on images in
our query dataset, and apply Transform Expression 4 on them, and
compare the result with the true transform—the transform we get
by manually aligning independent VPS maps. Figure 10 shows the
translation and rotation errors between the true transform and the
transform calculated using (4) against the number of pose estima-
tions in the second VPS map. The shaded area shows 5th and 95th

percentiles. We see that the device fixes on a good transform just
after a single query to the second VPS service. The translation error
on average goes down from more than 4 m to 0.5 m, and the rotation
error (i.e., angle-axis distance: cos→1 traceR1R2→1

2 , where R1 and R2
are 3X3 rotation matrices) goes down from 180° in the worst case
to about 5° immediately after the first localization result. In this
evaluation, we consider the 5 best poses from the first VPS service
when calculating the transform in (4). Concretely, we use 5 val-
ues of CV1 and CD, resulting in 5 different transformations which
are then averaged to get the required transform. While considering
more localization results after entering the second VPS service does
not significantly reduce the median errors, the worst-case error (i.e.,
95th percentile in the figures) decreases.

8.2 Masked localization in dynamic environments
To evaluate our masked localization pipeline, we compare poses
estimated by our pipeline against ground-truth poses obtained us-
ing AprilTags. The evaluation uses query images captured in envi-
ronments where objects such as chairs and backpacks were moved
since the map was created. Figure 11 shows an example compari-
son between a query image (11b) and the corresponding map image
(11a). Notice that the chairs and backpacks are in different posi-
tions in the two images. Such queries allow us to evaluate how our
masked localization pipeline handles dynamism.

Each query image contains an AprilTag, allowing us to compute
two poses: one using the AprilTag and another using our localiza-
tion pipeline. We generate two trajectories per query set, one from
AprilTag poses and one from our method, and align them before
computing the relative pose error (RPE). Figure 12 shows the em-
pirical cumulative distribution function (ECDF) of the translation
and rotation RPEs compared to AprilTag poses. The median trans-
lation error is 7.2 cm, and the median rotation error is 3°, which is
acceptable for most AR applications.

7

20 40 60 80 100
0
0.2
0.4
0.6
0.8
1

Error (cm)

EC
D

F Mean 11.2 cm
Median 7.2 cm
Q1 4.0 cm
Q3 12.6 cm

(a) Translation RPE

20 40 60 80 100
0
0.2
0.4
0.6
0.8
1

Error (degrees)

EC
D

F Mean 8.4°
Median 3.0°
Q1 1.2°
Q3 9.3°

(b) Rotation RPE

Figure 12: Relative Pose Error (w.r.t. AprilTags).

Unmasked Masked
0

5

10

15

20

25

30

35

Er
ro

r
(c

m
)

(a) Translation errors.

Unmasked Masked
0

5

10

15

20

25
Er

ro
r

(d
eg

re
es

)

(b) Rotation errors.

Figure 13: Performance of masked localization.

Figure 13 compares errors observed with and without masking.
The box plots (whiskers extend to 1.5 times the interquartile range
beyond the first and third quartiles) shows the distribution of er-
rors. Masking reduces translation errors, especially in worst-case
scenarios—the 95th percentile error is reduced by 21.1% and the
mean error decreases by 14.4%. In case of rotation, we see a slight
increase in worst case errors—the 95th percentile error increases by
2.5%, while the mean stays about the same.

8.3 Pose confidence
As described in § 5.6, we require a pose confidence metric that is
comparable across VPS services, agnostic to individual service con-
figurations, and capable of distinguishing correctly localized im-
ages from potentially inaccurate ones.

In this section, we compare several confidence metrics and jus-
tify our choice of a fine-tuned CLIP model. Figure 14 shows the
cumulative distribution functions (CDFs) of confidence scores for
various metrics we evaluated. The green line represents scores
when queries are made to the correct VPS service, while the red
line corresponds to queries sent to an incorrect service. All met-
rics are normalized to the range [0, 1], and we invert LPIPS so
that higher values indicate greater confidence. A good confidence
metric must easily distinguish between correct and wrong VPS ser-
vices. In other words, good metrics have large gaps between the
green and the red line in Figure 14.

The first two rows show feature-based metrics: the number of
SuperPoint inliers and the ratio of inliers to the total number of de-
tected SuperPoint keypoints. These metrics are tightly coupled to
the specific feature detector (SuperPoint) and matcher (SuperGlue)
used in our pose estimation pipeline and are not directly compa-
rable across VPS services; they are shown here for reference. We
observe that, within the same pose estimation setup, these feature-
based metrics provide good discriminability between correct and
incorrect matches. The second row presents image-based compar-
ison metrics between the rendered and query images, as described
in § 5.6. Metrics such as SSIM, PSNR, and LPIPS show limited
ability to distinguish between true and false matches when com-

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

inliers / # keypoints

E
C

D
F

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

inliers

E
C

D
F

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

PSNR

E
C
D
F

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

SSIM

E
C
D
F

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

LPIPS

E
C
D
F

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

CLIP-base

E
C
D
F

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

CLIP-large

E
C
D
F

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

CLIP-finetuned

E
C
D
F

Correct VPS service
Wrong VPS service

Figure 14: CDFs of metrics estimating pose confidences. The
CLIP-finetuned model shows the best discriminability between cor-
rect and wrong VPS services.

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Difference

E
C

D
F

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

inliers # inliers / # keypoints SSIM

PSNR MSE LPIPS

CLIP-base CLIP-large CLIP-finetuned

Normalized Difference

E
C

D
F

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

inliers # inliers / # keypoints SSIM

PSNR MSE LPIPS

CLIP-base CLIP-large CLIP-finetuned

Normalized Difference

E
C

D
F

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

inliers # inliers / # keypoints SSIM

PSNR MSE LPIPS

CLIP-base CLIP-large CLIP-finetuned

Normalized Difference

E
C

D
F

Better

Figure 15: Discriminability of pose confidence metrics.

pared to feature-based approaches. The third row shows the cosine
similarity of CLIP image encodings. ‘CLIP-finetuned’ refers to our
version of CLIP, fine-tuned on our dataset to produce similar em-
beddings for corresponding rendered and query images. Among all
metrics, the fine-tuned CLIP model demonstrates the best discrim-
inability.

Figure 15 presents the empirical cumulative distribution func-
tions (ECDFs) of normalized confidence score differences between
correct and incorrect VPS queries across various pose confidence
metrics. A higher curve indicates better discriminability between
true and false localizations, as more samples exhibit a larger dif-
ference in confidence scores. Notably, the CLIP-finetuned method
demonstrates the highest discriminative power supporting our deci-
sion to use it as our pose confidence metric.

8.4 VPS Selector
In § 5.7, we described how the device compares a remote trajectory
from a VPS service with its own local VIO trajectory to select the
appropriate VPS service. In this section, we show that this approach
enables correct VPS selection after only a few localization cycles.

In this evaluation, we group five VPS services located in close
proximity—such that they are all discovered by a single discovery
query—and assess whether our VPS selector can correctly identify
the appropriate service using only local VIO traces. Figure 16a

8

3 4 5 6 7 8 9 10
0

2

4

6

8

True Match
False Match

of Images

AT
E

 p
os

iti
on

 e
rr

or
 (m

)

(a) ATE between local VIO trajectory and
remote service trajectory.

3 4 5 6 7
0.5

1

1.5

2

of Images

Tr
ue

 M
ap

 R
an

k

(b) Mean rank of the correct VPS service.

Figure 16: Performance of VPS Selector. The correct map is reli-
ably ranked at the top even with few localization cycles.

0 1 2 3 4 5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Room

C
on
fid
en
ce

0 1 2 3 4 5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Room

C
on
fid
en
ce

0 1 2 3 4 5
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Room

C
on
fid
en
ce

0 1 2 3 4 5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Room

C
on
fid
en
ce

Figure 17: Performance of Place Recognizer module.

shows the absolute trajectory error (ATE) in position between the
local VIO trajectory and the VPS-estimated trajectory, for both cor-
rect and incorrect service selections. The green shaded region rep-
resents the spread between the 5th and 95th percentile errors for
correct matches. We observe that the ATE for incorrect matches
increases as more images are localized. The 95th percentile error
for true matches is lower than the median error for false matches,
showing our technique’s reliability in selecting the right candidate.

Figure 16b illustrates the mean rank of the correct VPS service
against the number of localization cycles. A rank of one indicates
that the service was selected as the top candidate by OpenFLAME
on the device. Even with a small number of localization cycles, the
correct VPS service consistently achieves a mean rank close to one.
As the length of the compared trajectory increases, the variability
in the estimated rank decreases, indicating more reliable selection.

8.5 Place recognizer
To evaluate the Place Recognizer module (§ 5.3), we consider a
group of five VPS services covering places that are close and look
visually similar to one another. Figure 17 shows the confidence
scores produced by the Place Recognizer module for various rooms.
For each query, a CLIP model fine-tuned to each individual room is
used to compute a confidence score, and the results are visualized
as box plots across six rooms. The green box in each subplot rep-
resents the correct room for the query, while the red boxes indicate
other (incorrect) rooms.

Across all four subplots, the correct room consistently achieves
the highest confidence score, clearly separated from the others. This
demonstrates the discriminative power of the fine-tuned CLIP mod-
els in correctly identifying the room associated with a given query.
The spread of the red boxes also highlights that incorrect rooms
receive significantly lower and more varied confidence scores, re-
inforcing the reliability of the module in distinguishing between
similar indoor environments.

9 LIMITATIONS AND FUTURE DIRECTIONS

The infrastructure presented in this paper is only a step towards our
vision of a widely deployed federated VPS infrastructure. Several
important challenges require further careful consideration. Two that
we consider briefly below are privacy and application design.

Privacy considerations: As discussed in § 5.7, the VPS Selec-
tor module requires poses for at least 3 images to identify the right
VPS service for its current location. Therefore, initially, the client
device has to broadcast the images of its current location to VPS
Services that might not have coverage over the location. This opens
the possibility for snooping attacks where a VPS Service might reg-
ister itself adjacent to a sensitive private space (e.g., a secret lab),
collect images sent to it during the discovery phase, and reconstruct
the map of the private space. This is a violation of privacy. Past
work has proven that it is possible to extract information from just
extracted features without raw images [54, 29].

To overcome this challenge, VPS Services hosted for sensitive
spaces can can adopt existing work on privacy preserving local-
ization [51, 38, 50]. They perform localization on secure features
(e.g., feature lines [51]) sent by the client instead of raw images.
These secure features reveal little or no intelligible visual or lo-
cation information to any party except an authorized server that
possesses the correct map of the space. Therefore, even if the
client broadcasts these secure features to multiple VPS services,
only the service that has the correct map of the private space can
decode these features and perform localization. Once the Selector
has determined the correct VPS service for the location, the client
no longer needs to broadcast visual data to multiple services and
can continue interfacing with a single VPS service. In this phase,
the VPS service can switch to using raw images so that it can take
advantage of features such as semantic image masking running on
the VPS service. Integrating existing work on privacy preserving
localization with OpenFLAME is one of our future goals.

Application Design: Applications that use one of the existing
ubiquitous VPS providers can anchor their content using latitudes,
longitudes, and altitudes as their scans are laid out in the geographic
coordinate system. As OpenFLAME does not have a unified global
coordinate system, designing applications on top of OpenFLAME
is tricky. A straight-forward solution is for applications to position
their content using local coordinates of a VPS service and store a
pointer to the corresponding VPS service. However, this makes
the content tightly coupled with the VPS service, making it unus-
able when the VPS service is upgraded or replaced. Avoiding such
tight-coupling in application design is an interesting future direc-
tion. An example solution would be for the VPS services to expose
an additional interface that informs applications of the location of
some landmarks with respect to their local coordinate system. Hall-
ways, doors, elevators and stairs are examples of landmarks in in-
door spaces. The application can then author and store content us-
ing landmarks as references. As landmarks do not change when
VPS services are upgraded or replaced, content will no longer be
coupled with specific VPS services.

10 CONCLUSION

We present OpenFLAME, a federated VPS system that allows in-
dependent organizations to support VPS for their private spaces.
Federation of VPS introduces several challenges, such as selection
of the right VPS service at a given location, coherence of local-
ization results across service boundaries, and handling dynamic in-
door spaces. In this paper, we provide some effective solutions to
these challenges and show that the resulting system can provide ef-
ficient and accurate localization. Federation of VPS services paves
the path for a ubiquitous localization backend, which will enable
world-scale augmented reality applications of the future.

9

REFERENCES

[1] Apple AR Anchor. https://developer.apple.com/

documentation/arkit/aranchor. Online. Accessed: April
2025. 1

[2] Apple ar kit. https://developer.apple.com/

augmented-reality/arkit/. Online. Accessed: April 2025.
3, 6

[3] Apple argeoanchor. https://developer.apple.com/

documentation/arkit/argeoanchor. Online. Accessed: April
2025. 3

[4] Arcgis. https://www.arcgis.com/index.html. Online. Ac-
cessed: April 2025. 3

[5] Carto. https://carto.com/. Online. Accessed: April 2025. 3
[6] Clip: Connecting text and images. https://openai.com/index/
clip/. Online. Accessed: April 2025. 4

[7] Detection of aruco markers. https://docs.opencv.org/4.x/d5/
dae/tutorial_aruco_detection.html. Online. Accessed: April
2025. 2

[8] A frame. https://aframe.io/. Online. Accessed: April 2025. 6
[9] A frame inspector. https://github.com/aframevr/

aframe-inspector. Online. Accessed: April 2025. 6
[10] Geofire for javascript. https://github.com/firebase/

geofire-js. Online. Accessed: April 2025. 3
[11] Google ar core. https://developers.google.com/ar. Online.

Accessed: April 2025. 3, 6
[12] Google Geospatial API. https://developers.google.com/ar/

develop/geospatial. Online. Accessed: April 2025. 1, 3
[13] Google Indoor Maps. https://www.google.com/maps/about/

partners/indoormaps/. Online. Accessed: July 2025. 1
[14] Google Street View. https://www.google.com/streetview/.

Online. Accessed: April 2025. 1
[15] Mongodb. https://www.mongodb.com/. Online. Accessed: April

2025. 3
[16] Niantic Lightship. https://www.nianticspatial.com/

products/niantic-sdk. Online. Accessed: April 2025. 1,
3

[17] OpenStreetMap. https://www.openstreetmap.org/. Online. Ac-
cessed: July 2025. 1

[18] Polycam. https://poly.cam/. Online. Accessed: April 2025. 3
[19] Postgis. https://postgis.net/. Online. Accessed: April 2025. 3
[20] Real-time kinematic positioning. https://en.wikipedia.org/

wiki/Real-time_kinematic_positioning. Online. Accessed:
April 2025. 3

[21] Total station. https://en.wikipedia.org/wiki/Total_

station. Online. Accessed: April 2025. 3
[22] Understanding reprojection error. https:

//calib.io/blogs/knowledge-base/

understanding-reprojection-errors?srsltid=

AfmBOorYWYUp59LYtOaajmmLxoYMshGx7VDOUSaYdxJlxzEP6BM-eJ7A.
Online. Accessed: April 2025. 5

[23] Webxr. https://immersiveweb.dev/. Online. Accessed: April
2025. 3, 6

[24] Yolov8. https://yolov8.com/. Online. Accessed: April 2025. 4,
6

[25] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad:
Cnn architecture for weakly supervised place recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 5297–5307, 2016. 4

[26] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust fea-
tures. In Computer Vision–ECCV 2006: 9th European Conference on
Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I
9, pp. 404–417. Springer, 2006. 2

[27] S. Bharadwaj, A. Rowe, and S. Seshan. Uniting the world by dividing
it: Federated maps to enable spatial applications. In Proceedings of
the 20th Workshop on Hot Topics in Operating Systems, 2025. 3

[28] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-
supervised interest point detection and description. In Proceedings
of the IEEE conference on computer vision and pattern recognition
workshops, pp. 224–236, 2018. 2, 4

[29] A. Dosovitskiy and T. Brox. Inverting visual representations with con-
volutional networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 4829–4837, 2016. 9

[30] M. FISCHLER AND. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated car-
tography. Commun. ACM, 24(6):381–395, 1981. 5

[31] R. Gibb, A. Madhavapeddy, and J. Crowcroft. Where on earth is the
spatial name system? In Proceedings of the 22nd ACM Workshop on
Hot Topics in Networks, pp. 79–86, 2023. 3

[32] R. T. Gibb. Spatial name system. arXiv preprint arXiv:2210.05036,
2022. 3

[33] T. Jin, S. Wu, M. Dasari, K. Apicharttrisorn, and A. Rowe. Stagear:
Markerless mobile phone localization for ar in live events. In 2024
IEEE Conference Virtual Reality and 3D User Interfaces (VR), pp.
1000–1010. IEEE, 2024. 1

[34] N. Keetha, J. Karhade, K. M. Jatavallabhula, G. Yang, S. Scherer,
D. Ramanan, and J. Luiten. Splatam: Splat track & map 3d gaussians
for dense rgb-d slam. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21357–21366, 2024. 4,
5

[35] S. Li, C. Xu, and M. Xie. A robust o (n) solution to the perspective-
n-point problem. IEEE transactions on pattern analysis and machine
intelligence, 34(7):1444–1450, 2012. 2

[36] P. Lindenberger, P.-E. Sarlin, and M. Pollefeys. Lightglue: Local fea-
ture matching at light speed. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 17627–17638, 2023. 2

[37] D. G. Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60:91–110, 2004.
2

[38] H. Moon, C. Lee, and J. H. Hong. Efficient privacy-preserving visual
localization using 3d ray clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
9773–9783, June 2024. 9

[39] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: A ver-
satile and accurate monocular slam system. IEEE transactions on
robotics, 31(5):1147–1163, 2015. 2

[40] E. Olson. Apriltag: A robust and flexible visual fiducial system. In
2011 IEEE international conference on robotics and automation, pp.
3400–3407. IEEE, 2011. 2

[41] L. Pan, D. Barath, M. Pollefeys, and J. L. Schönberger. Global
Structure-from-Motion Revisited. In European Conference on Com-
puter Vision (ECCV), 2024. 1

[42] W. Pang, C. Xia, B. Leong, F. Ahmad, J. Paek, and R. Govindan.
Ubipose: Towards ubiquitous outdoor ar pose tracking using aerial
meshes. In Proceedings of the 29th Annual International Conference
on Mobile Computing and Networking, pp. 1–16, 2023. 1

[43] M. Rizk, A. Mroue, M. Farran, and J. Charara. Real-time slam based
on image stitching for autonomous navigation of uavs in gnss-denied
regions. In 2020 2nd IEEE International Conference on Artificial In-
telligence Circuits and Systems (AICAS), pp. 301–304. IEEE, 2020.
5

[44] A. Rosinol, J. J. Leonard, and L. Carlone. Nerf-slam: Real-time dense
monocular slam with neural radiance fields. In 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp.
3437–3444. IEEE, 2023. 4, 5

[45] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An effi-
cient alternative to sift or surf. In 2011 International conference on
computer vision, pp. 2564–2571. Ieee, 2011. 2

[46] E. Sandström, Y. Li, L. Van Gool, and M. R. Oswald. Point-
slam: Dense neural point cloud-based slam. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV),
2023. 4

[47] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From coarse to
fine: Robust hierarchical localization at large scale. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12716–12725, 2019. 4, 6

[48] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. Super-
glue: Learning feature matching with graph neural networks. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4938–4947, 2020. 2, 4

10

https://developer.apple.com/documentation/arkit/aranchor
https://developer.apple.com/documentation/arkit/aranchor
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/documentation/arkit/argeoanchor
https://developer.apple.com/documentation/arkit/argeoanchor
https://www.arcgis.com/index.html
https://carto.com/
https://openai.com/index/clip/
https://openai.com/index/clip/
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://aframe.io/
https://github.com/aframevr/aframe-inspector
https://github.com/aframevr/aframe-inspector
https://github.com/firebase/geofire-js
https://github.com/firebase/geofire-js
https://developers.google.com/ar
https://developers.google.com/ar/develop/geospatial
https://developers.google.com/ar/develop/geospatial
https://www.google.com/maps/about/partners/indoormaps/
https://www.google.com/maps/about/partners/indoormaps/
https://www.google.com/streetview/
https://www.mongodb.com/
https://www.nianticspatial.com/products/niantic-sdk
https://www.nianticspatial.com/products/niantic-sdk
https://www.openstreetmap.org/
https://poly.cam/
https://postgis.net/
https://en.wikipedia.org/wiki/Real-time_kinematic_positioning
https://en.wikipedia.org/wiki/Real-time_kinematic_positioning
https://en.wikipedia.org/wiki/Total_station
https://en.wikipedia.org/wiki/Total_station
https://calib.io/blogs/knowledge-base/understanding-reprojection-errors?srsltid=AfmBOorYWYUp59LYtOaajmmLxoYMshGx7VDOUSaYdxJlxzEP6BM-eJ7A
https://calib.io/blogs/knowledge-base/understanding-reprojection-errors?srsltid=AfmBOorYWYUp59LYtOaajmmLxoYMshGx7VDOUSaYdxJlxzEP6BM-eJ7A
https://calib.io/blogs/knowledge-base/understanding-reprojection-errors?srsltid=AfmBOorYWYUp59LYtOaajmmLxoYMshGx7VDOUSaYdxJlxzEP6BM-eJ7A
https://calib.io/blogs/knowledge-base/understanding-reprojection-errors?srsltid=AfmBOorYWYUp59LYtOaajmmLxoYMshGx7VDOUSaYdxJlxzEP6BM-eJ7A
https://immersiveweb.dev/
https://yolov8.com/

[49] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4104–4113, 2016. 1, 2, 6

[50] M. Shibuya, S. Sumikura, and K. Sakurada. Privacy preserving visual
slam. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16, pp.
102–118. Springer, 2020. 9

[51] P. Speciale, J. L. Schonberger, S. N. Sinha, and M. Pollefeys. Pri-
vacy preserving image queries for camera localization. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
pp. 1486–1496, 2019. 9

[52] Q. Tang, K. Zhang, P. Xu, J. Zhang, and Y. Cui. Map fusion method
based on image stitching for multi-robot slam. In Advances in Swarm
Intelligence: 12th International Conference, ICSI 2021, Qingdao,
China, July 17–21, 2021, Proceedings, Part II 12, pp. 146–154.
Springer, 2021. 5

[53] J. Wang and E. Olson. Apriltag 2: Efficient and robust fiducial de-
tection. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4193–4198. IEEE, 2016. 7

[54] P. Weinzaepfel, H. Jégou, and P. Pérez. Reconstructing an image from
its local descriptors. In CVPR 2011, pp. 337–344. IEEE, 2011. 9

[55] Z. Zhang. A flexible new technique for camera calibration.
IEEE Transactions on pattern analysis and machine intelligence,
22(11):1330–1334, 2002. 6

[56] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and
M. Pollefeys. Nice-slam: Neural implicit scalable encoding for slam.
In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 12786–12796, 2022. 4

11

	Introduction
	Example Workflow
	Background
	Visual positioning
	VPS services with ubiquitous coverage

	Characteristics of individual VPS services
	Localization pipeline
	VPS Discoverer
	Capture and send images
	Place Recognizer
	Semantic image masking
	Pose estimation
	Pose Confidence Calculator
	VPS Selector
	Visual features-free dynamic VPS Stitcher

	3D Scanning pipeline
	Implementation and support tools
	Evaluation
	Visual features-free dynamic VPS stitcher
	Masked localization in dynamic environments
	Pose confidence
	VPS Selector
	Place recognizer

	Limitations and Future Directions
	Conclusion

