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In this work we develop an a posteriori error estimator for mixed finite element methods of Darcy flow problems
with Robin-type jump interface conditions. We construct an energy-norm type a posteriori error estimator using
the Stenberg post-processing. The reliability of the estimator is proved using an interface-adapted Helmholtz-
type decomposition and an interface-adapted Scott-Zhang type interpolation operator. A local efficiency and the

reliability of post-processed pressure are also proved. Numerical results illustrating adaptivity algorithms using

our estimator are included.

1. Introduction

Fluid flow in porous media appears in various fields of science and
engineering applications. Therefore, mathematical modeling and nu-
merical methods for finding accurate numerical solutions of porous me-
dia flow have been important problems in computational mathematics.
Recently, mathematical models in which porous media domains have
low-dimensional fault (or fracture) structures are considered for accu-
rate descriptions of more realistic porous media flow. In [24], some
porous media flow models with fault/fracture structures were proposed
in which fluid flow on fractures and in surrounding porous media are
governed by separate partial differential equations with coupling condi-
tions. In [21], a reduced model was derived under the assumption that
there is no fluid flow along fault/fracture structures because of very low
permeability on fault/fracture. In the reduced models, the fluid flow and
the pressure jump on faults are related by a Robin-type interface condi-
tion. We remark that similar models with nonlinear extensions are used
for porous media flows with semi-permeable membrane structures in
consideration of their applications to chemical processes in biological
tissues (see, e.g., [13,14]).

The purpose of this paper is to obtain a posteriori error estimators
for the model derived in [21] with the dual mixed form of finite ele-
ment methods. We remark that a posteriori error estimate results for
the more complex models in [24,2] (see [15,18,32] for a posteriori er-
ror estimates), do not imply a posteriori error estimate results for the
model that we are interested in. This is because a less number of er-
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ror terms makes local efficiency of a posteriori error estimators more
difficult.

We also remark that the problem in this paper can be viewed as
a generalization of mixed finite element methods for Poisson equations
with Robin boundary conditions which was studied in [20]. A priori and
a posteriori error estimates are done in [20] using the mesh-dependent
norm approach (cf. [6,23,30]) but the saturation assumption is neces-
sary for the reliability of the estimator. The analysis in this paper does
not need such an assumption for reliability, and it also gives a new re-
liability estimate for post-processed pressure.

The paper is organized as follows. In Section 2 we present back-
ground notions on function spaces, governing equations, finite element
discretization. We define our a posteriori error estimator and prove
its reliability and local efficiency in Section 3. In Section 4 and 5, we
present numerical experiment results which show performance of our a
posteriori error estimator, and conclusion with summary. Finally, some
calculus identities which are used in our analysis are explained in Sec-
tion 6 as appendix.

2. Preliminaries for governing equations
2.1. Notation and definitions

For a bounded domain D C R" (n = 2,3) with positive n-dimensional
Lebesgue measure, we use the convention that (u,v)p = / puvdx for a

subdomain D C Q which has positive n-dimensional Lebesgue measure.
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Fig. 1. A model domain with interface I'.

Similarly, (u,v)p = [, uvd.S for a subdomain D C Q which has positive
(n—1) or (n — 2)-dimensional Lebesgue measure up to context.

2.2. Governing equations and variational formulation

Let Q ¢ R", n=2,3 be a homologically trivial bounded domain with
polygonal/polyhedral boundary. We assume that a fault I is a union of
disjoint (n — 1)-dimensional piecewise linear submanifolds in Q. Each
connected component of I is a union of linear segments (if n = 2) or as
a union of planar domains such that the boundary of each planar domain
is a union of linear segments. We also assume that there are two open
subdomains Q,,Q_ c (2 \I') with Lipschitz boundaries such that

Q=0,uUQ., TcoiQ,niQ_,

and only one side of I' is in contact with Q, or Q_. Let n, and n_ be the
two unit normal vector fields on I" with opposite directions (n, =—n_)
such that n,. correspond to the unit outward normal vector fields from
Q+ (see Fig. 1).

Suppose that I'j,, I'y are disjoint (n — 1)-dimensional open subman-
ifolds in AQ such that T, UTy = Q. In this paper we assume the
following:

For any q € L*(Q) there exists w € H'(Q;R")

such that wlFuFN =0,divw =g and ||w||; < Cllqlly (€]

with a constant C > 0 depending on Q,I",I"y .

The assumption (1) is a weak assumption. For example, if both of
0Q, NQNTp and 0Q_ N dQ NIy have positive (n — 1)-dimensional
Lebesgue measures, then (1) holds. To see this, suppose that g € L?(Q) is
given. Note that there exist w, € H Q +:R") such that divw, = q| Q>
w+|ag+\l—*D =0, and [lw,||; < C||£1|g+ llp (see, e.g., [7, Lemma B.1]).
Similarly, there exists w_ € H'(Q_;R"), divw_ = qlg_, w_| QN\[p =
0,and ||lw_|l; < Cllglg_lly. Then, w defined by wlg+ =w,, satisfies (1).

For any g € L2(Q) with sufficient regularity, we use g +lrand g_|r to
denote the traces of ¢| o, and g|g_ onT. For simplicity we use [q] || :=
4, Ir —q_|r- Note that the continuity of g on I" is not assumed in general,
s0 [¢] | # 0. For a vector-valued function v on Q with enough regularity
(e.g.,ve H(Q\TI';R") with s > 1/2), v, | and v_|- are well-defined as
the traces of v from Q, and Q_. We say that v satisfies normal continuity
onlifv, |r-n,=-v_|r-n_onT.

For governing equations assume that « is a symmetric positive defi-
nite tensor on Q. In Darcy flow problems, the pressure p and fluid flow u
satisfy Darcy’s law u = —x'Vp in Q. Conservation of mass gives divu = f
for given source/sink function f on Q. The pressure and flux boundary
conditions are given by

p=gponlp, u-n=gyonly,
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and the interface condition on I" is au, - n_ — [p] [r =0 with a > 0.
Summarizing these equations and conditions, a strong form of equations
with a dual mixed formulation of the Darcy flow equation in domain Q
with fault I reads:

klu+Vp=0inQ, divu=finQ, )
u-n=gyonly, p=gponlyp, 3
au, -n, —[p]=0onT. 4
Throughout this paper we assume that « is constant on I" and

O<gy<a<a <o (5)

with a uniform lower and upper bounds «, a;, and we do not consider
the limit cases @ — 0% or @ — +oo. The limit case « = 0 becomes the
classical Darcy flow problems without fault which does not need the in-
terface condition (4). The a = +oo case corresponds to the problem that
no fluid flows across I" which needs u - n|- = 0 as an interface condition.
This case needs a completely different way to implement the interface
condition u - n| = 0 with the dual mixed finite element methods, the
numerical method that we use in this paper. Therefore, « = +co case
cannot be covered by the work in this paper. However, our analysis
does not need a uniform upper bound of a, so the results in the paper
are valid for nearly impermeable T, i.e., for arbitrarily large but finite
a.

Hereafter, we assume 0Q =I"p, gp =0, k¥ = 1 for simplicity of dis-
cussions. Let Q = L2(Q), and H(div,Q) be the space of R"-valued 12
functions on Q such that its distributional divergence is in L?(Q). We
define

V:={ve Hdiv,Q) : v, -n, |r=—v_-n_| € LX)}

with two norms
1

vl = /x'1v~vdx+ Z/a(v~n)(v~n)ds , )
a FCFF
1
lelly = (el + 1 divel2) 2 . @

By multiplying v € V to the first equation in (2) and taking the in-
tegration by parts with g, =0, k =1,

/u-vdx+/Vp-vdx

Q Q

=/u-vdx+/p+v+-n+ds+/p_v_~n_ds
Q r r
—/pdivvdx.

Q

After using v, -n, = —v_-n_onT, and the interface condition (4), we
obtain

/u-vdx—/pdivvdx+/a(u+-n+)(v+-n+)ds=0
r

Q Q

which can be written as (u,v)q — (p,divv)g + <au+ ‘n,,v,-n_ >r =0.
In the following, we use (au - n,v - n); to denote (au, -n,,v, -n, ).
From this and an immediate variational form of the second equation in
(2), we have a variational problem to find (u, p) € V X Q such that

U, v)q + (au-n,v-n)p — (p,dive)g =0 YvevV, (8a)
(divu,g)g = (f, Dq Vg€ . (8b)
The stability of this system with an inf-sup condition
,di
w >C>0 )

sup
veV geo Ivlly llglly
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was studied in [21].
2.3. Discretization with finite elements

We introduce finite element spaces for discretization. In the rest of
the paper we assume that k£ > 1 is a fixed integer. For a d-dimensional
simplex D C R" (d =n,n— 1,n —2), P,(D) is the space of polynomi-
als on D of degree < k. Similarly, P, (D;R?) is the space of R?-valued
polynomials of degree < k on the d-dimensional simplex D.

Let 7, be a set of n-dimensional simplices whose interiors are disjoint
such that if any two simplices 7|, T, € 7}, are not disjoint, then T} N T,
is a subsimplex of T} and 7,. If n = 3, let F;, denote the set of all (n — 1)-
dimensional subsimplices F of the simplices in 7, and P;z ={FeF,:
F c 0Q}. We assume that 7, is matching with the fracture I' in the sense
that I'=Ucpr F for some F, CFp, so F} forms a triangulation of I'.

We also define F)) by 7)) :=F, \ (F) UF)). If n=2, &, &), €], )
are similarly defined. Finally, Ay denotes the diameter of a simplex K
which can be a tetrahedron, a triangle, or an edge.

For given k > 1 and n-dimensional simplex T' € 7, let us define

X

VEN(T) =P (T:R") + Py (D), 10)
xn

VEPM(T) = P (T;R"). 11

The Raviart-Thomas element (for n = 2, [27]) and the first kind of
Nédélec H(div) element (for n =3, [25]) are defined by

RTN
Vi

={veV : vy eVETNT),

1 VT €T,}.

(12)

The Brezzi-Douglas-Marini element (for n =2, [11]) and the second
kind of Nédélec H (div) element (for n =3, [26]) are defined by

VIPM ={veV : vl eVIPM(T), VT eT,}. (13)
The finite element spaces Q(;l, Oy, O, are defined by

0)={q€Q : qly €PYT) VT ET,},

0,={q€0 : qlr €P,_|(T) YT ET,},

0,={4€Q : qly EPy(T) VT ET,}, 14)

and Py, P}? are the L? orthogonal projections to Q, Q?l. For face F or
edge E with integer m > 0, P’ and P are the L? orthogonal projections
to P,,(F) and P, (E).

Forge O, letw e H'(Q;R") be a function satisfying (1). It is well-
known that the interpolation operator I1,, : H(Q;R") — V', defined by
the canonical degrees of freedom fulfills divII,w =g, [I,w-n=0onT,
and ||IT,wl|, + || divII,wl|y < Cllw||; for some C >0 (cf. [12]). This is
sufficient to prove that the pair (V,, Q;,) satisfies

(g.divr)g

inf sup >C>0
040 ozvev,, llallollvlly

(15)
with C > 0 independent of mesh sizes. In the rest of this paper our dis-
cussions are common for V', = V}’fTN orV,= Vf DM unless we specify
V', in our statements.

The discrete problem of (8) with V', xQ,, isto find (u,, p,) €V, xQ,,
such that
(16a)

(up,v) g + (auy, - n,v -y — (py,dive), =0 Yoev,,

Vq € Q,.

An a priori error analysis for (uy, p;,) is proved in [21].

We finish this section by introducing a post-processed numerical
solution of p, a variant of the post-processing in [30]. Suppose that
(uy,py) €V X Qy, is a solution of (16). Following the idea in [19,16],
a post-processed solution p; € O} is defined by

(divuy,q)o =(f9a (16b)
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(VPZ’ Vq)r == (“h’ Vq)r (17a)

(Py-a) = (Pppr-a)y

for T €Ty,

Here we remark that Q in (14) contains all piecewise quadratic
polynomials because k > 1. This will be used in the proof of Lemma 3.6
which allows an elegant local efficiency proof of a posteriori error esti-
mator.

Vg € QL(T),

Vg € Q)(T) (17b)

3. A posteriori error estimate

In this section we define a posteriori error estimator and prove its
reliability and local efficiency. Let (uy, p;,) be a solution of (16) and pz
be the post-processed pressure defined in (17). Let

m=k-1 ifV,=VFY and m=k ifV,=V}I’M. (18)
Then, a posteriori error estimator # for n =3 is defined by

n=| X+ X nr 19)

TeTy, FeFy
where
ny = lluy + Vopllor (20)
-1/2 .
_— hF/ I [PZH llo.r if FeF) on
o« 21t =P [53] Nor i FET]

If n =2, n is similarly defined by replacing . by n for edges in 5;,) and
8,]; with the same formula in (21), so we omit the detailed definition.

3.1. Reliability estimate

We prove the reliability of the a posteriori error estimator # in (19).
The main result is the following.

Theorem 3.1. Suppose that (u, p), (uy,p;,) are solutions of (8), (16), and
n is defined by (19). Then, there exists C > 0 independent of mesh sizes and
a in (5) such that

1
2
1 2 .
e —upll < Cn+ = | Y ose(£, 1| . ose(f.T) :=hyllf = Pyfllo-
z TET),
(22)

To prove this theorem, we split u — u;, into two components which
are orthogonal with an inner product given by the bilinear form of u and
v in (8a). In the lemma below, we first show that there is an orthogonal
decomposition of u — uy,.

Lemma 3.1. Suppose that (i1, p) is the solution of

(@1,v)q — (p,divv)g +(ait - n,v-n)r =0 YveV, (23a)
diva, 9)g = (Pyf-q)q VgeQ. (23b)

Then,

Ml — wp I = e — &@ll> + & — w1 (24)

Proof. Then, it is easy to see that

u—-i,v)g—(p—p.divev)g +(a(u—it) -n,v-n)r=0, (25a)

div(u —a),q)g = (f = Ppf.4)q
(25b)
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forallveVandgqe Q. Ifv=ia—u;, €V, then

(u—ﬁ,ﬁ—uh)g+(a(u—ﬁ)-n,(ﬁ—uh)-n)rzo

because div(it —u;,) = 0. Then, (24) follows from this orthogonality. []

As a consequence of (24), it suffices to estimate |||u — i|||* and |||u;, —
it||? by the right-hand side terms in (22). We first estimate |||u — i]|.

Lemma 3.2. Suppose that (i, p) is defined as in Lemma 3.1. Then,

1

2

_a< L . 2
e —all < —| 3 ose(s.T) (26)

TETy,

Proof. Taking arbitrary test function vanishing near I" in (25a), we ob-
tain

u—a=vVp-p in L}(QyR"

for every open set € such that Q_O c Q\T. By the dominated conver-
gence theorem, u —ii=V(p—p) onevery T € 7). If v =u —ii in (25a),
then

llw—all> = (p=5.f = Puf)q

by (6) and (25b). By the Cauchy-Schwarz and element-wise Poincare
inequalities for mean-value zero functions (cf. [8]),

(27)

(P=bf=Puf)q=(p—P—Ps0=P). = Ppf)g

h
< Y ZIVG@-Pllorllf = Pofllor
T
TEeT),

[SIES

1 ~
<=IVe=pllo| X, hzllf = Puslig7
d TeT,

2

1 -
<=lu-ally| Y ose(f,T)
T
TeT),

(28)

Combining (27) and (28), we can obtain (26). []

To estimate |||u;, — @||| by the a posteriori error estimator 5, we need
an auxiliary finite element space S),. We choose different .S, for V, =
VfTN and V= VfDM and for n=2,3.

We first define .S}, for VfDM. Note that VfDM =P, A""1(T},) in the

language of the finite element exterior calculus ([3-5]). If V', = VfDM s
then
Sp =P AT, (29)

which is the Lagrange finite element of degree k + 1 if n =2 and is the
Nédélec edge element of the 2nd kind ([26]) with degree k+ 1 if n=3.
fvV,= V}’fTN and n =2, then

), =P AT, (30)

the Lagrange finite element of degree k.

fV,= VfTN and n = 3, then we define a new finite element space
S, obtained by enriching P, A!(7},) with curl-free edge bubble functions
which will be described below.

For an edge E in a triangulation 7, for n =3, define My by
Mg = T. (31)

TeT,,ECOT

Note that each face F C 0 M does not contain E. Denoting the barycen-
tric coordinate which vanishes on F by A, we define b by
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bp= [] 4

FCoMg

(32)

Since every tetrahedron in M does not have more than two distinct
faces which do not contain E, by |y € P,(T) for every tetrahedron T C
M. In the discussion below, Pkl+ 1(E ) is the space of polynomials with
degree (k+ 1) on E which are orthogonal to all polynomials with degree
k on E, and 7_?kl+1(E) is the space of polynomials on My which are
constant on every plane perpendicular to E and the restriction of the
polynomials on E are in Ple(E).

In the following lemma, for an edge E, t is a unit tangential vector
of E and % is the derivative along the direction of t.

Lemma 3.3. For an edge E,

0 _
B(E):span{V(%bE> : qule(E)}. (33)
E

For a tetrahedron T and a fixed face F C oT let S(T, F) be

S(T, F) = P(T;R>) + @y r BE).

and a set of local degrees of freedom for = € S(T', F) is given by

TD—>/T~tEq~d1 YGeP(E)ifE ¢ oF, 34)
E

‘L'I—)/T-tEqdl VG € Py (E)if ECOF, (35)
E

r.—>/(7an) qds VgeVIIN(F)ifk>2, (36)
F

TH/T-gdx veeVENT)if k> 3. 37)
T

Then, 7 € S(T, F) is uniquely determined by (34), (35), (36), (37).
Proof. Suppose that € S(T, F) and all DOFs of t given by (34), (35),

(36), (37) vanish. Let E;, i = 1,2,3 be the edges of F. We can write 7 as
T= 2?:0 7; with 7, € P, (T;R?) and

dg;
7, =V| —bp |€BE), g
atE’_ i

By the vanishing DOFs assumption, for E; C dF,

3
/r-tE‘zde:/ro-tEiqdl+Z/Tj‘tE[qulzo
=

i i

e pt

k+1 (38)

(E),i=1,2,3.

for all § € P, (E;). By the definition (33), 7; - tg, |Ej =0if j #i, sowe
get

/To'tEiqdl"‘/Ti'tEﬁdl:Q

E E

39

i

Consider the decomposition § = g, + 4, € P, (E;) ® 7)kl+1 (E;). Then,

/TO 1, dl=0. (40)
E;
Taking the integration by parts twice gives
~ 0 [ 94 ~
/Ti tpqodl= / P <_at; bE,> God!
E, El 1 1
0g; g
=—/ iy, ) 20 g (41)
otg, ") otg,

E;
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_/ 9
q’atE,
E 1

i

<b

where the last identity follows from gy € Py(E)), bg |, € Po(E;), and

o
E_ﬂ> di
"oty

=0

ql E € Ple(Ei). Therefore, (39) is reduced to
/To . tE’_qodl+/q- 1p g dl=0.
E: E;

i i

If go=19-tg, 4y =—¢; in this formula, and use the identity

2
- d 0g; 0g;
-1 dl=— | — b dl = bg dl,
/T, EqN /0t5. <0tE, Ei>‘71 /<515. E;
EI E’ 1 1 E‘ 1
then
2
- ~ 2 ag;
T tgQodl+ [ Ti-tpgidl= [ (zg-tg)"dl+ FYe. by, dl
E; E E; E, Ei

1
=0.
. dq, _ .
Since bg, > Oon Ej, ﬁ |, =0, 50 g;| , is constant. Furthermore, q;| g, €

pkL+1(Ei)’ so g; = 0. As a consequence, 7; =0 for i = 1,2,3. Then, 7 =0
follows by a standard unisolvency proof of the Nédélec edge elements
of the 2nd kind. []

We now define S, forn=3and V, = V,’fTN . The enriched H(curl)
element .S, with the shape functions

Sp=P (TR + €D B(E)
Eee)

(42)

and the global degrees of freedom (34) for E € £, \ &, , (35) for E € ),
(36) for F € Fy,, (37) for E €Ty,

For S}, defined by (29), (30), (42) depending on n and V', we can
check that

curlS, c V. 43

Here we show existence of an appropriate interpolation.
Lemma 3.4. Suppose that ¥ € HY(Q) and curl ¥ - nlr e L2(I). Let S}, be

defined by (29), (30), (42) depending on n and V', and recall | defined in
(18). Then, there exists 1,'¥ € S}, such that

llcurl 1,1l < CAIPN + lla'/? curl¥ - nll, ), (44)

¥ —1,¥lly < CUYIl; + llacurl¥ - nllo ), (45)
curl I,¥ - n|p = Pi(curl ¥ - n|p), VEEE, ifn=2, (46)
curl I, ¥ - n|p = Pl(curl¥ - n|p), VFEF,, ifn=3, 47)
and for E € £},

(I,¥ - P)() =0 ifn=2,0€0E, 48)

Sy ¥ =) -tpgdl =0 ifn=3,G€P(E).

Proof. Suppose that n =2. In this case, curl¥ - np € L2(I") means that
the tangential derivative of ¥ along I is in L(T) (cf. (95) in Appendix).
Since Y| € L%(I"), we have Y| e H'(). Let N, be the set of vertex
nodes in Q which determines the degrees of freedom of .S}, a Lagrange
finite element. By the Sobolev embedding on the 1-dimensional sub-
manifold I', vertex evaluation of ¥ on the nodes on I' is well-defined.
On Ee é';, we define IE‘I’lE by
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1, ¥(v) ="¥(v)
J
I'y—=gdi= /
h
/ ot
E E

for m defined in (18), and I }1: Y()=0forv e N, » \I'. Then, by a standard
scaling argument,

vEIE, (49)

w2 gai

3 vVgeP,(E),GLPy(E)
g

(50)

15, Pllo + [l curl I, Wllg < CUMYIl + [ curl ¥ - nl )

with C > 0 independent of mesh sizes. Let [ f Z be a Scott-Zhang inter-
polation (cf. [29]) which takes I" as a vanishing interface and satisfies

I15Z @]l + [| curl IS Z@]|y < Cll @),

for ¥ € H'(Q). If we define I,¥ by

LY=I3/W-1,¥)+1,V,

then I,'¥ is bounded by ||'¥||; + || curl ¥ - n||o -

We now check (44), (45), (46), (48). First, (48) is a consequence of
(49) and (51). By (49), (50), curl I,¥ - n| = 1,1:‘1J -n|r, and the integra-
tion by parts on every E € &L (46) follows.

Furthermore, if ¥ € S}, then I}:‘P = Y|, so I, is the identity map
on S} because I ;sz is the identity map for the elements in .S}, which
vanish on I'. By the Bramble-Hilbert lemma, ||¥ — I,%¥||, < Ch(||¥|l, +
[l curl¥ - nl|o ).

Suppose that n = 3. First, ¥ x np € L*(I;R?) and curl ¥ - np € L*()
imply that the tangential component of ¥ on I is in the rotated H (div)
space on I' (cf. (96) in Appendix). Since ¥|r € H*(I') with s >0 as a
trace of H'(Q;R3), ¥ x np- € L' (') for r > 2 by Sobolev embedding, so

/1{\?-:Eqd1=/lp-tEqd1,

E E

(51)

EE€& .GEP(E), (52)

/

II¥Xngp-&ds= /(l}f xnp)-Eds, FEF} E€P, »(F;R?) (53)
F F
are well-defined (cf. [12]). I,¥ € S}, is defined by taking zeros for all
other degrees of freedom, and ||/ 5 Y|y is bounded by ||¥||; + || curl ¥ -
n|lor. There exists a Scott-Zhang type interpolation 1% for H(curl)
elements (see [17]) with vanishing interface I', so define I, as in (51).
By an argument similar to the proof for n = 2, (45) can be obtained, and
(48) follows from (52) and (51). Finally, (47) follows from (52), (53),
and the integration by parts on every face F € 7’}1: (see (97) in Appendix
for details). []

We now prove a reliability estimate of |||lu, — @]||.

Theorem 3.2. Suppose that (i1, p) is defined as in Lemma 3.1. Then, there
exists C > 0 independent of mesh sizes such that

ey, — @l < Cn. (54)

Proof. We now estimate |||uj, — ii||?. First, since Q is homologically triv-

ial, there exists ¥ € H'(Q,R") such that uy — i =curl¥ and

¥l < Clluy, —ally,
(acurl¥ - n,curl¥ - n)r = (a(u, — @) - n,(uy, —@t) - n)

because div(uj, — i) = 0. Thus,

uy, — all|> = (uh -, curl‘I’)Q + (a(uy, —@t) - n,curl¥ - n)-. (55)
Since
(u, —,v), — (py — Podive) , + (a(u, — @) - n,v-n)- =0 (56a)

for all v € V;,, we have
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(uy, — @, curl I,I‘P)Q +{a(u, —@t) - n,curl ¥ - n) =0 (57)

for I, in Lemma 3.4 because of I,)'¥ € S, and (43). Applying (57) to
(55),

luy, — all* = (u, — @, curl(¥ — 1,9)),, (58)
+(a(uy, —it) - n,curl(¥ — I,'¥) - n)-.
Since it = —Vp and «aii - n = [p] on I', we can further obtain
lluy, — alli* = (uy, curl(¥ — 1,9)) , (59)
+ {auy, - n,curl(¥ — I,¥) - n)-
by the integration by parts. For m defined in (18), (au,,-n)|; € P,,(E) for
Ee 5}1; if n=2 and (auy, - n)|p € P,,(F) for F € F}]; if n = 3. Therefore,
(59) is reduced to
llwp = @l = (uy, curl(¥ = 1,9)) (60)
by (46) and (47).
If n =2, a simple algebra and triangle-wise integration by parts give
ey, — > = (uh + Vpj,,curl(¥ — Ih‘P))Q - (VpZ,curl(‘P - I,,‘P))Q
= ("h + Vpj,, curl(¥ — I,,‘I‘))Q

= D AVp, tor W= W), (61)
TeTy,

By edge-wise integration by parts using (¥ — I, ¥)(v) = O for every end-
point v of edges E € £T,

2 Vot P = 1 ¥)

TET),
=+ Y (V[p] 5 ¥-1,9),
EcE,
=+ Z <[[p;]] seurl(W — 1,9) - n>E
Eeg)
+ Z <V [[PZ]] 'tEle—Ih‘P>E 62)
Eeg,\el
=+ 2 (a—=py [py] curl(¥ —1,¥)-n)
Ece)
£ 2 (VInl-te¥-1,),.
Ee&,\€)

Here we use + due to sign ambiguity of the definitions of ﬂp;ﬂ and
t;. However, we will use the Cauchy-Schwarz inequality to estimate
the terms that this ambiguous sign is involved, so the exact sign is not
important in the rest of discussions. By this and (61),

lluy, — all* = (u, + Vpj. curl(¥ — I,%)) ,

+ Y (V] te¥-1,¥),
E€&\E)

+ 3 (=P [p;] curl(¥ - 1,%)-n), 63)
Eeé‘;
=L+ D, + 1.

By the Cauchy-Schwarz inequality

113,41 < llup + Vi lloll curl(¥ — 1, ¥l

2

<C| Y mE| (N2l + lleurl ¥ - nll o) (64)
TeT,
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2
2 ~
<c| Y nz| Uy, —al.

TeTy,
By element-wise inverse inequality and an approximation property of
¥Y-1,%,
1] < z ‘(V FARTS = Ih\P>E‘
EcENE]
1
2

ol DY Il A N -9 I dR (65)

E€E,\E)

/N

1

2 ~
<c| Y np| luy,—all.
E€E,\E)

For I, .,

)((1 - P [pi] curl(¥ — 1,%) - n>E)
<a 2 = P [}] Nlo.glle'/? curl(¥ = 1,9) - nllg g (66)
<2721 = P2 [ ] Mol /* curl ¥ - mll .
Combining (63), (64), (65), (66), we obtain
llluy, — alll < Cn.
If n =3, then
Ny — alll* = (uy + Vi, curl(¥ — 1,9)) , — (Vo curl(¥ — I,¥))
= (uy, + Vpj, curl(¥ — I,'¥))

= D AP X (- 1,)) . (67)
TEeTy,

by tetrahedron-wise integration by parts. By face-wise integration by
parts (97) and by the property (48),

Z (VDX (¥ = 1,9)) )

TeT,
=+ Y (V[p].nx®-1,9),
FeF}
=+ Z ([p;]],curl(‘{f—lh‘l’)-n>F (68)
FeF}
=+ Y (U =P [p}].curl(¥ - 1,%) n) .
FeF}

We can proceed using this and (67) to obtain
ey, — @ll* = (uh + Vpj,curl(¥ — I,,‘P))Q

+ Y (V[5] xn@-1,9),
FEFR\F),
+ Y (=P [p;] curl(¥ - 1,%)-n), (69)
FeF)
=: 13,(1 + I3,b + I3,C'
By the arguments which are completely similar to the ones for n =2, we
can obtain

2

15,0 <C| Y Ny + VoyIR 1 | Nl =l (70)
TETy,
1
2
I,l<cl D h o G |ty =l 71)

T
FEF,\F}
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I <Cl Y, o« Na =P [l I | Nl @, —@)-nllor.  (72)

T
FET‘h

Applying these estimates to (69), we can obtain (54). []

Remark 3.5. Thenew S, spacein (42) forn =3,V = VﬁTN, is necessary
for (68). More precisely, the new S, allows an interpolation I, satisfying
(48) forn=3, V, = V;fTN , which is necessary for the first equality in
(68).

3.2. Local efficiency

In this subsection we show local efficiency of the a posteriori error es-
timator. We give a detailed proof for n = 3 because the two-dimensional
case is almost same.

We prove a lemma employing the techniques in [31,19].

Lemma 3.6. For F € F,, \ FL,

/[[p;;]] ds=0 ifFeF,\F, (73)
F

/(auh-n—[[p;]])ds=o if FeF]. (74)
F

Proof. For F € F, let v be a test function in the lowest order Raviart—
Thomas finite element such that

1
vF~n|F,={0

If we take this vy in (16a) and F € F, \ !, then

if F'=F

£ F L F for F' € F,.
i

(uh,v,p)Q - (ph,divv,v)Q =0.

Since div v is a piecewise constant function and the mean-values of pj,
py, on every tetrahedron are same, we have

(.05 )~ (7o ivep) =0,

and the element-wise integration by parts gives

(upvp) o = ([P;] 1) o + (VD)o vp) g =0

By the forms of shape functions of the lowest order Raviart-Thomas
elements ((10) with k =1), curlv =0 on every T € 7}, so there exists
¢ € Po(T) for every T C supp v such that v | = Vr. By this, (17a),
and the above equation, we have

_<[[P;] ’1>F =0,
so (73) follows.
If F € F,, then

(up,vp) g + (auy, -n,vp - n)p = (py,diveg), =0.

The integration by parts gives

(upvp) o+ (auy-n—[p}] .vp-n), - (Vp}.vp), =0,

and we can conclude (74) by a same argument for the proof of (73). []
Theorem 3.3. For a satisfying (5) with a uniform lower bound, there exist
C > 0 independent of mesh sizes and a such that the following local efficiency
holds:

nr < Cllu—wupllor, (75)

np<C Y llu—wyllor. i FEF,\F},
FcoTr

(76)
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1/2 . I
ngp<C ( 2 [le—wupllor +a - up)- n||0,F> . fFeF,. (77
FcoT

Proof. We first show (75). By Lemma 3.7 in [16], there exists C > 0
such that

lup + Vo, llor < Clluy — ullor,

so we have

nr =y + Vppllor < Clluy, —ullgr. (78)

We now prove (76). For F € F;, \ F!, using (73) and [p] | r =0, we
have (see [1] or [16, Lemma 3.5])

ny. = / hAN T = PY) [ — p])*ds
F

<2
TeT,, FcoT

>

TETy,FcoT

=CZ

TeT, FcoT

! / (I =P)(p—p})ds
oTNnF
IV =Pyl 7

<C (79)

2
lu+ Vo112,

By the triangle inequality |lu + VPZ”O,T < lu—uyllor + lluy, + VlelO,T
and (78),

Ny < C rer, reor 10— uyllg - (80)

For (77), using au-n=[p] on " and (1 — P)(auy, -n)=0,
= [t (@- ] as
F
=</oc_l ((I - Pl’,")([[pm] —[pl+au-n—-au, - n))2 ds.
F

Using (5), we can obtain

>

TeTpFCoTyr

+2/a(u-n—uh-n)2ds.

F

<2 (1 - PP, - p)° ds 1)

Then, the first term on the right-hand side can be estimated as in (79)
with a natural assumption Ay < 1, so (77) follows. []

3.3. Reliability of post-processed pressure

In this subsection we prove that # is a realiable a posteriori error
estimator for the error of post-processed pressure py. We show a proof
for n =3 because the same argument works for n = 2.

Theorem 3.4. For pZ in (17) and n in (19), there exists C > 0 independent
of mesh sizes such that

1
2

. C
lp=pyllo<Cn+ = | 3 H2llf = Puf
TeT),

(82)

Proof. By the assumption (1), there exists w € H LQ; R3) such that

divw=p-pp, lwl,<Clp-pllo, w-nlp=0. (83)

Using this w, the equation —Vp =u in Q, continuity of p on Q \ T, and
p=0o0n0Q,
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lp=p;lls = (p— p}.divww),
== (Vo-ppw)ezx D, (lp-p].w-n),

FEF,\F}
=("+VPZ»w)gi Z <[p2]’w'">F
FEF,\F}
= (u—wpw)g+ (wy +Vopw)g=x Y, ([p].w-n),.

r
FeFy\F;,

Then, (82) follows by

[ (u—upw), | < llu—upyliollwll,

2
2
|y + Vo w)g I <[ D nr | llwlly,
TeT),

2 (Inlwen)p|<| X np| Nl
FEF,\F} FEF,\F})
and (22). [

With an assumption of (partial) elliptic regularity, we show that an
improved estimate of ||p — PZ Ilp is obtained. Consider the dual problem
to find (&, p) € V X Q satisfying

@,v)q — (p,divv)g + (a@t - n,v-n)r =0 YveV, (84a)
divie,q)o= (p—p}.q9), V4€Q, (84b)

and assume that

_ 1

ae H/@RY. S <p<L llully, <Cllp=plo- (85)

The boundary condition of this problem is p =0 on 0Q. By the inf-sup
condition (9), there exists C > 0 such that ||p||, < C|llal||. Furthermore,
by taking v =1, g = p, we can obtain

Nall* < (p = Py 5) o < Clip = pyllollBllo,

so,

llall < Clip = pj,llo- (86)

Corollary 3.7. Suppose that (85) holds and V j, = VfTN with k = 1. Then,
there exists C > 0 independent of mesh sizes such that

1 1

2
2
lp=plo<| D nfnZ| +| D ose(f. 1)
TEeTy, TETy,

[SIEd

. 261
+ 2 mm{nF,al/zh/}nF}z+ 2 hFﬂ r]2F
FeFy FEF,\F}

Proof. For @ in (84) and & in (23)

o= pyllo = (p = pj.divr)

== (Vo-pa)g+ Y, (p=pji-n),

TeT),
=(u+Vpa)g+ Y (p=pjpaon),.
TET,
= (u—uh,ﬁ)g+ (uh+Vp;‘l,ﬁ)Q+ Z <p—p;,12-n>‘)T.

TETy,
87)

Taking v =u —u,, in (84a),
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(u - uh,l‘t)Q =—(ait-n,(u—uy) n)r+ (13, div(u — uh))Q
=—(aii-n,(w—uy)-n)p+ (p.f = Ppf),- (88)
By (87), (88), (4), and [p] | =0 for F € F;, \ 71,

o= pil% = (up + Vphit), + {au, -n— [pi] .a-n),.
* Z <[[p2]’a'">F+<13’f—th)Q

FEF,\F}
=i+ + I3+,
To estimate J;, note that V : P|(T") — Py(T;R") is surjective, so we
get
[ (wp+ Vpj.a), | = (uy+ Vp;.a—Ve¢), VpeP(T)
< Clluy + Vpillor Wl o
<Chlnrlall o)

where we used (17a), a Poincare inequality for fractional Sobolev spaces
([9, Lemma 3.1]) with a standard scaling argument, and (20). Then,
by the Cauchy-Schwarz inequality and the integral form of fractional
Sobolev norm [10, Chapter 14]),

lil= Y | (uy+Vp}.a), |
TETy,

1
2

2 —
<C 2 hTﬂi’l% ”u”Hﬂ(Q;lR")
TETy,
1
2
2, *
<c| Y wln | o -l

TEeTy,

To estimate J, and J3, we first note that one can obtain

la-n—Pla-nlyy<Ch |l yorgn. FCOT (89)

by a trace theorem of fractional Sobolev spaces (see, e.g., [28]), the
Poincare inequality for fractional Sobolev spaces, and a standard scaling

argument. Since uy, - n|p € Py(F) and Pg(auh ‘n— [[pﬂ] )=0for F € F}:
by (74),
(auh-n—[[pﬂ,l_t'n>F=<[[pZ]]—P2 [[Pﬂv'_""h (90
=([p;] - Pplp;] @ n—Ppa-m), oD
for F € P}: . From (90) and (91), we can obtain either
| (awy-n—[p;] a-n) | <nplla'/a-nllop
or
| (auy,-n—[pi].a-n) .| <Ca'?Wlnpllull yorn. FCOT.
The mean-value zero property (73) gives
([p;].a-n),=([p;].a-n—Pha-n), VFeF,\Fy,
so we can obtain
£ = -1/2
[([p;].@-n) | < Crphy” Pllullyorgny.  F CoT
for F € F), \ F, . Combining all of these estimates,
1
2

. 2p-1
I+ hl<c| Y min{ne.aPlne 2+ Y WP
FeF, FEF,\F}

x|lp = pjllo-

Finally, J, can be estimated as
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Table 1
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The numbers of degrees of freedom (Dofs) and effectivity indices (Eff.) in adaptive solves

with the manufactured solution (92).

Dofs
Eff.

407
1.43

572
1.63

780
1.62

1193
1.57

1827
1.63

2974
1.57

4864
1.59

7573
1.59

11375
1.55

17908
1.57

Fig. 2. The domain with a vertical fault in numerical experiments (left figure)
and the graphs of the pressure field in (92) (middle and right figures).

hp
Z 7”VP"0,T”f_th”0,T

TET,

|Jal <

1

o1 2
< -
<y | D% ose(/.T)
TETy,
1
2
1
<Clip=pjllo=| X ose(s, T
TET,

by (86), so the conclusion follows. []

Remark 3.8. In Corollary 3.7, if a < thﬂ , then an improved error bound
with the a posteriori error estimator terms is obtained. However, the data
oscillation error term with osc(f,T) is the same, so data oscillation can be
a dominant factor in error bounds. If f € H'(Q), then an improved bound

h2
osc(f,T) < 7T I £1ly can be obtained for each osc(f,T). This observation
can explain convergence of ||p — pz lo faster than the one of ||u —uy||,.

4. Numerical results

In this section we present results of numerical experiments. All ex-
periments are done with the finite element package FEniCS (version
2019.1.0 [22]). In particular, the marked elements for refinement are
refined using the built-in adaptive mesh refinement algorithm in FEn-
iCS.

In the first numerical experiment let Q = [0, 1] X [0, 1] with fault "=
{1/2} x[1/4,3/4] C Q (see the first figure in Fig. 2). The manufactured
solution (see the middle and right figures in Fig. 2) for this test case is
given by

: 1 3
0 . 1 1fy<zloryTZ .
p(x,y) = smTcos ( ( 5)) if x< 7 and 7 <y<3(92)
—si 3”(1 x) _1 i 1 1 3
sin ==-—= cos (27[( 2)) 1fx>2and4<y<4.

We can compute u = —Vp and f =divu on Q \ I'. Note that the
manufactured solutions are not smooth on

{(y=3/4,0<x<1 : (x,») €Q},
{y=1/4,0< D (x,) €Q},
(x=1/2,1/4<y<3/4 : (x,y) €EQ}.

x<1

If we take an initial mesh which includes these segments in the set of
edges, then the manufactured solution (u, p) is smooth on every trian-
gle. Therefore, the L2 errors ||u— uyllo and ||p— py, |l will converge with
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optimal convergence rates for uniform mesh refinement. Since pj, is an
approximation of p which is better than or as good as p;,, we only present
lp — p}llp in our numerical experiments. In this experiment, we use the
lowest order BDM element for V', and the piecewise constant element
for Oy, so the optimal convergence rates of ||u —u,||, and ||p — p,llo
are 2 and 1, respectively. The L2 errors |ju — uyllp and ||p — lelo up to
degrees of freedom are given in Fig. 3 (black graph), and one can see
that ||p — lelO shows superconvergence. The errors for adaptive mesh
refinement are also given in Fig. 3 (red graph). As can be seen in Fig. 4,
mesh refinements are done mostly on the slab 0.25 < y < 0.75 because
the manufactured solution vanishes outside of this slab. Moreover, the
manufacture solution is smooth on every triangle, so we do not see con-
centration of mesh refinements in this experiment. Nevertheless, one can
see in Fig. 3 that adaptive mesh refinement gives more optimal conver-
gence of errors up to the numbers of degrees of freedom. The effectivity
index is computed by

\/11

and the values of effectivity index up to adaptive mesh refinements are
given in Table 1.

In the second set of experiments, we present mesh adaptivity for
nonsmooth solutions. Since it is difficult to construct nonsmooth man-
ufactured solutions with the fault structure, we show adaptive mesh
refinement by our a posteriori error estimator for numerical solutions
with given boundary conditions, @ =0.1,10, 100, and f = 1. Assuming

=[0,1] X [0, 1] with the same I, zero flux boundary conditions are
imposed on the top and bottom boundary components {(x,y) € Q : 0<
x<lL,y=0ory=1} of 0Q, and p =0 on the left side, p = —1 on the
right side, are imposed.

Here we use the lowest-order Raviart-Thomas element for exper-
iments. Since f =1, the data oscillation terms vanish. Moreover, 7y
vanishes for all T € 7), because local shape functions of the lowest order
Raviart-Thomas element (10) with k = 1 is included in VQ;(T) space
(cf. (14)) with k = 1. Therefore, only {1} Ee 82u el gives meaningful val-

1
20— Y ose(f, T /llu—uylly,

TeT,

ues. Since n’s are quantities on edges, which are difficult to visualize,
we define {71 }rer, and {7y r}rer, by

o= 3 Zpcorar() ifoT NT#0
mre 0 otherwise ,
1 .
.o=42 Yecornrny foTNC=0
or 0 otherwise >

and look at the distributions of {1} and {7, 1 }. In Figs. 5 and 6, distri-
butions of {77} (left) and {71} (right) are presented for a =0.1, 100.
In these results we can see that the quantities of 7 on the faults are not
significant whereas the quantities of 7 near the fault are much larger.
Moreover, the boundary conditions on the top and bottom boundaries
do not give large a posteriori error estimator values near the bound-
aries. In Fig. 7, we presented the 3rd, 7th, 10th mesh refinements for
a =0.1,100. In both cases, mesh adaptivity is obvious concentrating
near the two endpoints of the fault. However, one can see that the fault
with a = 100 (low permeable fault) needs more refinements near the
internal fault segment. We believe that this is because the low perme-
ability fault (¢ = 100) can cause more drastic pressure changes near the
fault, so the solution regularities are lower than the ones of true solu-
tions with a = 0.1. To see efficiency of adaptive schemes, we give two
comparison graphs of # and the degrees of freedom in Fig. 8. The results
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Fig. 3. Comparison of convergence of errors for uniform and adaptive refinements. The errors are computed with the manufactured solution (92). Pressure errors

. £
are computed with the post-processed pressure p;.

Fig. 4. The initial, and the 3rd, 6th, 9th refined meshes in adaptive solves with
the manufactured solution (92).

clearly show that adaptive methods are more efficient, quantitatively
about 6.9 times for « = 0.1 and about 2.3 times for a = 100.

In the last experiment we solve the equation with 3 faults and present
mesh refinement history. The 3 faults have different a values (see Fig. 9
for details). We still observe that mesh refinements are concentrated at
the ends of faults. The comparisons of # and the degrees of freedom
for uniform and adaptive meshes are given in Fig. 10. The efficiency
of adaptive methods is not as high as the single fault examples. This
is probably because irregular solutions due to the multiple faults give
large n values on most regions of the domain, so refined meshes by a
posteriori error estimator are not so different from uniform refinements.
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Fig. 5. Distribution of {77} (left), {7} (right) in the initial and the first mesh
refinement for « = 0.1 (color scale: white = 0, black = 2.0e-4).

5. Conclusion

In this work we studied a recovery type a posteriori error estimator
of the Darcy flow model with Robin-type interface conditions. The reli-
ability and the local efficiency of the estimator are proved. In contrast
to the previous work in [20], we developed a new H (div)-based proof
using a modified Helmholtz decomposition, a modified Scott-Zhang in-
terpolation, edge/face-wise integration by parts. Moreover, we proved
that the post-processed pressure is bounded by the estimator, and a su-
perconvergent upper bound can be obtained under a (partial) elliptic
regularity assumption of the dual problem. Numerical test results are
included to illustrate the adaptivity results of our estimator.



Fig. 6. Distribution of {77} (left), {fjy} (right) in the initial and the first mesh
refinement for @ = 100 (color scale: white = 0, black = 4.5e-4).

Fig. 7. The 3rd, 7th, 10th adaptive mesh refinements for a = 0.1 (left) and for
a =100 (right).
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6. Appendix: integration by parts identities

In this section we present identities from the integration by parts
that we used in the paper.

In this section (a; - a,)' denotes the column vector with entries
a,,--,a,. For differentiable functions ¢ : R? - R, ¥ : R? - R? with
¥ = (¥, ¥,)", we define curl and rot by

— ay¢> ’
0,

For a triangle T C R?, n,; is the outward unit normal vector field on
OT and t,; is the unit tangential vector field along the counterclock-

wise direction of dT. Denoting nyy by nypr = (n) ny)', note that t;; =
(=ny ny)'. By the integration by parts,

(93)

curlgp = < rot¥=-9, %, +0,%,.

/curl¢~‘1’ds=/(—dy¢‘l’1 +0,¢¥,)ds
T T

/V¢ ( \Pl>ds

T

[o(n)-(5)e=]

) . dl— | ¢(0,¥,—0,%)ds

aT

/qS( ><$;> dl—/¢rot‘I’ds
aoT T
=/¢13T-‘Pdl—/¢rot‘1‘ds

aT T

and for E C 0T,
") a1
)

/curl¢ nale=/<
E E

V¢ (‘"1>

—/qu-t,,le.

E

94

ny
ny

—ny
ny

—0,¢
0, ¢

(95)

Let F be a triangle in the xy-plane in R3 and n, = (1, n, 0)' be the
unit outward normal vector field of F in R3. The tangential vector field
on dF in R? is t,p = (—n, n; 0Y'. For differentiable functions ¢ : R® —
R, ¥ : R3 - R3 with ¥ = (¥, ¥, ¥5), np :=(00 1), we get

-,
npXx¥= Y |, curl¥ -np=09,%,-09Y%. (96)
0
By these identities and the 3rd equality in (94),
/curl‘P-nF¢ds
F
= /(ax\yz —0,¥)pds
F
d,¢ ¥, ny ¥,
/<a¢> <‘I’2>ds+./¢<"2 —y, ) ¥ ©7
F oF

_lIl2

!(ay:z) (\Pl )d”ol“’(

=/v¢-(an~P)ds—/¢t,,F.\Pd1.
F oF

—ny
ny

) ()
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—@=uniform refinement
- | == adaptive refinement B
10° 10* 10° 108
100 — ‘ ———— ‘ — ‘ 1
107 ]
- [ ]
1020 ]
|| me@=uniform refinement 4
[ |=t=adaptive refinement 1
10° 10* 10°
DOFs
Fig. 8. Comparison of # for uniform and adaptive mesh refinements for « =0.1 (top) and « = 100 (bottom).
Funding [3] Douglas N. Arnold, Richard S. Falk, Ragnar Winther, Differential Complexes and Sta-

Jeonghun J. Lee gratefully acknowledges support from the National
Science Foundation (DMS-2110781).

Data availability
Data will be made available on request.

References

[1] Mark Ainsworth, A posteriori error estimation for lowest order Raviart-Thomas
mixed finite elements, SIAM J. Sci. Comput. 30 (1) (2007/2008) 189-204, MR
2377438.

[2] Philippe Angot, Franck Boyer, Florence Hubert, Asymptotic and numerical modelling
of flows in fractured porous media, M2AN, Math. Model. Numer. Anal. 43 (2) (2009)
239-275, MR 2512496.

428

bility of Finite Element Methods. I. The de Rham Complex, Compatible Spatial Dis-
cretizations, IMA Vol. Math. Appl., vol. 142, Springer, New York, 2006, pp. 24-46,
MR 2249344.

[4] Douglas N. Arnold, Richard S. Falk, Ragnar Winther, Finite element exterior calcu-
lus, homological techniques, and applications, Acta Numer. 15 (2006) 1-155, MR
2269741.

[5] Douglas N. Arnold, Richard S. Falk, Ragnar Winther, Finite element exterior calculus:
from Hodge theory to numerical stability, Bull. Am. Math. Soc. (N.S.) 47 (2) (2010)
281-354, MR 2594630.

[6] 1. Babuska, J. Osborn, J. Pitkdranta, Analysis of mixed methods using mesh depen-
dent norms, Math. Comput. 35 (152) (1980) 1039-1062, MR 583486.

[7]1 Trygve Baerland, Jeonghun J. Lee, Kent-Andre Mardal, Ragnar Winther, Weakly im-
posed symmetry and robust preconditioners for Biot’s consolidation model, Comput.
Methods Appl. Math. 17 (3) (2017) 377-396, MR 3667080.

[8] M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. An-
wend. 22 (4) (2003) 751-756, MR 2036927.

[9] José C. Bellido, Carlos Mora-Corral, Existence for nonlocal variational problems in
peridynamics, SIAM J. Math. Anal. 46 (1) (2014) 890-916, MR 3166960.


http://refhub.elsevier.com/S0898-1221(24)00440-1/bib9579768201C255A411BA4FF4CB464418s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib9579768201C255A411BA4FF4CB464418s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib9579768201C255A411BA4FF4CB464418s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib9FF5BAAB532CDDD7785B5FFDAAFFB519s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib9FF5BAAB532CDDD7785B5FFDAAFFB519s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib9FF5BAAB532CDDD7785B5FFDAAFFB519s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibAF9C8179F40B421B68523472465F1060s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibAF9C8179F40B421B68523472465F1060s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibAF9C8179F40B421B68523472465F1060s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibAF9C8179F40B421B68523472465F1060s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib73C6FC094533F2C02BC971986C2EC962s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib73C6FC094533F2C02BC971986C2EC962s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib73C6FC094533F2C02BC971986C2EC962s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibDEB0B3A4DAF85F55EF6FD9DBBB0E0A1Cs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibDEB0B3A4DAF85F55EF6FD9DBBB0E0A1Cs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibDEB0B3A4DAF85F55EF6FD9DBBB0E0A1Cs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib0716F86BA4649E832D0C4EE248960071s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib0716F86BA4649E832D0C4EE248960071s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib026C778EAB97D465EA4088A24AB5E9FAs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib026C778EAB97D465EA4088A24AB5E9FAs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib026C778EAB97D465EA4088A24AB5E9FAs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib7371E7ADBAE9572A9A5BE8BF8270C770s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib7371E7ADBAE9572A9A5BE8BF8270C770s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib509C103FB319B8CBE4DFF89FEBD16CB5s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib509C103FB319B8CBE4DFF89FEBD16CB5s1

J.J. Lee

Math,

with Applications 174 (2024) 417-430

S an

Fig. 9. The 2nd, 5th, 8th, and 10th adaptive mesh refinements for multiple faults. Fault 1 (vertical), fault 2 (upper oblique), fault 3 (touching boundary) have a

values 100, 10, 50, respectively.

107" ————

102+

=@=uniform refinement
== adaptive refinement

10°

DOFs

Fig. 10. Comparison of # of uniform and adaptive mesh refinements for the multiple faults experiment.

[10] Susanne C. Brenner, L. Ridgway Scott, The Mathematical Theory of Finite Element
Methods, third ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008,
MR 2373954.

[11] Franco Brezzi, Jim Douglas Jr., L.D. Marini, Two families of mixed finite elements for
second order elliptic problems, Numer. Math. 47 (2) (1985) 217-235, MR 799685.

[12] Franco Brezzi, Michel Fortin, Mixed and Hybrid Finite Element Methods, Springer
Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991, MR
1115205.

[13] Andrea Cangiani, Emmanuil H. Georgoulis, Max Jensen, Discontinuous Galerkin
methods for mass transfer through semipermeable membranes, SIAM J. Numer. Anal.
51 (5) (2013) 2911-2934, MR 3121762.

[14] Andrea Cangiani, Emmanuil H. Georgoulis, Younis A. Sabawi, Adaptive discontinu-
ous Galerkin methods for elliptic interface problems, Math. Comput. 87 (314) (2018)
2675-2707, MR 3834681.

429

[15] Huangxin Chen, Shuyu Sun, A residual-based a posteriori error estimator for single-
phase Darcy flow in fractured porous media, Numer. Math. 136 (3) (2017) 805-839,
MR 3660303.

[16] Bernardo Cockburn, Wujun Zhang, An a posteriori error estimate for the variable-
degree Raviart-Thomas method, Math. Comput. 83 (287) (2014) 1063-1082, MR
3167450.

[17] Evan Gawlik, Michael J. Holst, Martin W. Licht, Local finite element approxima-
tion of Sobolev differential forms, ESAIM: Math. Model. Numer. Anal. 55 (5) (2021)
2075-2099, MR 4319601.

[18] F. Hecht, Z. Mghazli, I. Naji, J.E. Roberts, A residual a posteriori error estimators
for a model for flow in porous media with fractures, J. Sci. Comput. 79 (2) (2019)
935-968, MR 3968997.

[19] Kwang-Yeon Kim, Guaranteed a posteriori error estimator for mixed finite element
methods of elliptic problems, Appl. Math. Comput. 218 (24) (2012) 11820-11831,
MR 2945185.


http://refhub.elsevier.com/S0898-1221(24)00440-1/bibC9FC09D7EA9627F07562CB3D85626E6Fs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibC9FC09D7EA9627F07562CB3D85626E6Fs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibC9FC09D7EA9627F07562CB3D85626E6Fs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibDBC8841287819EA8590292214708EF14s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibDBC8841287819EA8590292214708EF14s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib640E30B4D08E46CF8B9A5086B7081FFFs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib640E30B4D08E46CF8B9A5086B7081FFFs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib640E30B4D08E46CF8B9A5086B7081FFFs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib15CF7369F61E5A781A42CB2010891AD3s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib15CF7369F61E5A781A42CB2010891AD3s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib15CF7369F61E5A781A42CB2010891AD3s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibEFACC0DA200E7A5C37C7626CB2804C73s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibEFACC0DA200E7A5C37C7626CB2804C73s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibEFACC0DA200E7A5C37C7626CB2804C73s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib09ACD5D65B1CBEAB6E31E239AABD1A3Es1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib09ACD5D65B1CBEAB6E31E239AABD1A3Es1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib09ACD5D65B1CBEAB6E31E239AABD1A3Es1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibFEBAF53617415CF67F6A9A7A0567C688s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibFEBAF53617415CF67F6A9A7A0567C688s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibFEBAF53617415CF67F6A9A7A0567C688s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibD1FEC755F4C950D835CE07F426850C3Cs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibD1FEC755F4C950D835CE07F426850C3Cs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibD1FEC755F4C950D835CE07F426850C3Cs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib412E995C70CC74968E13AA633CF60EA5s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib412E995C70CC74968E13AA633CF60EA5s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib412E995C70CC74968E13AA633CF60EA5s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib679F6E37568555D84174548F8D27C890s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib679F6E37568555D84174548F8D27C890s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib679F6E37568555D84174548F8D27C890s1

J.J. Lee

[20] Juho K6nnd, Dominik Schétzau, Rolf Stenberg, Mixed finite element methods for
problems with Robin boundary conditions, SIAM J. Numer. Anal. 49 (1) (2011)
285-308, MR 2783226.

[21] Jeonghun J. Lee, Tan Bui-Thanh, Umberto Villa, Omar Ghattas, Forward and in-

verse modeling of fault transmissibility in subsurface flows, Comput. Math. Appl.

128 (2022) 354-367, MR 4512460.

Anders Logg, Kent-Andre Mardal, Garth N. Wells (Eds.), Automated Solution of Dif-

ferential Equations by the Finite Element Method, Lecture Notes in Computational

Science and Engineering, vol. 84, Springer, Heidelberg, 2012, The FEniCS book, MR

3075806.

Carlo Lovadina, Rolf Stenberg, Energy norm a posteriori error estimates for mixed

finite element methods, Math. Comput. 75 (256) (2006) 1659-1674, MR 2240629.

Vincent Martin, Jérome Jaffré, Jean E. Roberts, Modeling fractures and barriers as

interfaces for flow in porous media, SIAM J. Sci. Comput. 26 (5) (2005) 1667-1691,

MR 2142590.

[25] J.-C. Nédélec, Mixed finite elements in R?, Numer. Math. 35 (3) (1980) 315-341,
MR 592160.

[26] J.-C. Nédélec, A new family of mixed finite elements in R?, Numer. Math. 50 (1)
(1986) 57-81, MR 864305.

[22]

[23]

[24]

430

s and Math,

Comp

ics with Applications 174 (2024) 417-430

[27] P.-A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic
problems, in: Mathematical Aspects of Finite Element Methods (Proc. Conf., Con-
siglio Naz. delle Ricerche (C.N.R.), Rome, 1975, in: Lecture Notes in Math., vol. Vol.
606, Springer, Berlin-New York, 1977, pp. 292-315, MR 483555.

[28] Michael Renardy, Robert C. Rogers, An Introduction to Partial Differential Equations,
second ed., Texts in Applied Mathematics, vol. 13, Springer-Verlag, New York, 2004,
MR 2028503.

[29] L. Ridgway Scott, Shangyou Zhang, Finite element interpolation of nonsmooth func-
tions satisfying boundary conditions, Math. Comput. 54 (190) (1990) 483-493, MR
1011446.

[30] Rolf Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO
Modél. Math. Anal. Numér. 25 (1) (1991) 151-167, MR 1086845 (92a:65303).

[31] Martin Vohralik, A posteriori error estimates for lowest-order mixed finite element
discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal.
45 (4) (2007) 1570-1599, MR 2338400.

[32] Lina Zhao, Eric Chung, An adaptive discontinuous Galerkin method for the Darcy
system in fractured porous media, Comput. Geosci. 26 (6) (2022) 1581-1596, MR
4510543.


http://refhub.elsevier.com/S0898-1221(24)00440-1/bib1CF6A67466ED5C5D444AA1A5E3E3774Fs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib1CF6A67466ED5C5D444AA1A5E3E3774Fs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib1CF6A67466ED5C5D444AA1A5E3E3774Fs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib63554FABD1CA4A5747740428E69DFD08s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib63554FABD1CA4A5747740428E69DFD08s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib63554FABD1CA4A5747740428E69DFD08s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib7CB1DE7A90FDC4F577356452BEE57ACAs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib7CB1DE7A90FDC4F577356452BEE57ACAs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib7CB1DE7A90FDC4F577356452BEE57ACAs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib7CB1DE7A90FDC4F577356452BEE57ACAs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibEE267DEFB5E97D5E0CF45A5EF670E992s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibEE267DEFB5E97D5E0CF45A5EF670E992s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibC16572B0409C257C6B14D98D3624C49As1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibC16572B0409C257C6B14D98D3624C49As1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibC16572B0409C257C6B14D98D3624C49As1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib13B72ED1808FDD67AD39A9091F693F06s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib13B72ED1808FDD67AD39A9091F693F06s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib3E62D3717413FBE7AAABE6D522CCA498s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib3E62D3717413FBE7AAABE6D522CCA498s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib2EBE0F82AA51CAAB9F028039628EA102s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib2EBE0F82AA51CAAB9F028039628EA102s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib2EBE0F82AA51CAAB9F028039628EA102s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib2EBE0F82AA51CAAB9F028039628EA102s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib76F63A007F8EE1DC736BA2486A94C334s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib76F63A007F8EE1DC736BA2486A94C334s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib76F63A007F8EE1DC736BA2486A94C334s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib5851D0B146A310DACD278EE72BA67ACDs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib5851D0B146A310DACD278EE72BA67ACDs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib5851D0B146A310DACD278EE72BA67ACDs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib1EE9EC6E2CD3A26440A18892A8E75D16s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib1EE9EC6E2CD3A26440A18892A8E75D16s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib69B25280F28BC0F70C11ED30DA39E73Bs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib69B25280F28BC0F70C11ED30DA39E73Bs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bib69B25280F28BC0F70C11ED30DA39E73Bs1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibAB49DD402232073B313519BD6E6B6FA8s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibAB49DD402232073B313519BD6E6B6FA8s1
http://refhub.elsevier.com/S0898-1221(24)00440-1/bibAB49DD402232073B313519BD6E6B6FA8s1

	A posteriori error estimates of Darcy flows with Robin-type jump interface conditions
	1 Introduction
	2 Preliminaries for governing equations
	2.1 Notation and definitions
	2.2 Governing equations and variational formulation
	2.3 Discretization with finite elements

	3 A posteriori error estimate
	3.1 Reliability estimate
	3.2 Local efficiency
	3.3 Reliability of post-processed pressure

	4 Numerical results
	5 Conclusion
	6 Appendix: integration by parts identities
	Funding
	Data availability
	References


