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In this work we develop an a posteriori error estimator for mixed finite element methods of Darcy flow problems 
with Robin-type jump interface conditions. We construct an energy-norm type a posteriori error estimator using 
the Stenberg post-processing. The reliability of the estimator is proved using an interface-adapted Helmholtz-
type decomposition and an interface-adapted Scott–Zhang type interpolation operator. A local efficiency and the 
reliability of post-processed pressure are also proved. Numerical results illustrating adaptivity algorithms using 
our estimator are included.
1. Introduction

Fluid flow in porous media appears in various fields of science and 
engineering applications. Therefore, mathematical modeling and nu-
merical methods for finding accurate numerical solutions of porous me-
dia flow have been important problems in computational mathematics. 
Recently, mathematical models in which porous media domains have 
low-dimensional fault (or fracture) structures are considered for accu-
rate descriptions of more realistic porous media flow. In [24], some 
porous media flow models with fault/fracture structures were proposed 
in which fluid flow on fractures and in surrounding porous media are 
governed by separate partial differential equations with coupling condi-
tions. In [21], a reduced model was derived under the assumption that 
there is no fluid flow along fault/fracture structures because of very low 
permeability on fault/fracture. In the reduced models, the fluid flow and 
the pressure jump on faults are related by a Robin-type interface condi-
tion. We remark that similar models with nonlinear extensions are used 
for porous media flows with semi-permeable membrane structures in 
consideration of their applications to chemical processes in biological 
tissues (see, e.g., [13,14]).

The purpose of this paper is to obtain a posteriori error estimators 
for the model derived in [21] with the dual mixed form of finite ele-
ment methods. We remark that a posteriori error estimate results for 
the more complex models in [24,2] (see [15,18,32] for a posteriori er-
ror estimates), do not imply a posteriori error estimate results for the 
model that we are interested in. This is because a less number of er-
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ror terms makes local efficiency of a posteriori error estimators more 
difficult.

We also remark that the problem in this paper can be viewed as 
a generalization of mixed finite element methods for Poisson equations 
with Robin boundary conditions which was studied in [20]. A priori and 
a posteriori error estimates are done in [20] using the mesh-dependent 
norm approach (cf. [6,23,30]) but the saturation assumption is neces-
sary for the reliability of the estimator. The analysis in this paper does 
not need such an assumption for reliability, and it also gives a new re-
liability estimate for post-processed pressure.

The paper is organized as follows. In Section 2 we present back-
ground notions on function spaces, governing equations, finite element 
discretization. We define our a posteriori error estimator and prove 
its reliability and local efficiency in Section 3. In Section 4 and 5, we 
present numerical experiment results which show performance of our a 
posteriori error estimator, and conclusion with summary. Finally, some 
calculus identities which are used in our analysis are explained in Sec-
tion 6 as appendix.

2. Preliminaries for governing equations

2.1. Notation and definitions

For a bounded domain 𝐷 ⊂ℝ𝑛 (𝑛 = 2, 3) with positive 𝑛-dimensional 
Lebesgue measure, we use the convention that (𝑢, 𝑣)𝐷 = ∫

𝐷
𝑢𝑣 𝑑𝑥 for a 

subdomain 𝐷 ⊂Ω which has positive 𝑛-dimensional Lebesgue measure. 
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Fig. 1. A model domain with interface Γ.

Similarly, ⟨𝑢, 𝑣⟩𝐷 = ∫
𝐷
𝑢𝑣 𝑑𝑆 for a subdomain 𝐷 ⊂Ω which has positive 

(𝑛 − 1) or (𝑛 − 2)-dimensional Lebesgue measure up to context.

2.2. Governing equations and variational formulation

Let Ω ⊂ℝ𝑛, 𝑛 = 2, 3 be a homologically trivial bounded domain with 
polygonal/polyhedral boundary. We assume that a fault Γ is a union of 
disjoint (𝑛 − 1)-dimensional piecewise linear submanifolds in Ω. Each 
connected component of Γ is a union of linear segments (if 𝑛 = 2) or as 
a union of planar domains such that the boundary of each planar domain 
is a union of linear segments. We also assume that there are two open 
subdomains Ω+, Ω− ⊂ (Ω ⧵ Γ) with Lipschitz boundaries such that

Ω=Ω+ ∪Ω−, Γ ⊂ 𝜕Ω+ ∩ 𝜕Ω−,

and only one side of Γ is in contact with Ω+ or Ω−. Let 𝒏+ and 𝒏− be the 
two unit normal vector fields on Γ with opposite directions (𝒏+ = −𝒏−) 
such that 𝒏± correspond to the unit outward normal vector fields from 
Ω± (see Fig. 1).

Suppose that Γ𝐷 , Γ𝑁 are disjoint (𝑛 − 1)-dimensional open subman-
ifolds in 𝜕Ω such that Γ𝐷 ∪ Γ𝑁 = 𝜕Ω. In this paper we assume the 
following:

For any 𝑞 ∈𝐿2(Ω) there exists 𝒘 ∈𝐻1(Ω;ℝ𝑛)

such that 𝒘|Γ∪Γ𝑁 = 0,div𝒘 = 𝑞 and ‖𝒘‖1 ⩽ 𝐶‖𝑞‖0 (1)

with a constant 𝐶 > 0 depending on Ω,Γ,Γ𝑁.

The assumption (1) is a weak assumption. For example, if both of 
𝜕Ω+ ∩ 𝜕Ω ∩ Γ𝐷 and 𝜕Ω− ∩ 𝜕Ω ∩ Γ𝐷 have positive (𝑛 − 1)-dimensional 
Lebesgue measures, then (1) holds. To see this, suppose that 𝑞 ∈𝐿2(Ω) is 
given. Note that there exist 𝒘+ ∈𝐻1(Ω+; ℝ𝑛) such that div𝒘+ = 𝑞|Ω+

, 
𝒘+|𝜕Ω+⧵Γ𝐷 = 0, and ‖𝒘+‖1 ⩽ 𝐶‖𝑞|Ω+

‖0 (see, e.g., [7, Lemma B.1]). 
Similarly, there exists 𝒘− ∈𝐻1(Ω−; ℝ𝑛), div𝒘− = 𝑞|Ω−

, 𝒘−|𝜕Ω−⧵Γ𝐷 =
0, and ‖𝒘−‖1 ⩽ 𝐶‖𝑞|Ω−

‖0. Then, 𝒘 defined by 𝒘|Ω±
=𝒘±, satisfies (1).

For any 𝑞 ∈𝐿2(Ω) with sufficient regularity, we use 𝑞+|Γ and 𝑞−|Γ to 
denote the traces of 𝑞|Ω+

and 𝑞|Ω−
on Γ. For simplicity we use �𝑞� |Γ ∶=

𝑞+|Γ −𝑞−|Γ. Note that the continuity of 𝑞 on Γ is not assumed in general, 
so �𝑞� |Γ ≠ 0. For a vector-valued function 𝒗 on Ωwith enough regularity 
(e.g., 𝒗 ∈𝐻𝑠(Ω ⧵Γ; ℝ𝑛)with 𝑠 > 1∕2), 𝒗+|Γ and 𝒗−|Γ are well-defined as 
the traces of 𝒗 from Ω+ and Ω−. We say that 𝒗 satisfies normal continuity 
on Γ if 𝒗+|Γ ⋅ 𝒏+ = −𝒗−|Γ ⋅ 𝒏− on Γ.

For governing equations assume that 𝜅 is a symmetric positive defi-
nite tensor on Ω. In Darcy flow problems, the pressure 𝑝 and fluid flow 𝒖
satisfy Darcy’s law 𝒖 = −𝜅∇𝑝 in Ω. Conservation of mass gives div𝒖 = 𝑓
for given source/sink function 𝑓 on Ω. The pressure and flux boundary 
conditions are given by

𝑝 = 𝑔𝐷 on Γ𝐷, 𝒖 ⋅ 𝒏 = 𝑔𝑁 on Γ𝑁,
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and the interface condition on Γ is 𝛼𝒖+ ⋅ 𝒏+ − �𝑝� |Γ = 0 with 𝛼 > 0. 
Summarizing these equations and conditions, a strong form of equations 
with a dual mixed formulation of the Darcy flow equation in domain Ω
with fault Γ reads:

𝜅−1𝒖+∇𝑝 = 0 in Ω, div𝒖 = 𝑓 in Ω, (2)

𝒖 ⋅ 𝒏 = 𝑔𝑁 on Γ𝑁, 𝑝 = 𝑔𝐷 on Γ𝐷, (3)

𝛼𝒖+ ⋅ 𝒏+ − �𝑝� = 0 on Γ. (4)

Throughout this paper we assume that 𝛼 is constant on Γ and

0 < 𝛼0 ⩽ 𝛼 ⩽ 𝛼1 <∞ (5)

with a uniform lower and upper bounds 𝛼0, 𝛼1, and we do not consider 
the limit cases 𝛼 → 0+ or 𝛼 → +∞. The limit case 𝛼 = 0 becomes the 
classical Darcy flow problems without fault which does not need the in-
terface condition (4). The 𝛼 = +∞ case corresponds to the problem that 
no fluid flows across Γ which needs 𝒖 ⋅𝒏|Γ = 0 as an interface condition. 
This case needs a completely different way to implement the interface 
condition 𝒖 ⋅ 𝒏|Γ = 0 with the dual mixed finite element methods, the 
numerical method that we use in this paper. Therefore, 𝛼 = +∞ case 
cannot be covered by the work in this paper. However, our analysis 
does not need a uniform upper bound of 𝛼, so the results in the paper 
are valid for nearly impermeable Γ, i.e., for arbitrarily large but finite 
𝛼.

Hereafter, we assume 𝜕Ω = Γ𝐷 , 𝑔𝐷 = 0, 𝜅 = 1 for simplicity of dis-
cussions. Let 𝑄 = 𝐿2(Ω), and 𝐻(div, Ω) be the space of ℝ𝑛-valued 𝐿2

functions on Ω such that its distributional divergence is in 𝐿2(Ω). We 
define

𝑽 ∶= {𝒗 ∈𝐻(div,Ω) ∶ 𝒗+ ⋅ 𝒏+|Γ = −𝒗− ⋅ 𝒏−|Γ ∈𝐿2(Γ)}

with two norms

⦀𝒗⦀ =
⎛⎜⎜⎝∫Ω 𝜅−1𝒗 ⋅ 𝒗𝑑𝑥+

∑
𝐹⊂Γ

∫
𝐹

𝛼(𝒗 ⋅ 𝒏)(𝒗 ⋅ 𝒏)𝑑𝑠
⎞⎟⎟⎠
1
2

, (6)

‖𝒗‖𝑽 =
(⦀𝒗⦀2 + ‖div𝒗‖20) 1

2 . (7)

By multiplying 𝒗 ∈ 𝑽 to the first equation in (2) and taking the in-
tegration by parts with 𝑔𝐷 = 0, 𝜅 = 1,

∫
Ω

𝒖 ⋅ 𝒗𝑑𝑥+ ∫
Ω

∇𝑝 ⋅ 𝒗𝑑𝑥

= ∫
Ω

𝒖 ⋅ 𝒗𝑑𝑥+ ∫
Γ

𝑝+𝒗+ ⋅ 𝒏+ 𝑑𝑠+ ∫
Γ

𝑝−𝒗− ⋅ 𝒏− 𝑑𝑠

− ∫
Ω

𝑝div𝒗𝑑𝑥.

After using 𝒗+ ⋅ 𝒏+ = −𝒗− ⋅ 𝒏− on Γ, and the interface condition (4), we 
obtain

∫
Ω

𝒖 ⋅ 𝒗𝑑𝑥− ∫
Ω

𝑝div𝒗𝑑𝑥+ ∫
Γ

𝛼(𝒖+ ⋅ 𝒏+)(𝒗+ ⋅ 𝒏+)𝑑𝑠 = 0

which can be written as (𝒖,𝒗)Ω − (𝑝,div𝒗)Ω +
⟨
𝛼𝒖+ ⋅ 𝒏+,𝒗+ ⋅ 𝒏−

⟩
Γ = 0. 

In the following, we use ⟨𝛼𝒖 ⋅ 𝒏,𝒗 ⋅ 𝒏⟩Γ to denote ⟨𝛼𝒖+ ⋅ 𝒏+,𝒗+ ⋅ 𝒏+
⟩
Γ. 

From this and an immediate variational form of the second equation in 
(2), we have a variational problem to find (𝒖, 𝑝) ∈ 𝑽 ×𝑄 such that

(𝒖,𝒗)Ω + ⟨𝛼𝒖 ⋅ 𝒏,𝒗 ⋅ 𝒏⟩Γ − (𝑝,div𝒗)Ω = 0 ∀𝒗 ∈ 𝑽 , (8a)

(div𝒖, 𝑞)Ω = (𝑓, 𝑞)Ω ∀𝑞 ∈𝑄. (8b)

The stability of this system with an inf-sup condition

inf
𝒗∈𝑽

sup
(𝑞,div𝒗)Ω‖𝒗‖ ‖𝑞‖ ⩾ 𝐶 > 0 (9)
𝑞∈𝑄 𝑽 0
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was studied in [21].

2.3. Discretization with finite elements

We introduce finite element spaces for discretization. In the rest of 
the paper we assume that 𝑘 ⩾ 1 is a fixed integer. For a 𝑑-dimensional 
simplex 𝐷 ⊂ ℝ𝑛 (𝑑 = 𝑛, 𝑛 − 1, 𝑛 − 2), 𝑘(𝐷) is the space of polynomi-
als on 𝐷 of degree ⩽ 𝑘. Similarly, 𝑘(𝐷; ℝ𝑑 ) is the space of ℝ𝑑 -valued 
polynomials of degree ⩽ 𝑘 on the 𝑑-dimensional simplex 𝐷.

Let ℎ be a set of 𝑛-dimensional simplices whose interiors are disjoint 
such that if any two simplices 𝑇1, 𝑇2 ∈ ℎ are not disjoint, then 𝑇1 ∩ 𝑇2
is a subsimplex of 𝑇1 and 𝑇2. If 𝑛 = 3, let ℎ denote the set of all (𝑛 −1)-
dimensional subsimplices 𝐹 of the simplices in ℎ, and 𝜕ℎ = {𝐹 ∈ ℎ ∶
𝐹 ⊂ 𝜕Ω}. We assume that ℎ is matching with the fracture Γ in the sense 
that Γ = ∪𝐹∈Γ

ℎ
𝐹 for some Γ

ℎ
⊂ ℎ, so Γ

ℎ
forms a triangulation of Γ. 

We also define 0
ℎ
by 0

ℎ
∶= ℎ ⧵ (Γ

ℎ
∪ 𝜕

ℎ
). If 𝑛 = 2, ℎ, 𝜕ℎ , Γ

ℎ
, 0

ℎ

are similarly defined. Finally, ℎ𝐾 denotes the diameter of a simplex 𝐾
which can be a tetrahedron, a triangle, or an edge.

For given 𝑘 ⩾ 1 and 𝑛-dimensional simplex 𝑇 ∈ ℎ let us define

𝑽 𝑅𝑇𝑁
𝑘−1 (𝑇 ) = 𝑘−1(𝑇 ;ℝ𝑛) +

⎛⎜⎜⎝
𝑥1
⋮
𝑥𝑛

⎞⎟⎟⎠𝑘−1(𝑇 ), (10)

𝑽 𝐵𝐷𝑀
𝑘

(𝑇 ) = 𝑘(𝑇 ;ℝ𝑛). (11)

The Raviart–Thomas element (for 𝑛 = 2, [27]) and the first kind of 
Nédélec 𝐻(div) element (for 𝑛 = 3, [25]) are defined by

𝑽 𝑅𝑇𝑁
ℎ

= {𝒗 ∈ 𝑽 ∶ 𝒗|𝑇 ∈ 𝑽 𝑅𝑇𝑁
𝑘−1 (𝑇 ), ∀𝑇 ∈ ℎ}. (12)

The Brezzi–Douglas–Marini element (for 𝑛 = 2, [11]) and the second 
kind of Nédélec 𝐻(div) element (for 𝑛 = 3, [26]) are defined by

𝑽 𝐵𝐷𝑀
ℎ

= {𝒗 ∈ 𝑽 ∶ 𝒗|𝑇 ∈ 𝑽 𝐵𝐷𝑀
𝑘

(𝑇 ), ∀𝑇 ∈ ℎ}. (13)

The finite element spaces 𝑄0
ℎ
, 𝑄ℎ, 𝑄∗

ℎ
are defined by

𝑄0
ℎ
= {𝑞 ∈𝑄 ∶ 𝑞|𝑇 ∈ 0(𝑇 ) ∀𝑇 ∈ ℎ},

𝑄ℎ = {𝑞 ∈𝑄 ∶ 𝑞|𝑇 ∈ 𝑘−1(𝑇 ) ∀𝑇 ∈ ℎ},
𝑄∗
ℎ
= {𝑞 ∈𝑄 ∶ 𝑞|𝑇 ∈ 𝑘+1(𝑇 ) ∀𝑇 ∈ ℎ}, (14)

and 𝑃ℎ, 𝑃 0
ℎ
are the 𝐿2 orthogonal projections to 𝑄ℎ, 𝑄0

ℎ
. For face 𝐹 or 

edge 𝐸 with integer 𝑚 ⩾ 0, 𝑃𝑚
𝐹
and 𝑃𝑚

𝐸
are the 𝐿2 orthogonal projections 

to 𝑚(𝐹 ) and 𝑚(𝐸).
For 𝑞 ∈𝑄ℎ, let 𝒘 ∈𝐻1(Ω; ℝ𝑛) be a function satisfying (1). It is well-

known that the interpolation operator Πℎ ∶𝐻1(Ω; ℝ𝑛) → 𝑽 ℎ defined by 
the canonical degrees of freedom fulfills divΠℎ𝒘 = 𝑞, Πℎ𝒘 ⋅𝒏 = 0 on Γ, 
and ‖Πℎ𝒘‖0 + ‖ divΠℎ𝒘‖0 ⩽ 𝐶‖𝒘‖1 for some 𝐶 > 0 (cf. [12]). This is 
sufficient to prove that the pair (𝑽 ℎ, 𝑄ℎ) satisfies

inf
0≠𝑞∈𝑄ℎ sup

0≠𝒗∈𝑽 ℎ
(𝑞,div𝒗)Ω‖𝑞‖0‖𝒗‖𝑽 ⩾ 𝐶 > 0 (15)

with 𝐶 > 0 independent of mesh sizes. In the rest of this paper our dis-
cussions are common for 𝑽 ℎ = 𝑽 𝑅𝑇𝑁

ℎ
or 𝑽 ℎ = 𝑽 𝐵𝐷𝑀

ℎ
unless we specify 

𝑽 ℎ in our statements.
The discrete problem of (8) with 𝑽 ℎ×𝑄ℎ is to find (𝒖ℎ, 𝑝ℎ) ∈ 𝑽 ℎ×𝑄ℎ

such that(
𝒖ℎ,𝒗

)
Ω + ⟨𝛼𝒖ℎ ⋅ 𝒏,𝒗 ⋅ 𝒏⟩Γ − (𝑝ℎ,div𝒗)Ω = 0 ∀𝒗 ∈ 𝑽 ℎ, (16a)(

div𝒖ℎ, 𝑞
)
Ω = (𝑓, 𝑞)Ω ∀𝑞 ∈𝑄ℎ. (16b)

An a priori error analysis for (𝒖ℎ, 𝑝ℎ) is proved in [21].
We finish this section by introducing a post-processed numerical 

solution of 𝑝, a variant of the post-processing in [30]. Suppose that 
(𝒖ℎ, 𝑝ℎ) ∈ 𝑽 ℎ ×𝑄ℎ is a solution of (16). Following the idea in [19,16], 
a post-processed solution 𝑝∗ ∈𝑄∗ is defined by
ℎ ℎ
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(
∇𝑝∗

ℎ
,∇𝑞

)
𝑇
= −

(
𝒖ℎ,∇𝑞

)
𝑇

∀𝑞 ∈𝑄∗
ℎ
(𝑇 ), (17a)(

𝑝∗
ℎ
, 𝑞
)
𝑇
=
(
𝑃 0
ℎ
𝑝ℎ, 𝑞

)
𝑇

∀𝑞 ∈𝑄0
ℎ
(𝑇 ) (17b)

for 𝑇 ∈ ℎ.
Here we remark that 𝑄∗

ℎ
in (14) contains all piecewise quadratic 

polynomials because 𝑘 ⩾ 1. This will be used in the proof of Lemma 3.6
which allows an elegant local efficiency proof of a posteriori error esti-
mator.

3. A posteriori error estimate

In this section we define a posteriori error estimator and prove its 
reliability and local efficiency. Let (𝒖ℎ, 𝑝ℎ) be a solution of (16) and 𝑝∗ℎ
be the post-processed pressure defined in (17). Let

𝑚 = 𝑘− 1 if 𝑽 ℎ = 𝑽 𝑅𝑇𝑁
ℎ

and 𝑚 = 𝑘 if 𝑽 ℎ = 𝑽 𝐵𝐷𝑀
ℎ

. (18)

Then, a posteriori error estimator 𝜂 for 𝑛 = 3 is defined by

𝜂 =
⎛⎜⎜⎝
∑
𝑇∈ℎ

𝜂2
𝑇
+
∑
𝐹∈ℎ

𝜂2
𝐹

⎞⎟⎟⎠
1
2

(19)

where

𝜂𝑇 ∶= ‖𝒖ℎ +∇𝑝∗
ℎ
‖0,𝑇 , (20)

𝜂𝐹 ∶=

{
ℎ
−1∕2
𝐹

‖�
𝑝∗
ℎ

�‖0,𝐹 if 𝐹 ∈ 0
ℎ

𝛼−1∕2‖(𝐼 − 𝑃𝑚
𝐹
)
�
𝑝∗
ℎ

�‖0,𝐹 if 𝐹 ∈ Γ
ℎ

. (21)

If 𝑛 = 2, 𝜂 is similarly defined by replacing 𝜂𝐹 by 𝜂𝐸 for edges in 0
ℎ
and 

Γ
ℎ
with the same formula in (21), so we omit the detailed definition.

3.1. Reliability estimate

We prove the reliability of the a posteriori error estimator 𝜂 in (19). 
The main result is the following.

Theorem 3.1. Suppose that (𝒖, 𝑝), (𝒖ℎ, 𝑝ℎ) are solutions of (8), (16), and 
𝜂 is defined by (19). Then, there exists 𝐶 > 0 independent of mesh sizes and 
𝛼 in (5) such that

⦀𝒖− 𝒖ℎ⦀ ⩽ 𝐶𝜂 + 1
𝜋

⎛⎜⎜⎝
∑
𝑇∈ℎ

osc(𝑓,𝑇 )2
⎞⎟⎟⎠
1
2

, osc(𝑓,𝑇 ) ∶= ℎ𝑇 ‖𝑓 − 𝑃ℎ𝑓‖0,𝑇 .
(22)

To prove this theorem, we split 𝒖 − 𝒖ℎ into two components which 
are orthogonal with an inner product given by the bilinear form of 𝒖 and 
𝒗 in (8a). In the lemma below, we first show that there is an orthogonal 
decomposition of 𝒖− 𝒖ℎ.

Lemma 3.1. Suppose that (𝒖̃, 𝑝̃) is the solution of

(𝒖̃,𝒗)Ω − (𝑝̃,div𝒗)Ω + ⟨𝛼𝒖̃ ⋅ 𝒏,𝒗 ⋅ 𝒏⟩Γ = 0 ∀𝒗 ∈ 𝑽 , (23a)

(div 𝒖̃, 𝑞)Ω =
(
𝑃ℎ𝑓 , 𝑞

)
Ω ∀𝑞 ∈𝑄. (23b)

Then,

⦀𝒖− 𝒖ℎ⦀2 = ⦀𝒖− 𝒖̃⦀2 + ⦀𝒖̃− 𝒖ℎ⦀2. (24)

Proof. Then, it is easy to see that

(𝒖− 𝒖̃,𝒗)Ω − (𝑝− 𝑝̃,div𝒗)Ω + ⟨𝛼(𝒖− 𝒖̃) ⋅ 𝒏,𝒗 ⋅ 𝒏⟩Γ = 0, (25a)

(div(𝒖− 𝒖̃), 𝑞)Ω =
(
𝑓 − 𝑃ℎ𝑓 , 𝑞

)
Ω
(25b)
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for all 𝒗 ∈ 𝑽 and 𝑞 ∈𝑄. If 𝒗 = 𝒖̃− 𝒖ℎ ∈ 𝑽 , then(
𝒖− 𝒖̃, 𝒖̃− 𝒖ℎ

)
Ω + ⟨𝛼(𝒖− 𝒖̃) ⋅ 𝒏, (𝒖̃− 𝒖ℎ) ⋅ 𝒏⟩Γ = 0

because div(𝒖̃−𝒖ℎ) = 0. Then, (24) follows from this orthogonality. □

As a consequence of (24), it suffices to estimate ⦀𝒖− 𝒖̃⦀2 and ⦀𝒖ℎ −
𝒖̃⦀2 by the right-hand side terms in (22). We first estimate ⦀𝒖− 𝒖̃⦀.
Lemma 3.2. Suppose that (𝒖̃, 𝑝̃) is defined as in Lemma 3.1. Then,

⦀𝒖− 𝒖̃⦀ ⩽ 1
𝜋

⎛⎜⎜⎝
∑
𝑇∈ℎ

osc(𝑓,𝑇 )2
⎞⎟⎟⎠
1
2

. (26)

Proof. Taking arbitrary test function vanishing near Γ in (25a), we ob-
tain

𝒖− 𝒖̃ =∇(𝑝− 𝑝̃) in 𝐿2(Ω0;ℝ𝑛)

for every open set Ω0 such that Ω0 ⊂ Ω ⧵ Γ. By the dominated conver-
gence theorem, 𝒖− 𝒖̃ = ∇(𝑝 − 𝑝̃) on every 𝑇 ∈ ℎ. If 𝒗 = 𝒖− 𝒖̃ in (25a), 
then

⦀𝒖− 𝒖̃⦀2 = (𝑝− 𝑝̃, 𝑓 − 𝑃ℎ𝑓
)
Ω (27)

by (6) and (25b). By the Cauchy–Schwarz and element-wise Poincare 
inequalities for mean-value zero functions (cf. [8]),(
𝑝− 𝑝̃, 𝑓 − 𝑃ℎ𝑓

)
Ω =

(
𝑝− 𝑝̃− 𝑃ℎ(𝑝− 𝑝̃), 𝑓 − 𝑃ℎ𝑓

)
Ω

⩽
∑
𝑇∈ℎ

ℎ𝑇

𝜋
‖∇(𝑝− 𝑝̃)‖0,𝑇 ‖𝑓 − 𝑃ℎ𝑓‖0,𝑇

⩽ 1
𝜋
‖∇(𝑝− 𝑝̃)‖0 ⎛⎜⎜⎝

∑
𝑇∈ℎ

ℎ2
𝑇
‖𝑓 − 𝑃ℎ𝑓‖20,𝑇 ⎞⎟⎟⎠

1
2

⩽ 1
𝜋
‖𝒖− 𝒖̃‖0 ⎛⎜⎜⎝

∑
𝑇∈ℎ

osc(𝑓,𝑇 )2
⎞⎟⎟⎠
1
2

. (28)

Combining (27) and (28), we can obtain (26). □

To estimate ⦀𝒖ℎ − 𝒖̃⦀ by the a posteriori error estimator 𝜂, we need 
an auxiliary finite element space 𝑆ℎ. We choose different 𝑆ℎ for 𝑽 ℎ =
𝑽 𝑅𝑇𝑁
ℎ

and 𝑽 ℎ = 𝑽 𝐵𝐷𝑀
ℎ

and for 𝑛 = 2, 3.
We first define 𝑆ℎ for 𝑽 𝐵𝐷𝑀

ℎ
. Note that 𝑽 𝐵𝐷𝑀

ℎ
= 𝑘Λ𝑛−1(ℎ) in the 

language of the finite element exterior calculus ([3–5]). If 𝑽 ℎ = 𝑽 𝐵𝐷𝑀
ℎ

, 
then

𝑆ℎ = 𝑘+1Λ𝑛−2(ℎ), (29)

which is the Lagrange finite element of degree 𝑘 + 1 if 𝑛 = 2 and is the 
Nédélec edge element of the 2nd kind ([26]) with degree 𝑘 + 1 if 𝑛 = 3.

If 𝑽 ℎ = 𝑽 𝑅𝑇𝑁
ℎ

and 𝑛 = 2, then

𝑆ℎ = 𝑘Λ0(ℎ), (30)

the Lagrange finite element of degree 𝑘.
If 𝑽 ℎ = 𝑽 𝑅𝑇𝑁

ℎ
and 𝑛 = 3, then we define a new finite element space 

𝑆ℎ obtained by enriching 𝑘Λ1(ℎ) with curl-free edge bubble functions 
which will be described below.

For an edge 𝐸 in a triangulation ℎ for 𝑛 = 3, define 𝑀𝐸 by

𝑀𝐸 =
⋃

𝑇∈ℎ,𝐸⊂𝜕𝑇
𝑇 . (31)

Note that each face 𝐹 ⊂ 𝜕𝑀𝐸 does not contain 𝐸. Denoting the barycen-
tric coordinate which vanishes on 𝐹 by 𝜆𝐹 , we define 𝑏𝐸 by
420
𝑏𝐸 =
∏

𝐹⊂𝜕𝑀𝐸

𝜆𝐹 . (32)

Since every tetrahedron in 𝑀𝐸 does not have more than two distinct 
faces which do not contain 𝐸, 𝑏𝐸 |𝑇 ∈ 2(𝑇 ) for every tetrahedron 𝑇 ⊂
𝑀𝐸 . In the discussion below, ⟂

𝑘+1(𝐸) is the space of polynomials with 
degree (𝑘 +1) on 𝐸 which are orthogonal to all polynomials with degree 
𝑘 on 𝐸, and ̄⟂

𝑘+1(𝐸) is the space of polynomials on 𝑀𝐸 which are 
constant on every plane perpendicular to 𝐸 and the restriction of the 
polynomials on 𝐸 are in ⟂

𝑘+1(𝐸).
In the following lemma, for an edge 𝐸, 𝒕𝐸 is a unit tangential vector 

of 𝐸 and 𝜕

𝜕𝒕𝐸
is the derivative along the direction of 𝒕𝐸 .

Lemma 3.3. For an edge 𝐸,

(𝐸) = span
{
∇
(
𝜕𝑞

𝜕𝒕𝐸
𝑏𝐸

)
∶ 𝑞 ∈ ̄⟂

𝑘+1(𝐸)
}
. (33)

For a tetrahedron 𝑇 and a fixed face 𝐹 ⊂ 𝜕𝑇 let 𝑆(𝑇 , 𝐹 ) be

𝑆(𝑇 ,𝐹 ) = 𝑘(𝑇 ;ℝ3) +⊕𝐸⊂𝜕𝐹(𝐸).
and a set of local degrees of freedom for 𝜏 ∈ 𝑆(𝑇 , 𝐹 ) is given by

𝜏⟼ ∫
𝐸

𝜏 ⋅ 𝒕𝐸𝑞 𝑑𝑙 ∀𝑞 ∈ 𝑘(𝐸) if 𝐸 ⊄ 𝜕𝐹 , (34)

𝜏⟼ ∫
𝐸

𝜏 ⋅ 𝒕𝐸𝑞 𝑑𝑙 ∀𝑞 ∈ 𝑘+1(𝐸) if 𝐸 ⊂ 𝜕𝐹 , (35)

𝜏⟼ ∫
𝐹

(𝜏 × 𝒏𝐹 ) ⋅ 𝒒 𝑑𝑠 ∀𝒒 ∈ 𝑽 𝑅𝑇𝑁
𝑘−1 (𝐹 ) if 𝑘 ⩾ 2, (36)

𝜏⟼ ∫
𝑇

𝜏 ⋅ 𝜉 𝑑𝑥 ∀𝜉 ∈ 𝑽 𝑅𝑇𝑁
𝑘−2 (𝑇 ) if 𝑘 ⩾ 3. (37)

Then, 𝜏 ∈ 𝑆(𝑇 , 𝐹 ) is uniquely determined by (34), (35), (36), (37).

Proof. Suppose that 𝜏 ∈ 𝑆(𝑇 , 𝐹 ) and all DOFs of 𝜏 given by (34), (35), 
(36), (37) vanish. Let 𝐸𝑖, 𝑖 = 1, 2, 3 be the edges of 𝐹 . We can write 𝜏 as 
𝜏 =

∑3
𝑖=0 𝜏𝑖 with 𝜏0 ∈ 𝑘(𝑇 ; ℝ3) and

𝜏𝑖 =∇

(
𝜕𝑞𝑖

𝜕𝒕𝐸𝑖

𝑏𝐸𝑖

)
∈(𝐸𝑖), 𝑞𝑖 ∈ ̄⟂

𝑘+1(𝐸𝑖), 𝑖 = 1,2,3. (38)

By the vanishing DOFs assumption, for 𝐸𝑖 ⊂ 𝜕𝐹 ,

∫
𝐸𝑖

𝜏 ⋅ 𝒕𝐸𝑖𝑞 𝑑𝑙 = ∫
𝐸𝑖

𝜏0 ⋅ 𝒕𝐸𝑖𝑞 𝑑𝑙 +
3∑
𝑗=1

∫
𝐸𝑖

𝜏𝑗 ⋅ 𝒕𝐸𝑖𝑞 𝑑𝑙 = 0

for all 𝑞 ∈ 𝑘+1(𝐸𝑖). By the definition (33), 𝜏𝑖 ⋅ 𝒕𝐸𝑗 |𝐸𝑗 = 0 if 𝑗 ≠ 𝑖, so we 
get

∫
𝐸𝑖

𝜏0 ⋅ 𝒕𝐸𝑖𝑞 𝑑𝑙 + ∫
𝐸𝑖

𝜏𝑖 ⋅ 𝒕𝐸𝑖𝑞 𝑑𝑙 = 0. (39)

Consider the decomposition 𝑞 = 𝑞0 + 𝑞1 ∈ 𝑘(𝐸𝑖) ⊕⟂
𝑘+1(𝐸𝑖). Then,

∫
𝐸𝑖

𝜏0 ⋅ 𝒕𝐸𝑖𝑞1 𝑑𝑙 = 0. (40)

Taking the integration by parts twice gives

∫
𝐸𝑖

𝜏𝑖 ⋅ 𝒕𝐸𝑖𝑞0 𝑑𝑙 = ∫
𝐸𝑖

𝜕

𝜕𝒕𝐸𝑖

(
𝜕𝑞𝑖

𝜕𝒕𝐸𝑖

𝑏𝐸𝑖

)
𝑞0 𝑑𝑙

= −∫
𝐸

(
𝜕𝑞𝑖

𝜕𝒕𝐸𝑖

𝑏𝐸𝑖

)
𝜕𝑞0
𝜕𝒕𝐸𝑖

𝑑𝑙 (41)
𝑖
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= ∫
𝐸𝑖

𝑞𝑖
𝜕

𝜕𝒕𝐸𝑖

(
𝑏𝐸𝑖

𝜕𝑞0
𝜕𝒕𝐸𝑖

)
𝑑𝑙

= 0

where the last identity follows from 𝑞0 ∈ 𝑘(𝐸𝑖), 𝑏𝐸𝑖 |𝐸𝑖 ∈ 2(𝐸𝑖), and 
𝑞𝑖|𝐸𝑖 ∈ ⟂

𝑘+1(𝐸𝑖). Therefore, (39) is reduced to

∫
𝐸𝑖

𝜏0 ⋅ 𝒕𝐸𝑖𝑞0 𝑑𝑙 + ∫
𝐸𝑖

𝜏𝑖 ⋅ 𝒕𝐸𝑖𝑞1 𝑑𝑙 = 0.

If 𝑞0 = 𝜏0 ⋅ 𝒕𝐸𝑖 , 𝑞1 = −𝑞𝑖 in this formula, and use the identity

∫
𝐸𝑖

𝜏𝑖 ⋅ 𝒕𝐸𝑖𝑞1 𝑑𝑙 = −∫
𝐸𝑖

𝜕

𝜕𝒕𝐸𝑖

(
𝜕𝑞𝑖

𝜕𝒕𝐸𝑖

𝑏𝐸𝑖

)
𝑞𝑖 𝑑𝑙 = ∫

𝐸𝑖

(
𝜕𝑞𝑖

𝜕𝒕𝐸𝑖

)2

𝑏𝐸𝑖
𝑑𝑙,

then

∫
𝐸𝑖

𝜏0 ⋅ 𝒕𝐸𝑖𝑞0 𝑑𝑙 + ∫
𝐸𝑖

𝜏𝑖 ⋅ 𝒕𝐸𝑖𝑞1 𝑑𝑙 = ∫
𝐸𝑖

(𝜏0 ⋅ 𝒕𝐸𝑖 )
2 𝑑𝑙 + ∫

𝐸𝑖

(
𝜕𝑞𝑖

𝜕𝒕𝐸𝑖

)2

𝑏𝐸𝑖
𝑑𝑙

= 0.

Since 𝑏𝐸𝑖 > 0 on 𝐸𝑖, 
𝜕𝑞𝑖

𝜕𝒕𝐸𝑖

|𝐸𝑖 = 0, so 𝑞𝑖|𝐸𝑖 is constant. Furthermore, 𝑞𝑖|𝐸𝑖 ∈
⟂
𝑘+1(𝐸𝑖), so 𝑞𝑖 = 0. As a consequence, 𝜏𝑖 = 0 for 𝑖 = 1, 2, 3. Then, 𝜏 = 0

follows by a standard unisolvency proof of the Nédélec edge elements 
of the 2nd kind. □

We now define 𝑆ℎ for 𝑛 = 3 and 𝑽 ℎ = 𝑽 𝑅𝑇𝑁
ℎ

. The enriched 𝐻(curl)
element 𝑆ℎ with the shape functions

𝑆ℎ = 𝑘(ℎ;ℝ3) +
⨁
𝐸∈Γ

ℎ

(𝐸) (42)

and the global degrees of freedom (34) for 𝐸 ∈ ℎ ⧵Γ
ℎ
, (35) for 𝐸 ∈ Γ

ℎ
, 

(36) for 𝐹 ∈ ℎ, (37) for 𝐸 ∈ ℎ.
For 𝑆ℎ defined by (29), (30), (42) depending on 𝑛 and 𝑽 ℎ, we can 

check that

curl𝑆ℎ ⊂ 𝑽 ℎ. (43)

Here we show existence of an appropriate interpolation.

Lemma 3.4. Suppose that Ψ ∈𝐻1(Ω) and curlΨ ⋅ 𝒏|Γ ∈𝐿2(Γ). Let 𝑆ℎ be 
defined by (29), (30), (42) depending on 𝑛 and 𝑽 ℎ, and recall 𝑙 defined in 
(18). Then, there exists 𝐼ℎΨ ∈ 𝑆ℎ such that

⦀curl𝐼ℎΨ⦀ ⩽ 𝐶(‖Ψ‖1 + ‖𝛼1∕2 curlΨ ⋅ 𝒏‖0,Γ), (44)

‖Ψ− 𝐼ℎΨ‖0 ⩽ 𝐶(‖Ψ‖1 + ‖𝛼 curlΨ ⋅ 𝒏‖0,Γ), (45)

curl𝐼ℎΨ ⋅ 𝒏|𝐸 = 𝑃𝑚
𝐸
(curlΨ ⋅ 𝒏|𝐸 ), ∀𝐸 ∈ Γ

ℎ
, if 𝑛 = 2, (46)

curl𝐼ℎΨ ⋅ 𝒏|𝐹 = 𝑃𝑚
𝐹
(curlΨ ⋅ 𝒏|𝐹 ), ∀𝐹 ∈ Γ

ℎ
, if 𝑛 = 3, (47)

and for 𝐸 ∈ Γ
ℎ
,{

(𝐼ℎΨ−Ψ)(𝑣) = 0 if 𝑛 = 2, 𝑣 ∈ 𝜕𝐸,
∫
𝐸
(𝐼ℎΨ−Ψ) ⋅ 𝒕𝐸𝑞 𝑑𝑙 = 0 if 𝑛 = 3, 𝑞 ∈ 𝑘+1(𝐸). (48)

Proof. Suppose that 𝑛 = 2. In this case, curlΨ ⋅ 𝒏Γ ∈ 𝐿2(Γ) means that 
the tangential derivative of Ψ along Γ is in 𝐿2(Γ) (cf. (95) in Appendix). 
Since Ψ|Γ ∈ 𝐿2(Γ), we have Ψ|Γ ∈𝐻1(Γ). Let ℎ be the set of vertex 
nodes in Ω which determines the degrees of freedom of 𝑆ℎ , a Lagrange 
finite element. By the Sobolev embedding on the 1-dimensional sub-
manifold Γ, vertex evaluation of Ψ on the nodes on Γ is well-defined. 
On 𝐸 ∈ Γ, we define 𝐼ΓΨ|𝐸 by

∫
𝐸

fo

s

‖
w

p

‖
fo

𝐼

th

(

ti

o

v‖
im

s

tr

∫
𝐹

a

o

𝒏

e

B

(

a

fo

T

e

⦀
P

ia

⟨
b

⦀
S(
fo
ℎ ℎ

421
𝐼Γ
ℎ
Ψ(𝑣) = Ψ(𝑣) 𝑣 ∈ 𝜕𝐸, (49)

𝐼Γ
ℎ
Ψ 𝜕

𝜕𝒕𝐸
𝑞 𝑑𝑙 = ∫

𝐸

Ψ 𝜕

𝜕𝒕𝐸
𝑞 𝑑𝑙 ∀𝑞 ∈ 𝑚(𝐸), 𝑞 ⟂ 0(𝐸) (50)

r 𝑚 defined in (18), and 𝐼Γ
ℎ
Ψ(𝑣) = 0 for 𝑣 ∈ℎ⧵Γ. Then, by a standard 

caling argument,

𝐼Γ
ℎ
Ψ‖0 + ‖ curl𝐼ΓℎΨ‖0 ⩽ 𝐶(‖Ψ‖1 + ‖ curlΨ ⋅ 𝒏‖0,Γ)

ith 𝐶 > 0 independent of mesh sizes. Let 𝐼𝑆𝑍
ℎ

be a Scott–Zhang inter-
olation (cf. [29]) which takes Γ as a vanishing interface and satisfies

𝐼𝑆𝑍
ℎ

Φ‖0 + ‖ curl𝐼𝑆𝑍ℎ Φ‖0 ⩽ 𝐶‖Φ‖1
r Ψ ∈𝐻1(Ω). If we define 𝐼ℎΨ by

ℎΨ= 𝐼𝑆𝑍
ℎ

(Ψ − 𝐼Γ
ℎ
Ψ) + 𝐼Γ

ℎ
Ψ, (51)

en 𝐼ℎΨ is bounded by ‖Ψ‖1 + ‖ curlΨ ⋅ 𝒏‖0,Γ.
We now check (44), (45), (46), (48). First, (48) is a consequence of 

49) and (51). By (49), (50), curl𝐼ℎΨ ⋅ 𝒏|Γ = 𝐼ΓℎΨ ⋅ 𝒏|Γ, and the integra-
on by parts on every 𝐸 ∈ Γ

ℎ
, (46) follows.

Furthermore, if Ψ ∈ 𝑆ℎ, then 𝐼ΓℎΨ = Ψ|Γ, so 𝐼ℎ is the identity map 
n 𝑆ℎ because 𝐼𝑆𝑍ℎ is the identity map for the elements in 𝑆ℎ which 
anish on Γ. By the Bramble–Hilbert lemma, ‖Ψ − 𝐼ℎΨ‖0 ⩽ 𝐶ℎ(‖Ψ‖1 +
 curlΨ ⋅ 𝒏‖0,Γ).
Suppose that 𝑛 = 3. First, Ψ × 𝒏Γ ∈𝐿2(Γ; ℝ2) and curlΨ ⋅ 𝒏Γ ∈𝐿2(Γ)
ply that the tangential component of Ψ on Γ is in the rotated 𝐻(div)

pace on Γ (cf. (96) in Appendix). Since Ψ|Γ ∈𝐻𝑠(Γ) with 𝑠 > 0 as a 
ace of 𝐻1(Ω; ℝ3), Ψ × 𝒏Γ ∈𝐿𝑟(Γ) for 𝑟 > 2 by Sobolev embedding, so

∫
𝐸

𝐼Γ
ℎ
Ψ ⋅ 𝒕𝐸𝑞 𝑑𝑙 = ∫

𝐸

Ψ ⋅ 𝒕𝐸𝑞 𝑑𝑙, 𝐸 ∈ Γ
ℎ
, 𝑞 ∈ 𝑘+1(𝐸), (52)

𝐼Γ
ℎ
Ψ× 𝒏𝐹 ⋅ 𝜉 𝑑𝑠 = ∫

𝐹

(Ψ × 𝒏𝐹 ) ⋅ 𝜉 𝑑𝑠, 𝐹 ∈ Γ
ℎ
, 𝜉 ∈ 𝑚−2(𝐹 ;ℝ2) (53)

re well-defined (cf. [12]). 𝐼ℎΨ ∈ 𝑆ℎ is defined by taking zeros for all 
ther degrees of freedom, and ‖𝐼Γ

ℎ
Ψ‖0 is bounded by ‖Ψ‖1 + ‖ curlΨ ⋅‖0,Γ. There exists a Scott–Zhang type interpolation 𝐼𝑆𝑍ℎ for 𝐻(curl)

lements (see [17]) with vanishing interface Γ, so define 𝐼ℎ as in (51). 
y an argument similar to the proof for 𝑛 = 2, (45) can be obtained, and 
48) follows from (52) and (51). Finally, (47) follows from (52), (53), 
nd the integration by parts on every face 𝐹 ∈ Γ

ℎ
(see (97) in Appendix 

r details). □

We now prove a reliability estimate of ⦀𝒖ℎ − 𝒖̃⦀.
heorem 3.2. Suppose that (𝒖̃, 𝑝̃) is defined as in Lemma 3.1. Then, there 
xists 𝐶 > 0 independent of mesh sizes such that

𝒖ℎ − 𝒖̃⦀ ⩽ 𝐶𝜂. (54)

roof. We now estimate ⦀𝒖ℎ− 𝒖̃⦀2. First, since Ω is homologically triv-
l, there exists Ψ ∈𝐻1(Ω, ℝ𝑛) such that 𝒖ℎ − 𝒖̃ = curlΨ and

‖Ψ‖1 ⩽ 𝐶‖𝒖ℎ − 𝒖̃‖0,
𝛼 curlΨ ⋅ 𝒏, curlΨ ⋅ 𝒏⟩Γ = ⟨𝛼(𝒖ℎ − 𝒖̃) ⋅ 𝒏, (𝒖ℎ − 𝒖̃) ⋅ 𝒏⟩Γ
ecause div(𝒖ℎ − 𝒖̃) = 0. Thus,

𝒖ℎ − 𝒖̃⦀2 = (𝒖ℎ − 𝒖̃, curlΨ
)
Ω + ⟨𝛼(𝒖ℎ − 𝒖̃) ⋅ 𝒏, curlΨ ⋅ 𝒏⟩Γ . (55)

ince

𝒖ℎ − 𝒖̃,𝒗
)
Ω −

(
𝑝ℎ − 𝑝̃,div𝒗

)
Ω + ⟨𝛼(𝒖ℎ − 𝒖̃) ⋅ 𝒏,𝒗 ⋅ 𝒏⟩Γ = 0 (56a)

r all 𝒗 ∈ 𝑽 ℎ, we have
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(
𝒖ℎ − 𝒖̃, curl𝐼ℎΨ

)
Ω + ⟨𝛼(𝒖ℎ − 𝒖̃) ⋅ 𝒏, curl𝐼ℎΨ ⋅ 𝒏⟩Γ = 0 (57)

for 𝐼ℎ in Lemma 3.4 because of 𝐼ℎΨ ∈ 𝑆ℎ and (43). Applying (57) to 
(55),

⦀𝒖ℎ − 𝒖̃⦀2 = (𝒖ℎ − 𝒖̃, curl(Ψ − 𝐼ℎΨ)
)
Ω (58)

+ ⟨𝛼(𝒖ℎ − 𝒖̃) ⋅ 𝒏, curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏⟩Γ .
Since 𝒖̃ = −∇𝑝̃ and 𝛼𝒖̃ ⋅ 𝒏 = �𝑝̃� on Γ, we can further obtain
⦀𝒖ℎ − 𝒖̃⦀2 = (𝒖ℎ, curl(Ψ − 𝐼ℎΨ)

)
Ω (59)

+ ⟨𝛼𝒖ℎ ⋅ 𝒏, curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏⟩Γ
by the integration by parts. For 𝑚 defined in (18), (𝛼𝒖ℎ ⋅𝒏)|𝐸 ∈ 𝑚(𝐸) for 
𝐸 ∈ Γ

ℎ
if 𝑛 = 2 and (𝛼𝒖ℎ ⋅ 𝒏)|𝐹 ∈ 𝑚(𝐹 ) for 𝐹 ∈ Γ

ℎ
if 𝑛 = 3. Therefore, 

(59) is reduced to

⦀𝒖ℎ − 𝒖̃⦀2 = (𝒖ℎ, curl(Ψ − 𝐼ℎΨ)
)
Ω (60)

by (46) and (47).
If 𝑛 = 2, a simple algebra and triangle-wise integration by parts give

⦀𝒖ℎ − 𝒖̃⦀2 = (𝒖ℎ +∇𝑝∗
ℎ
, curl(Ψ − 𝐼ℎΨ)

)
Ω −

(
∇𝑝∗

ℎ
, curl(Ψ − 𝐼ℎΨ)

)
Ω

=
(
𝒖ℎ +∇𝑝∗

ℎ
, curl(Ψ − 𝐼ℎΨ)

)
Ω

−
∑
𝑇∈ℎ

⟨
∇𝑝∗

ℎ
⋅ 𝒕𝜕𝑇 ,Ψ− 𝐼ℎΨ

⟩
𝜕𝑇
. (61)

By edge-wise integration by parts using (Ψ − 𝐼ℎΨ)(𝑣) = 0 for every end-
point 𝑣 of edges 𝐸 ∈ Γ

ℎ
,∑

𝑇∈ℎ
⟨
∇𝑝∗

ℎ
⋅ 𝒕𝜕𝑇 ,Ψ− 𝐼ℎΨ

⟩
𝜕𝑇

= ±
∑
𝐸∈ℎ

⟨
∇

�
𝑝∗
ℎ

�
⋅ 𝒕𝐸,Ψ− 𝐼ℎΨ

⟩
𝐸

= ±
∑
𝐸∈Γ

ℎ

⟨�
𝑝∗
ℎ

�
, curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏

⟩
𝐸

±
∑

𝐸∈ℎ⧵Γℎ

⟨
∇

�
𝑝∗
ℎ

�
⋅ 𝒕𝐸,Ψ− 𝐼ℎΨ

⟩
𝐸

(62)

= ±
∑
𝐸∈Γ

ℎ

⟨
(𝐼 − 𝑃𝑚

𝐸
)
�
𝑝∗
ℎ

�
, curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏

⟩
𝐸

±
∑

𝐸∈ℎ⧵Γℎ

⟨
∇

�
𝑝∗
ℎ

�
⋅ 𝒕𝐸,Ψ− 𝐼ℎΨ

⟩
𝐸
.

Here we use ± due to sign ambiguity of the definitions of 
�
𝑝∗
ℎ

�
and 

𝒕𝐸 . However, we will use the Cauchy–Schwarz inequality to estimate 
the terms that this ambiguous sign is involved, so the exact sign is not 
important in the rest of discussions. By this and (61),

⦀𝒖ℎ − 𝒖̃⦀2 = (𝒖ℎ +∇𝑝∗
ℎ
, curl(Ψ − 𝐼ℎΨ)

)
Ω

±
∑

𝐸∈ℎ⧵Γℎ

⟨
∇

�
𝑝∗
ℎ

�
⋅ 𝒕𝐸,Ψ− 𝐼ℎΨ

⟩
𝐸

±
∑
𝐸∈Γ

ℎ

⟨
(𝐼 − 𝑃𝑚

𝐸
)
�
𝑝∗
ℎ

�
, curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏

⟩
𝐸

(63)

=∶ 𝐼2,𝑎 + 𝐼2,𝑏 + 𝐼2,𝑐 .

By the Cauchy–Schwarz inequality

|𝐼2,𝑎| ⩽ ‖𝒖ℎ +∇𝑝∗
ℎ
‖0‖ curl(Ψ − 𝐼ℎΨ)‖0

⩽ 𝐶
⎛⎜⎜ ∑
𝑇∈

𝜂2
𝑇

⎞⎟⎟
1
2 (‖Ψ‖1 + ‖ curlΨ ⋅ 𝒏‖𝐿2(Γ)

)
(64)
⎝ ℎ ⎠

422
⩽ 𝐶
⎛⎜⎜⎝
∑
𝑇∈ℎ

𝜂2
𝑇

⎞⎟⎟⎠
1
2 ⦀𝒖ℎ − 𝒖̃⦀.

By element-wise inverse inequality and an approximation property of 
Ψ − 𝐼ℎΨ,

|𝐼2,𝑏| ⩽ ∑
𝐸∈0

ℎ
⧵Γ
ℎ

|||⟨∇�
𝑝∗
ℎ

�
⋅ 𝒕𝐸,Ψ− 𝐼ℎΨ

⟩
𝐸

|||
⩽ 𝐶

⎛⎜⎜⎝
∑

𝐸∈ℎ⧵Γℎ
ℎ−1
𝐸
‖�
𝑝∗
ℎ

�‖20,𝐸⎞⎟⎟⎠
1
2 ‖Ψ‖1 (65)

⩽ 𝐶
⎛⎜⎜⎝

∑
𝐸∈ℎ⧵Γℎ

𝜂2
𝐸

⎞⎟⎟⎠
1
2 ⦀𝒖ℎ − 𝒖̃⦀.

For 𝐼2,𝑐 ,|||⟨(𝐼 − 𝑃𝑚𝐸 )�𝑝∗ℎ� , curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏
⟩
𝐸

|||
⩽ 𝛼−1∕2‖(𝐼 − 𝑃𝑚

𝐸
)
�
𝑝∗
ℎ

�‖0,𝐸‖𝛼1∕2 curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏‖0,𝐸 (66)

⩽ 2𝛼−1∕2‖(𝐼 − 𝑃𝑚
𝐸
)
�
𝑝∗
ℎ

�‖0,𝐸‖𝛼1∕2 curlΨ ⋅ 𝒏‖0,𝐸 .
Combining (63), (64), (65), (66), we obtain

⦀𝒖ℎ − 𝒖̃⦀ ⩽ 𝐶𝜂.

If 𝑛 = 3, then

⦀𝒖ℎ − 𝒖̃⦀2 = (𝒖ℎ +∇𝑝∗
ℎ
, curl(Ψ − 𝐼ℎΨ)

)
Ω −

(
∇𝑝∗

ℎ
, curl(Ψ − 𝐼ℎΨ)

)
Ω

=
(
𝒖ℎ +∇𝑝∗

ℎ
, curl(Ψ − 𝐼ℎΨ)

)
Ω

−
∑
𝑇∈ℎ

⟨
∇𝑝∗

ℎ
,𝒏 × (Ψ− 𝐼ℎΨ)

⟩
𝜕𝑇

(67)

by tetrahedron-wise integration by parts. By face-wise integration by 
parts (97) and by the property (48),∑
𝑇∈ℎ

⟨
∇𝑝∗

ℎ
,𝒏 × (Ψ − 𝐼ℎΨ)

⟩
𝜕𝑇∩Γ

= ±
∑
𝐹∈Γ

ℎ

⟨
∇

�
𝑝∗
ℎ

�
,𝒏 × (Ψ− 𝐼ℎΨ)

⟩
𝐹

= ±
∑
𝐹∈Γ

ℎ

⟨�
𝑝∗
ℎ

�
, curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏

⟩
𝐹

(68)

= ±
∑
𝐹∈Γ

ℎ

⟨
(𝐼 − 𝑃𝑚

𝐹
)
�
𝑝∗
ℎ

�
, curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏

⟩
𝐹
.

We can proceed using this and (67) to obtain

⦀𝒖ℎ − 𝒖̃⦀2 =
(
𝒖ℎ +∇𝑝∗

ℎ
, curl(Ψ − 𝐼ℎΨ)

)
Ω

±
∑

𝐹∈ℎ⧵Γ
ℎ

⟨
∇

�
𝑝∗
ℎ

�
× 𝒏, (Ψ − 𝐼ℎΨ)

⟩
𝐹

±
∑
𝐹∈Γ

ℎ

⟨
(𝐼 − 𝑃𝑚

𝐹
)
�
𝑝∗
ℎ

�
, curl(Ψ − 𝐼ℎΨ) ⋅ 𝒏

⟩
𝐹

(69)

=∶ 𝐼3,𝑎 + 𝐼3,𝑏 + 𝐼3,𝑐 .

By the arguments which are completely similar to the ones for 𝑛 = 2, we 
can obtain

|𝐼3,𝑎| ⩽ 𝐶 ⎛⎜⎜⎝
∑
𝑇∈ℎ

‖𝒖ℎ +∇𝑝∗
ℎ
‖20,𝑇 ⎞⎟⎟⎠

1
2 ‖𝒖ℎ − 𝒖̃‖0, (70)

|𝐼3,𝑏| ⩽ 𝐶 ⎛⎜⎜⎝
∑

𝐹∈ ⧵Γ
ℎ−1
𝐹
‖�
𝑝∗
ℎ

�‖20,𝐹 ⎞⎟⎟⎠
1
2 ‖𝒖ℎ − 𝒖̃‖0, (71)
ℎ ℎ
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|𝐼3,𝑐 | ⩽ 𝐶 ⎛⎜⎜⎝
∑
𝐹∈Γ

ℎ

𝛼−1‖(𝐼 − 𝑃𝑚
𝐹
)
�
𝑝∗
ℎ

�‖20,𝐹 ⎞⎟⎟⎠
1
2 ‖𝛼1∕2(𝒖ℎ − 𝒖̃) ⋅ 𝒏‖0,Γ. (72)

Applying these estimates to (69), we can obtain (54). □

Remark 3.5. The new 𝑆ℎ space in (42) for 𝑛 = 3, 𝑽 ℎ = 𝑽 𝑅𝑇𝑁
ℎ

, is necessary 
for (68). More precisely, the new 𝑆ℎ allows an interpolation 𝐼ℎ satisfying 
(48) for 𝑛 = 3, 𝑽 ℎ = 𝑽 𝑅𝑇𝑁

ℎ
, which is necessary for the first equality in 

(68).

3.2. Local efficiency

In this subsection we show local efficiency of the a posteriori error es-
timator. We give a detailed proof for 𝑛 = 3 because the two-dimensional 
case is almost same.

We prove a lemma employing the techniques in [31,19].

Lemma 3.6. For 𝐹 ∈ ℎ ⧵Γ
ℎ
,

∫
𝐹

�
𝑝∗
ℎ

�
𝑑𝑠 = 0 if 𝐹 ∈ ℎ ⧵Γ

ℎ
, (73)

∫
𝐹

(𝛼𝒖ℎ ⋅ 𝒏−
�
𝑝∗
ℎ

�
)𝑑𝑠 = 0 if 𝐹 ∈ Γ

ℎ
. (74)

Proof. For 𝐹 ∈ ℎ let 𝒗𝐹 be a test function in the lowest order Raviart–
Thomas finite element such that

𝒗𝐹 ⋅ 𝒏|𝐹 ′ =

{
1 if 𝐹 ′ = 𝐹
0 if 𝐹 ′ ≠ 𝐹 for 𝐹 ′ ∈ ℎ.

If we take this 𝒗𝐹 in (16a) and 𝐹 ∈ ℎ ⧵Γ
ℎ
, then(

𝒖ℎ,𝒗𝐹
)
Ω −

(
𝑝ℎ,div𝒗𝐹

)
Ω = 0.

Since div𝒗𝐹 is a piecewise constant function and the mean-values of 𝑝∗ℎ , 
𝑝ℎ on every tetrahedron are same, we have(
𝒖ℎ,𝒗𝐹

)
Ω −

(
𝑝∗
ℎ
,div𝒗𝐹

)
Ω = 0,

and the element-wise integration by parts gives(
𝒖ℎ,𝒗𝐹

)
Ω −

⟨�
𝑝∗
ℎ

�
,1
⟩
𝐹
+
(
∇𝑝∗

ℎ
,𝒗𝐹

)
Ω = 0.

By the forms of shape functions of the lowest order Raviart–Thomas 
elements ((10) with 𝑘 = 1), curl𝒗𝐹 = 0 on every 𝑇 ∈ ℎ, so there exists 
𝜙𝑇 ∈ 2(𝑇 ) for every 𝑇 ⊂ supp𝒗𝐹 such that 𝒗𝐹 |𝑇 =∇𝜙𝑇 . By this, (17a), 
and the above equation, we have

−
⟨�
𝑝∗
ℎ

�
,1
⟩
𝐹
= 0,

so (73) follows.
If 𝐹 ∈ Γ

ℎ
, then(

𝒖ℎ,𝒗𝐹
)
Ω + ⟨𝛼𝒖ℎ ⋅ 𝒏,𝒗𝐹 ⋅ 𝒏⟩𝐹 −

(
𝑝ℎ,div𝒗𝐹

)
Ω = 0.

The integration by parts gives(
𝒖ℎ,𝒗𝐹

)
Ω +

⟨
𝛼𝒖ℎ ⋅ 𝒏−

�
𝑝∗
ℎ

�
,𝒗𝐹 ⋅ 𝒏

⟩
𝐹
−
(
∇𝑝∗

ℎ
,𝒗𝐹

)
Ω = 0,

and we can conclude (74) by a same argument for the proof of (73). □

Theorem 3.3. For 𝛼 satisfying (5) with a uniform lower bound, there exist 
𝐶 > 0 independent of mesh sizes and 𝛼 such that the following local efficiency 
holds:

𝜂𝑇 ⩽ 𝐶‖𝒖− 𝒖ℎ‖0,𝑇 , (75)

𝜂𝐹 ⩽ 𝐶
∑ ‖𝒖− 𝒖ℎ‖0,𝑇 , if 𝐹 ∈ ℎ ⧵Γ

ℎ
, (76)
𝐹⊂𝜕𝑇

423
𝜂𝐹 ⩽ 𝐶

( ∑
𝐹⊂𝜕𝑇

‖𝒖− 𝒖ℎ‖0,𝑇 + 𝛼1∕2‖(𝒖− 𝒖ℎ) ⋅ 𝒏‖0,𝐹) , if 𝐹 ∈ Γ
ℎ
. (77)

Proof. We first show (75). By Lemma 3.7 in [16], there exists 𝐶 > 0
such that

‖𝒖ℎ +∇𝑝∗
ℎ
‖0,𝑇 ⩽ 𝐶‖𝒖ℎ − 𝒖‖0,𝑇 ,

so we have

𝜂𝑇 = ‖𝒖ℎ +∇𝑝∗
ℎ
‖0,𝑇 ⩽ 𝐶‖𝒖ℎ − 𝒖‖0,𝑇 . (78)

We now prove (76). For 𝐹 ∈ ℎ ⧵ Γ
ℎ
, using (73) and �𝑝� |𝐹 = 0, we 

have (see [1] or [16, Lemma 3.5])

𝜂2
𝐹
= ∫
𝐹

ℎ−1
𝐹
((𝐼 − 𝑃 0

𝐹
)
�
𝑝∗
ℎ
− 𝑝

�
)2 𝑑𝑠

⩽ 2
∑

𝑇∈ℎ,𝐹⊂𝜕𝑇
ℎ−1
𝐹 ∫
𝜕𝑇∩𝐹

((𝐼 − 𝑃 0
𝐹
)(𝑝− 𝑝∗

ℎ
))2 𝑑𝑠

⩽ 𝐶
∑

𝑇∈ℎ,𝐹⊂𝜕𝑇
‖∇(𝑝− 𝑝∗

ℎ
)‖20,𝑇 (79)

= 𝐶
∑

𝑇∈ℎ,𝐹⊂𝜕𝑇
‖𝒖+∇𝑝∗

ℎ
‖20,𝑇 .

By the triangle inequality ‖𝒖 +∇𝑝∗
ℎ
‖0,𝑇 ⩽ ‖𝒖 − 𝒖ℎ‖0,𝑇 + ‖𝒖ℎ +∇𝑝∗

ℎ
‖0,𝑇

and (78),

𝜂2
𝐹
⩽ 𝐶

∑
𝑇∈ℎ,𝐹⊂𝜕𝑇 ‖𝒖− 𝒖ℎ‖20,𝑇 . (80)

For (77), using 𝛼𝒖 ⋅ 𝒏 = �𝑝� on Γ and (𝐼 − 𝑃𝑚
𝐹
)(𝛼𝒖ℎ ⋅ 𝒏) = 0,

𝜂2
𝐹
= ∫
𝐹

𝛼−1
(
(𝐼 − 𝑃𝑚

𝐹
)
�
𝑝∗
ℎ

�)2
𝑑𝑠

= ∫
𝐹

𝛼−1
(
(𝐼 − 𝑃𝑚

𝐹
)(

�
𝑝∗
ℎ

�
− �𝑝�+ 𝛼𝒖 ⋅ 𝒏− 𝛼𝒖ℎ ⋅ 𝒏)

)2
𝑑𝑠.

Using (5), we can obtain

𝜂2
𝐹
⩽ 2

∑
𝑇∈ℎ,𝐹⊂𝜕𝑇 ∫

𝜕𝑇∩𝐹

(
(𝐼 − 𝑃𝑚

𝐹
)(𝑝∗

ℎ
− 𝑝)

)2
𝑑𝑠 (81)

+ 2∫
𝐹

𝛼(𝒖 ⋅ 𝒏− 𝒖ℎ ⋅ 𝒏)2 𝑑𝑠.

Then, the first term on the right-hand side can be estimated as in (79)
with a natural assumption ℎ𝐹 ⩽ 1, so (77) follows. □

3.3. Reliability of post-processed pressure

In this subsection we prove that 𝜂 is a realiable a posteriori error 
estimator for the error of post-processed pressure 𝑝∗

ℎ
. We show a proof 

for 𝑛 = 3 because the same argument works for 𝑛 = 2.

Theorem 3.4. For 𝑝∗
ℎ
in (17) and 𝜂 in (19), there exists 𝐶 > 0 independent 

of mesh sizes such that

‖𝑝− 𝑝∗
ℎ
‖0 ⩽ 𝐶𝜂 + 𝐶

𝜋

⎛⎜⎜⎝
∑
𝑇∈ℎ

ℎ2
𝑇
‖𝑓 − 𝑃ℎ𝑓‖20,𝑇 ⎞⎟⎟⎠

1
2

. (82)

Proof. By the assumption (1), there exists 𝒘 ∈𝐻1(Ω; ℝ3) such that

div𝒘 = 𝑝− 𝑝∗
ℎ
, ‖𝒘‖1 ⩽ 𝐶‖𝑝− 𝑝∗ℎ‖0, 𝒘 ⋅ 𝒏|Γ = 0. (83)

Using this 𝒘, the equation −∇𝑝 = 𝒖 in Ω, continuity of 𝑝 on Ω ⧵ Γ, and 
𝑝 = 0 on 𝜕Ω,
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‖𝑝− 𝑝∗
ℎ
‖20 = (𝑝− 𝑝∗ℎ,div𝒘)Ω

= −
(
∇(𝑝− 𝑝∗

ℎ
),𝒘

)
Ω ±

∑
𝐹∈ℎ⧵Γ

ℎ

⟨�
𝑝− 𝑝∗

ℎ

�
,𝒘 ⋅ 𝒏

⟩
𝐹

=
(
𝒖+∇𝑝∗

ℎ
,𝒘
)
Ω ±

∑
𝐹∈ℎ⧵Γ

ℎ

⟨�
𝑝∗
ℎ

�
,𝒘 ⋅ 𝒏

⟩
𝐹

=
(
𝒖− 𝒖ℎ,𝒘

)
Ω +

(
𝒖ℎ +∇𝑝∗

ℎ
,𝒘
)
Ω ±

∑
𝐹∈ℎ⧵Γ

ℎ

⟨�
𝑝∗
ℎ

�
,𝒘 ⋅ 𝒏

⟩
𝐹
.

Then, (82) follows by

| (𝒖− 𝒖ℎ,𝒘
)
Ω | ⩽ ‖𝒖− 𝒖ℎ‖0‖𝒘‖0,

| (𝒖ℎ +∇𝑝∗
ℎ
,𝒘
)
Ω | ⩽ ⎛⎜⎜⎝

∑
𝑇∈ℎ

𝜂2
𝑇

⎞⎟⎟⎠
1
2 ‖𝒘‖0,

|||||||
∑

𝐹∈ℎ⧵Γ
ℎ

⟨�
𝑝∗
ℎ

�
,𝒘 ⋅ 𝒏

⟩
𝐹

||||||| ⩽
⎛⎜⎜⎝

∑
𝐹∈ℎ⧵Γ

ℎ

𝜂2
𝐹

⎞⎟⎟⎠
1
2 ‖𝒘‖1,

and (22). □

With an assumption of (partial) elliptic regularity, we show that an 
improved estimate of ‖𝑝 − 𝑝∗

ℎ
‖0 is obtained. Consider the dual problem 

to find (𝒖̄, 𝑝̄) ∈ 𝑽 ×𝑄 satisfying

(𝒖̄,𝒗)Ω − (𝑝̄,div𝒗)Ω + ⟨𝛼𝒖̄ ⋅ 𝒏,𝒗 ⋅ 𝒏⟩Γ = 0 ∀𝒗 ∈ 𝑽 , (84a)

(div 𝒖̄, 𝑞)Ω =
(
𝑝− 𝑝∗

ℎ
, 𝑞
)
Ω ∀𝑞 ∈𝑄, (84b)

and assume that

𝒖̄ ∈𝐻𝛽 (Ω;ℝ𝑛), 1
2
< 𝛽 ⩽ 1, ‖𝒖‖𝛽 ⩽ 𝐶‖𝑝− 𝑝∗ℎ‖0. (85)

The boundary condition of this problem is 𝑝̄ = 0 on 𝜕Ω. By the inf-sup 
condition (9), there exists 𝐶 > 0 such that ‖𝑝̄‖0 ⩽ 𝐶⦀𝒖̄⦀. Furthermore, 
by taking 𝒗 = 𝒖̄, 𝑞 = 𝑝̄, we can obtain

⦀𝒖̄⦀2 ⩽ (𝑝− 𝑝∗
ℎ
, 𝑝̄
)
Ω ⩽ 𝐶‖𝑝− 𝑝∗

ℎ
‖0‖𝑝̄‖0,

so,

⦀𝒖̄⦀ ⩽ 𝐶‖𝑝− 𝑝∗
ℎ
‖0. (86)

Corollary 3.7. Suppose that (85) holds and 𝑽 ℎ = 𝑽 𝑅𝑇𝑁
ℎ

with 𝑘 = 1. Then, 
there exists 𝐶 > 0 independent of mesh sizes such that

‖𝑝− 𝑝∗
ℎ
‖0 ⩽ ⎛⎜⎜⎝

∑
𝑇∈ℎ

ℎ
2𝛽
𝑇
𝜂2
𝑇

⎞⎟⎟⎠
1
2

+
⎛⎜⎜⎝
∑
𝑇∈ℎ

osc(𝑓,𝑇 )2
⎞⎟⎟⎠
1
2

+
⎛⎜⎜⎝
∑
𝐹∈Γ

ℎ

min{𝜂𝐹 , 𝛼1∕2ℎ
𝛽

𝐹
𝜂𝐹 }2 +

∑
𝐹∈ℎ⧵Γ

ℎ

ℎ
2𝛽−1
𝐹

𝜂2
𝐹

⎞⎟⎟⎠
1
2

.

Proof. For 𝒖̄ in (84) and 𝒖̃ in (23)

‖𝑝− 𝑝∗
ℎ
‖20 = (𝑝− 𝑝∗ℎ,div 𝒖̄)Ω

= −
(
∇(𝑝− 𝑝∗

ℎ
), 𝒖̄
)
Ω +

∑
𝑇∈ℎ

⟨
𝑝− 𝑝∗

ℎ
, 𝒖̄ ⋅ 𝒏

⟩
𝜕𝑇

=
(
𝒖+∇𝑝∗

ℎ
, 𝒖̄
)
Ω +

∑
𝑇∈ℎ

⟨
𝑝− 𝑝∗

ℎ
, 𝒖̄ ⋅ 𝒏

⟩
𝜕𝑇
.

=
(
𝒖− 𝒖ℎ, 𝒖̄

)
Ω +

(
𝒖ℎ +∇𝑝∗

ℎ
, 𝒖̄
)
Ω +

∑
𝑇∈ℎ

⟨
𝑝− 𝑝∗

ℎ
, 𝒖̄ ⋅ 𝒏

⟩
𝜕𝑇
.

(87)

Taking 𝒗 = 𝒖− 𝒖ℎ in (84a),

(
𝒖

By

‖𝑝

ge

| (𝒖

wh

([9

by

So

|𝐽1

‖𝒖̄
by

Po

arg

by⟨
𝛼

for

| ⟨
or

| ⟨
Th⟨�
so 

| ⟨
for

|𝐽2
Fin
424
− 𝒖ℎ, 𝒖̄
)
Ω = − ⟨𝛼𝒖̄ ⋅ 𝒏, (𝒖− 𝒖ℎ) ⋅ 𝒏⟩Γ + (𝑝̄,div(𝒖− 𝒖ℎ)

)
Ω

= − ⟨𝛼𝒖̄ ⋅ 𝒏, (𝒖− 𝒖ℎ) ⋅ 𝒏⟩Γ + (𝑝̄, 𝑓 − 𝑃ℎ𝑓
)
Ω . (88)

 (87), (88), (4), and �𝑝� |𝐹 = 0 for 𝐹 ∈ ℎ ⧵Γ
ℎ
,

− 𝑝∗
ℎ
‖20 = (𝒖ℎ +∇𝑝∗

ℎ
, 𝒖̄
)
Ω +

⟨
𝛼𝒖ℎ ⋅ 𝒏−

�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏

⟩
Γ

±
∑

𝐹∈ℎ⧵Γ
ℎ

⟨�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏

⟩
𝐹
+
(
𝑝̄, 𝑓 − 𝑃ℎ𝑓

)
Ω

=∶ 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4.

To estimate 𝐽1, note that ∇ ∶ 1(𝑇 ) → 0(𝑇 ; ℝ𝑛) is surjective, so we 
t

ℎ +∇𝑝∗
ℎ
, 𝑢̄
)
𝑇
| = (𝒖ℎ +∇𝑝∗

ℎ
, 𝑢̄−∇𝜙

)
𝑇

∀𝜙 ∈ 1(𝑇 )

⩽ 𝐶‖𝒖ℎ +∇𝑝∗
ℎ
‖0,𝑇 ℎ𝛽𝑇 ‖𝒖̄‖𝐻𝛽 (𝑇 )

⩽ 𝐶ℎ𝛽
𝑇
𝜂𝑇 ‖𝒖̄‖𝐻𝛽 (𝑇 )

ere we used (17a), a Poincare inequality for fractional Sobolev spaces 
, Lemma 3.1]) with a standard scaling argument, and (20). Then, 
 the Cauchy–Schwarz inequality and the integral form of fractional 
bolev norm [10, Chapter 14]),

| = ∑
𝑇∈ℎ

| (𝒖ℎ +∇𝑝∗
ℎ
, 𝑢̄
)
𝑇
|

⩽ 𝐶
⎛⎜⎜⎝
∑
𝑇∈ℎ

ℎ
2𝛽
𝑇
𝜂2
𝑇

⎞⎟⎟⎠
1
2 ‖𝒖̄‖𝐻𝛽 (Ω;ℝ𝑛)

⩽ 𝐶
⎛⎜⎜⎝
∑
𝑇∈ℎ

ℎ
2𝛽
𝑇
𝜂2
𝑇

⎞⎟⎟⎠
1
2 ‖𝑝− 𝑝∗

ℎ
‖0.

To estimate 𝐽2 and 𝐽3, we first note that one can obtain

⋅ 𝒏− 𝑃 0
𝐹
𝒖̄ ⋅ 𝒏‖0,𝐹 ⩽ 𝐶ℎ𝛽‖𝒖̄‖𝐻𝛽 (𝑇 ;ℝ𝑛), 𝐹 ⊂ 𝜕𝑇 (89)

 a trace theorem of fractional Sobolev spaces (see, e.g., [28]), the 
incare inequality for fractional Sobolev spaces, and a standard scaling 
ument. Since 𝒖ℎ ⋅𝒏|𝐹 ∈ 0(𝐹 ) and 𝑃 0

𝐹
(𝛼𝒖ℎ ⋅𝒏−

�
𝑝∗
ℎ

�
) = 0 for 𝐹 ∈ Γ

ℎ

 (74),

𝒖ℎ ⋅ 𝒏−
�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏

⟩
𝐹
=
⟨�
𝑝∗
ℎ

�
− 𝑃 0

𝐹

�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏

⟩
𝐹

(90)

=
⟨�
𝑝∗
ℎ

�
− 𝑃 0

𝐹

�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏− 𝑃 0

𝐹
𝒖̄ ⋅ 𝒏

⟩
𝐹

(91)

 𝐹 ∈ Γ
ℎ
. From (90) and (91), we can obtain either

𝛼𝒖ℎ ⋅ 𝒏−
�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏

⟩
𝐹
| ⩽ 𝜂𝐹 ‖𝛼1∕2𝒖̄ ⋅ 𝒏‖0,𝐹

𝛼𝒖ℎ ⋅ 𝒏−
�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏

⟩
𝐹
| ⩽ 𝐶𝛼1∕2ℎ𝛽

𝐹
𝜂𝐹 ‖𝒖‖𝐻𝛽 (𝑇 ;ℝ𝑛), 𝐹 ⊂ 𝜕𝑇 .

e mean-value zero property (73) gives

𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏

⟩
𝐹
=
⟨�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏− 𝑃 0

𝐹
𝒖̄ ⋅ 𝒏

⟩
𝐹

∀𝐹 ∈ ℎ ⧵Γ
ℎ
,

we can obtain
�
𝑝∗
ℎ

�
, 𝒖̄ ⋅ 𝒏

⟩
𝐹
| ⩽ 𝐶𝜂𝐹 ℎ𝛽−1∕2𝐹

‖𝒖‖𝐻𝛽 (𝑇 ;ℝ𝑛), 𝐹 ⊂ 𝜕𝑇

 𝐹 ∈ ℎ ⧵Γ
ℎ
. Combining all of these estimates,

+ 𝐽3| ⩽ 𝐶 ⎛⎜⎜⎝
∑
𝐹∈Γ

ℎ

min{𝜂𝐹 , 𝛼1∕2ℎ
𝛽

𝐹
𝜂𝐹 }2 +

∑
𝐹∈ℎ⧵Γ

ℎ

ℎ
2𝛽−1
𝐹

𝜂2
𝐹

⎞⎟⎟⎠
1
2

× ‖𝑝− 𝑝∗
ℎ
‖0.

ally, 𝐽4 can be estimated as
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Table 1

The numbers of degrees of freedom (Dofs) and effectivity indices (Eff.) in adaptive solves 
with the manufactured solution (92).
Dofs 407 572 780 1193 1827 2974 4864 7573 11375 17908

Eff. 1.43 1.63 1.62 1.57 1.63 1.57 1.59 1.59 1.55 1.57
Fig. 2. The domain with a vertical fault in numerical experiments (left figure) 
and the graphs of the pressure field in (92) (middle and right figures).

|𝐽4| ⩽ ∑
𝑇∈ℎ

ℎ𝑇

𝜋
‖∇𝑝̄‖0,𝑇 ‖𝑓 − 𝑃ℎ𝑓‖0,𝑇

⩽ ‖𝒖̄‖0 1
𝜋

⎛⎜⎜⎝
∑
𝑇∈ℎ

osc(𝑓,𝑇 )2
⎞⎟⎟⎠
1
2

⩽ 𝐶‖𝑝− 𝑝∗
ℎ
‖0 1
𝜋

⎛⎜⎜⎝
∑
𝑇∈ℎ

osc(𝑓,𝑇 )2
⎞⎟⎟⎠
1
2

by (86), so the conclusion follows. □

Remark 3.8. In Corollary 3.7, if 𝛼 ≪ ℎ
2𝛽
𝐹
, then an improved error bound 

with the a posteriori error estimator terms is obtained. However, the data 
oscillation error term with osc(𝑓, 𝑇 ) is the same, so data oscillation can be 
a dominant factor in error bounds. If 𝑓 ∈𝐻1(Ω), then an improved bound 

osc(𝑓, 𝑇 ) ⩽
ℎ2
𝑇

𝜋
‖𝑓‖1,𝑇 can be obtained for each osc(𝑓, 𝑇 ). This observation 

can explain convergence of ‖𝑝 − 𝑝∗
ℎ
‖0 faster than the one of ‖𝒖− 𝒖ℎ‖0.

4. Numerical results

In this section we present results of numerical experiments. All ex-
periments are done with the finite element package FEniCS (version 
2019.1.0 [22]). In particular, the marked elements for refinement are 
refined using the built-in adaptive mesh refinement algorithm in FEn-
iCS.

In the first numerical experiment let Ω = [0, 1] × [0, 1] with fault Γ =
{1∕2} × [1∕4, 3∕4] ⊂Ω (see the first figure in Fig. 2). The manufactured 
solution (see the middle and right figures in Fig. 2) for this test case is 
given by

𝑝(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑦 <

1
4 or 𝑦 >

3
4

sin 3𝜋𝑥
2 cos2

(
2𝜋
(
𝑦− 1

2

))
if 𝑥 <

1
2 and

1
4 ⩽ 𝑦 ⩽ 3

4

− sin 3𝜋(1−𝑥)
2 cos2

(
2𝜋
(
𝑦− 1

2

))
if 𝑥 >

1
2 and

1
4 ⩽ 𝑦 ⩽ 3

4 .

(92)

We can compute 𝒖 = −∇𝑝 and 𝑓 = div𝒖 on Ω ⧵ Γ. Note that the 
manufactured solutions are not smooth on

{𝑦 = 3∕4,0 ⩽ 𝑥 ⩽ 1 ∶ (𝑥, 𝑦) ∈ Ω},

{𝑦 = 1∕4,0 ⩽ 𝑥 ⩽ 1 ∶ (𝑥, 𝑦) ∈ Ω},

{𝑥 = 1∕2,1∕4 ⩽ 𝑦 ⩽ 3∕4 ∶ (𝑥, 𝑦) ∈ Ω}.

If we take an initial mesh which includes these segments in the set of 
edges, then the manufactured solution (𝒖, 𝑝) is smooth on every trian-
gle. Therefore, the 𝐿2 errors ‖𝒖−𝒖ℎ‖0 and ‖𝑝 −𝑝ℎ‖0 will converge with 
425
optimal convergence rates for uniform mesh refinement. Since 𝑝∗
ℎ
is an 

approximation of 𝑝which is better than or as good as 𝑝ℎ , we only present ‖𝑝 − 𝑝∗
ℎ
‖0 in our numerical experiments. In this experiment, we use the 

lowest order BDM element for 𝑽 ℎ and the piecewise constant element 
for 𝑄ℎ, so the optimal convergence rates of ‖𝒖 − 𝒖ℎ‖0 and ‖𝑝 − 𝑝ℎ‖0
are 2 and 1, respectively. The 𝐿2 errors ‖𝒖− 𝒖ℎ‖0 and ‖𝑝 − 𝑝∗ℎ‖0 up to 
degrees of freedom are given in Fig. 3 (black graph), and one can see 
that ‖𝑝 − 𝑝∗

ℎ
‖0 shows superconvergence. The errors for adaptive mesh 

refinement are also given in Fig. 3 (red graph). As can be seen in Fig. 4, 
mesh refinements are done mostly on the slab 0.25 < 𝑦 < 0.75 because 
the manufactured solution vanishes outside of this slab. Moreover, the 
manufacture solution is smooth on every triangle, so we do not see con-
centration of mesh refinements in this experiment. Nevertheless, one can 
see in Fig. 3 that adaptive mesh refinement gives more optimal conver-
gence of errors up to the numbers of degrees of freedom. The effectivity 
index is computed by√
𝜂2 + 1

𝜋2

∑
𝑇∈ℎ

osc(𝑓,𝑇 )2∕‖𝒖− 𝒖ℎ‖0,
and the values of effectivity index up to adaptive mesh refinements are 
given in Table 1.

In the second set of experiments, we present mesh adaptivity for 
nonsmooth solutions. Since it is difficult to construct nonsmooth man-
ufactured solutions with the fault structure, we show adaptive mesh 
refinement by our a posteriori error estimator for numerical solutions 
with given boundary conditions, 𝛼 = 0.1, 10, 100, and 𝑓 ≡ 1. Assuming 
Ω = [0, 1] × [0, 1] with the same Γ, zero flux boundary conditions are 
imposed on the top and bottom boundary components {(𝑥, 𝑦) ∈ Ω ∶ 0 ⩽
𝑥 ⩽ 1, 𝑦 = 0 or 𝑦 = 1} of 𝜕Ω, and 𝑝 = 0 on the left side, 𝑝 = −1 on the 
right side, are imposed.

Here we use the lowest-order Raviart–Thomas element for exper-
iments. Since 𝑓 ≡ 1, the data oscillation terms vanish. Moreover, 𝜂𝑇
vanishes for all 𝑇 ∈ ℎ because local shape functions of the lowest order 
Raviart–Thomas element (10) with 𝑘 = 1 is included in ∇𝑄∗

ℎ
(𝑇 ) space 

(cf. (14)) with 𝑘 = 1. Therefore, only {𝜂𝐸}𝐸∈0
ℎ
∪Γ
ℎ

gives meaningful val-
ues. Since 𝜂𝐸 ’s are quantities on edges, which are difficult to visualize, 
we define {𝜂̃Γ,𝑇 }𝑇∈ℎ and {𝜂̃0,𝑇 }𝑇∈ℎ by

𝜂̃2Γ,𝑇 ∶=

{
1
2
∑
𝐸⊂𝜕𝑇∩Γ(𝜂2𝐸 ) if 𝜕𝑇 ∩ Γ ≠ ∅

0 otherwise
,

𝜂̃20,𝑇 ∶=

{
1
2
∑
𝐸⊂𝜕𝑇 ⧵Γ 𝜂

2
𝐸

if 𝜕𝑇 ∩ Γ = ∅
0 otherwise

,

and look at the distributions of {𝜂̃Γ,𝑇 } and {𝜂̃0,𝑇 }. In Figs. 5 and 6, distri-
butions of {𝜂̃Γ,𝑇 } (left) and {𝜂̃0,𝑇 } (right) are presented for 𝛼 = 0.1, 100. 
In these results we can see that the quantities of 𝜂𝐸 on the faults are not 
significant whereas the quantities of 𝜂𝐸 near the fault are much larger. 
Moreover, the boundary conditions on the top and bottom boundaries 
do not give large a posteriori error estimator values near the bound-
aries. In Fig. 7, we presented the 3rd, 7th, 10th mesh refinements for 
𝛼 = 0.1, 100. In both cases, mesh adaptivity is obvious concentrating 
near the two endpoints of the fault. However, one can see that the fault 
with 𝛼 = 100 (low permeable fault) needs more refinements near the 
internal fault segment. We believe that this is because the low perme-
ability fault (𝛼 = 100) can cause more drastic pressure changes near the 
fault, so the solution regularities are lower than the ones of true solu-
tions with 𝛼 = 0.1. To see efficiency of adaptive schemes, we give two 
comparison graphs of 𝜂 and the degrees of freedom in Fig. 8. The results 
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Fig. 3. Comparison of convergence of errors for uniform and adaptive refinements. The errors are computed with the manufactured solution (92). Pressure errors 
are computed with the post-processed pressure 𝑝∗

ℎ
.

Fig. 4. The initial, and the 3rd, 6th, 9th refined meshes in adaptive solves with 
the manufactured solution (92).

clearly show that adaptive methods are more efficient, quantitatively 
about 6.9 times for 𝛼 = 0.1 and about 2.3 times for 𝛼 = 100.

In the last experiment we solve the equation with 3 faults and present 
mesh refinement history. The 3 faults have different 𝛼 values (see Fig. 9
for details). We still observe that mesh refinements are concentrated at 
the ends of faults. The comparisons of 𝜂 and the degrees of freedom 
for uniform and adaptive meshes are given in Fig. 10. The efficiency 
of adaptive methods is not as high as the single fault examples. This 
is probably because irregular solutions due to the multiple faults give 
large 𝜂 values on most regions of the domain, so refined meshes by a 
posteriori error estimator are not so different from uniform refinements.
426
Fig. 5. Distribution of {𝜂̃Γ,𝑇 } (left), {𝜂̃0,𝑇 } (right) in the initial and the first mesh 
refinement for 𝛼 = 0.1 (color scale: white = 0, black = 2.0e-4).

5. Conclusion

In this work we studied a recovery type a posteriori error estimator 
of the Darcy flow model with Robin-type interface conditions. The reli-
ability and the local efficiency of the estimator are proved. In contrast 
to the previous work in [20], we developed a new 𝐻(div)-based proof 
using a modified Helmholtz decomposition, a modified Scott–Zhang in-
terpolation, edge/face-wise integration by parts. Moreover, we proved 
that the post-processed pressure is bounded by the estimator, and a su-
perconvergent upper bound can be obtained under a (partial) elliptic 
regularity assumption of the dual problem. Numerical test results are 
included to illustrate the adaptivity results of our estimator.
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Fig. 6. Distribution of {𝜂̃Γ,𝑇 } (left), {𝜂̃0,𝑇 } (right) in the initial and the first mesh 
refinement for 𝛼 = 100 (color scale: white = 0, black = 4.5e-4).

Fig. 7. The 3rd, 7th, 10th adaptive mesh refinements for 𝛼 = 0.1 (left) and for 
𝛼 = 100 (right).

6. Appendix: integration by parts identities

In this section we present identities from the integration by parts 
that we used in the paper.

In this section (𝑎1 ⋯ 𝑎𝑛)𝑡 denotes the column vector with entries 
𝑎1, ⋯ , 𝑎𝑛. For differentiable functions 𝜙 ∶ ℝ2 → ℝ, Ψ ∶ ℝ2 → ℝ2 with 
Ψ = (Ψ1 Ψ2)𝑡, we define curl and rot by

curl𝜙 =
(
−𝜕𝑦𝜙
𝜕𝑥𝜙

)
, rot Ψ = −𝜕𝑦Ψ1 + 𝜕𝑥Ψ2. (93)

For a triangle 𝑇 ⊂ ℝ2, 𝒏𝜕𝑇 is the outward unit normal vector field on 
𝜕𝑇 and 𝒕𝜕𝑇 is the unit tangential vector field along the counterclock-
wise direction of 𝜕𝑇 . Denoting 𝒏𝜕𝑇 by 𝒏𝜕𝑇 = (𝑛1 𝑛2)𝑡, note that 𝒕𝜕𝑇 =
(−𝑛2 𝑛1)𝑡. By the integration by parts,

∫
𝑇

curl𝜙 ⋅Ψ𝑑𝑠 = ∫
𝑇

(−𝜕𝑦𝜙Ψ1 + 𝜕𝑥𝜙Ψ2)𝑑𝑠

= ∫
𝑇

∇𝜙 ⋅
(

Ψ2
−Ψ1

)
𝑑𝑠 (94)

= ∫
𝜕𝑇

𝜙

(
𝑛1
𝑛2

)
⋅
(

Ψ2
−Ψ1

)
𝑑𝑙 − ∫

𝑇

𝜙(𝜕𝑥Ψ2 − 𝜕𝑦Ψ1)𝑑𝑠

= ∫
𝜕𝑇

𝜙

(
−𝑛2
𝑛1

)
⋅
(
Ψ1
Ψ2

)
𝑑𝑙 − ∫

𝑇

𝜙 rot Ψ𝑑𝑠

= ∫
𝜕𝑇

𝜙𝒕𝜕𝑇 ⋅Ψ𝑑𝑙 − ∫
𝑇

𝜙 rot Ψ𝑑𝑠

and for 𝐸 ⊂ 𝜕𝑇 ,

∫
𝐸

curl𝜙 ⋅ 𝒏𝜕𝑇 𝑑𝑙 = ∫
𝐸

(
−𝜕𝑦𝜙
𝜕𝑥𝜙

)
⋅
(
𝑛1
𝑛2

)
𝑑𝑙

= ∫
𝐸

∇𝜙 ⋅
(
𝑛2
−𝑛1

)
𝑑𝑙 (95)

= −∫
𝐸

∇𝜙 ⋅ 𝒕𝜕𝑇 𝑑𝑙.

Let 𝐹 be a triangle in the 𝑥𝑦-plane in ℝ3 and 𝒏𝜕𝐹 = (𝑛1 𝑛2 0)𝑡 be the 
unit outward normal vector field of 𝐹 in ℝ3. The tangential vector field 
on 𝜕𝐹 in ℝ3 is 𝒕𝜕𝐹 = (−𝑛2 𝑛1 0)𝑡. For differentiable functions 𝜙 ∶ℝ3 →
ℝ, Ψ ∶ℝ3 →ℝ3 with Ψ = (Ψ1 Ψ2 Ψ3)𝑡, 𝒏𝐹 ∶= (0 0 1)𝑡, we get

𝒏𝐹 ×Ψ=
⎛⎜⎜⎝
−Ψ2
Ψ1
0

⎞⎟⎟⎠ , curlΨ ⋅ 𝒏𝐹 = 𝜕𝑥Ψ2 − 𝜕𝑦Ψ1. (96)

By these identities and the 3rd equality in (94),

∫
𝐹

curlΨ ⋅ 𝒏𝐹 𝜙𝑑𝑠

= ∫
𝐹

(𝜕𝑥Ψ2 − 𝜕𝑦Ψ1)𝜙𝑑𝑠

= −∫
𝐹

(
−𝜕𝑦𝜙
𝜕𝑥𝜙

)
⋅
(
Ψ1
Ψ2

)
𝑑𝑠+ ∫

𝜕𝐹

𝜙

(
𝑛1
𝑛2

)
⋅
(

Ψ2
−Ψ1

)
𝑑𝑙 (97)

= ∫
𝐹

(
𝜕𝑥𝜙

𝜕𝑦𝜙

)
⋅
(
−Ψ2
Ψ1

)
𝑑𝑠+ ∫

𝜕𝐹

𝜙

(
−𝑛2
𝑛1

)
⋅
(
Ψ1
Ψ2

)
𝑑𝑙

= ∫ ∇𝜙 ⋅ (𝒏𝐹 ×Ψ)𝑑𝑠− ∫ 𝜙𝒕𝜕𝐹 ⋅Ψ𝑑𝑙.
427
𝐹 𝜕𝐹
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Fig. 8. Comparison of 𝜂 for uniform and adaptive mesh refinements for 𝛼 = 0.1 (top) and 𝛼 = 100 (bottom).
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