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Abstract: Partial differential equation (PDE) is an important math tool in science and en-
gineering. This paper experimentally demonstrates an optical neural PDE solver by lever-
aging the back-propagation-free on-photonic-chip training of physics-informed neural net-
works. © 2025 The Author(s)

1. Introduction

Partial differential equation (PDE) is one of the most important math tools in science and engineering. Examples
include electromagnetic modeling and thermal analysis of IC chips [1], medical imaging [2], safety verification of
autonomous systems [3]. Discretization-based solvers (e.g., finite-difference and finite-element methods) convert
a PDE to a large-scale algebraic equation via spatial and temporal discretization. Solving the resulting algebraic
equation often requires massive digital resources and run times. Physics-informed neural network (PINN) is a
promising discretization-free and unsupervised approach to solve PDEs [4]. PINN uses the residuals of a PDE
operator and the boundary/initial conditions to set up a loss function, then minimizes the loss to train a neural
network as a global approximation of the PDE solution. However, current PINN training typically needs several to
dozens of hours on a powerful GPU, hindering the deployment of an real-time neural PDE solver on edge devices.

Optical neural networks (ONNSs) provide a promising high-throughput, low-energy-consumption, low-latency,
and high-parallelism solution. However, training PINNs on a photonic chip is very challenging. It is hard to realize
training on photonic chips with back propagation (BP) due to 1) BP needs extra memory and photonics hardware
to implement backward computation graphs and 2) BP needs a fully differentiable neural network, requiring a
calibration process to accurately model the on-chip noises and imperfections. Several BP-free [5] and in-situ BP
methods [6] are proposed, but they all have poor scalability. This problem becomes more severe in PINN training
since the loss function also includes derivative terms, requiring multiple BPs.

In this paper, we experimentally demonstrate an optical neural PDE solver by calibration-free and BP-free
on-chip training of PINNs. We leverage a photonics-friendly back-propagation-free training algorithm [7] and
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Fig. 1: (a) PINN framework. (b) Comparison between first-order training and zeroth-order training. (c) First-order training
framework of PINN. (d) Zeroth-order training framework of PINN proposed in this work.
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Fig. 2: (a) Schematic of the 1 x4 MRR weight bank. (b) Microscope image of the weight bank and the schematic of the
experimental setup for on-chip training. (c) Weight curves of the four MRRs.

implement it on a photonics Al chip (a 1x4 micro-ring resonator (MRR) weight bank). The on-chip training
experiment learns a solution for a one-dimensional heat equation with SE-3 mean ¢, error after 1000 iterations of
update, which experimentally validates our concepts of training PINN on an optical chip to solve a PDE.

2. Principle and Architecture

Fig. 1(a) shows the PINN architecture. A PINN is a feed-forward neural network parameterized by 0 that uses the
output i(x,t) = fg(x,7) to approximate the PDE solution u(x,#), where x and ¢ repersent the spatial and temporal
dimensions, respectively. We give an example of training a PINN to solve a heat equation with one (1) spatial
dimension (x) and one (1) temporal dimension (¢): u; = #uxx. The initial condition is u(x,0) = sin(7x), and
boundary conditions are u(0,¢) = 0; u(1,¢) = 0. During training, 8 are updated to minimize a physics-informed
loss function . = %, + % + -%p. £, -%0,-L), measure how well the approximation & complies with the PDE
operator, the initial conditions, and boundary conditions that describe the physics laws of a system, respectively.
Fig. 1(b) gives a comparison between first-order training and zeroth-order training. First-order training has a faster
convergence rate since it utilizes the gradient information to guide the parameter update direction. However, as
shown in Fig. 1(c), implementing first-order training on photonics hardware to train a PINN requires 1) additional
photonics chip design for back propagation computation, which poses expensive hardware overhead and 2) an
accurate and differentiable model of photonics devices, which requires an exhaustive calibration process to model
the fabrication error. Moreover, since unknown environmental noises always exist, such modeling is not ideally
accurate. To address the challenge of implementing PINN training on photonics hardware, we design our BP-
free training with zeroth-order (ZO) optimization (Fig. 1(d)). The training uses forward propagation only by
repeatedly calling a photonics inference accelerator. Since zeroth-order training does not require a differentiable
neural network model, we can directly optimize the tunable parameters of photonic devices (e.g., voltage values
of a micro ring resonators, phase shifter values of Mach-Zehnder interferometers) to minimize the training loss.
The fabrication errors and other unknown environmental noises can be mitigated on-the-run, thus a pre-calibration
process is not required.

3. Experimental Demonstration

We experimentally demonstrated the optical neural PDE solver for the heat equation by training a small-scale
PINN. The PINN contains a feed-forward neural network with two hidden layers, as shown in Fig. 1(a). The scale
of the weight matrices are 2x4, 4x4, 4x4, and 4x 1, respectively. The weight matrices are computed by 1x4
tiles in different clock cycles with time multiplexing. The 1x4 tile is implemented by a 1 x4 microring resonator
(MRR) weight bank, as shown in Fig. 2(a). Using the wavelength division multiplexing (WDM) technology, by
encoding the input data at A1, A;, A3, A4, the data can multiply with each of the MRR weights wy,w,w3,wy, and a
photodetector at output can compute A;w; + Aawy + Azws + Agws. Fig. 2(b) shows the experimental setup and the
microscope image of the MRR weight bank chip fabricated at AMF foundry. Fig. 2(c) shows the weight curves
with different thermal tuning voltages, indicating the tuning range of the weight values from O to 1. The variances
of the weight curves among different MRRs caused by fabrication errors can be mitigated by our BP-free on-chip
training without the need for pre-calibration.

Simulation Results. We first numerically simulate the BP-free on-chip training under different bit precisions.
We use an experimentally measured voltage-weight look-up table [as shown in Fig. 2(c)] to model the MRR
weight banks. The learned PDE solution is compared with the ground-truth solution by the mean ¢, error on a
hold-out test point set unseen during training. The solutions are visualized with heatmaps. Each pixel indicates the
value of the PDE solution u(x,t). Fig. 3(a) visualizes the ground truth solution and learned solutions. With a low
bit accuracy (8-bit), the neural network cannot learn the governing physics due to the restricted expressive power.
The results indicate the affect of bit accuracy on the performance of on-chip PINN training.
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Fig. 3: Comparison between the ground truth solution and learned solutions of (a) BP-free training simulation and (b)
experimentally demonstrated BP-free on-chip training. (c) The ¢, error curve of on-chip training. (d) The ¢, error curve
comparison between on-chip training and different simulation setups.

Hardware Demo. Then, we experimentally demonstrated our BP-free training on the fabricated photonic chip.
A tunable laser and photodetector are used to measure the spectrum of the MRR weight bank at different tuning
voltages, as shown in Fig. 2(b). Four voltage sources are used for thermally tuning the MRRs. The weight values
are read out at the four resonances of the MRRs. Fig. 3(b) visualizes the learned solution after on-chip training,
and Fig. 3(c) shows the ¢, error curve. The decreasing ¢, error shows that on-chip training gradually captures the
governing physics laws described by PDE even under fabrication errors, environmental noise, etc. However, the
limited bit accuracy of analog computation limits the accuracy of the final learned solution. Fig. 3(d) shows the
£, error curve comparison between on-chip training and simulation results with different bit accuracy setups. The
experimentally demonstrated on-chip training showcases the bit accuracy between 8-bits and 10-bits.
4. Conclusion

In this paper, we have experimentally demonstrated an optical neural PDE solver for solving heat equations,
using BP-free on-chip training of PINNs. The experiment results learn the solution with SE-3 mean ¢, error. To
scale up the optical on-chip training framework for real-size PINN (e.g., 1000 neurons per layer), the tensor-train
decomposed PINN (TT-PINN) [8,9] implemented on an energy-efficient tensorized ONN (TONN) [10] inference
accelerator is a promising approach.
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