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Abstract
The increasing prevalence of software vulnerabilities ne-

cessitates automated vulnerability repair (AVR) techniques.

This Systematization of Knowledge (SoK) provides a compre-

hensive overview of the AVR landscape, encompassing both

synthetic and real-world vulnerabilities. Through a systematic

literature review and quantitative benchmarking across diverse

datasets, methods, and strategies, we establish a taxonomy of

existing AVR methodologies, categorizing them into template-

guided, search-based, constraint-based, and learning-driven

approaches. We evaluate the strengths and limitations of these

approaches, highlighting common challenges and practical

implications. Our comprehensive analysis of existing AVR

methods reveals a diverse landscape with no single “best”

approach. Learning-based methods excel in specific scenarios

but lack complete program understanding, and both learning

and non-learning methods face challenges with complex vul-

nerabilities. Additionally, we identify emerging trends and

propose future research directions to advance the field of AVR.

This SoK serves as a valuable resource for researchers and

practitioners, offering a structured understanding of the current

state-of-the-art and guiding future research and development

in this critical domain.

1 Introduction

The relentless increase in software vulnerabilities poses a

critical challenge for organizations, with consequences rang-

ing from financial loss to reputational damage [1, 2]. This

challenge is compounded by the limitations of manual repair

processes, which are often slow, error-prone, and struggle to

keep up with the volume of necessary fixes. Furthermore,

numerous known vulnerabilities remain unpatched for ex-

tended periods, leaving systems exposed [3–5]. Automatic

Vulnerability Repair (AVR) has emerged as a vital field to

address these challenges, offering the potential to significantly

reduce the time and resources to mitigate security risks.

AVR has witnessed significant progress, evolving from

the template-based approach that applied predefined repairs

(often inflexible), random mutation, to more sophisticated

approaches [6–8]. For example, constraint-solving techniques,

often deriving constraints from symbolic execution, can be

computationally expensive [9, 10]. Deep learning offers an

end-to-end translation approach, but its effectiveness hinges on

high-quality vulnerability repair datasets [11–13]. Currently,

large language models (LLMs) show promise due to their vast

training data, although limitations persist in function-level

repairs and comprehensive program understanding [14–16].

Given the rapid growth of this field, a SoK is crucial to

understand the landscape. This SoK aims to: (1) Bridge

knowledge gaps by analyzing AVR approaches across syn-

thetic data and real-world vulnerabilities. (2) Offer critical

insights into the strengths and limitations of current work.

(3) Propose promising future research directions. In this pa-

per, we establish a taxonomy of existing AVR methodologies,

grounded in fundamental principles, and conduct a quantita-

tive comparison of current approaches. This SoK provides a

comparative analysis of security patch generation methods,

complexity levels, impact factors for successful repair, and

vulnerability types, revealing a multifaceted landscape. We

assess both synthetic and real-world vulnerabilities, finding

no definitive “best” method; each has inherent limitations. For

example, learning-based methods lack whole-program under-

standing, while non-learning methods struggle with precise

constraint extraction, e.g., loop invariant synthesis. Based on

our taxonomy and benchmarks, we analyze current research

advancements, theoretical challenges, and future directions in

AVR. Our findings indicate that performance across existing

works varies significantly depending on the benchmark used,

which often suffer from limited data points. We propose sev-

eral compelling research directions to advance AVR, including

the integration of hybrid approaches, interpretability of AVR,

and the generation of high-quality specifications.

This SoK benefits both experts and practitioners. For se-

curity engineers, it provides (1) a systematic taxonomy to

understand existing research; (2) analysis for leading repair

methods; and (3) insights into limitations and future potential.

Practitioners gain (1) a concise problem definition of vulnera-
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bility repair and (2) a comprehensive evaluation with practical

implementations of key approaches. In summary, we have the

following key contributions:

• We define the core problem of security vulnerability repair

and provide a comprehensive taxonomy and comparative

analysis of repair approaches (Section 3), with a focus on

patch generation techniques (Section 4). This discussion

culminates in actionable takeaways and clearly identified

open research questions.

• Our taxonomy classifies security patch generation ap-

proaches by 4 categories, 5+ strategies, 11+ methodologies,

5+ programming languages, and 12+ vulnerability types.

• We conduct quantitative evaluations of existing methods

across C/C++ and Java benchmarks. We synthesize practical

implications and highlight prevalent challenges in AVR,

offering a critical assessment of the field’s progress.

• We explore the latest research trends, identify ongoing

challenges and propose directions for future work. Through

quantitative and qualitative analysis, we highlight gaps in

current techniques and extract key findings to guide future

advancements in AVR. We will keep our website ( http

s://sok-avr.github.io/) updated with all the latest

studies and findings to promote the research in this field.

Related Work. This study mainly differs from existing sur-

veys in the following three aspects: (i) Existing works [17–23]

focus on program repair from a general perspective rather

than a security-specific one. For instance, Huang et al.[22]

briefly discusses security vulnerabilities in the context of

learning-based methods, Monperrus et al.[19] include only

a subset of AVR-related papers, and Pinconschi et al. [20]

demonstrated that general program repair tools perform poorly

on vulnerability repair. These gaps highlight the need for our

security-focused analysis. (ii) existing surveys on vulnera-

bility repair focuses on LLM for AVR [14, 24], however,

traditional methods (e.g., constraint-based methods) for AVR

continue to evolve and demonstrate effectiveness in recent

research [25, 26]; (iii) Prior surveys lack a systematic com-

parison across different AVR approaches. Our study bridges

these gaps by providing both quantitative benchmarking across

diverse datasets and qualitative analysis of various approaches,

enabling researchers to better understand the current landscape

and identify promising future research directions in AVR.

2 Preliminaries and Problem Setup

Figure 1 shows the timeline from vulnerability discovery

to CVE publication and vulnerability repair process. The

timeline from vulnerability discovery to CVE publication

typically involves several key stages. Initially, the exact dis-

covery time of a vulnerability is often unknown. CVEs are

usually published after a vendor releases a patch, but in urgent

cases or due to lack of cooperation, they may be disclosed

before a patch is available. A vulnerability is classified as a
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Figure 1: The timeline of vulnerability discovery, patch release,

and exploit publication.

zero-day until a patch is released, after which it becomes an

N-day vulnerability. The main goal of AVR is to minimize

the vulnerability exposure window. The vulnerability repair

workflow includes three key components: vulnerability local-

ization (VL), security patch generation (SPG), and security

patch validation (SPV). Below we detail each repair stage and

further illustrate its relationship to program repair.

2.1 Vulnerability Localization

VL identifies the precise location or source of vulnerabilities

within an application. This process involves pinpointing spe-

cific program points (i.e., specific locations within a program,

e.g., lines of code, statements) where vulnerabilities exist and

can be exploited, and then finding the point at which the “root

cause” of the bug can be fixed [27].

Definition 1. We denote % as an original vulnerable

program. Given + as the set of identified vulnerabilities

within %, each vulnerability E ∈ + is associated with a subset

of program points %)E ⊆ %) , where %) is the set of all program

points in %. The vulnerability localtion ! is the exact program

point where the vulnerability E manifests can be fixed.

Accurately locating vulnerabilities is crucial for AVR, as

crash points often differ from actual vulnerability locations,

which are actionable for patching [27]. Early methods used

slice-based VL: (1) static slicing analyzes control and data flow

dependencies through dependency graphs but often includes

irrelevant statements [28]; (2) dynamic slicing [29] records

execution-specific data and control flow to extract relevant

statements for given inputs [30]. Further, program state-based

methods (e.g., delta debugging [31]) analyze runtime state

changes by comparing states from successful and failed execu-

tions to pinpoint root causes. However, these methods are com-

putationally expensive. In contrast, spectrum-based methods

efficiently locate faults using only test coverage information

by analyzing statement execution patterns in failed/passed

tests and calculating suspiciousness scores [32].

Statistical reasoning like ConcFuzz [27], combines fuzzing

near exploit paths with statistical analysis for precise VL.

Building on this, learning-based methods further improve

detection. For example, Xu et al. [32] locates vulnerabilities

using reinforcement learning-guided fuzzing to generate coun-
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terexamples, combined with spectrum-based methods for VL.

Recently, LLMs have shown potential in VL, Zhang et al. [33]

transforms the VL task into a sequence labeling problem,

where each line of code is classified as either “vulnerable” or

“non-vulnerable”, which has achieved 82.0% F1 score.

2.2 Security Patch Generation

A security patch is created to fix existing vulnerabilities, with

the goal of making the program secure after applying it [34]. In

contrast, non-security patches address issues like functionality

bugs, feature updates or performance improvements. SPG is

the process of creating critical patches for vulnerable code

segments to effectively repair existing vulnerabilities.

Definition 2. Given a vulnerable program %,with identified

vulnerabilities + at the specific locations !, a security patch

%′ is a modified version of %. The process of generating

%′ involves modifying % at each location ; in ! to fix the

vulnerabilities present at that location.

2.3 Security Patch Validation

After generating security patches, the pivotal step is to verify

the if the patchfixes the given vulnerability without introducing

any new bugs [35, 36] while maintaining correct program

behavior [37, 38]. We define SPV as:

Definition 3. (%+ (%,%′) evaluates if %′ meets the follow-

ing criteria: (i) fix the given vulnerability in %; (ii) ensure no

new bugs or vulnerabilities are introduced; (iii) preserve the

original functionality of %. If all these three conditions are

satisfied, the patch is deem to be an effective security fix.

Li et al. [3] found approximately 12% of security patches

are defective - with 7% fail to fully fix the target vulnerabil-

ity, while 5% introduce new ones. The validation employs

three main approaches: (1) Static analysis using code fea-

tures [39, 40], expert rules [41], etc. to assess patch correctness

without execution. For example, S3 [40] prioritizes patches

by analyzing six static features measuring syntactic and se-

mantic differences from buggy code; (2) Dynamic testing

through test cases/exploits [42–45], execution traces [46] to

test the patched code for verifying expected behavior; and (3)

Formal methods [47, 48] like PATCHVERIF [47] used sym-

bolic execution and physical invariant checks verify whether

patch-introduced behavioral modifications meet expectations.

Nowadays, LLMs like LLM4PatchCorrect [49] have been ap-

plied to predict patch correctness using contextual information

from execution traces, bug descriptions. Despite this, human

effort is still required in some AVR works (See in Section 3).

2.4 Security Vulnerability Repair

Problem Definition. Security Vulnerability Repair (SVR)

involves generating %′ by modifying a vulerable program % at

identified locations ! to fix vulnerabilities + , ensuring that %′

satisfies the correctness criteria �. The objective is to find an

appropriate repair function � that meets these requirements

and (%+ (%,%′) == )AD4.

The three key statges of SVR (i.e., VL, SPG, and SPV)

work in tandem to ensure effective SVR. VL identifies the

exact program points ! of vunlnerabilities+ , providing inputs

for SPG to generate patches that transform the vulnerable

program % into repaired program %′. SPV verifies that %′

fixes the vulnerabilities,preserves functionality, and introduces

no new issues. These stages are interdependent, as errors in

localization can propagate through SPG, while SPV feedback

guides earlier steps, ensuring an iterative and reliable SVR.

2.5 Automatic Vulnerability Repair v.s. Auto-

matic Program Repair

AVR is a subset of Automatic Program Repair (APR).

While both aim to automate the repair process and share

fundamental stages—localization, patch generation, and patch

validation—they differ significantly in principles, assumptions,

and input settings, particularly during the patch generation

phase, which introduces unique challenges for AVR.

APR primarily targets general software issues, such as

functional bugs [50, 51] and compilation errors [52–54]. In

contrast, AVR focuses on vulnerabilities, requiring patches

that both eliminate exploitable behaviors and preserve the pro-

gram’s functional invariants. This dual requirement introduces

additional complexity to the repair synthesis.

APR and AVR also differ in their assumptions. Traditional

APR assumes program correctness can be fully captured

through comprehensive test cases, while AVR relies on spe-

cific security properties and exploit conditions. Despite this

difference, both approaches share the belief that effective re-

pairs can be derived from patterns observed in historical fixes,

enabling learning-based approaches in both fields.

The distinction in assumptions is most evident in their

input requirements. APR typically relies on test suites to

guide the repair process, while AVR operates with a single

Proof-of-Concept (PoC) exploit that demonstrates the vulner-

ability. This limited information introduces unique technical

challenges for AVR, as it must simultaneously ensure vul-

nerability elimination and functionality preservation without

comprehensive test coverage.

3 Taxonomy of Automatic Vulnerability Repair

Approaches

Selection Methodology. We conducted a systematic literature

search focused on AVR using four search queries: “security

patch generation”, “vulnerability repair”, “program repair +

vulnerability” and “vulnerability patching”. The search was

performed on cspapers.org automatically, limiting results

to the domains of Computer Security, Software Engineering,

and Programming Languages. Initial results yielded 4,883

unique papers published between 2018 and 2024.9. To increase
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Table 1: Properties and References of Security Patch Generation Approaches.
Category Strategy Methodology Language 1 Fix Level 2 Repair Input 3 Vulnerability Target 4 Test Suites 5 References

Template

Guided

C/C++ S FC GN % [55]

C/C++ S S Buffer Overflow % [6, 56–58]

C/C++ S P Memory Error % [7, 59–61]

C/C++ S P Integer Overflow % [62, 63]

C/C++ S S Integer Overflow % [8, 58]

Vulnerability Rust S P Buffer Overflow % [64]

Property C/C++ S FC Error Handling Bugs % [65]

Solidity BT FC Reentrancy, Acc Ctrl, Arithmetic, Uncheck LL Calls % [66–68]

Solidity S FC Arithmetic, Reentrancy % [69]

Template Solidity S S, FC, P Reentrancy, Miss.Input.Vald., Lock.Ether, Unhandl.Except. % [70]

Construction Java S S SQL Injection % [71]

Java S P Null Pointer Deref. % [72]

/ S S Denial of Service % [73]

Java S P Cryptographic Misuses % [74, 75]

Summaried Java S P GN % [76]

From Java S S GN % [45]

Patches C/C++/Java S P Null Pointer Deref. % [25]

C/C++ B P GN % [77]

Search

Based

Random C/C++ S S GN " [41, 78–81]

Mutation C/C++ S P GN " [10]

Mutation Java S FL Null Pointer Excep. " [82]

Based Pattern C/C++ S P Information Flow Leakage % [83]

Driven Java S P Null Pointer Excep. % [84]

Mutation Solidity S P GN % [85]

Security PHP S P Injection Vulnerabilities % [86]

Semantic Patch C/C++ S S GN % [87, 88]

Code Transplantation C/C++ S P GN " [89]

Search PHP S S Access Control Bugs % [90]

Code C/C++ B FC GN % [91]

Similarity Java S S Null Pointer Deref. % [92]

C/C++ S S Resource/Memory Leak, Null Pointer Deref. % [92]

Constraint

Based

C/C++ S FC Memory Leak " [93]

Static C/C++ B FC GN " [94]

Analysis / S P Null Pointer Deref., Data Leakage % [95]

C/C++ S P Null Pointer Deref., Data Leakage % [25]

Constraint / S S Denial of Service " [96]

Extraction C/C++ S FC GN " [97–99]

Symbolic C/C++ S P GN " [9]

Execution C/C++ S S GN " [100, 101]

C/C++ B FC GN % [102]

Dynamic C/C++ S P GN " [9, 103]

Analysis C/C++ S P GN " [104]

C/C++ B FC GN % [91]

Formal C/C++ S P GN " [10]

Methods / / / Trigger Action Programming " [26]

Learning

Based

Training Deep Learning
C/C++ S FC GN % [13, 105]

Java S S GN % [12]

Fine-tuning
Adaption C/C++ S S GN % [106]

Interaction C/C++ S FC GN % [107]

Prompt Zero-shot C/C++/Java S FC GN % [14, 15, 108–112]

Engineering Few-shot C/C++ S FC GN % [16, 113]

Chain-of-thought C/C++/Java/Solidity S FC GN % [114–117]

LLM Multi-LLM C/C++/Java S FC GN % [118]

Integration LLM-External Tool C/C++/Java S FC GN " [117, 119]

1 Language: Programming language that SPG method targets at, “/" indicates no specific language is targeted or not a programming language.
2 Fix Level: The level at which security patches are generated: "S" for source code level, "B" for binary, and "BT" for bytecode.
3 Repair Input: Granularity of Input considered for SPG, from statements (S), functions (FC), and files (FL), to projects (P).
4 Vulnerability Target: Classifies methods by the vulnerabilities they address. “GN” means not target specific vulnerabilities.
5 Test: Whether test suites are required for SPG. “"” indicates test suites are needed, “%” means they are not.

relevance, we applied filtering criteria requiring papers to have

a relevance score above 0.5 and contain at least one of the fol-

lowing keywords in their abstracts: “security”, “vulnerability”,

“repair”, “patch”, or “fix”. This filtering process resulted in 267

unique papers. These papers underwent detailed review by two

authors, spending about 45 minutes per paper to determine

if the paper targets AVR, with weekly consensus meetings to

resolve disagreements. Through this manual review process,

we identified 23 core papers for AVR. Finally, we applied both

forward and backward snowballing like [120, 121] to examine

referenced and citing papers, identifying additional 56 AVR

papers, which cross 2006 to 2024.9, the process terminated

when no new methodologies, strategies, programming lan-

guages on AVR were found in two consecutive iterations. The

final collection comprises 79 papers, with 67 ranked A/A*

on CORE2023 [122], a computing research venue ranking

system where A/A* represents the top 20% venues.

Analysis Methodology. To analyze each paper, we em-
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Figure 2: Taxonomy of Automated Vulnerability Repair approaches. Boxes with blue background present the taxonomy of

security patch generation methods. Boxes with green background show the taxonomy of security patch validation approaches.

ployed a systematic approach to analyze each paper, exam-

ining three key dimensions: (1) The core components and

methodologies used in AVR; (2) The effectiveness and target

vulnerabilities types; (3) The strengths and limitations of

each approach. We analyze each paper using a standardized

rubric evaluating technical architecture, vulnerability types

addressed, repair strategies with their theoretical foundations,

experimental validation, and limitations. Uncertainty and in-

consistencies were resolved through group discussion. This

analysis revealed fundamental distinctions between learning-

based and non-learning approaches. Within non-learning

approaches, we identified three distinct categories: template-

guided approaches using predefined templates, search-based

approaches exploring security patch spaces or vulnerable

states, and constraint-based approaches that formalize repairs

through constraint extraction and solving. Further analysis

within each category revealed distinct strategies, leading to

our complete hierarchical taxonomy.

Figure 2 presents a hierarchical taxonomy, categorizing

repair approaches into SPG and SPV (assuming successful

vulnerability localization). SPG approaches are further classi-

fied into three levels: (i) broad categories (Template-Guided,

Search-Based, Constraint-Based, and Learning-Driven), (ii)

specific strategies within each category, and (iii) core method-

ologies. A detailed analysis of these approaches is provided in

Section 4. SPV, classified into manual check, static analysis,

dynamic analysis, and formal verification, shows a strong pres-

ence of manual in AVR practices (56 out of 79 AVR papers),

either as a standalone approach or in combination with other

methods. While VL is a critical prerequisite step for AVR,

AVR papers often stress their core contribution to SPG, with

15 papers even assume known vulnerability locations.

Properties of Security Patch Generation approaches. From

Table 1,we observe different features underdifferent categories.

For Language, 66 out of 79 papers focus on C/C++/Java,

others focus on other languages (e.g., Rust). Notably, one

paper [26] focus not on programming language but on natural

language. This language distribution aligns with real-world

trends: C/C++ dominate memory-safety issues [123, 124],

while Rust sees limited AVR coverage due to its newness. For

Fix Level, only 4 provide AVR at the binary level, despite

the importance of binary-level defense in deployed software

systems [125]. Notably, 3 out of 6 non-learning-based studies

on Solidity focus on bytecode-level instead of source-code

level due to source code availability (0.3%) [68]. For Repair

Input, current learning-based methods typically operate at

statement-level or function-level repair input. This contrasts

with other approaches, which offer support across all four input

levels for repair, depending on the specifics of their imple-

mentation. Additionally, in the process of generating security

patches, both learning-based and template-guided methods

do not require the involvement of test cases or exploits. In

contrast, other approaches may necessitate test cases/exploits,

depending on their specific implementation details. For Vul-

nerability Target, 85.71% of the template-guided methods

target one or more specific vulnerability types.

Various methods exhibit distinct strengths and weaknesses

across different properties. For example, source-code level

fixes are more straightforward but binary-level fixes save

compilation time [77]. Function/statement-level repair input

is faster than program-level but lacks global program con-

text. Among 16 papers targeting specific vulnerabilities in

C/C++, 62.50% focus on memory-related vulnerabilities such

as memory leak and buffer overflow, which are crucial be-

cause exploiting them could give attackers access to the whole

system [126]. However, few works focus on logic vulnerabili-

ties, which are equally important, if not more so (e.g., DAO

attack [127] results in $8.5 million ETH loss). Detailed pros

and cons of each method will be discussed in Section 4.

4 Security Patch Generation Approaches

In this section, we present typical SPG approaches: Template-

Guided, Search-Based, Constraint-Based, and Learning-
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Driven methods. We conclude each subsection by highlighting

the Takeaways and Open Problems in this section.

4.1 Template-Guided

Template-Guided approaches for SPG rely on predefined repair

templates or safety properties derived from human expertise

and vulnerability characteristics. Their efficacy depends on the

accuracy and coverage of the identified templates or properties,

which determine the scope and precision of vulnerabilities

that can be fixed. This section explores how various research

efforts define and utilize these templates or properties to

remediate security vulnerabilities.

A. Template Construction. There are two main directions

for constructing the template:

A1. Templates based on Vulnerability Property. Different

types of vulnerabilities have unique root causes and char-

acteristics. Customizing security properties to address these

facilitates the development of efficient repair templates. This

approach ensures that each vulnerability is treated with a

strategy that aligned to its nature. Initially, Weimer [55] pro-

posed using an abstract behavioral model to generate security

patches. Later, AutoPag [6] developed templates specifically

for out-of-bound vulnerabilities, but it was only applicable

when the vulnerability and the fix location were in the same

function. Shaw et al. [56] focused on replacing unsafe APIs

with safer alternatives to fix buffer overflows, but this template

is effective only when the vulnerabilities are directly intro-

duced by these unsafe APIs. Furthermore, BovInspector [57],

Senx [58], and INTREPAIR [63] utilized safety properties of

corresponding vulnerabilities related to specific vulnerabilities

to derive patches, including buffer overflow, bad casts, integer

overflows, and dangling pointers. Besides repairing statically,

Exterminator [7] fixes memory bugs at runtime without re-

quiring source code changes. Besides memory vulnerabilities,

RegexScalpel [73] applies predefined repair templates (e.g.,

modifying quantifiers) to fix Regular Expression Denial of

Service (ReDoS) vulnerabilities (e.g., nested quantifiers).

Templates derived from vulnerability properties can be

represented or mined from various program analysis graphs

(e.g., control flow graph, program dependency graph, abstract

syntax tree (AST)) [128, 129]. These approaches primarily

involve traversing the graph and modifying elements in fixed

locations within the graph to achieve security patch generation.

The basic idea has been used to fix common vulnerabilities,

including memory management bugs (e.g., memory leak,

double free, use after free [59, 61]), error handling bugs [65],

null pointer dereferences [72], and integer overflows [8, 62].

Furthermore, SAVER [60] formulated the vulnerability fix the

problem as a graph labelling problem to implement fixes.

Although the above researches have defined patterns to

fix buffer overflow in C/C++/Java, the approaches cannot be

directly used for fixing Rust buffer overflow vulnerabilities

due to its unique language features like ownerships and life-

times [130]. Also, Rust vulnerabilities arise from interactions

between its safe and unsafe sub-languages [131–133]. Ru-

pair [64] defines the patterns to rectify the vulnerabilities by

semantics-preserving program transformations. Similarly, the

approaches are also not applicable on Solidity due to their

domain-specific vulnerabilities, such as reentrancy attacks,

gas limit issues, which are not common in other languages

in traditional software. SGUARD [69] and CONTRACT-

FIX [70] apply fixing templates to the source code to ensure

the smart contract is free from those vulnerabilities, while

EVMPatch [67], Smartshield [66], and Elysium [68] operates

on bytecode level. However, they follow similar strategies,

for example, SGUARD [69] add nonReentrant modifier for

reentrancy vulnerabilities, EVMPatch [67] added checks to

verify the caller’s address or permission on bytecode level.

A2. Templates Summarized from Patches. Different from

templates guided by vulnerability properties, templates sum-

marized from existing patches focus on generalizing success-

ful strategies from real-world fixes. PAR [45], Vurle [76],

Seader [75], and CONCH [25] summarized fix templates

from patches for SPG. Ma et al. [74] summarized crypto-

graphic misuses and corresponding fix patterns in Android.

E9PATCH [77] defines four tactics for binary rewriting, prov-

ing effective in repairing vulnerabilities in binaries.

B. Template Application. Once constructed, the template is

applied for patch generation. Note that not all templates are in

source code format. When a template is not in source code, it

must be mapped to concrete expressions (e.g., Senx [58]) to

facilitate the generation of a patch in source code.

Takeaway I. A template, whether enforcing security properties

or serving directly as a repair template, often incorporates heuris-

tic rules to address specific vulnerabilities or security property

violations. This approach is effective to fix vulnerabilities that

require minimal changes, have limited context dependency, and

have clear root causes, such as switching to safer APIs or changing

array sizes. While template-based methods lack flexibility, they

are still a great starting point when applied to new contexts, such

as binary-level repair [77]. Furthermore, templates can work

with other repair methods throughout the AVR process, such as

by extracting specific types of constraints [9] to enhance SPG.

Open Problems I.

• Template Mining: Most current template-guided AVR methods

rely on hard templates (pre-defined and unchanging repair

strategies)(e.g., [45, 60, 64, 66, 67, 69, 70]). While same

type vulnerabilities often follow shared patterns, their specific

manifestations can vary due to evolving contexts or exploitation

techniques, necessitating flexible soft templates [45, 66, 76].

While existing research on patch generation explores using

models to create repair templates, vulnerabilities often involve

complex dependencies that require more flexible approaches.

Thus, a soft template mining method is urgently needed.

• Security Property Inference: Security properties [58] can be
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viewed as templates to enforce stringent security conditions.

Unlike typical fix templates, they guide other methods (e.g.,

solvers) to generate patches that meet complex requirements,

such as sequence dependencies. Inferring these properties from

various sources is essential for ensuring robust SPG.

4.2 Search Based

Heuristically search-based SPG is guided by defining heuristic

rules to search and generate patches [134]. Two primary ap-

proaches within this category are mutation-based and semantic

code search. Both establish a search space and select strategies

accordingly. Mutation-based approach modify specific code

sections for SPG. Conversely, the semantic code search seeks

to identify code segments that are semantically similar but

non-vulnerable code segments as potential solutions.

A. Mutation-Based Approach. This approach focus on mod-

ifying operations within a designated statement at a specified

patch location, primarily by transforming the program’s AST.

Mutations at the chosen repair site, involve alterations to

operators, variables, APIs, and operation types within the

AST. These mutations fall into two categories: random muta-

tion, where changes are applied randomly, and pattern-driven

mutation, guided by predefined patterns or rules.

A1. Random Mutation. Random mutation introduces a level

of randomness during mutation, primarily using genetic pro-

gramming and fuzzing. Genetic programming fundamentally

operates through a cycle of <DC0C8>=⇆ C4BC. This cycle con-

tinues until the mutated program successfully passes all test

suites. GenProg [78–81] implements this concept, guided

by the heuristic that “a program containing an error in one

context likely implements correct behaviour elsewhere” [135].

This involves modifying the AST and recombining existing

code snippets through mutation until all test suites are passed.

This technique has demonstrated effectiveness in repairing

vulnerabilities such as buffer overflow and format string is-

sues [78–81]. However, the vast search space often leads to

low-quality patches. To improve this, Tan et al. [41] sug-

gested norrowing the search space by capturing disallowed

modifications (i.e., modifications considered inappropriate or

counterproductive for fixing bugs). However, obtaining “com-

plete” anti-patterns is challenging. Anti-patterns are captured

based on their frequency in bad patches and their rarity in

correct ones. Consequently, patterns that are less prevalent in

bad patches might be omitted.

Apart from genetic programming, fuzzing [136] is another

technique for random mutation. VulnFix [10] employs snap-

shot fuzzing to mutate program states directly while inferring

patch invariants. These invariants then guide the constraints

on the patches, offering a more targeted approach for AVR.

A2. Pattern Driven Mutation. Pattern-driven mutation em-

ploys generalized patterns for modifications, such as adding

null pointer checks, modifying boolean expressions, or altering

arithmetic operations. The mutation patterns address many

issues but may lack proven effectiveness for specific cases.

In contrast, template-guided repair uses templates that have

been proven effective in other fixes. Sapfix [82] employs two

mutation strategies involving statement insertion, specifically

for return null or null check operations. Given that

information leakage is closely tied to control flow [137], Hy-

perGI [83] uses standard operators along with two novel ones

like |if| and |for| to perform control flow-dependent mu-

tations. However, these fixes are performed statically, Durieux

et al. [84] explore the search space of possible patches for

null pointer exceptions with metaprogramming [138], which

analyzes the program’s real-time behavior and selects a re-

pair pattern to mutate based on the current execution context.

Beyond the realm of C/C++ and Java vulnerability repair,

there is a growing interest in fixing vulnerabilities in Solidity,

particularly for DeFi protocols. DeFinery [85] adopts three

employs three operator mutation rules for this, notably without

needing access to test cases or historical transaction data.

B. Semantic Code Search. When code exhibits similar

vulnerabilities in comparable contexts or parallel functions,

analogous patching strategies are often necessary. Since 20%-

50% of large software systems consist of cloned code (i.e.,

code segments that are duplicated or highly similar across

different parts of a software project) [139, 140], and patches

are generally developed for the most recent version [141],

earlier versions often have vulnerabilities that are contextually

similar to these updates. Furthermore, software vulnerabilities

frequently recur across different applications [142]. Conse-

quently, by analyzing the characteristics of existing patches

for known vulnerabilities or studying benign code that lacks

these vulnerabilities, it becomes possible to repair similar

unpatched vulnerabilities. Inspired by patch semantics, this

approach has been applied in Security Patch Transplantation

and Security Patch Generation based on Similarity.

B1. Security Patch Transplantation. Patch backporting is a

key aspect of security patch transplantation [143], adapting

the latest official patches for known vulnerabilities to older

software versions, ensuring both compatibility [144, 145]

and continued security [146]. Tools like SKYPORT [86],

FIXMORPH [87], and TSBPORT [88] are developed for

this purpose. SKYPORT targets web applications, whereas

TSBPORT and FIXMORPH target Linux kernel vulnerabili-

ties. These tools assume that official patches are semantically

consistent across versions, but semantic differences can chal-

lenge automated patching, even when the exact fix location is

known [88]. Another approach within security patch transplan-

tation is to spread fixes across various implementations of the

same protocol or functionality. For instance, PatchWeave [89]

uses concolic execution to find and apply matching symbolic

expressions in different software, enabling the transfer of fixes

to similar issues in diverse environments.

B2. Security Patch Generation based on similarity. Unlike
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patch transplantation, vulnerabilities often reappear across

various software systems and functionalities [147]. Thus, his-

torical fixes serve as valuable references for addressing similar

vulnerabilities. The key idea is to identify and apply similar

patches to fix analogous issues. FixMeUp [90] targets faulty

access-control logic in web applications and inserts similar

code where needed. Van et al. [92], match code fragments to

ensure functional properties or explore similar code within

the same program that meets necessary conditions. However,

these repair methods require system interruption during patch-

ing. Later, Xu et al. [91] determine the similarity between

the code to be fixed and the buggy code by comparing the

semantics of the official patches with the vulnerable functions

using program analysis and weakest precondition reasoning.

Takeaway II. Mutation-based SPG uses random mutations that

may not specifically tailored vulnerabilities but effective with clear

patterns. Semantic code search uses related patches as references,

but relies on robust matching. Similarly, similarity-based SPG

explores large search spaces [148] by detecting code similarities,

requiring sound verification (e.g., comprehensive test suites).

Open Problems II.

• SearchSpace Optimization. How can we automatically optimize

the search space and adapt search strategies based on differ-

ent scenarios (e.g., different types of vulnerabilities, different

settings, i.e., across projects or within a project) [41, 78–81]?

• Sparse Vulnerability Patterns. How can we enhance the search

methods for rare vulnerabilities [149], leveraging the unique

properties of these vulnerabilities to guide program synthesis?

Additionally, how can we leverage the unique properties of these

rare vulnerabilities to guide the program synthesis effectively?

• Complex Logic and Structural Changes in Backporting. How

can we effectively backport patches involving complex logic or

structural changes, considering the need to understand intricate

program semantics, handle significant alterations to algorithms

or data structures, and dependencies or contexts that may not

exist in the target version [86–89]?

4.3 Constraint Based

Program constraints are limitations or conditions imposed on

program behavior, inputs, outputs, or data structures [150].

In constraint-based SPG, the key lies in formalizing the con-

structed or extracted constraint that the synthesized patch is

required to satisfy. The methods focus on formal constraint

generation rather than constraint solving [151]. Constraint-

based approaches could be summarized into two main steps:

(i) Extract repair constraints. (ii) Employ constraint solvers or

search for statements that fulfill the constraints. Our discussion

is organized around various methods of the two steps.

A. Constraint Extraction. Constraint extraction involves an-

alyzing the affected code to identify the specific requirements

that any potential patch must adhere to. Constraint extraction

methods can be classified into four approaches.

A1. Static Analysis Driven Constraint Extraction. Utiliz-

ing static analysis could identify constraints related to vari-

ables’ values, their interrelationships, and the function calls

sequences. These identified elements can then be utilized

to generate further constraints. MemFix [93] uses typestate

analysis [152] to track memory object states across branches,

and generate patches for each state. It frames the problem as

an NP-complete exact cover issue [153], focusing on patch-

ing memory vulnerabilities (e.g., double free). However, it is

limited to modifying deallocation statements, excluding con-

ditionals. CONCH [25] employs state propagation, utilizing

CFG to encompass the full call chain for constraint extraction.

This strategy aims to craft patches for Null Pointer Deferences

(NPDs). Chida et al. [96] introduced a method by analyzing

templates to maintain condition consistency with examples to

generate constraints for repairing regex denial-of-service vul-

nerabilities. Symlog [95] employs Datalog-based [154] static

analysis to generate structural constraints directly, effective

across multiple languages due to Datalog’s declarative nature.

However, the above methods only work when the application is

open-source and focuses on source code. OSSPATCHER [94]

assumes closed-source applications with available patches

from open-source code. It employs a variability-aware AST

to derive constraints, such as macro definitions and condi-

tional compilations, and adapts these patches into binary form,

aligning them with extracted constraints.

A2. Symbolic Execution Driven Constraints Extraction.

Symbolic execution [155] executes the program with

symbolic values, enabling the computation of constraints.

Depending on the different objects of focus, different types of

constraints can be computed through symbolic execution via

tools such as KLEE [156]. The most representative method

is to adopt symbolic execution to capture program semantic

constraints that could pass all test cases [97, 98, 101]. Further,

the constraint for memory writes and function calls [102],

the weakest precondition, the extension of crash-free con-

straints [9] could also be computed by symbolic execution. To

achieve better path coverage, concolic execution [157], which

employs concrete input to drive symbolic execution, is also

utilized to traverse the path driven by path constraints [99].

A3. Dynamic Analysis Driven Constraints Extraction. Dy-

namic analysis extracts runtime constraints by observing pro-

gram behavior and potential vulnerabilities during execution.

NOPOL [104] collects runtime data during test case execution

to analyze the program behavior, identifying relevant variables

and expressions, and encoded into a Satisfiability Modulo The-

ory (SMT) problem [158]. However, this method relies heavily

on test suites quality, and most of the time, vulnerabilities

may only have one exploit. To address this, ExtractFix [9]

generates patches that generalize beyond a single exploit trace.

Specifically, it adopts sanitizers [159, 160] to convert vulnera-

bilities into normal program crashes, allowing the extraction

of precise condition constraints at the crash point.

4448    34th USENIX Security Symposium USENIX Association



A4. Formal Methods for Constraints Extraction. Formal

methods use mathematical techniques and theories to ver-

ify and prove software correctness [161]. These methods

involve constructing mathematical models that describe the

behavior and properties of a program, allowing for the defi-

nition of precise constraints that the software should satisfy.

VULMET [91] employs the weakest precondition reasoning

to transform known patches into constraints. VulnFix [10] de-

rives repair constraints via inductive inference [162]. VulnFix

begins by collecting program state snapshots at vulnerabil-

ity location during benign and vulnerable executions, then

use Daikon [163] to infer initial invariants that distinguish

benign states from vulnerable ones and CVC5 [164] verifies

and refines these invariants to enhance the accuracy. Unlike

approaches dependent on symbolic and concolic execution,

these methods scale better to larger programs. Additionally,

vulnerabilities not only exist in the code, but also stem from

higher-level abstractions, like Trigger Action Programming

(e.g., turn off lights when idle may conflict with a rule to keep

them on), where logical inconsistencies or design flaws can

introduce security risks. TAPFixer [26] detects rule conflicts

via model checking [165] and resolves them using Negated-

Property Reasoning, which analyzes violated properties to

generate fixes such as adding delays, modifying conditions.

B. Patch Generation Based on Constraints. After extracting

repair constraints, two typical methods for generating patches

emerge. The first involves synthesizing a patch by finding a

solution that ensures correct behavior andavoids the vulnerable

state, typically using a component-based program synthesis

approach. The second method involves searching the codebase

for code that meets these constraints.

B1. Component-based Patch Synthesis involves selecting

and combining predefined components (e.g., variables, opera-

tions) to automatically generate patches that satisfy expected

behavior, typically using SMT solvers. The choice of SMT

solvers depends on the constraint features and problem objec-

tives. General-SMT solvers, like Z3 [166], are widely used in

current research and applications, as evidenced by their use in a

variety of works [9, 93–95, 97–99, 102, 104], in which [94] im-

plement source-to-binary matching. For example, in strcpy

function [167], a buffer overflow occurs if the source param-

eter is larger than destination. To prevent this, a constraint

ensures length(source) <= length(destination).

Besides checking the satisfiability of logical formulas over

one or more theories, SAT [168] solvers handle Boolean logic

satisfiability checks. Gopinath et al.[169] translate the con-

straint ?A4 − BC0C4∧ 2>34 − 2>=BCA08=CB∧ ?>BC − 2>=38C8>= into

boolean logic and solved by SAT solver.

However, when multiple patches meet the constraints using

first-order logic, a second-order solver [170] enhances patch

quality. For instance, EXTRACTFIX [9] employs pMaxSMT

(partial MaxSAT) to handle both hard and soft constraints,

while DirectFix [101] transforms the patch generation task

into a pMaxSAT problem, using patch complexity as a soft

constraint. This approach helps produce simpler patches.

B2. Search Codebase For Patch Synthesization. Unlike

component-based patch synthesis, this approach searches

codebase for existing code that satifies extracted constraints,

bypassing the need to reassemble code components within

the project [96]. More details are elaborated in Section 4.2.

Takeaway III. Constraint-based SPG excels in capturing precise

vulnerability requirements and program-wide properties, ensuring

fixes satisfy specified invariants or constraints. Unlike heuristic

methods, this approach is particularly effective for vulnerabilities

requiring rigorous analysis of safety properties.

Open Problems III.

• Vulnerability-Specific Constraints. High-quality constraints

are the key to constraint-based SPG (e.g., [94–96]), because

it defines the properties that must hold true or false for re-

paired code. An open problem is how to accurately infer and

differentiate between “benign” constraints and those specific

to vulnerabilities.

• Security Specification Generation. Constraints can be con-

sidered a concretization of the specification, further refined to

guide the implementation and operation of the system. However,

specifications are often incomplete or underspecified [171],

leading to ambiguity in the constraints to be enforced. Thus,

an open challenge is to develop methods for inferring detailed

specifications from existing code, textual information, etc. that

can then be used to guide the constraint generation process.

4.4 Learning Driven

Learning-driven SPG aims at utilizing learning methods to

perform end-to-end security patch generation. Although in

general bug repair, learning methods have been used to rank

patches [172–175], extract templates for patch generation [176,

177], and end to end patch generation [94, 178–184], their

application in AVR remains primarily limited to SPG.

Learning-driven SPG methods encompass Training, Fine-

tuning, Prompt Engineering, and LLM Integration, with the

latter three relying on large (code) language models. These

models include encoder-decoder models that transform an

input sequence G = (G0, G1, ..., G) ) into a corresponding output

sequence; decoder-only models for next token prediction; and

infilling models that generate contextual missing segments.

A. Training. Training involves building a model from scratch.

In SPG, deep learning is particularly favoured for this purpose.

A1. Deep Learning. In deep learning, Neural Machine

Translation (NMT) becomes fundamental for SPG. It utilizes

encoder-decoder architectures, often using RNNs or transform-

ers, learn mappings between source and target code sequences.

For instance, Seqtrans [12] and VRepair [13] utilize NMT to

learn rules from historical fixes (including vulnerability fixes

and bug fixes) and apply them to future edits. Additionally,
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Harer et al. [105] tackle vulnerability repair using adversarial

learning with Generative Adversarial Networks [11]. They

utilize an NMT model as the generator within the GAN frame-

work, enabling training without paired examples of code.

B. Fine-tuning. Fine-tuning involves adjusting a pre-trained

model to suit a specific task or domain. Since these models are

not immediately suitable for AVR, significant customization

and re-training are necessary to make them effective.

B1. Adaption. One method forfine-tuning is adaption,which

focuses on adapting knowledge from one domain to another.

Given the limit dataset for vulnerability fixes, the similarity

between vulnerability fixes and bug fixing prompts the use of

bug-fix datasets for pre-training [12, 13, 118, 185]. However,

self-trained models on bug-fixing datasets often fail to capture

rich programming features [50]. Some pre-trained models,

trained on large codebases, can be fine-tuned to effectively

address vulnerabilities. For example, VULRepair [106] fine-

tuned pre-trained Programming Language models for SPG.

B2. Interaction. Fine-tuning can also involve learning

through environmental interaction, i.e., reinforcement learn-

ing [186]. To ensure syntactic and semantic consistency, Islam

et al. [107] used CodeBLEU [187] score and BERTScore [188]

as rewards, guiding fine-tuning with Proximal policy optimiza-

tion [189] to fine-tune CodeGen2 model [190] for SPG.

C. Prompt Engineering. Prompt engineering guides LLMs to

produce optimal SPG outputs through designed inputs, encom-

passing Zero-shot, Few-shot, and Chain-of-thought prompting.

B1. Zero-shot prompting. Zero-shot prompting involves

providing prompts without labeled data. A line of re-

search [14, 15, 108–112] explores the capability of zero-

shot AVR with different LLMs, including Codex [191],

CodeT5 [192], GPT-4 [193], CodeGen2 [190] etc. Among

these, Pearce et al. [15] combine error messages from static

analysis tools in the prompts, NAVRepair [110] combines

AST node-type information and error types in prompts, Liu et

al. [111] combines CWE-ID, vulnerability location, root cause

in prompts to guide SPG. Beyond software bugs, Ahmad [109]

constructs prompts to fix hardware vulnerabilities.

B2. Few-shot prompting. Few-shot prompting uses a few

labeled examples. VQM [113] provide example fixes of the

CWE and data augumentation for repair. Though previously

Fu et al. [16] tested gpt-3.5-turbo and gpt-4 with three

repair examples per prompt and found that it failed to generate

correct patches for all vulnerable functions in their dataset.

B3. Chain-of-thought prompting. Chain-of-thought (CoT)

prompting improve LLMs’ logic-based task performance by

simulating human reasoning, which address the limitations

of other prompting methods in improving reasoning capa-

bilities. Nong et al. [114], Khan et al. [115], VRpilot [117],

and ContractTinker [116] utilized CoT to break down AVR

process into different reasoning steps (e.g., identify vulnera-

bility types, vulnerability causes analysis), all finally integrate

the results from previous reasoning results to guide SPG for

these vulnerabilities. Also, VRpilot specify “the fix should

not break any functionality of the function” in the prompt.

D. LLM Integration Approaches. LLM integration ap-

proaches enable collaboration between LLMs and other tools

beyond pure prompting to enhance AVR performance.

D1. Multi-LLM Collaboration. To overcome the incom-

pleteness in single model approaches, VulMaster [118] lever-

ages two LLMs - CodeT5 as the fine-tunable backbone model

and ChatGPT as the supplementary model for generating CWE

examples and fixes, doubling the repair accuracy compared to

approaches that rely solely on fine-tuned CodeT5.

D2. LLM-External Tool Collaboration. To enhance LLMs’

ability to understand vulnerabilities (e.g., counterexamples),

they are integrated with external tools. ESBMC-AI [119] uses

bounded model checker ESBMC [194] to locate vulnerabilities

and generate counterexamples (including stack traces, line

numbers, and variable names), then feed the counterexamples

and original code into LLMs for SPG, and iteratively verifies

and refines the fixes through ESBMC until the code passes

the verification. VRPilot [117] integrates external tools output

(e.g., code sanitizers) into the prompt to guide SPG.

Takeaway IV. Learning-driven methods have transformed AVR

by: (1) moving beyond traditional heuristic approaches and tem-

plates; (2) improving generalizability and offering more flexibility

in inputs through fine-tuning, prompt engineering, and LLM inte-

gration approaches. Especially, prompts that provide contextual

information (e.g., root causes) guide LLMs to generate more

precise patches (e.g., [117]); (3) LLM integration approaches

enable complementary capabilities (e.g., different models and

tools) to work together for precise analysis and iterative SPG,

enhancing robustness.

Open Problems IV.

• Component Dependency Analysis and Integration. Improving

SPG requires analyzing complex program dependencies and

their security implications ((e.g., [15, 110, 111, 117])). This

includes: (1) understanding multi-component interactions like

API calls and structure definitions, (2) tracking inter-procedural

data flows, and (3) validating dependencies against security

specifications. Thus, developing multimodal methods to analyze

these may lead to more accurate, contextually informed repairs.

• Common Challenges in Learning-based Security Analysis.

Common problems like data sparsity, input length limitations,

and training data availability in learning-based security anal-

ysis are even more challenging in AVR. For example, while

fine-tuning has proven effective in AVR, the lack of high-quality

vulnerability repair datasets(e.g., [106])—comprising not only

official patches but also semantically equivalent patches and

clear evaluation metrics—remains a significant hurdle.

• Generated Security Patches Selection. In non-deterministic

models like GPT-4, automatically validating and selecting the

correct security patch from inconsistent outputs remains chal-

lenging. Unlike general bug fixes, security patches require
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Table 2: Evaluation results on C/C++ Vulnerability Benchmark. This table presents data in the format: Successful Repairs / Tests

Passed / Successful Compilations / Total Tests Conducted (RSR). ‘NA’ means the tool is not applicable to the benchmark.
Benchmark #SARD #ExtractFix #VulnLoc

Senx [58] N/A 2/2/6/30(6.7%) 4/4/8/43(9.30%)

VulnFix [10] N/A 13/13/19/30(43.33%) 20/20/28/43(46.51%)

ExtractFix [9] N/A 21/21/25/30(70.00%) 16/16/18/43(37.21%)

VRPilot [117] N/A 17/17/22/30(56.67%) 18/18/25/43(41.86%)

InCoder [205] 79/97/120/1000(7.90%) 0/2/5/30(00%) 0/3/7/43(00%)

Gemini-Pro [206] 121/153/971/1000(12.10%) 1/1/25/30(3.33%) 0/0/32/43(00%)

GPT-4-1106-preview [193] 966/982/1000/1000(96.6%) 14/14/20/30(46.67%) 15/15/23/43(34.88%)

Table 3: Evaluation results on Java Vulnerability Benchmark. VJBench-Trans(R):renaming transformation, S: structure change,

R+S: changed by both. Data Format: Successful Repairs / Tests Passed / Successful Compilations / Total Tests Conducted (RSR).
Benchmark #VJBench #VJBench-Trans(R) #VJBench-Trans(S) #VJBench-Trans(R+S) #VUL4J

GPT-4-1106-preview [193] 5/5/20/23(21.74%) 5/5/22/23(21.74%) 5/7/20/23(21.74%) 3/5/20/23(13.04%) 26/30/56/70(37.14%)

VRPilot [117] 6/9/20/23(26.08%) 6/9/22/23(26.08%) 6/8/20/23(26.08%) 5/6/20/23(21.74%) 29/31/53/70(41.43%)

Gemini-Pro [206] 2/2/14/23(8.70%) 2/2/13/23(8.70%) 2/2/14/23(8.70%) 2/2/13/23(8.70%) 7/10/38/70(10.00%)

CodeT5 [192] 0/0/0/23(00%) 0/0/1/23(00%) 0/0/0/23(00%) 0/0/0/23(00%) 2/2/6/70(2.86%)

InCoder [205] 2/2/10/23(8.70%) 1/1/6/23(4.35%) 1/1/5/23(4.35%) 1/1/6/23(4.35%) 6/10/20/70(8.57%)

Fine-tuned-CodeT5 [14] 3/4/17/23(13.04%) 3/3/17/23(13.04%) 3/3/16/23(13.04%) 2/2/18/23(8.70%) 2/10/48/70(2.86%)

Fine-tuned-InCoder [14] 3/4/15/23(13.04%) 3/3/16/23(13.03%) 4/4/16/23(17.39%) 2/2/17/23(8.70%) 6/12/51/70(8.57%)

complex analysis of exploitability and system-wide security

implications, making automated validation methods still insuffi-

cient. This validation process currently relies heavily on human

expertise (e.g., [14, 115]).

• Iterative AVR. Tools feedback incorporation has proven AVR

improvement (e.g., [117, 119]), how can we leverage LLM

integration usages (e.g., LLM multi-agents) with long memories

to enhance it not only limited to statement/function?

5 Benchmark Evaluation

In Sections 3 and 4,we explore AVR advances and evaluate

SPG methods. Here, our goal is to understand their practical

strengths and weaknesses.

5.1 Benchmark Evaluation Setup

Dataset Selection. We benchmark SPG methods by curat-

ing a dataset that spans various languages and weakness

types. After reviewing vulnerabilities with fixes datasets

([9, 14, 27, 195–202]), we strategically select 4 datasets. Our

selection criteria include: (1) prevalence in AVR research, (2)

programming language diversity, (3) mix of synthetic and real-

world vulnerabilities, and (4) real-world vulnerabilities test

cases/exploits availability for verification. Finally, we selected:

(1) synthetic dataset D(�'� [203] (used in learning-based

AVR evaluation [107, 114, 204]). For our evaluation, we ran-

domly sampled 1,000 samples from this dataset. (2) real-world

Java vulnerabilitiesD+D;4� (#79) [202],D+��4=2ℎ (#42) [14]

and its transformations. (3) real-world C/C++ vulnerabilities

D�GCA02C�8G (#30) [9], and D+D;=;>2 (#43) [27], totaling 48

distinct vulnerabilities across D�GCA02C�8G and D+D;=;>2. See

details in Appendix A.

Inclusion & Exclusion Criteria. We evaluate contemporary

AVR approaches, including but not limited to work from

premier conferences. Tools were filtered based on artifact

availability and must be: (1) be publicly available or acces-

sible from authors, (2) executable, and (3) reproducible and

applicable to selected dataset.

Ultimately, we evaluated 10 tools, including property-

guided approach Senx [58], constraint approach ExtractFix [9],

combined approach (search + constraint) VulnFix [10], and

learning-based methods, including code infilling models In-

Coder [205] and CodeT5 [192], their fine-tuned versions [207],

and generative models using prompt engineering, specifically

GPT4-1106-preview [193] and Gemeni-Pro [208], and VRPi-

lot [117] which leverages CoT prompting with error mes-

sages, to ensure the fairness for evaluation, we also applied

GPT4-1106-preview for VRPilot instead of GPT-3.5-turbo

as claimed in their paper. The experimental settings, tools

applicability, and evaluation steps please refer to Appendix B.

Evaluation Metrics. We evaluate the capability of SPG

methods by measuring their repair success rate (RSR):

'(' =

Number of Vulnerabilities Successfully Repaired

Total Number of Vulnerabilities to be Repaired
(1)

Note that for non-deterministic models, we generate 3 out-

puts for each input; as long as one of them passes the test, we

include it in the calculation.

Evaluation Results. Tables 2 and 3 show the number of

successful repairs, oracle (tests/exploits) passed, successful

compilations, and total test counts. These metrics, along with

RSR, highlight failure stages for each benchmark. We fil-

tered Java datasets1 due to learning methods’ limitations with

multi-file modifications, retaining 23/42 vulnerabilities in

1If the same modification is applied across different files, we still count it

as a single modification.
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D+��4=2ℎ and 70/79 vulnerabilities in D+D;4� . All real-

world C/C++ benchmarks were kept since they could be tested

on non-learning methods.

5.2 Highlighted Findings

As shown in Table 2 and Table 3, AVR performance varies sig-

nificantly across benchmarks. GPT-4-1106-preview excelled

on D(�'� with an RSR of 96.6%. However, its effectiveness

dropped below 50% in other benchmarks, highlighting its

limitations with real-world vulnerabilities. Other learning-

based models had RSRs under 20%. In contrast, VulnFix and

ExtractFix handled real-world scenarios better, though their

RSRs were not exceed 70%. Senx, limited to three vulnera-

bility types, resulting in a low RSR on diverse benchmarks.

Additionally,while VRPilot demonstrates improved RSR when

integrated with external tool outputs, its performance remains

below that of non-learning-based methods.

Learning-based methods show higher compilation rates than

RSR but struggle with actual vulnerability fixes. For instance,

on D+D;4� , GPT-4-1106-preview compiled 56 patches with

30 passing test cases but only 26 correctly fixed vulnerabilities,

highlighting insufficient test coverage. Despite improvements

in compilation (0 to 17 compilable patches in D+��4=2ℎ)

with fine-tuned models (e.g., fine-tuned CodeT5), successful

repairs remains low (0 to 3).

Due to insufficient repaired samples inD+��4=2ℎ for mean-

ingful comparisons, we applied 3 mutation strategies: variable

swapping, condition reconstruction, and loop transformation

(Appendix C) on D(�'� with 200 random samples, still in

high RSRs with GPT-4-1106-preview (97.5%, 96.15%, and

96.43% respectively).

Finding I. SPG methods show varying effectiveness across

benchmarks with no consistently dominant approach. The robust-

ness of learning-driven method in our evaluation is excellent.

Iterative LLM-external tool integration enhances AVR.

Open RQ I. How can we improve learning-based methods to

maintain high compilation rates while ensuring functional con-

sistency and enhancing security? Given commonly used RSR only

measure the proportion of successful repairs, how can we develop

comprehensive evaluation metrics that better reflect the real-world

effectiveness (e.g., also consider the vulnerability severity)?

Table 4: Successful repairs by Scope of Change and Code

Dependencies on D�GCA02C�8G and D+D;=;>2, SH: Single-

hunk, MH: Multi-hunk, Intra/Inter/Other: corresponding

dependencies

Tool

Factors Scope of Change Code Dependencies

SH MH Intra Inter Other

VRPilot 13/25 9/23 8/15 7/23 7/10

GPT-4-1106-prev 11/25 8/23 8/15 5/23 6/10

ExtractFix 15/25 6/23 8/15 10/23 3/10

VulnFix 12/25 8/23 6/15 10/23 4/10

To understand which changes make vulnerabilities more

likely to be repaired, we examine the following dimensions:

Scope of Change, and Code Dependencies. Since benchmark

D�GCA02C�8G and D+D;=;>2 feature a broad application of var-

ious methods, our analysis primarily focuses on it. Scope of

Change refers to the number of modified code blocks, cat-

egorized into single-hunk (modifications confined to one

contiguous code block) and multi-hunk changes (changes

across multiple separated blocks). Code Dependencies are an-

alyzed at three levels: intra-procedural dependency (fixed

entirely within a single function or method, without needing

to involve other components or functions.), inter-procedural

dependency (modifications within the vulnerable function

involve components outside of this function), and others (e.g.,

built-in features).

Table 4 indicates minimal impact of scope of changes on

repair success across methods. VRPilot shows worse perfor-

mance (RSR 30.43%) with inter-dependencies compared with

ExtractFix and VulnFix.

Finding II. “Scope of changes” is not a reliable metric to

indicate the difficult level of AVR (although commonly used to

assess the difficulty of repairing general bugs). In contrast, “code

dependencies” have a more significant impact on RSR.

Open RQ II. How can we enhance the interpretability of

AVR methods across different dimensions (e.g., vulnerability de-

pendencies, statement length, modified tokens and lines, control

structures, and vulnerability logic)?

1 @@ -1632 ,6 +1632 ,13 @@ JPEGSetupEncode (TIFF* tif)
2 " Invalig horizontal / vertical sampling value←↪

");
3 return (0);
4 }
5 + if( td -> td_bitspersample > 16 )
6 + {
7 + TIFFErrorExt (tif -> tif_clientdata , module ,
8 + " BitsPerSample %d not allowed ←↪

for JPEG",
9 + td -> td_bitspersample );

10 + return (0);
11 + }

Listing 1: Patch for CVE-2017-7601, which was not repaired

by learning-based methods but by VulnFix

We further investigated vulnerabilities that could be repaired

by non-learning-based but not by learning-based approaches.

A closer look at the vulnerabilities that learning-based methods

failed to repair reveals complex issues, including intricate con-

trol flow conditions, program dependencies, non-obtainable

structure members, global variables, or specifications. For

example, in Listing 1, the vulnerability is caused by shift

operations with excessively large exponents, which is repaired

by a single-hunk modification. This stems from a lack of in-

put validation for td->td_bitspersample, allowing values

exceeding JPEG specification [209]’s 16-bit limit and causing

integer overflow. VulnFix and ExtractFix can apply the correct

repair by computing correct constraints, e.g., VulnFix could
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generate the correct patch invariant at the crash point, which is

further utilized forSPG,while learning-based methods miss de-

tails regarding the specification. However, if such specification

is provided in prompts, GPT-4-1106-preview can correctly

perform the repair. We also analyzed the cases learning-based

methods repaired but non-learning-based methods did not, and

cases that both approaches repaired; see details in Appendix D.

Finding III. Learning-based methods lack a comprehensive

understanding of the entire program, struggling with vulnerabili-

ties involving complex interrelations, atypical constructs, exten-

sive program-wide constraints, or implicit constraints defined in

specifications. In contrast, non-learning-based methods excel by

leveraging the broader program context and computing critical

constraints or invariants.

Open RQ III. How can we systematically identify and extract

vulnerability root causes to generate precise specifications that

guide learning-based repairs? Additionally, how can we inte-

grate contextual dependencies and derive constraints from textual

sources (e.g., specification documents) to enhance AVR?

We analyzed the weakness different methods successfully

fixed, focusing on performance across CWE categories. For

D(�'� , GPT-4-1106-preview has achieved an RSR 100% in

52/60 CWEs, likely due to the simple contextual information.

Figure 3 shows the repair distribution using learning and

non-learning based approaches of CWE types across all real-

world benchmarks. As shown in Figure 3(a), on each CWE

type, no learning-based method performs better for any CWE.

Specifically, both achieve 100% RSR on CWE-476 (NPDs)

and CWE-189 (Numeric Errors). For example, in the case

of CWE-189, like CVE-2016-10094, a numeric error was

fixed by modifying the comparison from >=4 to >4 in the

code, preventing heap-based overflow. For CWE-476, the

main fix involved adding the necessary null check to prevent

dereferencing null pointers. Figure 3(b) shows that on each

CWE with 2+ samples, the RSR is not greater than 75%.

Note that although some CWEs show high RSR , the limited

number of data points makes it unreliable to draw any strong

conclusions.

Moreover, benchmarks across different programming lan-

guages focus on distinct CWE types, C/C++ benchmarks are

primarily concerned with memory-related, like CWE-119

(Improper Restriction of Operations within Memory Buffer

Bounds), while for Java, due to its garbage collections mecha-

nism, tends to focus more on application-layer vulnerabilities

(e.g., CWE-611, Improper Restriction of XXE Reference).

The diverse application-layer vulnerabilities make it hard to

design non-learning AVR tools for multiple CWEs in Java.

Finding IV. Learning-based AVR methods lag behind traditional

approaches overall, though they excel at specific CWEs. The

performance gap between real and synthetic datasets suggests

synthetic data may inadequately evaluate AVR methods.
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Figure 3: Total vs. (Non-)Learning-Based Repair Counts

Across CWE Categories in real-world benchmarks.

Open RQ IV. Can we establish a comprehensive benchmark

for AVR? While some CWEs show high RSR, limited data makes

strong conclusions unreliable.

6 Future Directions

Based on our literature review (Section 4) and evaluation

(Section 5), we discuss future research directions here.

D1. Hybrid Approaches for SPG. Based on Section 4.4

and Section 5.2, A hybrid approach that combining fuzzing,

program analysis, etc. with LLMs for SPG may presents a

promising direction. For example, while program analysis can

identify critical paths and dependencies, it may struggle with

scalability in large codebases. Here, LLMs can optimize the
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search space. This synergy between different techniques can

be integrated into repair process. Also, fine-tuning LLMs with

insights from program analysis may also helpful for context-

aware and precise repair. As discussed in Section 5.2, artifacts

like documentation and bug reports help with in-context learn-

ing. Additionally, LLM could generate constraints or patch

invariants based on the analysis of vulnerable and benign

states. The effectiveness of LLMs for invariant generation has

been demonstrated in recent works [210, 211] but not tried in

AVR yet. Compared to other software security tasks, hybrid

approaches for AVR are more challenging as they must gener-

ate patches that account for dependencies, maintain semantic

consistency, and avoid introducing new vulnerabilities.

D2. Domain-Specific AVR. As discussed in Section 3, while

logic vulnerabilities receive less attention, they can be more

severe, as privacy handling flaws may lead to data breaches and

significant losses. General-purpose AVR tools often struggle

with logic vulnerabilities due to their intricate logic,which may

involve subtle design flaws or complex program behavior that

isn’t as straightforward to detect or repair as memory-related

issues. Developing domain-specific methods for logic vulner-

ability repair, incorporating domain-specific languages, for-

mal specification, and security properties and multi-modality

information, is the foundation for reliable patches in domain-

specific AVR (e.g., TAPFixer [26]).

D3. AVR Benchmarks. While numerous datasets on vulnera-

bilities and their fixes exist (Table 5), most lack context and

exploits. Current AVR datasets (Section 5.2) have limited

CWE coverage. AVR needs comprehensive benchmarks with

vulnerable code, patches, working exploits, and reproducible

test environmentsm, challenging to create and maintain.

D4. Interpretability of AVR. As discussed in Section 5.2,

current AVR methods, especially learning-based ones, lack in-

terpretability regarding which vulnerabilities are easier/harder

to repair. Simple metrics like changed hunks or lines provide

limited insights. More comprehensive metrics (control flow

complexity, data flow changes, statement length) are necessary

to improve interpretability of AVR performance.

D5. Automatic Generation of High-quality Specifications.

As discussed in Section 4, specifications are essential for ex-

tracting security properties and constraints. Section 5.2 further

demonstrates that integrating more detailed information about

vulnerable program points can enhance prompt engineering

in learning-based methods, thereby increasing RSR. These

insights highlight the need for better security-related specifi-

cations, as they define what constitutes a secure state and are

crucial for enhancing the effectiveness of AVR. For example, in

software documentation, security properties might be spread

across different sections, using LLMs/NLP and automated

reasoning techniques to extract and find potential violations

may lead to security specific specifications.

D6. Verifier for Generated Security Patches. As discussed in

Section 4, existing approaches still need human intervention in

SPV. When the search space is large (e.g., LLMs can generate

multiple patches) potentially including a correct one. Also,

incorrect patches can turn non-exploitable bugs into severe

vulnerabilities[212] (e.g., the commit[213] fixed a memory

leak but introduced a new double-free vulnerability). To this

end, we advocate for further developments in patch verification

methods to improve AVR efficiency, which may related to

formal verification techiniques.

D7. LLM In AVR. With the advancements in LLMs, LLMs

might be used in any stage (VL, SPG, SPV) of AVR. As

discussed in Section 2 and Section 4, currently, the use of

LLMs in these areas is mostly limited to analyzing the code

itself or incorporating a small amount of vulnerability-specific

information like vulnerability types. However, since LLMs are

prone to hallucination which may lead to inaccurate outputs,

LLMs for AVR cannot solely rely on the LLMs’ capabilities

themselves. It is crucial to integrate them with traditional

complementary techniques. For VL, LLMs can help filter

relevant statements from dependency graphs in slice-based

VL (discussed in Section 2), reducing noise and improving

the precision of the analysis. Moreover, LLMs can assist

counterexample generation by generating inputs that expose

differences in predicates thay may correlate with crashes.

These counterexamples help rank predicates based on their

likelihood of being root causes, improving the precision of

localization. For SPG, as discussed in D1, LLM can be inte-

grated with other techniques and further for patch synthesis

in SPG. For SPV, though currently LLMs have been used for

self-correction or self-checking [214], these approaches alone

cannot prove correctness. However, LLMs can serve multi-

ple roles in enhancing verification approaches. First, LLMs

can extract semantic properties and security invariants from

patches, which can then be formally encoded as verification

conditions for automated theorem provers or model checkers.

Second, LLMs can assist in translating patches into interme-

diate verification languages or logical formulas that are more

amenable to automated reasoning. Third, when verification

fails, LLMs can help analyze counterexamples generated by

theorem provers and suggest refinements to the verification

conditions or patches. This combination leverages LLMs’

natural language understanding and code analysis capabilities

while relying on the mathematical rigor of automated rea-

soning for formal verification, making SPV more robust. In

whole AVR process, LLM agents serve to decompose complex

repair tasks into actionable steps, interact with vulnerability

analysis, and maintain critical context including code structure,

repair history, etc. to facilitate effective AVR. Please refer to

Appendix E for more future directions.

7 Conclusion

We present an SoK concerning SPG in AVR, including a

comprehensive taxonomy of their characteristics and trade-offs,

with future research directions theoretically and empirically.
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Appendix

The appendix illustrates more details on the experimental

setting, dataset selection, mutation strategies, security patch

generation artifacts status, and case studies.

A Dataset Selection Details

We selected the vulnerability and fixes dataset from the known

datasets shown in Table 5. In these datasets, only SARD is syn-

thetic data, only VJBench&VJbench-Trans, Vul4J, VulnLoc,

and ExtractFix consist of test suites/exploits, so we select

these datasets as our benchmarks. For D(�'� , where defects

and fixes are often associated with callee functions, caller

functions’ naming conventions, such as Goodxxx or Badxxx,

may lead LLMs to erroneously transform “good" to “bad".

To address this issue, we implemented an inter-procedural

analysis with a depth of one, embedding callee functions’

bodies and parameters within their caller functions (As

shown in Figure 4).

Table 5: Vulnerability & Fixes Dataset Details
Name Programming Language 1 Data Type 2 CWE 3 Total 4 Patch 5 Test Suites/Exploit 6

SVEN[197] Python&C R 9 1,606 " %

CVEfixes[198] >30 R 209 5,365 " %

SARD[195] C/C++ S 60 25,297 " %

Big-Vul[200] C/C++ R 91 3,754 " %

CrossVul[196] >40 R 161 5,131 " %

Vulas[199] Java R NA 624 % %

VJBench&VJBenchTrans[14] Java R 23 42 " "

Vul4J[202] Java R 23 79 " "

VulnLoc[27] C/C++ R 12 43 " "

ExtractFix[9] C/C++ R 11 30 " "

SecBench[215] >20 R 51 676 % %

1 Programming Language: Indicates the types of programming languages covered
by each dataset.

2 Data Type: ‘R’ stands for real-world vulnerability and ‘S’ signifies synthetic data.
3 CWE: The number of CWE covered by the dataset. ‘NA’ signifies data not provided.
4 Total: The total number of entries or cases in the dataset.
5 Patch: Indicates whether patches are included in the dataset ("/%).
6 Test Suites/Exploit: Whether test suites or exploits are available ("/%).

B Experimental Setting Details

Experimental Environment Settings. Our experiments were

conducted on Ubuntu 22.04.1 X86_64. To handle the varied

dependencies needed for reproducing vulnerabilities, we em-

ployed Docker for consistent environments. We used GPT-4

and Gemini-Pro APIs and used CodeT5 and InCoder models

and their fine-tuned models as Wu et al. [14]. We used Joern

01 void bad()

02 {

03 char * data;

04 data = NULL;

05 data = new char;

06 *data = 'A’;

07 delete data;

08 printHexCharLine(*data);

09 }

01 void bad()

02 {

03 char * data;

04 data = NULL;

05 badSource(data);

06 printHexCharLine(*data);

07 }

08 void badSource(char * &data)

09 {

10 data = new char;

11 *data = 'A’;

12 delete data;

13 }

callee

(a) Example for SARD dataset with the 

root cause of vulnerability in callee function
(b) Refactored bad function

Figure 4: Inter-procedural processing for D(�'�

(v2.0.110) [216] forD(�'� preprocessing, CodeQL (v2.15.1)

to detect remaining weakness.

Tools Applicability. Note that not all methods are applicable

across benchmarks due to varying requirements (e.g., pro-

gramming language) and target datasets. For instance, Vulnfix

and ExtractFix require exploits, VRPilot needs exploit/test

case feedback – these weren’t used on the synthetic dataset.

CodeT5 and its fine-tuned model were applied to Java only,

as their training data lacked C/C++ datasets [207].

Evaluation Steps. We assessed the generated patches correct-

ness through a three-step process. First, we checked compila-

tion success. Second, we used an oracle mechanism: patches

for vulnerabilities with existing tests (all real-world vulner-

abilities) were verified against those tests, while synthetic

data (D(�'�) were checked using CodeQL [217]. Finally, all

filtered patches were manually reviewed for semantic equiv-

alence, functionality integrity, and absence of new vulnera-

bilities. To reduce subjectivity, two authors independently

reviewed 200 randomly selected patches, achieving an agree-

ment rate of 96.5% and a Cohen’s kappa of 91.5%.

Input Configuration. For learning-based methods, we

summarized the input configuration from [14, 15, 108, 114]

and the models’ usages. For deterministic models (CodeT5,

InCoder, and their fine-tuned models), we only run them

once; for non-deterministic models (i.e., the models that may

produce different outputs for the same input, including GPT4

and Gemini here), we run them thrice, as long as one of

the generated patches is correct, we regard them as correct.

Especially, the practice prompts are derived from the above

studies, though Nong et al. [114] highlighted the efficacy of

CoT prompting. However, in the step of SPG, its core still lies

in providing LLMs with the weakness information and the

vulnerability location. So we keep providing CWE ID, CWE

Name, and the buggy location for such generative models. For

non-learning-based methods, we deploy the docker or virtual

machine that the authors provided. The detailed input formats

of learning-based methods are shown in Table 6.

C Mutation Strategies

To measure robustness on D(�'� , we test three mutations:

• Variable swapping: Shuffle variable names within a func-
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Table 6: Input configuration of learning-based methods
Model Input

GPT-4-1106-preview {“system": “You are a security patch generator. You will be

given a vulnerable code, the CWE ID of it is {CWE_ID},

i.e.,{CWE_NAME}, the buggy line has been commented with

"/*BUG*/"please directly provide the fixed code without any

explanation.", “user": vulnerable function}

Gemini-pro {"system_instruction": "You are a security patch generator. You

will be given a vulnerable code, the CWE ID of it is {CWE_ID},

i.e.,{CWE_NAME}, the buggy line has been commented with

"/*BUG*/"please directly provide the fixed code without any

explanation.", "user": vulnerable function}

CodeT5-large Mask buggy lines with ⟨4GCA0_83_8⟩and input the vulnerable

function (i depends on the hunks(n) of modified code in the

official patch, from 0 to n). In the input vulnerable function,

also comment on buggy lines.

InCoder-6B Mask buggy lines with and input the vulnerable function, (i

depends on the hunks(n) of modified code in the official patch,

from 0 to n-1 ). In the input vulnerable function, also comment

on the buggy lines.

Fine-tuned

CodeT5

The same with CodeT5.

Fine-tuned

InCoder

The same with InCoder.

tion. For single variables, replace with a random string of

equal length.

• Condition structure reconstruction: Switch if-else

branches, e.g., change if(a) {BlockA} else {BlockB} to

if(!a) {BlockB} else {BlockA}.

• Loop transformation: Transform loop constructs (e.g.,

for, while, do-while) to different structures.

D Additional Case Studies

1 @@ -287 ,7 +287 ,7 @@ fillpattern (int type , unsigned←↪

char *r, size_t size)
2 r[0] = (bits >> 4) & 255;
3 r[1] = (bits >> 8) & 255;
4 r[2] = bits & 255;
5 - for (i = 3; i < size / 2; i *= 2)
6 + for (i = 3; i <= size / 2; i *= 2)
7 memcpy (r + i, r, i);
8 if (i < size)
9 memcpy (r + i, r, size - i);

Listing 2: Patch for Gnubug-26545, repaired by learning-based

methods but not by non-learning based methods

In Listing 2, the off-by-one error occurs due to using <

instead of <= in the loop condition. For even size values, i

could equal size/2, causing early loop exit. Changing to <=

ensures the loop will execute when i equals size/2, fixing

the vulnerability where the buffer wasn’t fully filled under

specific inputs. This vulnerability was not repaired by any

non-learning-based methods because of missing constraints,

whereas learning-based methods could infer from similar

historical fixes.

Listing 3 is a single-hunk fix and only has two lines of code

addition. However, it cannot be repaired by both learning and

non-learning methods. The root of the vulnerability lies in

the reliance on the cached value of td->td_nstrips, which

was originally computed to avoid redundant calculations. This

value is calculated when the strip count is first needed, based

on the image’s length and the rows per strip. However, if the

structure of the image changes afterward in another function,

the cached value becomes outdated, leading to inconsistencies.

The vulnerability emerges because there is no mechanism

to ensure that the cached td->td_nstrips value is updated

when the underlying image structure changes. For learning-

based methods, it has no context, no information about the td

member, and unclear about the root cause of this vulnerability,

so it’s hard to repair. For non-learning based methods, wrong

constraints, and wrong localization lead to no successful repair.

As analyzed in this case, although the change is 2 lines of

code, it still has a complex logic.

1 @@ -5,6 +7 ,15 @@ TIFFNumberOfStrips (TIFF* tif)
2 TIFFDirectory *td = &tif -> tif_dir ;
3 uint32 nstrips ;
4

5 + if( td -> td_nstrips )
6 + return td -> td_nstrips ;
7 +
8 nstrips = (td -> td_rowsperstrip == ( uint32 ) ←↪

-1 ? 1 :
9 TIFFhowmany_32 (td -> td_imagelength , td ->←↪

td_rowsperstrip ));
10 if (td -> td_planarconfig == ←↪

PLANARCONFIG_SEPARATE )

Listing 3: Patch forCVE-2016-9273,which was not repaired by

both learning-based methods and non-learning based methods

E Future Directions

D8. Vulnerability Repair for Binaries. As we discussed

in Section 3, most SPG focuses on source code-level fixes,

which poses several limitations: (1) It requires access to the

original build environment, which may be unavailable for

older applications. (2) Developers may delay patching vulner-

abilities in third-party libraries [77]. (3) Managing complex

configurations and build options of open-source software

is challenging [94]. To implement binary-level vulnerabil-

ity fixes, we advocate integrate current repair methods with

binary-rewriting or CodeLLMs for binary-level AVR.

D9. AVR Tools Usability. AVR can help reduce the workload

of human. But how to better guide the use of the AVR tool

effectively is still a challenging issue. Currently, most AVR

tools are command-line based, which can present usability

barriers for developers. Future research could also explore the

AVR tools usability and develope usable AVR tools, previous

work [218, 219] has stressed the usability of static security

analysis tools but never for AVR tools.
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