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Abstract

Deepfake detectors relying on heuristics and machine learn-

ing are locked in a perpetual struggle against evolving attacks.

In contrast, cryptographic solutions provide strong safeguards

against deepfakes by creating hardware-binding digital sig-

natures when capturing (real) images. While effective, they

falter when attackers misuse cameras to recapture images

of digitally generated fake images from a display or other

medium. This vulnerability reduces the security assurance

back to the effectiveness of deepfake detectors. The main dif-

ference, however, is that a successful attack must now deceive

two types of detectors simultaneously: deepfake detectors and

detectors specialized for detecting image recaptures.

This paper introduces Chimera, an end-to-end attack strat-

egy that crafts cryptographically signed fake images capable

of deceiving both deepfake and image recapture detectors.

Chimera demonstrates that current adversarial and genera-

tive models fail to effectively deceive both detector types

or lack generalization across different setups. Chimera ad-

dresses this gap by using a hardware-aware adversarial com-

pensator to craft fake images that successfully bypass state-

of-the-art detection mechanisms. The key innovation is a

GAN-based image generator that accounts for and compen-

sates the physical transformations introduced during the re-

capture process. Through rigorous testing using commercial

off-the-shelf cameras and displays, Chimera proves effective

in fooling both types of detectors with a high success rate

while having high visual quality (compared to the original real

image). Chimera demonstrates the vulnerability of deepfake

detectors even when equipped with hardware-based digital

signatures. Our successful end-to-end attack on state-of-the-

art detectors shows an urgent need for more robust detection

and mitigation strategies. The source code is available at

https://github.com/ssysarch/Chimera.

*The first two authors contributed equally (the author order does not

reflect their extent of contributions).

1 Introduction

Recent progress in generative machine learning research has

significantly improved the quality of synthetic media created

by such models. In the image domain, the development of

Generative Adversarial Networks (GANs) [19, 27–29] and

diffusion models [15, 22, 43] has enabled various real-world

applications, such as generating medical or private training

data [18, 25]. However, there have also been concerns that

these techniques can be used to generate manipulative and

abusive content [10, 37]. For example, very recently, a slew

of fake images have been used to deceive the public and

influence the 2024 US election [20].

The importance of this problem has led to a flurry of deep-

fake detector proposals [3,30,38,40,46,57,61]. The core idea

is to leverage various heuristics, most commonly supervised

machine learning, to distinguish fake from real images. How-

ever, the fundamental limitation of these solutions is that they

struggle to protect the system against evolving attacks.

A more effective solution to combat digitally created fake

images is to utilize cryptography and hardware. Specifically,

digital signatures are increasingly being used in commercial

cameras [1]. The goal is to embed digital signatures, generated

by camera hardware, in images so they can be differentiated

from digitally fabricated ones. These tamper-resistant digital

signatures will include details such as date, time, location, a

hashed version of the image content, and even the photogra-

pher’s information [2]. Such a technique can then effectively

split images into two categories: images guaranteed to have

been taken by a physical camera and images whose source

cannot be verified.

An important observation is that cryptography-based so-

lutions are vulnerable to physical source manipulations in

which the camera is used to capture a screenshot from a digi-

tally generated fake image (instead of taking a picture from

a “real” scene). While a cryptography-based solution can

guarantee that images are produced by a camera, the content

of the image is not necessarily of a real scene. We define a

“fake” image as any digitally generated image displayed on a
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(a) While existing deepfake detection solutions are unable to defend

against adaptive attacks, cryptographic signatures can protect the

system by creating tamper-proof signatures.
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(b) Cryptographic methods are vulnerable to screenshot deepfake

attacks. Successful attacks, however, need to fool both deepfake

AND recapture detectors. Our scheme, Chimera, is the first method

to achieve such a capability.

Figure 1: Comparison between existing deepfake attacks

and screenshot deepfake attacks for state-of-the-art and our

method. A red label means that the classifier is fooled.

screen and captured by a camera, while “real” images consist

of all other images. A more detailed description is provided

in Section 3.1. This vulnerability, which we call screenshot

deepfake, allows an adversary to generate arbitrary images

and digitally sign them by taking a screenshot. We assume

that the adversary will typically utilize a deepfake generator

as a source for “fake” images to exploit this vulnerability.

There are two potential solutions for this attack: (i) leverag-

ing deepfake detectors as the underlying source is still a fake

image and (ii) using image recapture detectors, commonly

used to detect image recapture [4, 11, 58]. Crucially, the ad-

versary must fool BOTH types of detectors simultaneously to

launch a successful screenshot deepfake attack.

In this paper, we present a screenshot deepfake attack

scheme called Chimera. Our attack is capable of generating

arbitrary fake images, digitally signed by a genuine camera,

that can fool both state-of-the-art deepfake and image recap-

ture detectors when a commercial off-the-shelf camera is used

to take the screenshot. The key idea is developing a two-step

attack strategy where the transformation caused by image

recapture can be learned and hence compensated for by the

model. A brief overview of our approach is shown in Figure 1.

Chimera has to overcome several research challenges as

existing deepfake generators utilized in this attack scheme

are unable to reliably fool both deepfake and image recapture

detectors. The main challenge in our design is that an image

recapture of a display induces artifacts such as Moiré patterns

which can be visible to the human eye or detected by recap-

ture detectors. To address this, we develop an attack that is

personalized to a camera and display pair: first, we show that

through careful adjustment of camera settings, such as chang-

ing the camera’s focus, unwanted artifacts of screen recapture

can be largely mitigated, and second, we show that by making

alterations to how an image is displayed, we can fool recap-

ture detectors and even downstream deepfake detectors. This

is achieved by designing a two-way GAN network that first

learns the transformation caused by the screen recapturing

process and then compensates for artifacts from the process

by a generator network.

In short, compared to existing methods, Chimera solves

the following new challenges:

(i) It develops a method that deceives not only recapture de-

tectors but also downstream detectors of deepfakes. Chimera

does not try to fool each detector in isolation, instead, it tries

to create a digitally signed fake image that can fool both

detectors simultaneously.

(ii) It creates an adversarial attack that indirectly fools a de-

tector. This is in contrast with established adversarial machine

learning attacks where the perturbation was directly applied to

the input of the target classifier. More specifically, in Chimera,

the perturbation is applied to the fake image, X , which creates

X̃ . The adversarial image, however, is then transformed to

g(X̃) due to the recapturing. The transformed image, g(X̃),
now needs to fool both recapture detectors and deepfake de-

tectors. This is different from fooling one classifier directly

(with X̃) in existing methods.

We evaluate our attack strategies on two state-of-the-art

deepfake detectors and three image recapture detectors. We

leverage different physical setups including different cameras

and displays, as well as various configurations for the camera.

Results show that Chimera can reduce the detection accuracy

of state-of-the-art recapture and deepfake detection by more

than 50% while increasing the success rate of fooling a lay-

ered defense scheme (both deepfake and recapture detector)

by about 15%.

In short, the contributions of this paper are:

• We develop a new end-to-end attack strategy that can

circumvent state-of-the-art defense mechanisms against

deepfakes including cryptography, deepfake detectors,

and image recapture detectors.

• We introduce a new technique that is hardware-aware,

capable of adapting to unique combinations of a camera

and display pair, to address the challenges in screenshot

deepfake attacks.

• We evaluate our results in real-world settings using vari-

ous detectors and configurations. Our models and exper-

iments are publicly available.
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2 Background

2.1 Deepfake

Overview. Deepfakes are rapidly increasing and causing real

societal threats including fake news articles [52], politically-

motivated videos [39], fooling facial liveness verification [31],

and impacting financial systems [55]. As the creation of deep-

fakes becomes increasingly simple with the availability of

open-source tools, their negative impact on society is becom-

ing more apparent. Consequently, deepfake detection is now

an essential responsibility for governments and industries.

Image Generation. Recent advancements in machine learn-

ing have made deepfake generation increasingly more power-

ful. Deepfakes are mostly based on generative models such as

GANs [27], Variational Autoencoders (VAEs) [54], and Dif-

fusion models [43, 45]. Recently, foundation models have sig-

nificantly enhanced both the quality and user-friendliness of

deepfake generators [14, 16, 41, 42]. Lastly, deepfake creation

has become more accessible due to the introduction of crowd-

sourced websites such as Huggingface and CivitAI. According

to a recent review [3], more than 3,000 user-customized image

generation models exist on the Internet.

Deep-Learning Detection. As deepfake technology becomes

more and more realistic, detecting such synthetic photos

has become increasingly critical. Researchers have devel-

oped several learning-based methods for deepfake detection

[40, 57, 61]. Lgrad [49] employs a pre-trained CNN model to

convert images into gradients, which are leveraged as forgery

artifacts that can be detected by a classifier. Ojha et al. em-

ploys a frozen vision-language model (CLIP-ViT) to extract

forgery features [38]. Most recently, Fatformer [35] adapts

features within both image and frequency domains and uses

contrastive objectives between the adapted features and text

prompt embeddings to identify forgery traces.

Despite their high performance on existing deepfake mod-

els, current detectors struggle to generalize against emerging

threats from user-customized generative models and vision

foundation models [3]. Additionally, deepfake detectors and

generators are locked in an arms race, making detectors an

inherently imperfect, always-evolving system rather than a

fully robust solution.

Image Provenance/Verification. A more robust solution for

detecting deepfake is through verifying image provenance -

i.e., certifying the source and history of media content (e.g.,

image). Verifying an image involves implementing a proto-

col that cryptographically signs an image at the moment of

capture, embedding provenance information that serves as

proof of the image’s authenticity [12, 59]. The signatures are

created in the camera, using tamper-resistant hardware and/or

a trusted software module. Additional edits to the image could

also be securely signed, allowing the end user to reason about

the origin and lifetime of an image.

Organizations such as Content Provenance and Authentic-

ity (C2PA) develop technical standards that can enable such

a solution in the real world [1, 44]. Many commercial cam-

era manufacturing companies (e.g., Canon, Nikon, Sony, etc.)

have already built cameras with this capability [2].

While standards such as C2PA may be able to verify that an

image truly came from a camera, spoofing the system through

image recapture is an emerging threat [56]. Specifically, while

the camera and hardware can safeguard the image generation

pipeline after an image is created, they cannot protect the

system from physical alterations to the scene before the im-

age is captured. Consequently, an adversary can perform a

screenshot deepfake attack by placing a fake image in front

of a regular camera. The camera, unaware of this malicious

manipulation, captures an image and signs it. As a result, the

image is signed but contains false data, effectively undermin-

ing the usefulness of data provenance and signatures.

2.2 Recaptured Image

Overview. Image recapture is a common method for cy-

bertheft [13]. Typically, this is conducted by malicious in-

siders who use their cameras/smartphones to photograph the

secret files displayed on screens. Additionally, screen recap-

ture could help the attacker to successfully remove the em-

bedded hidden digital watermarks due to the optical noises

introduced during photographing.

As discussed earlier, another crucial concern with image

recapture is that it can produce legitimate cryptographic image

signatures since the camera has no way to distinguish between

a regular image capture and a screen recapture. When used to

recapture a deepfake image, this creates a screenshot deepfake

attack which is the focus of this paper.

Image Recapture Detection. Primarily used for forensic

analysis, several methods have been proposed to detect re-

captured images. Cao et al. [11] extracted texture, detail loss,

and color features from images to feed into a probabilistic

SVM. Thongkamwitoon et al. [51] developed an algorithm

based on learned edge blurriness and distortion features using

K-singular value decomposition. Yang et al. [58] introduced

a generalized model for small-size recapture image forensics

using Laplacian Convolutional Neural Networks, achieving

over 95% detection accuracy on all image sizes (up to 99%

for larger images). Li et al. [32] proposed a highly effective

method targeted toward detecting all types of recaptured im-

ages; it involves a hierarchical strategy combining CNNs and

RNNs to exploit both intra-block information and inter-block

dependencies. Agrawal et al. [5] compiled a vast and varied

dataset of rebroadcast images, demonstrating the robustness

of Markov-based methods and the superior performance of

a convolutional neural network (CNN) based approach in

identifying rebroadcast attacks.

Abraham et al. proposed a moiré pattern detection net-

work [4]. This model decomposes images via a Wavelet de-

composition and then processes them through a multi-input
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CNN. A key strength of this approach is the use of the LL

intensity image (from the Wavelet decomposition) as a weight

parameter for the moiré pattern, allowing it to distinguish ef-

fectively between high-frequency background textures and

moiré patterns. Cheng et al. utilized Moiré patterns for water-

marking digital content in order to detect the source of confi-

dential digital content through camera recapture [13]. More

recently, Li et al. proposed a novel two-branch deep neural

network that leverages multi-scale cross-attention fusion to

fuse RGB and frequency information, improving generaliza-

tion across various recapture scenarios [33]. The first branch

extracts detail loss artifacts using a frequency filter bank pre-

processing module, and the second branch identifies color

distortion artifacts from the RGB input. The final predictions

are generated by fusing the discriminative features from both

the frequency and RGB modalities.

There are adaptive attacks against these detection methods,

but they involve direct manipulation of the image to bypass

forensic analysis [17]. Since these manipulations will alter

the manifest/signature bound to the image, they do not apply

to our purposes.

3 Threat Model

3.1 Attacker Goal

There are four categories of images one can generate:

• Raw Real Images: Authentic images captured directly

by a camera without any manipulation or processing.

These images are genuine and would be recognized as

such once signed with the cryptographic protocol out-

lined in Section 2.1 if such capability exists in the target

camera.

• Raw Fake Images: Synthetic images generated using

generative machine learning models. These images are

fake and (ideally) would be recognized as such due to

either the lack of a cryptographic signature or using a

fake image detector.

• Recaptured Real Images: Genuine images that have

been displayed on a screen or another medium and then

re-photographed. These images would be signed as real

under the protocol, however, they (ideally) would be

detected as recaptured using an image recapture detector.

• Recaptured Fake Images: Deepfake or synthetic im-

ages that have been displayed on a screen and then pho-

tographed or scanned to create a new image. Despite

being fake, these images would be signed as real under

the cryptographic protocol. However, they can be labeled

as fake or recaptured (or both) using fake and recapture

detectors.

The attacker therefore seeks to deceive the public (e.g.,

false advertisement, misinformation, etc.) by generating a

recaptured fake image that can bypass detection mechanisms

and be cryptographically signed as an authentic, real image.

For the attack to be successful, the attacker must ensure that

the recaptured image is perceptually indistinguishable from

genuine photographs and successfully fools both recaptured

image detectors and deepfake detection algorithms.

3.2 Target Models

We target several recaptured image detectors, including those

proposed in prior works [4, 33], which have been trained on

various publicly available datasets [5, 11, 51], as well as on

image pairs captured using the exact camera and monitor

setup of the attacker.

The first model, TwoB_DCT, is the original implemen-

tation by Li et al. [33], as mentioned in Section 2.2. The

second model, TwoB_DWT, is similar to TwoB_DCT, but

instead of using a frequency filter bank, it employs Discrete

Wavelet Transform (DWT). In this model, the high-frequency

information is extracted from the LH, HL, and HH compo-

nents of the decomposition. The third model, MoireDet, is

the moiré pattern detection network proposed by Abraham et

al., repurposed to detect recaptured images [4].

Additionally, we target two deepfake image detectors, Fat-

Former [35] and UnivDetect [38], to evaluate the effect of

our attack on their performance.

The criteria for selecting these models were (i) being state-

of-the-art and widely used, (ii) having publicly available code.

All models and data, including these models and our newly

developed attack models, are available online.

3.3 Attacker Assumptions

In this paper, the target models are black-box systems to the

attacker, meaning that the attacker does not have access to

the training data, model parameters, or internal workings of

any model. This is the most difficult setting to create a suc-

cessful attack but highly generalizable. The attacker is free

to modify and optimize any generated deepfake, but once

the photograph of the deepfake is taken, the attacker cannot

further alter the image to enhance its chances of passing as au-

thentic. Therefore, the success of the attack relies on carefully

crafting the deepfake and setting up the camera and screen

to ensure the image meets all necessary criteria without any

post-processing.

We further assume that the camera and its hardware, in-

cluding the signature generation logic, are trustworthy, hence

the attacker cannot forge the signatures nor conduct a replay

attack. The attacker, however, has access to an arbitrary cam-

era and a display and can take pictures at will. They can also

control the configuration of both including what can be dis-

played in front of the camera and internal configurations of
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Figure 2: Block diagram overview of our attack. We color the components that the attacker and defender have control over. We

assume that the attacker has control over the input image, display, and camera parameters, while a defender would implement a

recapture and deepfake detector followed by a cryptographic signing.

the camera including changing the focus. The attacker, how-

ever, does not have access to the camera’s secret key thus the

only way to sign an image is by actually taking a picture.

4 Design

4.1 Overview

We present the details of our attack scheme, Chimera, in this

section. An overview of its workflow is shown in Figure 2.

Overall, the attacker has control over three main parameters:

(i) the initial fake image, (ii) how the image is displayed in

front of the camera, (iii) how the camera recaptures the im-

age. After this point, the attacker has no other control over

any aspect of the attack. As mentioned in Section 3, the at-

tacker does not know the internals and/or architecture of the

detectors. More specifically, the attacker first creates a fake

image. Standard deepfake image creators could be used here

(details in Section 4.2). The attacker then leverages Chimera

inverse generator to transform the initial fake image into an

adversarial image (details in Section 4.3.2). They can then

control the display and/or camera configurations to generate

the final recaptured image (see details in Section 4.3.1).

On the defense side, the recaptured image goes through

three checks in no particular order: recapture detection, deep-

fake detection, and signature verification. The attack is suc-

cessful if and only if it passes all three checks.

4.2 Generating a Fake Image

Before an adversary launches the Chimera attack, they must

first generate a fake image to be recaptured. This can be done

with any generative model since our method is independent

of the generation process itself. The design and content of

the fake image are an orthogonal problem and our method is

designed to be generic.

We utilize the dataset released by Wang et al. [57], which

consists of StyleGAN2 [29] images trained on LSUN [60].

We use three classes of fake and real images from this dataset:

cat, church, and horse.

4.3 Camera and Display Interactions

Artifacts in Image due to Display Configuration. One of

the primary artifacts that are induced by a camera capture is

the color Moiré. This typically occurs due to sampling mis-

match between a camera’s pixel structure (Bayer pattern [48])

and a display’s pixel structure as well as imperfections in the

orientation between a camera and display (e.g., if the cam-

era sensor plane and display are not parallel). Additionally,

the behavior of color aliasing is different between red/blue

and green pixels due to the difference in spatial sampling

frequency occurring from the Bayer pattern [62].

Concretely, one can analyze the spatial sampling frequency

of both the display and camera. If the spatial frequency of the

display’s pixel grid is close to or larger than half of the cam-

era’s sampling frequency, the Nyquist frequency, aliasing may

occur due to violating Nyquist sampling rate conditions. The

Nyquist frequency fN can be defined by using the distance

between camera pixels, ∆x, such that fN = 1
2∆x

. Therefore,

if the display’s pixel frequency, after projection into camera

coordinates, is higher than fN , the camera would be undersam-

pling the image. Accordingly, high-frequency components in

the image display may alias to lower frequencies. However,

this analysis is further complicated by how color channels

interact since different parts of the Bayer pattern may sample

different subpixels of the display, which leads to incorrect

color interpretation. For example, a uniform color depicted

by a display may be recorded due to aliasing as alternating

streaks of red, green, and blue, resulting in a visible Moiré

pattern.

According to the theory of Moiré phenomena [6], the effect

can often be described as the product of two grating functions.

In the case of image recapture, the display may be represented

by Dc(x,y) and the camera’s sampling function by Sc(x,y),
where the sampling function may be dependent on a partic-

ular color channel, c. The resulting image is defined as the

product of these two functions Ic(x,y) = Dc(x,y) ·Sc(x,y). In

the frequency domain, the image captured by the camera is

written as the convolution of the display’s signal F (D(x,y))
with the camera’s sampling function F (Sc(x,y)), leading to:

F (Ic,Moire(x,y)) = F (Dc(x,y))∗F (Sc(x,y)), (1)

where F (·) denotes the Fourier transform operator. This con-

volution introduces aliasing artifacts into the color channels
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that recapture detectors can utilize for detection.

Without any additional compensation, a recapture de-

tector, Crecap : I → {true, f alse}, can accurately discrim-

inate between a genuine image, I(x,y), and a recap-

tured image, Ic,Moire(x,y) – i.e., Crecap(I(x,y)) = f alse and

C(Ic,Moire(x,y)) = true due to their fundamentally different

representations.

The goal in Chimera is to eliminate this unwanted transition

by creating a compensation function, fChimera = Irecap(x,y),
such that for a fake image I f (x,y), we have: Ic,Moire(x,y) ̸=
Irecap(x,y) ≈ I f (x,y). Although not directly tuned for a spe-

cific classifier, when applied to (any) Crecap, the ultimate goal

is to achieve C(Irecap(x,y)) = f alse.

Furthermore, assuming that I f (x,y) is originally fool-

ing a deepfake detector, Cdeep(i) = {real, f ake}, then

Irecap(x,y) ≈ I f (x,y) indirectly implies Cdeep(I f (x,y)) =
Cdeep(Irecap(x,y)) = f ake.

We propose two main steps for designing fChimera. Specifi-

cally, we first develop a preliminary camera-side modification

scheme that applies a filtering function to Ic,Moire(x,y), cre-

ating a new function, Ic,Moire, f ilter(x,y), that is similar to the

application of an optical low-pass filter for a camera. Second,

our primary contribution is to design a GAN network that

transforms the fake image, I f (x,y), into an adversarial image,

g(I f (x,y)) = Iadv(x,y). Collectively, for a given (real or fake)

image, I(x,y), we have fChimera = Irecap(x,y):

Irecap(x,y) = Ic,Moire, f ilter(g(I(x,y))). (2)

We describe the details of our model, fChimera, as follows.

4.3.1 Camera-side Modifications

A camera’s lens system determines the sharpness of the cap-

tured image. This sharpness allows more artifacts from the

display to enter the captured images, which can be utilized by

image recapture detectors. However, a camera’s lens system

can still be altered to reduce this sharpness by altering the

point spread function (PSF) response to a display. The PSF

determines which spatial frequencies are transferred through

the optics of the camera. Typically, the lens is adjusted to

ensure a sharp image with high spatial frequencies. As men-

tioned in Section 4.3, when capturing a display, this can harm

image quality due to introducing visible artifacts. However,

when capturing an image of a display, we can reduce these

artifacts through blurring by deliberately altering the focus to

change the spatial frequency content of the image. A similar

technique was applied in [51] where aliasing was reduced

due to diffraction by reducing the diameter of the aperture

instead of the focusing range.

This is an important aspect of Chimera, where we change

the focusing range of the lens to effectively create a natural

low pass filter. This blur can be mathematically represented

by convolving the original image with a point spread function

(PSF), H(x,y), such that the resulting image is defined by

Figure 3: Camera-side modifications such as adjusting

camera capture parameters affect recapture detection

accuracy. We show that adjusting the focusing range of the

camera changes the detector accuracy (MoireDet [4]) and

perceptual quality (FID score). Notice that at a focus range of

0.8m, the display is in perfect focus, but yields Moire patterns

and a poor FID score. Deliberately lowering the focus range

lowers detector accuracy, however, too much blur due to out

of focus also leads to poor perceptual quality.

Ic(x,y) = (Dc(x,y) ∗H(x,y)) · Sc(x,y). In the frequency do-

main, this is equivalent to multiplying the Fourier transform

of the image by the Fourier transform of the PSF leading to:

F (Ic,Moire, f ilter(x,y)) = (F (Dc(x,y)) ·F (H(x,y)))

∗F (Sc(x,y)). (3)

Thus, by changing the focusing range appropriately, we can

remove frequencies that would alias upon image recapture

of the display. Utilizing the focus of a camera can thereby

contribute to fooling models that rely on Fourier-based analy-

sis to distinguish between real and display-captured images.

Blurring removes information that would help a model de-

termine that an image came from a display. However, there

exists a trade-off between using the focus to fool the detectors

and creating sharp images. More misalignment in the focus

parameter will lead to lower accuracy for the detector, at the

cost of lower-quality blurry images.

We show this effect empirically in Figure 3 for recaptured

images without any additional manipulations labeled as base-

line tested with a baseline detector, MoireDet [4]. We can

see that there exists an optimal focusing range point where

perceptual quality is high yet still lowers the detector’s accu-

racy. However, increasing blur beyond this will lower detector
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Figure 4: Our display-side modifications consist of the three stages. In the first stage we train a simulator to learn how a

camera would display a particular image. Then, it trains an inverse generator to learn how an input image should be modified so

that when displayed it matches the input image as closely as possible. The final stage showcases how Chimera is used for attacks.

accuracy at the cost of poorer perceptual quality images.

In the next section, we show that we can create a beneficial

trade-off by manipulating the way the image is displayed such

that we can still remove most visual artifacts from display

capture while maintaining the visual quality of images.

4.3.2 Display-side Modifications

The second technique used in Chimera involves altering the

fake raw image before it is displayed on the screen. This

modification increases the likelihood that the recaptured fake

image will be free of any artifacts introduced during the re-

capture process. As a result, the recaptured fake image can

effectively deceive recapture detectors.

Let us formally define the recapture process with a fixed

camera and screen as g. We aim to find an inverse function

g−1 of the recapture process g such that for any raw fake

image I, we can have g(g−1(I)) = I.

Specifically, we tackle the problem in a two-stage manner.

In the first stage, we propose to utilize a neural network to

parameterize the image recapture process (i.e., g). Then, in the

second stage, we learn the inverse function g−1 by training

another neural network that intends to mitigate the effects

of image recapture. We adopt the Conditional Generative

Adversarial Network (CGAN) [23] to learn such mappings

given the ability of GAN to model any complicated function.

We utilize the CGAN framework to train the two neural

networks, one used to simulate the recapture process (called

the Simulator) and the other used to generate the display-

side modifications (called the Inverse Generator) with the

trained simulator in its loop. The overall framework is shown

in Figure 4. In the following, we will explain the Simulator

and Inverse Generator processes in detail.

Simulator. The simulator Gs is a conditional generative

model that takes a raw fake image I and a random parameter z

as inputs to generate the recaptured version of I. The original

implementation of CGAN introduces stochasticity through

the use of dropout [47], rather than an explicit random noise

parameter. We adopt this approach in our work, and for brevity,

will omit z in the remaining sections.

The CGAN framework is used to jointly train the simulator

Gs and a discriminator Ds to approximate the image recapture

process g. Following standard practices of GANs, the discrim-

inator is trained to differentiate between images recaptured

by a real camera and those generated by our simulator, condi-

tioned on the corresponding raw images. This process helps

to enhance the quality and realism of the simulator. The ob-

jective function of learning the simulator Gs with the CGAN

framework can be formulated as follows:

G∗
s = argmin

Gs

max
Ds

L
s
GAN(Gs,Ds)+λ1L

s
L1(Gs)+λ2L

s
FF(Gs).

(4)

We utilize GAN loss, L1 loss, and a focal frequency loss [24]

to guide the training process. λ1 and λ2 represent the weights

used to balance different loss terms. In particular, the GAN

loss Ls
GAN is used to train the simulator Gs and the discrimi-

nator Ds in an adversarial manner, which is expressed as:

L
s
GAN(Gs,Ds) =E(I,Ir)[logDs(I, Ir)]+

EI [log(1−Ds(I,Gs(I))],

where I and Ir represent a raw image and its corresponding

ground truth recaptured image. During each iteration, we

USENIX Association 34th USENIX Security Symposium    4311



optimize Gs to minimize this objective against an adversarial

Ds that tries to maximize it. Following the literature [23],

we also utilize an additional L1 loss Ls
1 to ensure that the

simulated image Gs(I) closely resembles the recaptured fake

image Ir by a real camera:

L
s
L1(Gs) = E(I,Ir) [∥Ir −Gs(I)∥1] ,

Due to the artifacts (e.g., Moiré patterns) introduced during

the recapture process, a recaptured fake image exhibits dis-

tinctive characteristics in the frequency domain compared to

those raw fake images or raw real images. Existing methods

for recaptured image detection [4, 7] often rely on frequency

domain analysis to identify the recaptured images. Building

on this insight, we incorporate the focal frequency loss [24]

into our training objective. This loss helps to guide the simula-

tor in more accurately replicating the frequency components

commonly found in recaptured images, thereby enhancing

the realism of the simulation. Assume the simulator Gs takes

a raw fake image with size H ×W as input. Then, the focal

frequency loss Ls
FF is expressed as:

L
s
FF(Gs) = E(I,Ir)

[

∑
u,v

w(u,v)
∣

∣FIr(u,v)−FGs(I)(u,v)
∣

∣

2

]

,

where w(u,v) is the weight for the spatial frequency at spec-

trum position (u,v). The summation is over all spatial fre-

quencies (u,v) within the image dimensions H ×W . We dy-

namically determine the weights following the same strategy

as Jiang et al. [24]. Moreover, the spatial frequency of the

image I at (u,v) is written as:

FI(u,v) =
H−1

∑
x=0

W−1

∑
y=0

I(x,y) · e−i2π( ux
H + vy

W )
.

We utilize the UNet architecture as the backbone for our

simulator, which adds skip connections between mirrored

layers in the encoder and decoder. Moreover, to capture the

nuances (e.g., Moire patterns) in the local regions, the Marko-

vian discriminator [23] is employed, which classifies each

N ×N patch in an image as real or fake. The final discrim-

inator score is obtained by averaging the results across all

the patches. The entire network is trained within the CGAN

framework, following the Equation 4.

Inverse Generator. The inverse generator Ginv is another

conditional generative model trained to approximate the in-

verse function g−1 of the recapture process g. Specifically,

Ginv takes in a raw image I to generate an adversarial image Ĩ,

where Gs(Ĩ) approximates I. Once trained, the inverse gener-

ator Ginv can be used to modify any raw image to generate an

adversarial image, allowing the corresponding recaptured im-

age to evade detection. Let Ĩr denote the recaptured version of

the adversarial image Ĩ. Leveraging the trained simulator G∗
s ,

we can simulate the whole process of obtaining the recaptured

fake image Ĩr as

Ĩr ≈ G∗
s (Ĩ) = G∗

s (Ginv(I)).

To this end, we aim to train the inverse generator such that the

final simulated image G∗
s (Ginv(I)) preserves the content of I

and does not contain additional patterns that are distinctive

to I. In this way, the recaptured fake image Ĩr taken by a real

camera will no longer exhibit the artifacts introduced during

the recapture process. Similarly, we learn the inverse genera-

tor Ginv with the CGAN framework, which can be formulated

as follows:

G∗
inv = argmin

Ginv

max
Dinv

L
inv
GAN(Ginv,Dinv)+

λ3L
inv
L1 (Ginv)+λ4L

inv
FF(Ginv),

(5)

where L inv
GAN , L inv

L1 and L inv
FF represent the GAN loss, L1 loss,

and focal frequency loss used to train the inverse generator.

λ3 and λ4 are the weights to balance these loss terms.

The discriminator Dinv is trained as a classifier that tries

to differentiate between G∗
s (Ginv(I)) and I. Unlike the dis-

criminator Ds used to train the simulator, it operates uncon-

ditionally. Specifically, it does not accept I as a conditioning

input and instead depends on just the generated G∗
s (Ginv(I))

(positive samples) or the ground truths I (negative samples).

Additionally, we integrate the recapture simulator G∗
s into the

training loop as a white-box function and keep it frozen dur-

ing the training of Ginv. The detailed formulas of the losses

used to train the inverse generator are illustrated as follows.

The GAN loss of the inverse generator is expressed as:

L
inv
GAN(Ginv,Dinv) =EI [logDinv(I)]+

EI [log(1−Dinv(G
∗
s (Ginv(I)))].

The L1 loss of the inverse generator is expressed as:

L
I
L1(Ginv) = EI [∥I −G∗

s (Ginv(I))∥1] .

The focal frequency loss of the inverse generator is expressed

as:

L
s
FF(Ginv) = EI

[

∑
u,v

w(u,v)|FI(u,v)−FG∗
s (Ginv(I))(u,v)|

2

]

.

Note: We emphasize that while Chimera is primarily designed

to make raw fake images undetectable by detectors, the pro-

posed framework can also be applied to raw real images on

the screen (e.g., make raw real images digitally signed by

another protocol without taking a photo of the same scene).

In other words, Chimera can arbitrarily take in a raw (real or

fake) image I to generate an adversarial (real or fake) image Ĩ

whose recaptured version Ĩr can fool recapture detectors.
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Figure 5: A visualization of one of our experimental setups

where a camera is focused on a display.

5 Evaluation Setup

5.1 Metrics

The success of the attack is evaluated based on three key met-

rics: perceptual quality, performance on deepfake detectors,

and performance on recapture detectors.

Perceptual Quality. To assess the visual fidelity of the re-

captured samples, we utilize the Fréchet Inception Distance

(FID) metric [21]. FID is calculated by comparing the dis-

tribution of features between two datasets; in our analysis,

both the recaptured samples and the adversarial recaptured

samples are compared against the raw samples.

Recapture Detector Performance. The performance of

recapture detectors is measured by their accuracy across four

distinct image categories outlined in Section 3. This allows

us to evaluate how well the detectors can identify recaptured

content across real and deepfake images.

Deepfake Detector Performance. The performance of deep-

fake detectors is likewise assessed on raw images, recaptured

images, and recaptured adversarial images. This enables us to

assess the detectors’ ability to recognize fake content under

various conditions.

5.2 Experimental Setup

Datasets. To evaluate both recapture and deepfake detectors

on a single dataset, we chose to utilize a subset of the eval-

uation set of deepfake detectors [35, 38, 57], specifically the

StyleGAN2 [26] images. The dataset consists of four classes:

horse, church, cat, and car, which is similar to previous works

compared in this paper. For simplicity, the car category was

excluded because the images had diverse shapes and were

incompatible with our general pipeline. This dataset was split

into two parts: one used to train the GANs (as described

in Section 4.3.2) and the other used to evaluate recapture

and deepfake detectors. The recapture data was obtained by

photographing all the images in the dataset (details are pro-

vided later in Hardware Setup). For training the recapture

detectors, we used a subset of the training dataset from the

aforementioned studies [35, 38, 57]. Similarly, recapture data

was collected by photographing all the images in this dataset.

Lastly, to further evaluate the generalizability of Chimera on

other datasets, we present the results on 2000 images from a

synthetic face dataset [53] generated by StyleGAN [27].

We used separate training and evaluation sets for all ex-

periments. Although the recaptured images of both sets were

obtained from the same monitor and camera setup, they con-

tained entirely different raw images. The raw data in our eval-

uation set were equally split between real and fake images,

ensuring balanced representation. To generate recaptured data,

we recaptured the same equally split dataset, ensuring that the

number of real and recaptured images was also identical.

Recapture Detectors. For the evaluation of recapture de-

tection, we employ three distinct model architectures, as de-

scribed in Section 3.2. When deploying recapture detectors

in practice, two main strategies can be considered: training a

general model applicable to various cameras and conditions

or fine-tuning a base model specifically for each camera. In

this paper, we explore both approaches.

Base Model Fine-Tuning. To customize the detector for

a particular camera, we begin by training a base model on

a general dataset that includes raw and recaptured images

from [5, 11, 51]. This base model is then fine-tuned with data

from each of the attacker’s cameras. This approach avoids the

need to retrain a model from scratch each time when adding

support for a new camera.

General Model. Alternatively, a generalized model is

trained using all the data, combining the general dataset with

the data from the attacker’s cameras. This approach aims to

develop a model that is more robust and performs consistently

well across different conditions and devices.

Blur Augmentations. During initial experimentation, we

identified that the recaptured image detectors had a strong

propensity to classify all blurry or out-of-focus images as

recaptured, irrespective of whether the images were raw or

genuinely recaptured. This indicates that the models are over-

reliant on the presence of blur as a key feature indicative

of recapture, which in turn leads to a significant increase in

false positive rates for raw images that are merely out of

focus. Additionally, models trained without blur augmenta-

tions consistently classified all recaptured images as such,

regardless of focus level. This is unexpected, as substantial

blurring typically removes the features distinguishing raw

and recaptured images from each other. To mitigate these

issues, we introduced blur augmentations into the training

pipeline. This modification aims to enhance the model’s ro-

bustness by reducing its reliance on blur as a distinguishing

feature, improving its ability to accurately classify both raw

and recaptured images across a spectrum of conditions.

Deepfake Detectors. For the deepfake detection compo-

nent of the evaluation, we use pre-trained models as provided

USENIX Association 34th USENIX Security Symposium    4313



Figure 6: We showcase the qualitative results of our method. Raw denotes the target image for recapture, Recaptured is a

baseline recapture image, Adversarial is the output image of our inverse generator which when displayed and recaptured appears

as the Recaptured Adversarial image. Notice how our recaptured adversarial image visually appears closer to the desired target

raw image such as brightness and colors. We also include a failure case in the third row where the perceptual quality of our

method is poor.

in the literature, leveraging the checkpoints supplied by the

respective papers [35, 38]. Each detector is evaluated with a

fixed decision threshold of 0.5, allowing for consistent com-

parison across different detection scenarios.

Simulator and Inverse Generator Our implementation

modifies the Pytorch implementation of Pix2Pix [23, 64] to

do paired uni-directional image translation. In this setup, both

the simulator and inverse generator are constructed using a

U-Net architecture with 7 downsampling layers, operating on

images resized to 1024 pixels.

Hardware Setup. While our attack can be implemented

on many hardware platforms, we describe for reproducibil-

ity the configuration that we used. We test our methods on

two different setups. To demonstrate the ease in which our

setup can be deployed, we utilize the camera of an iPhone 12

(main camera out of the multi-lens system, 12 MP) and the

display of a MacBook Pro (2560×1664 resolution with a den-

sity of 224 pixels per inch). The iPhone camera parameters

are automatically set by the camera itself during recapture.

The majority of results were obtained from this setup unless

otherwise mentioned (e.g., Table 3).

We also obtain a second set of results with a highly con-

figurable machine vision camera in order to demonstrate the

utility of the camera’s focusing range. We use an RGB FLIR

Blackfly BFS-U3-51S5P-C camera (1.25 MP) with a man-

ually adjustable focus paired with an LG full HD 31.5 inch

display (1920×1080 resolution with a density of 70 pixels

per inch). The Blackfly camera’s parameters were custom-set

to exposure = 20,000 ms, gain = 1, gamma = 0.8, and balance

ratio = 1.96. Demosaicing was done manually with bilinear

interpolation. All results with this setup are shown in Figure 3,

Table 3, and the setup itself is visualized in Figure 5.

To collect large volumes of data efficiently, we synchro-

nized the display of an image with an automatic camera cap-

ture with the OpenCV library. After capture, we perform no

preprocessing other than cropping to only show the picture

on the screen. This is realistic, as users may adjust the win-

dow size on many modern phones and cameras before taking

a picture. During the training of the simulator and inverse

generator, the orientation of the display with respect to the

camera is fixed since the simulator is personalized not only to

the current camera and display used but also to how they are

placed with respect to each other.

6 Results

Our results are presented in three categories: Attack success

rate against (i) Recapture detectors; (ii) Deepfake detectors;

(iii) Layered defenses with both recapture and Deepfake de-

tectors, which is the ultimate goal of Chimera.

We evaluate Chimera with state-of-the-art deepfake and
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Raw Real Raw Fake Recap Real Recap Fake Adv. Recap Real (ours) Adv. Recap Fake (ours)

Twob_DCT [33] 0.827 0.903 0.968 0.963 0.665 0.472

Twob_DWT [33] 0.867 0.930 0.942 0.952 0.418 0.283

MoireDet [4] 0.922 0.993 0.845 0.810 0.168 0.045

Table 1: Performance of recaptured image detectors on raw, recaptured, and recaptured adversarial images using a MacBook

screen and iPhone. All models exhibit high accuracy for raw and recaptured images. However, we observe a significant drop in

accuracy for recaptured adversarial images, indicating that the models are susceptible to our attack (lower is better for attacks).

recapture detectors. Specifically, we use three recapture detec-

tors (TwoB_DCT [33], TwoB_DWT, and MoireDet [4]) and

two deepfake detectors (FatFormer [35] and UnivDetect [38])

as described in Section 3.2.

For each experiment, we consider three groups of im-

ages: raw images, captured images, and images produced

by Chimera (which we call adversarial recap or adv. recap).

Moreover, each group can be generated from real or fake im-

ages. There are six cases: raw real, raw fake, recap real, recap

fake, adv. recap real, and adv. recap fake.

6.1 Qualitative Results

Results for three different classes (cat, horse, and church) are

shown in Figure 6. As illustrated in the figures, the percep-

tual quality of images generated by Chimera (last column)

remains high compared to raw images. Next, we will discuss

the detection accuracy of deepfake and recapture detectors

in relation to Chimera-generated images. Additionally, we

will examine the image quality of Chimera and the potential

unwanted artifacts it may produce in Section 7.1.

6.2 Recapture Detection

The main objective of this section is to study whether im-

ages produced by Chimera are detectable by state-of-the-art

recapture detectors.

Detection Accuracy of State-of-the-Art Detectors against

Chimera. We evaluate the effectiveness of our attack in a

realistic scenario using an iPhone camera and two different

screens, one in the training data, and one without. Table 1

outlines the different detectors’ baseline performance and

shows our attack scheme’s impact on the detection accuracy

of real and fake recaptured images.

Results indicate that raw and recaptured images (both real

and fake) are classified with nearly perfect accuracy (close

to 100%) by all three detectors. However, the accuracy for

images created by Chimera, as shown in the last two columns

of Table 1, significantly drops. This suggests that the state-of-

the-art classifiers struggle to correctly identify these images

as recaptured.

Another important observation is that recapture detectors

are more effective at identifying fake images than real ones

because the fake images were not included in the training set.

The detectors are trained on real images, which makes them
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Figure 7: The impact of using generalization (G) and blur-

ring (B) on the accuracy of recapture detectors. Lower accu-

racy means a more successful attack.

better at detecting actual recaptures. Since the difference in de-

tection accuracy between the two groups was not significant,

we did not retrain the classifiers using fake images.

Different Displays with Generalization and Blurring. We

evaluate the generalizability of our attack by repeating the

above experiment using a different display (LG Monitor)

and a camera (Blackfly). The details of our two setups are

provided in Section 5.2.

Results are shown in Figure 7. The figure indicates that

not using generalization or blurring leads to the lowest attack

success rate, which translates to higher detection accuracy

for Chimera. In contrast, employing both generalization and

blurring results in a higher success rate. The key takeaway

from this experiment is that Chimera is adaptable to different

settings, such as various cameras and displays, when trained

on more diverse datasets, specifically through blurring aug-

mentation and dataset generalization. Detailed breakdown

results are presented in Table 6 and Table 7 in Appendix as

part of our ablation study.

Additionally, we report the FID scores for the recaptured

and recaptured adversarial images for both screens in Table 2.

While the FID scores are higher for the adversarial recaptures,

the perceptual quality remains high, as illustrated in Figure 6.

Recall that Figure 3 (cf. §4) illustrated the importance of

correctly setting camera parameters and its impact on de-

tector recapture accuracy and perceptual quality measured

by FID scores. As depicted in the samples in Figure 3, the
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Recap1 Adv. Recap1 Recap2 Adv. Recap2

FID 23.439 35.827 23.699 34.094

Table 2: FID scores for images recaptured on a Mac-

Book screen (Recap1) and a Monitor screen (Recap2), along

with their corresponding adversarially recaptured images

(Adv. Recap1, Adv. Recap2).

Focus Range (m) 0.28 0.45 0.60 0.80

Baseline Accuracy(%) 25.0 50.1 71.8 95.5

Baseline FID 81.58 41.69 29.63 84.44

Attacker Accuracy (%) 3.2 21.5 46.5 73.6

Attacker FID 69.87 33.93 22.8 97.21

Table 3: Our method outperforms the baseline recapture

attack in lowering accuracy and improving perceptual quality

across most camera focusing ranges (blurs) when evaluated

with the Blackfly camera.

Moiré pattern diminishes when defocusing the camera due

to the spreading of the PSF. However, after some point, this

inevitably causes blurriness and a drop in perceptual quality.

We further show the utility of our display-side modifications

by training a simulator and inverse generator for each focus

level, and we can see a drop in recapture accuracy of approxi-

mately 20% over baseline across all focus ranges in Table 3.

Lastly, our method also improves the perceptual quality of

recaptured images across most focus range settings. Note that

on the iPhone, it is not possible to manually adjust focus in

fine increments. Instead, we adjusted the camera setup to min-

imize Moiré patterns without losing too much detail, which

can be observed with the low FID scores in Table 2

6.3 Deepfake Detection

Results for deepfake detectors are shown in Table 4. Similar

to recapture detection experiments, we report the results for

raw, recapture, and Chimera-generated images for two dif-

ferent setups. In all experiments, we use both blurring and

generalization. Accuracy is reported for both real and fake de-

tection (i.e., whether the classifier correctly labeled the image

as fake or real) and the overall average.

We consider two state-of-the-art deepfake detectors: Uni-

vDetect [38] and FatFormer [35]. We also enhance the robust-

ness of the deepfake detector by fine-tuning it on recaptured

images. Specifically, we focus on fine-tuning UnivDetect with

the recaptured images from a MacBook screen. The fine-

tuning offers an improvement on the recaptured images, with

the fake image detection rate increasing by around 6% for the

baseline and adversarial case on both screens. Note that Fat-

Former does not open-source its training code, so we couldn’t

further fine-tune it.

Our results indicate that Chimera improves the attack suc-

cess rate in all scenarios. The success rate (decrease in detec-

Detector Dataset Real Fake Average

UnivDetect [38]

Raw 99.83 42.00 70.92

Recap 1 98.83 27.67 63.25

Adv 1 95.50 37.00 66.25

Recap 2 99.67 19.00 59.33

Adv 2 96.83 20.17 58.5

FatFormer [35]

Raw 100.0 96.33 98.17

Recap 1 75.67 72.33 74.00

Adv 1 73.83 66.33 70.08

Recap 2 88.67 66.17 77.42

Adv 2 91.5 46.5 69.0

Finetuned

UnivDetect
[38]

Raw 99.83 43.33 71.58

Recap 1 98.83 33.33 66.08

Adv 1 94.00 44.33 69.17

Recap 2 99.17 24.83 62.00

Adv 2 95.5 25.00 60.25

Table 4: The performance of deepfake detectors on raw

images, recaptured images, and adversarial recaptured images

from Screen 1 and 2 (i.e., MacBook and Monitor). Lower

accuracy means a more successful attack.

tion accuracy) ranges from 12% for UnivDetect to approxi-

mately 30% in FatFormer.

Another important observation is that while these detectors

perform well on raw images, their effectiveness would de-

crease on recaptured images. For instance, the state-of-the-art

deepfake detector FatFormer exhibits a large performance

decline, with its average accuracy decreasing by over 20%

in such scenarios. Previous research has shown that periodic

patterns introduced by recapturing images through a digi-

tal screen can adversely affect the performance of deepfake

detectors [50]. Our results corroborate these findings, as pre-

sented in Table 4. However, as results show, Chimera slightly

outperforms the recapturing results, showing its effectiveness.

6.4 Generalizability of Chimera

To further confirm the generalizability of Chimera across

different datasets, we present the results on 2000 images from

a fake face dataset [53] generated by StyleGAN [27]. We use

the same setup (MacBook screen and iPhone camera) used in

previous sections; note that the GANs trained on the horse,

cat, and church classes were not retrained for faces.

Results are presented in Table 5. As can be seen in the table,

we observe a significant drop in accuracy when applying

Chimera to various recapture detectors. The main takeaway

from this result is that because our method does not rely on

any semantics of the image and instead aims to revert non-

semantic artifacts such as color distribution and edge patterns,

it is generalizable to other datasets.
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Raw Recap Adv. Recap

DCT (no Blur) 0.881 0.934 0.778

DCT (Blur) 0.883 0.613 0.372

DWT (no Blur) 0.974 0.916 0.792

DWT (Blur) 0.908 0.746 0.574

MoireDet (no Blur) 0.999 0.409 0.066

MoireDet (Blur) 0.952 0.671 0.140

Table 5: Performance of recaptured image detectors on raw,

recaptured, and recaptured adversarial images of an alternate

dataset [53] using a MacBook screen and iPhone. Even though

our attack was not trained on this dataset, we observed a

significant drop in accuracy for recaptured adversarial images.
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Figure 8: The portion of recaptured fake images (baseline)

and recaptured adversarial fake images (Chimera) that fool

both recaptured image and deepfake detection. For our eval-

uation, we select the better performing FatFormer [35] and

TwoB_DCT [33] with all four training schemes - i.e., with

and without blurring (B) and/or generalization (G).

6.5 Layered Defense Detection

We report the success rate of Chimera when both recapture

and deepfake detectors are used - an attack is successful if it

can bypass both detectors simultaneously.

Results are presented in Figure 8. We provide the findings

for all four training models discussed in Section 6.2. As shown

in the figure, Chimera significantly increases the success rate

of the attack—from less than 1% to approximately 14% in

the best case. The crucial takeaway from this experiment is

that images generated by our system that successfully pass

the tests (about 15%) will possess the following qualities:

(i) they are labeled “real” when evaluated by state-of-the-art

deepfake detectors, meaning they will not be identified by

machine learning-based deepfake detection mechanisms; (ii)

they are classified as “raw” when assessed by cutting-edge

recapture detection methods; (iii) they include cryptographic

signatures and are verified as genuine raw images taken by

a real camera (adversarial recapture); and (iv) they visually

resemble authentic raw images, as demonstrated in Figure 6.

(a) Raw Fake Images (b) Recaptured Adv Fake Images

Figure 9: Comparison of average frequency spectra between

raw fake and recaptured Chimera adversarial fake images.

6.6 Additional Results

We report the detailed results for image recapture detection,

including the breakdown of true/false positives in the Ap-

pendix. Furthermore, we present the results of an ablation

study where adversarial training is used to make the recapture

detectors robust against our attack. As can be seen in the Ap-

pendix (see Table 8), Chimera remains effective even when

through adversarial training.

7 Discussion

7.1 Limitations

Due to the lossy nature of recapturing a picture and the in-

herent limitations of GANs, the inverse generator is unable

to produce an image identical to the original raw image after

recapture. The GAN’s loss function is designed to minimize

the difference between the generated and target data distribu-

tions, rather than learning a precise one-to-one mapping. As a

result, while training the inverse generator, the simulator may

overcompensate for certain features that it associates with the

recapture process, causing inaccuracies in the target distribu-

tion of the inverse generator. This hints at the possibility that

a detector can be built to reliably differentiate between raw

images and recaptured adversarial images.

Additionally, GAN-generated artifacts were observed dur-

ing experiments involving the iPhone. As a result, when re-

capturing adversarial images, we applied a slight zoom before

taking the pictures to exclude these artifacts from the frame.

This modification may account for the observed increase in

FID scores in Table 2.

Targeting Deepfake Detectors. To directly target deepfake

detectors in our pipeline, we explored two methods for craft-

ing adversarial examples. The first approach involved mod-

ifying the attack training process by adding a term to the

loss function that maximizes the loss of the deepfake detec-

tor. However, this method proved infeasible due to memory

constraints during training, and even with additional mem-

ory, convergence issues may arise because the optimization

landscape is highly non-convex and GAN training is unstable.
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The second method involved producing adversarial im-

ages using our current pipeline, and then applying white-box

Projected Gradient Descent (PGD) noise directly targeting

the deepfake detector. Initial experiments with this approach

showed that it did not significantly reduce the detection accu-

racy of the deepfake models. This may be since perturbations

crafted digitally rely on precise pixel-level changes, but when

an image is transferred to the physical domain, the loss of

fine-grained details can reduce the effectiveness of the ad-

versarial noise. We did not consider patch attacks, which are

better suited for physical space scenarios, as they modify the

content of the image; however, realistic and inconspicuous

patches may still be a viable avenue for future exploration.

Alternatively, techniques such as Expectation Over Transfor-

mation (EOT) [8] could be utilized to craft perturbations that

are more resilient to physical transformations and thus can be

incorporated into our attack pipeline.

7.2 Artifacts Produced by Chimera

From Figure 6, we can see that recaptured adversarial images

produced by Chimera exhibit some artifacts that arise from

both camera-side and display-side modifications. However,

our experiments show that these artifacts are difficult to lever-

age as a defense against our attacks. For example, in Figure 9,

we employ a frequency domain analysis [63] by calculating

the average Fourier transform outputs for 500 raw fake im-

ages and 500 recaptured adversarial fake images and draw

their average frequency spectra. The figure reveals that their

average frequency spectra are highly similar, with only minor

differences in the distribution of frequency components. The

similarity arises because the inverse generator in Chimera is

trained to minimize the focal frequency loss between raw and

recaptured adversarial images.

Although some small differences in the frequency domain

exist between the raw and recaptured images, they are diffi-

cult to take advantage of since they are unique to a particular

camera-display setup that is not known a priori by the de-

fender. As a result, defenders can not effectively exploit such

artifacts for a defense. As shown in Table 8 in the Appendix,

an adversarially trained recapture detector can defend against

Chimera-produced images taken from the same screen used

during adversarial training (AT) but fails to generalize to im-

ages taken from a different screen.

7.3 Countermeasures

Hardware-based Defense. Our attack is adapted to a par-

ticular hardware configuration where the capture device only

has one camera. One of the primary reasons for the difficulty

of distinguishing between “fake” and “real” images is due

to the camera projection during the image formation pro-

cess [48] which maps both images to a 2D plane. However, a

more sophisticated capture device, such as one with multiple

cameras or sensors such as LiDAR, opens the door to more

effective defense measures that can circumvent our attack.

Such capture devices can configure multiple cameras into

a stereo setup [36] or use the LiDAR [34] to sense depth.

With depth, a defender can then potentially identify the differ-

ence between a recaptured and real image since recaptured

images are flat and 2D in nature. Overall, we believe that

camera stacks with depth-sensing can effectively differentiate

between real images and Chimera.

Active Monitoring of Captured Images. Our method re-

quires capturing at least several hundred recaptured images to

train the simulator and inverse generator. During this process,

we are not actively attacking the system and these recaptures

may be labeled as recaptured. A potential countermeasure to

our method is to actively monitor all captures and detect if

there is an abnormal number of recaptures taken that would

allow for attacking the system with our method. For example,

cameras integrated with active monitoring mechanisms can

address this issue by detecting abnormal patterns of recapture

attempts. However, this method would be obsolete with ad-

vances in training schemes that require a very small number

of training images, which can be an avenue for future work.

8 Conclusions

This paper presented a novel attack methodology that exposes

critical vulnerabilities in image-based cryptographic signing

methods, image recapture detectors, and even Deepfake de-

tectors. Our method’s strength manifests in its ability to be

hardware-aware and compensate or personalize to the details

of any hardware setup of camera and display. This versatility

along with its ability to greatly lower the accuracy of detectors

while maintaining high perceptual quality highlights the need

for more advanced and resilient detection mechanisms. As

digital forensics evolves, the results of this work highlight the

importance of developing countermeasures for the integrity of

our digital media in an increasingly adversarial environment.

Ethics Statement: We strongly condemn any misuse of the

methods outlined in this work for creating deceptive content,
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Finetuned? Blur?
Raw

Real

Raw

Fake

Recap

Real

Recap

Fake

Adv. Recap

Real

Adv. Recap

Fake

Twob_DCT [33]

Yes Yes 0.918 0.723 0.868 0.995 0.595 0.638

Yes No 0.895 0.780 0.930 0.972 0.612 0.688

No Yes 0.837 0.848 0.922 0.897 0.513 0.520

No No 0.827 0.903 0.968 0.963 0.665 0.472

Twob_DWT [33]

Yes Yes 0.873 0.640 0.858 0.985 0.577 0.570

Yes No 0.862 0.758 0.980 1.000 0.705 0.728

No Yes 0.867 0.915 0.952 0.973 0.418 0.335

No No 0.867 0.930 0.942 0.952 0.418 0.283

MoireDet [4]

Yes Yes 0.962 0.878 0.823 0.988 0.272 0.413

Yes No 0.923 0.920 0.967 0.995 0.368 0.363

No Yes 0.925 0.988 0.922 0.957 0.130 0.028

No No 0.922 0.993 0.845 0.810 0.168 0.045

Table 6: Performance of recaptured image detectors on raw, recaptured, and recaptured adversarial images using a MacBook

screen and iPhone. All models exhibit high accuracy for raw and recaptured images, as images from the setup were included in

the training set. However, we observe a significant drop in accuracy for recaptured adversarial images, indicating that the models

are susceptible to our attack

9 Appendix

9.1 Detailed Results for Recapture Detection

Tables 6 and 7 show the results of image recapture detection

on two different displays. The true positive and false negative

breakdowns are shown in Table 9. Note that the increase in

false negative rates indicates the success of the attack (i.e.,

the opposite of benign).

9.2 Ablation Study: Adversarial Training

If the inverse generator G∗
inv could perfectly invert the recap-

ture function g, it would be impossible to differentiate be-

tween raw and recaptured adversarial images. However, this

is not the case, due to the limitations of our method as seen

with the poor quality of the last sample in Figure 6. Therefore,

we explore the impact of adversarial training in mitigating

the effectiveness of our attack strategy. Because our setup

differs from traditional adversarial attacks, instead of utiliz-

ing an adversarial training framework like TRADES [9], we

simply augment the training dataset of our detector by includ-

ing recaptured adversarial images, specifically those from the

MacBook screen. As outlined in Table 8, the attack success

rate against the detectors trained with adversarial samples

is much lower for the attack carried out using the MacBook

screen. However, adversarial training does not seem to pro-

vide the same benefit for unseen screens and their attacks, as

seen in the low accuracies for the second screen, indicating

that for adversarial training to be a feasible solution, images

from a very wide range of screens and respective adversarial

samples must be collected as the training set.
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Finetuned? Blur?
Recap

Real

Recap

Fake

Adv. Recap

Real

Adv. Recap

Fake

Twob_DCT [33]

Yes Yes 0.777 0.920 0.495 0.620

Yes No 0.922 0.912 0.737 0.822

No Yes 0.440 0.398 0.372 0.290

No No 0.830 0.780 0.740 0.750

Twob_DWT [33]

Yes Yes 0.738 0.890 0.415 0.610

Yes No 0.960 0.982 0.702 0.803

No Yes 0.590 0.540 0.298 0.210

No No 0.793 0.788 0.637 0.597

MoireDet [4]

Yes Yes 0.485 0.677 0.177 0.475

Yes No 0.790 0.913 0.423 0.575

No Yes 0.485 0.522 0.362 0.250

No No 0.495 0.260 0.742 0.682

Table 7: Performance of recaptured image detectors on raw, recaptured, and recaptured adversarial images using a Monitor and

iPhone. The detectors perform worse across the board for this setup compared to Table 6, with the models trained without blur

augmentations performing better.

Raw Recap 1 Adv 1 Recap 2 Adv 2

Real Fake Real Fake Real Fake Real Fake Real Fake

DWT (No G, No Blur) 0.822 0.658 0.893 0.978 0.898 0.965 0.802 0.855 0.507 0.617

DWT (No G, Blur) 0.937 0.602 0.635 0.863 0.798 0.928 0.378 0.560 0.198 0.437

DCT (No G, No Blur) 0.888 0.707 0.923 0.950 0.900 0.970 0.768 0.817 0.620 0.790

DCT (No G, Blur) 0.948 0.668 0.665 0.865 0.808 0.962 0.340 0.550 0.262 0.488

DCT (G, No Blur) 0.898 0.955 0.808 0.683 0.475 0.258 0.495 0.373 0.508 0.385

DCT (G, Blur) 0.875 0.895 0.877 0.875 0.642 0.518 0.567 0.485 0.388 0.302

Table 8: Adversarial Training Results: Performance of different models on various image types. The models are evaluated on

images from Screen 1 (i.e. MacBook), which was included in the training set, and Screen 2 (i.e. Monitor), which was not included

in the training set. Adversarially generated images (Adv 1 and Adv 2 for the recaptured adversarial images on Screen 1 and 2,

respectively) are also included to assess the impact of adversarial training.

Name Finetuned? Blur? TP (benign) FN (benign) TP (adv) FN (adv)

dct Yes Yes 0.9315 0.0685 0.6165 0.3835

dct Yes No 0.95 0.05 0.65 0.35

dct No Yes 0.9095 0.0905 0.5165 0.4835

dct No No 0.9655 0.0345 0.5685 0.4315

dwt Yes Yes 0.9215 0.0785 0.5735 0.4265

dwt Yes No 0.99 0.01 0.7165 0.2835

dwt No Yes 0.9625 0.0375 0.3765 0.6235

dwt No No 0.947 0.053 0.3505 0.6495

md Yes Yes 0.9055 0.0945 0.3425 0.6575

md Yes No 0.981 0.019 0.3655 0.6345

md No Yes 0.9395 0.0605 0.079 0.921

md No No 0.8275 0.1725 0.1065 0.8935

Table 9: True positive (TP) and false negative (FN) breakdowns for different configurations. Chimera decreases the true positive

rate and increases the false negative rate (i.e., the attack is successful).
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