Frequency- and Time-domain Green function methods for electromagnetic simulation, optimization, and design

Oscar P. Bruno¹

¹ Computing and Mathematical Sciences Caltech, Pasadena, CA 91125, USA obruno@caltech.edu

Abstract — We present a family of numerical methods for the solution of Maxwell's equations, with application to simulation, optimization, and design. In particular, a novel rectangular-polar integral equation solver is mentioned which can produce solutions to the time harmonic Maxwell's equations, with high order accuracy, for general 2D and 3D structures, with an extension to time domain problems on the basis of a time re-centering synthesis technique. An effective integral equation acceleration method, the IFGF method (Interpolated Factored Green Function), is used, which evaluates the action of Green function-based integral operators for an Npoint surface discretization at a computational cost of $O(N \log N)$ operations without recourse to the FFT thus, lending itself to effective distributed memory parallelization. Computational illustrations include applications to photonic optimization and design.

Index Terms — Fast Integral Equation Solvers, Frequency and Time Computational Electromagnetics, Photonic Device Simulation and Optimization.

I. EM SOLVERS AND APPLICATIONS

We present a range of methodologies developed recently for the solution of the frequency domain and time domain Maxwell and acoustic wave equations, with application to the simulation of wave propagation and scattering by a variety of structures and media, as well as analysis, optimization, and design of photonic structures. In particular, a novel rectangular-polar high-order integral-equation solver will be discussed which can produce accurate solutions of Maxwell's equations, with high order accuracy, for general two- and threedimensional structures in the frequency domain [4,8] and, by additionally exploiting a time windowing-and recentering Fourier-time synthesis technique [1], in the time domain as well. Associated optimization and design methods [7,9] have been demonstrated, including the fabricated and tested grating demultiplexer device introduced in [10]. An enabling technique underlying these design applications is the Windowed Green Function method (WGF) [5-7]. An effective integral acceleration technique, the IFGF (Interpolated Factored Green Function) [2] will be presented which, without recourse to the Fast Fourier Transform (FFT), evaluates the action of Green function-based integral operators for surface discretization containing N points at an $O(N \log N)$ computing cost, instead of the $O(N^2)$ cost associated with unaccelerated methods. The IFGF algorithm, which is well suited for treatment of extremely large scattering problems, exploits the slow variations of certain "factored Green functions" and thus enables the fast evaluation of fields generated by groups of sources on the basis of a recursive interpolation scheme. Owing in part to its independence from the FFT, the IFGF is amenable to efficient parallelization on massively parallel computers. But the parallel IFGF approach is effective on small computers as well: a recent IFGF-accelerated parallel implementation [8] of the combined IFGF and rectangular-polar method [4] will be presented, which, based on the OpenMP programming interface can be used to tackle problems of scattering by large engineering structures on small parallel computer nodes. For example, on the basis of a 28-core computing node, full scattering solutions with several digits of accuracy can be obtained for realistic engineering structures of the order of one hundred wavelengths in size in computing times of the order of a few minutes per iteration and a few tens of iterations of the GMRES iterative solver; see e.g., Figure 1. A massively parallel implementation of the IFGF algorithm [3], in turn, will also be presented which relies on both the Message Passing Interface (MPI) and OpenMP. This hybrid parallel IFGF implementation, which is suitable for implementation in modern highperformance computing (HPC) systems, provides excellent parallel efficiency without limitations in the size of the computer system used. In a recent test case [3], for example, a sphere 1,389 wavelengths in diameter) containing approximately 2.15 billion discretization points was considered, for which the discrete forward operator was evaluated with an error of $6.0 \cdot 10^{-3}$, in a computing time of under 15 minutes in a 30-node, 1,680-core parallel cluster, with an overall memory requirement of 11 TB—which, as reported in [3], compares favorably with other massively parallel implementations for which this problem was treated on

the basis of as many as 131,072 cores. In all, the Green function methods presented, which are based on a small set of basic underlying ideas, span a wide range of applications, problem complexity, computer architectures and varied capabilities.

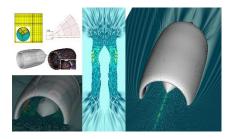


Figure 1: Upper left image group: High-order rectangular-polar integral solver [4] on a patch geometry (upper left), IFGF acceleration box- and cone octree [2] (upper right), nacelle geometry (lower left) and nacelle patch description (Lower right). Lower left, center and right images: Total field magnitude $u(x) = |u^i(x)| + |u^s(x)|$ under point source incidence (lower left and center) and 82-wavelength plane-wave incidence (right) [8]. Details can be appreciated by enlarged pdf viewing.

ACKNOWLEDGMENT

This work was supported by NSF, DARPA, AFOSR and a Vannevar Bush Fellowship through contracts DMS-2109831, HR00111720035, FA9550-21-1-0373, and N00014-16-1-2808.

REFERENCES

- [1] T. G. Anderson, O. P. Bruno and M. Lyon, "Dispersionless 'Fast-Hybrid' wave equation solver. Part I: *O*(1) Sampling cost via incident field windowing and recentering. problems involving Maxwell's equations in isotropic media," *SIAM Journal on Scientific Computing*, vol. 42, pp. 348-379, 2020.
- [2] C. Bauinger and O. P. Bruno, "Interpolated Factored Green Function method for accelerated solution of scattering problems," *Journal of Computational Physics*, vol. 430, 110095, 2021.
- [3] C. Bauinger and O. P. Bruno, "Massively parallelized Interpolated Factored Green Function method," *Journal of Computational Physics*, vol. 475, 111837, 2023.
- [4] O. P. Bruno and E. Garza, "A Chebyshev-based rectangular-polar integral solver for scattering by geometries described by non-overlapping patches," *Journal of Computational Physics*, vol. 421, 109740, 2020.
- [5] O. P. Bruno, M. Lyon, C. Perez-Arancibia and C. Turc, "Windowed Green function method for layered-media scattering," SIAM J. on Applied Mathematics, vol. 76, pp. 1781-1898, 2016.

- [6] O. P. Bruno, E. Garza, and C. Perez-Arancibia, "Windowed Green function method for nonuniform open-waveguide problems," *IEEE Transactions on Antennas and Propagation*, vol. 65, pp. 4684-4692, 2017.
- [7] E. Garza, C. Sideris, and O. P. Bruno, "A Boundary Integral Method for 3D Nonuniform Dielectric Waveguide Problems via the Windowed Green Function," *IEEE Transactions on Antennas and Propagation*, vol. 71, pp. 3758-3763, 2023.
- [8] E. Jimenez, C. Bauinger, and O. P. Bruno, "IFGF-accelerated integral equation solvers for acoustic scattering," arxiv.org/pdf/2112.06316.pdf, 2022.
- [9] C. Sideris, E. Garza, and O. P. Bruno, "Ultrafast simulation and optimization of nanophotonic devices with integral equation methods," ACS Photonics, vol. 6, pp. 3233-3240, 2019.
- [10] C. Sideris, A. Khachaturian, A. D. White, O. P. Bruno, and Ali Hajimiri, "Foundry-fabricated grating coupler demultiplexer inverse-designed via fast integral methods," *Nature Communications Physics*, vol. 5:68, 2022.

Oscar P. Bruno. Dr. Bruno received his PhD degree from the Courant Institute of Mathematical Sciences, New York University, in 1989. Following graduation, he held a twoyear position as Visiting Assistant Professor with the University of Minnesota, and in 1991 he joined the

faculty of the Georgia Institute of Technology, where he served as Assistant and Associate Professor. In 1995 he joined the faculty of the California Institute of Technology (Caltech), where he has served as Professor in the Department of Applied and Computational Mathematics since 1998, and as Executive Officer of that department during 1998-2000. Dr. Bruno's research interests lie in areas of optics, elasticity and electromagnetism, remote sensing and radar, overall electromagnetic and elastic behavior of materials. Dr. Bruno has served on editorial boards of important scientific journals, including the SIAM Journal of Applied Mathematics, the SIAM Journal on Scientific Computing, and the Proceedings of the Royal Society of London, and he has been elected to various professional societies, most notably the Council for the Society for Industrial and Applied Mathematics. Dr. Bruno is a recipient of the Sigma-Xi faculty award, the Friedrichs Award for an outstanding dissertation in mathematics and the Young Investigator Award from the National Science Foundation. He is also a fellow of the Sloan Foundation, a SIAM fellow (class of 2013), a Vannevar Bush fellow (class of 2016), and a member of the National Academy of Sciences of Argentina (class of 2020).