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REMOVABLE SINGULARITY OF (-1)-HOMOGENEOUS
SOLUTIONS OF STATIONARY NAVIER-STOKES EQUATIONS

LI LI, YANYAN LI, AND XUKAI YAN

ABSTRACT. We study the removable singularity problem for (—1)-homogen-
eous solutions of the three-dimensional incompressible stationary Navier-Stokes
equations with singular rays. We prove that any local (—1)-homogeneous so-
lution u near a potential singular ray from the origin, which passes through
a point P on the unit sphere S2, can be smoothly extended across P on S2,
provided that u = o(Indist(z, P)) on S2. The result is optimal in the sense
that for any a > 0, there exists a local (—1)-homogeneous solution near P
on S?, such that lim,cq2 ., p [u(z)|/Indist(z, P) = —a. Furthermore, we
discuss the behavior of isolated singularities of (—1)-homogeneous solutions
and provide examples from the literature that exhibit varying behaviors. We
also present an existence result of solutions with any finite number of singular
points located anywhere on S2.

1. INTRODUCTION

Consider the three-dimensional incompressible stationary Navier-Stokes equa-
tions,

—Au+ (u-V)u+ Vp =0,
divu =0,

(1)

where u : R? — R3 is the velocity vector and p : R? — R is the pressure. These
equations are invariant under the scaling u(x) — Au(\x) and p(z) — A\2p(\z) for
any A > 0. It is natural to study solutions which are invariant under this scaling.
For such solutions, u is (—1)-homogeneous and p is (—2)-homogeneous, and we call
them (—1)-homogeneous solutions according to the homogeneity of u. In general,
a function f is said to be (—k)-homogeneous if f(x) = A\*f(Az) for any A > 0.

Let = (x1, z2,x3) be the Euclidean coordinates and e; = (1,0,0), e2 = (0, 1,0),
es = (0,0,1) be the standard basis. In this paper, we denote ' = (z1,x2) and
V' = (01,02). Let (r,0,¢) be the spherical coordinates, where r is the radial
distance from the origin, 6 is the angle between the radial vector and the positive
x3-axis, and ¢ is the meridian angle about the z3-axis. A vector field v can be
written as

U = Urer + Ugey + UpEy,
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where
sin 6 cos ¢ cos B cos ¢ —sin ¢
e, = | sinfsing |, eg= |cosfsing |, eyp=/| coso
cos —sin@ 0

A vector field u is azisymmetric if u,, ug and ug are independent of ¢, and no-swirl
if ug =0.

In 1944, Landau [17] discovered a 3-parameter family of explicit (—1)-homogen-
eous solutions of the stationary Navier-Stokes equations in C*°(R? \ {0}), see also
[42] and [43]. These solutions, now called Landau solutions, are axisymmetric with
no swirl and have exactly one point singularity at the origin. Tian and Xin proved in
[46] that all (—1)-homogeneous, axisymmetric nonzero solutions of (1) in C>°(R3\
{0}) are Landau solutions. Sverdk established the following result in 2006:

Theorem A ([44]). All (—1)-homogeneous nonzero solutions of (1) in C*(R3\{0})
are Landau solutions.

He also proved in the same paper that there is no nonzero (—1)-homogeneous
solution of the incompressible stationary Navier-Stokes equations in C?(R™ \ {0})
for n > 4. In dimension two, he characterized all such solutions satisfying a zero
flux condition. Homogeneous solutions of (1) have been studied in other works
as well, see [4,10-12, 16,24, 34-37,42,43,48-50]. There have also been works on
homogeneous solutions of Euler’s equations, see [1,26,41] and the references therein.

For (—1)-homogeneous solutions (u,p) in R?\ {0}, (1) can be reduced to a
system of partial differential equations of (u,p) on S2. For any set Q C S?, a (—1)-
homogeneous solution (u,p) on Q is understood to have been extended to the set
{x € R3 | x/|z| € Q} so that u is (—1)-homogeneous and p is (—2)-homogeneous.
We use this convention throughout the paper unless otherwise stated.

Theorem A has classified all (—1)-homogeneous solutions of (1) in C?(S?). A nat-
ural next step is to study (—1)-homogeneous solutions of (1) in C?(S?\{Py,..., P,})
for finitely many points Py, ..., P, on S%. In [18]-[22], we studied (—1)-homogen-
eous axisymmetric solutions of (1) in C?(S? \ {S, N}), where S is the south pole
and N is the north pole. In [18], all (—1)-homogeneous axisymmetric no-swirl solu-
tions in C2(S? \ {S}) were classified, and the existence and nonexistence results of
(—1)-homogeneous axisymmetric solutions with nonzero swirl in C?(S?\ {S}) were
established. The asymptotic expansions of all local (—1)-homogeneous axisymmet-
ric solutions of (1) near a singular ray were also derived in [18]. In [19], all (—1)-
homogeneous axisymmetric no-swirl solutions in C%(S? \ {S, N}) were classified.
In [20], the existence and nonexistence results for (—1)-homogeneous axisymmetric
solutions in C%(S?\ {S, N}) with nonzero swirl were established. In [21], the van-
ishing viscosity limit of (—1)-homogeneous axisymmetric no-swirl solutions of (1)
in C2(S?\ {9, N}) was studied. In [22], the asymptotic stability of the least singular
homogeneous axisymmetric no-swirl solutions under L2-perturbations was proved.
Note that the asymptotic stability of Landau solutions under L?-perturbations was
proved by Karch and Pilarczyk in [13].

To study the (—1)-homogeneous solutions of (1) with finite singularities
P,...,P, on S? it is helpful to first analyze the behavior of solutions near an
isolated singularity on S2. This paper studies the following removable singularity
problem: For local (—1)-homogeneous solutions (not necessarily axisymmetric) of
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(1) near a potential singular ray, under what condition the singular ray is remov-
able? Namely, under what condition the solution can be smoothly extended across
the singular ray except a possible singularity at the origin?

There has been much study on the behavior of solutions of (1) near isolated
singularities in R3, see e.g. [5,7,14,15,29,32, 3840, 44].

Without loss of generality, we consider local (—1)-homogeneous solutions of (1)
near a potential singular ray from the origin passing through the south pole S. It
is equivalent to studying the solutions in a small neighborhood of S on S?. The
asymptotic expansions of axisymmetric solutions obtained in [18] suggest that the
least singular behavior near a singular ray through S is in the order of In dist(z, S).
Therefore, a natural removable singularity condition is « = o(In dist(z, S)). Denote
Bs(S) := {z € R? | dist(x, S) < 6} for § > 0. Clearly, dist(x,S)/|2'| - 1 asz — S
on S%2. We have the following result.

Theorem 1.1. Let § > 0, (u,p) € C?(S*> N Bs(S) \ {S}) be a (—1)-homogeneous
solution of (1). If
@) T 1) I

zeS?,z—S In diSt(l‘, S)
Then (u,p) can be extended as a C* function in S? N Bs(S).

Remark 1.1. The above removable singularity result is optimal in the following
sense: For any a > 0, there exists a (—1)-homogeneous axisymmetric no-swirl so-
lution (u,p) € C(S*\ {5, N}) of (1), such that lim, g2 , 5 |u(x)|/ Indist(z, S) =
limges2 »oyn |u(z)|/Indist(z, N) = —a. Examples of such solutions can be found
in [19], see also Example 3.2 in Section 3. On the other hand, there does not
exist (—1)-homogeneous axisymmetric solution u € C?(S? \ {P}) of (1) satisfying
0 < limsupjyj=y 4 p [u(@)]/|Indist(z, P)| < oo, where P = S or N, see Lemma
3.1

Note that all (—1)-homogeneous axisymmetric solutions of (1) in C?(S?\{S, N})
satisfying u = O(In|2’|) as x — S or N must have no swirl, see Lemma 3.1.

The organization of the paper is as follows: Theorem 1.1 is proved in Section
2. In Section 3, we provide further discussion on the behavior of isolated singular-
ities of (—1)-homogeneous solutions of equation (1). Specifically, we describe the
asymptotic behavior of (—1)-homogeneous axisymmetric solutions of equation (1)
obtained in [18]-[20]. Additionally, we list and discuss several special examples of
(—1)-homogeneous solutions of equation (1) from the literature. In Theorem 3.1,
we also present an existence result on (—1)-homogeneous solutions of equation (1)
that have exactly m singularities on S?, where m > 2.

2. PROOF OF THEOREM 1.1
For real numbers a < b and R > 0, denote
(3) Qupri={reR®|a<z3<b|2/| <R}
Lemma 2.1. For M, R > 0 and a < b satisfying ab > 0, let (u,p) be a C? solution
of

(4) {—Au—kszAu-Vu, x € Qupr\ {2 =0},

divu =0, z € Qapr \{z' =0},

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Licensed to AMS.

4 LI LI, YANYAN LI, AND XUKAI YAN
satisfying v = o(In|z'|) as ' — 0, uniform for x € Qupr \ {z' = 0} and X €

[-M,M]. Then w is smooth in Qqupr \ {&' = 0}, and for any a < a’ <V < b,
0 < R' < R, and any integer k > 1,

In |2’ In |2’
(5) |VFu| = o < nﬁ) . |VEIp =0 <%> , asz’ —0,
x x

uniform for x € Qg p g \ {' =0} and X € [-M, M].

Proof. The smoothness of w in 2,5 g \ {2’ = 0} follows from a bootstrap argument
using standard estimates for Stokes equations. Now we prove (5). Given a <
a <V <bletz e Quyr\{z’ =0} be an arbitrary fixed point and 5 :=
min{|z'|/3, (R — |%])/3,(b—¥")/3,(a’ — a)/3}. Define 4 : By — R* and p : By — R
by

(y) = e+ oy) p(y) == L_p(i‘ +py), Y€ Ba,

u Inp ' Inp
where By = By(0) C R3 is the ball of radius 2 centered at 0. Then
(6) —Au+Vp= (Aplnp)aVu =: f, in Ba,
and
(7) divi=0, in Bs.
By the assumption on u, we have
(8) sup|a| = o(1), asp—0.

2

So for any 1 < s < o0,
(9) Ifllw-res(my) < Ao plll|al?|lzs(s,) = o(1), as p— 0.

Note that the convergence rates in this proof are uniform for |A| < M. By (6), (7),
(8) and (9), using interior estimates of the Stokes equations (see Theorem 2.2 in
[45]), we have, for any 1 < s < oo and 0 < r < 2, that

(10) 1wz, + i0f [P = cllze(s,) = o(1), asp—0.

By (8) and (10), we have [|f[/zs(,) = o(1). Then by estimates for the Stokes
equations (see e.g. Theorem IV.4.1 in [9]) and Sobolev embedding theorems, we
have

(11) |@llw=2.s(B,) + IVDllLs(B,) = o(1) and [|@lc1(p,) = o(1)

for any 0 < r < 2. Tt follows that || f|[w1.+(p,) = o(1) for any 1 < s < co.
By estimates for the Stokes equations and Poincaré’s inequality, we have, for any
[>2and 0 <r <7’ <2, that

Il wrs(s,) + I VDllwi-2:8,)
(12) < Clfllwi-22m,,) + lullwrs s,y + 1P - gf Pl
< Clfllwr-22s,,) + llallwr=(s,,) + VD]

for some C depending only on s, r, 7’ and [. With a standard bootstrap argument
using Sobolev embedding theorems, by (11) and (12) we have that

Le(B,))

LS(BT,/))

lallw.s B,y + IVDllwi-2.5(p,) = o(1),
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for any | > 3 and 0 < r < 2. Then by Sobolev embedding theorems, we have
sup(|V*a| + |[V*p|) = o(1), Vk>1.
B,

So (5) holds for all k¥ > 2. For k = 1, the first estimate in (5) holds from the above.

Now we prove the second estimate in (5) when k£ = 1. We only need to prove it
when 25 = 0 and 27 > 0. For any 0 < 21 < R/2, we have

1
p(fEl,Oa«TB) :p(1,071'3) - / 61p(t,0,$3)dt

Since p € C*°(Qar v r \ {2/ = 0}), we have p(1,0,z3) = O(1) = o(ln |z1|/|x1]). So
we only need to show

Jo, O1p(t,0,z5)dt

i
z1—0 ‘ln|x1|’/|x1|

(13)
To see this, note that we have proved (5) holds for all & > 2, thus Vp(z)

o(ln|2’|/|2'|?). So for any € > 0, there exists some § > 0, such that |Vp| <
e|In |2'||/]2'|? for any 0 < |2'| < 6. So

\fwl o1p(t, 0, x3)dt| T J !
1 < Il [ 19p.0.09)1+ [ 195(0.0.29)
Xy 5

[Infz|[/|z1] 7 [Infz]]
jea| [0 |Int] |71
S dt+C
[nfz1f| Jo, 2 [ |4 ]|
<Ce asz; —0,
for some C' depending only on §. So (13) holds. The lemma is proved. O

Denote Dg := {2/ € R? | [2/| < R} for any R > 0.

Lemma 2.2. Let R >0, a < b satisfying ab > 0, and F' € C*(Qyp.r \ {2’ = 0})
be a (—3)-homogeneous vector-valued function. Suppose ¢ € C*(Qup.r \ {2’ = 0})
is a (—2)-homogeneous function satisfying

—Ag=divF(z), inQupr\{z =0}
Assume there exists some § € (0,2) such that
(14) la(a)[[a"~0 + 22: [V F|j'[27% = o(1)
§=0
as ' — 0 uniformly in Qqp.r \ {2/ = 0}. Then there exist some
h(z) € Lis.((a,0), W"*(Dr))

for any 1 < s < 525, and ag(x3), a1(z3), b1 (23) € C(a,b), such that
x x .
(15) q(x) = h(z)+ao(x3) In |$/|+al($3)ﬁ+bl(ff3)ﬁ, in Qap,r\{z" = 0}.

Proof. We prove the lemma when a < b < 0. The proof when 0 < a < b is similar.
Let a’,b’ be arbitrary numbers satisfying a < o’ < V' < b. For any fixed T €
Qo pr,ry2 \ {z" = 0}, let p := min{[z'|/3, (R — |2])/3, (b — ')/3,(a" — a)/3}, so
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By(Z) C Qapr- Set q(y) = p*°¢(z + py) and F(y) = p* °F(z + py) for y € B.
By (14), we have supp, (|q] + Z?:o |[VIF|) = o(1) as p — 0. Moreover,
~Aq(y) =divF, y€ Bs.
By elliptic theories, supp, (V| +|V?q|) = o(1) as p — 0. Therefore,
2

(16) Z (V7 q(x)]|2' 7279 = 0(1), as ' — 0, uniformly for z5 € (a’, ).
j=1
Denote A’ = 92 + 93. For each fixed z3 € (a,b), we have
A'g(a’,x3) = —div F(2',23) — 3§Q($/,$3) =: go(2', x3) + g1(2', x3),

where go(2/, 23) := =01 F1 (2, 23) — O Fa(2/, 23) and gy (2, x3) = —03F5(2', x3) —
93q(x', x3).

We first study the existence and regularity of the solutions gy and ¢; of the
Poisson equation

(17)

Ngi(2',x3) = gi(2',x3), 2’ € Dg,
¢i(-,x3)|lopy =0,

for + = 0,1, and then estimate the remaining part g3 := ¢ — qo — q1-
(1) Since F = o(|2'|°~2), we have

2
sup [0, 23)llw-1e(ppy = sup [|F(,25)llze(pp) <00, VI<s < g—s.
a<xz<b a<xz<b -

So for each z3 € (a, b), there exists a solution go(-, 73) € W1#(Dg) of (17) for i = 0.
Moreover, we have sup, .. [|qo (-, 23)|[w1.s (D) < 0.

Since F is (—3)-homogeneous, F3(z) = |r3| 3 F3(—z1 /23, —w2 /73, —1). Without
loss of generality, assume @’ < —1 < V’. Then by (14), we have

I+ VRG-S =0 (ﬁ)

as ¢’ — 0, uniformly for x3 € (a,b), where C' is some constant depending only on
a, b, R. Moreover, since ¢ is (—2)-homogeneous, we have

105 Fy (2, )| < C(| Fy(——
T3

q(x) = |ws| 2q(—21 /w3, —w2 /23, —1)
in Qup.r\ {2’ =0} Then by (14) and (16), we have

)+ 1P = (m%)

as ' — 0, uniformly for z3 € (a’,V’), where C is some constant depending only on
a,b,a’,b', R. Thus we have gi(z’,23) = o (|2/|°~2) uniformly for z3 € (a/,') and
SUP g/ <y <ty 191 (5, 23) || s (D) < 00 forany 1 < s < 5% In particular, since a’, b’ are
arbitrary numbers in (a, b), we have ||g1 (-, 23)|| 1+ (py) < oo for any 23 € (a,b). Thus
for each x3 € (a,b), there exists a solution ¢ (-,z3) € W?*(Dg) of (17) for i = 1.
Moreover, we have sup, .., < [|q1(-, 3)||w2.2(py) < 00 for any a < a’ <" < band
1< s < 525, since sup, ., <y |l91(, 23)]
Qa,b,R and

X x
|03q(a’, ws)] < Clla(=—) + [l Va(——
3 Zs3

Ls(Dgp) < 00. 50 qo,q1 are well-defined in
2
(18) q0,q1 € L5 ((a,b), W¥(Dg)), V1<s< 5

Licensed to AMS.
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Since go, g1 € C®°(Qap.r \ {2/ = 0}), we also have qo,q1 € C®°(Qup.r \ {2/ = 0}).
(2) Let ga(a',x3) := q(2', x3) — (qo(2', x3) + q1 (2, x3)), then A’ga(a’,23) =0 in

Qap.r \ {z/ =0}, and for any a < a’ < b’ <,

(19) sup  (|g2] +[Vgo|) < o0

R/4<|2'|<R
a’' <wz<b’

We will show
. x x
(20) g2(x) = h(x)+ao(z3)In |$/|+a1($3)ﬁ+b1($3)ﬁ7
for some h(z) € L2, ((a,b), W*(Dg)) for any 1 < s < 725 and aOA(xg), ai(x3),b1(zs)
€ C(a,b). Then (15) follows from (18) and (20) by setting h = h + qo + q1.
For any f(z') € C*°(Dg \ {0}), denote

1) flay = f(a) - (% | g—f) In o'
R/2

For each x3 € (a,b), let g2(2', x3) be defined as above. Since A’q; = 0 in Dg \ {0},
we have A’¢y = 0in Dr\ {0} and faDR/ % =0forany 0 < R’ < Rand a < z3 < b.

Let z = x1 + ixo, and

x € Qa’b’R\{LL‘/ = O},

z

w(z,3) = G2 +i/R (—02Godx1 + O1Gadxs),
(5,0)

where the integral |, (ZE 0) is independent of the path in Dg\ {0}. Then w is analytic
z,
in z in {0 < |z|] < R}. The Laurent series of w in z takes the form w(z,xz3) =

S (z3)2™. For any 0 < Ry < R2 < R, the series is uniformly convergent

m=—o0 Cm

in {Ry < |z| < Ry}. For any p > 0, we have

1 w(z,x3)
22 cm(T — —_—.
) @) =5m T

- 21

Now we show that ¢,,(x3) = 0in (o', ) for all m < =2, and sup,s ., . [c-1(23)| <
.

Claim. supys .y, <y |W(, 23)| 1+ (D) < 00 for any 1 < 5 < 325.
We will prove the claim later. Suppose the claim holds. Note that (22) holds for
any p > 0, we have

1 e
Cm(w3) = =— f wle,zs) | 1 / f Wz 73) 46y
2mi Jaj=p 2™ Wip Jppn Jjpme 2T

1 w(z, z3)

TP JD,A\D, s

Zm+1

Now fix some 1 < s < %. By the Claim and Hélder’s inequality, we have

1 N 2
sup  [em(3)] Sﬂ—p sup lwllzs(p,\p,,»)llz"" ] Cp~ "=

s <

a’ <xzz<b’ a’ <zz<b’ Ls=1(Dp\Dpy2) —

for all p > 0 and some C independent of p. Since s > 1, we have —m—2/s > —m—2.

By sending p — 0, we have sup,,_,. .y |[cm(23)| = 0 for m < =2. Asa <a',b' <b

are arbitrary, we have ¢,,(z3) = 0 for x5 € (a,b) and m < —2. Then w(z,x3) =

> 1 Cm(23)z™. By the definition of w and (19), we have supp 4« |./|< g [w| < co.
a' <zz<b’
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Taking p = R/2 in (22), we have sup, ..y [cm(z3)] < C(R/2)7™ for m > —1
for some C' depending only on Supg sc|s/|<p [W]. S0 SUp, .y, <y [c-1(23)] < 00.

a/ <wz<b’
Moreover, for |z| < R/4,

(23) |icmx3 m|<CZ—<oo
m=0

Set h(x',23) = Re(300_ o Cm(3)2™), ao(w3) = 5 faDR/z %, ay(z3) = Rec_q(x3)
and by (x3) = Imc_q(z3). By the fact that

1 6(]2
Rew(z,23) = G2 = q2(2’, 73 / In |2/,
(212 = [ Gml

we have for any x3 € (a,b) that
1 8q2 ’
q@2(2',x3) = Rew(z, x3) + (=— / ——) In|z’|
21 Jopyg,, OV

m 1 O0q
= Re( Y )™ 4 (5 /{m 02
R/2

m=—1
o Z2
= h(x',z3) + ao(z3) In|2'| + al(xg)w +b (m)w
So (20) is proved.
Let h := h 4+ gy + ¢1, then

X
+ b1(w3)

0= (g0 + @) + @2 = h(z', 23) + ao(x3) In [2'] + ay (3) — ‘x/2|2~

|z ’\2

By (18) and (23), we have h € L2 ((a,b), W*(Dg)). By (19), we have ag €

Lis.(a,b). Since sup, ..o lc-1(2z3)] < C, we have ai,b1 € Lf; (a,b). Since
q € C®(Qupr \ {2’ = 0}), we have q1,q2,42 € C°(Qup.r \ {z' = 0}). Thus for
each z # 0, w(z,x3) is continuous in x3 € (a,d) and ¢, is continuous in x3 € (a,b),
and therefore ag(x3), a1(x3), b1(z3) € C(a,b).

(3) Proof of Claim: Recall that g¢o = ¢ — (g0 + q1), we have Rew = ¢ =
—(g1+4o), where G(-, x3), §o(-, 23), G1(+, x3) are defined by (21) for each x5 € (a’, V).
By (14) and (18), we have

2
sup |Gz L= s(Dr) < 00, Vi<s< T 5
a’ <xzz<b’ —_

It remains to show

(24) sup || Imw|
a’'<xzz<b’

Note Imw = f(z_R 0)(—82(jgdx1 + 01Gadxs). For any z € Dgr \ {22 = 0}, denote
L

zZ = %ﬁ Let I'; be the counter-clockwise path from (R/2,0) to z along 0D/,
and I’y be the path from Z to z along the ray in the direction of z, and let I' = 'y UT's.

For any f = (f1, f2) € C(Dg \ {0}), define
£U71) 1= [ (der + fadea). = € D\ [0.R),

Then the following facts hold.

2
LS(DR)<OOa V1<s<ﬁ
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Fact 1. If f = (f1, f2) € C(Dg\ {0}) satisfies |f1(2)| + |f2(2)] < Co|z|* for some
Co > 0 and X € R\ {1}, then |L[f](z)] < C(1 + [2|*") for some C depending
only on R, A and Cj.

To see this, let (r,0) be the polar coordinates in R?, where z; = 7cosf and
xo =rsinf. For any z € D \ {z2 = 0}, denote z = (|z|,6p), we have

IL[f](2)] = \/(fl sin @ + fo cos 0)rdf + (f1 cosO + fasinf)dr|

6o E
< _/ |d9+/ £ (r, 60)|dr
|z

<C+ )‘dr|<C'-i-C|z\’\'|r1

2]

Fact 2. If f = (f1, f2) € C(Dr\{0})NL*(Dg) for some s > 1, then L[f] € L*(Dg),
and

L[ 2o (pr) < C(

for some C' depending only on s and R.

))

As in the proof of Fact 1, we have

) E %
2)| < 2/ \d9+/ f (r,90)|drgc+c\/ £ (r,00)1°
|| 2]

Taking the power s of the above and integrating in z over Dg, we have

ILLf1(2) | Ls(pry < C(L+|If]

LS(DR))'
So Fact 2 holds.
Since in the definition of w, the integral f(zﬁ 0) is independent of path, we take
5
the path to be I' as defined above. Then

Imw = /(—3261261531 + O1Gadxa) = LIV Go] = LIV — LIV (o + @),
r

where V+ =(—08,,8:). By (16) and Fact 1, we have sup, -, < |2|*~°|L[V4(-, 23)]]
< o0, and therefore sup, ., oy [|L[VEG(, 23)]|| 1s(ppy < 00 for 1 < s < 5%5. By
(18) and Fact 2, we have sup,/ ., . [|L[VEGo (-, 23) + VG1 (-, 23)]| s (D) < 00 for

l<s< 23—6. Thus (24) holds and the Claim is proved. The lemma is proved. O

Lemma 2.3. Let R > 0 and a < b satisfying ab > 0. Suppose (u,p) € C®°(Qup.3r\
{2’ = 0}) is a (—1)-homogeneous solution of the Navier-Stokes equations

(25) —Au+u-Vu+Vp=0, inQupsr\{z’ =0}
divu = O, mn Qa’b’gR \ {JJ/ = 0}

satisfying

(26) lu| = o(In]z']), as 2’ — 0 uniformly in Qup3r \ {z' = 0}.

Then p € L2 ((a,b), WH(DR)) for any 1 < s <2 anda < a’ <V <b,
(27) IVullz(, v p\Qur o) = 0o(V/[1In€l), ase— 0.
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Proof. Let a/,b',a”,b” be some arbitrary numbers such that a < a” < ad <V <
b < b. For convenience, denote 2, = Qg 3, and Q, = Qg for any r > 0. Let
C denote a positive constant which may vary from line to line, depending only on
a,b,a’,t’',a”, ", R. For any € > 0, let

0, 0 < |2'] < €2,
1 !/
——nm, e <|2'| <e,
"n_ Ine €2
91(z") = 41, e < |'] < R/4,
smooth between 0 and 1 and positive , R/4 < |2'| < R/2,
Oa |J)/| > R/2

Let g2(z3) > 0 be a cutoff function in C2°(a, b) such that go(x3) = 1 for x5 € (a’,b'),
and ga(z3) = 0 for 23 < a” or x3 > b’. Let g.(x) = g1(]2'|)g2(x3), then g. is
compactly supported in Qg satisfying

C
(28)  [IVGell oo (@@ 0) T 1039ell L 00y < €5 and [V'gell 22, ) < e

where V' = (01, 02).

Taking divergence of the first equation in (25), we have Ap = —div(u - Vu) in
Q3r \ {2’ = 0}. By (26) and Lemma 2.1 with A = 1, we have sup, ., [p| =
o[ [a[|/[2’]) and supgs e 3250 |V (u - Va2 /| Infa’||* = o(1). Apply
Lemma 2.2 for g =p, F =u-Vu and any 0 < § < 1 there, we have

X €T ~
(29) mm=mw+%u@mwwwwmg#+hwﬁﬁ%’xE%“

for some ag(xs3), a1(z3),b1(z3) € Cla,b), and h € L2 ((a,b), W*(D3g)) for any
1 < s < 2. By Sobolev embedding, we have h € L;S ((a,b),L"(D3r)) for any
1<r<oo.

We first prove (27). Take the dot product of the first equation in (25) with g2u

and integrate on (o, we have, using V - u = 0, that

0= [ (=Au+ Vp+u-Vu) - (g%u)dx
Q2R

= Vu - V(g2u)dr — 2[

Qor Qor

~ [ NgawPds
Q2R
— [ WPV -2 [ paVaoude— [ juPgu- Vo
Qor

Q2R Q2R

pQEVge-udw—[ lul?geu - Vgedx

Qor

Note that g = 1 in Qg \ Qc and g = 0 in Q... By this, the above, (26),
(28), and the fact that p = h+ O (1/|2']) in (a”,b") x Dsr (by (29)) with some
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h e L2 ((a,b), L™ (D3g)) for any 1 < r < co, we have, as € — 0, that

loc

/ [Vul?de < / \V(geu)\gdm
Qp/a\Qe Qar

s/ihﬁwm%mm/ W%me+/ [l el Vgl
QR QoRr Qop

’ ’ In |z’ ’
= 0@)+on) | (2 PVl Ve + P g 1 P v
Qopr\Q 2 ||
, In |z’ ,
—ow+o)( [ el Vaede+ | IV @
Q2r\Q 2 || € €
= o(lne).

So (27) is proved.

Next, we prove ai(xz3) = bi(xz3) = 0 in (29) for € Qg, and therefore p =
h + ao(xs) In|z’| € LS. ((a,b), WH#(Dg)) for any 1 < s < 2. We first show that
b1 (z3) = 0. Suppose by (Z3) # 0 for some Z3 € (a,b). Without loss of generality,
we assume that b1 (Z3) > 0. Choose a',b',a”,b"” such that a < a” <a’ <Z3 <V <
b < band by(x3) > b1(Z3)/2 for x3 € (a”,b"). We take a cutoff function gz (x3) as
described earlier using these values of a’, b, @’ and b, and let g.(x) = g1 (|2'|)g2(x3).

By the first equation in (25), we have

2 2
T Ty — T 12
Aul_u.le :81p281h+a0|x/|2 2‘1./‘41 _2b1 ‘1'1‘4’

where u; is the first component of w. Multiplying the above by QE% and inte-

+ aq

grating on Qop, we have
(30)

2,2 2 2
Tr{T Iy Ty — 7 1T
2/ bl(xg)g o2 / (—Aul +u-Vuy +01h+ag + a; )g .
Qor S Ja,, || /4 7 a2

Since g = g(|2'], z3), by the oddness in x5 of the integrants, we have

/ o L g$1x2i/ u x%—x%g T1i%2 _
07 /12 - 1 -
- S L

By (27) and (28), we have

L1T2

1T

| [ Auige =1/ VuV(ge

Qar |='|? Qa2r
1
< CIVurll g2, me0) IVl L2 @0 000) T ||m||L2(Q2R\Q€2)) = o(lne).

By (27), the fact that u = o(In|z’|) and the definition of g., we have

T1X9
|| u- VUlgew| < CHVul||L2(§22R\Q€2)HUHL’A‘(QQR\QEQ) = o(/|Ine]).

Q2R
By the definition of g, (28) and the fact that h € L? (Q2r), we have
X1 1T 1T
. Ohge—m =1 | ige—m + 901 75)
Qon 2|2 Qan |2 2|2

1
< 2 @p) (V' Gell L2 (62 + ||M||L2(92R\Q62)) =O0(y/|In€|).
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So the right hand side of (30) is o(In€). On the other hand, by the definition of g,
the integral on the left hand side of (30) satisfies

[ mteactin > M) |
o 2157 O J@n0\00n{2le1|<la <3l ]}

S bi(@3)
2= C

This contradicts to by (Z3) > 0. We have proved that by (z3) = 0. Similarly, we have
a1(Z3) = 0. The lemma follows from this and (29). O

[Inel.

Lemma 2.4. Let R > 0, a < b satisfying ab > 0, and g € C®(Qup.r \ {' = 0}).
Suppose (v,q) is a C* solution of

{—Av +Vg=divg, inQ.pr\ {2’ =0},

31
(1) dive =0, in Qapr\ {2 =0},
satisfying v € LQ(QawbyR), Vu,g € Ll(QawbyR), and

Hvv”Lz(Sza,b,R\Qa,b,e) + ||QHL2(Qa,b,R\Qa,b,e) + ||g||L2(Qa,b,R\Qa,b,e)

=o(y/|In€|), as e — 07,

Then for any ¢ € C(Qap,r) satisfying divp = 0, it holds that

(32)

(33) / Vv -Vp+g-Vp =0,
QbR

and divv = 0 in Q4. g in distribution sense.
Proof. For convenience, denote Q = Q4 g and Q. = Qg p.. Let ¢ € C(Q) satisfy
div ¢ = 0, we first prove (33).
Let
0, 0< 2] <e

/
he(z) = _ 2l |, e < |2'| < Ve,

Ine
1, |2'| > Ve
We have, for some constant C' independent of €, that
C
el

Multiplying the first equation in (31) by h.¢ and integrating on 2, we have

/VU-V /qdlv /g-V(heap).
Q Q Q

(34) IVhellz2(

So
(35)

/VU-V<p+g~V<p
Q

=/(qw-Vhe—Vv-(Vhe®<p)—g-(Vhe®s0))+/(W-V<p+g-V<P)(1—he)
Q Q
2:]1—1—]2.

By (32) and (34), we have
(36)
[I] < (||VUHL2(Q\E\Q€) + HQHLz(Q\E\QE) + ”9”L2(Qﬁ\ﬂs))”v}léHL2(Q\E\QS)HSDHLOO(Q) — 0,
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as € = 0. Since Vv, g € L'(Qq.r), We also have
(37) 2| < [IVellpe @ IVVllni@,o + lgllzi@ ) =0, ase—0.

By (35), (36) and (37), we have (33).
Now we prove that dive = 0 in distribution sense. For any ¢ € C2°(Q2), multi-
plying the second equation (31) by h.t) and integrating on 2, we have

/Qv - V(het)) = 0.

Using the above, the fact that v € L?(Q) and (34), we have

[ o-vul < [ o9t +] [ o Ven - )

<Yl Lo @ llvll 2 ot ”V'(/}HLW(Q)HUHD(Q\/E) — 0, as e = 0.

So dive = 0 in distribution sense. The lemma is proved. ([

For any domain Q C R", s > 1 and f € W~ 1%(Q), we say that (v,q) € W1 (Q)x
L*(Q) is a s-weak solution to the Stokes system

—Av+Vg=f, inQ
dive =0, in Q
if for any ¢ € C2°(Q) satisfying div ¢ = 0, it holds that

(38) /Q Vo Ve = (f,0),

and divv = 0 in distribution sense. Here (-, -) denotes the pairing between W =1 (£2)
= (Wy*(€2))" and W% (Q).

Proof of Theorem 1.1. For convenience, denote Q. = Q_y /5, for any r > 0. Let
Q= 96/16-

By (2), w = o(In|z’|). Applying Lemma 2.1 with A=1,a=-3,b=—-1/4,d' =
-2, =—1/2 and R = §/16, we have Vu = o(|In |2'||/|2']) and p = o(|In |2'||/|2])
in Q. It follows that |u|?> € L*(Q), u € WH*(Q) and pe L*(Q) for L <s<2. O

Claim. For any 1 < s < 2, (u,p) is an s-weak solution of

{—Au—i—Vp:f:: —u-Vu, in €,

(39) : :
divu =0, in Q.

Proof of the claim. We first show that for any ¢ € C°(Q) satisfying div ¢ = 0,

(40) /QVU-V@:(f,go)z/ﬂ(u@u)-Vga.

Since u = o(In |2']) and Vu = o(|In|2'||/|2']), we have u € L*(Q) and Vu,u® u €
LY(Q). For any € > 0, by Lemma 2.3 with a = —=3,b = —1/4,a’ = =2,/ = —1/2
and R = 0/16, we have [[Vul/r2o\q,) = 0(\/|1ne\), and p € L2 ((—3,—1/4),
W'#(Ds/16)). By Sobolev embedding, p € LS. ((—3,—1/4), L"(Ds;16)) for any
1 < r < oo, and therefore [|p||z2(\q.) = O(1). Thus

[Vull 2o + IpllL2@v00) + lu @ ull2@va.) = o(v/|In¢€]), as e — 0F.
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Applying Lemma 2.4 with a = —2,b = —=1/2,R = §/16, v = u, ¢ = p and g =
—u ® u, we have that (40) holds and divu = 0 in distribution sense, and therefore
(u,p) is a s-weak solution to (39) for any 1 < s < 2. The claim is proved.

Next, note f = —u-Vu € L*(Q) for any 1 < s < 2. By interior estimates of Stokes
equations (see, e.g. Theorem IV.4.1 in [9]), we have (u,p) € W25 (Q) x L, ().
By Sobolev embedding, we have u € W% (Q)NLP.(Q) for all 1 < s’ < 6. Then

loc loc

we have f = —u - Vu € Wlij(Q) for any 1 < s < 2. By bootstrap argument, we
have (u,p) € W,2°(2) x Lj, (Q) for any integer m > 0. Thus (u,p) € C>(Q). The
theorem is proved. ([l

3. DISCUSSION ON ISOLATED SINGULARITY BEHAVIOR

In this section, we first make some discussion on the isolated singularity behavior
of (—1)-homogeneous solutions of (1), then discuss some known special solutions of
(1) with isolated singularities on SZ.

3.1. Types of singularities. As mentioned in Section 1, our efforts start from
studying (—1)-homogeneous solutions u of (1) in C?(S?>\{Py,--- , P,,}) with finitely
many isolated singularities P;,--- , P, on S2, where m is any positive integer. In
particular, we would like to investigate the asymptotic behavior near the singu-
larities and the classification of solutions satisfying u = O(1/ min; dist(x, P;)*) for
some positive integer k. Consider a local (—1)-homogeneous solution u in a small
neighborhood of a singular point. Without loss of generality, assume the singu-
larity is at S, i.e. u € C?(Bs(S)NS%\ {S}), and u = O(1/|2'|¥). The first step
is to understand the behavior of u in Bs(S) NS?\ {S}. In [18] and [19], the as-
ymptotic expansions of all local (—1)-homogeneous axisymmetric solutions of (1)
in Bs(S)NS?\ {S} were established. In particular, Theorem B can be derived from
there.

Theorem B ([18,19]). Let 6 > 0, and u € C*(S* N Bs(S) \ {S}) be a (—1)-
homogeneous axisymmetric solution of (1). Denote ' = (x1,z3). Then T =
limyes2 o5 |2’ |ug exists and is finite, and u = O(l/’|x’| In |x’|‘2) Moreover,

(i) If 7 > 3, then |z'|uy must be a constant, and |z'|ug and u, must be real
analytic functions in 1+ cos@ near S on S2.

(ii) If 2 < 7 < 3, then either |2'|uy =constant, or lim,eg2 ;5 |@ ug exists
and is finite and not zero. Moreover, lim g2 » 5 |2/ |*"Yu, exists and is
finite.

(iii) If 7 =2, then n :=limges2 (|2 |ug — 2) In|2'| exists and is 0 or 2.

- When n =0, then lim,es> »—, 5 |2'|“ur = 0 for any € > 0. Either |2 |ug
is a constant, or limyes2 ;5 |¢'|ug exists and is finite and not zero.

/|‘r—1

- When n =2, then limyes2 », 5 \x’\2| In |x/|‘2ur = -2, and

: !/
st 17
exists and is finite.
(iv) If T <2 and 7 # 0, then limges2 45 |2 |ug and limges2 4y |/ |maxd 0 gy,
both exist and are finite.
(v) If T =0, then 0 := limges2 45 |2/ |ug and limyeg2 4 g uy/In|z’| both exist
and are finite. Moreover, @ := u — o /|z’|e4 is also a solution of (1), and
limges2 48 |ﬁ|/’ In |2/|| exists and is finite.
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Similar results in Theorem B hold for solutions u € C?(S? N Bs(N) \ {N}).
Theorem B can be concluded from [18] and [19], but some of the statements are
not explicitly listed there. For the sake of completeness, here we briefly describe
how Theorem B is concluded from the results in [18] and [19].

Proof. Let y := cosf and U := u - rsinf. Since u is (—1)-homogeneous and ax-

isymmetric, we know that U depends only on y € (—1,1). Note y = 1 and —1 cor-

respond to the north and south pole N and S of S? respectively, while —1 <y < 1

corresponds to S? \ {S, N}. The divergence free condition in (1) is equivalent to

ru, = dUp/dy, and (1) is reduced to the following system of Uy and Uy,

(41)

{ (1—y?) Uy + 29Up + LU + [ [0 [ o) 8 Vo) bl = byy? + boy + bs
Y 270 yo Jyo ’

(1=y*) 4z Us + Us g, Us = 0,

for any yog € (—1,1) and some constants by, be, bs € R.
By Theorem 1.3 in [18], we have that 7 := lim,eg2 ;5 |2’ |ug exists and is finite.
(i) By Theorem 1.4 in [18] we have that |2'|ug must be a constant when 7 > 3.
So (41) is reduced to

(42) (=) 2-Ua(o) + 2000(0) + 5U30) = a(1 =)+ eal1 ) + cal1 =37,

for some real constants ¢y, ca, c3. Then by Theorem 1.1, Theorem 1.2 and Lemma
2.3 in [19], we have that |z'|ug = Up is a real analytlc functlon in 14+cosf near .S on
S2. By the divergence free condition, u, = iy Ue( ) is also a real analytic function

in 1+ cos® near S on S%.

(ii) When 2 < 7 < 3, by Theorem 1.3 and 1.4 in [18], we know for x € S? that
(43) Uy :T+a1|$/‘6_27— + a2|x’|2 —|—O(|{L’/|4(3_T)_E),
(44) Uy =do + di (|2'|*77 + da|2'|P 37 + ds|2'[*"7 4+ O(|2'|"*7°779)).
Note Uy = ugrsind = |2'|ug and 7 > 2. If dy = 0, then |2'|uy = do is a constant.
If di # 0, then lim,eg2 , s5 [2'|7 " 'uy = di, which is finite and nonzero.

The behavior of u, on S? is obtained by using the fact u, = dUy/dy on S? and
the above behavior of Uy. Write the first equation in (41) as

VU3 (s —y)(1 - sy)
T a-s2)e

1
(45) (1 —y*)u, = —2yUy — §U3 +/ ds + biy® + by + b3.
v

Note that
(s —y)(1 —sy) = —y(1 +5)> + (1 +y)%s
Then the expansion of u, is obtained by substituting the expansions in (43) and
(44) into (45).
(iii) When 7 = 2, by Theorem 1.3 and Theorem 1.4 in [18],

n I |—2+e€
i + Ol 7).

where 7 := limges2 ,5(|2"|ug — 2) In|z’| =0 or 2. If n = 0, then
Ug =dyIn|z'| + dy + d1O(|2'|' ).

If dy = 0, then |2'|ug = Uy is a constant. If d; # 0, then lim,es2 5 |2|ug/In |z
dy, which is finite and not zero.

Up =

l|_
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If n =2, then

ds
In |z’
So Uy is bounded and lim,es2 ;.5 |2'|ug exists and is finite.

The expansion of u, is obtained by substituting the expansions of Up and Uy
into (45). It can be proved that: If = 0, then lim,eg2 ;g [2'|u, = 0 for any

U¢ = U¢(—1)+ +O((ln\x'|)*2+6).

e>0. If n = 2, then lim,es2 ;g |2'[*| In \x’||2ur =-2.
(iv) When 7 < 2 and 7 # 0, by Theorem 1.3 and Theorem 1.4 in [18], we know
that
(46)
Up =7 + a1|2' > 4 ag|’|> + O(|2'|*7277¢) + O(|2'|>™°),
(47)
Up =Us(—1) + da|a/[*"7 + dola’|* 2" + ds|/|*~7 + O(|2/[77) + O(|a/|7%77).

It is easy to see that lim,eg2 , 5 |2’ |ug exists and is finite. The asymptotic behavior
of u, can be obtained by substituting the expansions (46) and (47) into (45). In
the present case, limgeg2 ;g |2/ [max{T:0}yy,. exists and is finite.

(v) When 7 = 0, by Theorem 1.3 and Theorem 1.4 in [18], we know that

(48) Up =ay|2'|* In|z’| + as|2’|* + O(|2'|*~),
(49) Ugp =Us(—1) + dy|2'|* + do|a’[* In |2 + d3|2’|* + O(|x/|676).
Then lim,eg2 ;5 |2'|ug exists and is finite. The asymptotic behavior of u, can be
obtained by substituting the expansions (48) and (49) into (45). Then we have

u = c1In|2'| + O(1),
for some nonzero constant c;, and lim,eg2 5,5 u,/In|2'| exists and is finite. Since
for any solution (Uy,Uy), (Ug, Uy — C) is also a solution of (41) for any constant
C. By taking C' = Uy(—1), we have & = u — Uy(—1)/|2|ey is also a solution of

(1) and satisfies that lim,eg2 ;g |@|/|In|2’|| exists and is finite by combining the
above with (48) and (49).

In the end, combining all above argument, we have u = O(1/||2/|In || ‘2) for all
(—1)-homogeneous axisymmetric solutions, which completes the proof.

'

In view of Theorem B, all (—1)-homogeneous axisymmetric solutions of (1) in

C>(S?\ {S, N}) are of the following three mutually exclusive types:
Type 1. Landau solutions, satisfying sup,—; |u(z)| < oo;
Type 2. Solutions satisfying 0 < limsup,_q ./ [u(z)]/|In]2'[] < oo
Type 3. Solutions satisfying limsup, 1 ,_o [2'||u(z)| > 0.

This classification is equivalent to the one in [23], which is given as follows:
Type 1”. Landau solutions, satisfying sup,,_; [Vu(z)| < oo;
Type 2. Solutions satisfying 0 < imsup,, 1 .0 |[2'|[Vu(z)| < o0;
Type 3’. Solutions satisfying lim sup,, _; ./ [2'[*|Vu(x)| > 0.

Below we briefly explain why these two classifications are equivalent.

To see Type 1 and Type 1’ solutions are the same, we claim that a (—1)-
homogeneous solution u of (1) in C*°(S? \ {S, N}) is a Landau solution if and
only if supj,—; [u(z)| < oo if and only if sup,—; [Vu(z)| < co. Note Landau
solutions are smooth on S?, thus satisfy sup,_;(Ju(z)| + |[Vu(z)]) < co. On
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the other hand, sup,—; [Vu(z)| < oo implies sup,_; [u(z)| < oo. Moreover, if
SUp|,=1 |u(z)| < 00, then u = o(In[2']) on S? as  — N, S. Then by Theorem 1.1,
w is in C°°(S?) and thus must be a Landau solution in view of Theorem A.

By integrating the conditions in |Vu| for Type 2’ and Type 3’ on S? near S and
N, we see Type 2’ solutions must be of Type 2, and Type 3’ solutions must be of
Type 3.

Now suppose u is a (—1)-homogeneous axisymmetric solution of Type 2, we show
it must be of Type 2’. Since wu is (—1)-homogeneous and axisymmetric, we have

T 187"
VUZ—Z—Q6T®GT+(;81; _%)er(geﬁ_u_d)er@ed)_%ee@er
10 10
(50) +(— 4o + — )€9®69—C0t9—69®€¢—u—€¢®er+— U 6¢®69

30
U
tf)— — .
+(cot0—+ —)ey ® ey

00

Without loss of generality, consider z — S on S? as ' — 0. As explained in the
proof of Theorem B, (1) for (—1)-homogeneous axisymmetric solutions is reduced
o (41) for y = cos® and U(y) = wursinf, and the divergence free condition is
equivalent to ru, = Uj(y), where we use “’ ” to denote differentiation in y. Note
Type 2 solutions satisfy Up(—1) = 0. By (48) and (49), Uy = O(|2’|? In|2’|) and
U, = O(|2']?). Note U} = ru,, = O(In |2'|) on S? by Theorem B (v). By the second
equation in (41), we have Uj = O(1). Note rsinf = |2’|, we have

Uy U
ug = T =O0(|z'|In]z']), wue = ﬁ =O0(|7'|), wu,=O(Inl|z']).
Oug 1, .,  cosf B , Oug 1 ,.,  cost
99 = 72U+ —5Us) = Olnla')), = = =5 (U + ——Us) = O(1)
By the above and (50), we have
Vu= iagerer ® e+ O(Inf2']) = _ﬂ 6 er ®eg+ O(In[2']).

Differentiating the first equation in (41), plugging the behavior of Uy, Uy, Uy, Ug,
it can be shown that 0 < limsup,_; ./, |[2'|*|U4| < co. Then the above implies
0 < limsup), 1 40 [2'[[Vu(z)| < 0o, and u is of Type 2”.

Similarly, if a solution is of Type 3, consider x — S on S?. By Theorem B, we
have 7 = Up(—1) = limz=1 ,— 5 |2'|ug # 0. By Theorem 1.3 and 1.4 in [18], we
have the behavior of Uy and U, corresponding to each 7. By the second equation of
(41), one can obtain the behavior of Uj. Taking derivative of the first equation in
(41), using the behavior of Uy, Uj, U, and U, {; for each T respectively, the behavior
of U} can be obtained. Then with the estimation of Uy, Uy, Uy, Uy, U(; and (50),
we have that u is of Type 3’. We omit the detail here.

3.2. Some examples of special solutions. Below we discuss some special (—1)-
homogeneous solutions of (1) with isolated singularities on S? and their asymptotic
behavior. Due to the (—1)-homogeneity, we only consider the equations on S? and
all solution formulas in the following examples are given on S2.
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3.2.1. Homogeneous azisymmetric solutions of (1). In this section, we give some
examples of (—1)-homogeneous axisymmetric solutions of (1) in C?(S?\{S, N}) and
discuss about their singularity behavior. The no-swirl solutions with one singularity
at S are classified in [18], and the no-swirl solutions with two singularities at S
and N are classified in [19]. The (—1)-homogeneous axisymmetric solutions with
nonzero swirl nearby the no-swirl solutions surface in C?(S? \ {S}) and C?(S?\
{S, N'}) were constructed respectively in [18] and [20]. The asymptotic behavior of
these solutions are described by Theorem B.

(a) No-swirl solutions in C*°(S?\ {S})
With one singularity on S?, all (—1)-homogeneous axisymmetric no-swirl solu-
tions in C?(S? \ {S}) are classified in [18].

Example 3.1 ([18]). Let Z:={(r,0) € R? | 71 < 2,0 < 14 —7)}U{(1,0) | T >
2,0 = Z}. Then for every (1,0) € Z, there exists a unique ug € C*°(S? \ {S})
such that the corresponding (u,p) is a solution to (1) on S? \ {S}, satisfying
limg_, - upsind = 7 and limg_,o+ up/sind = o. Moreover, these are all the ax-
isymmetric no-swirl solutions in C?(S? \ {S}). The explicit expressions of these
solutions are as follows.

(51)

T A e T<2

(1—20+b)(T)_b+20—1+b

Uy =

e e T |

(1-20)ln——— ~2
(1+b)(1—cosh)
sin 0 ) T>2

where (7,0) € Z and b:= |1 — 5|, and u,, p can be determined by

d 1
(52) Uy = —% —ugcotl, p=wu,— §u§ + const, on S?.

Note the first equation of (52) is equivalent to the divergence free condition divu =
0 for (—1)-homogeneous axisymmetric solutions of (1).

The solutions u™? are of Type 1 when 7 = 0, and are of Type 3 when 7 # 0
regarding their behavior near the south pole. There is no Type 2 solution in {u™ |
(r,0) € 1}.

To be precise, {(ug)r, | 7=10,0 € (—00,0)U(0,1)} are Landau solutions. They
can also be rewritten as

2sind
Ug = 53—
0 2?7" + cosf
Note when 7 = 2, in view of (52), we have

2(1 - 20) 2(1 —20)2(1 — cosb)
ur == {1+ 1+ cosf - 1+ cos@ 2 )
(1_20)IHT_2 ((1—20)lnT—2) (1+ cosf)

So limyeg2 48 |x’|2‘ ln\x’HQuT = —2. By Theorem B, all (—1)-homogeneous ax-

isymmetric solutions of (1) satisfies u = O(1/||2’|In |2/| ’2) By the above example
of solutions when 7 = 2, this estimate is optimal.
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(b) No-swirl solutions in C*(S?\ {S, N})

In [19], all (—1)-homogeneous axisymmetric no-swirl solutions in C%(S?\ {S, N})
were classified. For these solutions, us = 0 and (1) is reduced to (42) for y = cosé
and U = usinf on S?. The divergence free condition gives u, = dUg/dy, and p can
be determined by p = u, — u%/? + const on S?. Denote ¢ := (c1,¢2,c¢3), and let

1
Gy 1= —5(\/1+c1+\/1+02) (Vi+a+Vite+2),
and
(53) Ji={ceR3|c;>—1,c0 > —1,c3 > c3}.

In [19], it was proved that there exist v~, v € C°(J, R), satisfying v~ (¢) < v*(c)
if 3 > ¢3(c1,c2), and v~ (¢) =T (¢) if ¢5 = €3(cq1, ¢2), such that equation (42) has
a unique solution Uy in C*°(—1,1) N C°[—1,1] satisfying Ug"? (0) = v for every
c€ Jand v (¢) <y <~T(c). Define

I'={(c,y) €R* |1 > —1,e2 > —1,¢3 > e3(c1,¢2),7 (c) < v <~vT(c)},

and

u = ule, +uyleg = (iUg’W)e,, + = ¢y,
(54) dy in

Ay (5P
dy ? 2sin% 0
Then {(u®7,p>7) | (c,7) € I} are all the (—1)-homogeneous axisymmetric no-swirl
solutions of (1) in C*°(S?\ {S, N}).

In particular, it is obtained in [19] that 7 := Up(—1) = 2+ 2y/1 +¢; and 7 :=
Uy(1l) = —2+£24/1 + ¢, and the behavior of the solutions near S and N is described
by Theorem B and its analogous result near N for different values of 7 and 7. For
(c,7) € I with v~ (c¢) < v < v"(c), the solutions u®?Y are of Type 1 if ¢; = cg =
c3 =0, Type 2if ¢ = ¢y =0, c3 # 0, and Type 3 if c; # 0 or co # 0. If v =~T(c)
or v~ (c), then u®" is of Type 3.

1
po7 =l — E(u;"y)Q +c3 = + cs3.

(c) Homogeneous axisymmetric solutions with Type 2 singularities

Let us identify all Type 2 (—1)-homogeneous axisymmetric solutions in C?(S?\
{S,N}). We first consider no-swirl solutions. Let {(u®7,p>7) | (¢,y) € I} be
the (—1)-homogeneous axisymmetric no-swirl solutions of (1) in C%(S?\ {S,N})
as described above. In [22; Corollary 2.1], it is proved that if ¢; = ¢ = 0 and
lim,esz 40 |2|uy” = 0, then
c,“/(x) _ _Cgsgn(x3)|x/|

y 2’| O)(Jel + D]

In—— + ,

|z[? ks |z[?

W@ — 268 171, 00)(1d + )
ST R I

So u®Y = u,e, + ugeg satisfies

|uc

uey

(55)

= = —2 G .
xeSZ}gclaS In|z/| zes?z—N In|z/| o3|

This in particular implies that for any a > 0, there exists a (—1)-homogeneous ax-
isymmetric no-swirl solution (u,p) € C*(S? \ {S,N}) of (1), such that
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limy,|yo [ul/In|2’| = —a on S%. As a consequence, the removable singularity re-
sult Theorem 1.1 is optimal. An explicit solution with ¢3 = —4 is given below in
Example 3.2. The asymptotic stability of such (u=7, p©7) was proved in [22].

Below we show that without the assumption of no-swirl, all Type 2 homogeneous
axisymmetric solutions of (1) on §?\ {S, N} must be the u®” with (¢,7) € I and
¢1 = ¢g = 0. In particular, this implies that there are no Type 2 (—1)-homogeneous
axisymmetric solutions of (1) with a single singularity on S2.

Lemma 3.1. Suppose u € C%(S?\ {S,N}) is a (—1)-homogeneous axisymmet-
ric solution of (1) satisfying imsup,—1 .o [u(@)|/|In]2[| < co. Then uy =
0, and u must be the solutions u®" with (¢,vy) € I satisfying ¢ = co = 0,
and w satisfies (55). In particular, let P be S or N, then there does not ex-
ist (—1)-homogeneous azisymmetric solution u € C%(S*\ {P}) of (1) satisfying
0 < limsupy o, [u(z)| /|1 f2']| < oo,

Proof. Let u € C?(S?\ {S,N}) be a (—1)-homogeneous axisymmetric solution
of (1). As in the proof of Theorem B, (1) is reduced to (41) for y = cos6 and
U = usinf on S%. By the second equation in (41), we have

d

dy
for some constant C. So Uy is monotone in y € (—1,1). By the assumption that
Hm sup ;=1 40 [u(@)]/[In]2’[| < oo, we have Us = ugsinf = O(sinfInsinf) on
S%. So Uy(£1) = 0. Then by the monotonicity of Uy, we must have Us = 0
and the system (41) is further reduced to (42). In view of the classification of all
(—1)-homogeneous axisymmetric no-swirl solutions of (1) on S?\ {S, N} in [19] (as
described above), we have that u = u®? for some (¢,y) € I with ¢ = ¢; = 0. In
particular, u satisfies (55).

Next, for P = S or N, we show there does not exist (—1)-homogeneous axisym-
metric solution u € C?(S?\ {P}) satisfying 0 < lim supy, =1, p [u(@)|/[In|2'|] <
oo. Without loss of generality, assume P = S. By the above argument, we have
u = u®Y with ¢; = co = 0 and satisfies (42). Taking d/dy of (42) with ¢; = ¢z = 0,
we have

Yg(s) ds
)

Usly) = Ce™ ¥ ¥

d? d
(1 - y2)d_y2U0 + 2U9 + Uad—yUg = —Qng.

Since u is smooth at N, we have Up(1) = 0 and d?Uy/dy* = O(1) as y — 1. By this
and the above equation, we must have ¢g = 0. Then solving (42) on (-1, 1] with
c1 =cy=c3=0and Uy(l) = 0, we have Uy = 2(1 — y?)/(\ + y) for some X\ < —1
or A > 1. If A =1, then Up = 2(1 — y) and limsup,_; ,_,g [u(z)|/|In|2'|] = oco.
If A # 1, then u € C°°(S?), which is a Landau solution. Thus there is no solution
u € C*(S*\ {S}) satisfying 0 < limsup,_; ,,5 [u(z)|/|In]z’|]| < co. The proof is
finished. O

Below we give some examples of Type 2 solution with explicit formulas, which
exist near S or N on S2.

Example 3.2. In equation (42), set ¢; = ¢ = 0. Let Up(y) = 2(1 — yz)g((g)) for

some function x(y), then (42) is converted to

2(1 — y*)x"(y) — esx(y) = 0.
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Let z := cos? g, then y = 2z — 1. Denote x(z) := x(y(z)). The above equation then
becomes
d*x(2)

dz?
This is a hypergeometric differential equation, whose solution ¥ can be expressed
with the help of hypergeometric functions and Meijer G-functions [8,33]. In general,
these functions cannot be expressed as elementary functions. According to the
above argument about ©®? and Theorem B, if ¢5 > ¢5(0,0) = —4, then the solution
lies in C%(S?\ {S, N}), otherwise there exist local solutions in C?(S2N Bs(S) \ {S})
satisfying (55) for some § > 0.

2z(1 - 2) —ec3x(z) =0.

In particular, when c3 = —4, there are special solutions explicitly given by
1+y
x(y) =1 -y In(3—) + 2+ 20(1 — y°)

for any o € R. Correspondingly,

. . 1—cos O(In(cot g)—i-a)
ug = 4sint cos 6+sin? §(In(cot §)+a)’
v — —4 8(17005 0(In(cot §)+a)

= & 2

(56) " (cos 0+sin? 0(In(cot g)+o¢)) ’
Uy = 0,
8 (—2+cos 0(In cot %+a)—sin2 0(In cot %—i—a)Q)
p= 2
( cos 0+sin? 6(ln cot %—i—a))

is a special solution of (1) satisfying (55) for 6 € (6p, ), where 6 is the unique root
of cos f+sin® f(In cot §+a) = 0. Thus (56) is a solution of (1) in C2(S*NB;(S)\{S})
for some ¢ > 0 depending on «. Note that (56) is also a solution for 6 € (0, 6y),
thus is a solution in C%(S? N Bs/(N) \ {N}) for some §' > 0. This special solution
also implies that our removable singularity result Theorem 1.1 is optimal. Note
this solution does not exist on the whole S? \ {S,N}. Indeed, in this example,
¢1 = ca =0 and ¢cg = —4 = 25(0,0). By Theorem 1.1 in [19], in this case there
exists only one solution of (1) in C?(S?\ {S, N}), which is given by ug = —4 cot 0,
ug =0, u, = —4 and p = —8csc? 6.

When ¢; = ¢y =0, cg = 1/2 > —4, there are special solutions in C?(S?\ {S, N})
with explicit but not elementary expressions given by

sin 6 (K(COS2 %)70¢K(sin2 %))

ug =
2(E(cos2 £)—sin? § K (cos? §)+aE(sin? §)—acos? £ K(sin? § ) ’
-1 d
Up = g4 (80 Oug),
’U,¢ = U,

2
p= %(dd;; + (cot O — ug) L + 2 +u3>,

for any 0 < a < 400, where K(z) and E(x) are respectively the complete elliptic
integrals of the first and second kind

w/2 1 /2
K(x):/ —d#, E(x) :/ V1 — zsin® 6d6, 0<zxz<l1.
0 V1—zsin?6 0

These special solutions lie in C?(S? \ {S, N}) and satisfy (55), which also implies
that the removable singularity result Theorem 1.1 is optimal. For o = 0 or o0,
the above solution is a solution of (1) in C?(S?\ {S, N}) of Type 3. If a < 0, then
the above solution is a local solution near N or S on S2.
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3.2.2. Serrin’s solutions. In a pioneering work [37] concerning a representative
model for tornadoes, Serrin studied (—1)-homogeneous axisymmetric solutions of
(1) in the upper half space R3 := R3>N {z3 > 0} with a singular ray along
the positive xs-axis and some boundary conditions on 8Ri. Notably, the solu-
tions formulated in the paper exhibit properties different from Landau solutions,
where upg = O(|2'|In|2’|), u, = O(In|z’|) near the north pole N on S?, and
0 < limges? N |2'||ug] < oco. In particular, Serrin’s solutions are of Type 3
behavior mentioned above.

3.2.3. Solutions given by Liowville formulas. In [44], Sverdk proved that all (—1)-
homogeneous nonzero solutions of (1) in C?(R3\ {0}) are Landau solutions (see
Theorem A). In his proof, (1) is reduced to

(57) —Ng2p+2=2¢e¥, on S

where u = Vg2 — Agee, on S2. It is clear from [44] that if ¢ is a solution
to (57), then u = Vg2p — Agz2pe, is a solution to (1) after being extended to a
(—1)-homogeneous vector field in R3.

The classification of solutions to (57) is classical. Let F~' : S — R? be the
stereographic projection, with z = (2!, 2%) = F~1(z) given by 2! = z;/(1 — z3),
i =1,2. It is easy to check that for any bounded open set O C R?, ¢ € C?(0) is a
solution to

(58) —NE =et
in O, if and only if
(59) o(r) :=Eo F Y (z) —3In2+2In(1 + |F~(z)]?)

is a solution to (57) in F(O) C 2.
For a simply connected open set O C R?, it is known (see [25] and [6]) that all
real solutions £ € C?(O) of (58) are of the form

81f"(2)I?
1+ 1£(2))*
with f being a locally univalent meromorphic function. Here we have abused no-
tations slightly by identifying z = z' + iz and using O also to denote the subset
{2zt +i2? | (21,2%) € O} C C. In particular, if £ is singular at some z, then ¢ is
singular at F(2) on S?, and the corresponding u = Vg2¢0 — Agz e, is a solution to
(1) with a singularity at F(z) on S?. In view of this fact, we may construct some
special (—1)-homogeneous solutions of (1) with arbitrary finite singularities on S2.
First, for axisymmetric solutions in C?(S? \ {N, S}), we have

(60) E=In

Lemma 3.2. Let u be a (—1)-homogeneous solution of (1) given by u = Vg2p —
Agzpe,. on S2\ {S, N}, with ¢ given by (59) and (60) for some multi-valued locally
univalent meromorphic function f on C\ {0}. If u is azisymmelric, then [ = az®
for some a € C\ {0} and o € R\ {0}.

Proof. Since u = Vg2 — Ag2pe,. is axisymmetric, ¢ is also axisymmetric. So &
defined by (60) is radially symmetric and satisfies (58) in R?\ {0}. Denote r = |z,
we have & = £(r). Let t = In|z| and n(t) = £(e*) + 2t, then (58) is reduced to

—ny = €.
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Multiplying both sides of the above by 7, and taking the integral, we have n? +2e" =
const. Solving for 1, we obtain

Aect
= 1 _—
K n(l—l—AeCt)2 e
for some constants A > 0,¢ > 0 and C. Then
Are=2
=ln—+C, Vr>0.
13 n(1+ArC)2+ ,  Vr >
Note this £ is given by (60) with f(z) = VAz%? or f(z) = 2=¢/?/\/A. The lemma
is proved. (I

Now we display some special solutions of (1) given by u = Vg2¢o— Agz2e, , where
v is given by (59) and (60) with some locally univalent meromorphic function f.

Example 3.3. In this example, we construct some special (—1)-homogeneous so-
lutions of (1) with singularities at N or S on S? using Liouville formulas, includ-
ing both axisymmetric and non-axisymmetric solutions. For each f(z), we de-
fine ¢ by (59) and (60), and construct a corresponding solution of (1) given by
u = Vg2 — Agze,. We display the expression of u = u,e, + ugeg + ugey corre-
sponding to each f(z) below.

(a) Take f(z) = az® for some a € C, 0 < |a|] < +o0 and o € R, a # 0. The

corresponding solution (u,p) of (1) is

_oalal 2 la|? cot?®* & —1
g =Ug = sine<—‘3059+am )
(61) Ugp = 0
_ 7\a| la|? cot?> &
Uy = Up -2+ Smg 5" (THaP cot2a2g)2 7
a,|al 1 2
(62) p=p"" = = 5 (ug)”.
It is obvious that u®lel = y~1/lal Landau solutions correspond to the

case when o« = £1. When « # £1, the above solutions are of Type 3.
(b) Take f = aeb for some a,b € C satisfying |al, [b| € (0,+00). The corre-
sponding solution (u,p) of (1) is

up = _Q(zﬁfz“) + & Cossf;zbez siné) . tanh (cot(g)(bl cos ¢ — by sin @) + In |a|>7
g = 2(by sin ¢ + by cos ¢) sme - tanh (cot( )(b1 cos ¢ — by sin @) + In |a|>,
U = —2 4 L2 ‘4 sechz(cot (b cos ¢ — by sin ) + In \a|)7

2 sin %
and
1 /d?u du 1 d*u du ug du
63 :——( ot o G S L S 2).
(63) p a2 T Y aZeder "M a0 smo dg U TS

This solution u is not axisymmetric.

(c) Take f = ¢*". Then the corresponding solution of (1) is given by
up = —2CSHR) | ok cos(ke <" 3 tanh (cot(£) cos ko)),
sin 6 sin 6 2
(64) ug = 2k sin(ko) Costmg tanh (cot®(4) cos(k¢)),
= —2+2k? Co:m (& )sechQ(cotk(g) cos(kg)).
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The pressure p can be derived from (63), and the corresponding w is not
axisymmetric.

It should be noted that if we send |a] — 0 in (61), then

) —2(a + cos )
65 lim wgl®l = Z25 00
(65) |al\glo Yo sin

For a = #1 and 0 < |a| < +00, u®!?l is a Landau solution. When a = 1, the limit
in (65) gives a solution u of (1) with
2(1 4 cosf)

ug = ————>-, U= —2, uy =0, = —
o sin 6 " ¢ p

4(1 + cos )

sin? 6
which is smooth at south pole and singular at north pole. This solution is given by
u = Vg2 — Ag2pe, with ¢ = —21n(1 — cos ), which satisfies Agzp + 2 = 0. This
© is not given by (59) and (60) with any locally univalent meromorphic function f.
Similar situation holds for « = —1, where the corresponding solution is
2(1 — cosf) 4(1 — cos )

sin 0 sin? 6
which is given by u = Vg2 — Agzpe, with ¢ = —21In(1 4 cosf). This solution is
smooth at north pole and singular at south pole. These solutions are of Type 3. In
particular, these solutions also satisfy Euler’s equations.

We may also construct (—1)-homogeneous solutions of (1) with singularities on
S? that are not N or S.

Ug = ) u’r:_27 U¢:0, p=—

Theorem 3.1. Let m > 2 be an integer, Pi,..., P, € S? be distinct points, and
{li,...,Im} € Z\ {0,1,—1} satisfy Z;”:l l; = m — 2. Then there exists a (—1)-
homogeneous solution u € C*®(S?\ {P1,..., Pn}) of (1), satisfying

(66) w=2(|l| —1)Vs:In|z — Pj|+0(1), asz— P; onS* V1<j<m.

Proof. By rotation of the coordinates, let P, be the north pole N. Let F~!:8? —
R? be the stereographic projection and z; := F~1(P;), 1 < j < m — 1. Fix any
a € C\{z1,...,2m-1} and define

67)  f(z):= /z(t — )T (= )l T, V2 e C\ {21, 2t )

where the integral path from a to z does not intersect with {z1,...,2,-1}. Since
l; # 0,1, f is independent of the path and well-defined in C\ {z1,...,2zm—1}. So f
is a locally univalent meromorphic function near each z;, 1 < j <m — 1.

Let £(2z) be defined by (60) with this f, and ¢(z) be defined by (59). Then as
mentioned earlier, £ € C*°(C\ {z1,...,2m—1}) satisfies (58) in C\ {z1,...,2m-1},
and p € C®(S?\ {P,...,P,}) satisfies (57) on S?\ {P1,...,Py,}. Let u =
Vs2p—Ag20e, on S2\{Py,..., P, } and be extended as a (—1)-homogeneous vector
field in R®. Then u € C®(S?\ {P1,...,P,}) is a (—1)-homogeneous solution of
(1) on S2\ {P1,..., Py}

Now we prove that u satisfies (66) for all 1 < j < m. Let (r,0,¢) be spherical
coordinates as usual. Write 2 = (sin 6 cos ¢, sin #sin ¢, cos#)” for x € S? and z =

F~Y(z) = {220 (cos ¢,sin ¢)7. By computation,
Opxr = ey, Opx = sinfey,
68 1 in 6
(68) Oz = —m(cos b,sin ¢) 7, O0pz = 151—1(1:059(_ sin ¢, cos ¢)
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For convenience, denote A := (cosf — 1)[0z, 0p2/sinb] = [COS¢ sing ]

sing —cos¢

Case 1 (j #m). We only need to prove it for j = 1. For f given by (67), we have

(69) f)=][E-2)0"=Chz-=)""+0(z- ="
j=1
and
(70) f(z2)=C(z—2)" + O(|z — 21|"T) + O(1)
ll m

il — zj)li~1. Denote

[ ()P + |21)?
A+ 1f(=2)?)?

By the definition of ¢, we have p(z) = £ o F~'(z), € S?. We first claim that

(71) £(z):=€(2) —3In2+2In(1 + |2[*) =In

(72) E=2(li] —D)In|z — 2| +O0(1), asz— 2.
Indeed, by (69) and (71), we have

T+ 1f(=)*)?

Note I; # 0,1,—1. If [y > 2, (72) directly follows from (70) and (73). If I; < —2,
then by (70) and (73), we have

=In

722

(73) +0(1), asz— 2.

|Z _ Zl|2(l1—1)‘z _ zl|—4ll

T+ IF G = 2

£(z)=In +0(1)==2(l1 + 1) In|z — z,| + O(1).

So (72) holds.

Next, let ((2) 1= &(2) —2(|l1] — 1) In|z — 21| and 6 > 0 be small enough such that
zj & Bs(z1) for j # 1. Then by (58), (71) and (72), we have
8(ef — 1)
(1+12*)?
Note ¢ = O(1) in Bj(z1). By elliptic estimate, we have V¢ = O(1) in Bs(#1). Thus

“AC=—AE = =0(1), in Bs(z1).

(74) VE = 2(|l1] = 1)V In|z — 21| + V¢ = 2(|l1| — 1)% +O1), asz— 2.
Recall u = Vg2 — Agzpe,.. To prove (66), we will show Agzp = O(1) and Vg2 =
2(|l1] = 1)Vgz In|z — P1| + O(1) as z — Py on S?.

Note o(z) = £(z) and 2 = F(z) — P as z — z. By (57), (72) and the fact
l1 # 0, we have —Agzp = 2(e? — 1) = O(1) as x — Py.

Next, we estimate Vg2 as @ — P; from all directions on S?. For each fixed
20 # 21, let 2z =F(t) :=tzg + (1 —t)z1, 0 <t <1, and ~(t) = F(5(t)). Using (68),
it can be verified
(75)

1 A 1 ~ ~
Vs2p = 8g<pee+®8¢<pe¢ = Vé(‘?gzeg—i—@V&&ﬁze(ﬁ = — €, e¢]ATV§.

g
1 —cosf
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On the other hand, write z — P; = v(t) — v(0) = v/(t)t + O(t?). By (68), we have

0'(t)
/ _ !/ / —
V' (t) = Opxt (t) + Opx¢’ (t) = [eq, €4) |:SiIl 9¢’(t)}’ and
o= (20— 2t =7 ()t = (B (0= + & (DOp2)t = ———a | O
1 0 1 (4 ¢ 1 _ cos O sin@d)’(t)
1 el 1 e
=AYt =——-A| — P, t?).
1 —cosf L(ﬂ’Y() 1—cosf Lﬂ (x=P)+0()
Using (75), (74), the above, the fact that AT A = I, we have
2(|ll|—1) T 221
2p=————7 AT —— 1
VSQO 1—C089[6076¢] ‘2_21|2+O( )
€T xr — P1
=2(]l1] -1 bl ——— 1).
(1l = 1ew.e) [ (] Tz + 000)
By (68),
1
Vs2In|z — Pj| = OgIn|z — Pjleg + m@gln |z — Pjleq
_ (x—Pj)-Op (x —Pj)-0px ell = —P;
T e —p2 T sinfla - P2 (o6 e4] el |z = P2

So we have proved (66) in Case 1.

Case 2 (j = m). Similar to Case 1, we only need to estimate Agz2¢ and Vg2 as
x — Py,. In this case, P,, = N. Asz — N, |z| = oco. Let | = Z?:lllj —m+ 2.
By the definition of f, we have

F) =2 4002 and ()= 12+ Ol ) +O()

as |z| — oco. Plug this into (71), we have
(76) £=2—2li)lnlz| +O(|=[7).

Since |I| > 2, we have ef = |2|?>72HeP0/12D) = O(1). So Agep = 2(e? — 1) = O(1).

Now we estimate Vg2¢. Fix z such that p := |29]/3 >> 1 and z; ¢ By(z) for
1<j<m—1. Let {(y) := (20 + py) — (2—2|1|) In |20 + py| for y € B1(0). Similar
to the proof of (74), by (58) and (59) we have

8p°(ef — 1) .
WZO(P %), yeBi(0).

By (76), we have ((y) = O(p~!) in B1(0). By elliptic estimate, we have V,((y) =
O(p~1) in B1(0). Thus

—AyC = —pPAE(z0 + py) =

z
|22

for z € By(z). By (75), the above, the facts that z = 289 (cos ¢, sin ¢)” and

N 1
V.E = (2 —2m>@ V=2 2m>@ +0(p™2) = (2= 2I) =5 + O(2] ),

1—cosf
1—cosf = ﬁ, we have
2(1— i) T % o(1) 2(Jf| — 1)
\Y =—-—— At — = O(1).
52 1—0089[60’%} 2|2 * |2]2(1 — cos 6) sng 0T (1)
Licensed to AMS.
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Note x — N = (sin 6 cos ¢, sin § sin ¢, cos § — 1)T, we have

1 1 0 1
Vszln|z — N| = 589 In(sin 6 + (1 — cos 0)?)ey = 2+51CI(1)Z eo = = e +0(1).

Thus we have

211 - 1)
sin 0

Note I,, = —I, then (66) for j = m follows from the above.

Ve = eg +0(1) = 2(|I| — 1)V In |z — N| + O(1).

O

Remark 3.1. For the existence and nonexistence of solutions ¢ of (57) on S? \
{Py,..., Py} satisfying Vs20 = 2(Joyj| — 1)Vg2In|z — Pj| + O(1) for a; € R, 1 <
Jj < m, see e.g. [2,3,27,28,30,31,47] and the references therein.

3.2.4. Solutions that are also solutions of Euler’s equation. Consider (—1)-homo-
geneous axisymmetric no-swirl solutions of the stationary Euler’s equation

(u-V)u+Vp=0,

divu = 0.
Let Uy = ugsin@ and y = cosf. The system on S? can be reduced to
1 d
(77) §U92 =co+ ey + ey, up = d_yUe’

for some constants cg, ¢1, co, and the solution is given by

V/2(co + ¢1 cos 0 + ¢ cos? )
= :l: -
sin 0
_ 4 c1 + 2co cos
V/2(co + c1cos 0 + cacos?f)’

Up

)

Uy Up = 07

and p is determined by (63). In particular, when the polynomial 2(co+ciy+coy?) =
(ay + b)? for some a,b € R, the above solution is also a solution of Navier-Stokes
equations (1), where

acosf +b a? 4+ b% + 2abcos b
- Ur = a, U¢:O, p=- ) .
2sin” 60

Uy = ;
sin 0

These solutions are of Type 3.
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