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REMOVABLE SINGULARITY OF (−1)-HOMOGENEOUS

SOLUTIONS OF STATIONARY NAVIER-STOKES EQUATIONS

LI LI, YANYAN LI, AND XUKAI YAN

Abstract. We study the removable singularity problem for (−1)-homogen-
eous solutions of the three-dimensional incompressible stationary Navier-Stokes
equations with singular rays. We prove that any local (−1)-homogeneous so-
lution u near a potential singular ray from the origin, which passes through

a point P on the unit sphere S2, can be smoothly extended across P on S2,
provided that u = o(ln dist(x, P )) on S2. The result is optimal in the sense
that for any α > 0, there exists a local (−1)-homogeneous solution near P
on S2, such that limx∈S2,x→P |u(x)|/ ln dist(x, P ) = −α. Furthermore, we

discuss the behavior of isolated singularities of (−1)-homogeneous solutions
and provide examples from the literature that exhibit varying behaviors. We
also present an existence result of solutions with any finite number of singular
points located anywhere on S2.

1. Introduction

Consider the three-dimensional incompressible stationary Navier-Stokes equa-
tions,

(1)

{

−Δu+ (u · ∇)u+∇p = 0,

div u = 0,

where u : R3 → R
3 is the velocity vector and p : R3 → R is the pressure. These

equations are invariant under the scaling u(x) → λu(λx) and p(x) → λ2p(λx) for
any λ > 0. It is natural to study solutions which are invariant under this scaling.
For such solutions, u is (−1)-homogeneous and p is (−2)-homogeneous, and we call
them (−1)-homogeneous solutions according to the homogeneity of u. In general,
a function f is said to be (−k)-homogeneous if f(x) = λkf(λx) for any λ > 0.

Let x = (x1, x2, x3) be the Euclidean coordinates and e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1) be the standard basis. In this paper, we denote x′ = (x1, x2) and
∇′ = (∂1, ∂2). Let (r, θ, φ) be the spherical coordinates, where r is the radial
distance from the origin, θ is the angle between the radial vector and the positive
x3-axis, and φ is the meridian angle about the x3-axis. A vector field u can be
written as

u = urer + uθeθ + uφeφ,
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where

er =

⎛

⎝

sin θ cosφ
sin θ sinφ

cos θ

⎞

⎠ , eθ =

⎛

⎝

cos θ cosφ
cos θ sinφ
− sin θ

⎞

⎠ , eφ =

⎛

⎝

− sinφ
cosφ
0

⎞

⎠ .

A vector field u is axisymmetric if ur, uθ and uφ are independent of φ, and no-swirl

if uφ ≡ 0.
In 1944, Landau [17] discovered a 3-parameter family of explicit (−1)-homogen-

eous solutions of the stationary Navier-Stokes equations in C∞(R3 \ {0}), see also
[42] and [43]. These solutions, now called Landau solutions, are axisymmetric with
no swirl and have exactly one point singularity at the origin. Tian and Xin proved in
[46] that all (−1)-homogeneous, axisymmetric nonzero solutions of (1) in C∞(R3 \
{0}) are Landau solutions. Šverák established the following result in 2006:

Theorem A ([44]). All (−1)-homogeneous nonzero solutions of (1) in C2(R3\{0})
are Landau solutions.

He also proved in the same paper that there is no nonzero (−1)-homogeneous
solution of the incompressible stationary Navier-Stokes equations in C2(Rn \ {0})
for n ≥ 4. In dimension two, he characterized all such solutions satisfying a zero
flux condition. Homogeneous solutions of (1) have been studied in other works
as well, see [4, 10–12, 16, 24, 34–37, 42, 43, 48–50]. There have also been works on
homogeneous solutions of Euler’s equations, see [1,26,41] and the references therein.

For (−1)-homogeneous solutions (u, p) in R3 \ {0}, (1) can be reduced to a
system of partial differential equations of (u, p) on S2. For any set Ω ⊂ S2, a (−1)-
homogeneous solution (u, p) on Ω is understood to have been extended to the set
{x ∈ R

3 | x/|x| ∈ Ω} so that u is (−1)-homogeneous and p is (−2)-homogeneous.
We use this convention throughout the paper unless otherwise stated.

Theorem A has classified all (−1)-homogeneous solutions of (1) in C2(S2). A nat-
ural next step is to study (−1)-homogeneous solutions of (1) in C2(S2\{P1, . . . , Pm})
for finitely many points P1, . . . , Pm on S

2. In [18]-[22], we studied (−1)-homogen-
eous axisymmetric solutions of (1) in C2(S2 \ {S,N}), where S is the south pole
and N is the north pole. In [18], all (−1)-homogeneous axisymmetric no-swirl solu-
tions in C2(S2 \ {S}) were classified, and the existence and nonexistence results of
(−1)-homogeneous axisymmetric solutions with nonzero swirl in C2(S2 \ {S}) were
established. The asymptotic expansions of all local (−1)-homogeneous axisymmet-
ric solutions of (1) near a singular ray were also derived in [18]. In [19], all (−1)-
homogeneous axisymmetric no-swirl solutions in C2(S2 \ {S,N}) were classified.
In [20], the existence and nonexistence results for (−1)-homogeneous axisymmetric
solutions in C2(S2 \ {S,N}) with nonzero swirl were established. In [21], the van-
ishing viscosity limit of (−1)-homogeneous axisymmetric no-swirl solutions of (1)
in C2(S2\{S,N}) was studied. In [22], the asymptotic stability of the least singular
homogeneous axisymmetric no-swirl solutions under L2-perturbations was proved.
Note that the asymptotic stability of Landau solutions under L2-perturbations was
proved by Karch and Pilarczyk in [13].

To study the (−1)-homogeneous solutions of (1) with finite singularities
P1, . . . , Pm on S

2, it is helpful to first analyze the behavior of solutions near an
isolated singularity on S2. This paper studies the following removable singularity
problem: For local (−1)-homogeneous solutions (not necessarily axisymmetric) of
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(1) near a potential singular ray, under what condition the singular ray is remov-
able? Namely, under what condition the solution can be smoothly extended across
the singular ray except a possible singularity at the origin?

There has been much study on the behavior of solutions of (1) near isolated
singularities in R3, see e.g. [5, 7, 14, 15, 29, 32, 38–40,44].

Without loss of generality, we consider local (−1)-homogeneous solutions of (1)
near a potential singular ray from the origin passing through the south pole S. It
is equivalent to studying the solutions in a small neighborhood of S on S2. The
asymptotic expansions of axisymmetric solutions obtained in [18] suggest that the
least singular behavior near a singular ray through S is in the order of ln dist(x, S).
Therefore, a natural removable singularity condition is u = o(ln dist(x, S)). Denote
Bδ(S) := {x ∈ R3 | dist(x, S) < δ} for δ > 0. Clearly, dist(x, S)/|x′| → 1 as x → S
on S2. We have the following result.

Theorem 1.1. Let δ > 0, (u, p) ∈ C2(S2 ∩ Bδ(S) \ {S}) be a (−1)-homogeneous

solution of (1). If

(2) lim
x∈S2,x→S

|u(x)|
ln dist(x, S)

= 0.

Then (u, p) can be extended as a C2 function in S2 ∩Bδ(S).

Remark 1.1. The above removable singularity result is optimal in the following
sense: For any α > 0, there exists a (−1)-homogeneous axisymmetric no-swirl so-
lution (u, p) ∈ C∞(S2 \ {S,N}) of (1), such that limx∈S2,x→S |u(x)|/ ln dist(x, S) =
limx∈S2,x→N |u(x)|/ ln dist(x,N) = −α. Examples of such solutions can be found
in [19], see also Example 3.2 in Section 3. On the other hand, there does not
exist (−1)-homogeneous axisymmetric solution u ∈ C2(S2 \ {P}) of (1) satisfying
0 < lim sup|x|=1,x→P |u(x)|/| ln dist(x, P )| < ∞, where P = S or N , see Lemma
3.1.

Note that all (−1)-homogeneous axisymmetric solutions of (1) in C2(S2\{S,N})
satisfying u = O(ln |x′|) as x → S or N must have no swirl, see Lemma 3.1.

The organization of the paper is as follows: Theorem 1.1 is proved in Section
2. In Section 3, we provide further discussion on the behavior of isolated singular-
ities of (−1)-homogeneous solutions of equation (1). Specifically, we describe the
asymptotic behavior of (−1)-homogeneous axisymmetric solutions of equation (1)
obtained in [18]-[20]. Additionally, we list and discuss several special examples of
(−1)-homogeneous solutions of equation (1) from the literature. In Theorem 3.1,
we also present an existence result on (−1)-homogeneous solutions of equation (1)
that have exactly m singularities on S2, where m ≥ 2.

2. Proof of Theorem 1.1

For real numbers a < b and R > 0, denote

(3) Ωa,b,R := {x ∈ R
3 | a < x3 < b, |x′| < R}.

Lemma 2.1. For M,R > 0 and a < b satisfying ab > 0, let (u, p) be a C2 solution

of

(4)

{

−Δu+∇p = λu · ∇u, x ∈ Ωa,b,R \ {x′ = 0},
div u = 0, x ∈ Ωa,b,R \ {x′ = 0},
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satisfying u = o(ln |x′|) as x′ → 0, uniform for x ∈ Ωa,b,R \ {x′ = 0} and λ ∈
[−M,M ]. Then u is smooth in Ωa,b,R \ {x′ = 0}, and for any a < a′ < b′ < b,
0 < R′ < R, and any integer k ≥ 1,

(5) |∇ku| = o

(

ln |x′|
|x′|k

)

, |∇k−1p| = o

(

ln |x′|
|x′|k

)

, as x′ → 0,

uniform for x ∈ Ωa′,b′,R′ \ {x′ = 0} and λ ∈ [−M,M ].

Proof. The smoothness of u in Ωa,b,R \ {x′ = 0} follows from a bootstrap argument
using standard estimates for Stokes equations. Now we prove (5). Given a <
a′ < b′ < b, let x̄ ∈ Ωa′,b′,R \ {x′ = 0} be an arbitrary fixed point and ρ̄ :=
min{|x̄′|/3, (R− |x̄′|)/3, (b− b′)/3, (a′ − a)/3}. Define ū : B2 → R3 and p̄ : B2 → R

by

ū(y) :=
u(x̄+ ρ̄y)

ln ρ̄
, p̄(y) :=

ρ̄

ln ρ̄
p(x̄+ ρ̄y), y ∈ B2,

where B2 = B2(0) ⊂ R3 is the ball of radius 2 centered at 0. Then

(6) −Δū+∇p̄ = (λρ̄ ln ρ̄)ū∇ū =: f, in B2,

and

(7) div ū = 0, in B2.

By the assumption on u, we have

(8) sup
B2

|ū| = o(1), as ρ̄ → 0.

So for any 1 < s < ∞,

(9) ‖f‖W−1,s(B2) ≤ |λρ̄ ln ρ̄|‖|ū|2‖Ls(B2) = o(1), as ρ̄ → 0.

Note that the convergence rates in this proof are uniform for |λ| ≤ M . By (6), (7),
(8) and (9), using interior estimates of the Stokes equations (see Theorem 2.2 in
[45]), we have, for any 1 < s < ∞ and 0 < r < 2, that

(10) ‖ū‖W 1,s(Br) + inf
c∈R

‖p̄− c‖Ls(Br) = o(1), as ρ̄ → 0.

By (8) and (10), we have ‖f‖Ls(Br) = o(1). Then by estimates for the Stokes
equations (see e.g. Theorem IV.4.1 in [9]) and Sobolev embedding theorems, we
have

(11) ‖ū‖W 2,s(Br) + ‖∇p̄‖Ls(Br) = o(1) and ‖ū‖C1(Br) = o(1)

for any 0 < r < 2. It follows that ‖f‖W 1,s(Br) = o(1) for any 1 < s < ∞.
By estimates for the Stokes equations and Poincaré’s inequality, we have, for any

l ≥ 2 and 0 < r < r′ < 2, that

‖ū‖W l,s(Br) + ‖∇p̄‖W l−2,s(Br)

≤ C(‖f‖W l−2,s(Br′ )
+ ‖ū‖W 1,s(Br′ )

+ ‖p̄−
∫

−
Br

p̄‖Ls(Br′ )
)

≤ C(‖f‖W l−2,s(Br′ )
+ ‖ū‖W 1,s(Br′ )

+ ‖∇p̄‖Ls(Br′ )
)

(12)

for some C depending only on s, r, r′ and l. With a standard bootstrap argument
using Sobolev embedding theorems, by (11) and (12) we have that

‖ū‖W l,s(Br) + ‖∇p̄‖W l−2,s(Br) = o(1),
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for any l ≥ 3 and 0 < r < 2. Then by Sobolev embedding theorems, we have

sup
Br

(|∇kū|+ |∇kp̄|) = o(1), ∀k ≥ 1.

So (5) holds for all k ≥ 2. For k = 1, the first estimate in (5) holds from the above.
Now we prove the second estimate in (5) when k = 1. We only need to prove it

when x2 = 0 and x1 > 0. For any 0 < x1 < R/2, we have

p(x1, 0, x3) = p(1, 0, x3)−
∫ 1

x1

∂1p(t, 0, x3)dt.

Since p ∈ C∞(Ωa′,b′,R \ {x′ = 0}), we have p(1, 0, x3) = O(1) = o(ln |x1|/|x1|). So
we only need to show

(13) lim
x1→0

∫ 1

x1
∂1p(t, 0, x3)dt

∣

∣ ln |x1|
∣

∣/|x1|
= 0.

To see this, note that we have proved (5) holds for all k ≥ 2, thus ∇p(x) =
o(ln |x′|/|x′|2). So for any ε > 0, there exists some δ > 0, such that |∇p| ≤
ε| ln |x′||/|x′|2 for any 0 < |x′| < δ. So

|
∫ 1

x1
∂1p(t, 0, x3)dt|

| ln |x1||/|x1|
≤ |x1|

| ln |x1||

(

∫ δ

x1

|∇p(t, 0, x3)|+
∫ 1

δ

|∇p(t, 0, x3)|
)

≤ ε
|x1|

| ln |x1||

∫ δ

x1

| ln t|
t2

dt+ C
|x1|

| ln |x1||
≤ Cε, as x1 → 0,

for some C depending only on δ. So (13) holds. The lemma is proved. �

Denote DR := {x′ ∈ R2 | |x′| < R} for any R > 0.

Lemma 2.2. Let R > 0, a < b satisfying ab > 0, and F ∈ C∞(Ω̄a,b,R \ {x′ = 0})
be a (−3)-homogeneous vector-valued function. Suppose q ∈ C∞(Ω̄a,b,R \ {x′ = 0})
is a (−2)-homogeneous function satisfying

−Δq = divF (x), in Ωa,b,R \ {x′ = 0}.
Assume there exists some δ ∈ (0, 2) such that

(14) |q(x)||x′|2−δ +

2
∑

j=0

|∇jF ||x′|j+2−δ = o(1)

as x′ → 0 uniformly in Ωa,b,R \ {x′ = 0}. Then there exist some

h(x) ∈ L∞
loc((a, b),W

1,s(DR))

for any 1 < s < 2
2−δ , and a0(x3), a1(x3), b1(x3) ∈ C(a, b), such that

(15) q(x) = h(x)+a0(x3) ln |x′|+a1(x3)
x1

|x′|2 +b1(x3)
x2

|x′|2 , in Ωa,b,R\{x′ = 0}.

Proof. We prove the lemma when a < b < 0. The proof when 0 < a < b is similar.
Let a′, b′ be arbitrary numbers satisfying a < a′ < b′ < b. For any fixed x̄ ∈

Ωa′,b′,R/2 \ {x′ = 0}, let ρ̄ := min{|x̄′|/3, (R − |x̄′|)/3, (b − b′)/3, (a′ − a)/3}, so
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Bρ̄(x̄) ⊂ Ωa,b,R. Set q̄(y) = ρ̄2−δq(x̄ + ρ̄y) and F̄ (y) = ρ̄3−δF (x̄ + ρ̄y) for y ∈ B2.

By (14), we have supB2
(|q̄|+

∑2
j=0 |∇j F̄ |) = o(1) as ρ̄ → 0. Moreover,

−Δq̄(y) = div F̄ , y ∈ B2.

By elliptic theories, supB1
(|∇q̄|+ |∇2q̄|) = o(1) as ρ̄ → 0. Therefore,

(16)

2
∑

j=1

|∇jq(x)||x′|j+2−δ = o(1), as x′ → 0, uniformly for x3 ∈ (a′, b′).

Denote Δ′ = ∂2
1 + ∂2

2 . For each fixed x3 ∈ (a, b), we have

Δ′q(x′, x3) = − divF (x′, x3)− ∂2
3q(x

′, x3) =: g0(x
′, x3) + g1(x

′, x3),

where g0(x
′, x3) := −∂1F1(x

′, x3) − ∂2F2(x
′, x3) and g1(x

′, x3) := −∂3F3(x
′, x3) −

∂2
3q(x

′, x3).
We first study the existence and regularity of the solutions q0 and q1 of the

Poisson equation

(17)

{

Δ′qi(x
′, x3) = gi(x

′, x3), x′ ∈ DR,

qi(·, x3)|∂DR
= 0,

for i = 0, 1, and then estimate the remaining part q2 := q − q0 − q1.
(1) Since F = o(|x′|δ−2), we have

sup
a<x3<b

‖g0(·, x3)‖W−1,s(DR) = sup
a<x3<b

‖F (·, x3)‖Ls(DR) < ∞, ∀1 < s <
2

2− δ
.

So for each x3 ∈ (a, b), there exists a solution q0(·, x3) ∈ W 1,s(DR) of (17) for i = 0.
Moreover, we have supa<x3<b ‖q0(·, x3)‖W 1,s(DR) < ∞.

Since F is (−3)-homogeneous, F3(x) = |x3|−3F3(−x1/x3,−x2/x3,−1). Without
loss of generality, assume a′ < −1 < b′. Then by (14), we have

|∂3F3(x
′, x3)| ≤ C(|F3(−

x

x3
)|+ |x′||∇F3(−

x

x3
)|) = o

(

1

|x′|2−δ

)

as x′ → 0, uniformly for x3 ∈ (a, b), where C is some constant depending only on
a, b, R. Moreover, since q is (−2)-homogeneous, we have

q(x) = |x3|−2q(−x1/x3,−x2/x3,−1)

in Ωa,b,R \ {x′ = 0}. Then by (14) and (16), we have

|∂2
3q(x

′, x3)| ≤ C(|q(− x

x3
)|+ |x′||∇q(− x

x3
)|+ |x′|2|∇2q(− x

x3
)|) = o

(

1

|x′|2−δ

)

as x′ → 0, uniformly for x3 ∈ (a′, b′), where C is some constant depending only on
a, b, a′, b′, R. Thus we have g1(x

′, x3) = o
(

|x′|δ−2
)

uniformly for x3 ∈ (a′, b′) and

supa′<x3<b′ ‖g1(·, x3)‖Ls(DR) < ∞ for any 1 < s < 2
2−δ . In particular, since a′, b′ are

arbitrary numbers in (a, b), we have ‖g1(·, x3)‖Ls(DR) < ∞ for any x3 ∈ (a, b). Thus

for each x3 ∈ (a, b), there exists a solution q1(·, x3) ∈ W 2,s(DR) of (17) for i = 1.
Moreover, we have supa′<x3<b′ ‖q1(·, x3)‖W 2,s(DR) < ∞ for any a < a′ < b′ < b and

1 < s < 2
2−δ , since supa′<x3<b′ ‖g1(·, x3)‖Ls(DR) < ∞. So q0, q1 are well-defined in

Ωa,b,R and

(18) q0, q1 ∈ L∞
loc((a, b),W

1,s(DR)), ∀1 < s <
2

2− δ
.
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Since g0, g1 ∈ C∞(Ω̄a,b,R \ {x′ = 0}), we also have q0, q1 ∈ C∞(Ω̄a,b,R \ {x′ = 0}).
(2) Let q2(x

′, x3) := q(x′, x3)− (q0(x
′, x3) + q1(x

′, x3)), then Δ′q2(x
′, x3) = 0 in

Ωa,b,R \ {x′ = 0}, and for any a < a′ < b′ < b,

(19) sup
R/4<|x′|<R
a′<x3<b′

(|q2|+ |∇q2|) < ∞.

We will show

(20) q2(x) = ĥ(x)+a0(x3) ln |x′|+a1(x3)
x1

|x′|2+b1(x3)
x2

|x′|2 , x ∈ Ωa,b,R\{x′ = 0},

for some ĥ(x)∈L∞
loc((a, b),W

1,s(DR)) for any 1 < s < 2
2−δ and a0(x3), a1(x3), b1(x3)

∈ C(a, b). Then (15) follows from (18) and (20) by setting h = ĥ+ q0 + q1.
For any f(x′) ∈ C∞(DR \ {0}), denote

(21) f̂(x′) := f(x′)−
(

1

2π

∫

∂DR/2

∂f

∂ν

)

ln |x′|.

For each x3 ∈ (a, b), let q̂2(x
′, x3) be defined as above. Since Δ′q2 = 0 in DR \ {0},

we have Δ′q̂2 = 0 in DR\{0} and
∫

∂DR′

∂q̂2
∂ν = 0 for any 0 < R′ < R and a < x3 < b.

Let z = x1 + ix2, and

w(z, x3) := q̂2 + i

∫ z

(R
2 ,0)

(−∂2q̂2dx1 + ∂1q̂2dx2),

where the integral
∫ z

(R
2 ,0)

is independent of the path in DR \{0}. Then w is analytic

in z in {0 < |z| < R}. The Laurent series of w in z takes the form w(z, x3) =
∑∞

m=−∞ cm(x3)z
m. For any 0 < R1 < R2 < R, the series is uniformly convergent

in {R1 ≤ |z| ≤ R2}. For any ρ > 0, we have

(22) cm(x3) =
1

2πi

∮

|z|=ρ

w(z, x3)

zm+1
.

Now we show that cm(x3) ≡ 0 in (a′, b′) for all m ≤ −2, and supa′<x3<b′ |c−1(x3)| <
∞.

Claim. supa′<x3<b′ ‖w(·, x3)‖Ls(DR) < ∞ for any 1 < s < 2
2−δ .

We will prove the claim later. Suppose the claim holds. Note that (22) holds for
any ρ > 0, we have

cm(x3) =
1

2πi

∮

|z|=ρ

w(z, x3)

zm+1
=

1

πiρ

∫ ρ

ρ/2

∮

|z|=t

w(z, x3)

zm+1
dS(z)dt

=
1

πiρ

∫

Dρ\Dρ/2

w(z, x3)

zm+1
.

Now fix some 1 < s < 2
2−δ . By the Claim and Hölder’s inequality, we have

sup
a′<x3<b′

|cm(x3)| ≤
1

πρ
sup

a′<x3<b′
‖w‖Ls(Dρ\Dρ/2)‖z−m−1‖

L
s

s−1 (Dρ\Dρ/2)
≤ Cρ−m− 2

s

for all ρ > 0 and some C independent of ρ. Since s > 1, we have −m−2/s > −m−2.
By sending ρ → 0, we have supa′<x3<b′ |cm(x3)| = 0 for m ≤ −2. As a < a′, b′ < b
are arbitrary, we have cm(x3) ≡ 0 for x3 ∈ (a, b) and m ≤ −2. Then w(z, x3) =
∑∞

m=−1 cm(x3)z
m. By the definition of w and (19), we have supR/4<|x′|<R

a′<x3<b′
|w| < ∞.
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Taking ρ = R/2 in (22), we have supa′<x3<b′ |cm(x3)| ≤ C(R/2)−m for m ≥ −1
for some C depending only on supR/4<|x′|<R

a′<x3<b′
|w|. So supa′<x3<b′ |c−1(x3)| < ∞.

Moreover, for |z| ≤ R/4,

(23) |
∞
∑

m=0

cm(x3)z
m| ≤ C

∞
∑

m=0

1

2m
< ∞.

Set ĥ(x′, x3) = Re(
∑∞

m=0 cm(x3)z
m), a0(x3) =

1
2π

∫

∂DR/2

∂q2
∂ν , a1(x3) = Re c−1(x3)

and b1(x3) = Im c−1(x3). By the fact that

Rew(z, x3) = q̂2 = q2(x
′, x3)− (

1

2π

∫

∂DR/2

∂q2
∂ν

) ln |x′|,

we have for any x3 ∈ (a, b) that

q2(x
′, x3) = Rew(z, x3) + (

1

2π

∫

∂DR/2

∂q2
∂ν

) ln |x′|

= Re(

∞
∑

m=−1

cm(x3)z
m) + (

1

2π

∫

∂DR/2

∂q2
∂ν

) ln |x′|

= ĥ(x′, x3) + a0(x3) ln |x′|+ a1(x3)
x1

|x′|2 + b1(x3)
x2

|x′|2 .

So (20) is proved.

Let h := ĥ+ q0 + q1, then

q = (q0 + q1) + q2 = h(x′, x3) + a0(x3) ln |x′|+ a1(x3)
x1

|x′|2 + b1(x3)
x2

|x′|2 .

By (18) and (23), we have h ∈ L∞
loc((a, b),W

1,s(DR)). By (19), we have a0 ∈
L∞
loc(a, b). Since supa′<x3<b′ |c−1(x3)| ≤ C, we have a1, b1 ∈ L∞

loc(a, b). Since

q ∈ C∞(Ω̄a,b,R \ {x′ = 0}), we have q1, q2, q̂2 ∈ C∞(Ωa,b,R \ {x′ = 0}). Thus for
each z 
= 0, w(z, x3) is continuous in x3 ∈ (a, b) and cm is continuous in x3 ∈ (a, b),
and therefore a0(x3), a1(x3), b1(x3) ∈ C(a, b).

(3) Proof of Claim: Recall that q2 = q − (q0 + q1), we have Rew = q̂2 =
q̂−(q̂1+q̂0), where q̂(·, x3), q̂0(·, x3), q̂1(·, x3) are defined by (21) for each x3 ∈ (a′, b′).
By (14) and (18), we have

sup
a′<x3<b′

‖q̂2‖Ls(DR) < ∞, ∀1 < s <
2

2− δ
.

It remains to show

(24) sup
a′<x3<b′

‖ Imw‖Ls(DR) < ∞, ∀1 < s <
2

2− δ
.

Note Imw =
∫ z

(R
2 ,0)

(−∂2q̂2dx1 + ∂1q̂2dx2). For any z ∈ DR \ {z2 = 0}, denote
z̄ = R

2
z
|z| . Let Γ1 be the counter-clockwise path from (R/2, 0) to z̄ along ∂DR/2,

and Γ2 be the path from z̄ to z along the ray in the direction of z, and let Γ = Γ1∪Γ2.
For any f = (f1, f2) ∈ C(DR \ {0}), define

L[f ](z) :=
∫

Γ

(f1dx1 + f2dx2), z ∈ DR \ [0, R).

Then the following facts hold.
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Fact 1. If f = (f1, f2) ∈ C(DR \ {0}) satisfies |f1(z)| + |f2(z)| ≤ C0|z|λ for some
C0 > 0 and λ ∈ R \ {−1}, then |L[f ](z)| ≤ C(1 + |z|λ+1) for some C depending
only on R, λ and C0.

To see this, let (r, θ) be the polar coordinates in R2, where x1 = r cos θ and
x2 = r sin θ. For any z ∈ DR \ {z2 = 0}, denote z = (|z|, θ0), we have

|L[f ](z)| = |
∫

Γ

(f1 sin θ + f2 cos θ)rdθ + (f1 cos θ + f2 sin θ)dr|

≤ R

2

∫ θ0

0

|f
(R

2
, θ
)

|dθ +
∫ R

2

|z|

|f(r, θ0)|dr

≤ C + C|
∫ R

2

|z|

rλdr| ≤ C + C|z|λ+1.

Fact 2. If f = (f1, f2) ∈ C(DR\{0})∩Ls(DR) for some s ≥ 1, then L[f ] ∈ Ls(DR),
and

‖L[f ]‖Ls(DR) ≤ C(1 + ‖f‖Ls(DR))

for some C depending only on s and R.

As in the proof of Fact 1, we have

|L[f ](z)| ≤ R

2

∫ θ0

0

|f
(R

2
, θ
)

|dθ +
∫ R

2

|z|

|f(r, θ0)|dr ≤ C + C
∣

∣

∫ R
2

|z|

|f(r, θ0)|sdr
∣

∣

1
s .

Taking the power s of the above and integrating in z over DR, we have

‖L[f ](z)‖Ls(DR) ≤ C(1 + ‖f‖Ls(DR)).

So Fact 2 holds.
Since in the definition of w, the integral

∫ z

(R
2 ,0)

is independent of path, we take

the path to be Γ as defined above. Then

Imw =

∫

Γ

(−∂2q̂2dx1 + ∂1q̂2dx2) = L[∇⊥q̂2] = L[∇⊥q̂]− L[∇⊥(q̂0 + q̂1)],

where∇⊥=(−∂2, ∂1). By (16) and Fact 1, we have supa′<x3<b′ |z|2−δ|L[∇⊥q̂(·, x3)]|
< ∞, and therefore supa′<x3<b′ ‖L[∇⊥q̂(·, x3)]‖Ls(DR) < ∞ for 1 < s < 2

2−δ . By

(18) and Fact 2, we have supa′<x3<b′ ‖L[∇⊥q̂0(·, x3)+∇⊥q̂1(·, x3)]‖Ls(DR) < ∞ for

1 < s < 2
2−δ . Thus (24) holds and the Claim is proved. The lemma is proved. �

Lemma 2.3. Let R > 0 and a < b satisfying ab > 0. Suppose (u, p) ∈ C∞(Ωa,b,3R\
{x′ = 0}) is a (−1)-homogeneous solution of the Navier-Stokes equations

(25)

{

−Δu+ u · ∇u+∇p = 0, in Ωa,b,3R \ {x′ = 0}
div u = 0, in Ωa,b,3R \ {x′ = 0}

satisfying

(26) |u| = o(ln |x′|), as x′ → 0 uniformly in Ωa,b,3R \ {x′ = 0}.
Then p ∈ L∞

loc((a, b),W
1,s(DR)) for any 1 < s < 2 and a < a′ < b′ < b,

(27) ‖∇u‖L2(Ωa′,b′,R\Ωa′,b′,ε)
= o(

√

| ln ε|), as ε → 0+.
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Proof. Let a′, b′, a′′, b′′ be some arbitrary numbers such that a < a′′ < a′ < b′ <
b′′ < b. For convenience, denote Ωr = Ωa′,b′,r and Ω̃r = Ωa,b,r for any r > 0. Let
C denote a positive constant which may vary from line to line, depending only on
a, b, a′, b′, a′′, b′′, R. For any ε > 0, let

g1(x
′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, 0 < |x′| ≤ ε2,

− 1

ln ε
ln

|x′|
ε2

, ε2 < |x′| < ε,

1, ε ≤ |x′| < R/4,

smooth between 0 and 1 and positive , R/4 < |x′| < R/2,

0, |x′| > R/2.

Let g2(x3) ≥ 0 be a cutoff function in C∞
c (a, b) such that g2(x3) = 1 for x3 ∈ (a′, b′),

and g2(x3) = 0 for x3 ≤ a′′ or x3 ≥ b′′. Let gε(x) = g1(|x′|)g2(x3), then gε is

compactly supported in Ω̃2R, satisfying

(28) ‖∇gε‖L∞(Ω̃2R\Ω̃R/4)
+ ‖∂3gε‖L∞(Ω̃2R) ≤ C, and ‖∇′gε‖L2(Ω̃R/4)

≤ C
√

| ln ε|
,

where ∇′ = (∂1, ∂2).
Taking divergence of the first equation in (25), we have Δp = − div(u · ∇u) in

Ω3R \ {x′ = 0}. By (26) and Lemma 2.1 with λ = 1, we have supa′<x3<b′ |p| =
o(| ln |x′||/|x′|) and supa′<x3<b′

∑2
j=0 |∇j(u · ∇u)||x′|j+1/| ln |x′||2 = o(1). Apply

Lemma 2.2 for q = p, F = u · ∇u and any 0 < δ < 1 there, we have

(29) p(x) = h(x) + a0(x3) ln |x′|+ a1(x3)
x1

|x′|2 + b1(x3)
x2

|x′|2 , x ∈ Ω̃3R,

for some a0(x3), a1(x3), b1(x3) ∈ C(a, b), and h ∈ L∞
loc((a, b),W

1,s(D3R)) for any
1 < s < 2. By Sobolev embedding, we have h ∈ L∞

loc((a, b), L
r(D3R)) for any

1 < r < ∞.
We first prove (27). Take the dot product of the first equation in (25) with g2εu

and integrate on Ω̃2R, we have, using ∇ · u = 0, that

0 =

∫

Ω̃2R

(−Δu+∇p+ u · ∇u) · (g2εu)dx

=

∫

Ω̃2R

∇u · ∇(g2εu)dx− 2

∫

Ω̃2R

pgε∇gε · udx−
∫

Ω̃2R

|u|2gεu · ∇gεdx

=

∫

Ω̃2R

|∇(gεu)|2dx

−
∫

Ω̃2R

|u|2|∇gε|2dx− 2

∫

Ω̃2R

pgε∇gε · udx−
∫

Ω̃2R

|u|2gεu · ∇gεdx.

Note that gε = 1 in ΩR/4 \ Ωε and gε = 0 in Ω̃ε2 . By this, the above, (26),
(28), and the fact that p = h + O (1/|x′|) in (a′′, b′′) × D3R (by (29)) with some
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h ∈ L∞
loc((a, b), L

r(D3R)) for any 1 < r < ∞, we have, as ε → 0, that
∫

ΩR/4\Ωε

|∇u|2dx ≤

∫

Ω̃2R

|∇(gεu)|
2
dx

≤

∫

Ω̃2R

|u|2|∇gε|
2
dx+ 2

∫

Ω̃2R

|pgε∇gεu|dx+

∫

Ω̃2R

|u|3|gε||∇gε|

= O(1) + o(1)

∫

Ω̃2R\Ω̃
ε2

(

| ln |x′||2|∇gε|
2+|h|| ln |x′|||∇gε|+

| ln |x′||

|x′|
|∇gε|+| ln |x′||3|∇gε|)

= O(1) + o(1)

(

∫

Ω̃2R\Ω̃
ε2

| ln ε|2|∇′
gε|

2
dx+ ‖

| ln |x′||

|x′|
‖L2(Ω̃2R\Ω̃

ε2
)‖∇

′
gε‖L2(Ω̃2R\Ω̃

ε2
)

)

= o(ln ε).

So (27) is proved.
Next, we prove a1(x3) ≡ b1(x3) ≡ 0 in (29) for x ∈ ΩR, and therefore p =

h + a0(x3) ln |x′| ∈ L∞
loc((a, b),W

1,s(DR)) for any 1 < s < 2. We first show that
b1(x3) ≡ 0. Suppose b1(x̄3) 
= 0 for some x̄3 ∈ (a, b). Without loss of generality,
we assume that b1(x̄3) > 0. Choose a′, b′, a′′, b′′ such that a < a′′ < a′ < x̄3 < b′ <
b′′ < b and b1(x3) > b1(x̄3)/2 for x3 ∈ (a′′, b′′). We take a cutoff function g2(x3) as
described earlier using these values of a′, b′, a′′ and b′′, and let gε(x) = g1(|x′|)g2(x3).

By the first equation in (25), we have

Δu1 − u · ∇u1 = ∂1p = ∂1h+ a0
x1

|x′|2 + a1
x2
2 − x2

1

|x′|4 − 2b1
x1x2

|x′|4 ,

where u1 is the first component of u. Multiplying the above by gε
x1x2

|x′|2 and inte-

grating on Ω̃2R, we have
(30)

2

∫

Ω̃2R

b1(x3)gε
x2
1x

2
2

|x′|6 =

∫

Ω̃2R

(−Δu1 + u · ∇u1 + ∂1h+ a0
x1

|x′|2 + a1
x2
2 − x2

1

|x′|4 )gε
x1x2

|x′|2 .

Since gε = gε(|x′|, x3), by the oddness in x2 of the integrants, we have
∫

Ω̃2R

a0
x1

|x′|2 gε
x1x2

|x′|2 =

∫

Ω̃2R

a1
x2
2 − x2

1

|x′|4 gε
x1x2

|x′|2 = 0.

By (27) and (28), we have

|
∫

Ω̃2R

Δu1gε
x1x2

|x′|2 | = |
∫

Ω̃2R

∇u1∇(gε
x1x2

|x′|2 )|

≤ C‖∇u1‖L2(Ω̃2R\Ω̃ε2 )
(‖∇gε‖L2(Ω̃2R\Ω̃ε2 )

+ ‖ 1

|x′| ‖L2(Ω̃2R\Ω̃ε2)
) = o(ln ε).

By (27), the fact that u = o(ln |x′|) and the definition of gε, we have

|
∫

Ω̃2R

u · ∇u1gε
x1x2

|x′|2 | ≤ C‖∇u1‖L2(Ω̃2R\Ω̃ε2 )
‖u‖L2(Ω̃2R\Ω̃ε2 )

= o(
√

| ln ε|).

By the definition of gε, (28) and the fact that h ∈ L2
loc(Ω̃2R), we have

|
∫

Ω̃2R

∂1hgε
x1x2

|x′|2 | = |
∫

Ω̃2R

h(∂1gε
x1x2

|x′|2 + gε∂1
x1x2

|x′|2 )|

≤ ‖h‖L2(ΩR)(‖∇′gε‖L2(Ω̃2R) + ‖ 1

|x′| ‖L2(Ω̃2R\Ω̃ε2 )
) = O(

√

| ln ε|).
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So the right hand side of (30) is o(ln ε). On the other hand, by the definition of gε,
the integral on the left hand side of (30) satisfies

∫

Ω̃2R

b1(x3)gε
x2
1x

2
2

|x′|6 ≥ b1(x̄3)

C

∫

(ΩR/4\Ωε)∩{2|x1|≤|x′|≤3|x1|}

1

|x′|2 ≥ b1(x̄3)

C
| ln ε|.

This contradicts to b1(x̄3) > 0. We have proved that b1(x3) ≡ 0. Similarly, we have
a1(x̄3) ≡ 0. The lemma follows from this and (29). �

Lemma 2.4. Let R > 0, a < b satisfying ab > 0, and g ∈ C∞(Ωa,b,R \ {x′ = 0}).
Suppose (v, q) is a C∞ solution of

(31)

{

−Δv +∇q = div g, in Ωa,b,R \ {x′ = 0},
div v = 0, in Ωa,b,R \ {x′ = 0},

satisfying v ∈ L2(Ωa,b,R), ∇v, g ∈ L1(Ωa,b,R), and

(32)
‖∇v‖L2(Ωa,b,R\Ωa,b,ε) + ‖q‖L2(Ωa,b,R\Ωa,b,ε) + ‖g‖L2(Ωa,b,R\Ωa,b,ε)

= o(
√

| ln ε|), as ε → 0+.

Then for any ϕ ∈ C∞
c (Ωa,b,R) satisfying divϕ = 0, it holds that

(33)

∫

Ωa,b,R

∇v · ∇ϕ+ g · ∇ϕ = 0,

and div v = 0 in Ωa,b,R in distribution sense.

Proof. For convenience, denote Ω = Ωa,b,R and Ωε = Ωa,b,ε. Let ϕ ∈ C∞
c (Ω) satisfy

divϕ = 0, we first prove (33).
Let

hε(x) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 0 < |x′| ≤ ε,

− 2

ln ε
ln

|x′|
ε

, ε < |x′| < √
ε,

1, |x′| ≥ √
ε.

We have, for some constant C independent of ε, that

(34) ‖∇hε‖L2(Ω) ≤
C

√

| ln ε|
.

Multiplying the first equation in (31) by hεϕ and integrating on Ω, we have
∫

Ω

∇v · ∇(hεϕ) =

∫

Ω

q div(hεϕ)−
∫

Ω

g · ∇(hεϕ).

So

∫

Ω

∇v · ∇ϕ+ g · ∇ϕ

=

∫

Ω

(qϕ · ∇hε −∇v · (∇hε ⊗ ϕ)− g · (∇hε ⊗ ϕ)) +

∫

Ω

(∇v · ∇ϕ+ g · ∇ϕ)(1− hε)

:= I1 + I2.

(35)

By (32) and (34), we have
(36)
|I1| ≤ (‖∇v‖L2(Ω√

ε\Ωε) + ‖q‖L2(Ω√
ε\Ωε) + ‖g‖L2(Ω√

ε\Ωε))‖∇hε‖L2(Ω√
ε\Ωε)‖ϕ‖L∞(Ω) → 0,
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as ε → 0. Since ∇v, g ∈ L1(Ωa,b,R), we also have

(37) |I2| ≤ ‖∇ϕ‖L∞(Ω)(‖∇v‖L1(Ω√
ε)
+ ‖g‖L1(Ω√

ε)
) → 0, as ε → 0.

By (35), (36) and (37), we have (33).
Now we prove that div v = 0 in distribution sense. For any ψ ∈ C∞

c (Ω), multi-
plying the second equation (31) by hεψ and integrating on Ω, we have

∫

Ω

v · ∇(hεψ) = 0.

Using the above, the fact that v ∈ L2(Ω) and (34), we have

|
∫

Ω

v · ∇ψ| ≤ |
∫

Ω

v · ∇(hεψ)|+ |
∫

Ω

v · ∇(ψ(hε − 1))|

≤ ‖ψ‖L∞(Ω)‖v‖L2(Ω√
ε)
‖∇hε‖L2(Ω√

ε\Ωε) + ‖∇ψ‖L∞(Ω)‖v‖L1(Ω√
ε)
→ 0, as ε → 0.

So div v = 0 in distribution sense. The lemma is proved. �

For any domain Ω ⊂ Rn, s ≥ 1 and f ∈ W−1,s(Ω), we say that (v, q) ∈ W 1,s(Ω)×
Ls(Ω) is a s-weak solution to the Stokes system

{

−Δv +∇q = f, in Ω

div v = 0, in Ω

if for any ϕ ∈ C∞
c (Ω) satisfying divϕ = 0, it holds that

(38)

∫

Ω

∇v · ∇ϕ = 〈f, ϕ〉,

and div v = 0 in distribution sense. Here 〈·, ·〉 denotes the pairing betweenW−1,s(Ω)

≡ (W 1,s
0 (Ω))′ and W 1,s

0 (Ω).

Proof of Theorem 1.1. For convenience, denote Ωr = Ω−2,−1/2,r for any r > 0. Let
Ω := Ωδ/16.

By (2), u = o(ln |x′|). Applying Lemma 2.1 with λ = 1, a = −3, b = −1/4, a′ =
−2, b′ = −1/2 and R = δ/16, we have ∇u = o(| ln |x′||/|x′|) and p = o(| ln |x′||/|x′|)
in Ω. It follows that |u|2 ∈ Ls(Ω), u ∈ W 1,s(Ω) and p ∈ Ls(Ω) for 1 < s < 2. �

Claim. For any 1 < s < 2, (u, p) is an s-weak solution of

(39)

{

−Δu+∇p = f := −u · ∇u, in Ω,

div u = 0, in Ω.

Proof of the claim. We first show that for any ϕ ∈ C∞
c (Ω) satisfying divϕ = 0,

(40)

∫

Ω

∇u · ∇ϕ = 〈f, ϕ〉 =
∫

Ω

(u⊗ u) · ∇ϕ.

Since u = o(ln |x′|) and ∇u = o(| ln |x′||/|x′|), we have u ∈ L2(Ω) and ∇u, u⊗ u ∈
L1(Ω). For any ε > 0, by Lemma 2.3 with a = −3, b = −1/4, a′ = −2, b′ = −1/2

and R = δ/16, we have ‖∇u‖L2(Ω\Ωε) = o(
√

| ln ε|), and p ∈ L∞
loc((−3,−1/4),

W 1,s(Dδ/16)). By Sobolev embedding, p ∈ L∞
loc((−3,−1/4), Lr(Dδ/16)) for any

1 < r < ∞, and therefore ‖p‖L2(Ω\Ωε) = O(1). Thus

‖∇u‖L2(Ω\Ωε) + ‖p‖L2(Ω\Ωε) + ‖u⊗ u‖L2(Ω\Ωε) = o(
√

| ln ε|), as ε → 0+.
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Applying Lemma 2.4 with a = −2, b = −1/2, R = δ/16, v = u, q = p and g =
−u⊗ u, we have that (40) holds and div u = 0 in distribution sense, and therefore
(u, p) is a s-weak solution to (39) for any 1 < s < 2. The claim is proved.

Next, note f = −u·∇u ∈ Ls(Ω) for any 1 < s < 2. By interior estimates of Stokes

equations (see, e.g. Theorem IV.4.1 in [9]), we have (u, p) ∈ W 2,s
loc (Ω) × Ls

loc(Ω).

By Sobolev embedding, we have u ∈ W 1,s′

loc (Ω) ∩ L∞
loc(Ω) for all 1 < s′ < 6. Then

we have f = −u · ∇u ∈ W 1,s
loc (Ω) for any 1 < s < 2. By bootstrap argument, we

have (u, p) ∈ Wm,s
loc (Ω)×Ls

loc(Ω) for any integer m ≥ 0. Thus (u, p) ∈ C∞(Ω). The
theorem is proved. �

3. Discussion on isolated singularity behavior

In this section, we first make some discussion on the isolated singularity behavior
of (−1)-homogeneous solutions of (1), then discuss some known special solutions of
(1) with isolated singularities on S2.

3.1. Types of singularities. As mentioned in Section 1, our efforts start from
studying (−1)-homogeneous solutions u of (1) in C2(S2\{P1, · · · , Pm}) with finitely
many isolated singularities P1, · · · , Pm on S2, where m is any positive integer. In
particular, we would like to investigate the asymptotic behavior near the singu-
larities and the classification of solutions satisfying u = O(1/mini dist(x, Pi)

k) for
some positive integer k. Consider a local (−1)-homogeneous solution u in a small
neighborhood of a singular point. Without loss of generality, assume the singu-
larity is at S, i.e. u ∈ C2(Bδ(S) ∩ S

2 \ {S}), and u = O(1/|x′|k). The first step
is to understand the behavior of u in Bδ(S) ∩ S

2 \ {S}. In [18] and [19], the as-
ymptotic expansions of all local (−1)-homogeneous axisymmetric solutions of (1)
in Bδ(S)∩S2 \{S} were established. In particular, Theorem B can be derived from
there.

Theorem B ([18, 19]). Let δ > 0, and u ∈ C2(S2 ∩ Bδ(S) \ {S}) be a (−1)-
homogeneous axisymmetric solution of (1). Denote x′ = (x1, x2). Then τ :=

limx∈S2,x→S |x′|uθ exists and is finite, and u = O(1/
∣

∣|x′| ln |x′|
∣

∣

2
). Moreover,

(i) If τ ≥ 3, then |x′|uφ must be a constant, and |x′|uθ and ur must be real

analytic functions in 1 + cos θ near S on S2.

(ii) If 2 < τ < 3, then either |x′|uφ ≡constant, or limx∈S2,x→S |x′|τ−1uφ exists

and is finite and not zero. Moreover, limx∈S2,x→S |x′|2τ−4ur exists and is

finite.

(iii) If τ = 2, then η := limx∈S2,x→S(|x′|uθ − 2) ln |x′| exists and is 0 or 2.

- When η = 0, then limx∈S2,x→S |x′|εur = 0 for any ε > 0. Either |x′|uφ

is a constant, or limx∈S2,x→S |x′|uφ exists and is finite and not zero.

- When η = 2, then limx∈S2,x→S |x′|2
∣

∣ ln |x′|
∣

∣

2
ur = −2, and

lim
x∈S2,x→S

|x′|uφ

exists and is finite.

(iv) If τ < 2 and τ 
= 0, then limx∈S2,x→S |x′|uφ and limx∈S2,x→S |x′|max{τ,0}ur

both exist and are finite.

(v) If τ = 0, then σ := limx∈S2,x→S |x′|uφ and limx∈S2,x→S ur/ ln |x′| both exist

and are finite. Moreover, ũ := u − σ/|x′|eφ is also a solution of (1), and
limx∈S2,x→S |ũ|/

∣

∣ ln |x′|
∣

∣ exists and is finite.
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Similar results in Theorem B hold for solutions u ∈ C2(S2 ∩ Bδ(N) \ {N}).
Theorem B can be concluded from [18] and [19], but some of the statements are
not explicitly listed there. For the sake of completeness, here we briefly describe
how Theorem B is concluded from the results in [18] and [19].

Proof. Let y := cos θ and U := u · r sin θ. Since u is (−1)-homogeneous and ax-
isymmetric, we know that U depends only on y ∈ (−1, 1). Note y = 1 and −1 cor-
respond to the north and south pole N and S of S2 respectively, while −1 < y < 1
corresponds to S

2 \ {S,N}. The divergence free condition in (1) is equivalent to
rur = dUθ/dy, and (1) is reduced to the following system of Uθ and Uφ,
(41)
{

(1−y2) d
dyUθ + 2yUθ +

1
2U

2
θ +

∫ y

y0

∫ l

y0

∫ t

y0

2Uφ(s)
d
dsUφ(s)

1−s2 dsdtdl = b1y
2 + b2y + b3,

(1−y2) d2

dy2Uφ + Uθ
d
dyUφ = 0,

for any y0 ∈ (−1, 1) and some constants b1, b2, b3 ∈ R.
By Theorem 1.3 in [18], we have that τ := limx∈S2,x→S |x′|uθ exists and is finite.
(i) By Theorem 1.4 in [18] we have that |x′|uφ must be a constant when τ ≥ 3.

So (41) is reduced to

(42) (1− y2)
d

dy
Uθ(y) + 2yUθ(y) +

1

2
U2
θ (y) = c1(1− y) + c2(1 + y) + c3(1− y2),

for some real constants c1, c2, c3. Then by Theorem 1.1, Theorem 1.2 and Lemma
2.3 in [19], we have that |x′|uθ = Uθ is a real analytic function in 1+cos θ near S on
S2. By the divergence free condition, ur = d

dyUθ(y) is also a real analytic function

in 1 + cos θ near S on S2.
(ii) When 2 < τ < 3, by Theorem 1.3 and 1.4 in [18], we know for x ∈ S2 that

Uθ =τ + a1|x′|6−2τ + a2|x′|2 +O(|x′|4(3−τ)−ε),(43)

Uφ =d0 + d1
(

|x′|2−τ + d2|x′|8−3τ + d3|x′|4−τ +O(|x′|14−5τ−ε)
)

.(44)

Note Uφ = uφr sin θ = |x′|uφ and τ > 2. If d1 = 0, then |x′|uφ ≡ d0 is a constant.
If d1 
= 0, then limx∈S2,x→S |x′|τ−1uφ = d1, which is finite and nonzero.

The behavior of ur on S2 is obtained by using the fact ur = dUθ/dy on S2 and
the above behavior of Uθ. Write the first equation in (41) as

(45) (1− y2)ur = −2yUθ −
1

2
U2
θ +

∫ y

y0

U2
φ(s− y)(1− sy)

(1− s2)2
ds+ b1y

2 + b2y + b3.

Note that

(s− y)(1− sy) = −y(1 + s)2 + (1 + y)2s.

Then the expansion of ur is obtained by substituting the expansions in (43) and
(44) into (45).

(iii) When τ = 2, by Theorem 1.3 and Theorem 1.4 in [18],

Uθ = 2 +
η

ln |x′| +O
(

| ln |x′||−2+ε
)

,

where η := limx∈S2,x→S(|x′|uθ − 2) ln |x′| = 0 or 2. If η = 0, then

Uφ = d1 ln |x′|+ d2 + d1O(|x′|1−ε).

If d1 = 0, then |x′|uφ = Uφ is a constant. If d1 
= 0, then limx∈S2,x→S |x′|uφ/ ln |x′| =
d1, which is finite and not zero.
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If η = 2, then

Uφ = Uφ(−1) +
d3

ln |x′| +O
(

(ln |x′|)−2+ε
)

.

So Uφ is bounded and limx∈S2,x→S |x′|uφ exists and is finite.
The expansion of ur is obtained by substituting the expansions of Uθ and Uφ

into (45). It can be proved that: If η = 0, then limx∈S2,x→S |x′|εur = 0 for any

ε > 0. If η = 2, then limx∈S2,x→S |x′|2
∣

∣ ln |x′|
∣

∣

2
ur = −2.

(iv) When τ < 2 and τ 
= 0, by Theorem 1.3 and Theorem 1.4 in [18], we know
that

Uθ =τ + a1|x′|2−τ + a2|x′|2 +O(|x′|4−2τ−ε) +O(|x′|2−ε),

(46)

Uφ =Uφ(−1) + d1|x′|2−τ + d2|x′|4−2τ + d3|x′|4−τ +O(|x′|6−τ−ε) +O(|x′|6−3τ−ε).

(47)

It is easy to see that limx∈S2,x→S |x′|uφ exists and is finite. The asymptotic behavior
of ur can be obtained by substituting the expansions (46) and (47) into (45). In
the present case, limx∈S2,x→S |x′|max{τ,0}ur exists and is finite.

(v) When τ = 0, by Theorem 1.3 and Theorem 1.4 in [18], we know that

Uθ =a1|x′|2 ln |x′|+ a2|x′|2 +O
(

|x′|4−ε
)

,(48)

Uφ =Uφ(−1) + d1|x′|2 + d2|x′|4 ln |x′|+ d3|x′|4 +O
(

|x′|6−ε
)

.(49)

Then limx∈S2,x→S |x′|uφ exists and is finite. The asymptotic behavior of ur can be
obtained by substituting the expansions (48) and (49) into (45). Then we have

ur = c1 ln |x′|+O(1),

for some nonzero constant c1, and limx∈S2,x→S ur/ ln |x′| exists and is finite. Since
for any solution (Uθ, Uφ), (Uθ, Uφ − C) is also a solution of (41) for any constant
C. By taking C = Uφ(−1), we have ũ = u − Uφ(−1)/|x′|eφ is also a solution of
(1) and satisfies that limx∈S2,x→S |ũ|/

∣

∣ ln |x′|
∣

∣ exists and is finite by combining the
above with (48) and (49).

In the end, combining all above argument, we have u = O(1/
∣

∣|x′| ln |x′|
∣

∣

2
) for all

(−1)-homogeneous axisymmetric solutions, which completes the proof. �

In view of Theorem B, all (−1)-homogeneous axisymmetric solutions of (1) in
C∞(S2 \ {S,N}) are of the following three mutually exclusive types:

Type 1. Landau solutions, satisfying sup|x|=1 |u(x)| < ∞;

Type 2. Solutions satisfying 0 < lim sup|x|=1,x′→0 |u(x)|/| ln |x′|| < ∞;

Type 3. Solutions satisfying lim sup|x|=1,x′→0 |x′||u(x)| > 0.

This classification is equivalent to the one in [23], which is given as follows:

Type 1’. Landau solutions, satisfying sup|x|=1 |∇u(x)| < ∞;

Type 2’. Solutions satisfying 0 < lim sup|x|=1,x′→0 |x′||∇u(x)| < ∞;

Type 3’. Solutions satisfying lim sup|x|=1,x′→0 |x′|2|∇u(x)| > 0.

Below we briefly explain why these two classifications are equivalent.
To see Type 1 and Type 1’ solutions are the same, we claim that a (−1)-

homogeneous solution u of (1) in C∞(S2 \ {S,N}) is a Landau solution if and
only if sup|x|=1 |u(x)| < ∞ if and only if sup|x|=1 |∇u(x)| < ∞. Note Landau

solutions are smooth on S2, thus satisfy sup|x|=1(|u(x)| + |∇u(x)|) < ∞. On
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the other hand, sup|x|=1 |∇u(x)| < ∞ implies sup|x|=1 |u(x)| < ∞. Moreover, if

sup|x|=1 |u(x)| < ∞, then u = o(ln |x′|) on S
2 as x → N,S. Then by Theorem 1.1,

u is in C∞(S2) and thus must be a Landau solution in view of Theorem A.
By integrating the conditions in |∇u| for Type 2’ and Type 3’ on S2 near S and

N , we see Type 2’ solutions must be of Type 2, and Type 3’ solutions must be of
Type 3.

Now suppose u is a (−1)-homogeneous axisymmetric solution of Type 2, we show
it must be of Type 2’. Since u is (−1)-homogeneous and axisymmetric, we have

∇u =− ur

r2
er ⊗ er + (

1

r

∂ur

∂θ
− uθ

r
)er ⊗ eθ −

uφ

r
er ⊗ eφ − uθ

r2
eθ ⊗ er

+ (
1

r

∂uθ

∂θ
+

ur

r
)eθ ⊗ eθ − cot θ

uφ

r
eθ ⊗ eφ − uφ

r2
eφ ⊗ er +

1

r

∂uφ

∂θ
eφ ⊗ eθ

+ (cot θ
uθ

r
+

ur

r
)eφ ⊗ eφ.

(50)

Without loss of generality, consider x → S on S
2 as x′ → 0. As explained in the

proof of Theorem B, (1) for (−1)-homogeneous axisymmetric solutions is reduced
to (41) for y = cos θ and U(y) = ur sin θ, and the divergence free condition is
equivalent to rur = U ′

θ(y), where we use “ ′ ” to denote differentiation in y. Note
Type 2 solutions satisfy Uθ(−1) = 0. By (48) and (49), Uθ = O(|x′|2 ln |x′|) and
Uφ = O(|x′|2). Note U ′

θ = rur = O(ln |x′|) on S2 by Theorem B (v). By the second
equation in (41), we have U ′

φ = O(1). Note r sin θ = |x′|, we have

uθ =
Uθ

|x′| = O(|x′| ln |x′|), uφ =
Uφ

|x′| = O(|x′|), ur = O(ln |x′|).

∂uθ

∂θ
= − 1

r2
(U ′

θ +
cos θ

sin2 θ
Uθ) = O(ln |x′|), ∂uφ

∂θ
= − 1

r2
(U ′

φ +
cos θ

sin2 θ
Uφ) = O(1).

By the above and (50), we have

∇u =
1

r

∂ur

∂θ
er ⊗ eθ +O(ln |x′|) = − sin θ

r2
U ′′
θ er ⊗ eθ +O(ln |x′|).

Differentiating the first equation in (41), plugging the behavior of Uθ, U
′
θ, Uφ, U

′
φ,

it can be shown that 0 < lim sup|x|=1,x′→0 |x′|2|U ′′
θ | < ∞. Then the above implies

0 < lim sup|x|=1,x′→0 |x′||∇u(x)| < ∞, and u is of Type 2’.

Similarly, if a solution is of Type 3, consider x → S on S
2. By Theorem B, we

have τ = Uθ(−1) = lim|x|=1,x→S |x′|uθ 
= 0. By Theorem 1.3 and 1.4 in [18], we
have the behavior of Uθ and Uφ corresponding to each τ . By the second equation of
(41), one can obtain the behavior of U ′

φ. Taking derivative of the first equation in

(41), using the behavior of Uθ, U
′
θ, Uφ and U ′

φ for each τ respectively, the behavior

of U ′′
θ can be obtained. Then with the estimation of Uθ, U

′
θ, U

′′
θ , Uφ, U

′
φ and (50),

we have that u is of Type 3’. We omit the detail here.

3.2. Some examples of special solutions. Below we discuss some special (−1)-
homogeneous solutions of (1) with isolated singularities on S

2 and their asymptotic
behavior. Due to the (−1)-homogeneity, we only consider the equations on S2 and
all solution formulas in the following examples are given on S2.
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3.2.1. Homogeneous axisymmetric solutions of (1). In this section, we give some
examples of (−1)-homogeneous axisymmetric solutions of (1) in C2(S2\{S,N}) and
discuss about their singularity behavior. The no-swirl solutions with one singularity
at S are classified in [18], and the no-swirl solutions with two singularities at S
and N are classified in [19]. The (−1)-homogeneous axisymmetric solutions with
nonzero swirl nearby the no-swirl solutions surface in C2(S2 \ {S}) and C2(S2 \
{S,N}) were constructed respectively in [18] and [20]. The asymptotic behavior of
these solutions are described by Theorem B.

(a) No-swirl solutions in C∞(S2 \ {S})
With one singularity on S2, all (−1)-homogeneous axisymmetric no-swirl solu-

tions in C2(S2 \ {S}) are classified in [18].

Example 3.1 ([18]). Let I := {(τ, σ) ∈ R2 | τ ≤ 2, σ ≤ 1
4 (4 − τ )} ∪ {(τ, σ) | τ ≥

2, σ = τ
4}. Then for every (τ, σ) ∈ I, there exists a unique uθ ∈ C∞(S2 \ {S})

such that the corresponding (u, p) is a solution to (1) on S2 \ {S}, satisfying
limθ→π− uθ sin θ = τ and limθ→0+ uθ/ sin θ = σ. Moreover, these are all the ax-
isymmetric no-swirl solutions in C2(S2 \ {S}). The explicit expressions of these
solutions are as follows.
(51)

uθ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1− cos θ
sin θ

⎛

⎜

⎝
1− b− 2b(1− 2σ − b)

(1− 2σ + b)(
1 + cos θ

2
)−b + 2σ − 1 + b

⎞

⎟

⎠
, τ < 2,

1− cos θ
sin θ

⎛

⎜

⎝
1 +

2(1− 2σ)

(1− 2σ) ln
1 + cos θ

2
− 2

⎞

⎟

⎠
, τ = 2,

(1 + b)(1− cos θ)
sin θ

, τ > 2,

where (τ, σ) ∈ I and b := |1− τ
2 |, and ur, p can be determined by

(52) ur = −duθ

dθ
− uθ cot θ, p = ur −

1

2
u2
θ + const, on S

2.

Note the first equation of (52) is equivalent to the divergence free condition div u =
0 for (−1)-homogeneous axisymmetric solutions of (1).

The solutions uτ,σ are of Type 1 when τ = 0, and are of Type 3 when τ 
= 0
regarding their behavior near the south pole. There is no Type 2 solution in {uτ,σ |
(τ, σ) ∈ I}.

To be precise, {(uθ)τ,σ | τ = 0, σ ∈ (−∞, 0)∪ (0, 1)} are Landau solutions. They
can also be rewritten as

uθ =
2 sin θ

2−σ
σ + cos θ

.

Note when τ = 2, in view of (52), we have

ur = −
(

1 +
2(1− 2σ)

(1− 2σ) ln
1 + cos θ

2
− 2

)

− 2(1− 2σ)2(1− cos θ)
(

(1− 2σ) ln
1 + cos θ

2
− 2

)2

(1 + cos θ)

.

So limx∈S2,x→S |x′|2
∣

∣ ln |x′|
∣

∣

2
ur = −2. By Theorem B, all (−1)-homogeneous ax-

isymmetric solutions of (1) satisfies u = O(1/
∣

∣|x′| ln |x′|
∣

∣

2
). By the above example

of solutions when τ = 2, this estimate is optimal.
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(b) No-swirl solutions in C∞(S2 \ {S,N})
In [19], all (−1)-homogeneous axisymmetric no-swirl solutions in C2(S2\{S,N})

were classified. For these solutions, uφ = 0 and (1) is reduced to (42) for y = cos θ
and U = u sin θ on S2. The divergence free condition gives ur = dUθ/dy, and p can
be determined by p = ur − u2

θ/2 + const on S2. Denote c := (c1, c2, c3), and let

c̄3 := −1

2

(√
1 + c1 +

√
1 + c2

) (√
1 + c1 +

√
1 + c2 + 2

)

,

and

(53) J := {c ∈ R
3 | c1 ≥ −1, c2 ≥ −1, c3 ≥ c̄3}.

In [19], it was proved that there exist γ−, γ+ ∈ C0(J,R), satisfying γ−(c) < γ+(c)
if c3 > c̄3(c1, c2), and γ−(c) = γ+(c) if c3 = c̄3(c1, c2), such that equation (42) has
a unique solution Uc,γ

θ in C∞(−1, 1) ∩ C0[−1, 1] satisfying Uc,γ
θ (0) = γ for every

c ∈ J and γ−(c) ≤ γ ≤ γ+(c). Define

I := {(c, γ) ∈ R
4 | c1 ≥ −1, c2 ≥ −1, c3 ≥ c̄3(c1, c2), γ

−(c) ≤ γ ≤ γ+(c)},
and

uc,γ := uc,γ
r er + uc,γ

θ eθ = (
d

dy
Uc,γ
θ )er +

Uc,γ
θ

sin θ
eθ,

pc,γ := uc,γ
r − 1

2
(uc,γ

θ )2 + c3 =
d

dy
Uc,γ
θ − (Uc,γ

θ )2

2 sin2 θ
+ c3.

(54)

Then {(uc,γ , pc,γ) | (c, γ) ∈ I} are all the (−1)-homogeneous axisymmetric no-swirl
solutions of (1) in C∞(S2 \ {S,N}).

In particular, it is obtained in [19] that τ := Uθ(−1) = 2 ± 2
√
1 + c1 and τ̃ :=

Uθ(1) = −2±2
√
1 + c2, and the behavior of the solutions near S and N is described

by Theorem B and its analogous result near N for different values of τ and τ̃ . For
(c, γ) ∈ I with γ−(c) < γ < γ+(c), the solutions uc,γ are of Type 1 if c1 = c2 =
c3 = 0, Type 2 if c1 = c2 = 0, c3 
= 0, and Type 3 if c1 
= 0 or c2 
= 0. If γ = γ+(c)
or γ−(c), then uc,γ is of Type 3.

(c) Homogeneous axisymmetric solutions with Type 2 singularities
Let us identify all Type 2 (−1)-homogeneous axisymmetric solutions in C2(S2 \

{S,N}). We first consider no-swirl solutions. Let {(uc,γ , pc,γ) | (c, γ) ∈ I} be
the (−1)-homogeneous axisymmetric no-swirl solutions of (1) in C2(S2 \ {S,N})
as described above. In [22, Corollary 2.1], it is proved that if c1 = c2 = 0 and
limx∈S2,x′→0 |x′|uc,γ

θ = 0, then

uc,γ
θ (x) = −c3sgn(x3)|x′|

|x|2 ln
|x′|
|x| +

O(1)(|c|+ |γ|)|x′|
|x|2 ,

uc,γ
r (x) =

2c3
|x| ln

|x′|
|x| +

O(1)(|c|+ |γ|)
|x| .

So uc,γ = urer + uθeθ satisfies

(55) lim
x∈S2,x→S

|uc,γ |
ln |x′| = lim

x∈S2,x→N

|uc,γ |
ln |x′| = −2|c3|.

This in particular implies that for any α > 0, there exists a (−1)-homogeneous ax-
isymmetric no-swirl solution (u, p) ∈ C∞(S2 \ {S,N}) of (1), such that
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lim|x′|→0 |u|/ ln |x′| = −α on S2. As a consequence, the removable singularity re-
sult Theorem 1.1 is optimal. An explicit solution with c3 = −4 is given below in
Example 3.2. The asymptotic stability of such (uc,γ , pc,γ) was proved in [22].

Below we show that without the assumption of no-swirl, all Type 2 homogeneous
axisymmetric solutions of (1) on S2 \ {S,N} must be the uc,γ with (c, γ) ∈ I and
c1 = c2 = 0. In particular, this implies that there are no Type 2 (−1)-homogeneous
axisymmetric solutions of (1) with a single singularity on S

2.

Lemma 3.1. Suppose u ∈ C2(S2 \ {S,N}) is a (−1)-homogeneous axisymmet-

ric solution of (1) satisfying lim sup|x|=1,x′→0 |u(x)|/| ln |x′|| < ∞. Then uφ ≡
0, and u must be the solutions uc,γ with (c, γ) ∈ I satisfying c1 = c2 = 0,
and u satisfies (55). In particular, let P be S or N , then there does not ex-

ist (−1)-homogeneous axisymmetric solution u ∈ C2(S2 \ {P}) of (1) satisfying

0 < lim sup|x|=1,x→P |u(x)|/| ln |x′|| < ∞.

Proof. Let u ∈ C2(S2 \ {S,N}) be a (−1)-homogeneous axisymmetric solution
of (1). As in the proof of Theorem B, (1) is reduced to (41) for y = cos θ and
U = u sin θ on S

2. By the second equation in (41), we have

d

dy
Uφ(y) = Ce

−
∫ y
0

Uθ(s)

1−s2
ds
,

for some constant C. So Uφ is monotone in y ∈ (−1, 1). By the assumption that
lim sup|x|=1,x′→0 |u(x)|/| ln |x′|| < ∞, we have Uφ = uφ sin θ = O(sin θ ln sin θ) on

S2. So Uφ(±1) = 0. Then by the monotonicity of Uφ, we must have Uφ ≡ 0
and the system (41) is further reduced to (42). In view of the classification of all
(−1)-homogeneous axisymmetric no-swirl solutions of (1) on S2 \ {S,N} in [19] (as
described above), we have that u = uc,γ for some (c, γ) ∈ I with c1 = c2 = 0. In
particular, u satisfies (55).

Next, for P = S or N , we show there does not exist (−1)-homogeneous axisym-
metric solution u ∈ C2(S2 \ {P}) satisfying 0 < lim sup|x|=1,x→P |u(x)|/| ln |x′|| <
∞. Without loss of generality, assume P = S. By the above argument, we have
u = uc,γ with c1 = c2 = 0 and satisfies (42). Taking d/dy of (42) with c1 = c2 = 0,
we have

(1− y2)
d2

dy2
Uθ + 2Uθ + Uθ

d

dy
Uθ = −2c3y.

Since u is smooth at N , we have Uθ(1) = 0 and d2Uθ/dy
2 = O(1) as y → 1. By this

and the above equation, we must have c3 = 0. Then solving (42) on (−1, 1] with
c1 = c2 = c3 = 0 and Uθ(1) = 0, we have Uθ = 2(1− y2)/(λ+ y) for some λ < −1
or λ ≥ 1. If λ = 1, then Uθ = 2(1 − y) and lim sup|x|=1,x→S |u(x)|/| ln |x′|| = ∞.

If λ 
= 1, then u ∈ C∞(S2), which is a Landau solution. Thus there is no solution
u ∈ C2(S2 \ {S}) satisfying 0 < lim sup|x|=1,x→S |u(x)|/| ln |x′|| < ∞. The proof is
finished. �

Below we give some examples of Type 2 solution with explicit formulas, which
exist near S or N on S2.

Example 3.2. In equation (42), set c1 = c2 = 0. Let Uθ(y) = 2(1 − y2)χ
′(y)

χ(y) for

some function χ(y), then (42) is converted to

2(1− y2)χ′′(y)− c3χ(y) = 0.
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Let z := cos2 θ
2 , then y = 2z−1. Denote χ̃(z) := χ(y(z)). The above equation then

becomes

2z(1− z)
d2χ̃(z)

dz2
− c3χ̃(z) = 0.

This is a hypergeometric differential equation, whose solution χ̃ can be expressed
with the help of hypergeometric functions and Meijer G-functions [8,33]. In general,
these functions cannot be expressed as elementary functions. According to the
above argument about uc,γ and Theorem B, if c3 > c̄3(0, 0) = −4, then the solution
lies in C2(S2 \{S,N}), otherwise there exist local solutions in C2(S2∩Bδ(S)\{S})
satisfying (55) for some δ > 0.

In particular, when c3 = −4, there are special solutions explicitly given by

χ(y) = (1− y2) ln(
1 + y

1− y
) + 2y + 2α(1− y2)

for any α ∈ R. Correspondingly,

(56)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

uθ = 4 sin θ · 1−cos θ(ln(cot θ
2 )+α)

cos θ+sin2 θ(ln(cot θ
2 )+α)

,

ur = −4− 8
(

1−cos θ(ln(cot θ
2 )+α)

)

(

cos θ+sin2 θ(ln(cot θ
2 )+α)

)2 ,

uφ = 0,

p =
8
(

−2+cos θ(ln cot θ
2+α)−sin2 θ(ln cot θ

2+α)2
)

(

cos θ+sin2 θ(ln cot θ
2+α)

)2

is a special solution of (1) satisfying (55) for θ ∈ (θ0, π), where θ0 is the unique root
of cos θ+sin2 θ(ln cot θ

2+α) = 0. Thus (56) is a solution of (1) in C2(S2∩Bδ(S)\{S})
for some δ > 0 depending on α. Note that (56) is also a solution for θ ∈ (0, θ0),
thus is a solution in C2(S2 ∩ Bδ′(N) \ {N}) for some δ′ > 0. This special solution
also implies that our removable singularity result Theorem 1.1 is optimal. Note
this solution does not exist on the whole S2 \ {S,N}. Indeed, in this example,
c1 = c2 = 0 and c3 = −4 = c̄3(0, 0). By Theorem 1.1 in [19], in this case there
exists only one solution of (1) in C2(S2 \ {S,N}), which is given by uθ = −4 cot θ,
uφ = 0, ur = −4 and p = −8 csc2 θ.

When c1 = c2 = 0, c3 = 1/2 > −4, there are special solutions in C2(S2 \ {S,N})
with explicit but not elementary expressions given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

uθ =
sin θ

(

K(cos2 θ
2 )−αK(sin2 θ

2 )
)

2
(

E(cos2 θ
2 )−sin2 θ

2K(cos2 θ
2 )+αE(sin2 θ

2 )−α cos2 θ
2K(sin2 θ

2 )
) ,

ur = −1
sin θ

d
dθ (sin θuθ),

uφ = 0,

p = −1
2

(

d2ur

dθ2 + (cot θ − uθ)
dur

dθ + u2
r + u2

θ

)

,

for any 0 < α < +∞, where K(x) and E(x) are respectively the complete elliptic
integrals of the first and second kind

K(x) =

∫ π/2

0

1
√

1− x sin2 θ
dθ, E(x) =

∫ π/2

0

√

1− x sin2 θdθ, 0 < x < 1.

These special solutions lie in C2(S2 \ {S,N}) and satisfy (55), which also implies
that the removable singularity result Theorem 1.1 is optimal. For α = 0 or +∞,
the above solution is a solution of (1) in C2(S2 \ {S,N}) of Type 3. If α < 0, then
the above solution is a local solution near N or S on S2.
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3.2.2. Serrin’s solutions. In a pioneering work [37] concerning a representative
model for tornadoes, Serrin studied (−1)-homogeneous axisymmetric solutions of
(1) in the upper half space R

3
+ := R

3 ∩ {x3 > 0} with a singular ray along
the positive x3-axis and some boundary conditions on ∂R3

+. Notably, the solu-
tions formulated in the paper exhibit properties different from Landau solutions,
where uθ = O(|x′| ln |x′|), ur = O(ln |x′|) near the north pole N on S2, and
0 < limx∈S2,x→N |x′||uφ| < ∞. In particular, Serrin’s solutions are of Type 3
behavior mentioned above.

3.2.3. Solutions given by Liouville formulas. In [44], Šverák proved that all (−1)-
homogeneous nonzero solutions of (1) in C2(R3 \ {0}) are Landau solutions (see
Theorem A). In his proof, (1) is reduced to

(57) −�S2ϕ+ 2 = 2eϕ, on S
2,

where u = ∇S2ϕ − ΔS2ϕer on S2. It is clear from [44] that if ϕ is a solution
to (57), then u = ∇S2ϕ − ΔS2ϕer is a solution to (1) after being extended to a
(−1)-homogeneous vector field in R3.

The classification of solutions to (57) is classical. Let F−1 : S2 → R
2 be the

stereographic projection, with z = (z1, z2) = F−1(x) given by zi = xi/(1 − x3),
i = 1, 2. It is easy to check that for any bounded open set O ⊂ R2, ξ ∈ C2(O) is a
solution to

(58) −�ξ = eξ

in O, if and only if

(59) ϕ(x) := ξ ◦ F−1(x)− 3 ln 2 + 2 ln(1 + |F−1(x)|2)
is a solution to (57) in F (O) ⊂ S2.

For a simply connected open set O ⊂ R2, it is known (see [25] and [6]) that all
real solutions ξ ∈ C2(O) of (58) are of the form

(60) ξ = ln
8|f ′(z)|2

(1 + |f(z)|2)2 ,

with f being a locally univalent meromorphic function. Here we have abused no-
tations slightly by identifying z = z1 + iz2 and using O also to denote the subset
{z1 + iz2 | (z1, z2) ∈ O} ⊂ C. In particular, if ξ is singular at some z, then ϕ is
singular at F (z) on S2, and the corresponding u = ∇S2ϕ−ΔS2ϕer is a solution to
(1) with a singularity at F (z) on S

2. In view of this fact, we may construct some
special (−1)-homogeneous solutions of (1) with arbitrary finite singularities on S2.

First, for axisymmetric solutions in C2(S2 \ {N,S}), we have

Lemma 3.2. Let u be a (−1)-homogeneous solution of (1) given by u = ∇S2ϕ −
ΔS2ϕer on S

2 \ {S,N}, with ϕ given by (59) and (60) for some multi-valued locally

univalent meromorphic function f on C \ {0}. If u is axisymmetric, then f = azα

for some a ∈ C \ {0} and α ∈ R \ {0}.

Proof. Since u = ∇S2ϕ − ΔS2ϕer is axisymmetric, ϕ is also axisymmetric. So ξ
defined by (60) is radially symmetric and satisfies (58) in R2 \ {0}. Denote r = |z|,
we have ξ = ξ(r). Let t = ln |z| and η(t) = ξ(et) + 2t, then (58) is reduced to

−ηtt = eη.
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Multiplying both sides of the above by ηt and taking the integral, we have η2t +2eη =
const. Solving for η, we obtain

η = ln
Aect

(1 +Aect)2
+ C

for some constants A > 0, c > 0 and C. Then

ξ = ln
Arc−2

(1 + Arc)2
+ C, ∀r > 0.

Note this ξ is given by (60) with f(z) =
√
Azc/2 or f(z) = z−c/2/

√
A. The lemma

is proved. �

Now we display some special solutions of (1) given by u = ∇S2ϕ−ΔS2ϕer , where
ϕ is given by (59) and (60) with some locally univalent meromorphic function f .

Example 3.3. In this example, we construct some special (−1)-homogeneous so-
lutions of (1) with singularities at N or S on S2 using Liouville formulas, includ-
ing both axisymmetric and non-axisymmetric solutions. For each f(z), we de-
fine ϕ by (59) and (60), and construct a corresponding solution of (1) given by
u = ∇S2ϕ −ΔS2ϕer. We display the expression of u = urer + uθeθ + uφeφ corre-
sponding to each f(z) below.

(a) Take f(z) = azα for some a ∈ C, 0 < |a| < +∞ and α ∈ R, α 
= 0. The
corresponding solution (u, p) of (1) is

(61)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uθ = u
α,|a|
θ := 2

sin θ

(

− cos θ + α
|a|2 cot2α θ

2−1

|a|2 cot2α θ
2+1

)

,

uφ = 0,

ur = u
α,|a|
r := −2 + 8α2

sin2 θ
· |a|2 cot2α θ

2

(1+|a|2 cot2α θ
2 )

2 ,

(62) p = pα,|a| := ur −
1

2
(uθ)

2.

It is obvious that uα,|a| = u−α,1/|a|. Landau solutions correspond to the
case when α = ±1. When α 
= ±1, the above solutions are of Type 3.

(b) Take f = aebz for some a, b ∈ C satisfying |a|, |b| ∈ (0,+∞). The corre-
sponding solution (u, p) of (1) is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

uθ = −2(cos θ+1)
sin θ + (b1 cosφ−b2 sinφ)

sin2 θ
2

· tanh
(

cot( θ2 )(b1 cosφ− b2 sinφ) + ln |a|
)

,

uφ = 2(b1 sinφ+ b2 cosφ)
cot θ

2

sin θ · tanh
(

cot( θ2 )(b1 cosφ− b2 sinφ) + ln |a|
)

,

ur = −2 + |b|2

2 sin4 θ
2

· sech2
(

cot θ
2 (b1 cosφ− b2 sinφ) + ln |a|

)

,

and

(63) p = −1

2

(d2ur

dθ2
+cot θ

dur

dθ
+

1

sin2 θ

d2ur

dφ2
−uθ

dur

dθ
− uφ

sin θ

dur

dφ
+u2

r +u2
θ +u2

φ

)

.

This solution u is not axisymmetric.

(c) Take f = ez
k

. Then the corresponding solution of (1) is given by

(64)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uθ = −2(cos θ+k)
sin θ + 2k cos(kφ)

cotk θ
2

sin θ tanh
(

cotk( θ2 ) cos(kφ)
)

,

uφ = 2k sin(kφ)
cotk( θ

2 )

sin θ tanh
(

cotk( θ2 ) cos(kφ)
)

,

ur = −2 + 2k2
cot2k( θ

2 )

sin2 θ
sech2(cotk( θ2 ) cos(kφ)).
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The pressure p can be derived from (63), and the corresponding u is not
axisymmetric.

It should be noted that if we send |a| → 0 in (61), then

(65) lim
|a|→0

u
α,|a|
θ =

−2(α+ cos θ)

sin θ
.

For α = ±1 and 0 < |a| < +∞, uα,|a| is a Landau solution. When α = 1, the limit
in (65) gives a solution u of (1) with

uθ = −2(1 + cos θ)

sin θ
, ur = −2, uφ = 0, p = −4(1 + cos θ)

sin2 θ
,

which is smooth at south pole and singular at north pole. This solution is given by
u = ∇S2ϕ−ΔS2ϕer with ϕ = −2 ln(1− cos θ), which satisfies ΔS2ϕ+ 2 = 0. This
ϕ is not given by (59) and (60) with any locally univalent meromorphic function f .
Similar situation holds for α = −1, where the corresponding solution is

uθ =
2(1− cos θ)

sin θ
, ur = −2, uφ = 0, p = −4(1− cos θ)

sin2 θ
,

which is given by u = ∇S2ϕ −ΔS2ϕer with ϕ = −2 ln(1 + cos θ). This solution is
smooth at north pole and singular at south pole. These solutions are of Type 3. In
particular, these solutions also satisfy Euler’s equations.

We may also construct (−1)-homogeneous solutions of (1) with singularities on
S
2 that are not N or S.

Theorem 3.1. Let m ≥ 2 be an integer, P1, . . . , Pm ∈ S2 be distinct points, and

{l1, . . . , lm} ∈ Z \ {0, 1,−1} satisfy
∑m

j=1 lj = m − 2. Then there exists a (−1)-

homogeneous solution u ∈ C∞(S2 \ {P1, . . . , Pm}) of (1), satisfying

(66) u = 2(|lj | − 1)∇S2 ln |x− Pj |+O(1), as x → Pj on S
2, ∀1 ≤ j ≤ m.

Proof. By rotation of the coordinates, let Pm be the north pole N . Let F−1 : S2 →
R2 be the stereographic projection and zj := F−1(Pj), 1 ≤ j ≤ m − 1. Fix any
a ∈ C \ {z1, . . . , zm−1} and define

(67) f(z) :=

∫ z

a

(t− z1)
l1−1 · · · (t− zm−1)

lm−1−1dt, ∀z ∈ C \ {z1, . . . , zm−1},

where the integral path from a to z does not intersect with {z1, . . . , zm−1}. Since
lj 
= 0, 1, f is independent of the path and well-defined in C \ {z1, . . . , zm−1}. So f
is a locally univalent meromorphic function near each zj , 1 ≤ j ≤ m− 1.

Let ξ(z) be defined by (60) with this f , and ϕ(x) be defined by (59). Then as
mentioned earlier, ξ ∈ C∞(C \ {z1, . . . , zm−1}) satisfies (58) in C \ {z1, . . . , zm−1},
and ϕ ∈ C∞(S2 \ {P1, . . . , Pm}) satisfies (57) on S2 \ {P1, . . . , Pm}. Let u :=
∇S2ϕ−ΔS2ϕer on S

2\{P1, . . . , Pm} and be extended as a (−1)-homogeneous vector
field in R3. Then u ∈ C∞(S2 \ {P1, . . . , Pm}) is a (−1)-homogeneous solution of
(1) on S2 \ {P1, . . . , Pm}.

Now we prove that u satisfies (66) for all 1 ≤ j ≤ m. Let (r, θ, φ) be spherical
coordinates as usual. Write x = (sin θ cosφ, sin θ sinφ, cos θ)T for x ∈ S

2 and z =
F−1(x) = sin θ

1−cos θ (cosφ, sinφ)
T . By computation,

∂θx = eθ, ∂φx = sin θeφ,

∂θz = − 1

1− cos θ
(cosφ, sinφ)T , ∂φz =

sin θ

1− cos θ
(− sinφ, cosφ)T .

(68)
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For convenience, denote A := (cos θ − 1)[∂θz, ∂φz/ sin θ] =

[

cosφ sinφ
sinφ − cosφ

]

.

Case 1 (j 
= m). We only need to prove it for j = 1. For f given by (67), we have

(69) f ′(z) =

m
∏

j=1

(z − zj)
lj−1 = Cl1(z − z1)

l1−1 +O(|z − z1|l1)

and

(70) f(z) = C(z − z1)
l1 +O(|z − z1|l1+1) +O(1)

as z → z1, where C = 1
l1

∏m
j=2(z1 − zj)

lj−1. Denote

(71) ξ̂(z) := ξ(z)− 3 ln 2 + 2 ln(1 + |z|2) = ln
|f ′(z)|2(1 + |z|2)2
(1 + |f(z)|2)2 .

By the definition of ϕ, we have ϕ(x) = ξ̂ ◦ F−1(x), x ∈ S2. We first claim that

(72) ξ̂ = 2(|l1| − 1) ln |z − z1|+O(1), as z → z1.

Indeed, by (69) and (71), we have

(73) ξ̂ = ln
|z − z1|2(l1−1)

(1 + |f(z)|2)2 +O(1), as z → z1.

Note l1 
= 0, 1,−1. If l1 ≥ 2, (72) directly follows from (70) and (73). If l1 ≤ −2,
then by (70) and (73), we have

ξ̂(z) = ln
|z − z1|2(l1−1)|z − z1|−4l1

(1 + |f(z)|2)2|z − z1|−4l1
+O(1) = −2(l1 + 1) ln |z − z1|+O(1).

So (72) holds.

Next, let ζ(z) := ξ̂(z)−2(|l1|−1) ln |z−z1| and δ > 0 be small enough such that
zj /∈ Bδ(z1) for j 
= 1. Then by (58), (71) and (72), we have

−Δζ = −Δξ̂ =
8(eξ̂ − 1)

(1 + |z|2)2 = O(1), in Bδ(z1).

Note ζ = O(1) in Bδ(z1). By elliptic estimate, we have ∇ζ = O(1) in Bδ(z1). Thus

(74) ∇ξ̂ = 2(|l1| − 1)∇ ln |z− z1|+∇ζ = 2(|l1| − 1)
z − z1
|z − z1|2

+O(1), as z → z1.

Recall u = ∇S2ϕ−ΔS2ϕer. To prove (66), we will show ΔS2ϕ = O(1) and ∇S2ϕ =
2(|l1| − 1)∇S2 ln |x− P1|+ O(1) as x → P1 on S2.

Note ϕ(x) = ξ̂(z) and x = F (z) → P1 as z → z1. By (57), (72) and the fact
l1 
= 0, we have −ΔS2ϕ = 2(eϕ − 1) = O(1) as x → P1.

Next, we estimate ∇S2ϕ as x → P1 from all directions on S
2. For each fixed

z0 
= z1, let z = γ̃(t) := tz0 + (1− t)z1, 0 ≤ t ≤ 1, and γ(t) = F (γ̃(t)). Using (68),
it can be verified
(75)

∇S2ϕ = ∂θϕeθ+
1

sin θ
∂φϕeφ = ∇ξ̂·∂θzeθ+

1

sin θ
∇ξ̂·∂φzeφ = − 1

1− cos θ
[eθ, eφ]A

T∇ξ̂.
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On the other hand, write x− P1 = γ(t)− γ(0) = γ′(t)t+ O(t2). By (68), we have

γ′(t) = ∂θxθ
′(t) + ∂φxφ

′(t) = [eθ, eφ]

[

θ′(t)
sin θφ′(t)

]

, and

z − z1 = (z0 − z1)t = γ̃′(t)t = (θ′(t)∂θz + φ′(t)∂φz)t = − t

1− cos θ
A

[

θ′(t)
sin θφ′(t)

]

= − 1

1− cos θ
A

[

eTθ
eTφ

]

γ′(t)t = − 1

1− cos θ
A

[

eTθ
eTφ

]

(x− P1) +O(t2).

Using (75), (74), the above, the fact that ATA = I, we have

∇S2ϕ = −2(|l1| − 1)

1− cos θ
[eθ, eφ]A

T z − z1
|z − z1|2

+O(1)

= 2(|l1| − 1)[eθ, eφ]

[

eTθ
eTφ

]

x− P1

|x− P1|2
+O(1).

By (68),

∇S2 ln |x− Pj | = ∂θ ln |x− Pj |eθ +
1

sin θ
∂φ ln |x− Pj |eφ

=
(x− Pj) · ∂θx

|x− Pj |2
eθ +

(x− Pj) · ∂φx
sin θ|x− Pj |2

eφ = [eθ, eφ]

[

eTθ
eTφ

]

x− Pj

|x− Pj |2
.

So we have proved (66) in Case 1.

Case 2 (j = m). Similar to Case 1, we only need to estimate ΔS2ϕ and ∇S2ϕ as

x → Pm. In this case, Pm = N . As x → N , |z| → ∞. Let l =
∑m−1

j=1 lj −m + 2.
By the definition of f , we have

f ′(z) = zl−1 +O(|z|l−2) and f(z) =
1

l
zl +O(|z|l−1) +O(1)

as |z| → ∞. Plug this into (71), we have

(76) ξ̂ = (2− 2|l|) ln |z|+O(|z|−1).

Since |l| ≥ 2, we have eξ̂ = |z|2−2|l|eO(1/|z|) = O(1). So ΔS2ϕ = 2(eϕ − 1) = O(1).
Now we estimate ∇S2ϕ. Fix z0 such that ρ := |z0|/3 >> 1 and zj /∈ B1(z0) for

1 ≤ j ≤ m− 1. Let ζ(y) := ξ̂(z0 + ρy)− (2− 2|l|) ln |z0 + ρy| for y ∈ B1(0). Similar
to the proof of (74), by (58) and (59) we have

−Δyζ = −ρ2Δξ̂(z0 + ρy) =
8ρ2(eξ̂ − 1)

(1 + |z0 + ρy|2)2 = O(ρ−2), y ∈ B1(0).

By (76), we have ζ(y) = O(ρ−1) in B1(0). By elliptic estimate, we have ∇yζ(y) =
O(ρ−1) in B1(0). Thus

∇z ξ̂ = (2− 2|l|) z

|z|2 +
1

ρ
∇yζ = (2− 2|l|) z

|z|2 +O(ρ−2) = (2− 2|l|) z

|z|2 +O(|z|−2),

for z ∈ B1(z0). By (75), the above, the facts that z = sin θ
1−cos θ (cosφ, sinφ)

T and

1− cos θ = 2
1+|z|2 , we have

∇S2ϕ = −2(1− |l|)
1− cos θ

[eθ, eφ]A
T z

|z|2 +
O(1)

|z|2(1− cos θ)
=

2(|l| − 1)

sin θ
eθ +O(1).
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Note x−N = (sin θ cosφ, sin θ sinφ, cos θ − 1)T , we have

∇S2 ln |x−N | = 1

2
∂θ ln(sin θ

2 + (1− cos θ)2)eθ =
1 + cos θ

2 sin θ
eθ =

1

sin θ
eθ +O(1).

Thus we have

∇S2ϕ =
2(|l| − 1)

sin θ
eθ +O(1) = 2(|l| − 1)∇S2 ln |x−N |+O(1).

Note lm = −l, then (66) for j = m follows from the above.

�

Remark 3.1. For the existence and nonexistence of solutions ϕ of (57) on S2 \
{P1, . . . , Pm} satisfying ∇S2ϕ = 2(|αj | − 1)∇S2 ln |x − Pj | + O(1) for αj ∈ R, 1 ≤
j ≤ m, see e.g. [2, 3, 27, 28, 30, 31, 47] and the references therein.

3.2.4. Solutions that are also solutions of Euler’s equation. Consider (−1)-homo-
geneous axisymmetric no-swirl solutions of the stationary Euler’s equation

{

(u · ∇)u+∇p = 0,

div u = 0.

Let Uθ = uθ sin θ and y = cos θ. The system on S
2 can be reduced to

(77)
1

2
U2
θ = c0 + c1y + c2y

2, ur =
d

dy
Uθ,

for some constants c0, c1, c2, and the solution is given by

uθ = ±
√

2(c0 + c1 cos θ + c2 cos2 θ)

sin θ
,

ur = ± c1 + 2c2 cos θ
√

2(c0 + c1 cos θ + c2 cos2 θ)
, uφ = 0,

and p is determined by (63). In particular, when the polynomial 2(c0+c1y+c2y
2) =

(ay + b)2 for some a, b ∈ R, the above solution is also a solution of Navier-Stokes
equations (1), where

uθ =
a cos θ + b

sin θ
, ur = a, uφ = 0, p = −a2 + b2 + 2ab cos θ

2 sin2 θ
.

These solutions are of Type 3.
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