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Abstract

Vision Language Models (VLMs) can produce unintended

and harmful content when exposed to adversarial attacks,

particularly because their vision capabilities create new

vulnerabilities. Existing defenses, such as input preprocess-

ing, adversarial training, and response evaluation-based

methods, are often impractical for real-world deployment

due to their high costs. To address this challenge, we pro-

pose ASTRA, an efficient and effective defense by adaptively

steering models away from adversarial feature directions

to resist VLM attacks. Our key procedures involve finding

transferable steering vectors representing the direction of

harmful response and applying adaptive activation steer-

ing to remove these directions at inference time. To cre-

ate effective steering vectors, we randomly ablate the vi-

sual tokens from the adversarial images and identify those

most strongly associated with jailbreaks. These tokens

are then used to construct steering vectors. During in-

ference, we perform the adaptive steering method that in-

volves the projection between the steering vectors and cal-

ibrated activation, resulting in little performance drops on

benign inputs while strongly avoiding harmful outputs un-

der adversarial inputs. Extensive experiments across mul-

tiple models and baselines demonstrate our state-of-the-

art performance and high efficiency in mitigating jailbreak

risks. Additionally, ASTRA exhibits good transferability, de-

fending against unseen attacks (i.e., structured-based at-

tack, perturbation-based attack with project gradient de-

scent variants, and text-only attack). Our code is available

at https://github.com/ASTRAL-Group/ASTRA.

1. Introduction

Vision Language Models (VLMs) [8, 12, 28, 60] have

attracted significant attention from both the industry and

academia for their remarkable vision-language cognition

capabilities [39]. Despite widespread applications, VLMs

still face safety challenges due to limitations inherent in

their underlying language models. Moreover, integrating

visual inputs can open up a new surface for adversarial

attacks. These safety issues regarding VLM have led to

a lot of research on jailbreak attacks and defense strate-

gies [17, 47, 53, 61].

Jailbreak attacks in VLMs aim to induce models to gen-

erate harmful responses by using jailbreaking image-text

pairs [22–24, 26, 41, 48, 51]. These jailbreak attacks can

be categorized into two types: (i) perturbation-based at-

tacks, which create adversarial images that prompt gen-

eration of the harmful response from VLMs [2, 38, 41,

46], (ii) structured-based attacks, which embeds the ma-

licious queries into images via typography to bypass the

safety alignment of VLMs [17, 30]. Countermeasures

for both attacks have been explored extensively: the in-

put preprocessing-based method [37] or adversarial train-

ing [25] have proven effective for perturbation-based at-

tacks. However, these defenses suffer as they require in-

tensive computations to purify the image or fine-tune the

model. Response evaluation-based [18, 53, 58] defenses

have been proposed for structured-based attacks, but they

all require running model inference multiple times to po-

tentially identify harmful outputs, which dramatically in-

creases the cost of real-world deployment.

In this work, we argue that an efficient defense framework

should not require significant computational resources dur-

ing training or generating responses multiple times dur-

ing inference. Drawing inspiration from recent advance-

ments in activation steering in Large Language Model

(LLM) [4, 20, 43, 52], we propose ASTRA, an efficient and

effective defense by adaptively steering models away from

adversarial feature directions via image attribution activa-

tions to resist VLM attacks. We find that simply borrow-

ing the method from steering LLM for safeguarding VLM

is not empirically workable due to the mismatch between

the steering vectors obtained from textual and visual data,

which necessitates our image attribution approach.

Specifically, ASTRA consists of two steps: constructing

steering vectors via image attribution, and adaptive activa-

tion steering at inference time. We seek to construct steer-

ing vectors representing the direction of harmful responses.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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This can be done by constructing a set of adversarial im-

ages (e.g., using projected gradient descent (PGD) [34] al-

gorithm) and then identifying visual tokens in each adver-

sarial image most likely to trigger the jailbreak. To attribute

such visual tokens, we fit a linear surrogate model using

Lasso and estimate the impact of the inclusion/exclusion of

each visual token on the probability of jailbreaks. The top-k
impactful visual tokens are then used to construct the steer-

ing vectors. This surrogate can be quickly estimated with

only a few inference passes, making the process of build-

ing defense computationally friendly. During inference, we

propose adaptive steering to manipulate the model’s activa-

tion through an activation transformation step. The steering

coefficient is determined by the projection between the cal-

ibrated activation and steering vector, making the steering

have little effect on benign input and a strong effect on ad-

versarial input. This process is also efficient since it only

requires generating a single response.

Extensive experiments demonstrate that ASTRA effec-

tively mitigates perturbation-based attacks while preserving

model utility across standard VLM benchmarks. The main

contributions of this work are as follows:

◦ We introduce ASTRA, a defense that adaptively steers

models away from adversarial feature directions via

image attribution activations to resist VLM attacks.

ASTRA is also highly efficient, which only needs sev-

eral times of inference passes to build the defense, and

does not affect inference time deploying the defense.

◦ We propose an adaptive steering approach by consid-

ering the projection between the steering vectors and

calibrated activations, resulting in little performance

drops on benign inputs while strongly avoiding harm-

ful outputs under adversarial inputs.

◦ ASTRA achieves a substantial improvement in defend-

ing against perturbation-based attacks. Compared to

state-of-the-art methods JailGuard [58], with a Tox-

icity Score of 12.12% and an Attack Success Rate

of 17.84% lower, and 9x faster in MiniGPT-4. AS-

TRA is also transferable to some unseen attacks (i.e.,

structure-based attack, perturbation-based attack with

PGD variants, and text-only attack), and still be effec-

tive against adaptive attacks.

2. Related Work

Jailbreak Attacks on VLM. Jailbreak attacks aim to al-

ter the prompt to trick the model into answering forbid-

den questions. Apart from the LLM-based textual jail-

break strategies [19, 31, 56, 63], additional visual in-

puts expose a new attack surface to VLM attacks. There

are two main types of attacks: perturbation-based attacks

and structured-based attacks [53]. Perturbation-based at-

tacks create adversarial images to bypass the safeguard of

VLMs [2, 6, 41, 46, 55, 59]. Structued-based attacks con-

vert the harmful content into images through typography

or text-to-image tool (e.g., Stable Diffusion [44]) to induce

harmful responses from the model [17, 27, 29, 30, 33] We

study our defense on both types of attacks.

Defenses on VLM. Researchers have explored two direc-

tions for defense: training-time alignment and inference-

time alignment. Training-time alignment safeguards VLMs

through supervised fine-tuning (SFT) [9, 26, 61] or training

a harm detector to identify the harmful response [40], all re-

quiring considerable high-quality annotation and sufficient

computation resources to train. Inference-time alignment

is relatively more resource-friendly. Some strategies design

alignment prompts to defend against attacks [17, 54]. Oth-

ers build a response evaluation pipeline to assess the harm-

fulness of VLM responses, often followed by iterative re-

finement to ensure safe outputs [18, 58]. Another way is

to disturb input queries and analyze response consistency to

identify potential jailbreak attempts [58]. However, these

methods still introduce a non-trivial cost to inference time

due to the need for generating the response multiple times.

Activation Engineering of LLM. The activation space of

many language models appears to contain interpretable di-

rections, which play a crucial role during inference [5, 36].

The basic idea of activation engineering is to identify a di-

rection (i.e., steering vector) in activation space associated

with certain semantics and then shift activations in that di-

rection during inference. Turner et al. [50] locates the direc-

tion by taking the difference in intermediate activations of

a pair of prompts at a particular layer and token position in

a transformer model. Rimsky et al. [43] construct a dataset

of contrast pairs rather than using a single pair to get the

steering vector. Wang et al. [52] locate the “safety” steer-

ing vectors from a well-aligned language model. Ball et

al. [4] investigate whether different types of jailbreak tem-

plates employ distinct mechanisms to trigger unsafe regions

in the model’s representation space. Some other methods

try to learn high-level concepts in the representation space

and use them to control the output [20, 62, 64]. However,

most previous works focus on utilizing textual prompts to

construct steering vectors, which might not be empirically

workable for steering VLM in some cases due to the gap

between visual and textual domains.

3. Methodology

In this work, we propose ASTRA, an efficient and effective

defense by adaptively steering (Section 3.2) models away

from adversarial directions via image attribution activations

(Section 3.1) to resist VLM attacks.

Notation. Let PVLM be an autoregressive vision language

model, which defines a probability distribution over a se-

quence of preceding tokens from a vocabulary V . Specif-

ically, we consider a VLM which takes a sequence of n
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Figure 1. Illustration of our framework ASTRA. Our key procedures involve finding transferable steering vectors representing the direction

of harmful response and applying adaptive activation steering to remove these directions at inference time. To create effective steering

vectors, we randomly ablate the visual tokens from the adversarial images and identify those most strongly associated with jailbreaks.

These tokens are then used to construct steering vectors. During inference, we perform an adaptive steering method that involves the

projection between the steering vectors and calibrated activation, resulting in little influence on benign inputs and a strong impact on

adversarial inputs. The solid and dotted lines denote the activations hl and calibrated activations hl − hl

0 respectively. The blue refers to

the calibration activation hl

0. The color red denotes the case of adversarial inputs.

Algorithm 1 Pipeline of constructing steering vectors

Input: VLM PVLM, a set D of adversarial visual tokens xv ,

harmful instruction tokens xt, number of ablations N , template

tokens xtemplate, al(·) is the activation of layer l in the VLM

Initialize i← 0, n← 0, specify r as tokens of “Sure, ...”

while i < |D| do

n← 0
while n < N do

Compute: f(gn) = logPVLM(r|Ablate(xv, gn),xt)
n← n+ 1

Fit a linear surrogate model f̂ using Lasso based on the pairs

of {(g1, f(g1)), . . . , (gN , f(gN ))}
Mask the visual tokens with the Top-k weights in the f̂ and

get Mask(xv)

Construct the steering vector vli = a
l(xv,xtemplate) −

a
l(Mask(xv),xtemplate)
i← i+ 1

Average across the set vl =
∑|D|

i=0
vli

Output: steering vector vl

textual tokens xt = {xt1 , ..., xtn} and m visual tokens

xv = {xv1
, ..., xvm} to generate responses r = {r1, ..., ro}.

We generate the ith token ri of the response as follows:

  r_i \sim \mathcal {P}_{\text {VLM}}(\cdot \mid x_{v_1}, \dots , x_{v_m}, x_{t_1}, \dots , x_{t_n}, r_1, \dots , r_{i-1}) \label {eq:VLM_def}    
    

             

3.1. Constructing Steering Vectors

Not all visual tokens from the adversarial images contribute

to the jailbreak equally. We seek to locate certain visual to-

kens that have a higher chance of inducing jailbreaking via

image attribution. In this way, we can isolate the represen-

tation most associated with jailbreak-related information in

these tokens.

Adversarial Image Attribution. Image attribution aims to

find the input visual tokens that are more likely to trigger

the specified responses. In our case, we seek to locate vi-

sual tokens from adversarial images generated by the PGD

attack with a higher chance of inducing the jailbreak.

We conduct random ablation of certain tokens and compute

the impact of exclusion/inclusion on inducing the jailbreak.

We define visual token ablation as the process of masking

specific tokens in a visual input. Let Ablate(xv, g) repre-

sent ablated visual tokens xv , where g ∼ {0, 1}m is an

ablation vector that designates which tokens to mask (zeros

in g indicate masked tokens). Given an ablation vector g,

the image attribution is expected to quantify the impact on

the log probability of generating specified responses r,

  & f(g) := \text {log} \mathcal {P}_{\text {VLM}}(\mathbf {r} | \text {Ablate}(\mathbf {x}_v, g), \mathbf {x}_t),  

changes as a function of g, where xt are textual tokens of

harmful instructions, r as tokens of “Sure, . . . ” to denote

the case of jailbreaking, and PVLM(r | Ablate(xv, g),xt)
as the product of the probability of generating specified re-

sponse r given the Ablate(xv, g),xt.

Following prior work in machine learning explanation [10,

42], we fit a linear surrogate model f̂ to analyze the in-

fluence of masking subsets of visual tokens on the like-

lihood of jailbreaks and select the visual tokens that are

highly relevant for triggering the jailbreaking responses.
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Figure 2. Illustration of steering. The colors red and green denote the activations for adversarial and benign inputs. The colors blue and

brown denote the calibration activations hl

0 and steering vectors vl.

Specifically, we (1) sample a dataset of ablation vectors

g1, . . . , gn and compute f(gi) for each gi by multiple times

of ablations and forwards, (2) train the surrogate model

f̂ : {0, 1}m → R using Lasso to approximates f based

on the pairs (gi, f(gi)), and (3) attribute the behavior of the

surrogate model f̂ to individual visual tokens. Finally, we

can get a surrogate model f̂ with its weights that can be

interpreted as the attribution scores for triggering the jail-

break. The higher the score, the more relevant the token

results in jailbreak.

Harmful Feature Extraction. With attribution scores for

each token, we extract the representation of those tokens

strongly correlated with jailbreak. Additionally, we hope

our steering vectors generalize rather than overfitting to spe-

cific instructions and enjoy good transferability to a wider

range of jailbreaks. Thus, we utilize visual tokens with Top-

k attribution scores from the surrogate model f̂ paired with

the empty user query to construct the steering vectors.

Given a set D of (xv , Mask(xv)) and textual tokens xtemplate

of chat template with an empty user query, where xv is the

input visual tokens, and Mask(xv) is input visual tokens

masked with Top-k attributed tokens, we calculate the mean

difference vector for a layer l as:

  v^l = \frac {1}{|\mathcal {D}|} \sum _{\mathbf {x}_v, \text {Mask}(\mathbf {x}_v) \in \mathcal {D}} \mathbf {a}^l(\mathbf {x}_v, \mathbf {x}_{\text {template}}) - \mathbf {a}^l(\text {Mask}(\mathbf {x}_v), \mathbf {x}_{\text {template}})













where a
l captures the activations at the last token in layer

l. The difference between these pairs isolates the represen-

tation most associated with jailbreak-related information in

visual tokens with Top-k attribution scores.

3.2. Adaptive Activation Steering

The key idea of activation steering is using steering vec-

tors to shift a language model’s output distribution toward

a specified behavior during inference. After constructing

steering vectors with harmful semantics, we strive to re-

move these components by steering LLM’s activations.

Unfortunately, simply applying a fixed scaling coefficient to

the steering vector for modifying the language model’s out-

put [4, 43, 50, 52] is not workable as a defense due to dra-

matic utility performance degradation in benign cases [1].

The main problem is that the linear steering used in prior

work unconditionally alters the activation no matter whether

the input leads to harmful outputs or not (Fig. 2(a)):

  h^l=h^l-\alpha \cdot \frac {v^l}{\Vert v^l \Vert }    




where hl is the activation of the last token at the layer l,
and α is a scaling coefficient. To address this challenge, we

propose adaptive steering based on conditional projection:

  h^l=h^l-\alpha \cdot \text {max}(\frac {(h^l)^\top v^l}{\Vert h^l \Vert \Vert v^l \Vert }, 0) \cdot \frac {v^l}{\Vert v^l \Vert }     



 





When hl does not contain any positive component of the

steering vector (harmful direction), the max term is 0, leav-

ing activations unchanged. This minimized the negative im-

pact on the benign performance.

Since the angle between hl and vl matters for adaptive pro-

jection, we must ensure that it can effectively distinguish

harmful and benign activations at layer l. However, we

notice that the activations for different inputs may clus-

ter around a point distant from the origin. As a result,

the angles among these vectors may all become similar

(Fig. 2(b)). To address this, we propose a activation cal-

ibration step before steering. We use the calibration acti-

vation hl
0, which can be seen as the center of the activation

for many different inputs, to calibrate the projection term in

our adaptive steering:

  h^l=h^l-\alpha \cdot \text {max}(\frac {(h^l-h^l_0)^\top v^l}{\Vert h^l-h^l_0 \Vert \Vert v^l \Vert } \cdot \Vert h^l \Vert , 0) \cdot \frac {v^l}{\Vert v^l \Vert }     
 




 



  





hl
0 is the calibration activation at the layer l, hl − hl

0 is the

calibrated activation. We do not calibrate vl here since the

mean component has been canceled out when subtracting

the two token activations. To obtain the calibration activa-

tion hl
0, we collect image-text queries from a large number

of test data and compute the average of the generated token

features at the layer l to get hl
0.

We show the full process of our adaptive steering approach

in Fig. 2 (c1) - (c3). It can help reduce malicious outputs in

adversarial scenarios while preserving performance in be-

nign cases. During inference, we apply steering only to the

activations of newly generated tokens, leaving the activa-

tions of input tokens unaltered.
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Table 1. The performance comparison on MiniGPT-4. ↓ means the lower the better defense. The steering vectors for each attack with ϵ

are constructed using the adversarial images with the corresponding ϵ value.

Toxicity (Perturbation-based Attack) – Toxicity Score (%) ↓ Jailbreak (Perturbation-based Attack) – ASR (%) ↓

Benign image 30.65 30.65 30.65 30.65 24.55 24.55 24.55 24.55

Adversarial image ϵ = 16/255 ϵ = 32/255 ϵ = 64/255 unconstrained ϵ = 16/255 ϵ = 32/255 ϵ = 64/255 unconstrained

VLM defenses

w/o defense 39.73 48.52 54.70 52.12 44.55 47.27 49.09 53.64

Self-reminder [54] 38.97 48.71 45.15 50.12 35.45 36.36 41.82 43.64

JailGuard [58] 16.51 18.93 20.93 21.23 30.00 32.73 27.27 28.18

ECSO [18] 34.59 32.42 38.54 42.86 40.91 42.73 29.09 37.27

LLM Steering

Refusal Pairs [43] 25.76 30.28 31.99 35.71 20.00 22.73 17.27 16.36

Jailbreak Templates [4] 19.73 25.03 30.10 22.78 33.64 38.15 38.18 42.73

ASTRA (Ours) 11.30 8.84 4.51 4.48 9.09 13.18 15.46 9.09

Table 2. The performance comparison on Qwen2-VL. ↓ means the lower the better defense. The steering vectors for each attack with ϵ

are constructed using the adversarial images with the corresponding ϵ value.

Toxicity (Perturbation-based Attack) – Toxicity Score (%) ↓ Jailbreak (Perturbation-based Attack) – ASR (%) ↓

Benign image 38.52 38.52 38.52 38.52 0.00 0.00 0.00 0.00

Adversarial image ϵ = 16/255 ϵ = 32/255 ϵ = 64/255 unconstrained ϵ = 16/255 ϵ = 32/255 ϵ = 64/255 unconstrained

VLM defenses

w/o defense 50.50 51.62 55.59 53.43 67.27 70.46 71.82 76.36

Self-reminder [54] 30.47 27.53 32.84 29.09 50.00 47.27 40.00 58.18

JailGuard [58] 29.37 24.68 28.74 27.76 19.09 20.00 21.82 15.45

ECSO [18] 50.09 50.68 56.08 51.57 30.00 27.27 31.82 32.73

LLM Steering

Refusal Pairs [43] 46.14 46.83 46.83 40.53 29.09 31.82 21.82 52.73

Jailbreak Templates [4] 66.74 63.35 67.15 68.29 68.18 68.18 65.45 74.55

ASTRA (Ours) 15.52 5.45 2.39 0.07 6.06 5.00 18.18 15.45

4. Experiments

In this section, we conduct experiments to address the fol-

lowing research questions:

• RQ1: How does ASTRA perform in adversarial scenar-

ios compared to VLM defense baselines and LLM steer-

ing methods? Is our defense transferable to a different

distribution of inputs and different types of attacks?

• RQ2: How does ASTRA perform in benign cases? Can

we reduce model harmfulness without hurting utility?

• RQ3: What are the impacts of design choices in AS-

TRA? Are all components (e.g., image attribution, acti-

vation calibration) necessary for best performance?

4.1. Experimental Setup

Steering Vector Construction. We sample benign images

with different classes from ImageNet [13] and apply the

PGD attack [34] to generate 16 adversarial images for steer-

ing vectors construction. The perturbation radius ϵ is set to

{ 16
255 ,

32
255 ,

64
255 , unconstrained}. Details on the PGD attack

configuration can be found in Appendix 8.1.

Evaluation Datasets. We choose Toxicity and Jailbreak

setups using the perturbation-based attack. We sample 55

benign images from ImageNet [13] and apply the PGD at-

tack [34] to generate 25 and 30 adversarial images for vi-

sual validation, and test sets respectively. The perturbation

radius ϵ is set to { 16
255 ,

32
255 ,

64
255 , unconstrained}. For textual

prompts, we choose 50 and 100 queries from RealToxic-

ityPrompt [16] to construct the validation and test set for

Toxicity setup. We choose 110 and 110 queries from both

Advbench [63] and Anthropic-HHH [15] to construct the

validation and test set for Jailbreak setup. All text prompts

are different from the instruction-response pairs used for

steering vector construction. During the evaluation, we pair

each textual prompt with a random adversarial image.

For the evaluation of utility performance in benign scenar-

ios, we employ two established benchmarks, MM-Vet [57]

and MM-Bench [32]. Additionally, we include safe instruc-

tions from XSTest [45] to assess the overrefusal case. Full

Details of dataset statistics can be found in Appendix 8.1.

Evaluation Metrics. For the toxicity setup, we follow Qi

et al. [41] and use the Detoxify classifier [21] to calculate

the toxicity score. We report the average scores of Toxicity

attribute across the test set. The scores range from 0 (least

toxic) to 1 (most toxic). For the jailbreak setup, we choose

the classifier from HarmBench [35] to compute the attack

success rate (ASR).
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Table 3. The performance against adaptive attacks. The adversary has complete knowledge of the model, our steering vectors and adaptive

steering defense mechanism. Under this strong (often unrealistic) attack setting, ASTRA still noticeably outperform undefended models.

Toxicity (Perturbation-based Attack) – Toxicity Score (%) ↓ Jailbreak (Perturbation-based Attack) – ASR (%) ↓
ϵ = 16/255 ϵ = 32/255 ϵ = 64/255 unconstrained ϵ = 16/255 ϵ = 32/255 ϵ = 64/255 unconstrained

MiniGPT-4

Attack on undefended VLM 39.73 48.52 54.70 52.12 44.55 47.27 49.09 53.64

Adaptive Attack on defended VLM 15.47 19.23 20.50 17.04 13.64 13.64 24.55 22.73

Qwen2-VL

Attack on undefended VLM 50.50 51.62 55.59 53.43 67.27 70.46 71.82 76.32

Adaptive Attack on defended VLM 24.56 24.21 9.27 11.60 58.16 60.00 59.09 69.09

LLaVA-v1.5

Attack on undefended VLM 83.70 84.40 85.54 85.44 51.82 56.36 55.45 53.64

Adaptive Attack on defended VLM 60.24 63.59 68.87 67.86 30.00 34.55 32.73 32.73

Figure 3. Transferability in ID scenarios. Avg. denotes the average of steering vectors derived from the adversarial images with ϵ values in

{ 16

255
, 32

255
, 64

255
, unconstrained}. Additional results for LLaVA-v1.5 can be found in Appendix, Fig. 6.

Table 4. Inference Time per token (ms). “Single inference” indi-

cates whether the method requires generating responses multiple

times during evaluation. We report inference time per token since

the total inference time may vary depending on the length of the

generated tokens.

Single

Inference

Toxicity (Perturbation-based Attack)

MiniGPT-4 LLaVA-v1.5 Qwen2-VL

w/o defense ! 173.19 40.68 27.43

Self-reminder [54] ! 173.36 41.09 27.94

JailGuard [58] % 1557.98 366.02 245.42

ECSO [18] % 457.55 116.44 70.22

ASTRA (Ours) ! 173.77 40.69 27.98

Baselines. We compare ASTRA with three VLM defense

baselines and two LLM steering approaches. For the VLM

defenses, self-reminder [54] is a system prompt based de-

fense, JailGuard [58] perturbs the input images several

times and computes the divergence between responses, and

ECSO [18] adaptively transforms unsafe images into texts

to activate the intrinsic safety mechanism of pre-aligned

LLM in VLMs. For the LLM steering, we follow Rimsky et

al. [43] and Ball et al. [4] to construct steering vectors with

the semantics of refusal and textual jailbreak templates.

Models & Implementations details. We conduct all the

experiments on three popular open-sourced VLMs, includ-

ing Qwen2-VL-7B [3], MiniGPT-4-13B [60], and LLaVA-

v1.5-13B [28]. We set the number of ablations N as 96, k
as 15. For the selection of α, refer to Appendix 8.6. The

steering layer l is 20 for 13B models and 14 for 7B mod-

els. The chat configurations use a temperature of 0.2 and

p = 0.9 for LLaVA-v1.5 and Qwen2-VL, and a tempera-

ture of 1 and p = 0.9 for MiniGPT-4.

4.2. Defense Performance Comparision (RQ1)

Table 1, 2, and 8 (in appendix) report the performance of our

defense in the perturbation-based attack across Toxicity and

Jailbreak setup. Bold denotes the best defense performance

(represented by Toxicity Score or ASR).

Comparison with Existing VLM Defenses. As shown in

Table 1, 2, 8, most VLM defenses struggle to consistently

safeguard the model against perturbation-based attacks with

different ϵ. While most existing VLM defenses are based on

pre- or post-processing model inputs or outputs, our adap-

tive steering approach effectively steers the internal model

activations away from harmful contents, achieving state-of-

the-art performance across almost all cases.

Additionally, we report the average inference time per to-

ken for each VLM defense baseline in Table 4. We empha-

size two key benefits that lead to high efficiency: (1) AS-

TRA does not need to re-train or fine-tune the model, and

the process of constructing steering vectors (Section 3.1) is

cheap and straightforward. In contrast, input preprocessing-

based method [37] needs to denoise each input image us-

ing the Diffusion model and adversarial training [25] needs

to update the entire model, both are quite costly compared

to our approach. (2) ASTRA does not affect inference

time when deploying the defense - the steering step in Sec-

tion 3.2 has almost negligible cost. As shown in Table 4,

ASTRA are faster than those methods requiring multiple in-

ference passes (e.g., JailGuard [58] and ECSO [18]). While

JailGuard [58] can defend against perturbation-based at-

tacks effectively, it requires generating nine responses to

deploy the defense and can be highly costly. While self-

reminder [54] does not impact inference time, it fails to pro-

tect VLMs against perturbation-based attacks in most cases.
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Table 5. Transferability in OOD scenarios. We evaluate the transferability of steering vectors derived from the Jailbreak adversarial images

with ϵ = 16

255
and choose the same α tuned on the Jailbreak validation set. The transferability is evaluated across multiple unseen attack

categories: structured-based attack from MM-SafetyBench [29], perturbation-based attack with various PGD variants, and text-only attack.

We use the classifier from HarmBench [35] to compute the ASR.

Structured-based Attack Perturbation-based Attack Text-only Attack

SD SD TYPO TYPO
PGD [34] Auto-PGD [11] MI-FGSM [14]

GCG [63]
ϵ = 16/255 ϵ = 32/255 ϵ = 16/255 ϵ = 32/255 ϵ = 16/255 ϵ = 32/255

MiniGPT-4

w/o defense 13.75 43.25 43.75 70.91 78.18 74.55 76.36 78.18 79.09 58.18

ASTRA (Ours) 3.75 8.75 11.25 5.45 12.73 5.45 10.91 16.37 13.64 9.09

Qwen2-VL

w/o defense 20.00 61.25 38.75 74.55 80.00 76.37 77.57 80.00 78.18 81.82

ASTRA (Ours) 11.25 40.00 33.75 21.82 14.55 15.76 15.76 18.18 18.18 30.91

LLaVA-v1.5

w/o defense 18.75 55.00 22.50 69.09 74.55 80.60 90.30 87.28 89.09 92.73

ASTRA (Ours) 8.75 25.00 6.25 1.82 1.82 1.21 0.61 0.00 0.00 14.55

Overall, these empirical results validate both the effective-

ness and efficiency of our framework in defending against

VLM perturbation-based attacks.

Comparison with LLM Steering. Our results in Ta-

ble 1, 2, 8 indicate that directly adapting steering techniques

from LLMs to VLM defenses is ineffective. While steering

vectors infused with refusal semantics can shift output dis-

tribution toward refusal and lower harmful response rates,

this approach has a critical drawback: it indiscriminately

increases refusal rates across all inputs, which diminishes

model utility [1]. Furthermore, our experiments reveal that

steering with textual jailbreak templates is insufficient to

counteract perturbation-based attacks on images, suggest-

ing that textual and visual jailbreaks exploit different mech-

anisms to circumvent VLM safeguards. These findings em-

phasize the importance of developing VLM defenses that

operate at the visual representation level.

Adaptive Attack. Adaptive attack [49] is a critical evalua-

tion procedure for assessing defense effectiveness when the

defense mechanism is known to the attacker. In this setup,

we assume the attacker can access the model parameters,

steering vector vl, the calibration activation hl
0, and steer-

ing coefficient α, and employs the PGD attack to gener-

ate 30 adversarial images specifically targeting the defended

model. As shown in Table 3, ASTRA continues to provide

robust protection for the VLM in most cases. These find-

ings emphasize the potential of our method as a practical

and resilient defense mechanism in real-world applications.

Transferability. In real-world scenario, unknown types of

adversarial attacks highlight the need for a robust and trans-

ferable defense framework. To evaluate transferability of

ASTRA, we construct two test cases: in-distribution (ID)

and out-of-distribution (OOD).

In ID scenario, adversarial images used for steering vec-

tor construction and test evaluations are drawn from same

classes in ImageNet [13], ensuring similar image distribu-

tions. We assess whether steering vectors derived from ad-

versarial images with a specific ϵ value can defend against

adversarial images with varying ϵ levels. As illustrated

in Fig. 3 and 6, the results demonstrate the effective-

ness of our steering vectors defending against adversar-

ial attacks with different ϵ values. We also report the

Avg. performance, in which we take the mean of steer-

ing vectors derived from adversarial images with ϵ values

in { 16
255 ,

32
255 ,

64
255 , unconstrained}. Despite that the defense

with ϵ = unconstrained does not work quite well against

perturbation-based attacks with ϵ = { 16
255 ,

32
255 ,

64
255}, re-

maining defense validate the transferability of ASTRA

across PGD attacks with different intensities.

In OOD scenario, we test whether steering vectors derived

from the Jailbreak adversarial images with ϵ = 16
255 can gen-

eralize to different types of attacks. Specially, we evalu-

ate the defense transability on structured-based attack from

MM-SafetyBench [29], perturbation-based attack with sev-

eral PGD variants, and text-only attack. Please refer Ap-

pendix 8.1 for details of structured-based attack. For the

perturbation-based attack, we collect 12 images with dis-

tributions differing from images used for steering vector

construction (e.g., stripes, sketch, painting, etc). We use

55 instruction-response pairs from JailbreakBench [7] to

conduct perturbation-based attacks with PGD variants (i.e,

PGD, MI-FGSM [14], and Auto-PGD [11]) and text-only

attack (i.e., GCG [63]). We use the same 55 instructions

from JailbreakBench [7] to evaluate performance.

Results in Table 5 confirm the defense transferability across

different unseen attacks, indicating great potential for real-

world deployment. This impressive OOD transferability

may arise from the steering vectors encapsulating a com-

mon harmful feature direction that persists regardless of

how the harmful behavior is triggered. Although models

can be jailbroken by different types of attacks, eventually,

there exists a certain direction in the feature space that rep-

resents the harmfulness. By accurately steering away from

this direction, we can effectively safeguard models against

diverse types of jailbreaks.
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Table 6. Utility performance in benign and adversarial scenarios. “Direct” denotes the performance of original VLMs. Bold=better.

Benign Scenarios – Utility Score ↑ Adversarial Scenarios – Perplexity ↓

MM-Vet [57] MMBench [32] XSTest [45] Toxicity (Perturbation-based) Jailbreak (Perturbation-based) Jailbreak (Structured-based)

Direct ASTRA Direct ASTRA Direct ASTRA Direct ASTRA Direct ASTRA Direct ASTRA

MiniGPT-4 19.40 20.62 35.90 35.82 87.60 87.60 51.42 10.14 3.95 5.82 2.62 4.29

LLaVA-v1.5 32.62 30.55 72.94 73.23 98.00 98.80 63.68 59.28 3.68 8.59 3.82 4.61

Qwen2-VL 49.13 48.66 78.00 78.69 73.60 74.00 140.44 40.14 6.80 8.86 30.00 30.92

Table 7. Ablation study of adaptive steering on Qwen2-VL. “Random Noise” means steering with Gaussian noise, “Entire Img” refers to

steering with the entire image activation, “Img Attr” represents steering using the image attribution activation, and “Calibration Activation”

indicates whether the calibration activation is incorporated into the projection term.

Steering with Toxicity (Perturbation-based Attack) – Toxicity Score (%) ↓ Jailbreak (Perturbation-based Attack) – ASR (%) ↓

Steering Vector
Calibration

Activation
ϵ = 16/255 ϵ = 32/255 ϵ = 64/255 unconstrained ϵ = 16/255 ϵ = 32/255 ϵ = 64/255 unconstrained

Random Noise ! 44.10 53.80 61.09 55.10 64.55 67.27 69.09 76.36

Entire Img % 42.60 44.40 49.61 29.53 60.91 44.55 63.64 75.45

Img Attr % 40.49 41.80 33.90 10.50 50.00 24.55 51.82 72.73

Entire Img ! 37.70 35.28 21.59 5.24 46.82 47.28 42.73 22.73

Img Attr (Ours) ! 15.52 5.45 2.39 0.07 6.06 5.00 18.18 15.45

4.3. General Utility (RQ2)

In Section 4.2, our framework demonstrates its effective-

ness in defending against VLM jailbreaks. Furthermore, we

need to ensure that our defended model retains utility per-

formance in benign scenarios and generates valid responses

in adversarial scenarios.

Utility Performance. We calculate utility scores in MM-

Vet [57], MMBench [32], and safe instructions from

XSTest [45] for benign scenario evaluation and perplex-

ity for adversarial scenario evaluation. See Appendix 8.1

for detailed descriptions of utility scores. As shown in Ta-

ble 6, our defended models demonstrate considerable utility

performance in benign scenarios compared to those with-

out defenses. These comparisons demonstrate that our de-

fense results in little performance drops on benign inputs.

We owe these results to our adaptive steering approach,

which mitigates utility degradation by computing the pro-

jection between the language model’s calibrated activation

and steering vectors, thereby avoiding the drawbacks of a

fixed steering coefficient. In adversarial contexts, the per-

plexities of ASTRA are still within a reasonable range, indi-

cating that our defended models consistently provide valid,

non-harmful responses to harmful instructions. Additional

cases are provided in Appendix 8.4.

4.4. Ablation Study (RQ3)

Adaptive Steering. We demonstrate the roles of calibration

activation and image attribution in our adaptive steering op-

eration using Qwen2-VL. As shown in table 7, both designs

significantly influence defense performance. Specifically,

after calibration activation, the projection term can more

accurately reflect the spatial relationship between steering

vectors and activations within the feature space, leading to

a consistent defense effectiveness in both Toxicity and Jail-

break setups. Furthermore, we compare the performance of

steering vectors derived from the image attribution activa-

tion versus those derived from the entire image activation.

Steering vectors from the entire image are constructed by

averaging a
l(xv,xtemplate) − a

l(xempty
v ,xtemplate) across the

set of 16 adversarial images for vector construction, where

xv is the adversarial image, xtemplate is the chat template,

and x
empty
v is an empty image. The results demonstrate the

importance of our image attribution procedure. By narrow-

ing down to certain visual tokens strongly associated with

the jailbreak behavior, our image attribution better isolates

jailbreak-related information. We also conducted experi-

ments using random noise vectors to assess the potential

influence of noise on our framework. These results sug-

gest that steering with image attribution activations offers

superior performance compared to steering with entire im-

age activations or random noise, providing a more targeted

and effective defense mechanism.

Please refer to Appendix 8.5 for more ablation studies on

steering coefficient α, number of adversarial images used

for steering vector construction, and steering layer selec-

tion.

5. Conclusion

In this paper, we propose ASTRA, an efficient and effec-

tive defense framework by adaptively steering models away

from adversarial feature directions to resist VLM attacks.

Our key procedures involve finding transferable steering

vectors representing the direction of harmful response via

image attribution and applying adaptive activation steering

to remove these directions at inference time. Extensive

experiments across multiple models and baselines demon-

strate our state-of-the-art performance and high efficiency.

We hope our work will inspire future research on applying

more sophisticated steering for LLM/VLM safety.
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