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Abstract—Gaussian blur is widely used to blur human faces in
sensitive photos before the photos are posted on the Internet.
However, it is unclear to what extent the blurred faces can be
restored and used to re-identify the person, especially under
a high-blurring setting. In this paper, we explore this question
by developing a deblurring method called Revelio. The key
intuition is to leverage a generative model’s memorization
effect and approximate the inverse function of Gaussian blur
for face restoration. Compared with existing methods, we
design the deblurring process to be identity-preserving. It uses
a conditional Diffusion model for preliminary face restoration
and then uses an identity retrieval model to retrieve related
images to further enhance fidelity. We evaluate Revelio with
large public face image datasets and show that it can effectively
restore blurred faces, especially under a high-blurring setting.
It has a re-identification accuracy of 95.9%, outperforming
existing solutions. The result suggests that Gaussian blur
should not be used for face anonymization purposes. We also
demonstrate the robustness of this method against mismatched
Gaussian kernel sizes and functions, and test preliminary
countermeasures and adaptive attacks to inspire future work.

1. Introduction

With the rise of online social networks, search engines,
and content-sharing platforms, billions of photos are cir-
culating on the Internet, many of which contain identifiable
human faces. For privacy considerations, users often blur the
faces in a sensitive photo before posting it on the Internet.
For example, news media may publish photos of crime
scenes and blur the faces of the victims/offenders to protect
their privacy [1], [2]. Similarly, people who post photos
of civil unrest usually blur the faces of protesters [3], [4].
Social media users who post photos of themselves/friend-
s/strangers may choose to blur the faces if the photos
capture sensitive, unflattering, or even illegal activities (e.g.,
drinking, stealing, or using drugs).

Gaussian blur [5] is among the most commonly used
blurring algorithms [6], [7] to smooth and remove high-
frequency details in face images. This is done by weighted-
averaging on every pixel with its neighboring pixels where
the weights are based on a Gaussian distribution (realized
by a convolution kernel). Under a high-blurring setting,
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Gaussian blur can make the face unidentifiable to human
eyes and thus is often used as an anonymization tool. The
wide use of Gaussian blur, especially by lay users, is largely
due to its availability in everyday photo-processing software
and apps such as Adobe Photoshop [8], Apple’s Motion [9],
and ASPOSE [10]. In particular, certain software would
explicitly advertise using blurring algorithms for privacy
protection [11], [12], [13], [14].

Motivation.  In this paper, we ask one basic question: 7o
what extent can adversaries restore a Gaussian blurred face,
and identify the person in the photo. We particularly explore
this question under a high-blurring level to push the limit
of the deblurring method. Prior works have explored related
questions but under different deanonymization contexts. For
example, Cavedon et al. [15] showed that image pixelization
could be reversed using a Maximum A Posteriori (MAP)
method but their method cannot be applied to Gaussian blur.
In addition, their method is customized for video streams
(i.e., requiring multiple video frames) instead of a single
photo. Hill et al. [7] used a Hidden Markov Model (HMM)
to restore redacted text on documents. This method relies
on the fixed set of English characters and digits for text
recovery, but does not apply to human faces.

More recently, related work from the machine learning
community seeks to address the (blind) image restoration
problem [16], [17], [18], [19], [20]. Their goal is to restore
high-quality images from degraded photos without prior
knowledge of the degradation process. These works cannot
answer our research questions for two reasons. First, most
existing solutions are designed to restore unintentional im-
age blur caused by camera shakes, poor lighting conditions,
and low-quality cameras. The target degradation strength
is usually low. In contrast, we focus on Gaussian blur
intentionally applied for privacy protection, and thus the ex-
pected blurring level is much higher. As shown in Figure 1,
under a heavy-blur setting (with a Gaussian kernel size of
81), existing solutions have a subpar performance. Second
and more importantly, existing solutions are not designed
to be identity-aware. They focus on re-generating facial
details but the face does not need to be that of the original
person/identity (Figure 1). In contrast, we want to preserve
the identity of the original image. Note that, one recent
solution Fantdomas [20] indeed targeted face anonymization
scenarios. However, they also did not explore restoring faces
from highly blurred images (their kernel size is only 29).
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Figure 1: The original face has been blurred with Gaussian
blur (kernel size K = 81) to hide the user identity. Our
proposed method (Revelio) can restore the blurred face
with a higher fidelity with respect to the original identity.

We re-trained their method under a heavy-blur setting, and
Figure 1 shows that the face restoration is still suboptimal.

Our Approach. To answer our research questions, we
develop a system called Revelio. The key idea is to (1)
use a conditional Diffusion model to approximate the inverse
of the Gaussian blur function, and (2) use a large reference
database and an identity retrieval model to augment the
face restoration process. The intuition is two-fold. First, we
utilize the memorization effect [21] in diffusion models.
We assume the adversary can construct a large reference
database D of face images. This is a realistic assumption
given the aggressive image collection from social media
services and search engines, which can also be done by other
parties via web crawling. By training the diffusion model
with such a reference database, we use the memorization ef-
fect to synthesize face details based on the matching identity.
Importantly, even if the target identity is not in the reference
database D, it is still possible for the model to perform face
restoration with similar-looking identities in the reference
database (validated in §5.5). Second, while it is impossible
to construct a lossless inverse function for Gaussian blur,
we modify the diffusion model to approximate the mapping
from the blurred face to the original clear face. This is done

by making the denoising process conditioned on the blurred
input to preserve the original identity.

Based on these intuitions, Revelio takes a Gaussian
blurred image x as input, and first performs a preliminary
restoration to produce an image y, using a base diffusion
Model. Then it uses ¥y, to query the reference database to
find a potentially matching identity. If the blurred image
contains a known identity, the system retrieves reference
images of this person and uses these images to fine-tune
the base model to enhance the fidelity of face restoration.
However, if the person is never seen (i.e., not in the reference
database), Revelio can detect this is an out-of-distribution
(OOD) identity, but still uses other “similar-looking” faces
to recover the face details.

Evaluation. We evaluate Revelio using public face im-
age datasets CelebA-HQ [22] and FFHQ [23]. We construct
a reference database of 28,000 images and perform testing
on images that never appear in the reference database. We
test both light-blur (kernel size 37) and heavy-blur (kernel
size 81) settings, and compare Revelio with existing
face restoration solutions (GFP-GAN [16], DifFace [17],
PULSE [19], and Fantdmas [20]), and a Parrot Recogni-
tion method [24]. We have three main observations. First,
Revelio outperforms existing methods with respect to the
restored image quality, and more importantly, the fidelity to
the original identity. The advantage of Revelio is more
significant under the heavy-blur setting. Second, adversaries
can use Revelio to successfully retrieve the identity of the
blurred image when the identity is in the reference database.
Under a heavy-blur setting, the identity retrieval accuracy
achieves 95.9%. Importantly, even when the identity is never
seen (OOD identity), Revelio can still use other similar-
looking faces to restore the face (with minimal quality
degradation). Third, Revelio exhibits robustness against
images blurred with unknown Gaussian kernel sizes. Its
built-in kernel size estimator can accurately infer the kernel
size with a mean absolute error (MAE) lower than 1, and
can tolerate kernel size mismatches within an offset of 6.

While defense is not the main focus of the paper, we
have experimented with a few countermeasure ideas to
disrupt the adversaries’ models. We show that, while some
of the countermeasures (e.g., image compression) can affect
the vanilla attack, the impact can be largely mitigated by
adaptive attacks. Further research is still needed to develop
more secure and robust face anonymization methods. We
have responsibly disclosed our findings to related parties
including OpenCV, PyTorch, Adobe Photoshop, Apple (i0S
SDK team) and FTC (Federal Trade Commission). Further
ethics discussions are in §7.3.

Contributions.  Our paper has three key contributions:

o New method: we developed an identity-aware deblur-
ring method to restore Gaussian blurred face images. It
combines a conditional Diffusion model with an identity
retrieval method to restore the blurred face images while
preserving identity fidelity.

« New evaluation: unlike prior works, we specifically tar-
get a high-blurring level to test the deblurring algorithm,



which is more aligned with the face anonymization threat
model. We show that our method outperforms existing
solutions under such settings.

o New tools: we responsibly share our code! with other
researchers to facilitate future research.

2. Background and Related Work

2.1. Gaussian Blur

Gaussian blur [5] is a widely used blurring method avail-
able in many popular photo-processing software (e.g. Adobe
Photoshop [8], Apple’s Motion [9], and ASPOSE [10]),
and tools designed to protect user privacy in images (e.g.,
Imgtools [12], Snagit [13], ILovelmg [14], and Blur Face
Censor Image [11]). It is also supported by popular SDK
for mobile apps [25], [26]. Gaussian blur removes high-
frequency details from the image by convolving the image
with a Gaussian function. It superimposes a 2D Gaussian
distribution over a group of pixels in the image and com-
putes new RGB values by weighted averaging every pixel
with its neighboring pixels. The weights are based on the
Gaussian distribution. Below shows the Gaussian function
in two dimensions:

G(Zvj) =

This function creates the convolution kernel applied to every
pixel in the original image. Here, ¢ and j specify the location
coordinates from the center pixel (0, 0). We use K to
represent the convolution kernel size, which also defines the
range of ¢ and j. For example, if the kernel size K = 3, then
1 and j would range from -1 to 1 (inclusive). In this paper,
we use a Gaussian blur with a square kernel. K needs to be a
positive odd integer such that there is one center pixel in the
kernel. Note that the Gaussian distribution is parameterized
by o (standard deviation), which also influences the strength
of the blurring. A larger o leads to a flatter/wider Gaussian
distribution, leading to a stronger blurring effect. In a typical
Gaussian blur implementation, o needs to be scaled in
proportion to the kernel size K. Otherwise, if we have a
large kernel radius but a small o, the far-away pixels would
have little impact despite the large kernel size. As a result,
real-world Gaussian blur implementations often use a fixed
function to compute o based on the user-specified kernel
size. For example, both PyTorch [27] and OpenCV [28]
implemented Gaussian blur using this dependency function:
c=03x((K—-1)%x05—-1)40.8.
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2.2. Blind Image Restoration

The machine learning community has worked on blind
image restoration, which is related to but is different from
our problem. Blind image restoration aims to recover high-
quality images from degraded images without prior knowl-
edge of the degradation. There are three main categories

1. https://jeffz0930.github.io/revelio/

of methods. First, researchers have used Generative Adver-
sarial Networks (GANs) for image restoration such as GFP-
GAN [16], GPEN [29] and PSFR-GAN [30]. Second, super-
resolution models [19], [31], [32] transform low-resolution
images into high-resolution ones (e.g., PULSE [19]). Third,
researchers also use diffusion models for blind image
restoration [18], [33], [34], [35], [36], some of which can be
used on face images (e.g., DifFace [17]). Recent diffusion-
based models begin to take identity consistency into consid-
eration [37], [38]. However, all these studies focus on acci-
dental image degradations (e.g., caused by camera shakes)
instead of intentional face deanonymization. Their blurring
levels are typically set to be low (e.g., K=41 in [37], [38]),
which is close to our light-blur setting (K=37) but is still not
strong enough to hide users’ identities (significantly lower
than our heavy-blur setting K=81). In contrast, we focus
on intentional image blurring for privacy protection, under
a heavy-blur setting. Some other diffusion-based models
utilize a few reference images to ensure high restoration
quality [39], [40], [41]. However, these works assume the
reference images of the same identity are already identified
and available, which is not true in our threat model.

2.3. Image Restoration vs. Privacy Protection

Prior works from the security community have looked
into how to restore images that have been blurred or pix-
elated for privacy/anonymization purposes. For example,
Cavedon et al. [15] show that pixelated videos can be
recovered using a Maximum A Posteriori (MAP) method.
However, their inverse function is specifically designed for
pixelization rather than Gaussian blur. They also require
multiple frames in a video stream for the restoration. Hill
et al. [7] introduce an attack method to recover the original
text in redacted documents (from pixelization and blurring),
but it does not handle human face images.

More recently, researchers have used machine learning
methods to restore face images under anonymization. For
example, Todt et al. [20] evaluated 15 image anonymiza-
tion techniques (including Gaussian blur) and introduced
Fantomas, an auto-encoder-based image restoration method.
Unfortunately, this work did not perform face restoration
under a high degradation setting. For Gaussian blur, they
only used a small kernel size (K = 29). In §5, we show
that Fantdmas cannot effectively handle heavily blurred face
images (K = 81) even after re-training.

Other related works proposed “Parrot Recognition” to
directly re-identify anonymized images without performing
image restoration [24], [42]. The idea is to train the classifier
on blurred images and then perform classification on blurred
images to recognize their identity. While the classification
accuracy is higher than random guessing, it is still chal-
lenging for an accurate re-identification under a heavy-blur
setting when there are a large number of candidate identities
(e.g., over 1000). The accuracy is around 65% as shown in
a recent work [24]. Considering that parrot recognition does
not restore blurred faces, it only addresses part of our threat
model (see §3 for details).



2.4. Facial Recognition and Attacks

There is a large body of related work on facial recog-
nition systems [43], [44], [45], [46], [47], [48], [49], [50],
and adversarial attacks against them [51], [52], [53], [54].
In addition, researchers have also re-purposed some of the
attack methods as privacy protection tools [55], [56], [57],
[58]. This line of work is different from ours because they
operate on clear face images rather than Gaussian blurred
images. Also, these privacy protection mechanisms have
very different goals. They seek to fool facial recognition
models, but the human faces in the images should still be
visible and recognizable to human eyes.

3. Threat Model

We focus on photos that contain identifiable human
faces. To protect user privacy, Gaussian blur is used to blur
the whole face before the photo is posted on the Internet.

We assume the attacker has access to the blurred version
of the photo (denoted as x), but does not have access
to the original photo before blurring (denoted as y). The
attacker’s goal is to (1) restore the blurred photo such that
the recovered face looks similar to the original face (i.e., face
restoration), and (2) reveal the identity of the blurred face by
matching it to a set of known identities (i.e., deanonymiza-
tion). We believe that deanonymization and face restoration
are two different levels of privacy violations, and achieving
both presents a stronger attack.

In this case, we assume the attacker maintains a large ref-
erence database of human face images (denoted as D). The
availability of such a dataset is a realistic assumption. For
example, adversaries could be authoritarian governments,
Al companies, or social media platforms that already have
access to identity-labeled face image databases. Even small
academia groups have demonstrated the ability to gather
large-scale, identity-labeled, face image databases in the past
(e.g., LFW [59], MegaFace [60]). The attacker only focuses
on the face area—they can crop the blurred face region (e.g.,
in a square) before running the deblurring attack.

In our study, we consider two possible scenarios. First,
in-distribution attack (or closed-world attack): the attacker’s
reference database D contains this victim’s other photos
(not y). The attacker thus aims to restore the face and
link the known identity to the blurred image, achieving
both deanonymization and face restoration. Second, out-
of-distribution (OOD) attack (or open-world attack): the
attacker’s reference database D never indexes any photos
of this victim. In this case, the attacker should be able
to tell that the victim is not in the reference database.
Howeyver, the attacker can still achieve face restoration, i.e.,
recovering the blurred face to look similar to the victim’s
original face (using other face images in D). While OOD
attack cannot achieve immediate deanonymization, it still
has practical implications through face restoration. For ex-
ample, by publishing the “deblurred” photo, the person in
the photo could be potentially re-identified in an ad-hoc
manner by the viewers who know the person in real life

(e.g., friends/families/supervisors). Also, if the target is a
wanted criminal, law enforcement could use the restored
photo (as a police sketch) for their investigation.

4. Methodology

We develop a system called Revelio to restore blurred
face images and recover their original identities. The system
design of Revelio is shown in Figure 2.

4.1. Intuitions and Design Overview

Challenges. First, Gaussian blur introduces significant
“information loss” to an image as introduced in §2.1. Ex-
isting works such as DDRM [61] and SNIPS [62] treat
the general image restoration problem as a linear inverse
problem; however, the degradation matrix of Gaussian blur
is ill-conditioned for this formulation due to its irreversible
information loss [5]. ML-based restoration methods [16],
[17] are not designed for intentionally applied heavy blur-
ring for privacy reasons (§2.2).

Design Intuitions. = We design Revelio based on two
key intuitions. First, we utilize the memorization effect of
generative models. Recent research [21], [63] shows that
generated images from diffusion models are partially repli-
cating the training data. In our scenario, this is not necessar-
ily a weakness but an opportunity to construct attacks. Even
though the model is not trained on the clear version of the
input image, as long as the model has seen this person’s
other images, the memorization of training data could lead
the model to reproduce this person’s facial features. Sec-
ond, while it is impossible to construct a lossless inverse
function for Gaussian blur, we can use a diffusion model to
approximate the inverse function. The information loss can
be partially recovered by learning the features of general
human faces, especially faces that look similar to the target.

4.2. Face Restoration

We start by constructing the Base Model Mp for face
restoration (step @ in Figure 2). Given a blurred image x,
Mp aims to restore it to a clear image that looks similar to
the original image .

Training: Overview.  We train Mp using the reference
database D owned by the adversary. Using D, we first
construct the training dataset by applying Gaussian blur
on the images to produce “ground-truth” pairs of blurred
images x and their originals y as tuples: {(z,y)}. Using
this dataset, the model learns the inverse mapping from the
blurred image x to the corresponding clear image y. The
idea is to approximate the conditional distribution p(y|z)
(which represents the inverse of Gaussian blur). Instead
of using the traditional Denoising Diffusion Probabilistic
Model (DDPM) [64] (which only captures the distribution
p(y) of generic face images), we use conditional diffu-
sion [34] such that the generated faces are faithful to the
original face’s identity (i.e., conditioned by the input z).
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of the restored image ().

Diffusion Model’s Forward Process. A diffusion model
has a forward process and a reverse (denoising) process.
The forward process gradually adds Gaussian noise (not
Gaussian blur) to “destroy” the clear image until the image
turns into pure Gaussian noise. Then, we learn to recover
the original image by modeling the reverse process. For our
forward process, we start by drawing an image pair (z,y)
from the training dataset. We set yg = v, and then a forward
Markov chain gradually adds Gaussian noise into yy with a
total of T steps:

q|ye—1) = N (ye|v/ouye—1, (1 — ap)I) ()

Here t represents a time step from 1 to 7. N and I denote
a Gaussian distribution and the identity matrix, respectively.
oy 1s a hyper-parameter between 0 and 1 which defines the
variance of the Gaussian noise added in each step. We can
rewrite the forward process into a closed form. Given the
initial clear image yo and y; at any step, we can represent
the distribution y;_1 as the following:

q(ye-11y0, ) = N (ye—1|p, o°T) 3
where p = 7Wyo + %ﬁyt,az =

(=yi—)l=ad) apq v = II!_ s Note that y; can rep-

ot . . .
resent the strength of the current noise level, which will
be used in the denoising process later. p and o here are
parameters of Gaussian noise (not Gaussian blur).

Conditional Denoising Process.  For the de-noising pro-
cess, we learn to recover the clear image y by optimizing a
neural network model fy that is conditioned on the blurred
image z. This model fy takes as inputs the blurred image
T, a noisy image y; at any step, and its current noise level
v¢, and predicts the noise vector e. The noise vector € will
be used to denoise y; to restore the previous version ;.

Here we use the same objective function for training the
network fy used by [34]:

E(ey)Eer |1 fo (2, e, 7e) — €l (4)

Optimizing Eqn. 4 is the key to face restoration. Here we
use a U-Net architecture for fy, concatenating the blurred
image x with y, as the input. In this way, the blurred image
x serves as a prior that contains information about what
the clear image should look like. Without z, the model
would denoise y; blindly, leading to the loss of identity
information (i.e., only generating generic human faces). By
conditioning the denoising process on the blurred image
x, the model learns to recover the clear image y while
using the blurred x as guidance, preserving the identity
of x. This denoising process learns to remove both the
Gaussian noise and the Gaussian blur effect step by step. We
also use the attention mechanism on the U-Net architecture.
The U-Net architecture captures image features and expands
them through multiple layers. At the bottleneck layer, the
network encodes localized facial features (e.g., the eyes and
the mouth). We apply an attention mechanism at this layer,
encouraging the model to restore fine-grained face details.

Inference.  After the above training process, we obtain a
fo that can approximate y,_; given x,y;,and ;. Specif-
ically, Eqn. 3 now can be rewritten as the following to
calculate y;—1:

Yt—1 <

1 1-—
Ja (yt - \/%fé)(%%ﬁt)) +v1 Oét€(t5)

Thus, during the inference time, given an input blurred
image x and a Gaussian noise vector yr, we can restore and
refine the image iteratively to recover facial details while
preserving the identity of z. The model is trained on a



large-scale face image dataset (D), and we expect the model
to memorize high-fidelity details related to given identities.
During the inference time, we expect the model to restore
the facial details leveraging the memorization effect (e.g.,
using other images of z’s identity in the database, or faces
of other similar-looking identities).

Practical Consideration: Kernel Size Estimation. = Note
that the above model Mp is trained under a specific kernel
size for Gaussian blur. The kernel size K is set when we
construct the training data for Mp. In practice, adversaries
may not know the kernel size used by the input image z.
In this case, adversaries can either (1) try different models
(trained with different kernel sizes) and assess the recovered
image quality, or (2) proactively estimate the kernel size
based on input image x. We believe the second option
is more cost-efficient. Below, we develop a kernel size
estimator for this purpose.

Given an input blurred image x, the goal of the model is
to infer the kernel size K. To train the model, we first con-
struct a synthetic training dataset with “ground truth”. This
is done by randomly sampling face images and applying
Gaussian blur on each image using a series of kernel sizes.
Then we train a kernel size estimator using a regression
model. Here, we use a pre-trained model EfficientNetV2
Large [65] as the pre-trained model to improve the model
performance (pre-trained on ImageNet [66]). Then we re-
place the classification layer with a single output layer for
regression to estimate the kernel size K. We obtain the
model size K by rounding the regression estimation to the
nearest odd integer value. Then the K will be used to select
the proper model Mp for the face restoration of x.

4.3. Identity Retrieval

As shown in Figure 2 (), after using Mp to perform
preliminary face restoration, we expect the recovered face
image y; to be somewhat similar to the original image but
is not yet of high quality and fidelity. Our hypothesis is that
image yp is good enough to recover the identity of the target
person if this person is in the reference database.

Face Embedding. To perform identity retrieval, the
adversary first needs to map the face images in the reference
database D to an embedding space. In this embedding space,
face images of the same person (identity) should be clustered
together while face images from different identities should
be mapped further away. To do so, we utilize an open-source
face recognition system [67] to perform face image embed-
ding. We select this model for its high facial recognition
performance as it achieves an accuracy of 99.38% on the
LFW (“Labeled Face Images in the Wild”) benchmark [59].

Identity Retrieval Function. A naive method is to
compute the average distance between the input image 3
and other images of existing identities in the embedding
space to find the nearest neighbors for identity detection.
However, this naive idea is easily affected by the stochastic
process of face generation of the diffusion model Mp.
When we run Mp multiple times on the same input, the

generated images have significant variance, especially when
the blurring level is high. For certain rounds, the generated
images are highly similar to the target person, while for
other rounds the generated images look very different. The
intuitive explanation is that the memorization effect, when
triggered, can produce face details of the original person.
However, the memorization effect is not always triggered
the same way (or triggered at all) each round.

To this end, we determined that taking an average dis-
tance is not the best option. Instead, we run Mp on the
same input multiple times (i.e., n rounds) to generate a set
of {y»}, and then rely on the shortest distance to determine
the identity. The intuition is that within the multiple rounds
of face generation, one or a few rounds will trigger a strong
memorization effect to generate face images close to the
true identity. We rely on these rounds (with the shortest
distance) to maximize the success of identity retrieval. We
take n = 50 as our default settings. For each pre-recovered
image in the set {y,}, we calculate the distance between
the restored image and its nearest neighbor in the reference
database. We then take the identity (ID) of the nearest
neighbor as the winning identity for this round. Finally, the
most frequently appearing winning identity among the n
rounds would be selected as the final identity for input z,
which is denoted as I Dy.

Detecting Out-of-Distribution (OOD) Identities. The
above identity retrieval process will make a mistake when
the identity of the blurred image x is never indexed in the
reference database. In other words, the person in x has no
other images in the reference database and is never seen
by the diffusion model. We call such identities as out-of-
distribution (OOD) identities. To detect blurred images of
OOD identities, we use a simple shortest-distance thresh-
old. More specifically, out of the n rounds of restoration,
we identify the lowest distance between any of the pre-
recovered images in {y;} and their nearest neighbors in the
reference database. We denote this lowest distance as ld,.
If ld, is higher than a threshold d, we will determine that z
has an OOD identity. We have experimented with alternative
(and more complex) strategies but found that this single-
threshold method worked better. For example, we attempted
to dynamically adjust the threshold based on per-identity
statistics such as the average similarity among the identity’s
reference images, or normalize the similarity score based on
the number of references. We will explore how the threshold
affects OOD detection accuracy later in §5.5.

4.4. Fidelity Enhancement

Once the identity has been recovered, we retrieve related
images from the reference database to further improve the
fidelity of image restoration. This step corresponds to steps
® and ®. The pre-recovered image ¥, may still carry
random facial features from the stochastic diffusion process.
To further improve fidelity, we fine-tune the base model.
First, based on the retrieved identity /D, we obtain a set of
reference images of this identity from the reference database
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(denoted as {y,}). These images are of the same person
but do not contain the target image y. Second, using these
images as the fine-tuning dataset, we adapt the attention
block fine-tuning technique [68] to fine-tune Mp. We freeze
all residual blocks in the U-Net backbone architecture in
the base model except the attention blocks, which helps to
preserve the identity information during fine-tuning. Finally,
the fine-tuned model MF can generate image y,, which is
expected to be of higher fidelity to the ground-truth image.

5. Evaluation

In this section, we evaluate the effectiveness of
Revelio and compare it with existing solutions.

5.1. Dataset and Setup

Gaussian Blur Setup. We use PyTorch’s implementation
of Gaussian blur as the target for proof-of-concept. The same
implementation is also used by OpenCV. We use kernel
size K to control blur levels (the standard deviation o of
the Gaussian distribution is dependent on K'). We use two
different blur levels including light blur and heavy blur (see
Figure 3 for examples). Given the image size of 256 x 256
images, we apply Gaussian blur with kernel size K = 37
for “light blur” and use kernel size K = 81 for “heavy
blur”. K = 37 roughly matches the degradation level of
existing works. As discussed in §2.2, existing works used
Gaussian blur as a generic way to degrade image quality
(rather than for privacy protection), and thus did not use
high blurring levels. As shown in Figure 3, under light
blur, the blurred image does not fully hide the person’s
facial details. In contrast, under heavy blur, the images lose
significantly more details, making it harder to re-identify the
person. Our experiment will primarily focus on the high-
blur setting given it is more challenging for attackers. In
our experiments, if not otherwise stated, Revelio uses the
matching kernel size to train the corresponding model. In
§5.4, we will evaluate the attacker’s ability to predict the
kernel size and its tolerance of mismatched kernel sizes.

Datasets.  Our experiment mainly uses the CelebA-HQ
dataset [22], which includes 30,000 images, and 6,217 la-
beled identities. Another dataset FFHQ [23] is used for
OOD evaluation (§5.5). We selected these datasets because
they have been widely used by existing research [16], [17],
[29], [30], [33], [61], making it easy for result reproduc-
tion. Both datasets contain high-quality face images. Im-
portantly, CelebA-HQ includes identity labels (rare among
public datasets). Each person (identity) has multiple images
(5 images per identity on average). Finally, to evaluate
Revelio’s performance on low-quality images, we use
LFW [59], which contains 13,233 images of 5,749 identi-
ties. Compared with CelebA-HQ and FFHQ, LFW contains
noiser images with lower resolution and inconsistent face
angles and postures. More details will be discussed in §5.5.

We randomly split the images in CelebA-HQ into the
training set (28,000 images) and the testing set (2,000 im-
ages). The training set contains 6,084 unique identities, and
the testing set contains 1,521 unique identities (with 1,388
identities overlapping between the training and testing sets).
Despite the overlap of identities, a specific image can only
appear in either the training set or the testing set but not
both. In CelebA-HQ, the photos of the same identity can be
diverse: it often contains the photos of the same person taken
in different years, with different hairstyles, accessories, or
even different facial hair. We train our Base Model Mg with
28,000 training images for 1,000 epochs. Due to computing
resource limitations, the dimensions of the images are set
to 256 x 256 during training and testing. The training set
(28,000 images) also serves as our reference database for
identity retrieval.

Experiment Setup.  Our experiment covers both closed-
world (in-distribution attack) and open-world (OOD attack)
settings. The main experiment uses the closed-world setting
to assess the design choices in Revelio. Under this setting,
the identities of the blurred images are included in the ref-
erence database. For open-world settings, we test identities
that are not included in the reference database.

For the closed-world setting, we randomly select 50
identities and a total of 97 images from the festing set to ap-
ply Gaussian blur. These identities have other images in the
reference database (i.e., the training set) but these 97 testing
images never appear in the training set. For the open-world
setting, we manually construct a set of out-of-distribution
(OOD) identities and ensure (1) the testing images never
appear in the training set; and (2) these identities have no
other images in the training set either. In other words, these
identities are never seen by the model. We obtain 97 of such
images from 91 OOD identities (see §5.5 for details).

5.2. Evaluation Metrics and Baseline Methods

Evaluation Metrics. = We use different metrics to evalu-
ate the identity retrieval and face restoration. For identity
retrieval (model Mp), we evaluate its performance using an
Identity Retrieval Accuracy (IRA) which measures the ratio



Kernel Size | K=37 K=38I
Blurred | 38.1% 0.0%
Parrot Recognition | 60.8%  51.5%
Fantomas 35.0% 8.0%
GFP-GAN 26.8% 1.0%
PULSE 0.0% 0.0%
DifFace 37.1% 1.0%

Ours 100 % 95.9%

TABLE 1: Identity retrieval accuracy. We test both the light-
blur (K = 37) and heavy-blur (K = 81) settings.

of blurred images for which the model correctly retrieves
their identity out of all the testing images.

For the face restoration (models Mp and Mp), we use
standard metrics to assess the fidelity of the restored images
and the overall image quality. Fidelity evaluation measures
how similar the restored image is in comparison with the
original ground-truth image. First, we use PSNR [69] to
make a similarity comparison at the pixel level for the two
images. Second, we use LPIPS [70] and SSIM [71] metrics
that approximate human perception for image similarity
comparison. Third, we measure how well the restored image
preserves the facial identity of the original image using ID
Distance (IDD) [72]. Unlike the other metrics (that consider
features of the entire images), IDD focuses more on facial
features related to a person’s identity (e.g., eyes and nose).
IDD calculates the angular distance between the feature
vectors of the restored face image and the ground-truth
image (features extracted by a pre-trained ArcFace [43])

Finally, to assess the overall quality of the restored
images, we use FID [73] which measures the distribution
similarity between the output datasets (of the restored im-
ages) and the ground-truth datasets. FID measures how well
the restored faces resemble general human faces.

Comparison Baselines. We compare Revelio with
existing restoration methods including Fantdmas [20], GFP-
GAN [16], DifFace [17], and PULSE [19]. Fantomas, GFP-
GAN, DifFace use auto-encoder, GAN, and diffusion mod-
els, respectively, for face restoration. PULSE is a super-
resolution model to restore face images. We chose these
models because they are able to handle Gaussian blur, and
their authors have made the code available for sharing.
Fantomas was originally trained with kernel size K=29 and
thus we retrained it with K=37 and 81. We also included
a Parrot Recognition method [24] as an identity retrieval
baseline. As described in §2.3, Parrot Recognition directly
trains a re-identification classifier on blurred images without
performing face restoration.

5.3. Basic Evaluation Results

We first run basic experiments to evaluate identity re-
trieval and face restoration under the closed-world setting
(i.e., the target identity is included in the reference database).

Identity Retrieval Accuracy. We start by evaluating the
identity retrieval model (Table 1). Before testing any face

Ground Truth

Before Fine-tuning

After Fine-tuning

Figure 4: Restored faces before fine-tuning and after fine-
tuning. We highlight the area where the fine-tuning has made
a major improvement in image fidelity and quality.

Model | PSNRT  SSIMt LPIPS| IDD) FIDJ
Mg | 2475  0.68 024 071 4184
Mp | 2494  0.69 023  0.64 3997

TABLE 2: The Base Model Mp vs. the Fine-tuned Model
My under the heavy-blur setting (KX = 81). 1 means a
higher value is better. | means a lower value is better.

restoration methods, we first establish a baseline by directly
running our identity retrieval method on the blurred images
x without restoration. The result is shown in the “blurred”
row in Table 1. The result confirms that “light blur” (with
K=37) is not enough to fully hide the person’s identity as
the model can still recognize 38.1% of the blurred faces.
However, under “heavy blur” (with K=81), none of these
blurred faces are recognizable (0% accuracy). Table 1 also
shows the performance of Parrot Recognition [24] where the
classifier (ArcFace) has been retrained on blurred images
(with matching kernels). While parrot recognition has an
improved accuracy of 60.8% and 51.5% under the heavy
and light blur settings, respectively, the accuracies are still
not considered high.

Next, we examine identity retrieval accuracy on restored
faces. For Revelio, we run the identity retrieval model
(MRp) on the pre-recovered images (from Mp) to identify
the person in the image. We test both the heavy-blur (K=81)
and light-blur (K=37) settings. As shown in Table 1, our
system achieves much better performance compared with
existing methods. Under light-blur, our system can 100%
recover the facial identity using the pre-recovered images
from Mp. Under the heavy-blur setting, our system still
achieves a 95.9% identity retrieval accuracy.

Among the other baselines, faces restored by Fantomas,
DiFace, and GFP-GAN preserve some identity information
under the light-blur setting. However, under the heavy-blur
setting, such identity information is no longer recovered,
which leads to a low identity retrieval accuracy (lower than
8.0%). This is confirmed by the examples in Figures 1 and 6.

The few errors from our system are caused by the inher-
ent challenge of distinguishing identities with similar facial
features and makeup. Recall that our reference database con-
tains 28,000 images and 6,084 identities, which makes face-
matching difficult. We present case studies in Appendix A.



Fantomas PULSE GFP-GAN DifFace

Input Ground Truth Ours

Figure 5: Face restoration under Light Blur (K = 37).

Methods \ PSNRT SSIMtT LPIPS| IDD] FIDJ
Blurred \ 22.87 0.66 0.61 1.32  148.19
Fant6mas 23.65 0.66 0.44 0.98 120.79
GFP-GAN 24.08 0.69 0.29 0.90 94.80
PULSE 18.78 0.54 0.43 1.37 104.72
DifFace 25.30 0.70 0.29 0.88 78.07
Ours 28.04 0.78 0.17 0.37 27.16
GT \ 9 1 0 0 0.1

TABLE 3: Face restoration comparison under Light Blur (KX
= 37). “GT” denotes the ground-truth clear image.

As shown in Figure 12, the mismatched identity looks very
similar to the restored face (as well as the original face).

Impact of Fine-Tuning. = Next, we use experiments to
demonstrate the impact of the Fidelity Enhancement module
(i.e., fine-tuning) for Revelio. This is done by comparing
the restored image quality and fidelity before and after
running the fine-tuned model (M ). For brevity, we only run
this experiment for the heavy-blur setting (X = 81) because
the image quality is already very good without fine-tuning
under light blur (see Figure 5).

As shown in Table 2, the fine-tuned model Mg out-
performs the base model Mp across all evaluation metrics.
Among the five metrics, we observe noticeable improve-
ments for IDD (which measures the fidelity of the face
images with respect to the original identities). Through fine-
tuning, we can effectively preserve the facial features of the
original person and suppress the randomness introduced by
the stochastic diffusion process.

Figure 4 shows a qualitative comparison between the
output images of the two models. While the output before
fine-tuning (from Mp) is already a high-quality face image,
its fidelity to the original face is still slightly off. In this
example, facial features related to the eyes and the mouth
are still different from those of the original person. Also,
the hair area still has some blurring effect. After fine-
tuning, we can observe that the image (from Mp) has clear
fidelity improvements in these facial features, making it
more similar to the original person. Other subtle differences
can be observed by zooming in on the example images.

Comparison with Existing Methods.  Finally, we com-
pare the performance of Revelio with existing methods.

GFP-GAN DifFace

Input Ground Truth Ours Fantémas PULSE

Figure 6: Face restoration under Heavy Blur (K = 81).

Methods | PSNRT  SSIMt LPIPS| IDD)  FIDJ
Blurred | 1938  0.56 0.61 150  290.51
Fantomas | 22.06  0.61 049  1.16 13461
GFP-GAN | 19.89  0.57 038 128 123.68
PULSE 1725 0.50 046 142  116.78
DifFace | 2049  0.57 038 126  99.94
Ours 2494  0.69 023 064 3997
GT | oo 1 0 0 0.1

TABLE 4: Face restoration comparison under Heavy Blur
(K = 81). “GT” denotes the ground-truth clear image.

Under the light-blur setting (K = 37), we compare the re-
sults from our model (without fine-tuning) with the existing
models. As shown in Table 3, our model (even without fine-
tuning) outperforms all baseline methods across all evalua-
tion metrics. The most noticeable improvements are shown
by the LPIPS, FID, and IDD metrics. These metrics measure
perceptual similarity, overall image quality, and identity-
level fidelity. We present example images in Figure 5. Under
the light-blur setting, existing methods demonstrate their
ability to restore blurred images. The overall image quality
is good even though the restored faces may not always look
like the original person.

Revelio’s advantage is more visible under the heavy-
blur setting (K = 81). We compare the results of existing
models with our Mz model. As shown in Table 4, our model
outperforms existing models on all evaluation metrics, with
a much bigger gap than that under the light-blur setting.
Figure 1 has already shown some example images, and we
present additional examples in Figure 6 to cross-compare
with the examples under light blur (Figure 5). On one
hand, existing methods are not identity-aware. As a result,
they cannot faithfully restore the identity of the original
person in the image. In contrast, our method can achieve
identity-aware face restoration, by combining a conditional
diffusion model with identity retrieval. On the other hand,
existing methods are not designed to recover faces from
heavy blurring. Their performance is worse under such
settings. Overall, the result confirms that Revelio can
handle severely blurred images that the state-of-the-art face
restoration models are unable to (or not designed to) address.



5.4. Impact of Mismatched Kernel Size

So far, our experiments have assumed that the adversary
knows the kernel size K of the Gaussian blur. In practice,
the adversary will need to infer this information based on
the blurred input. In §4.2, we described the methodology for
kernel size estimation. Here, we evaluate its effectiveness.

Estimating Kernel Size Based on Blurred Images. To
train the kernel size estimator model, we randomly sample
1,000 images from the CelebA-HQ’s training set, and split
the data randomly into training, validation, and testing sets
with 800, 100, and 100 images, respectively. Then, we apply
Gaussian blur with different kernel sizes on each image. We
set kernel size K by enumerating all the odd numbers from
1 to 81 to generate blurred images. As mentioned in §2.1,
the kernel size needs to be an odd number to align the center
pixel. We train the regression model using the training set,
adjust hyperparameters using the validation set, and test the
model accuracy on the testing set.

The result shows that adversaries can accurately predict
the kernel size based on the blurred image. The mean
absolute error (MAE) is only 0.934, meaning that the model
can predict the kernel size K with an offset lower than 1.
For example, if the ground-truth kernel size is 37, most
predictions either fall on the correct kernel size of 37, or
fall on the two neighboring kernel sizes (35 or 39). The
result is further visualized in Figure 13 in Appendix B.
This means adversaries can estimate the kernel size based
on input images, and select the right model (trained with
the matching kernel size) for image restoration.

Tolerance of Mismatched Kernel Sizes. Next, we further
examine how much Revelio can tolerate mismatched
kernel sizes. For this experiment, we select the heavy-blur
setting (i.e., the more challenging setting) and train the Base
Model Mp with Gaussian blur using a kernel size of 81.
Then for the closed-world testing images, we apply Gaussian
blur with varied kernel sizes ranging from 71 to 91. We show
that the model can easily tolerate kernel size mismatches
within the mean absolute error (MAE) of 6, under which
the restored images are still of high quality and fidelity.
Visual examples and quantitative metrics are presented in
Figure 15 and Figure 16 in Appendix B. Given the above
kernel size estimation model achieves an MAE below 1, we
argue that the proposed method can sufficiently tolerate this
level of mismatch.

In addition, we further test a different dependency func-
tion between K and o for Gaussian blur. As mentioned
in Section 2.1, most Gaussian blur implementations have a
fixed dependency function between these two parameters,
and thus attackers only need to predict K. If future imple-
mentations change the dependency function, does Revelio
still work? In Appendix B, we have tested different depen-
dency functions between o and K and have an interesting
observation. That is, regardless of the K — o dependency,
as long as the blurring effect is similar to what Revelio
is trained on, the system still works. This means adversaries
can use the kernel estimator to blindly predict a kernel size
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Figure 7: The true positive rate (TPR) and false positive rate
(FPR) under different thresholds d. The gray line denotes
d = 0.43 which yields an overall accuracy of 90%.

K that has a similar blurring effect, and then select the
corresponding Mp for restoration. For example, we use a
different dependency function (/=27 and o0 = 6) to blur
the image. Our kernel estimator predicts K = 39 (meaning,
the blurring effect is similar to K = 39 under the old
dependency function). Then we choose Mp trained for the
“light-blur” setting (with a close kernel size of 37) and it
works well. Appendix B also includes additional transfer-
ability evaluation for a non-squared kernel for Gaussian blur
and has a similar conclusion.

5.5. Open-world Setting Experiment

In this section, we evaluate the open-world setting where
the input blurred image = has an OOD identity. In other
words, the reference database D does not contain images of
the person pictured in x. As discussed in §3, in this case,
the attacker can still attempt to restore the victim’s face.
In practice, the deblurred photos can still lead to ad-hoc
deanonymization, e.g., by viewers who know the victim in
real life, such as families, friends, and colleagues.

We collected OOD identities and their images in two
ways. (1) From the festing set of CelebA-HQ, we randomly
sample images whose identities only appear in the testing
set. In other words, these identities do not have any images
in the training set (57 images of 51 identities). (2) We
take another public face image dataset FFHQ [23] and
randomly sample 40 identities (and their 40 images). We
manually verified that these identities never appear in the
reference database. In total, we have 97 images from 91
OOD identities. The OOD dataset is of the same size as the
in-distribution set used by the closed-world experiment.

Our experiment has two goals. First, we test if we can
detect OOD identities from in-distribution identities. Second
and more importantly, even when an identity is OOD, we
examine if Revelio can still restore the blurred face.

Detecting OOD Identities. As discussed in §4.3, we
apply a threshold d on the lowest distance (Id,) between the
pre-recovered image and the reference images, to determine
if the blurred image = has an OOD identity. Using the OOD
and In-distribution datasets described above, we perform a
classification of OOD images under the heavy-blur setting
(K = 81) given it is more challenging for attackers.



Setting | PSNRT  SSIMt  LPIPS| IDD) FIDJ
00D (Detected) | 24.92  0.70 0.25 086  51.87
00D (Missed) 2612 0.74 0.23 078  56.58

In-Distribution | 24.75 0.68 0.24 0.71 41.84

TABLE 5: Face restoration quality comparison between
OOD identities (including correctly detected and missed
OOD identities) and in-distribution identities (K = 81).

OOD Ground Truth

Restored =0.42)

Mismatched Ref ID (Idy

00D (Missed)

00D (Detected)

Figure 8: Face restoration examples for out-of-distribution
(OOD) identities. For both examples, face restoration is
successful as the restored face (middle) looks similar to
the ground-truth image (left). The top row shows an OOD
image that we failed to detect because the reference identity
(right) looks too similar to the restored image (middle). The
bottom row shows a correctly detected OOD image because
the closest reference identity looks different enough.

Figure 7 shows the trade-off between the true positive
rate (TPR) and the false positive rate (FPR) when the
threshold d varies. When we set d = 0.43, we obtain a TPR
of 0.92, an FPR of 0.12, and an overall detection accuracy of
90%. The result confirms we can detect OOD identities from
the blurred images with a decent accuracy. We emphasize
that detecting the OOD identities is only to provide contexts
for the adversaries, that is, this person is likely not indexed
in the reference database. The more important task is still to
restore the blurred face, despite it being an OOD identity.

Face Restoration for OOD Identities. Given OOD
identities are not indexed by the reference database, we ex-
amine the face restoration result from the Base Model (Mpg).
Table 5 reports the image quality and fidelity metrics for
OOD identities including those that are correctly detected
by the detector (using threshold d = 0.43) and those that
are missed. We also show the restoration results for “in-
distribution” identities as a reference.

We find that the face restoration is highly successful. As
shown in Table 5, the restored image quality and fidelity
are comparable to those of the in-distribution identities.
This observation applies to both correctly detected OOD
identities and those that are missed.

Ground Truth  Blurred (K=81)

Restored

Figure 9: Face restoration examples for the LFW dataset.

Dataset | PSNRT  SSIMt LPIPS| IDD| FIDJ
LEW | 2647 0.77 0.22 0.69 3450

IRAT
70.60%

TABLE 6: Revelio’s performance on LFW images
(K=81). 1 means that a higher value is better for attackers.

Figure 8 also shows that the restored faces (middle
column) look highly similar to the ground-truth images
before blurring (left column). We present extra examples in
Figure 17 in the Appendix C. This result shows Revelio
is able to recover the blurred face even if the corresponding
person is never indexed in the reference database. A possible
explanation is that Revelio in part learns to approximate
the inverse of Gaussian blur. In addition, it may have used
other “similar-looking” identities to synthesize the facial
features for the target image. Figure 8 shows the closest
reference images (right column) in the reference database
for both examples. Although the OOD identity does not exist
in the reference database, there exist “similar-looking” faces
in the reference database that can help with face restoration.
On one hand, such similar-looking faces are the main reason
for OOD detection errors (the top-row example in Figure 8).
On the other hand, this supports our intuition as to why face
restoration is still possible on previously unseen identities.

5.6. Impact of Lower-Quality Images

In our main experiment, we use CelebA-HQ dataset [22]
as our reference database D which contains high-resolution,
well-aligned face images. To examine the impact of lower-
quality images, we use the LFW dataset [59]. LFW contains
images of a lower resolution, and the faces in the images
have inconsistent angles and sizes. Some images even con-
tain multiple faces. For this experiment, we split the LFW
dataset into the training set (13,083 images) and the testing
set (150 images of 50 identities). For this experiment, to be
consistent with the previous setups, we only consider front-
facing faces for the testing set. Also, we upscale all the
LFW images to the same size as before (256 x 256). We
take the training set of LFW as the reference database D. We
also use the LFW training set to fine-tune our Base Model
Mp. After fine-tuning for 300 epochs, we test the model’s



Defense | PSNRT  SSIMtT LPIPS|  FID| IRAT

Rotation 27.39 0.76 0.23 51.69 87.62%
Gaussian Noise 11.30 0.07 0.74 425.54 0%
JPEG Compress. 17.15 0.25 0.63 376.37 0%
Box Blur 14.62 0.23 0.59 420.76 0%

No Defense | 28.04 0.78 0.17 27.16 100%

TABLE 7: Comparison of different defense approaches
(against Mp, K = 37). To be consistent with other tables, 1
means that a higher value is better for attackers (i.e., worse
for defenders).

Attack | PSNRT  SSIM{ LPIPS| FID|
Adaptive Attack | 25.71 0.73 0.22 25.71

IRAT
88.66%

TABLE 8: Impact of adaptive attack against JPEG Com-
pression Defense (K = 37). 1 means that a higher value is
better for attackers.

performance on the LFW testing set, under the heavy-blur
setting where K=81.

We show the examples of restored images in Figure 9
and report the performance metrics in Table 6. The result
shows that face restoration still works well. The quality
metrics reported in Table 6 are comparable with (slightly
better than) those from CelebA-HQ (Table 4), while the fi-
delity metric (IDD) gets slightly worse (0.69) compared with
CelebA-HQ (0.64). The IRA (70.60%) is lower potentially
due to the slightly reduced image fidelity and the increased
noise level of D. Overall, the result shows that Revelio
can still work with noisy image data.

6. Defense

Finally, we briefly explore possible countermeasures
against the deblurring algorithm and explore adaptive at-
tacks. We want to emphasize that robust defense is not the
main focus of this paper. We want to explore a few ideas to
inspire future directions.

The goal of the experiment is to examine how sensitive
the deblurring algorithm is to different post-processing steps
and mismatched blurring algorithms. More specifically, after
Gaussian blur is applied to the image, users can additionally
process the blurred image by performing image rotation,
adding Gaussian noises, and performing JPEG compression.
The user may also use a different blurring algorithm as well.
This will create a mismatch between the blurred image and
the trained model of the attacker. Our experiment seeks to
reveal what types of countermeasures have a major impact
on image restoration quality. We run the defense experi-
ments under the light-blur setting (K = 37), which is a
more challenging setting for defenders.

Disrupting Face Restoration Model. To disrupt the
face restoration model, we apply image rotation, Gaussian
noise, and JPEG compression on the blurred image x. We
also test Box Blur (the OpenCV implementation) [28], a
different blurring algorithm, to examine its disruption effect.
Appendix D includes further details for the specifications
of these defense methods. The restoration result is shown

Rotation
G. '

D

Gaussian Nois

Figure 10: Defense against face restoration. We show that
the face restoration method is robust against image rotation,
but can be disrupted by other defense methods.

JPEG Compression

Adaptive Attacker
Defense

Ground Truth

p X,

Figure 11: Adaptive attack against JPEG Compression de-
fense. The result shows that the adaptive attack can effec-
tively restore the blurred face.

in Table 7. We also present visual examples in Figure 10.
We show that the face restoration is robust against image
rotation, but can be majorly disrupted by Gaussian noises,
JPEG compression, and box blur. The restored image qual-
ity is significantly lower after these post-processing steps
(especially for Gaussian noise). In Table 7 (the last col-
umn), we also report the identity retrieval accuracy (IRA)
using the restored faces. For rotation, the IRA is still high
(87.62%). The other defense methods can drop the IRA to
0%, confirming their effectiveness.

Adaptive Attacks. We want to emphasize that this
experiment result does not mean the defense will be equally
effective against adaptive attackers. To demonstrate this, we
implement an adaptive attack against the JPEG Compres-
sion (one of the seemingly effective countermeasures). This
is done by fine-tuning our Base Model My with images that
are processed with Gaussian Blur and JPEG compression
(for 100 epochs). The results of the adaptive attack are
presented in Table 8, and example images are provided in
Figure 11. With the adaptive attack, we observe that the
restored face quality is much better. Importantly, the identity
retrieval accuracy (IRA) improves from 0% back to 88.66%.
The result confirms that the adaptive attack is successful.
As a countermeasure to the adaptive attack, defenders
may further randomize the post-processing configurations
(including the choice of post-processing methods and their
parameters) as a “secret”, and apply a different blurring
process each time for each image. This may make a pre-



trained deblurring model less effective on all blurred images.
However, we argue that one can also choose not to play this
cat-and-mouse game, for example, by covering the full face
using a black/white square. In this way, zero information is
left on the photo that is associated with the identity of the
target person.

7. Discussion

7.1. Implications

Key Findings. Our paper provides concrete evidence that
Gaussian blurred face images, even under a high blurring
level, can be restored to their clear form, and can be used to
re-identify the persons in the images. We also show a rea-
sonable level of robustness of the deblurring process against
unknown kernel sizes. Also, face restoration is possible, not
only for known identities, but also for previously unseen
identities that are not indexed in the reference database.

Privacy-Utility Tradeoff? Today, Gaussian blur is widely
used by lay users and even journalists on sensitive photos in
the real world [1], [2], [3], [4]. This may be due to the wide
availability of Gaussian Blur tools, potentially misleading
articles/recommendations on the Internet, and a lack of
security awareness among users. When applying Gaussian
blur, is there a meaningful trade-off between privacy and
utility? From the users’ perspective, there might be a trade-
off since lightly blurred faces can still preserve information
such as gender, hair color, and skin tone, making the photo
appear more “authentic” [20]. However, the light blur makes
face restoration and deanonymization easier.

The next question is, would a higher blur level be safe
to use? We can briefly reason the above question from the
perspective of conditional diffusion models. Our model can
deblur image = to preserve z’s identity by conditioning
the denoising process on x. As long as x still carries
some information from the original image y, with sufficient
training, it should be feasible to learn the mapping from z
to y. A higher blurring level may make the training process
more expensive, but it should not be impossible. To make the
Gaussian blur “safe”, = should be completely independent
of the clear image y. In this extreme case, for example,
x can be a black image with all pixel values set to 0. In
other words, we need to cover the full face with a black
mask instead of blurring the face. We want to emphasize that
covering the partial face (e.g., using eye masks) does not
work, because the remaining face areas are still potentially
re-identifiable [20]. Based on this reasoning, we believe
Gaussian blur should not be used when privacy/anonymity
is the primary concern.

7.2. Recommendations and Countermeasures
Based on these findings, we make the following recom-
mendations to users, software vendors, and policy makers.

Users.  Users who need to anonymize faces in sensitive
photos should not use the Gaussian blur, especially those

implemented by popular photo process software (e.g., Pho-
toshop). Such software can be easily studied by attackers to
train trargeted deblurring algorithms. This recommendation
applies to both lay Internet users and professionals (e.g.,
journalists) who handle and publish photos of at-risk user
populations (e.g., protesters). However, this does not mean
other alternative blurring or degradation algorithms (e.g.,
pixelization, eyemasks, box blur) are secure. These alterna-
tive methods are not the focus of this paper, and thus we
cannot speak to their security. However, related works have
expressed similar concerns about their ability to hide the
target information [7], [15].

To these ends, our recommendation is to completely
cover the face area (e.g., with a black-square mask). This is
to ensure that zero remaining information is dependent on
the original face, which means conditional diffusion would
be impossible (see the discussion in §7.1).

Photo-processing Software Vendors.  First, we recom-
mend that photo-processing software should not advertise
using image blurring algorithms for privacy protection or
face anonymization purposes [11], [12], [13], [14]. In the
meantime, we understand that Gaussian blur is a general-
purpose algorithm that can be used for many different
applications. To prevent misuse, we recommend photo-
processing software adding a warning message under the
Gaussian blur function (and other similar functions). This
is to remind or inform users that Gaussian blur is not safe
to be used to anonymize faces in sensitive photos. Such
a warning message not only protects users from the threat
of deanonymization but can also reduce the liability risks
of software vendors. The warning should not affect the
normal use of the blurring function for non-security/privacy
scenarios.

Policy Makers. Face anonymization techniques that have
known risks of deanonymization (including Gaussian blur)
should be discouraged from being used in safety-critical
and privacy-sensitive scenarios such as journalism and legal
systems. Pushing new standards and policies will require
close collaborations between the lawmakers and the techni-
cal community.

7.3. Ethics Consideration

We are mindful of the ethical implications of our re-
search activities and the results. We believe our research’s
potential benefits (e.g., discovering vulnerabilities, raising
user awareness, improving security practices) outweigh the
potential risks.

Risk vs. Benefit Reasoning. = Our work follows the com-
mon practice and the basic principles of offensive security
research [74], [75]. Like many prior works [20], [51], [52],
[53], [54], our goal is to reveal the security problem in
existing solutions and improve the security practice before
attackers independently discover and exploit the vulnerabil-
ity at a large scale against unprepared, vulnerable targets.
We argue that a “false sense of security” is worse than
“known insecurity.” In our case, without this type of research



(including related prior works [7], [20], [42]), users may
falsely believe that applying a Gaussian blur to their photos
is sufficient to hide their identities. This false sense of
security could lead to oversharing behaviors on the Internet,
exposing more sensitive photos of users, and thus increasing
the risk. A key benefit of our research is to provide concrete
evidence on the security risk of applying Gaussian blur as
a privacy protection mechanism and increase the awareness
of related users (e.g., Internet users, journalists, activists). In
addition, the result can potentially inform software vendors
and policymakers to use or promote more robust privacy pro-
tection mechanisms. Our experiments require using datasets
of human face images. We understand that human face data
is a sensitive type of data. In our study, we limit ourselves
to only using CelebA-HQ [22], FFHQ [23], and LFW [59],
which are three publicly available benchmark datasets used
by common machine learning research [16], [17], [18], [29],
[30], [33], [34], [35], [36], [61], [76].

Responsible Disclosure.  We reached out to related par-
ties, including OpenCYV, PyTorch, Adobe Photoshop, Apple
@i0S SDK team), and FTC (Federal Trade Commission) to
disclose our findings and share our recommendations. So
far, Apple and Adobe Photoshop have confirmed receiving
our report and indicated that their security teams were inves-
tigating (no further updates or timeline for mitigation were
provided). PyTorch responded that the reported issue was
not an inherent flaw in their implementation, considering
that they did not advertise Gaussian blur as a privacy-
preserving tool. While we understand their perspective, we
argue that the problem would arise when Gaussian blur is
used for privacy-preserving purposes, and especially when
it is advertised as so to users. This motivated us to fur-
ther reach out to popular photo-processing applications that
apply image blurring for face anonymization and advertise
their privacy-preserving benefits. We have reached out to
four applications [11], [12], [13], [14] and are still waiting
for their response.

Code/Data Sharing. We make our research artifacts
(code, datasets) available for sharing with other researchers.
However, we do not want malicious parties to use the code
to cause harm. As safeguards, we will ask requesters to fill
out a short form to explain how they plan to use the code
and data. We will also verify the requester’s identity and
affiliation before sharing.

7.4. Limitations and Future Work

Our paper is limited in several aspects. Here, we discuss
open questions and opportunities for future work.

Even Higher Blurring Levels.  Our experiments use a
high blurring level for Gaussian blur (K'=81 for 256x256
images). This blurring level already renders a 0% accuracy
for facial recognition (see Table 1). While we did not test a
higher blur level, based on our reasoning analysis in §7.1,
restoring face under a higher blurring level will require more
expensive training but should not be impossible. We leave
experimentation to future work.

Other Face Anonymization Methods. Our paper focuses
on a Gaussian blur implementation, and future work is
needed to generalize Revelio to other face anonymiza-
tion methods. In particular, researchers have worked on
face/image anonymization techniques with provable privacy
guarantees [77], [78], [79]. Considering most of these sys-
tems are still research prototypes (i.e., not widely used
in commercial products yet), we prioritize the analysis of
Gaussian blur in this paper. Future work can investigate the
privacy guarantee of these anonymization methods under
practical threat models, especially taking into consideration
the emerging generative models and the availability of large
image datasets with clear face images.

Dataset and Evaluation. Our experiment is limited
by the datasets we use. First, the CelebA-HQ and FFHQ
datasets contain high-resolution face images that are mostly
front-facing. While LFW contains lower-quality images with
more diverse poses, we still did not fully investigate other
potentially impacting factors (e.g., side faces, unusual facial
expressions, or partially blocked faces), which is a venue
for future work. In addition, the quality of the reference
database D may also influence the system’s performance
(e.g., the size of D, the number of reference images of the
target identity, and the similarity between the reference and
target images of the identity), which can be further inves-
tigated. Second, we select CelebA-HQ because it contains
identity labels on a large number of diverse face images.
For our evaluation, each testing identity had on average 19
reference images in D (minimum 12 and maximum 24). If
we used fewer reference images (e.g., 3—5), while it did not
degrade image restoration quality, it would indeed lower the
re-identification accuracy based on our testing. This creates
a challenge to the identity-retrieval model because there
are not enough reference images for stable/reliable identity-
matching. The identity retrieval process can be further im-
proved with a dataset that contains more images per identity.

8. Conclusion

In this paper, we developed a system called Revelio
and used a conditional diffusion model to restore Gaussian
blurred face images. With extensive experiments, we showed
that Gaussian blurred faces, even under a high blurring level,
can be restored to their clear form and used to perform accu-
rate re-identification. We showed that Revelio can handle
input images blurred with an unknown kernel size and the
face restoration can be applied to both known identities
and previously unseen identities. Based on our findings, we
explored preliminary countermeasures and provided recom-
mendations to users, software vendors, and policy makers.
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Appendix A.
Case Study: Identity Retrieval Errors

As discussed in §5.3, our method achieves an identity re-
trieval accuracy of 95.9% under the heavy-blur setting. Here,
we analyze the error cases. We find that most errors are
due to the inherent challenges of facial recognition between
identities that look similar. Figure 12 presents two example
error cases. For each case, we show their ground-truth image
before blurring (left), the restored image (middle), and the
matched reference images from the reference database D
(right). We observe that the restored image looks reasonably
similar to the ground-truth one. However, the restored image
is incorrectly matched to a wrong identity in the reference
database. This is because one of the face images of this
identity (the right column) looks very similar to the restored
image. This is an inherent limitation of face recognition
within a large reference database (recall that our reference
database contains 28,000 images and 6,084 identities).
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Figure 12: Examples of identity retrieval errors. The restored
image (middle) from Mp is mismatched with a wrong
identity in the reference database (right). In these examples,
the restored faces are of high quality. Even though they are
matched to a wrong identity (based on CelebA-HQ’s identity
labels), the mismatched faces also look similar.
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Figure 13: The confusion matrix of the kernel size estimator.
The dark squares are aligned with the diagonal line, indi-
cating that the model is highly accurate in predicting the
kernel size of the input blurred images. The mean absolute
error (MAE) is only 0.934.

Appendix B.
Kernel Size and Transferability

In this section, we present additional evaluation results
for the kernel size estimation model, and the experiments to
assess the model transferability against different Gaussian
blur configurations.

Kernel Size Estimator Performance. Figure 13 presents
the confusion matrix of the Gaussian kernel size estimator.
The x-axis shows the predicted kernel size by the model,
and the y-axis shows the ground-truth kernel size used to
blur the input image. We can observe the prediction is highly
accurate with prediction results aligning with the diagonal
line of the matrix. The mean absolute error (MAE) of kernel
size estimation is 0.934.

(a) Square Kernel
K=370=59

(c) Square Kernel
K=27Tc=6

K=8loc=55

(d) Non-squared Kernel
Km‘ = (37,31) 0ij5 = (5.9,5)

Figure 14: Examples of the transferability experiment re-
sults. Each subfigure shows a blurred image (left) and the
restored image by our model (right). (a) shows the setting
where we use the default K-o dependency function in the
existing Gaussian blur implementation; (b) and (c) show
settings where we use a square kernel with different K-o
dependency functions; (d) shows the setting where we use
a non-squared kernel (with a different K and o on the two
dimensions). All these settings have a similar blurring effect.
The result shows that the restoration can still be successful
under these settings.

Transferability: Mismatched Kernel Size.  To under-
stand the impact of the mismatched kernel size on our
method, we test our base model (trained on kernel size
K =81) with images blurred with different kernel sizes.
More specifically, we vary the kernel size from 71 to 91 to
blur the input images to create the mismatch and then let
the base model perform face restoration on these images.
Due to computing resource limitations, we only run one
round of face restoration per image for 50 sampled images
(n = 1). Figure 15 shows example images restored by our
model. We also present the quantitative metrics to assess the
image quality and fidelity in Figure 16. In Figure 16, the y-
range is set based on the metric values of the ground-truth
images and those of the blurred images, which represent
the lower and upper bounds, respectively. The result shows
that our model has some transferability over images blurred
with mismatched kernel sizes. The restored faces still have a
high-level resemblance compared with ground-truth images
with a kernel size offset of 6. Recall that our kernel size
estimator has an MAE lower than 1, which means that this
level of mismatch is not a concern.

Transferability: Different X' — o0 Dependency Functions.
As mentioned in Section 2.1, most Gaussian blur implemen-
tations have a fixed dependency function between the kernel
size K and the standard deviation o, and thus attackers only
need to predict . We explore whether the model still works
if future implementations change this dependency function.
During these experiments, we have an interesting observa-
tion: regardless of how the K — o dependency changes, as
long as the blurring effect is similar to what Revelio is
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Figure 15: Example face restoration results with mismatched kernel sizes for Gaussian blur. The model is trained with
K = 81. The testing image is blurred using a kernel size K varying from 71 to 91.
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Figure 16: Image restoration quality and fidelity under mismatched kernel sizes. The ground-truth kernel size is K = 81.
Combining with Figure 15, we show the model can tolerate mismatched kernel size with an offset of 6.
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Figure 17: Face restoration examples for out-of-distribution (OOD) identities. (a) shows OOD identities missed by our
detection method and (b) shows those detected correctly. For all of the examples, face restoration has been successful as

(a) OOD Missed (b) OOD Detected

the restored faces look similar to the original ground truth.

trained on, the system still works. In practice, this means
adversaries can use the kernel estimator to blindly predict
a kernel size K, and select the corresponding Mp for
face restoration for images blurred by an unknown K — o
dependency function.

Figure 14 (a) shows the result from the default K — o
dependency function in the existing Gaussian blur imple-
mentation (KX = 37). Then in Figures 14 (b) and (c),
we present the transferability experiments where we use
different K —o dependency functions. We pick these settings
because their blurring effect is similar to K = 37 under the
old function (which is used to train Mp). This is determined

by the trained kernel size estimator. The result shows that
the restoration can still be successful under these settings.
Taking Figure 14 (c) for example, we use K =27 and o0 = 6
to blur the image. Our kernel estimator predicts K = 39.
This means our kernel estimator believes the blurring effect
is similar to K = 39 under the old function. Then we choose
Mp under the “light-blur” setting (which has been trained
with K = 37, close to the predicted kernel size). We find
the face restoration still works. The same observations also
apply to Figure 14 (b).

Transferability: Non-Squared Kernel. Finally, we test
the model transferability to a non-squared kernel. Here we



use a kernel of a rectangle shape with different sizes and
Gaussian distributions for the two dimensions. We have the
same observation: as long as the blurring effect is similar to
what Revelio is trained on, the system still works. We can
still use the kernel size estimator (trained by the old square
kernel) to predict the kernel size and select the correspond-
ing Mp for face restoration. Figure 14 (d) demonstrates an
example. The image is blurred by a non-squared kernel with
K = (37,31) and o = (5.9, 5). The kernel estimator shows
the blurring effect is similar to &' = 37 under the old square
kernel. In this case, the face restoration is still successful.

Appendix C.
Extra Example Images

Extra examples of out-of-distribution (OOD) identities
are shown in Figure 17.

Appendix D.
Defense Configurations

The configurations for the defense methods used in our
experiments are as follows: (1) Rotation: we rotate each
testing image by 180 degrees. (2) Gaussian Noise: the mean
of Gaussian Noise is 0 and o is 0.1. (3) JPEG Compression:
according to the Pillow documents, when PIL images are
saved to JPG or JPEG files, the image quality downgrades
by 75% due to the JPEG compression algorithm. We use
this configuration for our experiments. (4) Box Blur: the
kernel size of the box blur is 31 x 31. This roughly matches
the blurring effect of Gaussian blur with K = 37.

Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This paper proposes an attack framework, Revelio, that
reconstructs faces from heavily blurred images using a refer-
ence dataset D. The method performs well even under severe
Gaussian blur (e.g., kernel size 81) and highlights privacy
risks in widely used image deanonymization techniques.

E.2. Scientific Contributions

« Provides a Valuable Step Forward in an Established
Field
« Identifies an Impactful Vulnerability

E.3. Reasons for Acceptance

1) Advances the study of image deanonymization by
showing that identity can still be recovered even
when the image is heavily blurred.

2) Demonstrates that aggressive blurring is insufficient
as a privacy-preserving technique, revealing a class
of vulnerabilities that may affect widely shared
images and videos online, and raising awareness
within the communities.

E.4. Noteworthy Concerns

1) The results depend on an external dataset D. It
would help to specify what kind of data D contains
and under what conditions (e.g., front-facing, high-
quality, similarity to the reconstructed target) the
method succeeds.

2) The general applicability of the vulnerability is not
sufficiently highlighted, making it hard to tell that
it’s not a single implementation flaw.



