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A B S T R A C T

With the wide spread of electric vehicles and relevant grid-powered charging infrastructures, a safe and low-
carbon integration in power systems is particularly challenging, due to variation of electricity generation mix
over different time frames. As moving towards a fully green energy system, optimizing energy consumption
during low-carbon periods, especially with suitable energy storage systems, can have substantial environmental
advantages. In this article, the influence of stationary storage inclusion into electric vehicle parking lots on
weekly operation is assessed by means of optimal daily schedule considering economic (cost minimization) and
environmental (indirect carbon emission minimization) targets. Different storage sizes and EV charging rates are
examined for assessing better exploitations in different weeks of operation. The evaluation of EV smart charging
in combination with storage is considered as well. Results show the advantage of integrating battery storage
system into the parking lot, achieving cost reduction as well as carbon emission reduction for most of charging
rates considered. Further contributions in economic and environmental benefits are reached by implementing EV
smart charging scheduling.

1. Introduction

The expansion of electric vehicles (EVs) ownerships [1] is chal-
lenging for electrical network safe operation due to increasing demand
for EV charging, also at increasing rates. Smart charging solutions show
that the possibility to control EV charging leads to several economic and
technical benefits [2]. In particular, different tariff schemes [3,4] could
imply economic goal achievements, still ensuring a grid safe operation
in distribution networks [5,6]. Moreover, vehicle-to-grid exploitation
represents a viable solution for grid service provision, as voltage support
during peak demand periods [7]. However, the environmental impact of
EVs is still under discussion, in terms of emissions produced during EV
charging. The study presented in [8] deals with the evaluation of elec-
tricity generation emissions produced due to EV charging, highlighting
that smart charging technologies could unintentionally lead to an in-
crease in emissions production, as marginal emissions could have
different patterns from average emission, as shown also in [9]. The
multi-objective procedure proposed in [10] is used to compare the cost
and emission benefits of smart charging with a higher grid capacity limit

with the costs and emissions of grid reinforcements, proving that costs
and emissions for grid reinforcements outweigh the benefits in costs and
emissions in EV charging optimization resulting from increased grid
capacity. However, substantial reductions in EV charging costs and
emissions can be achieved under the current transformer capacity. The
minimization of greenhouse gas emissions from EV charging is the main
objective of [11], where the marginal emission factor and total EV
charging demand are considered to find the optimal spatio-temporal
distribution of EV charging activities to minimize emissions from elec-
tricity generation. The trade-off between emission reduction and peak
power demand shaving is an important aspect in EV charging coordi-
nation. Coordinated charging has been shown in [12] to reduce CO2
emissions by 18 % annually while also decreasing peak power demand
by 33 %. However, further reducing emissions by around 1 % necessi-
tates a significant increase in peak power demand by 84 %, which is 23
% higher than the peak power demand without coordination. This trade-
off highlights the need to balance emissions reduction and grid stabili-
zation goals when coordinating EV charging.

In this context, the studies in [13,14] investigate possible optimal EV
charging/discharging strategies for minimizing carbon emissions,
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underlying the advantage of vehicle-to-grid exploitation in CO2 reduc-
tion, not in all scenarios though, as energy efficiency rating can widely
influence emission evaluations. In particular, vehicle-to-grid exploita-
tion could imply significant reduction in emissions, however acceler-
ating battery degradation [15].

The inclusion of renewable energy sources, as the possibility to
minimize wind curtailment with EV charging [16], or photovoltaic in
dedicated infrastructures for EV charging, represents an important
aspect of the safe integration of charging stations into the distribution
networks, as reported in [17] where a technical-economic-
environmental assessment methodology is implemented for
photovoltaic-powered charging stations, which is demonstrated to pro-
duce less emissions with respect to power-connected charging stations,
and [18], where a bidding model of a power grid involving PV and EVs is
proposed in order to reach low-carbon grid operation. Energy storage
inclusion in parking lot could improve system performances [19],
depending on technology features: as reported in [20], battery-based
energy storage (BS) systems have the advantages of quick response to
peak demand and low dependence from the utility grid with respect to
other technology with lower energy density, such as mechanical and
thermal energy storage systems. As a matter of fact, BS systems could be
involved in optimal scheduling procedures in order to investigate eco-
nomic benefits [21], or to allow the minimization of annual equivalent
carbon emissions, as in [22,23], especially considering second-life

batteries, or to provide reserve to cope with uncertainties of intermittent
renewable sources [24]. Off-grid PV-BS system for EV charging is shown
to be a profitable project to deal with carbon emissions reduction [25].

The focus of this study is on examining how the integration of BS into
EV charging infrastructure can contribute to the reduction of carbon
emissions and enhance the overall sustainability of the energy system by
exploring the potential synergies between BS, type of EV charging and
carbon intensity. In particular, in order to assess the influence on techno-
economic targets of both installation and operation aspects, such as BS
sizes and EV usage, an optimal operation programming procedure is
carried out on weekly time frame, accounting for costs and emission
objectives and considering technical operation features. Proper tech-
nical and economic indicators are defined and contribute to effective
comparison of the analyzed factors and to evaluate a preliminary BS
techno-economic feasibility. A sensitivity analysis of procedure out-
comes with realistic evolution of carbon intensity is carried out.

The main contributions can be summarized as in the following:

• Differently from [23], the impact of BS is assessed by means of
optimal weekly scheduling procedure considering economic (cost
minimization) and environmental (indirect carbon emissions mini-
mization) targets.

• Different BS sizes are examined for evaluating possible better
exploitation, and different weeks of operation as well.

Nomenclature

Acronyms
BS Battery Storage
CO2 Carbon dioxide
EV Electric Vehicle
PV Photovoltaic
SOC State-of-charge

Objective functions
fCO2 Total CO2 emission due to parking lot operation over the

optimization time horizon
fCost Total cost for energy purchasing due to parking lot

operation over the optimization time horizon

Variables
x State variable vector
Pg,int Imported power from the external grid in the t-th time-step

[kW]
PcBSt BS charging power in the t-th time-step [kW]
PdBSt BS discharging power in the t-th time-step [kW]
SBSt BS SOC in the t-th time-step [kWh]
xcBSt Binary variable for BS charging in the t-th time-step
xdBSt Binary variable for BS discharging in the t-th time-step
PEVst Total EV power demand in the t-th time-step (only in smart

charging procedure) [kW]

Parameters
CIt Carbon Intensity index in the t-th time-step [gCO2/kWh]
Pbuy,t Purchase energy price from the grid in t-th time-step

[£/MWh]
PEVst Total EV power demand in the t-th time-step (only in

uncontrolled charging procedure) [kW]
PcBSmin BS minimum charging power [kW]
PcBSmax BS maximum charging power [kW]
PdBSmin BS minimum discharging power [kW]
PdBSmax BS maximum discharging power [kW]

SBSmin BS minimum SOC level [kWh]
SBSmax BS maximum SOC level [kWh]
CapBS BS capacity [kWh]
CapIN BS initial capacity (t = 1) [kWh]
CapFIN BS final capacity (t=NT) [kWh]
ηBSc BS charge efficiency
ηBSd BS discharge efficiency
Pvt Charging power required by the v-th EV in the t-th time-

step [kW]
PEVMAX EV maximum charging power [kW]
Pv,Mt Modulated charging power required by the v-th EV in the

t-th time-step [kW]
Svt SOC of the v-th EV in the t-th time-step [kWh]
Sv,MAX Maximum SOC of the v-th EV [kWh]
ηvc Charge efficiency of the v-th EV
EEVstarget Daily energy need required by EVs (only in smart charging

procedure) [kWh]
tvin/tvout Arrival/departure times of the v-th EV [h]
NEVs Number of total EVs included in the parking lot
NEVst Number of plugged-in EVs in the t-th time-step
NT Number of total time-steps
ΔT Time-step duration in hour

Indicators
ΔCO2 Weekly carbon emission variation [gCO2]
COBS2 Weekly carbon emission in the presence of BS [gCO2]
COno BS2 Weekly carbon emission in the absence of BS [gCO2]
Δcost Weekly cost variation [£]
CostBS Weekly cost in the presence of BS [£]
Costno BS Weekly cost in the absence of BS [£]
YΔCO2 Yearly carbon emission variation [gCO2]
YΔcost Yearly cost variation [£]
Wk Number of occurrences of the represented time horizon in

the generic k-th period
nBSdisch BS equivalent discharging cycle number
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• Slow and fast EV charging rates are considered, in order to assess the
impact of uncontrolled and smart fast charging stations on the
operation of the system and on total carbon emissions.

Section 2 describes the proposed optimization methodology, the case
study is described in Section 3, whereas Section 4 is dedicated to results
and discussion. Conclusions are drawn in Section 5.

2. Methodology

2.1. Overview and assumptions

The proposed methodology employs a deterministic linear mixed-
integer optimization problem to control the BS operation finalized to
provide energy for EV charging, while minimizing economic and envi-
ronmental targets, as the total daily energy costs and CO2 emissions. A
schematic layout integrating the BS is reported in Fig. 1. The assump-
tions underlying the procedure are described in the following:

• uncertainties concerning EV charging demand and plug-in times [29]
are taken into account by generating samples from probability
distributions;

• the EV station infrastructure supports only the charging of vehicles,
either uncontrolled or smart;

• BS operation is deemed to supply EV power needs in the parking lot,
therefore any further exploitation towards the external grid, such as
frequency, voltage and power support services [30], is neglected.

2.2. Optimization problem with EV uncontrolled charging

The optimization problem aims at coordinating the exploitation of
the BS with EV uncontrolled (or dumb) charging, in order to obtain a
power exchange with the external electric grid Pg,int , for each time step t
in the considered time horizon (withNT timesteps), able to reach defined
objective f subject to proper linear constraints as in Eq. (1).

min[f(x) ]

A⋅x ≤ b
Ae⋅x = be

(1)

where x represents the state variable vector, A and Ae represent the
coefficient matrices of inequality and equality constraints respectively,
and b and be are the relevant vectors of known terms.

Two different objective functions are inspected, represented by total
CO2 emissions fCO2 and total operation cost fCost , as defined in Eqs. (2)
and (3) respectively:

fCO2 = ΔT⋅
∑NT

t=1
CIt⋅Pg,int (2)

fCost = ΔT⋅
∑NT

t=1
Pbuy,t⋅Pg,int (3)

where ΔT is the time-step duration in hours, CIt is the carbon intensity in
the t-th time-step, Pbuy,t is the purchase energy price from the grid in t-th
time-step.

The problem is enriched with constraints, mainly related to technical
limits of the BS. In particular, Eq. (4) defines Pg,int as the imported power
from the external grid in the t-th time-step, which is the algebraic sum
among BS active charging power (PcBSt ), discharging power (PdBSt ) and
the total charging demand of EVs in the t-th time-step PEVst . Constraints
in Eq. (5) and (6) take into account technical limits of charge/discharge
power of the BS for each time-step. Moreover, binary state variables xcBSt
and xdBSt , introduced in Eqs. (7)–(9), account for unidirectionality of BS
power exchanges, assuming value of 1 if the BS is charging (or dis-
charging), and 0 if not. In particular, Eqs. (7) and (8) limit charging/
discharging power to the maximum values when binary variables are
active. Since BS discharge is only finalized to energy provision for EV
charging and not for selling energy and other services to the grid to make
profit, inequality in Eq. (10) allows BS discharging only in the presence
of EV charging demand (PdBSt values lower or equal to EV demand at
each time step). Equality constraint in Eq. (11) represents the evolution
of BS state-of-charge (SOC) SBSt for each time-step, accounting for
charge/discharge efficiencies (ηBSc and ηBSd ) as well, whereas Eq. (12) and
Eq. (13) fix the initial and final SOC over the considered time horizon.
Finally, in Eq. (14) proper limits on SOC evolution are posed within
feasible range for the considered BS.

Pg,int = PEVst − PdBSt + PcBSt ∀t ∈ NT (4)

PcBSmin ≤ PcBSt ≤ PcBSmax∀t ∈ NT (5)

PdBSmin ≤ PdBSt ≤ PdBSmax∀t ∈ NT (6)

PcBSt ≤ PcBSt,max⋅xc
BS
t ∀t ∈ NT (7)

PdBSt ≤ PdBSt,max⋅xd
BS
t ∀t ∈ NT (8)

xcBSt + xdBSt ≤ 1∀t ∈ NT (9)

PdBSt ≤ PEVst ∀t ∈ NT (10)

SBSt = SBSt−1 + ΔT⋅ηBSc ⋅PcBSt − ΔT⋅
1

ηBSd
⋅PdBSt ∀t ∈ NT (11)

SBSt=1 = CapIN (12)

SBSt=NT = CapFIN (13)

SBSmin ≤ SBSt ≤ SBSmax∀t ∈ NT (14)

The total number of state variables for the formulated problem with
EV uncontrolled charging is 5xNT, the number of inequality constraints –
including Eqs. (5)–(10) and (14) – is 10xNT and the number of equality
constraints – including Eqs. (4) and (11)–(13) – is 2xNT + 2.

The main input of the proposed procedure is represented by the total
EV charging demand in t-th time step PEVst . For a total number of NEVs,
and under the assumption of uncontrolled charging, based on proper
forecasts on EV maximum power rate PEVMAX and arrival/departure time
tvin, tvout and EV SOC, PEVst is determined as follows:

Fig. 1. System layout.
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PEVst =
∑NEVs

v=1
Pvt ∀t ∈ NT (15)

Pvt =

{
0 t ∕∈

[
tvin, t

v
out

]

min
(
Pv,Mt , PEVMAX

)
t ∈

[
tvin, t

v
out

] (16)

Svt = Svt−1 + ΔT⋅ηvc⋅Pvt ∀t ∈ NT (17)

Pv,Mt =
Sv,MAX − Svt

ΔT⋅ηvc
∀t ∈ NT (18)

2.3. Optimization problem with EV smart charging

In order to investigate the effects of EV smart charging on CO2
emissions and costs, the problem described in the previous Section 2.2 is
slightly modified, considering as additional state variable PEVst , repre-
senting the aggregated power requested by EVs for each time step. This
aggregated power is limited to a maximum value in Eq. (19), that de-
pends both on the number of plugged-in EV for each time-step NEVst and
maximum power of the EV charging point PEVMAX as reported in Eq. (20).
Furthermore, the same daily charging energy (as in dumb-charging
problem) is guaranteed by constraints in Eq. (21) for each day of the
week.

0 ≤ PEVst ≤ PEVst,MAX∀t ∈ NT (19)

PEVst,MAX = NEVst ⋅PEVMAX∀t ∈ NT (20)

∑ntd

t=1
ΔT⋅PEVst = EEVstarget (21)

The aforementioned constraints are still included in the problem
formulation. In particular, with EV smart charging PEVst is considered as a
state variable in Eqs. (4) and (9) instead of the known value obtained for
dumb charging as described before.

The total number of state variables for the formulated problem with
EV smart charging is 6xNT , the number of inequality constraints –
including Eqs. (5)–(10), (14) and (19) – is 12xNT and the number of
equality constraints – including Eqs. (4), (11)-(13), (15) and (20)-(21) –
is 4xNT + 3.

2.4. Techno-economic indicators

The definition of proper economic and technical indicators is
important for comparing results, in order to assess which strategy ach-
ieves better performances with respect to the base case, represented by
the EV dumb charging without the stationary BS, e.g. considering PdBSt =

PcBSt = 0, at the same EV charging rate of the optimized cases with EV
uncontrolled charging. Thus, for each weekly time horizon of the
simulation the CO2 emission variation of the optimized value reported in
Eq. (2) with respect to the base case represent the technical indicator,
and it is evaluated as in Eq. (22). Moreover, variation of costs for energy
purchasing evaluated in Eq. (3) with respect to the base case represents
the economic indicator, as reported in Eq. (23).

The analysis is carried out on time horizons representing different
periods of the year, therefore the annual values of the indicators are
derived as well in Eqs. (24) and (25), being k the general period andWk
the number of occurrences of the represented time horizon in each
period.

Furthermore, the usage of BS is assessed by means of the equivalent
discharging cycle number nBSdisch, evaluated as in Eq. (26), where ηBSd is the
BS discharge efficiency, while CapBS is the BS capacity.

ΔCO2 = COBS2 − COno BS2 = ΔT⋅

(
∑NT

t=1
CIt⋅Pg,int −

∑NT

t=1
CIt⋅PEVst

)

(22)

Δcost = CostBS − Costno BS = ΔT⋅

(
∑NT

t=1
Pbuy,t⋅Pg,int −

∑NT

t=1
Pbuy,t ⋅PEVst

)

(23)

YΔCO2 =
∑Nk

k=1
Wk⋅ΔCO2,k (24)

YΔcost =
∑Nk

k=1

Wk⋅Δcostk (25)

nBSdisch =
∑NT

t=1

ΔT⋅PdBSt
ηBSd ⋅CapBS

(26)

3. System under study

The case study refers to a parking lot of 83 EV charging stations. In
order to construct an insightful case study reflecting practical scenarios,
a survey of three distinct parking locations is conducted by physically
observing and recording vehicle activities within the Cardiff area mul-
tiple times daily over a two-week period in two separate months. Among
these sites, two are linked to workplaces, while the third served as a
general-use parking facility primarily catering to individuals visiting the
city center or engaging in shopping activities. Notably, the workplace
parking areas exhibited substantial variability, attributed largely to the
presence of contractors, and visiting vehicles. According to the obtained
data, the EV usage is modelled through a probabilistic approach that
involves Normal distribution probabilities of plug-in start time and plug-
in duration, and relevant parameters are reported in Table 1.

Moreover, EVs are assumed to be charged considering separately a
slow fixed rate of 7.4 kW, an accelerated 24 kW (over all the parking
time), fast 50 kW and ultra-fast 150 kW (attaining a total energy amount
of the charge EEVstarget equal to a medium-speed charge at 24 kW
throughout the parking time interval).

The carbon intensity data utilized in the evaluation are sourced from
[31] and are related to the year 2022 for UK system. Fig. 2 shows the
average CIt evaluated monthly from 2018 to 2024. It can be seen that the
overall trend is decreasing through years, with a minimum annual
average in 2020 (due to the pandemic), while 2021 average is 25 %
lower than in year 2018 and 12 % lower than in year 2019. The 2022
average is 27 % lower than in year 2018 and 15 % lower than in year
2019.

The considered time horizon spans 1 week, which is further divided
into NT = 336 time-steps with 30-min duration (ΔT = 0.5 h). System
operation over a year is evaluated by the combination among one week
per season (considering Nk = 4 seasons with average week number
Wk = 13.04). Relevant data for carbon intensity by time step in four
representative weeks of 2022 (one per each season) are represented in
Fig. 3.

Furthermore, Fig. 4 reports energy costs that are determined by
elaborating 2022 UK price system analysis report data [32]. In partic-
ular, energy prices are evaluated considering average system price
distinguished in values for short and long system, along with percentage
of system length, reported by day of the season and by settlement period
(30-minute period) over the season.

Table 1
Distribution probability parameters for EV usage.

Plug-in times Mean Standard Deviation

Start time [hh:mm] 12:15 02:45
Duration [h] 2.13 0.38
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The inclusion of a LiFePO4 stationary BS in the system is evaluated
through the simulation of two configurations, assuming charge/
discharge efficiency of 0.95, initial and final SOC (CapIN and CapFIN) at
90 % of maximum capacity CapBS and minimum/maximum SOC levels
(SBSmin and SBSMAX) of 20 % and 90 % of the capacity, respectively.

• BS 1: Capacity CapBS of 1 MWh, with maximum charging/discharg-
ing power (PcBSmax and Pd

BS
max) of 300 kW, with capital expenditure cost

of 500 k£ (considering 500 £/kWh [26]) and space occupancy of 7 m3

[27].
• BS 2: Capacity CapBS of 4 MWh, with maximum charging and dis-
charging power of namely 500 kW and 1.2 MW, with capital
expenditure cost of 2000 k£ (considering 500 £/kWh [26]) and a
space occupancy of 42.77 m3 [28].

Simulations are carried out, in uncontrolled and smart charging, for
four weeks (one per season), two BS sizes, and four EV charging rates,
and considering economic and technical targets. Therefore, the opti-
mization problems described in Section 2.2 and 2.3 are run in 64
different combinations, respectively.

4. Results

In this section the main results are presented and discussed. For the
purpose of brevity, the trends of power exchanges – see Eq. (4) – are
shown only for winter week in various inspected combinations.

4.1. EV uncontrolled charging results

Concerning the operation with slow 7.4 kW charging rate, the power
exchanges during winter week with technical objective (Eq. (2)) are
shown in Fig. 5, where it can be seen that BS contribute to charge EVs
when CO2 minimization strategy is implemented, especially considering
a 4 MWh capacity in BS 2 (Fig. 5b) where the battery storage is able to
cover most of EV charging energy requirements during the week,
deferring charging from the external electric grid in most suitable time
intervals, that could be correspondent, especially during Summer, to the
intervals with more renewable energy production. With the objective of
energy cost minimization (Eq. (3)) the observed results are different:
most of energy required for EV charging is purchased from the external
grid in both BS 1 and BS 2 cases. However, highest purchased power
peaks are detected for CO2 minimization in all scenarios, but especially
for 24 kW charging rate and BS 2 configuration (nearly 1.4 MW peak),
since energy from utility grid (requested when CIt is low) is used for
charging both EVs and BS. The lowest peak (485 kW) is detected for 7.4
kW during winter week, as expected since it is the lowest charging rate
considered.

The fast-charging rate of 150 kW leads to higher EV power peaks
(1.7 MW peak in BS 2 configuration in spring and summer weeks
considering fCO2, and winter weeks considering fCost). Moreover, higher
energy requirements for EV charge cannot be fully provided by BS, even
considering BS 2 configuration. With technical objective, charging
events of BS occur during night hours in winter season, according to low
CIt (Fig. 6), while in summer the BS is charged during the central hours
of the day exploiting higher renewable contribution reducing carbon
intensity. Considering economic target (Fig. 7), BS charging is always
located in night hours, due to lower energy purchase costs. However,
independently on configurations, battery storage is not fully exploited
when economic target is optimized, since the problem solution tends to
reduce energy costs related to its recharge.

4.2. EV smart charging results

Results related to EV smart charging procedure considering eco-
nomic and environmental targets are reported for BS 1 and BS 2 in
Figs. 8 and 9, respectively, referring to winter week. It can be noted that
EV smart charging profiles are different with respect to the uncontrolled-
charging cases. With BS 1, when optimizing fCO2, charging processes of
EVs are concentrated during periods of low carbon intensity, around
12:00, as in Fig. 8a, while minimizing fCost it is concentrated in the early
afternoon when energy costs are low as well, see Fig. 8b. Configuration

Fig. 2. Monthly average CI from 2018 to 2024. [31].

Fig. 3. Carbon intensity index over a week for each season over 2022.

Fig. 4. Energy prices over a week for each season over 2022.
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BS 2 shows significant exploitation for energy provision to the parking
lot, especially with fCO2 minimization (Fig. 9a). BS charging processes
occur during night hours of the day, for both technical and economic
targets. Power peaks registered do not exceed the value of 1.8 MW in all
scenarios, similarly to the peaks depicted in the case of uncontrolled
charging, thus avoiding line overloading conditions with higher peak
values.

4.3. Indicator evaluation and BS feasibility assessment

The evaluation of indicators formulated in Section 2.4 is carried out

and reported in Fig. 10–11 and in Tables 2–3.
Significant CO2 reductions with respect to the base case are achieved

with the environmental target and considering BS 2 configuration for all
charging rates (Fig. 10c), since the presence of stationary storage can
provide energy to EVs when CIt is high, whereas charging during low
levels of carbon intensity. However, the attainment of environmental
target implies an increase of operation costs, that is more evident with
fast charging rates (Fig. 10a). As regards smart charging the advantage is
more evident with 150 kW size, whereas 50 kW smart charging does not
perform well in the BS 2 configuration.

When considering economic target, lower costs are evaluated in all

Fig. 5. Power exchanges during winter for EV uncontrolled charge at 7.4 kW charging rate, considering technical target with BS 1 (a) and BS 2 (b) configuration.

Fig. 6. Power exchanges during winter for EV uncontrolled charge at 150 kW charging rate, considering technical target with BS 1 (a) and BS 2 (b) configuration.
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scenarios considering BS 2 with respect to BS 1 for each charging rate.
The adoption of charging rates higher than 24 kW with uncontrolled
charging implies little improvement of the cost indicator. Moreover, the
highest cost reductions with economic target are depicted considering
EV smart charging with 150 kW rate (Fig. 10b), while CO2 increase is
detected especially for BS 2 and fast charging rate scenarios, except for
winter season where CO2 reduction is still detected for both sizes of
storage and all charging rates (Fig. 10d), pointing out a combined
optimal solution for both indicators.

Tables 2 and 3 collect indicators considering yearly operation for all
scenarios. Considering the environmental target (Table 2), BS 2 gua-
rantees both cost and CO2 reductions over the year, except for a 50 kW

EV smart charging (SC), whereas for BS 1 configuration and high
charging rates (from 50 kW to 150 kW smart charging), an increase in
operation costs is detected. It could be pointed out that EV smart
charging procedure achieves higher CO2 reduction already in BS 1
configuration (with respect to the uncontrolled charging), also avoiding
the usage of bigger storage systems: as a matter of fact, 26,958 kg CO2
reduction with 150 kW SC rate with BS 1 are quite close to 31,438 kg
CO2 reduction with 150 kW uncontrolled charging with BS 2 configu-
ration. However, environmental target leads to higher number of
equivalent discharging cycles, especially with 50 kW SC rate (483.4
cycles, more than one full cycle per day), whereas BS 2 configuration
leads to lower discharge cycles over one year operation (44 % average

Fig. 7. Power exchanges during winter for EV uncontrolled charge at 150 kW charging rate, considering economic target with BS 1 (a) and BS 2 (b) configuration.

Fig. 8. Power exchanges during winter for EV smart charge at 150 kW charging rate, considering technical (a) and economic target (b) with BS 1 configuration.
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reduction).
Regarding economical target, reported in Table 3, significant cost

reduction is achieved when stationary storage supports EV charge,
especially considering BS 2 configuration. As observed for environ-
mental target, EV smart charging procedure achieves higher cost
reduction already in BS 1 configuration, also avoiding the exploitation of
bigger storage systems. For instance, 32,302 £ reduction considering
150 kW SC rate and BS 1 is close to the 36,511 £ reduction with BS 2 and
EV uncontrolled charging. Generally, CO2 increase is depicted in the
economic optimal procedure. However, smart charging mode allows to
achieve lower CO2 increases with the respect to the uncontrolled charge
in BS 2 configuration (for 50 kW and 150 kW). Furthermore, discharge

cycle numbers are lower than in the case of environmental target, and
smart charging mode for 50 kW and 150 kW leads to lower discharge
cycles than uncontrolled charging at the same EV charging rate. Anal-
ogously to environmental target, BS 2 configuration allows even lower
discharging cycles (less than one cycle per day), avoiding excessive
battery storage usage and life reduction.

Fig. 11 shows the number of BS equivalent discharging cycles over a
weekly operation for all the seasons and charging rates. It can be noted
that, with CO2 minimization target, higher cycles are reached in winter
week, while in spring and autumn weeks higher cycles occur with eco-
nomic target. Considering BS 1 configuration, cost minimization em-
ploys lower BS discharge cycles with respect to the economic target,

Fig. 9. Power exchanges during winter for EV smart charge at 150 kW charging rate, considering technical (a) and economic target (b) with BS 2 configuration.

Fig. 10. Winter week. Total daily cost variation (a)-(b) and CO2 variations (c)-(d) for both BS configurations and optimal strategies: CO2 minimization (blue box)
and cost minimization (red box). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

F. Marasciuolo et al. Journal of Energy Storage 102 (2024) 114137 

8 



since lower exploitation is detected. Moreover, with cost minimization
and BS 1, EV smart charging allows better exploitation of storage, with
respect to the uncontrolled charging, with cycle numbers similar to the
BS 2 ones. With cost minimization, BS 2 implies higher advantage on
cycles in autumn and in summer.

The BS feasibility is assessed by comparing simplified payback with
the operational cycle lifetime. The simplified payback is evaluated
dividing the total investment cost by the annual cost reduction (see Δ
cost in Tables 2 and 3), neglecting discount rate [34], whereas the
operational cycle lifetime is the ratio of the total cycle BS life to the
number of yearly operation cycles obtained from the optimal scheduling
(see Tables 2 and 3). The feasibility is confirmed if the payback is lower
than the cycle life of BS, meaning that the BS technical operation is
longer than the investment return period.

To this purpose, the following assumptions are considered: unitary
investment cost of 500 £/kWh and 4500 cycles at 80 % depth-of-
discharge [26,33].

Results reported in Table 4 for CO2 minimization put in evidence
unfeasible economic return for BS in all configurations, due to yearly
cost increase (payback is not defined) or limited cost reductions
(payback is longer than 50 years), arising the need for additional
remuneration schemes. Whereas, the total cycle lifetime is attained in a
period ranging from 9.3 to 35.3 years with CO2 minimization.

Cost minimization (see Table 5) leads to admissible payback values
for BS 1 (best case PEVMAX =150 kW in SC), whereas for BS 2 payback
shorter than 50 years is attained only with high power SC. The cycle
lifetime is wider than in CO2 minimization, ranging from 13 to 26 years
for BS 1 and from 24 to 42 years for BS 2. The comparison yields positive

Fig. 11. BS equivalent weekly discharging cycles per seasons, evaluated in scenarios of emission minimization with BS 1 (a) and BS 2 (b) configuration and in
scenarios of cost minimization with BS 1 (c) and BS 2 (d) configuration.

Table 2
Indicator evaluation over a year – CO2 minimization.

PEVMAX 7.4 kW 24 kW 50 kW 50 kW
SC

150 kW 150 kW
SC

Δcost [£] BS 1 −132 −1932 +906 + 1174 +1128 + 1474
BS 2 −3790 −1770 −1228 + 4363 −641 −779

ΔCO2 [kg]
BS 1 −9317 −10,428 −9928 −16,951 −9628 −26,958
BS 2 −25,186 −35,059 −30,849 −22,846 −31,438 −40,985

BS cycles
BS 1 344.3 476.5 337.9 483.4 450.0 384.1
BS 2 127.4 262.4 223.0 305.3 241.7 225.6

Table 3
Indicator evaluation over a year – Cost minimization.

PEVMAX 7.4 kW 24 kW 50 kW 50 kW
SC

150 kW 150 kW
SC

Δcost [£] BS 1 −12,082 −17,007 −14,558 −24,872 −14,414 −32,302
BS 2 −22,494 −39,695 −33,783 −38,257 −36,511 −44,878

ΔCO2 [kg]
BS 1 +2608 +2452 +2999 + 2439 +2809 + 4537
BS 2 −718 +5652 +7446 + 1873 +8135 + 5280

BS cycles
BS 1 241.6 351.7 283.2 202.8 285.9 173.5
BS 2 107.9 190.3 177.8 133.1 184.1 126.4

Table 4
Feasibility analysis – CO2 minimization.

PEVMAX 7.4 kW 24 kW 50 kW 50 kW SC 150 kW 150 kW SC

BS 1 Payback [y] ≫ ≫ ND ND ND ND
Cycle operation time [y] 13.1 9.4 13.3 9.3 10.0 11.7
Feasibility NO NO NO NO NO NO

BS 2
Payback [y] ≫ ≫ ≫ ND ≫ ≫
Cycle operation time [y] 35.3 17.1 20.2 14.7 18.6 19.9
Feasibility NO NO NO NO NO NO

Legend:
≫: the payback is >50 years
ND: in the absence of economic profit, it is not possible to define the number of years for investment return
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feasibility evaluation for BS 1 in the presence of SC, confirming that the
optimal BS scheduling for cost minimization in combination with SC
allows to reach suitable performances from several viewpoints.

The technology evolution, in terms of investment decrease and/or
lifetime increase, could provide better outcomes, increasing the
advantage of BS 2 with cost minimization.

4.4. Sensitivity on carbon intensity

With the aim of evaluating the effect of realistic CI evolution on the
BS performances in the EV parking lot, a sensitivity analysis is per-
formed. Based on the observed reduction of carbon intensity index in the
last years, as reported in Fig. 1, where a 5 % annual average reduction
can be pointed out thanks to decarbonization policies, the analysis is
carried out on expectable carbon index level at 2025, assuming an
average reduction of 15 % with respect to 2022 values (see Fig. 2) with
further noise with normal distribution having zero mean and 1.5 %
deviation.

Winter season and 50 kW EV power rate in uncontrolled charging
and SC are analyzed with sensitivity assumptions, and relevant results in
terms of weekly variations of CO2 and cost with respect to the base case
(without BS), along with BS weekly cycles, are reported in Table 6. For
purpose of comparison, the respective results of the original analysis
performed in the previous section, as already shown in Fig. 9, are re-
ported in Table 6 as well. It can be noted that when minimizing carbon
emissions, the sensitivity implies a significant decrease in CO2 variation
ΔCO2 for both charging strategies and BS configurations, even
exceeding the average 15 % reduction of the sensitivity assumptions,
while Δcost and cycles show a generally higher increase for BS 1,
therefore lower CI values allow BS operation to take more advantage on
emission reduction. When minimizing costs, cost variation and cycles
keep the same of original analysis as expectable, whereas CO2 reduction
is lower than the original analysis, while keeping decrease except for BS
1, further underpinning the suitability of cost minimization with BS 2 for
both indicators.

5. Conclusions

In this paper, the economic and environmental impacts of stationary

energy storage system installation into EV charging infrastructures have
been assessed by means of optimal procedures aimed at minimizing
operational costs or carbon emissions. Scenarios of investigations have
been chosen combining seasonal weekly operations with different EV
charging rates (from slow to ultra-fast), and two BS configurations with
different capacities. Moreover, the association of BS configuration with
EV smart charging in fast and ultra-fast station has been inspected as
well. EV usage uncertainties have been accounted by sampling proba-
bility distributions over a weekly time-horizon, based on data from a
campus installation with EV charge in the central hours of the day when
carbon intensity and energy costs are more critical.

Results have shown that BS operation has been significant to reduce
EV carbon intensity and charging costs. In particular, when considering
environmental target carbon emission reduction has been achieved,
especially for high BS capacity levels and in scenarios of EV fast charging
rates, and operational costs are higher in fast charging scenarios than in
low charge ones, irrespective of the BS size and the season. Some sig-
nificant cost reductions are possible considering economic target and
high-capacity BS. However, this leads to an increase of carbon emis-
sions, since variations are positive, with the only exception of winter
week. The exploitation of EV smart charging has allowed a less intense
exploitation of BS, ensuring longer life, and the attainment of objective
values similar to higher BS sizes with uncontrolled charging. In addition,
preliminary feasibility of BS has been assessed in terms of payback and
cycle lifetime, pointing out that cost minimization allows to attain
techno-economic feasibility in combination with SC. A sensitivity
analysis on carbon index evolution has revealed that CO2 minimization
can take more advantage on environmental impact although yielding
cost increase, therefore cost minimization with higher BS size has
resulted as the combined suitable solution.

The procedure results flexible for analyzing different EV utilization
frameworks and time distribution of charging events, in order to assess
the inspected environmental, economic and technical aspects in several
practical approaches where the BS management could be implemented.
This study lays the basis for further investigations that could combine
both economic and environmental target, along with the possibility to
extend the procedure considering bidirectional EV exploitation for
vehicle-to-grid applications and the effects on distribution network
operation.

Table 5
Feasibility analysis – Cost minimization.

PEVMAX 7.4 kW 24 kW 50 kW 50 kW SC 150 kW 150 kW SC

BS 1 Payback [y] 41.4 29.4 34.3 20.1 34.7 15.5
Cycle operation time [y] 18.6 12.8 15.9 22.2 15.7 25.9
Feasibility NO NO NO YES NO YES

BS 2
Payback [y] ≫ ≫ ≫ ≫ ≫ 44.6
Cycle operation time [y] 41.7 23.6 25.3 33.8 24.4 35.6
Feasibility NO NO NO NO NO NO

Legend:
≫: the payback is >50 years

Table 6
Sensitivity evaluation of carbon index. Indicators over the Winter week.

PEVMAX CO2 minimization Cost minimization

Original Sensitivity Original Sensitivity

50 kW 50 kW
SC

50 kW 50 kW
SC

50 kW 50 kW
SC

50 kW 50 kW
SC

Δcost [£] BS 1 +136 +152 +192 +248 −88 −221 −88 −221
BS 2 +267 +458 +307 +427 −256 −365 −256 −365

ΔCO2 [kg]
BS 1 −136 −205 −404 −671 −58 −32 −34 +29
BS 2 −558 −392 −939 −749 −208 −215 −215 −176

BS cycles
BS 1 1.40 1.54 1.64 1.91 0.36 0.23 0.36 0.23
BS 2 0.78 1.01 0.79 1.01 0.22 0.15 0.22 0.15
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