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Alternating Links Have at Most Polynomially
Many Seifert Surfaces of Fixed Genus

JOEL HASS, ABIGAIL THOMPSON & ANASTASIIA
TSVIETKOVA

ABSTRACT. Let L be a non-split prime alternating link with
n > 0 crossings. We show that for each fixed g, the number of
genus-g Seifert surfaces for L is bounded by an explicitly given
polynomial in n. The result also holds for all spanning surfaces
of fixed Euler characteristic. Previously known bounds were ex-
ponential.

1. INTRODUCTION

A Seifert surface for a link in S3 is a connected orientable surface, embedded in
S3 \ L, whose boundary is isotopic to the link. If the orientability condition
is omitted, the surface is called a spanning surface. Let L be a non-split prime
alternating link with an n-crossing diagram, where n > 0. In this paper, we give
an upper bound on the number of isotopy classes of spanning surfaces of L that
have a fixed Euler characteristic. The bound is given by an explicit polynomial
in n. Our methods apply to Seifert surfaces, spanning surfaces, and to more
general essential surfaces with non-meridional boundary. However, in this paper
we focus our attention on Seifert surfaces and state our results mainly for that
class of surface. We show that the number of genus-g Seifert surfaces in the
complement of an n-crossing alternating diagram is at most (4n)64g2−48g .

In general, a knot complement can contain many, and in some cases infinitely
many, non-isotopic Seifert surfaces of a given genus (see, e.g., [2]). But in a hy-
perbolic manifold the number of spanning surfaces is always finite. This can be
seen by homotoping each surface to a least area representative and applying the
Gauss-Bonnet theorem and Schoen’s curvature estimates [6,19]. Alternatively, the
surfaces can be homotoped to pleated surfaces as in [20]. This type of argument
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applies also to π1-injective immersions, but is not constructive and gives no ex-
plicit bound on the number of surfaces of a given genus. Normal surface theory
can also be used to bound the number of spanning surfaces of genus g. Each sur-
face can be isotoped to be normal, and can then be expressed as a sum of finitely
many fundamental normal surfaces. However, this process leads to an exponential
bound on the number of spanning surfaces of genus g as a function of n. This is
due to the exponential growth of the number of fundamental surfaces of a given
genus, and even of the number of vertex fundamental surfaces, as a function of
the number of tetrahedra t [7]. An additional difficulty is that an incompressible
surface may not be fundamental, so that one must also count combinations of
lower genus fundamental surfaces that combine to form a given genus [5].

The surfaces we consider are embedded and incompressible, but not neces-
sarily disjoint. The number of disjoint incompressible surfaces in a manifold is
easier to bound. This was first observed by Kneser [13] for closed incompressible
surfaces. Kneser showed that the number of such surfaces is bounded by a linear
function of the number of tetrahedra t required to triangulate the manifold. For
a link complement, t is a linear multiple of the number of crossings in the link
diagram. Hence, the number of disjoint spanning surfaces realizable for a link L
grows linearly with n [9]. Kneser’s arguments also apply to surfaces with boundary
in link complements.

If we fix a link complement, our results additionally yield an exponential up-
per bound in terms of genus (rather than crossing number). This can be compared
with the results of Masters [14] and Kahn-Markovic [12] for essential immersed
closed surfaces in a closed manifold, where the manifold is fixed and it is shown
that the number of surfaces grows exponentially with the genus.

A related problem for closed surfaces was studied by the authors in [8], where
it was proved that the number of closed incompressible genus-g surfaces in a
prime alternating link complement is bounded by Cgn40g2 , where Cg is an explicit
constant depending only on the genus g, and n is the number of crossings. The
proof for Seifert surfaces and spanning surfaces presented here needs to consider
cases that cause difficulties not encountered with closed surfaces. In [8] a surface is
put in standard position with respect to the projection plane and the link diagram,
and then decomposed into disks bounded by polygons and lying above or below
the plane. By summing the contributions to the Euler characteristic of the surface
of each region, a bound on the number and complexity of the region is obtained.
Each region makes a negative contribution to the Euler characteristic, bounding
their number, and the possible ways for polygons to appear on a link diagram can
then be analyzed, providing an upper bound for the surface count. The standard
position and Euler characteristic arguments can be extended to Seifert surfaces, but
the resulting regions for surfaces with boundary include cases that contribute zero
to the Euler characteristic computation. This leads to an exponential explosion
in the number of possible intersection configurations relative to the number of
crossings. However, many of these configurations give rise to isotopic surfaces, and
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we can show that the number of surfaces up to isotopy still grows polynomially
with the number of crossings. This is carried out in Sections 4 and 5.

2. STANDARD POSITION FOR SEIFERT SURFACES

A standard position for surfaces in an alternating knot complement was intro-
duced by Menasco for closed surfaces and for surfaces with meridianal bound-
ary [15], and extended by Menasco and Thistlethwaite to general surfaces with
boundary [17]. We briefly review these techniques, with some minor modifica-
tions to the arguments.

A reduced alternating diagram D of a prime alternating link L can be placed
in a projection plane Q except for two small arcs near each crossing, one of which
drops below Q, and one of which rises above it. Then, L lies on a union of two
overlapping 2-spheres in S3, S+, and S−, which agree with Q except along small
balls around each crossing, called bubbles. The spheres S+ and S− go over the top
and bottom hemispheres of each bubble, respectively. We denote by B+ the ball in
S3 lying above the projection plane and bounded by S+, and by B− the ball lying
below the projection plane and bounded by S−.

Suppose F is a spanning surface for L. It is shown in Proposition 2.1 of [17]
that F can be isotoped rel boundary so that it intersects Q transversally except in
two situations:

(1) F meets a bubble in a saddle near a crossing, as in Figure 1(a).
(2) At finitely many points, F twists around a strand of L as in Figure 1(b).

F is then said to be in the standard position. In (2), we call the arc of intersection of
F ∩ (Q \D), together with its endpoints on D, an interior arc. An interior arc can
run along Q to connect two points on D, or between a point on D and a saddle.
An arc of F ∩Q that coincides with an arc of D and lies between two interior arcs
is called a boundary arc.

(a) F is tangent to the projection plane at a saddle
point contained in a bubble.

(b) An interior arc of F ∩Q ends at a point where
F twists from being above to below Q.

FIGURE 2.1.
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Here, F is divided into regions in B+ and B− by closed curves in F ∩ S+ or
F ∩ S−. Parts of these curves lie in the boundary of F (i.e., run along the link).
We assign to each closed curve C in F ∩ S+ or F ∩ S− a word in the letters B and
S, defined up to cyclic order, as follows. Orient C and, starting from an arbitrary
non-crossing point, follow C until returning to that point. For every saddle passed
on the way, add an S to the word, and for every point that passes between interior
and boundary arcs, add a B. Figure 2.2 gives an example of a link and a curve of
F ∩ S+ that gives the word BBSSS. The link is depicted in black, the curves of
F ∩ S+ with dashes, and the curves of F ∩ S− with dots.

Define the complexity of a surface F in standard position to be a pair (s, c),
where s is the sum of the number of S associated with all curves in F ∩ S+ and
F ∩ S−, and c is the number of such curves. If F minimizes this complexity in
lexicographic order among all standard position surfaces in its isotopy class, then
F is said to have minimal complexity.

We refer to a segment of the link diagram D that travels between two succes-
sive crossings of L and lies in the projection plane Q as an edge of D, and use arc
to refer to subcurves of F ∩ S+ and F ∩ S− running between the S and B.

The following lemma summarizes the properties of spanning surfaces in stan-
dard position that follow from the work of Menasco and Thistlethwaite [17].

Lemma 2.1. Suppose a spanning surface F has minimal complexity. Then, the
curves of F ∩ S+ and F ∩ S− and the associated words in the letters B, S have the
following properties:

(1) The curves of F ∩S+ and F ∩S− subdivide F into disks, each disk lying either
in F ∩ B+ or F ∩ B−.

(2) No curve passes through the same bubble twice.
(3) Every edge of the diagram D meets an interior arc of F ∩Q.
(4) No curve contains two interior arcs with endpoints on an edge A and lying on

the same side of A.
(5) An equal number of curves of F ∩ S+ pass through each side of a saddle. The

same holds for F ∩ S−.
(6) No curve passes through a saddle and then meets an edge of D adjacent to the

saddle.
(7) No word is empty.
(8) Letters B in a word appear in consecutive pairs.
(9) There is no word consisting entirely of instances of S.

(10) Each word has length at least four.

Proof. We indicate the proofs for F ∩S+ below. The same arguments apply to
F ∩ S−.

For (1), see Proposition 2.2 (i) in [17]. For (2) and (4), see Proposition 2.2 (ii),
and for (6), see Proposition 2.3.

The proof of (3) follows from the fact that L is alternating and is the boundary
of F . Hence, every edge is adjacent to an overpass and underpass, and a part of
the surface near an edge changes from being in B+ to being in B− somewhere
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between the two adjacent crossings. This gives rise to an interior arc meeting the
edge. Claim (5) follows from the fact that each saddle of a surface results in one
intersection curve on each side of a crossing. For (7), if there is a component
of F ∩ S+ with no saddles or punctures, take an innermost such component. It
bounds a disk in B+, so we can isotop F to eliminate the curve of intersection with
S+ and reduce the complexity. For (8), note that each boundary arc in a curve
contributes two successive instances of B. Claim (9) is proved in Lemma 2 of [15]
for closed surfaces. The proof for spanning surfaces is exactly the same.

FIGURE 2.2. The link L and a BBSSS curve from F ∩ S+

For (10), if the word for a curve has just two letters, it is one of BB, SB, or SS.
The word SS contradicts (2), SB contradicts (8), and BB contradicts (4). Among
3-letter words, we have ruled out SSS. A curve of type BBS can be perturbed
so that it intersects the link L at most three times. Thus, the perturbed curve
intersects twice, implying either that D is not prime or that Case (6) is violated.
Hence, the length of the word is at least four. �

3. DECOMPOSING A SURFACE INTO REGIONS

We henceforth consider a surface F in standard position with minimal complexity.
In this section, we decompose the surface into polygonal faces, determined by the
intersections of F with Q, and analyze the contributions of the faces to the Euler
characteristic of the surface. A similar technique was used in [8] for closed surfaces,
and in [17] for a different purpose.

We decompose F using the arcs of F ∩Q. These form a graph on F . At each
saddle, four polygonal faces and four arcs of F∩Qmeet at the saddle point, where
we add a vertex to the graph. We also add a vertex at every intersection of D and
an interior arc of F ∩Q. The resulting graph Γ has vertices of valence four at the
centers of the saddles and vertices of valence three at endpoints of interior arcs that
meet D. The graph Γ cuts F into a collection of disks by Lemma 2.1 (1) that we
call “polygonal faces or regions.” The vertices and edges of a region are the vertices
and edges of Γ , respectively.

Lemma 3.1. The Euler characteristic of F can be computed by adding the con-
tribution of each region. A region E contributes 1− s0/4− b0/4 to χ(F), where s0 is
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the number of instances of S in the word associated with the boundary of E, and b0 is
the number of instances of B.

Proof. Enumerate all curves Ci, i = 1, . . . , r , in F ∩ S+ and F ∩ S−. Suppose
Ci is the boundary of a region Ei of F with interior in B+ or B−. The Euler
characteristic of F can be recovered by summing the contributions of each of these
regions Ei, i = 1, . . . , r .

Four distinct regions share a vertex at a saddle, and two regions share a vertex
at the endpoint of an interior arc that meets D. Two regions share an edge of Γ that
coincides with an interior arc, and there is just one region at every edge of Γ that
corresponds to a boundary arc. Hence, the Euler characteristic χ(F) = v − e+ f
can be distributed among vertices and edges as follows.

For vertices, + 1
4 is allocated to each vertex of a region on a saddle (i.e., S

contributes + 1
4 as a vertex), + 1

2 to each vertex at the end of an interior arc that
meets D (i.e., B contributes + 1

2 as a vertex). For edges, the contribution is − 1
2 for

an edge of Γ that corresponds to an interior arc, and −1 to an edge that corresponds
to a boundary arc.

Now let us distribute the contributions of the edges of Γ between their vertices.
Every B is an endpoint of one interior arc and one boundary arc. Every S is an
endpoint of two interior arcs. In an interior arc with the contribution of − 1

2 , we
can view the contribution of B as − 1

4 and of S as − 1
4 . In a boundary arc with the

contribution −1, the contribution of every B is − 1
2 . Thus, the contribution of a

region with s0 vertices at saddles and b0 vertices at the ends of interior arcs that
meet D is

s0

(
1
4
−

1
4
−

1
4

)
+ b0

(
1
2
−

1
4
−

1
2

)
+ 1 = 1−

s0

4
−
b0

4
. �

Remark 3.2. It follows from Lemma 2.1 (10) that all curves of F∩S+ or F∩S−
make a negative contribution to the Euler characteristic of a minimal complexity
spanning surface, no greater than − 1

4 , except for BBBB and BBSS curves, which
contribute zero. We analyze BBBB curves in the next section.

4. COLLECTIONS OF BBBB CURVES

We say that a collection of regions in F is connected if the dual graph, formed by
taking a vertex for each region and an edge for two regions that share a common
arc, is connected. A connected collection of BBBB regions is maximal if it is not a
strict subset of a connected collection of BBBB regions.

Lemma 4.1. Assume that L is not a (2, n)-torus link. A connected collection of
BBBB regions forms a subsurface of F with interior homeomorphic to a disk. The set
of all maximal connected collections of BBBB regions forms a collection of disks with
no pair of disks sharing a common arc in their boundaries.
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L

с
1
с
2

F

FIGURE 4.1. A connected collection of two regions, each
bounded by a BBBB curve

Proof. We first use induction to show that a connected collection of BBBB
regions C has interior homeomorphic to a disk. If C consists of a single BBBB
region, then it is a disk, since any single region is a disk. Now consider the case
when C consists of the union of k distinct BBBB regions. The dual graph of C is
a finite connected graph, so we can remove some region R to get a collection of
k− 1 BBBB regions C0 which is also connected. By induction, C0 is a disk, and C
is obtained from C0 by adding a single BBBB region R sharing at least one arc with
C0. Now, C0 ∩ R consists of either one or two interior BB arcs. If one, then since
the union of two disks intersecting along a proper arc on their boundary is a disk,
it follows that the interior of C is also a disk. If C0 ∩R has two components, then
C is an annulus or Mobius band, properly embedded in F , and ∂C coincides with
either one or two components of L. The boundary of a regular neighborhood
in S3 of this annulus or Mobius band is a torus, and since L is alternating, the
torus must be compressible in the complement of L [15], and hence unknotted
and the boundary of a solid torus in the complement of L. Since each curve of ∂C
is isotopic to a curve on this torus that intersects its meridian twice, and L is not
split, L must be a (2, n)-torus link, contradicting our hypothesis. We conclude
that the connected collection of BBBB regions C is homeomorphic to a disk.

A maximal connected collection of BBBB regions cannot share an interior arc
with a another such region, since if it did, neither would be maximal.

Thus, maximal connected collections are disks with no common arc in their
boundaries. �

A consequence of Lemma 4.1 is that the isotopy class of a spanning surface
does not depend at all on the location of BBBB curves.

Lemma 4.2. The curves of F∩S+ and F∩S− that are not of type BBBB, together
with the link L, determine a unique spanning surface F , up to isotopy.

Proof. By Lemma 4.1, maximal connected collections of BBBB regions form
disjoint disks when L is not a (2, n)-torus link. The image of the surface in the
complement of the disks is determined by the configuration of curves that are not
BBBB curves. Two Seifert surfaces that agree in the complement of a collection
of disks are isotopic, since the link L is not split, and therefore has irreducible
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complement. Thus, the isotopy class of the spanning surface F is determined once
the curves that are not BBBB are specified. Finally, we note that a (2, n)-torus
link has a unique incompressible spanning surface. �

5. THE NUMBER OF SEIFERT SURFACES OF FIXED GENUS

In this section, we bound the number of curves in F ∩ S+ and F ∩ S−, and the
maximum length of the word associated with each curve. This in turn gives an
upper bound for the number of Seifert surfaces of a fixed genus, up to isotopy.
Here and further, we assume that genus g > 0.

Let C1 denote the set of curves of F∩S+ and F∩S− that are not of type BBBB
or BBSS, and C2 the set of BBSS curves. We have the following.

Lemma 5.1. |C1| ≤ 8g − 4.

Proof. By Remark 3.2, every curve in C1 gives a contribution to the absolute
value of the Euler characteristic of F of at least 1

4 . The Euler characteristic of F is
1− 2g. Thus, the maximal possible size of |C1| is 1− 2g/(− 1

4) = 8g − 4. �

Lemma 5.2. The length of the word associated with any curve in (F ∩ S±) is at
most 8g − 4.

Proof. We consider words associated with the curves in C1, since all other
words are of length 4. It follows from Lemma 3.1 that each word of C1 gives a
negative contribution to the Euler characteristic of F . The Euler characteristic of
F is 1− 2g, and each word contributes 1− s0/4− b0/4 by Lemma 3.1, where b0
is the number of B’s, and s0 is the number of S’s in the word. Thus, the longest
possible word has length b0 + s0 = 8g − 4. �

Lemma 5.3. |C2| ≤ 4g − 4.

Proof. Every BBSS curve contains two saddles. Theorem 3 of [17] gives an
upper bound of (−χ(F) − b) = 2g − 2 for the number of saddles in a minimal
complexity diagram, where b is the number of boundary components of F . Each
BBSS curve meets two saddles, and each saddle meets four curves, so at most
4g − 4 BBSS words are associated with the surface F . Thus, |C2| ≤ 2(2g − 2) =
4g − 4. �

Theorem 5.4. For a prime non-split alternating link L with n crossings, the
number of isotopy classes of genus-g Seifert surfaces is at most (4n)64g2−48g .

Proof. In each isotopy class we choose a surface that is in minimizing standard
position. There are at most 8g−4 curves in C1 by Lemma 5.1 and 4g−4 curves in
C2 by Lemma 5.3. We count the number of possible configurations these curves
can realize, up to isotopy of the curves.

Each of the curves in C1 has an associated word with length at most 8g − 4
by Lemma 5.2. Consider a curve of F ∩ S+. The link L has n crossings, and
each crossing gives rise to two choices for the location of an S adjacent to that
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crossing. There are 2n edges in the link diagram, each edge having two sides,
giving 4n choices for where an interior arc meets an edge. Choosing successive
sides of saddles and edges determines a curve up to isotopy. Therefore, the number
of isotopy classes of a curve in C1, each such curve having length at most 8g − 4,
is less than (4n)8g−4. For the entire collection of up to 8g − 4 curves, the total
number of isotopy classes is bounded by (4n)(8g−4)(8g−4). Similarly, the number
of configurations for curves in C2 is bounded by (4n)(4)(4g−4). Once the curves
in C1 and C2 are fixed, Lemma 4.2 shows that the spanning surface is determined
up to isotopy. This gives an upper bound of (4n)64g2−48g possible isotopy classes
for F . �

Remark 5.5. We have not used the orientability of F in the arguments above,
except when we replace Euler characteristic with genus. Therefore, a similar upper
bound holds for the number of spanning surfaces, oriented or not, if genus g is
replaced by (1− χ(F))/2.

Remark 5.6. The bound in Theorem 5.4 is polynomial in n when the genus
is fixed. Thus, the number of genus-g Seifert surfaces for a link is bounded by a
polynomial function of the number of crossings as L varies. However, for a fixed
link L, the number of surfaces can grow exponentially with the genus. This can
be compared with the results on immersed closed surfaces in closed hyperbolic
3-manifolds [12], [14], and with similar results for closed surfaces in alternating
links [8]. We note that J. Banks constructed explicit families of prime alternating
knots for which the number of minimal genus Seifert surfaces grows exponentially
with the genus ([1]).

Remark 5.7. The Kakimizu complex of a link L is a simplicial complex whose
vertices correspond to isotopy classes of minimal genus Seifert surfaces of L, and
edges correspond to disjoint (up to isotopy) pairs of such surfaces ([11]). Theo-
rem 5.4 gives an upper bound on the number of vertices in a connected compo-
nent of this complex.
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