
How Are You Feeling?: Characterization and Analysis of 
Human Factors in Multi-Human Multi-Robot 

Collaborative Tasks 

Abstract—Collaborative robots have been employed in a wide 
range of applications across industries, especially as the transition 
continues into Industry 5.0. As this new industrial revolution 
occurs, human-centricity becomes an ever-increasing focus, and 
the need for a developed understanding of how robot behaviors 
affect the fundamental human factors of trust, comfort, and 
acceptance in human-robot collaborative contexts grows. While 
many efforts have been conducted in this area, what remains 
relatively understudied on this topic is when robots are working 
with human workers in a Multi-Human Multi-Robot (MHMR) 
environment. In this work, we present a framework and develop 
an experimental platform to collect humans’ multimodal physical 
and physiological biometrics information in order to characterize 
human factors in MHMR interaction. The electrocardiograms, 
galvanic skin response, pupillometry, and electromyography signals 
are acquired during the MHMR collaborative manufacturing 
process. Experimental results and analysis suggest that human 
workers’ responses to different robot behaviors can be dynamically 
and quantitatively characterized in MHMR collaboration. This 
work is a cornerstone for further modeling and understanding of 
human factors (e.g., trust, comfort, and acceptance) to improve 
collaboration efficiency for MHMR partnerships in Industry 5.0 
contexts. Future directions of this study are also discussed. 

Keywords—Trust, robotics, human factors, safety, human-
robot collaboration, physiological biometrics 

I. INTRODUCTION 

It is unsurprising that the application of robots in industry 
has seen tremendous growth within recent years, spanning 
across the healthcare, manufacturing, and agriculture sectors, in 
addition to others [1-3]. Facilitated by the rise of Industry 4.0, 
the number of operating industrial robots around the world 
surpassed 4 million as recently as 2023 and continues to rise in 
annual installations [4]. The Industry 4.0 paradigm brought with 
it the introduction of cyber-physical systems, big data, and 
Internet of Things, which permitted the development of intelligent 
production environments driven by robotics, AI, and sensors 
designed to enhance the safety of workers within these spaces 
operating both around and with autonomous systems [5].  

The robots that function with operators in a shared space are 
known as collaborative robots or cobots [6]. Collaborative 
robots are an intriguing component of modern smart factories, 
especially with consideration for the approaching Industry 5.0, 
which is more value-driven than technology-driven and has a 
large human-centric focus in addition to other values such as 
sustainability and resilience [7]. That being said, ensuring 
collaborative robot systems that work alongside human workers 

are acceptable as well as capable is critical to Industry 5.0. This 
acceptability extends to the ideas of trust and comfort when 
interacting with the robot as well, as high levels of these factors 
are beneficial to any type of collaborative interaction. Generally, 
research into these factors in human-robot collaboration is 
examined in single-human single-robot contexts. 

Making such investigations in multi-human multi-robot 
(MHMR) environments provides a unique challenge, and most 
studies rather focus on task allocation and performance metrics 
of the team [8]. However, some studies have sought to model 
and evaluate trust in such settings, such as [9], which presents 
an expectation confirmation trust model. This model involves 
concepts including initial trust and expectations, among others. 
The evaluation of trust is necessary to the research area of 
collaborative robotics, and the same for the factors of comfort 
and acceptance [10-12]. These three factors are some of the 
primary subjects of extensive observation in human-robot 
interaction (HRI) [13, 14]. Enabling effective collaboration and 
teamwork demands high levels of trust between cooperating 
parties, comfort with working alongside them, and acceptance 
of them in their work. Typically, these factors are evaluated on 
a subjective level according to responses gathered from surveys 
issued either during or after an interaction. While this approach 
is effective, it leaves room for potential inaccuracies for several 
possible reasons, including misunderstanding questions. That 
being said, they are still capable of providing valuable insights 
into the feelings of those interacting with the robot. 

An alternative method of evaluating these factors exists in 
the form of using sensors to collect physical and physiological 
signals that may represent a particular emotional or mental state. 
Such signals typically include electrocardiogram (ECG), skin 
temperature, electrodermal activity (EDA), respiratory activity, 
electromyography (EMG), and electroencephalography (EEG) 
[12, 15]. Bethel et al. noted that, among four identified 
evaluation methods in HRI studies, including self-report 
measures (surveys), behavioral measures, psychophysiology 
measures, and task performance, none of these alone is sufficient 
to provide a comprehensive interpretation of interactions 
between the human and the robot [16].  

In this study, we present an experimental foundation for 
evaluating the human factors of trust, comfort, and acceptance 
felt by users when interacting in multi-human multi-robot 
collaborative contexts with dynamic robot performance 
conditions, including variations in speed and handoff positions. 
Establishing the ideal parameters for which the robot will 
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operate to ensure user comfort and trust is crucial for developing 
more human-centered systems, especially due to the natural 
implications of creating adaptable robots that can actively shift 
their behavior to accommodate user preferences in real-time. In 
our experiments, subjects’ physical and physiological data are 
collected during the interaction for the purpose of creating a 
database that may be used to extrapolate conclusions regarding 
these human factors. That is, how the robots’ speed, handoff 
distance, and handoff height affect these factors. Studies such as 
these in MHMR contexts are relatively underrepresented in the 
community, and the purpose of this work is to attempt to mitigate 
that gap. This work is also a cornerstone for further modeling and 
understanding of human factors to improve collaboration 
efficiency for MHMR partnerships in Industry 5.0 contexts. 

II. RELATED WORK 

MHMR environments are a challenging setting to research 
human factors since operators are not working with just one robot, 
but with potentially multiple in addition to human teammates. 
Additionally, the idea that basic one-to-one HRI is scalable 
regarding human factors has likely led to a noticeable gap in this 
area. Existing research focus in the field of MHMR interaction 
takes a few forms. For instance, Malvankar-Mehta et al. presented 
a multi-level programming model for such an environment with 
the objective of optimally allocating tasks to team leaders and 
therefore maximizing system performance and minimizing 
processing cost and time [8]. This model also takes into account 
human factors. More specifically, operator-specific workload 
and cognitive thresholds. Naturally, the human operators are the 
primary focus of this type of research, and as more are 
introduced, more issues arise that must be considered. Patel et 
al. addressed such an issue that is defined as the “out-of-the-loop 
performance problem,” which is caused by a lack of engagement 
in the task, awareness of its state, and trust in the system and 
other operators [17]. The problem is not one that is unique to 
MHMR systems, but is one that certainly becomes more 
prevalent in such environments. The work detailed the creation 
of the first mixed granularity interface for MHMR interaction 
that was evaluated by workload, trust, and task performance.  

It is noted that low-level granularity of control (GOC) in 
systems such as these offers more opportunity for interaction 
and development of trust in the system at the expense of 
potentially higher workload and stress, whereas high-level 
control limits the workload but also may lead to boredom and 
lower situational awareness [18]. Our work seeks to avoid this 
problem while also providing users with more opportunities for 
trust development by giving very low levels of GOC. This will 
permit a more accurate assessment of human factors when 
interacting with the system, as they will be actively engaged in 
its operation. In contrast to the lack of research into the MHMR 
setting, there exists literature on the use of physiological 
biomarkers for assessing such factors. Be it for emotion 
recognition and inference [19], trust assessment [12], or comfort 
[20], these markers provide a window into the mental state of a 
person that may be examined to gain a clearer understanding of 
how certain external factors affect their mood. 

The evaluation of trust, comfort, and acceptance based upon 
varying robot behaviors, especially through the analysis of 
physical and physiological markers, is a topic that does not 

appear to be heavily investigated in MHMR environments. 
While existing work in this domain has considered human 
factors, these three have yet to be comprehensively analyzed 
together. We seek to do so to study and establish how the shift 
from single-human single-robot interaction changes when 
human operators are placed into the workspace with other 
workers and multiple robots with varying behaviors.  

III. MULTIMODAL PHYSICAL AND PHYSIOLOGICAL 
BIOMETRICS DATA 

A. ECG 
Electrocardiograms are a measurement process that 

measures the electrical activity of the heart. From these readings, 
it is possible to obtain heart rate bpm and RR-interval metrics, 
which can be used as indicators of cognitive or emotional state. 
As such, studies have examined the use of this data for the 
assessment of trust, comfort, the general emotional state, and 
their attitude of acceptance [21]. It should not be ignored that the 
heart is well connected to the sympathetic and parasympathetic 
nervous system, which are directly responsible for the “fight-or-
flight” and “rest-and-digest” responses, respectively [22]. The 
myelinated vagus nerve, or “vagal brake,” inhibits the threat-
defensive behaviors associated with the sympathetic nervous 
system, which promotes a calm physiological state. When safety 
is threatened, the vagal brake releases and permits the 
sympathetic nervous system to take over. The balance of these 
two systems is what produces variability in heart rate (HRV) as 
sympathetic speed ups transition into parasympathetic braking, 
and vice versa [23]. This variation in heart rate may be used to 
assess the stress and comfort that may be felt during MHMR 
interaction, as low HRV is associated with high sympathetic 
arousal, and high HRV with high parasympathetic arousal. 

B. GSR/EDA 
Galvanic skin response (GSR) is a psychophysiological 

signal that is modulated by the sympathetic nervous system. 
Arousal is indicated by the conductivity of the surface of the 
skin, which may be used to assess stress, emotional response, 
and cognitive load [24]. As it is placed on the surface of the skin, 
most GSR sensors are non-obtrusive and do not obstruct normal 
function. Furthermore, studies have employed the use of these 
sensors for the purpose of estimating trust and comfort [20, 25]. 
As such, we make use of this data in our study as well. 

C. Pupilometry 
Pupillometry is the measurement of the changes in pupil 

diameter, which often occur in response to stimuli. Such stimuli 
can often be attributed to cognitive load, emotional variation, or 
arousal [26]. These changes can be examined at the time of the 
stimulus to ascertain the reason for them, based on which studies 
have been done to assess comfort and trust [27]. Our study collects 
this data for further analysis in MHMR collaborative contexts. 

D. EMG 
Electromyography is the process of recording the electrical 

activity produced by muscles. Higher stress is typically associated 
with greater muscle activation, especially in the forearm [28]. 
Thus, we make use of this data in our examination of potential 
stress in MHMR environments, which may in turn be used to 
draw conclusions regarding trust, comfort, and acceptance. 



IV. EXPERIMENTAL SETUP 

A. Experimental Platform 

Our MHMR collaborative experiments are conducted on the 
Multimodal Collaborative Robot System (MCROS) [6], which 
is designed and developed to facilitate human-robot research 
and applications. As shown in Fig. 1, the MCROS has two 
UR10e arms, a mobile base, and a suite of sensory systems 
including 3D LiDARs, force-torque sensors, GPS, panoramic 
cameras, and more. The Robot Operating System (ROS) is used 
for MCROS programming and control, which empowers it to 
be an open-source system to seamlessly integrate with other 
cyber-physical systems in different tasks [29]. 

     
      Fig. 1. The MCROS.                     Fig. 2. Sensor setup. 

B. Sensors 

Four types of sensors are used in our experiments to collect 
the ECG, GSR, Pupillometry, and EMG data. The first is the 
Polar H10 heart rate sensor, which is a wireless ECG device 
and requires direct contact with the skin to conduct its 
measurements. Testing has shown a high degree of accuracy of 
its data [30]. GSR data is collected using an Emotibit sensor, a 
device capable of recording EDA, PPG, temperature, and 
motion. Much like the Polar H10, experiments have shown a 
very high degree of accuracy of the measurements taken with 
the device [31]. As such, we employ it in our study for 
measuring GSR/EDA signals. The sensor is placed on the 
subject’s non-dominant ring finger. Eye gaze data is collected 
using the Vive XR Elite headset. This headset is capable of 
tracking the eye position and rotation (X, Y, Z), pupil diameter, 
pupil position, and eye openness for both the left and right eyes. 
While all of this data is collected during the study, our primary 
focus is the pupil diameter measurements, though other data 
may be used for the extrapolation of blink frequency as well. 
The final sensor that we employ in this study is the Myo 
armband. This sensor is capable of tracking EMG signals over 
8 channels and is worn on the upper forearm. When placed, the 
muscles covered are the flexor digitorum superficialis, extensor 
digitorum, brachioradialis, extensor digiti minimi, extensor 
carpi radialis longus, and extensor carpi ulnaris [32]. Fig. 2 
shows the sensor setup for each participant in our study. 

C. Task Description 

In our experiments, human participants will work with 
robots to complete a collaborative assembly task. As presented 
in Fig. 3, the product to be assembled is a plane model that 
includes 18 separate parts. Each arm of the MCROS is assigned 
to a user, who will work with their partner to assemble the full 
model. As shown in Fig. 4, each side is responsible for 

assembling a wing (red/green), a fuselage (white/blue), and a 
stabilizer (pink/yellow), so the distribution of tasks between the 
two participants is equivalent. The robots retrieve the parts from 
the workspaces on each side and hand them off to their 
operators at varying heights and distances. The experiment is 
run twice, first with the robots moving at high speed, and next 
at low speed. Each trial includes 9 different robot behaviors as 
described in Section V. 

      
Fig. 3. The collaborative assembly task.   Fig. 4. The MHMR experimental setup. 

A laptop with a survey is provided in front of each user so 
that they may respond in real time, rating their perceived trust, 
comfort, and acceptance of the robot given its most recent 
action. After each handoff movement, the robot will pause for 
30 seconds to provide time for the operator to fit their parts 
together as well as answer the three questions associated with 
the movement. After each trial, a TLX questionnaire is to be 
filled out prior to moving on to the next. 

Synchronization of timestamps is critical to the data 
collection and analysis process. Each arm’s movements and 
activity are recorded with a timestamp at one-second intervals 
throughout the experiment, and this enables necessary insight 
into what stimulus causes the physiological responses that are 
produced. A global clock and time synchronization are used to 
ensure that all timestamps line up properly. Following the 
assembly of each participant’s task, they may turn to each other 
to finish the process together. We include this part of the 
experiment to directly compare the physiological responses of 
the collaborating pair to those experienced during their 
interaction with the robot. 

D. Data Collection 

Our data is collected firstly from the sensors that 
participants wear during the interaction, and secondly from 
their own subjective measures of their trust in the robot, 
comfort with its actions, and overall acceptance of it. Prior to 
beginning the experiment, it is crucial that they have a firm 
understanding of what these categories mean. Thus, we adhere 
to the following definitions. 

Trust in HRI involves an expectation or attitude regarding 
the likelihood of favorable responses. Jin-Hee et al. present trust 
as the willingness of a trustor to take a risk based upon their 
belief that the other party (trustee) will act reliably to maximize 
the trustor’s interest under uncertainty of a situation based on 
the cognitive assessment of prior experience with the trustee 
[33]. We adhere to this definition for the purpose of our study. 
Comfort and acceptance are more easily defined. Most people 
are capable of providing a subjective rating of their comfort at 
a given moment or with a given scenario. Their ratings, paired 
with the physiological data to be collected, are more than 



sufficient to measure their sense of ease. Similarly, most people 
are able to indicate their level of acceptance of a partner–be it 
human or robot. Idle time, speed, fluency, and efficiency are all 
contributors to levels of acceptance [34], and are expected to be 
taken into account by participants of this study. 

The survey that participants are presented with is to be 
completed in part before and in part during the experiment 
while interacting with the robot. Prior to starting, it first asks 
questions regarding the participant’s demographics, such as age, 
sex, education, previous experience with robots, attitude 
towards robots, and their familiarity with their partner. Much of 
this data is collected to uncover potential biases and 
relationships in responses during the MHMR collaboration. 
These responses ask the participant for their subjective rating 
of trust, comfort, and acceptance for each behavior. After each 
trial of 9 robot movements, a TLX survey is provided. As 
shown in Fig. 5, a nine-point Likert scale is used to collect the 
ratings of human factors from participants. 

 
Fig. 5. The Likert scale employed in MHMR collaboration. 

 
(a) 

 
(b) 

Fig. 6. Heart rate and RR-interval variation of human participants in MHMR 
collaboration. (a) Participant A. (b) Participant B. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. ECG Data and Analysis  

Fig. 6 shows the variation of ECG signals from the two 
participants in the experiment. The charts provide a visual 
representation of heart rate and RR-intervals, both standardized, 
over the course of the interaction with the robot operating at 
high speed. Shaded regions are used to show what action the 
robot is performing at each point as well as the handoff position 
type used. Examining Fig. 6(a), it appears that early in the 
interaction, participant A experiences higher heart rate peaks 
and as expected, inverse RR interval dips. These peaks trend 
towards being both less prominent as well as more stable as the 
interaction continues, especially once the robot begins to hand 
off parts at low positions. This seems to indicate a higher degree 
of comfort as the interaction progresses, with a slower and more 
stable heart rate arriving with time. Even so, the RR-interval 
curve demonstrates some irregularities, suggesting a higher 
level of arousal. Fig. 6(b) exhibits high and consistent variability 
in the heart rate of participant B throughout the session without 

stabilizing. Close and high handoff positions appear to be 
associated with sharp increases in heart rate, and no downward 
trend is observed. This participant seems to be reactive, with no 
signs of habituation. 

Comparing the two participants’ ECG data, several 
observations may be made. Firstly, close and high positions 
seem to be correlated with greater peaks in heart rate, which 
indicates a higher degree of arousal and potentially stress. 
Additionally, as expected, heart rate decreases in a return to 
baseline during less demanding phases, such as when the robot 
is moving to acquire the next part. Participant A, however, 
seems to habituate to their task, becoming less reactive to 
stimuli as the experiment continues, while participant B 
remains comparatively responsive throughout. 

B. EDA/SCR Data and Analysis 

Fig. 7 shows the skin conductance response signals for the 
same two participants during the experiment. Like Fig. 6, 
shaded regions are used along with captions to show what 
action the robot is performing at a given point. The phasic EDA 
pattern observed in Fig. 7(a) is both moderate and consistent. 
Towards the end of the collaboration, the amplitudes increase 
slightly, indicating a mildly more intense response from participant 
A. These results are consistent with those observed from Fig. 
6(a), with the same subject eliciting stability and habituation, 
suggesting moderate cognitive engagement of participant A in 
the MHMR collaboration. The SCR response of participant B 
shown in Fig. 7(b) is in line with the behavior observed in Fig. 
6(b), demonstrating more extreme spikes, if less frequent peaks. 
These infrequent peaks would seem to indicate more selective 
engagement and arousal throughout the experiment. 

 
(a) 

 
(b) 

Fig. 7. SCR variation of human participants in MHMR collaboration. (a) 
Participant A. (b) Participant B. 

It can be seen that participant A appears to maintain moderate 
and consistent arousal levels throughout the MHMR collaboration, 
while participant B is often highly reactive but less predictable. 
The response of Participant A could be attributed to comfort with 
mild stress and routine focus. These differences in responses 
highlight the varying levels of comfort and familiarity that 
people may have when working with collaborative robots. 

C. Pupilometry Data and Analysis 

Fig. 8 presents the pupil dilation variation of human 
participants in MHMR collaboration. Similar to Figs. 5 and 6, 



it uses shaded regions to indicate robot activities during the 
collaboration. The pupil dilation of each participant over the 
course of the interaction is depicted with red dots to mark peaks. 
Fig. 8(a) shows frequent and strong fluctuations in the pupil 
size of participant A throughout the task, especially during 
handoff sequences. It indicates sustained arousal or engagement 
of this participant from start to end. This is in line with the SCR 
responses observed from Fig. 7 (a), which could be associated 
with mild stress or routine focus. Fig. 8(b) demonstrates that 
participant B’s behaviors are consistent with strong initial 
arousal and attention, which drops off as the experiment 
progresses. This could be attributed to a multitude of factors, 
including habituation, loss of engagement, or fatigue. 

While participant A performs sustained reactivity, 
engagement, and sensitivity to the task, participant B only does 
so for the first half of the experiment. In both cases, however, 
handoff phases are nearly always associated with dilation peaks 
of varying sizes, which can be used to indicate relative arousal 
for varying robot behavior. 

 
(a) 

 
(b) 

Fig. 8. Pupil dilation variation of human participants in MHMR collaboration. 
(a) Participant A. (b) Participant B. 

D. EMG Data and Analysis 

Fig. 9 shows the EMG values of the participants’ arms 
throughout the experiment. As before, robots’ activities are 
presented alongside these values, including an average, which 
can be used to uncover potential stressors during MHMR 
collaboration. Peaks are to be expected at the time of receiving 
parts by humans from robots, but the relative size of these 
peaks, as well as the values at rest, should be considered since 
they may indicate relative muscle tension that may reflect the 
stress of humans in the collaboration process with robots.  

Fig. 9(a) uncovers potential stressors of participant A. It can 
be seen that most phases in which the part is received 
correspond to higher EMG values in the arm. Additionally, 
during periods between handoffs when human participants 
would expect a more relaxed state, the values hover above zero. 
This slight increase over baseline muscle tension could be 
attributed to sustained arousal, stress, or simply anticipation, 
which fits with participant A’s behavior observed in other 
physical and physiological responses. Fig. 9(b), by contrast, 
shows lower EMG baselines during rest periods, and spikes 
similar in size to those observed in Fig. 9(a). As noted, baseline 

muscle tension could be attributed to arousal, stress, or 
anticipation. From this result, it would seem that these states are 
comparatively lower, with resting values falling into the 
negative standardized range. 

 
(a) 

 
(b) 

Fig. 9. EMG variation of human participants in MHMR collaboration. (a) 
Participant A. (b) Participant B. 

 
(a) 

 
(b) 

Fig. 10. Ratings of human factors in MHMR collaboration. (a) Participant A. 
(b) Participant B. 

E. Human Factors Evaluation and Analysis 

Participants’ ratings of their trust, comfort, and acceptance 
for robot behaviors at high speed during the MHMR 
collaboration process are shown in Fig. 10. It can be seen that 
the levels of human factors of the two participants are quite 
different in relation to even the same collaborative task. For 
example, when robots deliver objects to their human partners 
from a greater distance, one of the participants feels more 
comfortable with the robot than the other one, perceiving the 
“far distance” as safer compared to situations where the robot 
comes too close. In addition, each participant presents varying 
levels of trust, comfort, and acceptance toward different robot 
actions throughout the whole collaboration process. For each 
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robot action, a participant’s trust, comfort, and acceptance are 
not always positively correlated. For instance, even if a 
participant accepts a robot’s collaborative action during a 
shared task, they may still experience discomfort or lack full 
trust in the action. These findings imply that human factors in 
response to various robot behaviors during MHMR 
collaboration can be effectively characterized using dynamic 
and quantitative measures. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, we have presented a framework to gather 
physical and physiological data regarding trust, comfort, and 
acceptance of participants as they interact with robots in a 
multi-human multi-robot environment. Investigations such as 
these in MHMR contexts are relatively underrepresented, and 
this work aims to alleviate that gap. By utilizing ECG, EDA, 
Pupillometry, and EMG data, we aim to identify what types of 
robot behaviors have what effects on what human factors in 
MHMR collaboration. Experimental results indicate that 
participants’ responses to diverse robot behaviors can be 
dynamically and quantitatively characterized.  

This work creates a catalyst to further computationally 
model and understand human factors for MHMR partnerships 
to improve collaboration efficiency in Industry 5.0 contexts. In 
addition to deeper forms of correlation analysis for the collected 
physiological data and human trust, comfort, and acceptance, 
we will conduct an extensive investigation, especially into how 
to build an explainable, trustworthy, comfortable, and acceptable 
multi-human multi-robot collaboration process and system for 
human workers in industry sectors. To address these issues, 
artificial intelligence and machine learning methods such as 
Transfer Learning [35], and Federated Learning [36] will be 
used for the collected data to reason and predict human factors 
such as trust, comfort, acceptance, emotions, and more in MHMR 
collaborative tasks. Additionally, we will design a comprehensive 
user study by hiring more participants to collect human factors-
related information and evaluate our developed approaches. 
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