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Abstract—Collaborative robots have been employed in a wide
range of applications across industries, especially as the transition
continues into Industry 5.0. As this new industrial revolution
occurs, human-centricity becomes an ever-increasing focus, and
the need for a developed understanding of how robot behaviors
affect the fundamental human factors of trust, comfort, and
acceptance in human-robot collaborative contexts grows. While
many efforts have been conducted in this area, what remains
relatively understudied on this topic is when robots are working
with human workers in a Multi-Human Multi-Robot (MHMR)
environment. In this work, we present a framework and develop
an experimental platform to collect humans’ multimodal physical
and physiological biometrics information in order to characterize
human factors in MHMR interaction. The electrocardiograms,
galvanic skin response, pupillometry, and electromyography signals
are acquired during the MHMR collaborative manufacturing
process. Experimental results and analysis suggest that human
workers’ responses to different robot behaviors can be dynamically
and quantitatively characterized in MHMR collaboration. This
work is a cornerstone for further modeling and understanding of
human factors (e.g., trust, comfort, and acceptance) to improve
collaboration efficiency for MHMR partnerships in Industry 5.0
contexts. Future directions of this study are also discussed.

Keywords—Trust, robotics, human factors, safety, human-
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I. INTRODUCTION

It is unsurprising that the application of robots in industry
has seen tremendous growth within recent years, spanning
across the healthcare, manufacturing, and agriculture sectors, in
addition to others [1-3]. Facilitated by the rise of Industry 4.0,
the number of operating industrial robots around the world
surpassed 4 million as recently as 2023 and continues to rise in
annual installations [4]. The Industry 4.0 paradigm brought with
it the introduction of cyber-physical systems, big data, and
Internet of Things, which permitted the development of intelligent
production environments driven by robotics, Al, and sensors
designed to enhance the safety of workers within these spaces
operating both around and with autonomous systems [5].

The robots that function with operators in a shared space are
known as collaborative robots or cobots [6]. Collaborative
robots are an intriguing component of modern smart factories,
especially with consideration for the approaching Industry 5.0,
which is more value-driven than technology-driven and has a
large human-centric focus in addition to other values such as
sustainability and resilience [7]. That being said, ensuring
collaborative robot systems that work alongside human workers
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are acceptable as well as capable is critical to Industry 5.0. This
acceptability extends to the ideas of trust and comfort when
interacting with the robot as well, as high levels of these factors
are beneficial to any type of collaborative interaction. Generally,
research into these factors in human-robot collaboration is
examined in single-human single-robot contexts.

Making such investigations in multi-human multi-robot
(MHMR) environments provides a unique challenge, and most
studies rather focus on task allocation and performance metrics
of the team [8]. However, some studies have sought to model
and evaluate trust in such settings, such as [9], which presents
an expectation confirmation trust model. This model involves
concepts including initial trust and expectations, among others.
The evaluation of trust is necessary to the research area of
collaborative robotics, and the same for the factors of comfort
and acceptance [10-12]. These three factors are some of the
primary subjects of extensive observation in human-robot
interaction (HRI) [13, 14]. Enabling effective collaboration and
teamwork demands high levels of trust between cooperating
parties, comfort with working alongside them, and acceptance
of them in their work. Typically, these factors are evaluated on
a subjective level according to responses gathered from surveys
issued either during or after an interaction. While this approach
is effective, it leaves room for potential inaccuracies for several
possible reasons, including misunderstanding questions. That
being said, they are still capable of providing valuable insights
into the feelings of those interacting with the robot.

An alternative method of evaluating these factors exists in
the form of using sensors to collect physical and physiological
signals that may represent a particular emotional or mental state.
Such signals typically include electrocardiogram (ECG), skin
temperature, electrodermal activity (EDA), respiratory activity,
electromyography (EMG), and electroencephalography (EEG)
[12, 15]. Bethel ef al. noted that, among four identified
evaluation methods in HRI studies, including self-report
measures (surveys), behavioral measures, psychophysiology
measures, and task performance, none of these alone is sufficient
to provide a comprehensive interpretation of interactions
between the human and the robot [16].

In this study, we present an experimental foundation for
evaluating the human factors of trust, comfort, and acceptance
felt by users when interacting in multi-human multi-robot
collaborative contexts with dynamic robot performance
conditions, including variations in speed and handoff positions.
Establishing the ideal parameters for which the robot will



operate to ensure user comfort and trust is crucial for developing
more human-centered systems, especially due to the natural
implications of creating adaptable robots that can actively shift
their behavior to accommodate user preferences in real-time. In
our experiments, subjects’ physical and physiological data are
collected during the interaction for the purpose of creating a
database that may be used to extrapolate conclusions regarding
these human factors. That is, how the robots’ speed, handoff
distance, and handoff height affect these factors. Studies such as
these in MHMR contexts are relatively underrepresented in the
community, and the purpose of this work is to attempt to mitigate
that gap. This work is also a cornerstone for further modeling and
understanding of human factors to improve collaboration
efficiency for MHMR partnerships in Industry 5.0 contexts.

II. RELATED WORK

MHMR environments are a challenging setting to research
human factors since operators are not working with just one robot,
but with potentially multiple in addition to human teammates.
Additionally, the idea that basic one-to-one HRI is scalable
regarding human factors has likely led to a noticeable gap in this
area. Existing research focus in the field of MHMR interaction
takes a few forms. For instance, Malvankar-Mehta et al. presented
a multi-level programming model for such an environment with
the objective of optimally allocating tasks to team leaders and
therefore maximizing system performance and minimizing
processing cost and time [8]. This model also takes into account
human factors. More specifically, operator-specific workload
and cognitive thresholds. Naturally, the human operators are the
primary focus of this type of research, and as more are
introduced, more issues arise that must be considered. Patel et
al. addressed such an issue that is defined as the “out-of-the-loop
performance problem,” which is caused by a lack of engagement
in the task, awareness of its state, and trust in the system and
other operators [17]. The problem is not one that is unique to
MHMR systems, but is one that certainly becomes more
prevalent in such environments. The work detailed the creation
of the first mixed granularity interface for MHMR interaction
that was evaluated by workload, trust, and task performance.

It is noted that low-level granularity of control (GOC) in
systems such as these offers more opportunity for interaction
and development of trust in the system at the expense of
potentially higher workload and stress, whereas high-level
control limits the workload but also may lead to boredom and
lower situational awareness [18]. Our work seeks to avoid this
problem while also providing users with more opportunities for
trust development by giving very low levels of GOC. This will
permit a more accurate assessment of human factors when
interacting with the system, as they will be actively engaged in
its operation. In contrast to the lack of research into the MHMR
setting, there exists literature on the use of physiological
biomarkers for assessing such factors. Be it for emotion
recognition and inference [19], trust assessment [12], or comfort
[20], these markers provide a window into the mental state of a
person that may be examined to gain a clearer understanding of
how certain external factors affect their mood.

The evaluation of trust, comfort, and acceptance based upon
varying robot behaviors, especially through the analysis of
physical and physiological markers, is a topic that does not

appear to be heavily investigated in MHMR environments.
While existing work in this domain has considered human
factors, these three have yet to be comprehensively analyzed
together. We seek to do so to study and establish how the shift
from single-human single-robot interaction changes when
human operators are placed into the workspace with other
workers and multiple robots with varying behaviors.

III. MULTIMODAL PHYSICAL AND PHYSIOLOGICAL
BIOMETRICS DATA

A. ECG

Electrocardiograms are a measurement process that
measures the electrical activity of the heart. From these readings,
it is possible to obtain heart rate bpm and RR-interval metrics,
which can be used as indicators of cognitive or emotional state.
As such, studies have examined the use of this data for the
assessment of trust, comfort, the general emotional state, and
their attitude of acceptance [21]. It should not be ignored that the
heart is well connected to the sympathetic and parasympathetic
nervous system, which are directly responsible for the “fight-or-
flight” and “rest-and-digest” responses, respectively [22]. The
myelinated vagus nerve, or “vagal brake,” inhibits the threat-
defensive behaviors associated with the sympathetic nervous
system, which promotes a calm physiological state. When safety
is threatened, the vagal brake releases and permits the
sympathetic nervous system to take over. The balance of these
two systems is what produces variability in heart rate (HRV) as
sympathetic speed ups transition into parasympathetic braking,
and vice versa [23]. This variation in heart rate may be used to
assess the stress and comfort that may be felt during MHMR
interaction, as low HRV is associated with high sympathetic
arousal, and high HRV with high parasympathetic arousal.

B. GSR/EDA

Galvanic skin response (GSR) is a psychophysiological
signal that is modulated by the sympathetic nervous system.
Arousal is indicated by the conductivity of the surface of the
skin, which may be used to assess stress, emotional response,
and cognitive load [24]. As it is placed on the surface of the skin,
most GSR sensors are non-obtrusive and do not obstruct normal
function. Furthermore, studies have employed the use of these
sensors for the purpose of estimating trust and comfort [20, 25].
As such, we make use of this data in our study as well.

C. Pupilometry

Pupillometry is the measurement of the changes in pupil
diameter, which often occur in response to stimuli. Such stimuli
can often be attributed to cognitive load, emotional variation, or
arousal [26]. These changes can be examined at the time of the
stimulus to ascertain the reason for them, based on which studies
have been done to assess comfort and trust [27]. Our study collects
this data for further analysis in MHMR collaborative contexts.

D. EMG

Electromyography is the process of recording the electrical
activity produced by muscles. Higher stress is typically associated
with greater muscle activation, especially in the forearm [28].
Thus, we make use of this data in our examination of potential
stress in MHMR environments, which may in turn be used to
draw conclusions regarding trust, comfort, and acceptance.



IV. EXPERIMENTAL SETUP
A. Experimental Platform

Our MHMR collaborative experiments are conducted on the
Multimodal Collaborative Robot System (MCROS) [6], which
is designed and developed to facilitate human-robot research
and applications. As shown in Fig. 1, the MCROS has two
UR10e arms, a mobile base, and a suite of sensory systems
including 3D LiDARs, force-torque sensors, GPS, panoramic
cameras, and more. The Robot Operating System (ROS) is used
for MCROS programming and control, which empowers it to
be an open-source system to seamlessly integrate with other
cyber-physical systems in different tasks [29].

Fig. 1. The MCROS.

Fig. 2. Sensor setup.
B. Sensors

Four types of sensors are used in our experiments to collect
the ECG, GSR, Pupillometry, and EMG data. The first is the
Polar H10 heart rate sensor, which is a wireless ECG device
and requires direct contact with the skin to conduct its
measurements. Testing has shown a high degree of accuracy of
its data [30]. GSR data is collected using an Emotibit sensor, a
device capable of recording EDA, PPG, temperature, and
motion. Much like the Polar H10, experiments have shown a
very high degree of accuracy of the measurements taken with
the device [31]. As such, we employ it in our study for
measuring GSR/EDA signals. The sensor is placed on the
subject’s non-dominant ring finger. Eye gaze data is collected
using the Vive XR Elite headset. This headset is capable of
tracking the eye position and rotation (X, Y, Z), pupil diameter,
pupil position, and eye openness for both the left and right eyes.
While all of this data is collected during the study, our primary
focus is the pupil diameter measurements, though other data
may be used for the extrapolation of blink frequency as well.
The final sensor that we employ in this study is the Myo
armband. This sensor is capable of tracking EMG signals over
8 channels and is worn on the upper forearm. When placed, the
muscles covered are the flexor digitorum superficialis, extensor
digitorum, brachioradialis, extensor digiti minimi, extensor
carpi radialis longus, and extensor carpi ulnaris [32]. Fig. 2
shows the sensor setup for each participant in our study.

C. Task Description

In our experiments, human participants will work with
robots to complete a collaborative assembly task. As presented
in Fig. 3, the product to be assembled is a plane model that
includes 18 separate parts. Each arm of the MCROS is assigned
to a user, who will work with their partner to assemble the full
model. As shown in Fig. 4, each side is responsible for

assembling a wing (red/green), a fuselage (white/blue), and a
stabilizer (pink/yellow), so the distribution of tasks between the
two participants is equivalent. The robots retrieve the parts from
the workspaces on each side and hand them off to their
operators at varying heights and distances. The experiment is
run twice, first with the robots moving at high speed, and next
at low speed. Each trial includes 9 different robot behaviors as
described in Section V.

Fig. 3. The collaborative assembly task. Fig. 4. The MHMR experimental setup.

A laptop with a survey is provided in front of each user so
that they may respond in real time, rating their perceived trust,
comfort, and acceptance of the robot given its most recent
action. After each handoff movement, the robot will pause for
30 seconds to provide time for the operator to fit their parts
together as well as answer the three questions associated with
the movement. After each trial, a TLX questionnaire is to be
filled out prior to moving on to the next.

Synchronization of timestamps is critical to the data
collection and analysis process. Each arm’s movements and
activity are recorded with a timestamp at one-second intervals
throughout the experiment, and this enables necessary insight
into what stimulus causes the physiological responses that are
produced. A global clock and time synchronization are used to
ensure that all timestamps line up properly. Following the
assembly of each participant’s task, they may turn to each other
to finish the process together. We include this part of the
experiment to directly compare the physiological responses of
the collaborating pair to those experienced during their
interaction with the robot.

D. Data Collection

Our data is collected firstly from the sensors that
participants wear during the interaction, and secondly from
their own subjective measures of their trust in the robot,
comfort with its actions, and overall acceptance of it. Prior to
beginning the experiment, it is crucial that they have a firm
understanding of what these categories mean. Thus, we adhere
to the following definitions.

Trust in HRI involves an expectation or attitude regarding
the likelihood of favorable responses. Jin-Hee et al. present trust
as the willingness of a trustor to take a risk based upon their
belief that the other party (trustee) will act reliably to maximize
the trustor’s interest under uncertainty of a situation based on
the cognitive assessment of prior experience with the trustee
[33]. We adhere to this definition for the purpose of our study.
Comfort and acceptance are more easily defined. Most people
are capable of providing a subjective rating of their comfort at
a given moment or with a given scenario. Their ratings, paired
with the physiological data to be collected, are more than



sufficient to measure their sense of ease. Similarly, most people
are able to indicate their level of acceptance of a partner—be it
human or robot. Idle time, speed, fluency, and efficiency are all
contributors to levels of acceptance [34], and are expected to be
taken into account by participants of this study.

The survey that participants are presented with is to be
completed in part before and in part during the experiment
while interacting with the robot. Prior to starting, it first asks
questions regarding the participant’s demographics, such as age,
sex, education, previous experience with robots, attitude
towards robots, and their familiarity with their partner. Much of
this data is collected to uncover potential biases and
relationships in responses during the MHMR collaboration.
These responses ask the participant for their subjective rating
of trust, comfort, and acceptance for each behavior. After each
trial of 9 robot movements, a TLX survey is provided. As
shown in Fig. 5, a nine-point Likert scale is used to collect the
ratings of human factors from participants.
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Fig. 5. The Likert scale employed in MHMR collaboration.
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Fig. 6. Heart rate and RR-interval variation of human participants in MHMR
collaboration. (a) Participant A. (b) Participant B.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. ECG Data and Analysis

Fig. 6 shows the variation of ECG signals from the two
participants in the experiment. The charts provide a visual
representation of heart rate and RR-intervals, both standardized,
over the course of the interaction with the robot operating at
high speed. Shaded regions are used to show what action the
robot is performing at each point as well as the handoff position
type used. Examining Fig. 6(a), it appears that early in the
interaction, participant A experiences higher heart rate peaks
and as expected, inverse RR interval dips. These peaks trend
towards being both less prominent as well as more stable as the
interaction continues, especially once the robot begins to hand
off parts at low positions. This seems to indicate a higher degree
of comfort as the interaction progresses, with a slower and more
stable heart rate arriving with time. Even so, the RR-interval
curve demonstrates some irregularities, suggesting a higher
level of arousal. Fig. 6(b) exhibits high and consistent variability
in the heart rate of participant B throughout the session without

stabilizing. Close and high handoff positions appear to be
associated with sharp increases in heart rate, and no downward
trend is observed. This participant seems to be reactive, with no
signs of habituation.

Comparing the two participants’ ECG data, several
observations may be made. Firstly, close and high positions
seem to be correlated with greater peaks in heart rate, which
indicates a higher degree of arousal and potentially stress.
Additionally, as expected, heart rate decreases in a return to
baseline during less demanding phases, such as when the robot
is moving to acquire the next part. Participant A, however,
seems to habituate to their task, becoming less reactive to
stimuli as the experiment continues, while participant B
remains comparatively responsive throughout.

B. EDA/SCR Data and Analysis

Fig. 7 shows the skin conductance response signals for the
same two participants during the experiment. Like Fig. 6,
shaded regions are used along with captions to show what
action the robot is performing at a given point. The phasic EDA
pattern observed in Fig. 7(a) is both moderate and consistent.
Towards the end of the collaboration, the amplitudes increase
slightly, indicating a mildly more intense response from participant
A. These results are consistent with those observed from Fig.
6(a), with the same subject eliciting stability and habituation,
suggesting moderate cognitive engagement of participant A in
the MHMR collaboration. The SCR response of participant B
shown in Fig. 7(b) is in line with the behavior observed in Fig.
6(b), demonstrating more extreme spikes, if less frequent peaks.
These infrequent peaks would seem to indicate more selective
engagement and arousal throughout the experiment.
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Fig. 7. SCR variation of human participants in MHMR collaboration. (a)
Participant A. (b) Participant B.
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It can be seen that participant A appears to maintain moderate
and consistent arousal levels throughout the MHMR collaboration,
while participant B is often highly reactive but less predictable.
The response of Participant A could be attributed to comfort with
mild stress and routine focus. These differences in responses
highlight the varying levels of comfort and familiarity that
people may have when working with collaborative robots.

C. Pupilometry Data and Analysis

Fig. 8 presents the pupil dilation variation of human
participants in MHMR collaboration. Similar to Figs. 5 and 6,



it uses shaded regions to indicate robot activities during the
collaboration. The pupil dilation of each participant over the
course of the interaction is depicted with red dots to mark peaks.
Fig. 8(a) shows frequent and strong fluctuations in the pupil
size of participant A throughout the task, especially during
handoff sequences. It indicates sustained arousal or engagement
of this participant from start to end. This is in line with the SCR
responses observed from Fig. 7 (a), which could be associated
with mild stress or routine focus. Fig. 8(b) demonstrates that
participant B’s behaviors are consistent with strong initial
arousal and attention, which drops off as the experiment
progresses. This could be attributed to a multitude of factors,
including habituation, loss of engagement, or fatigue.

While participant A performs sustained reactivity,
engagement, and sensitivity to the task, participant B only does
so for the first half of the experiment. In both cases, however,
handoff phases are nearly always associated with dilation peaks
of varying sizes, which can be used to indicate relative arousal
for varying robot behavior.
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Fig. 8. Pupil dilation variation of human participants in MHMR collaboration.
(a) Participant A. (b) Participant B.

D. EMG Data and Analysis

Fig. 9 shows the EMG values of the participants’ arms
throughout the experiment. As before, robots’ activities are
presented alongside these values, including an average, which
can be used to uncover potential stressors during MHMR
collaboration. Peaks are to be expected at the time of receiving
parts by humans from robots, but the relative size of these
peaks, as well as the values at rest, should be considered since
they may indicate relative muscle tension that may reflect the
stress of humans in the collaboration process with robots.

Fig. 9(a) uncovers potential stressors of participant A. It can
be seen that most phases in which the part is received
correspond to higher EMG values in the arm. Additionally,
during periods between handoffs when human participants
would expect a more relaxed state, the values hover above zero.
This slight increase over baseline muscle tension could be
attributed to sustained arousal, stress, or simply anticipation,
which fits with participant A’s behavior observed in other
physical and physiological responses. Fig. 9(b), by contrast,
shows lower EMG baselines during rest periods, and spikes
similar in size to those observed in Fig. 9(a). As noted, baseline

muscle tension could be attributed to arousal, stress, or
anticipation. From this result, it would seem that these states are
comparatively lower, with resting values falling into the
negative standardized range.

EMG Values

(standardaed)

(b)
Fig. 9. EMG variation of human participants in MHMR collaboration. (a)
Participant A. (b) Participant B.

~

)

STAY ST NS st TR
M\nv “ﬂe\n c\_osi HE\G\AT cL“SE‘_\y\i 6\4 ‘.\\v o ﬂe\“ mz“‘ 2\0\« mw “ﬂgvﬂ m&“ “ﬂmﬂ M\o\’ “E\gaglosﬁ"“ﬂm

BN TRUST BN ACCEPTANCE

ot o
‘.\oozm« cmse E\Gw cmse ‘,\16"‘ »«0“ “W_\G\’\Y i \_\‘4@6\“ Fl‘mﬁ\e\“ rm“ “w“ M“D\.\iG"‘c\.OSEV ;\au‘

BN COMFORT

N TRUST NN COMFORT

(b)
Fig. 10. Ratings of human factors in MHMR collaboration. (a) Participant A.
(b) Participant B.
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E. Human Factors Evaluation and Analysis

Participants’ ratings of their trust, comfort, and acceptance
for robot behaviors at high speed during the MHMR
collaboration process are shown in Fig. 10. It can be seen that
the levels of human factors of the two participants are quite
different in relation to even the same collaborative task. For
example, when robots deliver objects to their human partners
from a greater distance, one of the participants feels more
comfortable with the robot than the other one, perceiving the
“far distance” as safer compared to situations where the robot
comes too close. In addition, each participant presents varying
levels of trust, comfort, and acceptance toward different robot
actions throughout the whole collaboration process. For each



robot action, a participant’s trust, comfort, and acceptance are
not always positively correlated. For instance, even if a
participant accepts a robot’s collaborative action during a
shared task, they may still experience discomfort or lack full
trust in the action. These findings imply that human factors in
response to various robot behaviors during MHMR
collaboration can be effectively characterized using dynamic
and quantitative measures.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a framework to gather
physical and physiological data regarding trust, comfort, and
acceptance of participants as they interact with robots in a
multi-human multi-robot environment. Investigations such as
these in MHMR contexts are relatively underrepresented, and
this work aims to alleviate that gap. By utilizing ECG, EDA,
Pupillometry, and EMG data, we aim to identify what types of
robot behaviors have what effects on what human factors in
MHMR collaboration. Experimental results indicate that
participants’ responses to diverse robot behaviors can be
dynamically and quantitatively characterized.

This work creates a catalyst to further computationally
model and understand human factors for MHMR partnerships
to improve collaboration efficiency in Industry 5.0 contexts. In
addition to deeper forms of correlation analysis for the collected
physiological data and human trust, comfort, and acceptance,
we will conduct an extensive investigation, especially into how
to build an explainable, trustworthy, comfortable, and acceptable
multi-human multi-robot collaboration process and system for
human workers in industry sectors. To address these issues,
artificial intelligence and machine learning methods such as
Transfer Learning [35], and Federated Learning [36] will be
used for the collected data to reason and predict human factors
such as trust, comfort, acceptance, emotions, and more in MHMR
collaborative tasks. Additionally, we will design a comprehensive
user study by hiring more participants to collect human factors-
related information and evaluate our developed approaches.
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