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Figure 1. Starting with a single image, a user can interactively generate connected 3D scenes with diverse elements. The user can specify scene
contents via text prompts and specify the layout by moving cameras (e.g., panorama-like camera paths as in the top row, or casual-walk camera
paths as in the bottom row). We recommend seeing the interactive generation process at https://kovenyu.com/WonderWorld/.

Abstract

We present WonderWorld, a novel framework for inter-
active 3D scene generation that enables users to interac-
tively specify scene contents and layout and see the created

*Equal contribution.

scenes in low latency. The major challenge lies in achiev-
ing fast generation of 3D scenes. Existing scene genera-
tion approaches fall short of speed as they often require
(1) progressively generating many views and depth maps,
and (2) time-consuming optimization of the scene geometry
representations. Our approach does not need to generate
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multiple views, and it leverages a geometry-based initializa-
tion that significantly reduces optimization time. Another
challenge is generating coherent geometry that allows all
scenes to be connected. We introduce the guided depth
diffusion that allows partial conditioning of depth estima-
tion. WonderWorld creates connected and diverse 3D scenes,
each generated in less than 10 seconds on a single A6000
GPU, enabling real-time user interaction and exploration.
We release full code, software, and interactive demos in
https://kovenyu.com/WonderWorld/.

1. Introduction
Recently, 3D scene generation has surged in popularity, with
many works successfully exploring strong generative im-
age priors and improvements in monocular depth estima-
tion [8, 50, 67, 68]. However, existing 3D scene generation
approaches are offline, where the user provides a single start-
ing image or text prompt, and then the system, after tens of
minutes to hours, returns a fixed 3D scene or a video of the
scene. While offline generation may work for small, isolated
scenes or videos, this setup is problematic for many scene
generation use cases. For example, in game development,
world designers want to iteratively build 3D world proto-
types step-by-step. This requires having control over the
scene contents and layouts while being able to see genera-
tion outcomes with low latency. In VR and video games,
users expect a world that is larger and more diverse than the
scenes currently generated. In the future, users may desire
even more: a system that allows them to freely explore and
shape a dynamically evolving, infinite virtual world. All of
these motivate the problem of interactive 3D scene genera-
tion, where the user can control what and where to generate
(or extrapolate) a new 3D scene and see how it fits into a
world in low latency.

The major bottleneck that prevents interactivity is the low
speed of generation. Each generated scene typically requires
tens of minutes on two main steps: (1) Progressively gener-
ating dense multi-view images and aligning depth maps to
cover occluded regions [8, 50, 67]. (2) Spending a consider-
able amount of time optimizing the 3D scene representations
to shape appropriate geometry and appearances [17, 20, 71].
Besides speed, another challenge is that the generated scenes
have strong geometric distortion along the scene boundary
due to misalignment or inaccuracy of estimated depth maps,
creating seams among generated scenes.

In this work, we propose a framework named Wonder-
World for interactive scene generation. Our input is a single
image that depicts the starting scene, as well as online user
controls of camera movement and content prompts. Our
output is a set of coherently connected 3D scenes, forming a
comprehensive world, according to the online user controls.
To address the speed issue, our core technique includes a

novel scene representation, Fast LAyered Gaussian Surfels
(FLAGS), and the algorithm to generate it from a single view.
This allows generating a scene (i.e., the visual and geomet-
ric content conditioned on a text prompt and any existing
scenes) in less than 10 seconds on a single GPU. To miti-
gate the geometry distortion problem, we introduce a guided
depth diffusion method to improve the alignment between
the geometry of the newly generated scenes and existing
scenes.

WonderWorld unlocks the potential for interactive scene
generation, allowing users to extrapolate a single image
into a vast and immersive 3D world. Our approach enables
new possibilities for applications in virtual reality, gaming,
and creative design, where users can quickly generate and
explore diverse 3D worlds. In summary, our contributions
are three-folded:
• We propose WonderWorld, the first approach that enables

interactive 3D scene generation where a user can interac-
tively create diverse, connected scenes with low latency.

• We introduce the FLAGS representation for fast scene
generation and the algorithm to generate it from a single
view. We further introduce the guided depth diffusion to
mitigate geometry distortion.

• We showcase and evaluate interactive generation on vari-
ous examples, such as nature, city, and campus.

2. Related Work

Novel view generation. Many works on generating novel
views from a single image attempted to construct render-
able 3D scene representations, such as layered depth im-
ages [49, 56], radiance fields [52, 54, 66], multi-plane im-
ages [55, 73], and point features [42, 59]. Yet, they only
supported generating views within small viewpoint changes
w.r.t. the input image, as they only built single static scene
representations that do not go beyond the input image. Our
FLAGS representation integrates the technical ideas from
layered representations [48, 73] and radiance fields [28],
yet we focus on a generative task to support creating many
connected scenes rather than a single one.

3D world generation. Later works explored generating
more significant viewpoint changes and potentially multiple
connected scenes. Early examples of extended scene gener-
ation focused on extending a single image into a perpetual
video with a given camera trajectory: Infinite Images [25]
used image stitching, and Infinite Nature [37] and its follow-
up works [5, 6, 35] used image generation models special-
ized to nature images. Since the advent of generative diffu-
sion models, subsequent work has expanded the scope and
domain of this work. BlockFusion [61] generates triplanes
to represent expandable terrains. SceneScape [15] generates
perpetual scenes from a single prompt. WonderJourney [67]
instead uses an LLM to generate diverse content and a point
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cl o u d r e pr es e nt ati o n f or t h e s c e n es. W o n d erJ o ur n e y is m ost
r el e v a nt i n t h at it als o ai ms t o g e n er at e a s e q u e n c e of di v ers e
s c e n es, y et it r u ns of fli n e a n d r e q uir es t e ns of mi n ut es t o g e n-
er at e a si n gl e s c e n e as it r e q uir es s y nt h esi zi n g d e ns e vi e ws i n
e a c h s c e n e. A n ot h er li n e of w or k i n l ar g e-s c al e w orl d g e n er a-
ti o n f o c us es al m ost e ntir el y o n citi es [3 6 , 6 2 , 6 3 ], pr o d u ci n g
l ar g e-s c al e 3 D G S r e pr es e nt ati o ns.

3 D s c e n e g e n e r ati o n. R e c e ntl y, s c e n e g e n er ati o n m et h-
o ds h a v e f o c us e d pri m aril y o n a si n gl e, l o c al 3 D ar e a, wit h
m a n y e x pli citl y f o c usi n g o n i n d o or s c e n es [ 2 , 1 0 , 2 0 , 2 1 , 3 3 ].
R e c e nt m et h o ds [ 1 1 , 4 3 , 6 5 , 7 2 ] s u c h as Te xt 2 N e R F [7 1 ],
L u ci d Dr e a m er [ 8 ], a n d C A T 3 D [1 7 ] g e n er at e m ulti- vi e w
i m a g es of a s c e n e, a n d R e al m Dr e a m er [5 0 ] a n d Dr e a m-
S c e n e [ 3 4 ] distill m ulti- vi e w i m a g e a n d d e pt h t o g e n er at e a
3 D s c e n e. A n ot h er li n e of r el e v a nt w or k f o c us es o n si n gl e-
i m a g e 3 D s c e n e r e c o nstr u cti o n b y e x pli cit p os e- c o n diti o ni n g
or tr ai ni n g o n s c e n es [ 7 , 4 7 , 5 3 , 6 8 ]. W hil e t h es e a p pr o a c h es
d e m o nstr at e i m pr o v e m e nts i n t h e q u alit y of 3 D s c e n e g e n er-
ati o n, t h e y ar e of fli n e pr o c ess es g e n er ati n g a fi x e d s c e n e t h at
is t h e n pr o vi d e d t o t h e us er. Si n c e t h e s c e n e is fi x e d, t h eir
m et h o ds d o n ot all o w us er i nt er a cti o n, e. g., n ot e n a bli n g
t h e us er t o c h o os e w h at a n d w h er e t h e y w a nt t o s e e. We i n-
st e a d a d dr ess t h e pr o bl e m of i nt er a cti v e 3 D s c e n e g e n er ati o n,
w hi c h r e q uir es si g ni fi c a nt i m pr o v e m e nts f or f ast g e n er ati o n
a n d e xtr a p ol ati o n.

Vi d e o g e n e r ati o n. R e c e nt i m pr o v e m e nts i n vi d e o g e n er-
ati o n [ 1 , 3 , 4 , 3 1 ] h a v e l e d t o i nt er est i n w h et h er t h es e
m o d els c a n als o b e us e d as s c e n e g e n er at ors. S e v er al w or ks
h a v e att e m pt e d t o a d d c a m er a c o ntr ol, all o wi n g a us er t o
“ m o v e ” t hr o u g h t h e s c e n e [ 1 8 , 5 8 ]. W hil e t h es e t e c h ni q u es
ar e pr o misi n g, t h e y c urr e ntl y d o n ot g u ar a nt e e 3 D c o nsis-
t e n c y a n d t h e y r e m ai n t o o sl o w t o b e i nt er a cti v e.

F ast 3 D s c e n e r e p r es e nt ati o ns. S u bst a nti al pr o gr ess h as
b e e n m a d e i n t h e l ast s e v er al y e ars r e g ar di n g t h e q u alit y a n d
s p e e d of 3 D r e pr es e nt ati o ns; t h e s e mi n al N e R F [ 4 0 ] p a p er
w as f oll o w e d b y Pl e n o x els [ 1 6 ], I nst a nt N G P [4 1 ], a n d fi n all y
3 D G a ussi a n S pl atti n g ( 3 D G S) [ 2 8 ] a n d I nst a nt S pl at [1 4 ].
I n t h e c o nt e xt of 3 D G S, r es e ar c h ers als o r e visit e d t h e tr a-
diti o n al i d e a of s urf els [ 4 4 , 5 1 ] f or hi g h- q u alit y g e o m etr y
r e c o nstr u cti o n [9 , 2 2 ]. W hil e t h e m ai n f o c us of t h es e G a us-
si a n s urf el m et h o ds is i m pr o vi n g r e c o nstr u cti o n q u alit y, w e
ar e t h e first t o us e s urf els t o s p e e d u p t h e s c e n e r e pr es e nt ati o n
o pti mi z ati o n b y a pri n ci pl e d g e o m etr y- b as e d i niti ali z ati o n.

3. A p p r o a c h

F o r m ul ati o n. We t ar g et i nt er a cti v e 3 D s c e n e g e n er ati o n.
O ur g o al is t o g e n er at e a s et of di v ers e y et c o h er e ntl y c o n-
n e ct e d 3 D s c e n es { E 0 , E 1 , . . .} fr o m a n i niti al i m a g e I 0 , as
w ell as r u nti m e us er c o ntr ols of c a m er a m o v e m e nts C g e n

a n d t e xt pr o m pt U f or e a c h s c e n e ( Fi g ur e 1 ). N ot e t h at w e
d e fi n e a si n gl e s c e n e, E i , as t h e vis u al a n d g e o m etri c c o nt e nt
of a t e xt pr o m pt, d esi g n e d t o b e c o nsist e nt wit h t h e pri or

s c e n es. T o t his e n d, w e pr o p os e W o n d er W orl d, a fr a m e w or k
t h at all o ws r e al-ti m e r e n d eri n g a n d f ast s c e n e g e n er ati o n a n d
e xtr a p ol ati o n.

O v e r vi e w. We s h o w a n ill ustr ati o n of o ur W o n d er W orl d
fr a m e w or k i n Fi g ur e 2 . We st art b y g e n er ati n g a 3 D s c e n e
fr o m a n i n p ut i m a g e. T h e n, t h e o ut er c o ntr ol l o o p k e e ps
it er ati n g o v er t w o m ai n st e ps: g e n er ati n g a s c e n e i m a g e a n d
g e n er ati n g F L A G S fr o m t h e s c e n e i m a g e. A us er c a n c o ntr ol
w h er e t o g e n er at e a n e w s c e n e b y m o vi n g t h e c a m er a, a n d
c o ntr ol t h e c o nt e nts b y pr o vi di n g a pr o m pt. T h e n e w s c e n e
c a n b e a n e xtr a p ol ati o n of e xisti n g s c e n es or a st a n d al o n e
s c e n e t o b e c o n n e ct e d l at er. We s u m m ari z e t h e c o ntr ol l o o p
i n Al g. 1 i n t h e s u p pl e m e nt ar y m at eri al.

C h all e n g es. T h e m aj or t e c h ni c al c h all e n g e is t h at w e n e e d
f ast s c e n e g e n er ati o n t o all o w i nt er a cti vit y. Pri or s c e n e
g e n er ati o n m et h o ds ar e sl o w b e c a us e t h e y n e e d t o pr o gr es-
si v el y g e n er at e d e ns e vi e ws [ 8 , 2 0 , 5 0 , 6 7 , 7 1 ] a n d s p e n d a
l o n g ti m e o pti mi zi n g s c e n e g e o m etr y ( e. g., N e R F [1 7 , 7 1 ],
m es h [ 2 0 ], a n d 3 D G S [8 , 5 0 ]). We pr o p os e t h e F ast L A y er e d
G a ussi a n S urf els ( F L A G S, S e c. 3. 1 ) a n d a n al g orit h m t o
g e n er at e it fr o m a si n gl e i m a g e. O ur a p pr o a c h is f ast f or
t w o r e as o ns. First, it r e m o v es t h e n e e d f or pr o gr essi v e d e ns e
vi e w g e n er ati o n t o i n p ai nt o c cl u d e d c o nt e nts. I nst e a d, w e
g e n er at e g e o m etri c l a y ers fr o m a si n gl e vi e w a n d i n p ai nt o c-
cl u d e d c o nt e nts at t h e l a y er l e v el. S e c o n d, o ur r e pr es e nt ati o n
d esi g n e n a bl es f ast o pti mi z ati o n. I n p arti c ul ar, o ur g e o m etr y-
b as e d i niti ali z ati o n si g ni fi c a ntl y r e d u c es t h e o pti mi z ati o n
ti m e of a si n gl e l a y er t o < 1 s e c o n d. T h us, W o n d er W orl d
all o ws f ast s c e n e g e n er ati o n wit hi n 1 0 s e c o n ds p er s c e n e a n d
r e al-ti m e r e n d eri n g, si m ult a n e o usl y o n a si n gl e G P U.

A n ot h er c h all e n g e is t h e g e o m etri c dist orti o n t h at cr e-
at es s e a ms w h e n c o n n e cti n g t w o s c e n es. T o miti g at e it, w e
pr o p os e t o utili z e t h e g ui d e d d e pt h diff usi o n t o g e n er at e
g e o m etr y ( S e c. 3. 2 ).

3. 1. F ast L A y e r e d G a ussi a n S u rf els ( F L A G S)

D e fi niti o n. We i ntr o d u c e t h e F L A G S t o r e pr es e nt a g e n-
er at e d 3 D s c e n e. E a c h s c e n e E is a r a di a n c e fi el d r e pr e-
s e nt e d b y t hr e e r a di a n c e fi el d l a y ers E = { L f g, L b g , L s k y } ,
w h er e L f g/L b g /L s k y d e n ot es a f or e gr o u n d/ b a c k gr o u n d/s k y
l a y er. E a c h l a y er c o nt ai ns a s et of s urf els.1 F or e x a m pl e,

t h e f or e gr o u n d l a y er L f g = { p i , q i , s i , oi , c i }
N f g

i = 1 c o nsists
of N f g s urf els, w h er e e a c h s urf el is p ar a m et eri z e d b y its 3 D
s p ati al p ositi o n p i , ori e nt ati o n q u at er ni o n q i , s c al es of t h e
x - a xis a n d y - a xis s i = [ s i, x , si, y ], t h e o p a cit y o i , a n d t h e
vi e w-i n d e p e n d e nt R G B c ol or c i . T h e G a ussi a n k er n el of a
s urf el is gi v e n b y ( o mitti n g t h e i n d e x i):

G (x ) = e x p( −
1

2
(x − p ) T Σ − 1 (x − p )), ( 1)

1 I n c o ntr ast t o a tr a diti o n al s urf el t h at c arri es a s oli d pi e c e of s urf a c e,
e a c h s urf el i n F L A G S c arri es a s m all r a di a n c e fi el d.
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Fi g ur e 2. T h e pr o p os e d W o n d er W orl d: O ur s yst e m t a k es a si n gl e i m a g e as i n p ut a n d g e n er at es c o n n e ct e d di v ers e 3 D s c e n es. Us ers c a n
s p e cif y w h er e ( b y m o vi n g t h e r e al-ti m e r e n d eri n g c a m er a) a n d w h at t o g e n er at e ( b y t y pi n g t e xt pr o m pts) a n d s e e a g e n er at e d s c e n e i n l ess
t h a n 1 0 s e c o n ds. We s u m m ari z e t h e o ut er c o ntr ol l o o p i n Al g. 1 i n t h e s u p pl e m e nt ar y m at eri al.

w h er e t h e c o v ari a n c e m atri x Σ is c o nstr u ct e d fr o m t h e s c al es
a n d t h e r ot ati o n m atri x Q t h at c a n b e o bt ai n e d fr o m t h e
q u at er ni o ns q . T h e c o v ari a n c e m atri x is

Σ = Q di a g s 2
x , s2y , ϵ2 Q T , ( 2)

w h er e ϵ ≪ mi n( s x , sy ) is a ti n y n u m b er t h at all o ws a s m all
t hi c k n ess f or t h e s urf el t o i n cr e as e r e pr es e nt ati o n al e x pr es-
si v e n ess.

D uri n g g e n er ati o n, w e g e n er at e e a c h l a y er s e p ar at el y.
D uri n g r e n d eri n g, w e vi e w t h e s c e n e E as a u ni o n of all t hr e e
l a y ers, i. e.,

E = L f g ∪ L b g ∪ L s k y = { p i , q i , s i , oi , c i }
N f g + N b g + N s k y

i = 1 , ( 3)

w h er e N f g/N b g /N s k y d e n ot es t h e n u m b er of s urf els. N oti c e
t h at F L A G S c a n b e s e e n as a v ari a nt of 3 D G S, w h er e e v er y
G a ussi a n k er n el’s z - a xis s hr u n k t o a ti n y n u m b er, a n d it r e-
m o v es vi e w- d e p e n d e nt c ol ors. T h us, w e c a n utili z e t h e s a m e
diff er e nti a bl e r e n d eri n g pi p eli n e (i. e., 3 D-t o- 2 D pr oj e cti o n
a n d al p h a bl e n di n g) as 3 D G S [ 2 8 ] f or r e n d eri n g F L A G S.

Si n gl e- vi e w l a y e r g e n e r ati o n. We g e n er at e F L A G S fr o m a
si n gl e s c e n e i m a g e I s c e n e . We l e v er a g e a t e xt- g ui d e d diff u-
si o n m o d el t o g e n er at e t h e s c e n e i m a g e. T o g e n er at e di v ers e
a n d ri c h c o nt e nts [ 6 7 ], w e utili z e a L ar g e L a n g u a g e M o d el
( L L M) g L L M t o g e n er at e a str u ct ur e d s c e n e d es cri pti o n

T = { F , B , S } = g L L M (J , U ), ( 4)

w h er e F , B , S d e n ot e t h e f or e gr o u n d o bj e ct pr o m pt, b a c k-
gr o u n d pr o m pt, a n d st yl e pr o m pt of t h e c urr e nt s c e n e, r e-
s p e cti v el y. U d e n ot es a us er t e xt i n p ut t o s p e cif y t h e s c e n e t o
g e n er at e, e. g., “ u ni v ersit y p at h w a y ”. J d e n ot es t h e i nstr u c-
ti o n pr o m pt, w hi c h w e d et ail i n t h e s u p pl e m e nt ar y m at eri al.

T o u n c o v er a n d i n p ai nt t h e o c cl u d e d r e gi o ns i n t h e g e n-
er at e d s c e n e i m a g e, w e i ntr o d u c e a si n gl e- vi e w l a y er g e n-
er ati o n m et h o d. F or m all y, gi v e n a s c e n e i m a g e I s c e n e ∈

[ 0, 1] 3 × H × W , t h e g o al h er e is t o g e n er at e t hr e e l a y er i m-
a g es I f g, I b g , I s k y ∈ [ 0, 1] 3 × H × W a n d t h eir c orr es p o n di n g
bi n ar y m as ks t o i n di c at e v ali d pi x els M f g, M b g , M s k y ∈
{ 0 , 1 } H × W . T h e v ali d pi x els i n e a c h l a y er will b e us e d
t o g e n er at e s urf els i n t h at l a y er. We s h o w a n e x a m pl e of
m as k e d l a y er i m a g es i n t h e t o p r o w of Fi g ur e 2 .

We dis c o v er t h e f or e gr o u n d l a y er usi n g d e pt h e d g es a n d
o bj e ct s e g m e nt ati o n. Gi v e n a n esti m at e d d e pt h m a p D , w e
c o m p ut e a si g ni fi c a nt d e pt h e d g e m as k E ∈ { 0 , 1 } H × W

w h os e el e m e nt E h, w = 1 if ∥ ∇ D h, w ∥ 2 > T w h er e ∇ D h, w

d e n ot es t h e s p ati al gr a di e nt of a n el e m e nt of D a n d T d e-
n ot es a t hr es h ol d v al u e, a n d E h, w = 0 ot h er wis e. T h e n w e
g e n er at e a s et of o bj e ct m as ks { O k | ∈ {0 , 1 } H × W } wit h a
pr etr ai n e d s e g m e nt ati o n n et w or k [ 2 3 ]. T h e f or e gr o u n d m as k
M f g is gi v e n b y t h e u ni o n of o bj e ct m as ks t h at o v erl a p t h e
si g ni fi c a nt d e pt h e d g e m as k:

M f g =
k

O k : ∥ O k ⊙ E ∥ > 0 , ( 5)

w h er e ⊙ d e n ot es el e m e nt- wis e pr o d u ct, a n d d e n ot es
el e m e nt- wis e “ or ”. T h e f or e gr o u n d l a y er i m a g e is gi v e n
b y I f g = I s c e n e ⊙ M f g.

We d e fi n e t h e b a c k gr o u n d l a y er m as k as M b g = 1 − M vis ,
w h er e M vis d e n ot es a visi bl e s k y m as k gi v e n b y a pr etr ai n e d
s e g m e nt ati o n n et w or k [ 2 3 ]. Si n c e t h e b a c k gr o u n d l a y er
i m a g e is o c cl u d e d b y t h e f or e gr o u n d l a y er at M f g, w e g e n-
er at e it b y I b g = M b g ⊙ I i n p ai nt(I s c e n e , M f g, { B , S } ), w h er e
I i n p ai nt d e n ot es a t e xt- g ui d e d diff usi o n i n p ai nti n g m o d el t h at
i n p ai nts t h e c o nt e nts { B , S } at t h e r e gi o n M f g of t h e i m a g e
I s c e n e . As f or t h e s k y l a y er, si n c e its g e o m etr y is a n e n cl osi n g
d o m e, w e s et t h e v ali d m as k M s k y = 1 a n d w e g e n er at e t h e
s k y i m a g e I s k y = I i n p ai nt(I s c e n e , 1 − M vis , { “s k y ” , S } ).

G e o m et r y- b as e d i niti ali z ati o n. O pti mi zi n g 3 D s c e n e r e p-
r es e nt ati o ns t o s h a p e a p pr o pri at e g e o m etr y a n d a p p e ar a n c es

5 9 1 9



𝑑

𝑓

𝑑

𝑓
𝜃

Sl a nt s urf a c eS urf a c e p ar all el t o i m a g e pl a n e

𝑇 ! 𝑇 !

Fi g ur e 3. S c al e i niti ali z ati o n of F L A G S: T h e s a m pli n g i nt er v al at a
s urf el is gi v e n b y T N = d / ( f c o s θ ) .

t a k es a l o n g ti m e i n pri or m et h o ds [8 , 1 7 , 2 0 , 5 0 , 7 1 ]. T h e
c or e i d e a of o ur f ast o pti mi z ati o n is t h at, i nst e a d of o pti mi z-
i n g t h e s c e n e g e o m etr y fr o m s cr at c h, m ost of o ur F L A G S
g e o m etr y p ar a m et ers ar e w ell i niti ali z e d, s o t h at t h e o pti-
mi z ati o n is c o n c e pt u all y a “ fi n e-t u ni n g ” st a g e t h at n e e ds
m u c h l ess ti m e t h a n pr e vi o us m et h o ds.

O ur g e o m etr y- b as e d i niti ali z ati o n is e n a bl e d b y t w o k e y
d esi g n c h oi c es. T h e first d esi g n c h oi c e is t h e pi x el- ali g n e d
g e n er ati o n w hi c h all o ws l e v er a gi n g pi x el- ali g n e d esti m at e d
g e o m etr y. F or m all y, gi v e n a l a y er i m a g e, e. g., t h e f or e gr o u n d
l a y er i m a g e I f g, w e g e n er at e L f g t h at h as N f g s urf els t o r e p-
r es e nt t h e u n d erl yi n g 3 D s c e n e l a y er. We ass u m e t h at e a c h
s urf el i n L f g m ai nl y c orr es p o n ds t o a v ali d pi x el i n I f g, s o
t h at t h e n u m b er of s urf els e q u als t h e n u m b er of v ali d pi x els
f or t h at l a y er, i. e., N f g = ∥ M f g∥ F . T h er ef or e, t h e c ol or c of a
s urf el is i niti ali z e d as t h e R G B v al u es of t h e pi x el. A s urf el’s
p ositi o n p c a n b e i niti ali z e d b y fi n di n g t h e c orr es p o n di n g
pi x el’s 3 D p ositi o n:

p = R − 1 (d · K − 1 [u, v, 1] T − T ), ( 6)

w h er e u, v d e n ot e t h e pi x el c o or di n at es, K d e n ot es t h e i ntri n-
si c c a m er a m atri x, R d e n ot es t h e r ot ati o n m atri x, T d e n ot es
t h e tr a nsl ati o n v e ct or of t h e c urr e nt c a m er a, a n d d d e n ot es
t h e esti m at e d m o n o c ul ar d e pt h of t h e pi x el.

T h e ot h er k e y d esi g n c h oi c e is t h e s urf el r e pr es e nt ati o n ,
w hi c h h as a w ell- d e fi n e d n or m al c o n c e pt f or i niti ali zi n g
ori e nt ati o ns a n d s c al es. S p e ci fi c all y, t h e n or m al dir e cti o n of
a s urf el c a n b e d e fi n e d as t h e t hir d c ol u m n Q z of t h e s urf el’s
r ot ati o n m atri x Q = [ Q x , Q y , Q z ]. T h us, t o i niti ali z e t h e
ori e nt ati o n of a s urf el, w e c o nstr u ct t h e r ot ati o n m atri x Q
fr o m a n esti m at e d pi x el n or m al n c :

Q z = n , Q x =
u × n

∥ u × n ∥
, Q y =

n × Q x

∥ n × Q x ∥
, ( 7)

w h er e u = [ 0 , 1 , 0] T d e n ot es a u nit u p- v e ct or, n = R − 1 n c a m

d e n ot es a n esti m at e d n or m al of t h e pi x el i n t h e w orl d-fr a m e,
a n d n c a m d e n ot es t h e c a m er a-fr a m e n or m al esti m at e d fr o m
t h e l a y er i m a g e I f g.

F or t h e s c al e s , o ur g o al is t o fi n d a n a p pr o pri at e i niti al-
i z ati o n t h at m e ets t w o r e q uir e m e nts: ( 1) It s h o ul d mi ni mi z e
r e n d eri n g ali asi n g; t h at is, it s h o ul d n ot b e t o o s m all, w hi c h
w o ul d c a us e h ol es w h e n sli g htl y c h a n gi n g vi e w p oi nts ( e. g.,
m o vi n g cl os er t o a s c e n e). ( 2) It s h o ul d a v oi d o v erl y bi g
s urf els t h at c a us e a l ot of s cr e e n s p a c e o v erl a p pi n g t o sl o w

d o w n t h e o pti mi z ati o n. F or m all y, l et t h e s p ati al s a m pli n g
i nt er v al of a n i m a g e (i. e., pi x el si z e) b e 1 , t h e n t h e s a m pli n g
i nt er v al at a s urf el is T N = d / (f c o s θ ) w h er e θ d e n ot es
t h e a n gl e b et w e e n t h e s urf el n or m al n a n d t h e i m a g e pl a n e
n or m al n i m g = [ 0 , 0 , − 1] T , a n d f d e n ot es t h e f o c al l e n gt h
( Fi g ur e 3 ). A c c or di n g t o t h e N y q uist s a m pli n g t h e or e m, t h e
m a xi m u m si g n al fr e q u e n c y s h o ul d b e 1 / ( 2T N ). S etti n g t h e
si g n al fr e q u e n c y of a s urf el t o b e i n v ers e b a n d wi dt h of its
G a ussi a n k er n el 1 / ( 2k s x ), w e c a n s ol v e f or t h e i niti ali z ati o n
of t h e s c al es:

s x = d / (k f x c o s θ x ), sy = d / (k f y c o s θ y ), ( 8)

w h er e k =
√

2 d e n ot es a h y p er p ar a m et er t h at d e fi n es t h e
G a ussi a n b a n d wi dt h, c o s θ x d e n ot es t h e c osi n e b et w e e n n
a n d n i m g aft er b ot h b ei n g pr oj e ct e d t o t h e X o Z pl a n e. I n-
t uiti v el y, t h e i niti ali z e d s urf els pr o vi d e s e a ml ess c o v er a g e
of t h e visi bl e s urf a c e wit h o ut si g ni fi c a nt o v erl a p. Yet, t h e
s cr e e n s p a c e o v erl a ps still e xist d u e t o G a ussi a n t ails. T h er e-
f or e, w e i niti ali z e t h e s urf el o p a cit y o = 0 .1 f or s uf fi ci e nt
gr a di e nt t o fi n e-t u n e t h e p ar a m et ers.

O pti mi z ati o n. O ur o pti mi z ati o n of t h e l a y ers g o es fr o m
b a c k t o fr o nt. T h at is, w e first o pti mi z e t h e s k y l a y er L s k y

wit h t h e m as k e d p h ot o m etri c l oss L = 0 .8 L 1 + 0 .2 L D- S SI M

a g ai nst t h e s k y l a y er i m a g e I s k y . T h e n, w e o pti mi z e t h e
b a c k gr o u n d l a y er L b g o n t o p of t h e fr o z e n s k y l a y er L s k y

a g ai nst t h e b a c k gr o u n d-s k y c o m p os e d i m a g e M b g ⊙ I b g +
M vis ⊙ I s k y . Fi n all y, w e o pti mi z e t h e f or e gr o u n d l a y er L f g

o n t o p of b ot h t h e fr o z e n b a c k gr o u n d l a y er L b g a n d t h e
fr o z e n s k y l a y er L s k y , a g ai nst t h e s c e n e i m a g e I s c e n e . We
o pti mi z e f or t h e o p a cit y, ori e nt ati o n, a n d s c al es, b ut n ot f or
c ol ors a n d s p ati al p ositi o ns. O ur o pti mi z ati o n i n cl u d es 1 0 0
it er ati o ns usi n g A d a m [2 9 ]. T h er e is n o d e nsi fi c ati o n [2 8 ].
We s u m m ari z e o ur F L A G S g e n er ati o n al g orit h m i n Al g. 2
i n t h e s u p pl e m e nt ar y m at eri al.

3. 2. G ui d e d D e pt h Diff usi o n

A f u n d a m e nt al c h all e n g e i n g e n er ati n g c o n n e ct e d 3 D s c e n es
is t h e g e o m etri c dist orti o n d u e t o t h e i n c o nsist e n c y b et w e e n
t h e esti m at e d d e pt h a n d t h e e xisti n g g e o m etr y. F or m all y, l et
D g ui d e of si z e H × W b e t h e d e pt h m a p r e n d er e d fr o m visi bl e
e xisti n g c o nt e nts at a n o ut p ai nti n g c a m er a vi e w p oi nt wit h
a bi n ar y m as k M g ui d e ∈ { 0 , 1 } H × W t o i n di c at e visi bl e r e-
gi o ns, a n d l et D s c e n e b e t h e esti m at e d d e pt h f or a n o ut p ai nt e d
n e w i m a g e I s c e n e . T h e n, w e g e n er all y o bs er v e a str o n g dis-
cr e p a n c y b et w e e n D g ui d e ⊙ M g ui d e a n d D s c e n e ⊙ M g ui d e .

T o miti g at e t his iss u e, w e i ntr o d u c e a tr ai ni n g-fr e e g ui d e d
d e pt h diff usi o n. O ur g ui d e d d e pt h diff usi o n l e v er a g es a n
off-t h e-s h elf l at e nt d e pt h diff usi o n m o d el [ 2 7 , 4 6 ]. I n
s h ort, a l at e nt d e pt h diff usi o n m o d el s a m pl es a d e pt h m a p
fr o m a n i m a g e- c o n diti o n e d d e pt h distri b uti o n p (D s c e n e |
I s c e n e ) b y gr a d u all y d e n oisi n g a r a n d o ml y i niti ali z e d l a-
t e nt d e pt h m a p d T wit h a l e ar n e d d e n oisi n g U- N et, ϵ t =
U N e t (d t , I s c e n e , t), w h er e ϵ t d e n ot es pr e di ct e d n ois e a n d
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( a) L at e nt d e pt h diff u si o n

( b) G ui d e d d e pt h diff u si o n ( O ur s)
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D e c o d e d d e pt h

Fi g ur e 4. Ill ustr ati o n of g ui d e d d e pt h diff usi o n. T h e c ol or e d p at c h es
i n di c at e t h at d e pt h is c o m p ut e d i n l at e nt s p a c e.

t d e n ot es a ti m e st e p. T h e g e n er at e d d e pt h is gi v e n b y a
V A E d e c o d er D s c e n e = D e c o d e r (d 0 ), w h er e d 0 is gi v e n
b y r e c ursi v e d e n oisi n g d t − 1 = D e n o i s e (d t , t, ϵ t ). H er e
D e n o i s e d e n ot es t h e d e n oisi n g r o uti n e [ 2 6 ]. We s h o w a n
ill ustr ati o n i n Fi g ur e 4 ( a).

T h e m ai n i d e a of o ur g ui d e d d e pt h diff usi o n is t o f or-
m ul at e t h e d e pt h esti m ati o n of a n e xtr a p ol at e d s c e n e as
s a m pli n g fr o m a d e pt h distri b uti o n c o n diti o n e d o n b ot h
t h e s c e n e i m a g e a n d t h e p arti all y visi bl e d e pt h, p (D s c e n e |
I s c e n e , D g ui d e , M g ui d e ). T o t his e n d, w e i nj e ct t h e p arti all y
visi bl e d e pt h as g ui d a n c e b y m o dif yi n g t h e d e n ois er as

d t − 1 = D e n o i s e (d t , t, ϵ̂ t ), ( 9)

ϵ̂ t = U N e t (d t , I s c e n e , t) − s t g t , ( 1 0)

g t = ∇ d t
∥ D t − 1 ⊙ M g ui d e − D g ui d e ⊙ M g ui d e ∥

2 , ( 1 1)

w h er e ϵ̂ t d e n ot es t h e g ui d e d d e n ois er, D t − 1 d e n ot es t h e
pr e- d e c o d e d d e pt h m a p, a n d s t d e n ot es t h e g ui d a n c e w ei g ht.
T h e g ui d a n c e t er m g t e n c o ur a g es g e n er ati n g a d e pt h m a p
t h at is c o nsist e nt wit h visi bl e e xisti n g d e pt h D g ui d e , l e a di n g
t o m u c h s m o ot h er g e o m etr y e xtr a p ol ati o n. We s h o w a n
ill ustr ati o n i n Fi g ur e 4 ( b).

I n t h e s u p pl e m e nt ar y m at eri al, w e f urt h er d es cri b e o ur
a c c el er at e d d e pt h g ui d a n c e i m pl e m e nt ati o n, r el ati o n t o ot h er
g ui d a n c e m et h o ds [ 1 2 , 1 9 , 3 9 ], a n d h o w w e us e g ui d a n c e
f or r e ctif yi n g t h e gr o u n d pl a n e d e pt h.

4. E x p e ri m e nts

B as eli n es. As w e ar e n ot a w ar e of a n y pri or m et h o d t h at
all o ws i nt er a cti v e 3 D s c e n e g e n er ati o n, w e c o nsi d er r e pr e-
s e nt ati v e m et h o ds i n p er p et u al 3 D s c e n e g e n er ati o n ( W o n d er-
J o ur n e y [ 6 7 ]), g e n er al s c e n e g e n er ati o n ( L u ci d Dr e a m er [8 ]),
a n d i n d o or s c e n e g e n er ati o n ( Te xt 2 R o o m [ 2 0 ]). T h es e m et h-
o ds us e diff er e nt s c e n e r e pr es e nt ati o ns: W o n d erJ o ur n e y us es
p oi nt cl o u ds, L u ci d Dr e a m er us es 3 D G S, a n d Te xt 2 R o o m
us es m es h es. We us e t h es e b as eli n es’ of fi ci al c o d es f or c o m-
p aris o n. We d e m o nstr at e e x a m pl es of i nt er a cti v e 3 D s c e n e

W o n d erJ o ur n e y [ 6 7 ] L u ci d Dr e a m er [8 ] Te xt 2 R o o m [2 0 ]  O urs

7 4 9. 5 s e c o n ds 7 9 8. 1 s e c o n ds 7 6 6. 9 s e c o n ds 9. 5 s e c o n ds

Ta bl e 1. Ti m e c osts f or g e n er ati n g a s c e n e o n a n A 6 0 0 0 G P U.

C S ↑ C C ↑ CI Q A ↑ Q- Ali g n ↑ C A ↑

W o n d erJ o ur n e y [ 6 7 ] 2 7. 3 4 0. 9 5 4 4 0. 6 4 4 3 2. 7 1 7 0 5. 6 0 0 7
L u ci d Dr e a m er [ 8 ] 2 6. 7 2 0. 8 9 7 2 0. 5 2 6 0 2. 7 3 5 5 5. 2 9 3 5
Te xt 2 R o o m [ 2 0 ] 2 4. 5 0 0. 9 0 3 5 0. 5 6 2 0 2. 6 4 9 5 5. 5 2 4 4
W o n d er W orl d ( o urs) 2 9. 4 7 0. 9 9 4 8 0. 6 5 1 2 3. 6 4 1 1 5. 9 5 4 3

Ta bl e 2. E v al u ati o n o n n o v el vi e w r e n d eri n gs. “ C S ” d e n ot es C LI P
s c or e, “ C C ” d e n ot es C LI P c o nsist e n c y, “ CI Q A” d e n ot es C LI P-
I Q A +, “ C A” d e n ot es C LI P A est h eti c s c or e.

g e n er ati o n i n o ur s u p pl e m e nt ar y w e bsit e a n d str o n gl y e n-
c o ur a g e r e a d ers t o vi e w it first. We c oll e ct p u bli cl y a v ail a bl e
r e al i m a g es a n d g e n er at e s y nt h eti c i m a g es as o ur t esti n g e x-
a m pl es, a n d w e als o us e e x a m pl es fr o m W o n d erJ o ur n e y [ 6 7 ]
a n d L u ci d Dr e a m er [ 8 ].

E v al u ati o n m et ri cs. F or q u alit ati v e c o m p aris o n wit h t h e
b as eli n es, w e g e n er at e 7 s c e n es f or e a c h of 4 t est e x a m pl es,
f or mi n g 2 8 s c e n es i n t ot al. T h e t est e x a m pl es i n cl u d e b ot h
r e al a n d s y nt h eti c i m a g es of cit y, c a m p us, n at ur e, a n d f a nt as y
s c e n es. We us e a fi x e d p a n or a mi c c a m er a p at h i nst e a d of
l etti n g a us er i nt er a cti v el y m o v e t o a ut o m at e t h e e v al u ati o n
a n d m a k e c o nsist e nt c a m er a pl a c e m e nt. We us e t h e s a m e
c a m er a p at h f or all m et h o ds. We sli g htl y r e d u c e c a m er a dis-
t a n c es f or b as eli n e m et h o ds as t h e y dis pl a y o v er w h el mi n g
dist orti o n w h e n usi n g t h e s a m e dist a nt c a m er a pl a c e m e nt as
o urs. We us e t h e s a m e t e xt pr o m pts f or all m et h o ds. F or
g e n er ati o n s p e e d, w e m e as ur e t h e ti m e c ost of g e n er ati n g
a s c e n e. F or q u alit y c o m p aris o n, w e a d o pt t h e f oll o wi n g
e v al u ati o n m etri cs: ( 1) We c oll e ct 2 0 4 h u m a n st u d y t w o-
alt er n ati v e f or c e c h oi c e ( 2 A F C) r es ults o n bir d- e y e vi e w
r e n d eri n gs ( m or e d et ails i n t h e s u p pl e m e nt ar y m at eri al); ( 2)
T o e v al u at e n o v el vi e w c o nsist e n c y, w e r e n d er 9 s u d o k u-li k e
n o v el vi e ws ar o u n d e a c h g e n er at e d s c e n e, a n d c o m p ut e t w o
m etri cs: C LI P [ 4 5 ] s c or es ( C S) of t h e s c e n e pr o m pt v ers us
t h e r e n d er e d i m a g e, a n d C LI P c o nsist e n c y ( C C) m e as ur e d
b y c osi n e si mil arit y of t h e i m a g e C LI P e m b e d di n gs b et w e e n
e a c h n o v el vi e w a n d t h e c e ntr al vi e w; ( 3) We e v al u at e r e n-
d er e d n o v el vi e w i m a g e q u alit y wit h C LI P-I Q A + [ 5 7 ] a n d
Q- Ali g n [ 6 0 ] s c or e; ( 4) We als o m e as ur e t h e a est h eti cs of
n o v el vi e ws b y t h e C LI P a est h eti c s c or e [ 4 5 ].

I m pl e m e nt ati o n d et ails. I n o ur i m pl e m e nt ati o n, w e us e
t h e St a bl e Diff usi o n I n p ai nt m o d el [4 6 ] as o ur o ut p ai nti n g
m o d el. We als o us e it f or i n p ai nti n g t h e b a c k gr o u n d l a y er
a n d s k y l a y er, a n d f or t e xt-t o-i m a g e g e n er ati o n. We us e
O n e F or m er [ 2 3 ] t o s e g m e nt t h e s k y a n d f or e gr o u n d o bj e cts.
We esti m at e n or m al usi n g t h e M ari g ol d N or m al [ 2 7 ]. We
us e M ari g ol d D e pt h [ 2 7 ] as o ur d e pt h diff usi o n m o d el. We
l e a v e m or e d et ails i n t h e s u p pl e m e nt ar y m at eri al. We h a v e
r el e as e d f ull c o d e a n d s oft w ar e f or r e pr o d u ci bilit y.
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Figure 5. Baseline comparison. The inset is the input image. We use a fixed panoramic camera path for evaluation.

vs. WonderJourney [67] vs. LucidDreamer [8] vs. Text2Room [20]

98.5% 98.6% 98.0%

Table 3. Human 2AFC preference on bird-eye view rendering. The
number in each column is the rate of preference of WonderWorld
generated results over the compared method.

4.1. Results

Interactive 3D scene generation. Firstly, we showcase in-
teractive 3D scene generation results with different camera
placements in Figure 1, including a panoramic camera path
and two casual walking camera paths. We observe the di-
versity and coherence among the generated scenes in each
example. We show more video results of different camera
paths in our “generated virtual world” session, and interac-
tive viewing examples in the “interactive viewing” session
on our supplementary website. We show more panoramic
camera paths in Figure 10, 11, 12 in supplementary material.
From these examples, we validate that our WonderWorld
works with diverse scene types such as cities, nature, fantasy,
ancient towns, villages, and university campuses.

Generation speed. Since we focus on making 3D scene
generation interactive, we report the scene generation time
cost. We show the scene generation time for a single scene in
Table 1. From Table 1 we see that even the fastest previous
method, WonderJourney, takes more than 700 seconds to

generate a single scene, spending most of its time generating
multiple views to fill in the holes between the existing scene
and the newly generated scene. LucidDreamer generates a
slightly extended scene from the input image and spends
most of its time generating multiple views, aligning depth
for these views, and training a 3DGS to fit them. In general,
prior approaches need to generate or distill multiple views
and optimize their 3D scene representations for a significant
amount of time. We accelerate the scene generation by our
FLAGS. We show an analysis of our time cost in Table 5
in supplementary material. Since diffusion model inference
(outpainting, layer inpainting, depth, and normal estimation)
takes the most time, our method will benefit from future
advances in accelerating diffusion inference.

Qualitative comparison. We show a qualitative comparison
using the same input image, panoramic camera path, and
text prompts for our WonderWorld and the baseline methods
in Figure 5 and in supplementary material (Figure 15). We
observe that WonderWorld generates much higher-quality
scenes compared to the baselines. This is validated by the
human 2AFC results as shown in Table 3, where ours is
overwhelmingly preferred. Furthermore, in Table 2, Won-
derWorld also significantly outperforms other approaches in
terms of CLIP score and CLIP consistency, showing better
semantic alignment and novel view consistency.

From Figure 5, 15, we also observe that single 3D scene
generation methods like LucidDreamer [8] do not extrapolate
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out of predefined scenes and suffer from severe geometric
distortion at the boundaries of the generated scene. It might
be because simple depth post-processing heuristics, such
as alignment by computing a global shift and scale [8] or
fine-tuning the depth estimator to match the estimated depth
with the existing geometry [67], do not suffice, as they do not
reduce the inherent ambiguity in the estimation of the new
scene depth. While Text2Room [20] uses a depth inpainting
model trained on indoor scenes, it does not generalize to
outdoor scenes, likely due to the lack of training data in
general outdoor scenes. In contrast to baselines, our Wonder-
World mitigates geometric distortion and leads to a coherent
large-scale 3D scene.
Diverse contents and styles in a single example. Since
WonderWorld allows for the choice of different text prompts
to change the contents, the generated scenes and styles can be
diverse and different in each run. In supplementary material,
we show diverse generation results from the same input
image in Figure 13, and we show an example Figure 14 of
users specifying different styles in the same generated virtual
world, e.g., Minecraft, painting, and Lego styles.

4.2. Ablation study

We perform ablation studies using the same protocol as the
baseline comparison, with quantitative results in Table 4.
Geometry-based initialization. We compare our model
with a variant (“w/o geometry”) that removes geometry-
based initialization and the surfel design, and instead uses
3DGS with MipSplatting [70] based on the same estimated
depth. We increase the optimization iteration such that it
achieves the same PSNR as ours at the generation view.
However, this variant fails to synthesize high-quality novel
views partly due to alias effects (see Figure 6).
Multiple layers. We compare our model with “w/o layers”,
which uses only a single layer instead of three. Ours signifi-
cantly outperforms it in both metrics and human preference,
as the layered design in our FLAGS fills occluded regions
(Figure 7).
Depth guidance. We compare our model with “w/o guid-
ance”. This variant creates significant seams between gener-
ated scenes (Figure 8). Our guided depth diffusion mitigates
this issue. We show depth alignment evaluation in the sup-
plementary material.

5. Conclusion
We introduce WonderWorld, the first system for interactive
3D scene generation, featuring fast generation of large, di-
verse scenes. WonderWorld allows users to interactively
generate and explore the parts of the scene they want with
the content they request.
Limitations. A limitation is that the generated scenes only
have frontal-facing surfaces, so the view synthesis range is

Ours w/o geometry-based initialization Ours

Figure 6. Ablation study on geometry-based initialization. The two
images are rendered at a novel view of a generated scene.

Ours w/o layers Ours

Figure 7. Ablation study on the layered design. The two images
are rendered at a novel view of a generated scene.

Ours w/o depth guidance Ours

Figure 8. Ablation study on the guided depth diffusion. The two
images are rendered with a novel view of a generated scene.

CS↑ CC↑ CIQA↑ Q-Align↑ CA↑

Ours w/o geometry 27.23 0.9836 0.6153 3.5236 5.7284
Ours w/o layers 27.32 0.9922 0.6298 3.5288 5.7139
Ours w/o guidance 26.89 0.9936 0.6327 3.6011 5.7854
WonderWorld (ours) 29.47 0.9948 0.6512 3.6411 5.9543

Table 4. Ablation study results on novel view renderings. “CS”
denotes CLIP score, “CC” denotes CLIP consistency, “CIQA” de-
notes CLIP-IQA+, “CA” denotes CLIP Aesthetic score.

limited to an area around the camera, as the back side of
the object is not generated. Future work may incorporate a
3D object generation module such as GRM [64] to generate
individual objects separately from the scene background. A
few latest works have demonstrated some success [13, 34]
following this pipeline. Another limitation is the difficulty in
modeling detailed objects, such as trees, which leave “holes”
or “floaters” when the viewpoint changes. Therefore, we
see WonderWorld as an interactive 3D world prototyping
method, rather than a full end-to-end solution. This invites an
exciting future direction: using WonderWorld to interactively
prototype a coarse 3D world structure, and then refine scene
details and complete objects with slower but higher-fidelity
models such as video diffusion [69].
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