Journal of Computational Physics 525 (2025) 113743

Contents lists available at ScienceDirect CRmBEio
PhysicS

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

. . : . ()
Numerical experiments using the barycentric Lagrange treecode to ...
updates

compute correlated random displacements for Brownian dynamics

simulations
Lei Wang® "~ +*, Robert Krasny "

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee 53211, USA
b Department of Mathematics, University of Michigan, Ann Arbor 48109, USA

ARTICLE INFO ABSTRACT
Keywords: To account for hydrodynamic interactions among solvated molecules, Brownian dynamics
Brownian dynamics simulations require correlated random displacements g = D'/2z, where D is the 3N x 3N Rotne-

Hydrodynamic interactions

; Prager-Yamakawa diffusion tensor for a system of N particles and z is a standard normal random
Correlated random displacements

vector. The Spectral Lanczos Decomposition Method (SLDM) computes a sequence of Krylov

RPY tensor . . . | :
Matrix square root subspace approximations g, — g, but each step requires a dense matrix-vector product Dq with a
Krylov subspace Lanczos vector q, and the O(N?) cost of computing the product by direct summation (DS) is an
Lanczos iteration obstacle for large-scale simulations. This work employs the barycentric Lagrange treecode (BLTC)
Barycentric Lagrange treecode to reduce the cost of the matrix-vector product to O(N log N) while introducing a controllable

approximation error. Numerical experiments compare the performance of SLDM-DS and SLDM-
BLTC in serial and parallel (32 core, GPU) calculations.

1. Introduction

Brownian dynamics (BD) is a coarse-grained computational technique used to study the diffusion and association of solvated
molecules while accounting for solvent-mediated hydrodynamic interactions [1-3]. In this approach the molecules are represented
by a set of N particles (also called beads), x; € R3,i=1: N. The Ermak-McCammon algorithm [4] updates the configuration
X =(Xy,...,Xy) € R3N by the following rule,

X(t+ A =x(1) + kA—tTDf+(V~D)At+g, (g)=0, (ggT):ZAtD, [€))
B

where At is the time step, k p is Boltzmann’s constant, T is temperature, D isa 3N X 3N diffusion tensor, f is an external force vector,

and g is a vector of correlated random displacements with mean zero and covariance matrix 2A¢D. A common choice for D is the

Rotne-Prager-Yamakawa (RPY) tensor [5,6] which is composed of 3 X 3 submatrices D(x;,x j) fori,j=1: N defined by
kgT

D(x;,x;) = M 35

(2a)

* Corresponding author.
E-mail addresses: wang256@uwm.edu (L. Wang), krasny@umich.edu (R. Krasny).

https://doi.org/10.1016/j.jcp.2025.113743
Received 1 December 2023; Received in revised form 19 December 2024; Accepted 10 January 2025

Available online 14 January 2025
0021-9991/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://orcid.org/0000-0003-4562-3247
http://orcid.org/0000-0002-8375-1699
mailto:wang256@uwm.edu
mailto:krasny@umich.edu
https://doi.org/10.1016/j.jcp.2025.113743
https://doi.org/10.1016/j.jcp.2025.113743
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2025.113743&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

D _ kgT L4323 242 II PPN L > 2b

(Xi’xj)_—Snnxij 3+x,-jx,-j+—xizj (5 3—x,-jx,-j) , £, X;j = 2a, (2b)
kT 9 Xij 3 Xij A A L.

D(X,-,Xj)=% |:<1—§7 I3+§7X,-jxij 5 l?é], x,-j<2¢1, (ZC)

where 7 is the solvent viscosity, a is the particle radius, I5 is the 3 X 3 unit tensor, and X;; = x;;/x,; is the particle-particle unit vector
with x;; =X; — X;,x;; = |x;;|. The RPY tensor satisfies V - D =0 and is symmetric positive-definite for any particle configuration. The
main cost in BD simulations is due to computing the matrix-vector product Df and the correlated random displacements g; the next

two subsections describe several methods for reducing the cost.
1.1. Fast methods for matrix-vector product

The matrix-vector product Df required in each time step of a BD simulation can be written as

N
(Df), =Y Dxx)f, i=1:N, f=(,...0)", (€))
j=1
where the kernel function D(x;,X;) gives the pairwise interaction between a target particle x; and a source particle x;. Since the RPY
tensor is dense, direct summation of Eq. (3) requires O(N ?) operations which is prohibitively expensive when N is large. This type of
N -body problem occurs throughout computational physics and several methods have been developed to reduce the operation count
to O(N log N) or O(N). Among the earliest of these methods for gravitational and electrostatic interactions, the treecode [7] and
Fast Multipole Method (FMM) [8] employed analytic kernel approximations and later on these methods were extended to particle
interactions involving Stokes kernels [9]. There have also been parallel implementations of these methods for Stokes kernels [10,11]
and the RPY tensor [12]. In addition, kernel-independent methods using alternative approximations were developed including the
KIFMM [13], black-box FMM [14], and H -matrix methods [15,16], and several of these have been applied to matrix-vector products
with the RPY tensor [17,18].

1.2. Fast methods for correlated random displacements

The vector of correlated random displacements can be obtained as

g= Bz, “4)

where z is a standard normal random vector and B is any matrix satisfying BBT = D (we have set 2A¢ = 1 to simplify notation). One
option for B is the lower triangular Cholesky factor of D, but the factorization requires O(N3) operations so this approach is restricted
to relatively small systems [4,19,20]. Another option is the positive-definite square root matrix D!/2, which can be computed from
the spectral factorization D = VAV, where A is the diagonal matrix of eigenvalues and V is the orthogonal matrix of eigenvectors.
In this case the correlated random displacements are expressed as

g=D'"z=V AV Ty, (5)

where A!/2 is the diagonal matrix of positive square roots of the eigenvalues of D.

For large systems however, computing the spectral factorization of D is expensive and this motivated the development of methods
which produce a sequence of approximations g, — g. In principle these methods become exact for k = 3N, but in practice they are
used for k << 3N. Fixman’s method [21] sets g, = p,(D)z, where p,(x) is the kth degree Chebyshev polynomial approximation to
x!/2 on an interval containing the spectrum of D. Each step requires a matrix-vector product with D which can be accelerated by the
FMM [22], but this approach also requires bounds on the spectrum of D and this is an additional cost [23]. Another option called the
Spectral Lanczos Decomposition Method (SLDM) computes an approximation g, in the k-dimensional Krylov subspace based on D
and z using Lanczos iteration; see [24-26] and references therein. As in Fixman’s method, each SLDM step requires a matrix-vector
product with D, but bounds on the spectrum are not needed. Several studies have applied the FMM, KIFMM, and H -matrix methods
to accelerate the matrix-vector product in SLDM calculations [17,12,18]. Other efficient methods for computing correlated random
displacements include the Truncated Expansion Approximation (TEA) which produces an approximation to g under the assumption of
weak hydrodynamic coupling [27,28], and a molecule-centered method that treats intermolecular hydrodynamic interactions more
simply than intramolecular interactions [29].

1.3. Present work

Here we employ a recently developed fast summation method, the barycentric Lagrange treecode (BLTC), to accelerate the matrix-
vector product in SLDM calculations with the RPY tensor. The BLTC uses barycentric Lagrange interpolation at Chebyshev points to
compute well-separated particle-cluster interactions [30,31]. The method is kernel-independent with relatively simple implementation
and low memory requirements, and it was previously applied to compute matrix-vector products with the generalized RPY tensor [32,
33]. The present work is its first application to computing correlated random displacements using the SLDM.

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

The remainder of the article is organized as follows. Section 2 describes the Spectral Lanczos Decomposition Method (SLDM) for
computing correlated random displacements in the form g = D'/2z. Section 3 describes the barycentric Lagrange treecode (BLTG) for
the matrix-vector product needed in each step of the SLDM. Section 4 discusses implementation details. Section 5 presents the error
and run time for the BLTC applied a single matrix-vector product. Section 6 presents serial and parallel SLDM-BLTC calculations for
systems with up to N =1e7 particles. The results are summarized in Section 7.

2. Spectral Lanczos decomposition method (SLDM)

The goal is to compute correlated random displacements in the form g = D!/2z, where D is the RPY tensor and z is a standard
normal vector. The vector g can be computed by spectral factorization as in Eq. (5), but this is expensive for large systems and
the SLDM can be employed to efficiently compute an approximation as follows [25,26,17,18]. Consider the k-dimensional Krylov
subspace,

K (D,z) =span{z, Dz, ... ,Dk_lz}, k=1:3N. 6)
Lanczos iteration produces an orthonormal basis {q, ..., q; } for K;(D,z) and a k X k symmetric positive-definite tridiagonal matrix,
O
a
Tk - ﬂ 1 2 ﬁ:2 , (2]
0 Pt

where T}, = QZDQk and Q, is the 3N X k matrix whose columns are the Lanczos vectors. Note that q; =z/||z|| and z = ||z| |le’1‘,

where the vector 2-norm is taken here and below and e’f is the first column of the k X k identity matrix. Then projecting g onto the
k-dimensional Krylov subspace yields an approximation,

g =0,01g=0,0] D'*2=|2||0, 0] D'/*Q,e". ®

This is still expensive because it requires D'/2, but the cost can be reduced as follows. Consider the spectral factorization of the
tridiagonal Lanczos matrix,

T, =P, P!, ©)

where X, is the diagonal matrix of eigenvalues and P, is the orthogonal matrix of eigenvectors. Then the inner term in Eq (8) can be
written as
1/2 1/2
07 D'?Q, = QTVA?VTQ, ~ 01 (0, P)=) (0 P)TQ, = P.E)* P, (10)
where Q{Qk = I, is used, and two approximations were made, (1) the eigenvalues of D are approximated by the eigenvalues of

T, and (2) the eigenvectors of D are approximated by the columns of Q, P,. Substituting Eq. (10) into Eq. (8) yields the SLDM
approximation for the correlated random displacements,

1/2
g = lz10, Px,* PTek. an

The scheme is given in Algorithm 1. Lines 3-9 comprise the Lanczos iteration with reorthogonalization in line 10 to stabilize
the scheme in finite precision arithmetic [34]. Line 12 is the spectral factorization of the tridiagonal Lanczos matrix T, which is
inexpensive for k << 3N. Line 14 gives the stopping criterion which requires the relative increment between successive iterations
to be less than the user-specified tolerance 7. The computational bottleneck is the matrix-vector product w = Dq, in line 5 which is
required in each iteration. Next we describe the BLTC used to accelerate this operation.

3. Barycentric Lagrange treecode (BLTC)

It is convenient to rewrite Eq. (3) in the following form,

N
ux,) = ZD(xi,yj)f», i=1:N, (12)

j=1

where x; is a target particle and y; is a source particle. In this work the target and source particles are the same, but the treecode
can accommodate cases in which they are different [35]. The cost of computing u(x;) in Eq. (12) by direct summation scales like
O(N?) and the barycentric Lagrange treecode (BLTC) reduces this to O(N log N) using particle-cluster approximations. The following
subsections describe the treecode structure, barycentric Lagrange interpolation, particle-cluster approximation, and finally the BLTC
algorithm.

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

Algorithm 1 Spectral Lanczos Decomposition Method (SLDM).

1: input: particles {r;,i =1 : N}, standard normal vector z, tolerance 7

2: output: approximate vector of correlated random displacements g, ~ D'/?z
3: initialize q, =0,q, =z/||z||, , =0
4: for k=1,2,3,...
5: w=Dq,
6: a,=wlq,
7i 0 W=W-oa G = B Qg
8 f=Iwll
9 . =W/h
10: reorthogonalize q,,, against q,...,q, and set O, =[q; -~ q;,,]
11: if k>2, then
12: compute spectral factorization T, = P, X, PkT using LAPACK routine dsteqgr
13: g, = 12110, P.Z/* PTe!
14: if |18, — 8k_111/118k || < 7, then exit; else continue iteration, end if
15: endif
16: end for

a c=ly) b oo
e o 7 g— A A4 v/:
Bew = N o0 o o o'
o ® R ~
e o %o ® . 7 7
7/
. L4 e o0 o o " o0
o .o/ //
e oo .. e o
X; R L S Y . X; R Ye
. . o0 o o o009
. o, ® o
. ow Pe
L e ° o o o o o d
: 6o—o o— o0

Fig. 1. Particle-cluster interaction, (a) target particle x; interacts with source cluster C = {y,}, (b) target particle x; interacts with proxy source cluster C= {s}
consisting of Chebyshev interpolation points, cluster center y,, cluster radius r, particle-cluster distance R.

3.1. Treecode structure

The BLTC follows the Barnes-Hut treecode structure [7], where however barycentric Lagrange interpolation is utilized in place of
a monopole approximation [31]. The loop over source particles y; in Eq. (12) is replaced by a loop over source clusters C,

u(x) =Y ux,C), u(x,C)= Y Dx,y)f;, i=1:N, 13)
C y; eC

where u(x;, C) is the interaction between a target particle x; and a cluster of source particles C = {y, }. In this work the clusters are 3D
cubes and the set of all clusters has a tree structure as explained below. Fig. 1a depicts a particle-cluster interaction, where y, is the
cluster center, r is the cluster radius, and R is the particle-cluster distance. The particle-cluster interaction u(x;, C) can be computed
directly as in Eq. (13), but if x; and C are well-separated, then the interaction can be approximated using barycentric Lagrange
interpolation as described below. A target particle x; and source cluster C are considered to be well-separated if the multipole
acceptance criterion (MAC) is satisfied,

r/R<0, (14)

where 0 is a user-specified parameter; in this case x; interacts with the proxy source cluster C= {sx} given by a tensor product grid
of Chebyshev points as depicted in Fig. 1b. Next we review barycentric Lagrange interpolation [30].

3.2. Barycentric Lagrange interpolation

Consider a function f(¢) on the interval [—1, 1] and Chebyshev points s; = cos(kz/n),k =0 : n. The barycentric Lagrange form of
the interpolating polynomial is

W
n
-5 1/2, k=0ork=n,
P(t)=2]~k(t)fk» Lk(1)=n7ks wy=(=Dk6;, & = / . (15)
= w, I, k=l:n—1,
f:Ot_Sf

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

Algorithm 2 Barycentric Lagrange treecode (BLTC).

1: program main

2: input: particle positions x;, forces f;, i=1: N

3: input: treecode parameters, MAC 6, degree n, maximum leaf size N,

4: output: matrix-vector product u(x;),i =1 : N in Eq. (13)

5: build octtree, compute proxy forces fk(C) for each cluster C

6: fori=1: N; pc-interaction (x;, root); end for

7: end program main

8: subroutine pc-interaction (x;,C)

9: if MAC is satisfied, compute particle-cluster approximation in Eq. (17)
10: else if C is a leaf, compute particle-cluster interaction directly by Eq. (13)
11: else for each child C’ of C; pe-interaction (x;,C’); end for
12: endif
13: end subroutine pc-interaction

where the Lagrange polynomials satisfy L, (s,) = 6;,, and the barycentric weights w) take the indicated form in the case of Cheby-
shev interpolation points [36]. Polynomial interpolation at the Chebyshev points is spectrally accurate [37], and this form of the
interpolating polynomial is numerically stable and efficient [30,38]. To interpolate on a general interval [a, b], the Chebyshev points
are linearly mapped to [a, b], but the weights do not change. Barycentric Lagrange interpolation can be extended to 3D cubes by a
tensor product in the Cartesian coordinates.

3.3. Particle-cluster approximation

Now consider a target particle X; and a well-separated cluster C. Let 8 = (sy, sy, 5y,) denote the tensor product grid of Chebyshev
points adapted to the cluster as shown schematically in Fig. 1b; the Chebyshev points play the role of proxy particles for the source
particles y; in C. In this case the RPY kernel can be approximated by barycentric Lagrange interpolation with respect to the source
particle y; = (y;;, 2, ¥;3) keeping the target x; fixed,

n n

n
Dy~ D D Y D si) Ly, (7;) Ly, (7)) L, (v73), ¥, €C. (16)
k=0 kp=0 k3=0

Then substituting Eq. (16) into Eq. (13) and switching the order of summation yields the particle-cluster approximation,

ux, O)x Y D Y D8O, (O = Y, Ly, 05 Ly, 00) Ly, 001, a7

k1=0ky=0k3=0 y,€C

where fk(C) are proxy forces associated with the proxy particles sy in cluster C. The proxy forces fk(C) are independent of the target
particle x; and are computed when the tree is built. Given the proxy forces, the operation count for the particle-cluster approximation
u(x;,C) in Eq. (17) is O(n®) independent of the number of source particles in C.

3.4. BLTC algorithm

The BLTC is described in Algorithm 2. Lines 2-3 input the particle data and treecode parameters comprising the MAC 0, degree n,
and maximum leaf size N. Line 5 builds an octtree of particle clusters. The root cluster is a cube containing all the source particles.
The root is bisected along the Cartesian axes and the eight children become subclusters of the root. The child clusters are similarly
bisected, and the process continues until a cluster contains fewer than N, particles. The proxy forces fk(C) are computed along
with the clusters. Line 6 is a loop over the target particles. Starting from the root cluster, the recursive subroutine pc-interaction
computes the particle-cluster interaction u(x;,C). In line 9 if the MAC is satisfied, the interaction is approximated by barycentric
Lagrange interpolation as in Eq. (17). Otherwise in lines 10-11 the code checks the child clusters, or if the cluster is a leaf (no
children), then the interaction is computed directly by Eq. (13). The operation count is O(N log N), where the factor N arises from
the loop over target particles and the factor log N reflects the number of levels in the tree. The BLTC is kernel-independent in the
same sense as the KIFMM [13], black-box FMM [14], and H-matrix methods [15,16] in that it requires only kernel evaluations for
arbitrary target-source pairs rather than analytic kernel expansions.

4. Implementation details

In these tests the solvent viscosity is # = 1. The particles have radius ¢ = 0.1 and are uniformly randomly distributed in the cube
[0, L]? with particle volume fraction defined by

4ra’ N
303

Under typical biomolecular conditions the particle volume fraction lies in the range 0.1 < PVF < 0.4 [29,39]; most of the present
calculations use PVF = 0.12, but some results for PVF = 0.004, 0.04, 0.4 are also presented as noted in the text. The BLTC has three

PVF =

18)

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743
Table 1
RPY matrix-vector product Df, system size N =1e6, particle volume fraction PVF = 0.12, BLTC MAC 6, degree n,
treecode approximation error in Eq. (19), run time (s), direct sum run time = 8409 s, calculations on one CPU core.

n 0=09 6=0.8 6=0.7 6=0.6
error run time (s) error run time (s) error run time (s) error run time (s)

2 4.04e-2 25 2.64e-2 32 1.64e-2 45 9.62e-3 67

3 1.62e-2 40 8.80e-3 52 4.59%e-3 72 2.15e-3 106

4 6.40e-3 57 2.81e-3 74 1.19e-3 102 4.50e-4 150

5 2.90e-3 91 1.05e-3 119 3.51e-4 162 1.05e-4 240

6 1.33e-3 124 3.88e-4 162 1.03e-4 222 2.44e-5 324

10

—
o
w

run time (s)

—_
o
n

1 E E E
10
10°° 104 1073 1072 107
error

Fig. 2. RPY matrix-vector product Df, system size N =1e6, particle volume fraction PVF = 0.12, BLTC MAC 0, degree n, treecode approximation error in Eq. (19),
run time (s), direct sum run time = 8409 s, calculations on one CPU core.

user-specified parameters, the multipole acceptance criterion (MAC) 6, polynomial degree n, and maximum number of particles in a
leaf which is set to N, = 1000. Since the direct sum for the largest system size N =1e7 is prohibitively expensive, in that case the
error is computed at a subset of 2000 particles and the run time and peak memory usage are extrapolated from smaller systems. The
code was written in double precision C++ and is available for download [40].

Serial and parallel CPU calculations were performed at the University of Wisconsin-Milwaukee Mortimer Faculty Research Cluster,
where each node is a Dell PowerEdge R440 server with two 16-core Intel(R) Xeon(R) Gold E5-5218 processors at 2.30 GHz and 128GB
RAM. The code was compiled using the Intel icpc compiler with -O2 optimization. Serial runs used a single core and parallel runs used
32 cores on a single node with OpenMP. Parallel GPU calculations were performed at the University of Michigan Great Lakes Cluster
using an NVIDIA Tesla V100 GPU for the matrix-vector product (line 5 in Algorithm 1) and an Intel Xeon Gold 6148 processor at
2.4 GHz and 180GB RAM for other SLDM operations including vector inner products, reorthogonalization, and spectral factorization
(lines 6-14 in Algorithm 1). The code was compiled using the NVIDIA pgc++ compiler with -fast optimization and OpenACC.

5. Numerical results: BLTC for a single matrix-vector product Df

This section reports the BLTC performance for a single matrix-vector product Df, where D is the RPY diffusion matrix and the
forces f; are sampled from a standard normal distribution with mean zero and unit variance. The particle volume fraction is PVF =
0.12. The treecode approximation error is defined by

error = 12D = (DO (19)
[1(DE) ||
where the superscript indicates whether the matrix-vector product is computed by the treecode (tc) or direct summation (ds).

Table 1 records the error and run time (s) for several values of the MAC 6 and polynomial degree n with system size N =1e6.
The data is also plotted in Fig. 2 to show the scaling more clearly. The BLTC becomes more accurate as the MAC 6 decreases and
the degree n increases, but in that case the run time also increases. For future reference we define two parameter sets, BLTC-hi with
(6,n) =(0.7,6) yielding about 4-digit accuracy with run time 222 s, and BLTC-lo with (6, n) = (0.9, 3) yielding about 2-digit accuracy
with run time 40 s. Note that the direct sum run time in this case is 8409 s, so the treecode is much faster.

Table 2 compares the matrix-vector product using the BLTC and direct summation (DS) for system size N =1e5, 1e6, 1e7. The
BLTC error increases only slightly with system size. For the largest system size N =1e7, the DS run time (s) and peak memory (MB)
were obtained by extrapolation. The DS run time scales like O(N?) and the BLTC run time scales approximately like O(N log N).
The DS memory scales like O(N) corresponding to the particle data, while the BLTC memory also includes the tree data structure
and O(n®) Chebyshev interpolation points in each cluster. Hence the BLTC-hi memory is larger than the BLTC-lo memory, but even
in the worst case the BLTC-hi memory is only slightly more than twice the DS memory.

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

Table 2

RPY matrix-vector product Df, system size N =1e5, 1e6, 1e7, par-
ticle volume fraction PVF = 0.12, direct summation (DS), BLTC-hi
(6,n) = (0.7,6), BLTC-lo (8,n) = (0.9,3), treecode approximation error
in Eq. (19), run time (s), peak memory (MB), calculations on one CPU
core.

error run time (s) peak memory
(MB)
N=1e5 DS - 82 8.8
BLTC-hi 6.79e-5 13 20
BLTC-lo 1.1le-2 2.6 11
N=1e6 DS - 8409 88
BLTC-hi 1.03e-4 222 169
BLTC-lo 1.62e-2 40 103
N=1e7 DS - 850772 880
BLTC-hi 1.12e-4 3218 1479
BLTC-lo 1.62e-2 544 996

Table 3

RPY matrix-vector product Df, system size N = 1e6, particle volume fraction PVF = 0.12, direct sum (DS), BLTC-hi
(6=0.7, n=06), BLTC-lo (8 =0.9, n=3), 1 core, 32 cores, GPU, run time (s), parallel efficiency PE (%), speedup (DS
run time divided by BLTC run time).

DS BLTC-hi BLTC-lo

run time (s) PE run time (s) PE speedup run time (s) PE speedup
1 core 8409 100% 222.0 100% 37x% 40 100% 210x
32 cores 363 72% 13.6 51% 27X 4.5 28% 81x
GPU 42 - 1.4 - 30x% 0.23 - 183x%

Table 3 presents serial and parallel results for the matrix-vector product with system size N = 1e6 computed using DS, BLTC-hi and
BLTC-lo including the run time (s), parallel efficiency PE (%), and speedup (DS run time divided by BLTC run time). With 32 cores, DS
has 72% parallel efficiency, while the parallel efficiency is 51% for BLTC-hi and 28% for BLTC-lo; even so, the BLTC calculations are
faster; the DS run time is 363 s, while the BLTC-hi run time is 13.6 s (27X speedup) and the BLTC-lo run time is 4.5 s (81X speedup).
The GPU calculations are faster yet; the DS run time is 42 s, while the BLTC-hi run time is 1.4 s (30x speedup) and the BLTC-lo run
time is 0.23 s (183X speedup).

6. Numerical results: SLDM-BLTC for correlated random displacements D'/2z

This section reports the performance of SLDM-BLTC for computing the correlated random displacements D'/2z. First we investigate
the scheme’s accuracy and convergence properties. Recall that the method provides a sequence of approximations g, to the exact
vector g = D!/2z. Aside from computer roundoff error which was addressed by reorthogonalization, there are two additional sources
of error in these calculations, (1) the SLDM iteration error at step k assuming the matrix-vector product is computed by direct
summation, and (2) the treecode approximation error that occurs when the matrix-vector product is computed by the BLTC. The
following quantities are used to measure the accuracy of the results [23,26],

d
_ g =gl g gl

k= k=
1811l

S
ds ’ k T
g |1 27 Dz

lgT'g, — 27 Dz|
- SkSk 7 T (20)

In these expressions g, is the SLDM vector at step k, and further below a superscript ds or tc is added to indicate whether the matrix-
vector product is computed by direct summation or the BLTC. The first quantity, I;, measures the increment between step k and step
k —1; this is used in the stopping criterion. The second quantity, E; , measures the error in g, , where the reference gf:f was computed
using direct summation for the matrix-vector product and iterating until the increment saturates close to machine precision; the error
is generally not available because computing the reference is expensive. The third quantity, E,{ , which we call the inner product

error, satisfies E]{ =0 for all k > 1 in exact arithmetic [26].
6.1. Accuracy and convergence properties of SLDM-BLTC

We consider a test case with system size N =1e5 and particle volume fraction PVF = 0.12. Fig. 3 shows the error E; (solid lines)
and increment I; (dashed lines) versus step k, where the matrix-vector product is computed by direct sum (DS), BLTC-hi and BLTC-lo.
Results are shown for (a) k=1 : 750, (b) k=1 : 125.

First consider the increment ;. The BLTC-hi increment matches the DS increment to within plotting accuracy; they both decrease
rapidly in the first few steps, then transition to exponential decay, and then saturate close to machine precision. Convergence of the

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

10— 10°

=) \ g N
2 N G 2 10p
5 Y s S e \%
O] -5 N o] "o
k) 10 N0) o 1 0_2 A
e e e @
= < =, 3
% 10710 N % 10
@ O DS R » ,l[obs WY
= i ® =10 i 8

~ X BLTC-hi M ~ X BLTC-hi Vi
w 15 [LABLTC-lo — w 5 [LABLTCo Y

107 e e 10° =
0 250 500 750 0 25 50 75 100 125
step k step k
Fig. 3. SLDM for D'/?z, system size N =1e5, particle volume fraction PVF = 0.12, error E, (solid lines) and increment I, (dashed lines) versus step k, (a) k=1 : 750,

(b) k=1 : 125, matrix-vector product by direct sum (DS), BLTC-hi (§ = 0.7,n = 6), BLTC-lo (6 = 0.9, n = 3), BLTC-hi increment matches DS increment to within plotting
accuracy.

10°
10°®
— X
W
10O DS
10 X BLTC-hi
A BLTC-lo
B——© SO Saman)
10-15

0 25 50 75 100 125
step k

Fig. 4. SLDM for D'/?z, inner product error E[versus step k, system size N = 1e5, particle volume fraction PVF = 0.12, matrix-vector product by direct sum (DS),
BLTC-hi (§ =0.7,n=6), BLTC-lo (§ =0.9,n = 3).

increments implies that the gzs and g‘kC sequences converge to well-defined limits, but as we shall see, the limit obtained using direct
summation is different than the limit obtained using BLTC-hi. The BLTC-lo increment matches the DS and BLTC-hi increments until
reaching level le-4; afterwards it increases sharply and the calculation breaks down at step k =92 when the smallest eigenvalue of
the Lanczos matrix T; becomes negative; this will be discussed below.

Next consider the error E;, where the reference, gfsf, is the limit of the SLDM-DS calculation. The results show that the DS error
decreases exponentially until it saturates close to machine precision, but essentially throughout the entire iteration the DS error is
approximately ten times larger than the DS increment; a similar result was obtained for system size N =1e3 by Ando et al. [26]. The
BLTC-hi error matches the DS error until around step k = 75 after which it saturates at level 4e-4; this means that the g;f vectors
computed by BLTC-hi converge to a well-defined limit, but the limit is different than the reference vector gfgf computed by direct
summation. The BLTC-lo error matches the DS and BLTC-hi errors until around step k = 20, after which it saturates at level 5e-2 until
breakdown occurs at step k = 92.

For practical reasons the SLDM stopping criterion is based on the increment, I; <z, but when the criterion is satisfied, the error
E, is generally larger. For example in Fig. 3 if 7 =1e-3, the stopping criterion is satisfied at step k =40 for DS, BLTC-hi and BLTC-lo
calculations, but the DS and BLTC-hi errors are 9 times larger than the increment, while the BLTC-lo error is 32 times larger. Hence
the increment can give a false sense of confidence in the accuracy of the correlated random displacements. It should be noted that
the errors E; in the DS, BLTC-hi, and BLTC-lo calculations initially overlap for more than one order of magnitude down to roughly
E, = le-1, and hence if only low accuracy in the SLDM iterations is needed, then the BLTC-lo can be used.

Alternatively, the inner product error E,{ has been used to monitor convergence of the Chebyshev polynomial approximation
method [23]. Fig. 4 shows that in the present SLDM calculations, E}{ is independent of the step k; the DS inner product error is
close to machine precision (consistent with the result that £ 1{ =0 for all k in exact arithmetic [26]), while the BLTC-hi inner product

error is 5e-8 and the BLTC-lo inner product error is 1e-4. Hence in these calculations the inner product error Elf reflects the treecode
approximation error rather than the SLDM iteration error and it cannot be used as the stopping criterion.

6.2. Eigenvalues of Lanczos matrix T},

Recall that step k in the SLDM requires computing the square root of the Lanczos matrix 7}, where in principle the eigenvalues of
T, are positive real numbers. Fig. 5 plots the maximum, minimum and median eigenvalues of T}, versus step k when the matrix-vector
product is computed by DS, BLTC-hi and BLTC-lo. Note that the BLTC-hi eigenvalues fall on top of the DS eigenvalues. The maximum
eigenvalue is almost independent of step k, while the median and minimum eigenvalues decrease slightly as the iteration proceeds.
The BLTC-lo maximum and median eigenvalues match their DS and BLTC-hi counterparts until the BLTC-lo calculation breaks down

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

0 25 50 75 100 125
step k

Fig. 5. SLDM for D'/?z, system size N = 1e5, particle volume fraction PVF = 0.12, eigenvalues of Lanczos matrix 7} versus step k, maximum (4,,,,), minimum (4,,),
median (4,,.4), matrix-vector product by DS (black solid line), BLTC-hi (blue solid line), BLTC-lo (red dashed line). (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

(a) DS, BLTC-hi () BLTClo
= O PVF=04
PVF =04
10 2 PVF = 0.04 | X PVF =0.04
=402 ki APvF=0004f = A PVF =0.004
= c
S o]
AN 5 p
SRR SRR AN 2 \
= ~ ey -
-8 N X @ A
10 \ <] \
0 100 200 300 400 500 0 50 100 150 200
step k step k

Fig. 6. SLDM for D'/?z, increment I « versus step k, system size N = 1e5, particle volume fraction PVF = 0.004, 0.04, 0.4, matrix-vector product by (a) DS, BLTC-hi
(BLTC-hi results fall on top of DS results), (b) BLTC-lo.

at step k = 92. The BLTC-lo minimum eigenvalue matches the others until step k = 75, after which it decreases sharply until step
k =92 when it becomes negative; at this point the calculation of the square root matrix Tkl /2 fails and the SLDM-BLTC-lo calculation
breaks down. We tried to correct this by setting the negative eigenvalues to zero, but more and more eigenvalues became negative
and were to set zero, and the results became highly inaccurate.

6.3. Effect of particle volume fraction

Next we consider the effect of the particle volume fraction for N =1e5 randomly distributed particles in a cube, where the cube
size is varied to obtain small PVF = 0.004, medium PVF = 0.04, and large PVF = 0.4. Fig. 6 shows the increment I; versus step k,
where the matrix-vector product was computed by (a) DS, BLTC-hi, and (b) BLTC-lo. In frame (a) the BLTC-hi results fall on top of
the DS results and the increments decrease faster for smaller PVF. In frame (b) note that the horizontal axis has been expanded. In
fact the BLTC-lo increment matches the DS and BLTC-hi increments for small PVF = 0.004. For medium PVF = 0.04, the BLTC-lo
increment falls below 1le-5 after which it increases sharply and breakdown occurs at step k = 142 as discussed above. For large PVF
= 0.4, the BLTC-lo increment reaches level 1e-3 and breakdown occurs at step k = 66.

6.4. Run time versus error

Fig. 7 shows the SLDM run time (s) versus error E, for N = 1le5 randomly distributed particles in a cube with PVF=0.12. The
matrix-vector product was computed by direct sum (DS, red symbols) and by the treecode (BLTC, blue symbols). Four combinations
of SLDM tolerance and BLTC MAC were computed, (7,0) = (le-2, 0.9), (1e-3, 0.8), (1e-4, 0.7), (1e-5, 0.6), as shown along the top of
the plot, and for each (r,0) combination, the BLTC degree n is shown in the legend and increases from right to left on each connected
blue line. For each value of the tolerance, a vertical red dashed line is drawn through the DS error. The calculations were done on
one CPU core.

First consider the direct sum results. Reducing the SLDM tolerance 7 also reduces the DS error, but the DS run time increases
because more iterations are needed to satisfy the stopping criterion. For a given tolerance 7, the DS error is about ten times larger
than 7, and this is consistent with the error and increment results in Fig. 3. Next consider the BLTC results. For each combination
of tolerance 7 and MAC 6, the BLTC error converges to the DS error as the degree n increases. The BLTC is faster than DS; for high
accuracy with 7 = le-5, the BLTC with MAC 0 = 0.6 and degree n = 6 is 4 times faster than DS, and for low accuracy with 7 =
le-2, the BLTC with MAC 6 = 0.9 and degree n =3 is 30 times faster than DS. Hence in SLDM calculations with a given tolerance 7,

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

7,0) (7,0) (7,0) (7,0)
(1e-5,0.6) (1e-4,0.7) (1e-3,0.8) (1€-2,0.9)
LA B B B R L LI R B T T T T ot
104k X i X JJODbsr=1e2
0 E * A 1 1 | X DS r=1e-3
F : >:< : 1A DS r=1e-4
: i 1 : * DS r=1e-5
i ! ! © BLTC (r, §) = (1e-2, 0.9), n = 3:6
10°F : : 0) 3% BLTC (7,) = (1e-3, 0.8), n = 3:8
PO ' i 1A BLTC (1,) = (1e-4, 0.7), n = 4:8
€ [: ! : 1|3 BLTC (1, 6) = (1e-5,0.6), n = 5:8
E I 1 1 1 1 1
1 1 1
2102k o : : .
E 1 1 1]
[1 | I]
L 1 1 1 -
1 1 1 .
1 1 1 1
1l L Ll 1 Ll 1 gl 1 1
10 1e-4 1e-3 1e-2 1e-1

error Ek

Fig. 7. SLDM for D'/?z, run time (s) versus error E,, system size N = 1e5, particle volume fraction PVF = 0.12, matrix-vector product by direct sum (DS, red symbols)
and treecode (BLTC, blue symbols), SLDM tolerance and BLTC MAC (z,6) = (1e-2, 0.9), (1e-3, 0.8), (1e-4, 0.7), (1e-5, 0.6), vertical red dashed lines are drawn through
DS error for each tolerance, BLTC degree n in legend increases from right to left on each connected blue line for each (z,8) combination, calculations on one CPU core.

Table 4

SLDM for D'/?z, system size N = 1e5, 1e6, 1e7, particle volume fraction PVF = 0.12, matrix-vector product by direct
sum (DS) and treecode (BLTC), calculations with tolerance ¢ = 1le-4 are denoted DS-hi, BLTC-hi (§ = 0.7, n=6) and
those with tolerance 7 = le-2 are denoted DS-lo, BLTC-lo (0§ = 0.9, n = 3), error E,, iteration count (iter), run time
(s) on 1 core, 32 cores, speedup (1 core run time/32 core run time), GPU run time (s), speedup (1 core run time/GPU
run time), na indicates run time is more than 28 hours.

N =1e5 1 E, iter 1 core 32 cores GPU

run time (s) run time (s) speedup run time (s) speedup

DS-hi le-4 1.149e-3 72 5940 217 27.4% 18.6 319.4x
BLTC-hi le-4 1.170e-3 72 954 68 14.0x 36.6 26.1x
DS-lo le-2 1.332e-1 10 825 36 22.9x 2.7 305.6x
BLTC-lo le-2 1.33%-1 10 26 2.7 9.6X 1.6 16.3x
N = le6

DS-hi le-4 na 111 na 40340 na 4862 na
BLTC-hi le-4 na 111 24693 1574 15.7x 714 34.6x
DS-lo le-2 na 12 100949 4355 23.2x 517 195.3x
BLTC-lo le-2 na 12 478 52 9.2x 19.8 24.1x
N = 1le7

DS-hi le-4 na na na na na na na
BLTC-hi le-4 na 170 na 33519 na 15474 na
DS-lo le-2 na na na na na na na
BLTC-lo le-2 na 12 6537 658 9.9x 212 30.8x

computing the matrix-vector product using the BLTC yields a significant speedup while maintaining the same accuracy as direct
summation.

6.5. Parallel performance

Table 4 records the SLDM parallel performance for system size N = 1e5, 1e6, 1e7 with particle volume fraction PVF = 0.12.
The matrix-vector product was performed using direct summation (DS) and the treecode (BLTC). Calculations with tolerance v =
le-4 are denoted DS-hi and BLTC-hi (§ = 0.7, n = 6), and those with tolerance ¢ = 1e-2 are denoted DS-lo and BLTC-lo (6 = 0.9,
n = 3). Results are shown for 1 core, 32 cores, and 1 GPU, where in the latter case the matrix-vector product (line 5 in Algorithm 1)
was done on the GPU and the other SLDM operations including vector inner products, reorthogonalization, and spectral factorization
(lines 6-14 in Algorithm 1) were done on 1 CPU core. The Table shows the error E,, iteration count (iter), run time (s) on 1 core and
32 cores), speedup (1 core run time/32 core run time), GPU run time (s), speedup (1 core run time/GPU run time). Complete results
were obtained for the smaller system size N =1e5, and only partial results are available for the larger systems due the cost of the
calculations; cases in which the run time is greater than 28 hours are labeled na (not available).

For system size N = le5 and given tolerance 7, the DS and BLTC have almost the same error E;, which is roughly ten times
larger than 7 as seen before. For system size N = 1e6, 1e7, the error is not available due to the high cost of the reference solution,
but Table 2 showed that the BLTC error for a single matrix-vector product is nearly independent of N and we expect this also holds

10

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

for SLDM-BLTC. For cases in which results are available, the iteration count increases as the system size increases, but for each
tolerance 7, the SLDM-DS and SLDM-BLTC have the same iteration count.

Focusing on system size N = 1e5 where complete results are available, DS-hi achieves the highest speedup, followed by DS-lo,
then BLTC-hi and then BLTC-lo; this ordering prevails on 32 cores and the GPU, but the speedup is higher on the GPU than on
32 cores. In terms of actual run time, for high accuracy, BLTC-hi is faster than DS-hi on 32 cores, but slower than DS-hi on the GPU;
this is due to several factors, (1) the direct sum parallelizes very well on the GPU, (2) the system size N =1e5 is still small enough
that the O(N?) scaling is not yet fully felt, and (3) the BLTC-hi is penalized by having operation count O(n*) with relatively high
interpolation degree n = 6. The situation is different for low accuracy, where BLTC-lo is faster than DS-lo on both 32 cores and the
GPU.

Where available, results in Table 4 for system size N = 1e6, 1e7 show the advantage of BLTC compared to DS and the advantage
of the GPU compared to 32 cores for high and low accuracy. Hence combining algorithmic acceleration (due to the BLTC) with
hardware acceleration (due to the GPU) provides a significant reduction in run time without sacrificing accuracy.

A final comment concerns the GPU calculation. Table 3 showed that for system size N = 1e6, a single matrix-vector product on
the GPU has run time 1.4 s for BLTC-hi and 0.23 s for BLTC-lo. This can be used to estimate how much of the GPU run time reported
in Table 4 is spent on the CPU versus the GPU. For instance with system size N =1e6, the BLTC-hi calculation took 714 s and 111
iterations; assuming 1.4 s for each matrix-vector product, this implies 155.4 s for the GPU and 558.6 s for the CPU; the BLTC-lo
calculation took 19.8 s and 12 iterations; assuming 0.23 s for each matrix-vector product, this implies 2.76 s for the GPU and 17.04 s
for the CPU. This means that a large portion of the reported GPU run time was actually spent doing SLDM operations on 1 CPU core
and hence a further reduction in run time could be gained by parallelizing those operations.

7. Summary

To account for hydrodynamic interactions among solvated molecules, Brownian dynamics simulations require correlated random
displacements g = D!/2z, where D is the 3N x 3N RPY diffusion tensor for a system of N particles and z is a standard normal
vector. The Spectral Lanczos Decomposition Method (SLDM) computes a sequence of approximations g, — g, but each step requires
a dense matrix-vector product Dq with a Lanczos vector q, and the O(N?) cost of computing the product by direct summation (DS)
is an obstacle for large-scale simulations. Here we employed the barycentric Lagrange treecode (BLTC) to reduce the cost of the
matrix-vector product to O(N log N) while introducing a controllable approximation error. The BLTC is kernel-independent with
relatively simple implementation and low memory requirements. Numerical experiments were performed to compare SLDM-BLTC
with SLDM-DS for randomly distributed particles in a cube. The main results are as follows.

+ The error E; and increment I, were computed for system size N = le5 and particle volume fraction PVF = 0.12, where the
reference for the error was obtained by iterating SLDM-DS until I, reached machine precision. In DS calculations, at a given
step k the error E; is an order of magnitude larger than the increment I; (this was also previously seen for system size N =
le3 [26]).

In BLTC calculations with N =1e5 and PVF = 0.12, two parameter sets were considered, BLTC-lo for low accuracy and BLTC-hi

for high accuracy.

— The BLTC-hi increment matches the DS increment down to machine precision, but the error saturates at 3-4 digit accuracy;
this means that the BLTC-hi calculation converges, but the limit is different than in the DS calculation.

— The BLTC-lo increment matches the DS and BLTC-hi increments for small k, but the error saturates at 1-2 digit accuracy while
the increment continues decreasing to level 1le-4 after which it increases sharply and the calculation breaks down when the
smallest eigenvalue of the Lanczos matrix T;, becomes negative.

- Hence with proper choice of parameters the SLDM-BLTC can reduce the increment I, to any desired level, but the error E;
may be substantially larger.

SLDM-DS and SLDM-BLTC calculations were performed with PVF = 0.004, 0.04, 0.4 and system size N = 1e5. The iteration

converges faster for small PVF and slower for large PVF. For all three PVFs, the BLTC-hi increment matches the DS increment down

to machine precision, however the BLTC-lo increment matches the others down to machine precision only for small PVF =0.004

and breaks down before reaching machine precision for larger PVF = 0.04, 0.4.

The SLDM-DS and SLDM-BLTC run time and error were reported for single core calculations with convergence tolerance r =

le-2, 1e-3, 1le-4, 1e-5, system size N = 1e5 and PVF = 0.12. With proper choice of parameters, the BLTC error is close to the

DS error while running faster.

Single core serial calculations were compared with 32 core and single GPU parallel calculations for N = 1e5, 1e6, 1e7 and 7 =

le-2, 1e-4. Due to the expense of SLDM-DS, the reference solution and hence the error E, could only be computed for N = 1e5.

— For system size N = 1e5 and given tolerance 7, BLTC and DS have essentially the same error.

— Where results are available, SLDM-DS and SLDM-BLTC require the same number of iterations to reach a given tolerance 7.

— In most cases where results are available, the BLTC runs faster than DS, and the GPU runs faster than 32 cores; for example
with N = 1e6 and 7 =1e-2, DS-lo took 4355 s on 32 cores and 517 s on the GPU, while BLTC-lo took 52 s on 32 cores and
19.8 s on the GPU. This shows the efficiency gained by combining algorithmic acceleration (due to the BLTC) and hardware
acceleration (due to the GPU).

11

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

Future research should examine the effect of approximation errors in the RPY matrix-vector product on the quality of BD simula-
tions. In particular, since the present work considered only randomly distributed particles in a cube, the SLDM-BLTC should be tested
for more realistic particle distributions representing polymers and biomolecules, especially where high accuracy may be needed as
with intrinsically disordered proteins [41]. There are potentially several ways in which the correlated random displacements could
be computed more efficiently, for example by preconditioning the SLDM [42-44] or applying a rational approximation of the ma-
trix square root [45,46]. Further improvements of the GPU calculation could include parallelizing the SLDM operations that were
performed here in serial and using an FMM extension of the BLTC on multiple GPUs [47,48].

While the present work dealt with RPY interactions in unbounded free space, another goal is to implement SLDM-BLTC with peri-
odic boundary conditions. An earlier version of the treecode based on Taylor series (TTC) was used to compute Coulomb interactions
in molecular dynamics simulations with periodic boundary conditions. Two approaches were considered; (1) the fundamental cell
was replicated to one level of images and the particle-particle Coulomb interactions were computed using the TTC [49], (2) Ewald
summation was applied where the real-space term involving the complementary error function was computed using the TTC, while
the reciprocal-space term was computed directly [50]. However, the TTC computes the Taylor coefficients of the Coulomb potential
recursively and this causes thread divergence on a GPU, while the barycentric Lagrange operations in the BLTC are kernel-independent
and non-recursive and they can be done without thread divergence. Hence the BLTC could replace the TTC for computing periodic
RPY interactions using either of these approaches. Other potential applications for SLDM-BLTC with periodic RPY interactions in-
clude the Positively Split Ewald method where the real-space and reciprocal-space terms are positive-definite [51,52], as well as
hydrodynamic interactions in confined doubly-periodic geometry [53].

CRediT authorship contribution statement

Lei Wang: Writing — review & editing, Writing — original draft, Validation, Software, Methodology, Investigation. Robert Krasny:
Writing — review & editing, Writing — original draft, Supervision, Methodology, Investigation, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors thank the reviewers for providing valuable comments that helped improve the article. This work was partially sup-
ported by National Science Foundation grant DMS-2110767.

Data availability
Data will be made available on request.

References

[1] T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, Springer, New York, 2002.
[2] G.A. Huber, J.A. McCammon, Brownian dynamics simulations of biological molecules, Trends Chem. 1 (2019) 727-738.
[3] A. Muiiz-Chicharro, L.W. Votapka, R.E. Amaro, R.C. Wade, Brownian dynamics simulations of biomolecular diffusional association processes, WIREs Comput.
Mol. Sci. 13 (2022) e1649.
[4] D.L. Ermak, J.A. McCammon, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys. 69 (1978) 1352-1360.
[5] J. Rotne, S. Prager, Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys. 50 (1969) 4831-4837.
[6] H. Yamakawa, Transport properties of polymer chains in dilute solution: hydrodynamic interaction, J. Chem. Phys. 53 (1970) 436-443.
[7]1 J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature 324 (1986) 446-449.
[8] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325-348.
[9] A.-K. Tornberg, L. Greengard, A fast multipole method for the three-dimensional Stokes equations, J. Comput. Phys. 227 (2008) 1613-1619.
[10] F. Biilow, P. Hamberger, H. Nirschl, W. Dorfler, A scalable parallel Stokesian dynamics method for the simulation of colloidal suspensions, Comput. Phys.
Commun. 204 (2016) 107-120.
[11] L. Wang, S. Tlupova, R. Krasny, A treecode algorithm for 3D stokeslets and stresslets, Adv. Appl. Math. Mech. 11 (2019) 737-756.
[12] W. Guan, X. Geng, J. Huang, G. Huber, W. Li, J. McCammon, B. Zhang, RPYFMM: parallel adaptive fast multipole method for Rotne-Prager-Yamakawa tensor in
biomolecular hydrodynamics, Comput. Phys. Commun. 227 (2018) 99-108.
[13] L. Ying, G. Biros, D. Zorin, A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys. 196 (2004) 591-626.
[14] W. Fong, E. Darve, The black-box fast multipole method, J. Comput. Phys. 228 (2009) 8712-8725.
[15] W. Hackbusch, B.N. Khoromskij, S. Sauter, On H?-matrices, Lect. Appl. Math. (2000) 9-29.
[16] W. Hackbusch, S. Bérm, Data-sparse approximation by adaptive />-matrices, Computing 69 (2002) 1-35.
[17] Z. Liang, Z. Gimbutas, L. Greengard, J. Huang, S. Jiang, A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications, J. Comput. Phys.
234 (2013) 133-139.
[18] X. Xing, H. Huang, E. Chow, A hierarchical matrix approach for computing hydrodynamic interactions, J. Comput. Phys. 448 (2022) 110761.
[19] D. Petera, M. Muthukumar, Brownian dynamics simulation of bead-rod chains under shear with hydrodynamic interaction, J. Chem. Phys. 111 (1999) 7614-7623.
[20] R.G. Larson, Principles for coarse-graining polymer molecules in simulations of polymer fluid mechanics, Mol. Phys. 102 (2004) 341-351.
[21] M. Fixman, Construction of Langevin forces in the simulation of hydrodynamic interaction, Macromolecules 19 (1986) 1204-1207.
[22] S. Jiang, Z. Liang, J. Huang, A fast algorithm for Brownian dynamics simulation with hydrodynamic interactions, Math. Comput. 82 (2013) 1631-1645.

12

http://refhub.elsevier.com/S0021-9991(25)00026-9/bib21380FA682CA497EE223B93BE1F9953Bs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib0D2A5520F378EB2728F96C53EBCC5C8Fs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibD54DF15F820E6D9733D3AE143EA2A652s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibD54DF15F820E6D9733D3AE143EA2A652s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibBF37F443A9E3B89FCA94CD787BE57DBEs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib442628ADA6A9762F06942C8DE9C59AF6s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib832346A4296C561EE69C0F2AD628ECC7s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib2FBB47EF9DF3B2C49729B11EA34B4500s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibFD85C2C53ED8E3D7EE5254599AABA6F7s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib95A45B70A0A604DF97234AFD285842BDs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib7EA7B1FC56F6E177AA9E3E34D4BFE9ECs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib7EA7B1FC56F6E177AA9E3E34D4BFE9ECs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibD77D6A3AAA2B8AA8CD0196CEDE434EB4s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib18A89DB1ADF61AC9D6D1EA360428D160s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib18A89DB1ADF61AC9D6D1EA360428D160s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib53C656AA3E0993BE6A11E24D7E0BA6FFs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib91EE33CB38F5BC221B9C24DA43BDF8AFs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibC98EE0F929CAF5FD09520C05176820E0s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibF024EDB2EFAD5DF13177FEBAB85DA72Bs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib1875756AD7624451949CA4E97AEC98CBs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib1875756AD7624451949CA4E97AEC98CBs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib7042DF46C905EDB7DAD70363ABD8E438s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibBF69E332D28289F09A67052D865E6CAFs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib76E611E7B6E79AD3D67448D3E55966E5s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibBD84FCCB8B12475E2CFE5BA645273B7Fs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibAC0CE856AD65CA556B9AF1F97B5F7A9Fs1

L. Wang and R. Krasny
Journal of Computational Physics 525 (2025) 113743

[23] R.M. Jendrejack, M.D. Graham, J.J. de Pablo, Hydrodynamic interactions in long chain polymers: application of the Chebyshev polynomial approximation in
stochastic simulations, J. Chem. Phys. 113 (2000) 2894.

[24] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992) 209-228.

[25] V. Druskin, L. Knizhnerman, Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic, Numer. Linear Algebra Appl.
2 (1995) 205-217.

[26] T. Ando, E. Chow, Y. Saad, J. Skolnick, Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulation, J. Chem. Phys.
137 (2012) 064160.

[27] T. Geyer, U. Winter, An N2 approximation for hydrodynamic interactions in Brownian dynamics simulations, J. Chem. Phys. 130 (2009) 114905.

[28] T. Geyer, Many-particle Brownian and Langevin dynamics simulations with the Brownmove package, BMC Biophys. 4 (2011) 7.

[29] A.H. Elcock, Molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible
biomolecules, J. Chem. Theory Comput. 9 (2013) 3224-3239.

[30] J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (2004) 501-517.

[31] L. Wang, R. Krasny, S. Tlupova, A kernel-independent treecode based on barycentric Lagrange interpolation, Commun. Comput. Phys. 28 (2020) 1415-1436.

[32] E. Wajnryb, K.A. Mizerski, P.J. Zuk, P. Szymczak, Generalization of the Rotne-Prager-Yamakawa mobility and shear disturbance tensors, J. Fluid Mech. 731
(2013) 1-12.

[33] L. Wang, A kernel-independent treecode for general regularized Rotne-Prager-Yamakawa tensor, Adv. Appl. Math. Mech. 13 (2021) 296-310.

[34] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

[35] H.A. Boateng, R. Krasny, Comparison of treecodes for computing electrostatic potentials in charged particle systems with disjoint targets and sources, J. Comput.
Chem. 34 (2013) 2159-2167.

[36] H.E. Salzer, Lagrangian interpolation at the Chebyshev points x,, , = cos(vz/n),v = 0(1)n; some unnoted advantages, Comput. J. 15 (1972) 156-159.

[37] L.N. Trefethen, Approximation Theory and Approximation Practice, extended edition, SIAM, 2019.

[38] N.J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal. 24 (2004) 547-556.

[39] S.B. Zimmerman, S.O. Trach, Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli, J. Mol. Biol. 222
(1991) 599-620.

[40] L. Wang, SLDM code, https://www.github.com/Treecodes/stokes-treecode, 2024.

[41] S.-H. Ahn, G.A. Huber, J.A. McCammon, Investigating intrinsically disordered proteins with Brownian dynamics, Front. Mol. Biosci. 9 (2022) 898838.

[42] T. Ando, E. Chow, J. Skolnick, Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: algorithm
and limitations, J. Chem. Phys. 139 (2013).

[43] E. Chow, Y. Saad, Preconditioned Krylov subspace methods for sampling multivariate Gaussian distributions, SIAM J. Sci. Comput. 36 (2014) A588-A608.

[44] J. Chen, W. Geng, On preconditioning the treecode-accelerated boundary integral (TABI) Poisson-Boltzmann solver, J. Comput. Phys. 373 (2018) 750-762.

[45] N. Hale, N.J. Higham, L.N. Trefethen, Computing A“,log(A), and related matrix functions by contour integrals, SIAM J. Numer. Anal. 46 (2008) 2505-2523.

[46] T. Chen, A. Greenbaum, C. Musco, C. Musco, Low-memory Krylov subspace methods for optimal rational matrix function approximation, SIAM J. Matrix Anal.
Appl. 44 (2023) 670-692.

[47]1 N. Vaughn, L. Wilson, R. Krasny, A GPU-accelerated barycentric Lagrange treecode, in: 2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), IEEE, 2020, pp. 701-710.

[48] L. Wilson, N. Vaughn, R. Krasny, A GPU-accelerated fast multipole method based on barycentric Lagrange interpolation and dual tree traversal, Comput. Phys.
Commun. 265 (2021) 108017.

[49] H.A. Boateng, Periodic Coulomb tree method: an alternative to parallel particle Mesh Ewald, J. Chem. Theory Comput. 16 (2019) 7-17.

[50] Z.-H. Duan, R. Krasny, An Ewald summation based multipole method, J. Chem. Phys. 113 (2000) 3492-3495.

[51] D. Lindbo, A.-K. Tornberg, Spectrally accurate fast summation for periodic Stokes potentials, J. Comput. Phys. 229 (2010) 8994-9010.

[52] A.M. Fiore, F. Balboa Usabiaga, A. Donev, J.W. Swan, Rapid sampling of stochastic displacements in Brownian dynamics simulations, J. Chem. Phys. 146 (2017)
124116.

[53] A. Hashemi, R.P. Peldez, S. Natesh, B. Sprinkle, O. Maxian, Z. Gan, A. Donev, Computing hydrodynamic interactions in confined doubly periodic geometries in
linear time, J. Chem. Phys. 158 (2023) 154101.

13

http://refhub.elsevier.com/S0021-9991(25)00026-9/bibB236DD84CE1B10F55DD8D5A0411DD229s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibB236DD84CE1B10F55DD8D5A0411DD229s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib3A8338FE8DB0EBDF5E38F2F2C563EAA6s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibB61A9B73C052023F0F8995D597E71CF6s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibB61A9B73C052023F0F8995D597E71CF6s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib32E15DDB8C6CF4B8333C6E0E4B95DE56s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib32E15DDB8C6CF4B8333C6E0E4B95DE56s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibB89DD5EE112F5F5244642B78C5A974A3s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib9A34ABA55E3C54FDE0F20A2134ACB7FBs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib7DC91301FE513F235B8CB627A9409493s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib7DC91301FE513F235B8CB627A9409493s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib11D30E88B7F0AEC329240D943716D5F8s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib0C4F8A9C3A1B29FF47D7031EA029D1D4s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib63FC980E36D49D702E4E08F491724EB3s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib63FC980E36D49D702E4E08F491724EB3s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibFCA508B322D935984E9D2926A03B3E84s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib77AE60722DE8E50F1C3B8FAF1038381Es1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib25D0524E789FAF7B61022C0FC5A45021s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib25D0524E789FAF7B61022C0FC5A45021s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibE6552355AF78445432C19F81990C29B2s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibD4D077F73B0C452598C845CF341192D1s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibC55F7FEF16D2096EAF7477EC021343E8s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib974606F2F0ECCA9FDC0FD44639EF5FAAs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib974606F2F0ECCA9FDC0FD44639EF5FAAs1
https://www.github.com/Treecodes/stokes-treecode
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibC26DF60E2DB31B0FE04187C207BEC678s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib2BC9CF5A0EF17E3CFD07E416FD1ADCCAs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib2BC9CF5A0EF17E3CFD07E416FD1ADCCAs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibB213DB265E601700FA7E46D3E6198FE3s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib0EFF587A8429D7CDF6928C56116D097Cs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib62820B0DCE02C84DB19A88420B239805s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib3251A2A6624A0A8B26F96C30DE303DBEs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib3251A2A6624A0A8B26F96C30DE303DBEs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib645356E0EF25456C7DD3931167741B37s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib645356E0EF25456C7DD3931167741B37s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibD2A68CDCCFEAB13E196C8C93358B9E86s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibD2A68CDCCFEAB13E196C8C93358B9E86s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibA6E936B72555FD4308C9D3E325995365s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibBDBBDB4AF754A392A4352217C0381E36s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bibA6024F256B8FB9DCC12FB0792A761C0Cs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib6D148D3ED97EB69E3E4F728EA00E389Cs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib6D148D3ED97EB69E3E4F728EA00E389Cs1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib048C52C0FD1C352A8D700779AAE3D3E5s1
http://refhub.elsevier.com/S0021-9991(25)00026-9/bib048C52C0FD1C352A8D700779AAE3D3E5s1

	Numerical experiments using the barycentric Lagrange treecode to compute correlated random displacements for Brownian dynam...
	1 Introduction
	1.1 Fast methods for matrix-vector product
	1.2 Fast methods for correlated random displacements
	1.3 Present work

	2 Spectral Lanczos decomposition method (SLDM)
	3 Barycentric Lagrange treecode (BLTC)
	3.1 Treecode structure
	3.2 Barycentric Lagrange interpolation
	3.3 Particle-cluster approximation
	3.4 BLTC algorithm

	4 Implementation details
	5 Numerical results: BLTC for a single matrix-vector product Df
	6 Numerical results: SLDM-BLTC for correlated random displacements D1∕2z
	6.1 Accuracy and convergence properties of SLDM-BLTC
	6.2 Eigenvalues of Lanczos matrix Tk
	6.3 Effect of particle volume fraction
	6.4 Run time versus error
	6.5 Parallel performance

	7 Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

