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Abstract—We investigate the problem of maximizing the over-
all Spectral Efficiency (SE) in a Reconfigurable Intelligent Sur-
face (RIS)-aided Multi-User Multiple-Input Single-Output (MU-
MISO) downlink system by jointly optimizing the beamforming
at the Base Station (BS) and the phase shift of the RIS. To address
this highly non-convex optimization challenge, we propose a Deep
Reinforcement Learning (DRL) framework utilizing the Deep
Deterministic Policy Gradient (DDPG) algorithm. The DRL agent
interacts with the communication environment through trial-and-
error learning, receiving the rewards that reflect the quality of
actions under continuously changing states. One advantage of our
proposed scheme is its capability to handle the non-stationary
conditions of MU-MISO environment efficiently. This capability
is achieved through a carefully designed, richly structured state
representation, which captures the detailed information from
both the current and previous time steps. Additionally, we intro-
duce a dual-normalization network structure to promote stable
learning and effective exploration during training. DRL agent
is trained with an off-policy actor-critic method that leverages
an experience replay buffer and soft-updated target networks
to maintain stable convergence in the continuous action space.
Simulation results under the 3GPP propagation environment
demonstrate that our proposed scheme can achieve better SE
performance compared with several state-of-the-art benchmarks.

I. INTRODUCTION

Reconfigurable Intelligent Surface (RIS) / Intelligent Re-

flection Surface (IRS), has become a revolutionary technol-

ogy for the next-generation wireless communication [1]–[3].

RIS typically consists of numerous passive reflecting units

capable of manipulating the radio propagation environment by

adjusting the phase shifts of incident electromagnetic waves.

By intelligently steering these signals, RIS can significantly

improve the sum Spectral Efficiency (SE) and mitigate interfer-

ence among all users across various wireless communication

scenarios [4]. Furthermore, due to the passive structure, its

power consumption can be nearly ignored, and generates no

additional thermal noise during signal reflection.

Despite these benefits, RIS technology faces several prac-

tical challenges [5], [6]. Among these challenges, one of the

most critical applications is to maximize SE among users in

MU-MISO downlink communication systems. The joint opti-

mization of passive RIS phase shifts and active beamforming

at the Base Station (BS) is a highly non-convex problem [7].

Several approaches have been proposed to address these

challenges. The authors in [8] adopt a two-block Block-

Coordinate Descent (BCD) framework, alternating between

Weighted Minimum Mean Square Error (WMMSE) beam-

forming optimization and Riemannian Conjugate Gradient

(RCG) phase shift updates. Although this method achieves

strong performance, it incurs inner-iteration computational

cost at each time step. Similarly, [10] introduces the Gradient-

based Manifold Meta Learning method (GMML), which also

requires extensive inner-loop learning at each time step.

In recent years, Deep Reinforcement Learning (DRL) has

emerged as an effective technique for solving RIS-aided

wireless problems. In [9], [11], [12], the authors explored

DRL approaches, such as Deep Deterministic Policy Gradient

(DDPG) and Soft Actor Critic (SAC) algorithms, demonstrat-

ing promising performance for MU-MISO systems. However,

the limitation is that the performance in a non-stationary

environment is not guaranteed. More specifically, the wireless

channels change continuously from one transmission step to

the next. This limitation highlights the need for a framework

that can efficiently and reliably optimize system performance

in a non-stationary environment.

Motivated by these limitations, we propose a new DRL-

based framework leveraging the DDPG algorithm specifically

designed to handle the non-stationary MU-MISO system effec-

tively. The state representation includes detailed environmental

information from both the current and previous time step, en-

abling the DRL agent to accurately capture temporal dynamics.

We also introduce a dual-normalization network architecture

combined with an adaptive exploration noise schedule to

ensure stable training and efficient exploration during learning.

We compare with several existing state-of-the-art benchmarks.

Simulation results show that our scheme achieves comparable



Fig. 1. The RIS MU-MISO downlink communication system.

or even better performance than the baseline methods.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a RIS-aided MU-MISO downlink communica-

tion system consisting of a BS with M antennas, a RIS with N
reflecting units, and K single-antenna user equipments (UEs),

where M ≥ K. As depicted in Fig. 1, the direct link Hd,k

between the BS and the UEs is assumed to be blocked. At each

time step t, the data stream is transmitted from the BS to the

RIS, and reflected toward the UEs by dynamically adjusting

the phase shifts according to the communication environment.

Let G ∈ C
N×M denote the channel from BS to RIS, and

hr,k ∈ C
N×1 denote the channel between RIS to user k. The

phase shift matrix is defined as Φ = diag([ejφ1 , ejφ2 , ..., ejφN ])

∈ C
N×N where φn corresponds to the phase shift applied by

the n-th RIS element. We assume the data stream column

vector s = (s1, . . . , sK) is unit-power transmitted symbols,

where E[|s|2] = 1. The transmit beamforming matrix at BS is

defined as W = [w1, . . . ,wK ] ∈ C
M×K . The signal received

by the k-th user is

yk = hH
r,kΦGWs+ nk,

= hH
r,kΦGwksk +

K∑
n=1,n �=k

hH
r,kΦGwnsn + nk,

(1)

where nk ∼ CN (0, σ2) is the complex Gaussian noise at user

k, with zero mean and variance σ2. (·)H is the Hermitian

operator. By combining the channels from BS to RIS and

from RIS to the k-th user, the cascaded channel is given

by Hk = diag(hH
r,k)G. We define the phase shift vector

φ = [ejφ1 , ejφ2 , ..., ejφN ]H to efficiently represent the overall

propagation environment, the received signal yk becomes

yk = (φHHk)wksk +

K∑
n=1,n �=k

(φHHk)wnsn + nk. (2)

In (2), the first term is treated as the received signal at user

k, the second term is treated as multi-user interference to user

k. The signal-to-interference noise ratio (SINR) is defined as

SINRk =
|(φHHk)wk|2∑K

n=1,n �=k |(φHHk)wn|2 + σ2
. (3)

In this paper, our objective is to maximize the overall SE

of all users in the RIS-aided system. To achieve the objective,

we jointly optimize two parameters, W and φ, subject to the

transmit power Pt and phase shift constraints, i.e.,

argmax
W,φ

R(W,φ) =

K∑
k=1

log2(1 + SINRk

)
s.t. tr{WHW} ≤ Pt

|ejφn | = 1, ∀n = 1, . . . , N.

(4)

We assume the setup where all channels are frequency-flat

Rician fading with correlated, and all channel state information

(CSI) is perfectly known. The block fading channel remains

unchanged within a time step t. From BS to RIS channel G(t)

and RIS to UE channels h
(t)
r,k are modeled as Rician fading

process [13], which is

G(t) =
√
PL(dG)

(√
κ

κ+ 1
Ḡ+

√
1

κ+ 1
G̃(t)

)
,

h
(t)
r,k =

√
PL(dhr,k

)

(√
κ

κ+ 1
h̄r,k +

√
1

κ+ 1
h̃
(t)
r,k

)
,

(5)

and the pathloss of BS to RIS and RIS to UE are denoted by

PL(dG) and PL(dhr,k
), respectively. κ is the Rician factor for

both channels G(t) and h
(t)
r,k. The Non-Line-of Sight (NLoS)

random components G̃(t) and h̃
(t)
r,k are formulated by the

temporal correlated first-order complex Gauss-Markov block

fading model [14], which represent how the channels evolve

over time steps,

G̃(t) =
√

1− ρ2 V(t) + ρ G̃(t−1), V(t) ∼ CN (0, 1),

h̃
(t)
r,k =

√
1− ρ2 U

(t)
k + ρ h̃

(t−1)
r,k , U

(t)
k ∼ CN (0, 1),

(6)

where V(t), U
(t)
k are channels randomly generated with i.i.d,

and ρ ∈ [0, 1] is the temporal correlation coefficient. Further-

more, we assume that the antennas at BS and RIS are arranged

in uniform linear arrays with half-wavelength spacing. Ḡ and

h̄r,k are defined as

Ḡ = aN (θARIS)aM (θDBS)
H ,

h̄r,k = aN (θDRIS),
(7)

where aN and aM represent the steering vector at RIS and

BS. θARIS is the angle of arrival direction at RIS, θDBS is

the angle of departure direction at BS, and θDRIS defines the

angle at departure direction at RIS.

III. PROPOSED APPROACH

A. Overview of DRL

In RL, the agent learns a policy that maximizes cumulative

reward by trial-and-error interaction with the environment.

This model is formulated as Markov Decision Process (MDP),

defined by (S,A,P,R), where S is the state space, A is the

action space, P is the state transition probability function, and

R is the reward function. At time step t, the agent observes the

state st ∈ S, then chooses an action at ∼ μ(·|st) ∈ A based

on policy μ which satisfies
∑

at∈A μ(st, at) = 1. Next, the

environment moves to the next state st+1 ∼ P (·|st, at) ∈ P



and the agent returns a scalar reward rt+1 = R(st, at, st+1),
measuring the quality of at. The cumulative reward is defined

as Gt =
∑∞

i=1 γ
irt+i, where i is how many steps ahead

of the current time step t, and γ ∈ (0, 1] is the discount

factor. The agent seeks a policy μ that maximizes J(μ) =
Es∼pμ [Q(s, μ(s))] where Q is the Q-function, which satisfies

Qμ(s, a) = E[Gt|st = s, at = a] as the expected return.

DRL is based on the RL algorithm, which exploits the

representational advantage of Deep Neural Network (DNN) by

using two networks, the actor (policy) and critic (Q-function).

DDPG [15] is a DRL algorithm tailored for the continuous

action space, where the policy μ is a deterministic mapping

a = μ(s) from state s to action a. DDPG uses the actor-critic

architecture, where the actor μ(s|θμ) network is controlled

by the parameter θμ, and the critic Q(s, a|θQ) network is

with the parameter θQ. To maintain the training stability

and reduce the correlation between each experience, a replay
buffer D is reserved to store past experiences. Define state as

sj , action as aj , and reward as rj . For every time step, the

actor and critic networks are trained by randomly sampling

a mini-batch NB of experiences from D, and performing

Stochastic Gradient Descent (SGD) updates U times with

U different sampling from D. The mini-batch is defined as

B = {sj , aj , rj , s′j}, j = 1, 2, ..., NB, where s′j is the next

state of the environment transition from sj . The critic network

parameter θQ is updated by minimizing the loss

Lcritic(θ
Q) =

1

NB

NB∑
j=1

(
yj −Q(sj , aj |θQ)

)2
, (8)

where the bootstrapped target yj is defined as yj = rj +
γQ′(s′j , μ

′(s′j , θ
μ′
)|θQ′

). RL aims to approach the optimal

Q value, but the actual target value is unknown. Thus, RL

defines target actor and target critic networks as Q′(·|θQ′
) and

μ′(·|θμ′
), which are the copies of the critic and actor network

parameters that θQ
′ ←− θQ, θμ

′ ←− θμ. Hence, yj is used as a

proxy to approximate the actual target value. After the agent

computes the critic loss, the critic network parameter θQ is

updated by θQ ←− θQ − ηQ�θQLcritic(θ
Q), where ηQ is the

learning rate of the critic network. Then, the actor parameter

θμ is trained by minimizing the actor loss

Lactor(θ
μ) = − 1

NB

NB∑
i=1

Q(sj , μ(sj |θμ)|θQ), (9)

which aims to maximize the Q-function. The agent updates

the actor network parameter θμ by the actor loss that θμ ←−
θμ + ημ�θμLactor(θ

μ), where ημ is the learning rate for

the actor network. To enhance stability, the target network

parameters θμ
′

and θQ
′

are updated slower (i.e. the target

network is updated once every Ntarget time steps) than the

main networks by the soft-update method, where τ ∈ (0, 1) is

the soft-update coefficient with usually τ � 1

θQ
′ ← τ θQ + (1− τ) θQ

′
,

θμ
′ ← τ θμ + (1− τ) θμ

′
,

(10)

Fig. 2. Proposed DNN structure for both networks.

B. Proposed DDPG Scheme

At each time step t, the temporally structured state st is

normalized to ŝt =
st−s̄t
σs

, where s̄t and σs are the mean and

standard deviation of st. The ŝt is fed into the actor network

to capture the feature dependencies and output action at =
μ(ŝt|θμ), where the policy parameter θμ is represented by

a fully connected DNN. The critic network is parameterized

by θQ, which is a fully connected DNN to estimate the Q
value. The structure of DNNs is shown in Fig. 2. Several basic

elements of the proposed DDPG are present in this section.

1) Dual-Normalization DNN: Both the actor and critic net-

works have three fully connected hidden layers with an input

and output layer. We deliberately choose batch normalization

(BN) for the actor and layer normalization (LN) for the critic,

placing them on opposite sides of Tanh activation function.

In the actor, we apply Tanh followed by BN, so the mini-

batch NB of experiences introduces slight fluctuations to each

forward pass, which prevents the policy from converging too

quickly and ensures exploration. In the critic, we perform LN

before Tanh to normalize each batch sample independently.

LN can effectively suppress internal covariate shift, stabilize

gradient flow to produce more stable Q value estimation.

2) Action: At each time step t, the action is combined

by the beamforming matrix W and RIS phase shift vec-

tor φ as at = {W(t),φ(t)}. During training, a decaying

random exploration noise nt = {n(t)
W, n

(t)
φ } is added to at

to ensure sufficient exploration. Define Tmax as the longest

decaying step. For time step t ≤ Tmax, the beamforming

noise is n
(t)
W ∼ N (0, σ2

W(t)), where σW(t) = αinit

√
Pt

K −
t

Tmax

(
αinit

√
Pt

K − αfinal

√
Pt

K

)
that K is the number of users.

The αinit and αfinal are the initial and final beamforming noise

scaling factors. The noisy beamforming matrix W(t) + n
(t)
W

is re-normalized to satisfy the transmit power Pt constraint

in (4). Simultaneously, each RIS unit’s phase shift add the

angular noise, where n
(t)
φ ∼ N (0, σ2

φ(t)) with σφ(t) =

βinit − t
Tmax

(βinit − βfinal). Similarly, βinit and βfinal are the



Fig. 3. Overview of MU-MISO scenario.

initial and final phase shift angular noise. The noisy RIS vector

φ(t)+n
(t)
φ follows the phase shift constraint in (4). After Tmax

steps, a small fixed noise σW = αfinal

√
Pt

K and σφ = βfinal

are applied to enable fine-tuned policy. This two-stage noise

schedule encourages exploration during early learning and

stable convergence at the end of training.

3) State: Since the channel varies in each time step t, the

state vector has to include richly structured environmental

features [16] with the information of past environmental

conditions. The state at t+1 is defined as st+1
Δ
= o

(t+1)
1 ∪o(t+1)

2

o
(t+1)
1

Δ
= {W(t), φ(t), P

(t)
k , H

(t)
k ,H

(t−1)
k },

o
(t+1)
2

Δ
= {P (t)

r,k , I
(t)
k , Î

(t)
k , R

(t)
k ,

R
(t)
k∑K

k=1 R
(t)
k

}.
(11)

The o
(t+1)
1 contains the transmission features where W(t)

and φ(t) are the beamforming and phase shift at step t. The

BS’s transmit power allocation of each user k at step t is

P
(t)
k = [P

(t)
1 , P

(t)
2 , . . . , P

(t)
K ]. H

(t)
k and H

(t−1)
k represent the

cascaded channels of each user k at step t and t−1. Note that it

is assumed that the future environment information cannot be

accessed at the current step. To predict the optimal action for

the next step, the previous step channel observation is included

in the state representation, enabling the network to capture the

temporal channel pattern.

The o
(t+1)
2 contains information at the users’ end. P

(t)
r,k

is the received signal power of user k at step t. Then

I
(t)
k =

∑K
n=1,n �=k |(φ(t))HH

(t)
k w

(t)
n |2 + σ2 is the total re-

ceived interference at k-th user in time step t. Î
(t)
k is the

total interference of k-th user at the beginning of time

step t that beamforming and phase shift changed, but the

cascaded channel have not changed yet, denoted as Î
(t)
k =∑K

n=1,n �=k |(φ(t))HH
(t−1)
k w

(t)
n |2 + σ2. This observation pro-

vides the effect of action updates, independent of channel

dynamics within a step. R
(t)
k is the SE of each user at step

t, and the last term R
(t)
k /

∑K
k=1 R

(t)
k , is defined as the ratio

of each user’s SE, that express the contribution of k-th user

to overall SE among all users. Our state contains the previous

time step channel to enable the agent to identify the short

temporal correlation in the non-stationary environment.

4) Reward: At each time step t, the reward function is set

as the instantaneous system SE, which exactly matches the

TABLE I
HYPERPARAMETERS FOR THE PROPOSED DDPG SCHEME

Parameter Symbol Value

Actor learning rate ημ 1.5× 10−4

Critic learning rate ηQ 2× 10−4

Soft-update coefficient τ 1.5× 10−4

Discount factor γ 0.99
Batch size NB 64
Replay buffer size |D| 1× 105

Number of total time steps T 8× 104

Number of steps updating target network Ntarget 9
Beamforming noise scaling factor (init) αinit 0.3
Beamforming noise scaling factor (final) αfinal 0.05
Phase-shift noise (init std) βinit 0.15
Phase-shift noise (final std) βfinal 0.04
Decaying steps before fixed noise Tmax 1× 104

SGD updates per time step U 5
Weight decay regularization 1× 10−5

optimization objective (4). However, since rt scales with the

transmit power, operating at low transmit power produces near-

zero rewards, which vanish the gradients, and high transmit

power leads to dispersed rewards that destabilize learning.

To remove the reward scaling from the transmit power and

preserve a consistent gradient magnitude, we perform the

batch-level reward normalization. Given a mini-batch size of

rewards {ri}Bi=1, we compute r̄ = 1
B

∑B
i=1 ri and σr =√

1
B

∑B
i=1(ri − r̄)2, then replace each ri by r̂i =

ri−r̄
σr

.

IV. SIMULATION

A. Simulation setup

In this section, we show our proposed scheme’s performance

through simulation and compare it with other state-of-the-art

benchmarks. We consider a RIS-aided MU-MISO system [17]

as shown in Fig. 3. The BS is positioned at (0m, 0m), the RIS

at (200m, 0m), and the UEs are randomly distributed within

a circular area centered at (200m, 30m) with a radius of 10m.

We assume that the direct link Hd,k between the BS and the

users is blocked and thus unavailable. Moreover, we set the

number of antennas at BS equal to 4, and each of the 4 users

has a single-antenna device. The RIS comprises 16 units, and

each unit can independently adjust its phase shift. The pathloss

component is based on the 3GPP propagation environment

[18]. The pathloss of NLoS part is defined as PL(d) =
35.6+22.0log10(d), where d is the transmission distance. The

system is operated at a bandwidth of B0 = 180 kHz with the

thermal noise power of −170+10 log10(B0) ≈ −117.45 dBm,

and the Rician factor is set to κ = 10. The layer dimensions

for the actor and critic networks in Fig. 2 are [1112, 2048,

1024, 512, 64] and [1112, 2112, 2048, 1024, 1], respectively.

The simulations are implemented in PyTorch and trained

using the Adam optimizer. The remaining hyperparameter

settings are summarized in Table I. The proposed scheme is

evaluated against three benchmark schemes for beamforming

and phase-shift optimization.

• Scheme 1: WMMSE followed by RCG algorithm [8].

• Scheme 2: Baseline DDPG [9].

• Scheme 3: Gradient-based manifold meta learning [10].
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Fig. 4. Different ρ comparison at transmit power = -10dBm.

Schemes 1 and 3 require the inner computation or learning

iterations to obtain the optimal W and φ. For all the schemes,

we assume that future CSI cannot be accessed at the current

step. The beamforming and phase shift inferred from the

current step are applied to the environment of the next step to

calculate the spectral efficiency.

The simulation is evaluated across 5 transmit power levels

Pt ∈ {−10, 0, 10, 20, 30} dBm and 2 temporal channel corre-

lation coefficients ρ, which are set to 0.9 and 0.5 to represent

strong and moderate correlation, respectively. Given a (Pt, ρ)
pair, within each simulation, all schemes are evaluated on

the same set of UE positions and channels. We conduct

5 independent simulations for all schemes. Across different

simulations, the UE locations and channels are randomly re-

generated. When comparing different ρ cases with a given Pt,

UE locations remain fixed while the channels are regenerated.

The simulation results are averaged over 5 simulations.

B. Results

Figs. 4-8 illustrate the spectral efficiency (SE) performance

comparison among different schemes, with SE on the y-axis

and time step index on the x-axis. The shaded regions in

the figures represent the variance around the mean curve.

The performance at each time step is computed as a moving

average over the previous 1,000 steps. As a result, (i.e., Fig. 4),

Scheme 3 initially appears below the average since there is no

prior data for smoothing. Our proposed scheme demonstrates

significantly faster convergence than Scheme 2, particularly

within the first 10,000 steps, which guarantees sufficient ex-

ploration during the early stages of training and achieves better

performance. When ρ = 0.9, the proposed scheme consistently

achieves the best performance over all the benchmarks across

all transmit power levels. When ρ = 0.5, the proposed
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Fig. 6. Different ρ comparison at transmit power = 10dBm.

scheme generally maintains superior performance over the

benchmarks, except for cases with Pt = 10 and Pt = 30 dBm.

As shown in Fig. 6, when Pt = 10 dBm, our scheme achieves

very close performance to Scheme 3, and better than others.

Fig. 8 indicates that, at Pt = 30 dBm, the proposed scheme

outperforms Scheme 3 and is slightly worse than Scheme 1.

These results demonstrate the adaptability and robustness of

our proposed scheme across various levels of temporal channel

correlation and transmit power.
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Fig. 7. Different ρ comparison at transmit power = 20dBm.
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Fig. 8. Different ρ comparison at transmit power = 30dBm.

V. CONCLUSION

This work presents a jointly beamforming and phase shift

optimization based on Deep Deterministic Policy Gradient

in the non-stationary MU-MISO downlink environment. The

proposed scheme utilizes the Dual-normalization network

structure, a carefully designed state that embeds the detailed

environmental features of both the current and previous time

steps and the transmit power-related exploration noise. The

simulation results indicate that our proposed DDPG scheme

outperforms several state-of-the-art approaches in most cases

across a wide range of transmit powers.
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