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Abstract—We investigate the problem of maximizing the over-
all Spectral Efficiency (SE) in a Reconfigurable Intelligent Sur-
face (RIS)-aided Multi-User Multiple-Input Single-Output (MU-
MISO) downlink system by jointly optimizing the beamforming
at the Base Station (BS) and the phase shift of the RIS. To address
this highly non-convex optimization challenge, we propose a Deep
Reinforcement Learning (DRL) framework utilizing the Deep
Deterministic Policy Gradient (DDPG) algorithm. The DRL agent
interacts with the communication environment through trial-and-
error learning, receiving the rewards that reflect the quality of
actions under continuously changing states. One advantage of our
proposed scheme is its capability to handle the non-stationary
conditions of MU-MISO environment efficiently. This capability
is achieved through a carefully designed, richly structured state
representation, which captures the detailed information from
both the current and previous time steps. Additionally, we intro-
duce a dual-normalization network structure to promote stable
learning and effective exploration during training. DRL agent
is trained with an off-policy actor-critic method that leverages
an experience replay buffer and soft-updated target networks
to maintain stable convergence in the continuous action space.
Simulation results under the 3GPP propagation environment
demonstrate that our proposed scheme can achieve better SE
performance compared with several state-of-the-art benchmarks.

I. INTRODUCTION

Reconfigurable Intelligent Surface (RIS) / Intelligent Re-
flection Surface (IRS), has become a revolutionary technol-
ogy for the next-generation wireless communication [1]-[3].
RIS typically consists of numerous passive reflecting units
capable of manipulating the radio propagation environment by
adjusting the phase shifts of incident electromagnetic waves.
By intelligently steering these signals, RIS can significantly
improve the sum Spectral Efficiency (SE) and mitigate interfer-
ence among all users across various wireless communication
scenarios [4]. Furthermore, due to the passive structure, its
power consumption can be nearly ignored, and generates no
additional thermal noise during signal reflection.

Despite these benefits, RIS technology faces several prac-
tical challenges [5], [6]. Among these challenges, one of the

most critical applications is to maximize SE among users in
MU-MISO downlink communication systems. The joint opti-
mization of passive RIS phase shifts and active beamforming
at the Base Station (BS) is a highly non-convex problem [7].

Several approaches have been proposed to address these
challenges. The authors in [8] adopt a two-block Block-
Coordinate Descent (BCD) framework, alternating between
Weighted Minimum Mean Square Error (WMMSE) beam-
forming optimization and Riemannian Conjugate Gradient
(RCG) phase shift updates. Although this method achieves
strong performance, it incurs inner-iteration computational
cost at each time step. Similarly, [10] introduces the Gradient-
based Manifold Meta Learning method (GMML), which also
requires extensive inner-loop learning at each time step.

In recent years, Deep Reinforcement Learning (DRL) has
emerged as an effective technique for solving RIS-aided
wireless problems. In [9], [11], [12], the authors explored
DRL approaches, such as Deep Deterministic Policy Gradient
(DDPG) and Soft Actor Critic (SAC) algorithms, demonstrat-
ing promising performance for MU-MISO systems. However,
the limitation is that the performance in a non-stationary
environment is not guaranteed. More specifically, the wireless
channels change continuously from one transmission step to
the next. This limitation highlights the need for a framework
that can efficiently and reliably optimize system performance
in a non-stationary environment.

Motivated by these limitations, we propose a new DRL-
based framework leveraging the DDPG algorithm specifically
designed to handle the non-stationary MU-MISO system effec-
tively. The state representation includes detailed environmental
information from both the current and previous time step, en-
abling the DRL agent to accurately capture temporal dynamics.
We also introduce a dual-normalization network architecture
combined with an adaptive exploration noise schedule to
ensure stable training and efficient exploration during learning.
We compare with several existing state-of-the-art benchmarks.
Simulation results show that our scheme achieves comparable
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Fig. 1. The RIS MU-MISO downlink communication system.

or even better performance than the baseline methods.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a RIS-aided MU-MISO downlink communica-
tion system consisting of a BS with M antennas, a RIS with [V
reflecting units, and K single-antenna user equipments (UEs),
where M > K. As depicted in Fig. 1, the direct link Hy j
between the BS and the UEs is assumed to be blocked. At each
time step t, the data stream is transmitted from the BS to the
RIS, and reflected toward the UEs by dynamically adjusting
the phase shifts according to the communication environment.
Let G € CN*M denote the channel from BS to RIS, and
h,; € CN*1 denote the channel between RIS to user k. The
phase shift matrix is defined as ® = diag([e’?*, e/?2, ..., e7?N])
€ CVXN where ¢,, corresponds to the phase shift applied by
the n-th RIS element. We assume the data stream column
vector s = (81,...,S8k) is unit-power transmitted symbols,
where E[|s|?] = 1. The transmit beamforming matrix at BS is
defined as W = [wy, ..., wx] € CM*K The signal received
by the k-th user is

yr = h[, 8GWs + ny,
K
= hfk{Jkask + Z hkaGwnsn + ng,
n=1,n#k

(1

where ny ~ CN(0,0?) is the complex Gaussian noise at user
k, with zero mean and variance o2. (-)f is the Hermitian
operator. By combining the channels from BS to RIS and
from RIS to the k-th user, the cascaded channel is given
by Hy, = diag(hgk)G. We define the phase shift vector
¢ = [e7%1,e1%2 ... eI9N|H 1o efficiently represent the overall
propagation environment, the received signal y; becomes

K
vk = (" Ho)wise + Y (@"Ho)wnsy + 1k (2)
n=1,n#k

In (2), the first term is treated as the received signal at user
k, the second term is treated as multi-user interference to user
k. The signal-to-interference noise ratio (SINR) is defined as

(¢ Hy)wy |?
Zf:l,n;ﬁk (T H )W, |? + o2

SINR;, = 3)

In this paper, our objective is to maximize the overall SE
of all users in the RIS-aided system. To achieve the objective,

we jointly optimize two parameters, W and ¢, subject to the
transmit power P; and phase shift constraints, i.e.,

K
argmax R(W,¢) = Zlog2(1—|—SINRk)

W h=1 @)
H
s.t. w{WHIW} < P,
lef®n| =1, Yn=1,...,N.

We assume the setup where all channels are frequency-flat
Rician fading with correlated, and all channel state information
(CSI) is perfectly known. The block fading channel remains
unchanged within a time step ¢. From BS to RIS channel G(*)
and RIS to UE channels hrt,)C are modeled as Rician fading
process [13], which is ’

_ 1 -
®) — /PL(d [_F / (t)
G v PL( G)( K+1G+ m—i—lG ,
W _ / [ K+ [ 1 =@
hr,k - PL(dhr,k) ( K+ 1hr7k + K+ 1hr,k> )

and the pathloss of BS to RIS and RIS to UE are denoted by
PL(dg) and PL(dn, , ), respectively. « is the Rician factor for

both channels G() and h!"). The Non-Line-of Sight (NLoS)

random components G and ﬁfti are formulated by the
temporal correlated first-order comblex Gauss-Markov block
fading model [14], which represent how the channels evolve
over time steps,

GO =\ /T=p22VO 4 pG-D v~ eN(0,1),
bl = VI= AU oY U~ N, ),

where V() U,(;) are channels randomly generated with i.i.d,
and p € [0, 1] is the temporal correlation coefficient. Further-
more, we assume that the antennas at BS and RIS are arranged
in uniform linear arrays with half-wavelength spacing. G and

h, ;. are defined as

)

(6)

G = an(faris)am (fpps)™,

- (7

h, ; = an(fpris),
where ay and aj; represent the steering vector at RIS and
BS. Oaris is the angle of arrival direction at RIS, Oppg is
the angle of departure direction at BS, and 6pgis defines the
angle at departure direction at RIS.

III. PROPOSED APPROACH
A. Overview of DRL

In RL, the agent learns a policy that maximizes cumulative
reward by trial-and-error interaction with the environment.
This model is formulated as Markov Decision Process (MDP),
defined by (S, A, P,R), where S is the state space, A is the
action space, P is the state transition probability function, and
‘R is the reward function. At time step ¢, the agent observes the
state s; € S, then chooses an action a; ~ pu(+|s¢) € A based
on policy p which satisfies >, 4 1(st,a;) = 1. Next, the
environment moves to the next state s;1 ~ P(:|st,a:) € P



and the agent returns a scalar reward ry1 = R(S¢, at, St41)s
measuring the quality of a;. The cumulative reward is defined
as Gy = > .0, 7'ri4s, where i is how many steps ahead
of the current time step ¢, and v € (0,1] is the discount
factor. The agent seeks a policy p that maximizes J(u) =
Espn [Q(s, p(s))] where @ is the Q-function, which satisfies
Q"(s,a) = E[Gt|st = s,as = a] as the expected return.

DRL is based on the RL algorithm, which exploits the
representational advantage of Deep Neural Network (DNN) by
using two networks, the actor (policy) and critic (Q-function).
DDPG [15] is a DRL algorithm tailored for the continuous
action space, where the policy p is a deterministic mapping
a = p(s) from state s to action a. DDPG uses the actor-critic
architecture, where the actor u(s|6*) network is controlled
by the parameter #*, and the critic Q(s,a|0%) network is
with the parameter §9. To maintain the training stability
and reduce the correlation between each experience, a replay
buffer D is reserved to store past experiences. Define state as
s;, action as a;, and reward as 7;. For every time step, the
actor and critic networks are trained by randomly sampling
a mini-batch Np of experiences from D, and performing
Stochastic Gradient Descent (SGD) updates U times with
U different sampling from D. The mini-batch is defined as
B = {sj,aj,rj,s5},j = 1,2,..., Ng, where s/ is the next
state of the environment transition from s;. The critic network
parameter A9 is updated by minimizing the loss

1 &
Leritic(09) = N Z (y; — Q(Sj,aij))Q ; 3

Jj=1

where the bootstrapped target y; is defined as y; = r; +
Q' (s, ' (s},0#)|#9"). RL aims to approach the optimal
@ value, but the actual target value is unknown. Thus, RL
defines target actor and target critic networks as Q’(-|0%") and
1/ (-|0#"), which are the copies of the critic and actor network
parameters that 69" — 09, 6" « 6. Hence, y; is used as a
proxy to approximate the actual target value. After the agent
computes the critic loss, the critic network parameter #< is
updated by 09 «— 09 — n?Vye Leritic(09), where n@ is the
learning rate of the critic network. Then, the actor parameter
0" is trained by minimizing the actor loss

1 &
ﬁactor(e'u) - *NiBZQ(S]aH’(SJw#)wQ)v (9)
=1

which aims to maximize the Q-function. The agent updates
the actor network parameter §* by the actor loss that 6# <+
0" + nFVouLactor(0*), where n# is the learning rate for
the actor network. To enhance stability, the target network
parameters 0* and 09 are updated slower (i.e. the target
network is updated once every Niarger time steps) than the
main networks by the soft-update method, where 7 € (0, 1) is
the soft-update coefficient with usually 7 < 1

09 — 709 +(1—1)09,
, , (10)
o +— 7O+ (1—1)6",
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Fig. 2. Proposed DNN structure for both networks.

B. Proposed DDPG Scheme

At each time step ¢, the temporally structured state s; is
normalized to §; = %, where 5; and o, are the mean and
standard deviation of s;. The §; is fed into the actor network
to capture the feature dependencies and output action a; =
1(8¢]6*), where the policy parameter 6 is represented by
a fully connected DNN. The critic network is parameterized
by 69, which is a fully connected DNN to estimate the Q
value. The structure of DNNGs is shown in Fig. 2. Several basic
elements of the proposed DDPG are present in this section.

1) Dual-Normalization DNN: Both the actor and critic net-
works have three fully connected hidden layers with an input
and output layer. We deliberately choose batch normalization
(BN) for the actor and layer normalization (LN) for the critic,
placing them on opposite sides of Tanh activation function.
In the actor, we apply Tanh followed by BN, so the mini-
batch Np of experiences introduces slight fluctuations to each
forward pass, which prevents the policy from converging too
quickly and ensures exploration. In the critic, we perform LN
before Tanh to normalize each batch sample independently.
LN can effectively suppress internal covariate shift, stabilize
gradient flow to produce more stable () value estimation.

2) Action: At each time step t, the action is combined
by the beamforming matrix W and RIS phase shift vec-
tor ¢ as a; = {W® ¢®}. During training, a decaying
random exploration noise n; = {n@,ng)} is added to a;
to ensure sufficient exploration. Define T},.x as the longest
decaying step. For time step ¢t < Tihax, the beamforming
noise is n@ ~ N(0,0%(t)), where ow(t) = ainit% -
Tn:x (ozinit% — Qfinal \/5) that /X is the number of users.
The ayniy and aigp, are the initial and final beamforming noise
scaling factors. The noisy beamforming matrix W) + ng\;
is re-normalized to satisfy the transmit power P; constraint
in (4). Simultaneously, each RIS unit’s phase shift add the
angular noise, where ng) ~ N(O,Jfb(t)) with og4(t) =

Binit — 7r— (Binit — Brinal)- Similarly, Siniy and Banar are the
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initial and final phase shift angular noise. The noisy RIS vector
qb(t) +n$) follows the phase shift constraint in (4). After T,

steps, a small fixed noise ow = Qfinal V;:t and 04 = Sanal

are applied to enable fine-tuned policy. This two-stage noise
schedule encourages exploration during early learning and
stable convergence at the end of training.

3) State: Since the channel varies in each time step ¢, the
state vector has to include richly structured environmental
features [16] with the information of past environmental

conditions. The state at ¢+1 is defined as s,y = ogtH)UogH)

0§t+1) é {W(t) d)(t) P(t) H t 1)}
0
oD A (pO [0 O R0 Rk: (1D
p) = k’ ko Le K 50
2= By

The ogtﬂ) contains the transmission features where W (%)
and @) are the beamforming and phase shift at step ¢. The
BS’s transmit power allocation of each user k at step ¢ is
P(t) [P(t) P(t) .,Pl(g)]. H;Ct) and H,(f_ ) represent the
cascaded channels of each user k£ at step ¢ and ¢t—1. Note that it
is assumed that the future environment information cannot be
accessed at the current step. To predict the optimal action for
the next step, the previous step channel observation is included
in the state representation, enabling the network to capture the
temporal channel pattern.

The oé”l) contains information at the users’ end. Pr(tk)
is the received signal power of user k at step t. Then

LY =y 1tk (@ O HFHP W2 1 62 is the total re-
celved interference at k-th user in time step t. I, [ s the
total interference of k-th user at the begmmng of time
step ¢ that beamforming and phase shift changed, but the
cascaded channel have not changed yet, denoted as I lit) =
fo:l’n#k (e HH! w2 + 62, This observation pro-
vides the effect of action updates, independent of channel
dynamics within a step R is the SE of each user at step
t, and the last term R ®) /Zk 1 R\ is defined as the ratio
of each user’s SE, that express the contribution of k-th user
to overall SE among all users. Our state contains the previous
time step channel to enable the agent to identify the short
temporal correlation in the non-stationary environment.

4) Reward: At each time step ¢, the reward function is set
as the instantaneous system SE, which exactly matches the

TABLE I
HYPERPARAMETERS FOR THE PROPOSED DDPG SCHEME

Parameter Symbol  Value
Actor learning rate nt 1.5 x 1074
Critic learning rate n? 2x 1074
Soft-update coefficient T 1.5 x 10~4
Discount factor 0 0.99

Batch size Ny 64

Replay buffer size |D| 1x 10°
Number of total time steps T 8 x 10*
Number of steps updating target network ~ Ntarget 9
Beamforming noise scaling factor (init) Qlinit 0.3
Beamforming noise scaling factor (final) Qtfinal 0.05
Phase-shift noise (init std) Binit 0.15
Phase-shift noise (final std) Bfinal 0.04
Decaying steps before fixed noise Tinax 1 x 104

SGD updates per time step U 5
Weight decay regularization 1x107°

optimization objective (4). However, since r; scales with the
transmit power, operating at low transmit power produces near-
zero rewards, which vanish the gradients, and high transmit
power leads to dispersed rewards that destabilize learning.
To remove the reward scaling from the transmit power and
preserve a consistent gradient magnitude, we perform the
batch-level reward normalization. Given a mini-batch size of
rewards {r;}2,, we compute 7 = £ >°7 7 and 0, =

\V % Zil(”i —7)3 .

then replace each r; by 7; = “="

IV. SIMULATION

A. Simulation setup

In this section, we show our proposed scheme’s performance
through simulation and compare it with other state-of-the-art
benchmarks. We consider a RIS-aided MU-MISO system [17]
as shown in Fig. 3. The BS is positioned at (Om, Om), the RIS
at (200m, Om), and the UEs are randomly distributed within
a circular area centered at (200m, 30m) with a radius of 10m.
We assume that the direct link Hy ;, between the BS and the
users is blocked and thus unavailable. Moreover, we set the
number of antennas at BS equal to 4, and each of the 4 users
has a single-antenna device. The RIS comprises 16 units, and
each unit can independently adjust its phase shift. The pathloss
component is based on the 3GPP propagation environment
[18]. The pathloss of NLoS part is defined as PL(d) =
35.6+22.0log,(d), where d is the transmission distance. The
system is operated at a bandwidth of By = 180 kHz with the
thermal noise power of —170+101log;(By) ~ —117.45 dBm,
and the Rician factor is set to x = 10. The layer dimensions
for the actor and critic networks in Fig. 2 are [1112, 2048,
1024, 512, 64] and [1112, 2112, 2048, 1024, 1], respectively.
The simulations are implemented in PyTorch and trained
using the Adam optimizer. The remaining hyperparameter
settings are summarized in Table I. The proposed scheme is
evaluated against three benchmark schemes for beamforming
and phase-shift optimization.

e Scheme 1: WMMSE followed by RCG algorithm [8].

e Scheme 2: Baseline DDPG [9].

o Scheme 3: Gradient-based manifold meta learning [10].
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Schemes 1 and 3 require the inner computation or learning
iterations to obtain the optimal W and ¢. For all the schemes,
we assume that future CSI cannot be accessed at the current
step. The beamforming and phase shift inferred from the
current step are applied to the environment of the next step to
calculate the spectral efficiency.

The simulation is evaluated across 5 transmit power levels

€ {-10,0,10,20,30} dBm and 2 temporal channel corre-
lation coefficients p, which are set to 0.9 and 0.5 to represent
strong and moderate correlation, respectively. Given a (P, p)
pair, within each simulation, all schemes are evaluated on
the same set of UE positions and channels. We conduct
5 independent simulations for all schemes. Across different
simulations, the UE locations and channels are randomly re-
generated. When comparing different p cases with a given P,
UE locations remain fixed while the channels are regenerated.
The simulation results are averaged over 5 simulations.

B. Results

Figs. 4-8 illustrate the spectral efficiency (SE) performance
comparison among different schemes, with SE on the y-axis
and time step index on the x-axis. The shaded regions in
the figures represent the variance around the mean curve.
The performance at each time step is computed as a moving
average over the previous 1,000 steps. As a result, (i.e., Fig. 4),
Scheme 3 initially appears below the average since there is no
prior data for smoothing. Our proposed scheme demonstrates
significantly faster convergence than Scheme 2, particularly
within the first 10,000 steps, which guarantees sufficient ex-
ploration during the early stages of training and achieves better
performance. When p = 0.9, the proposed scheme consistently
achieves the best performance over all the benchmarks across
all transmit power levels. When p = 0.5, the proposed
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scheme generally maintains superior performance over the
benchmarks, except for cases with P, = 10 and P, = 30 dBm.
As shown in Fig. 6, when P, = 10 dBm, our scheme achieves
very close performance to Scheme 3, and better than others.
Fig. 8 indicates that, at P, = 30 dBm, the proposed scheme
outperforms Scheme 3 and is slightly worse than Scheme 1.
These results demonstrate the adaptability and robustness of
our proposed scheme across various levels of temporal channel
correlation and transmit power.
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V. CONCLUSION

This work presents a jointly beamforming and phase shift
optimization based on Deep Deterministic Policy Gradient
in the non-stationary MU-MISO downlink environment. The
proposed scheme utilizes the Dual-normalization network
structure, a carefully designed state that embeds the detailed
environmental features of both the current and previous time
steps and the transmit power-related exploration noise. The

simulation results indicate that our proposed DDPG scheme
outperforms several state-of-the-art approaches in most cases
across a wide range of transmit powers.
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