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ABSTRACT 

Building façades are an important aspect of the building envelope, regulating the light, 

heat, and ventilation exchange from the outdoors to the indoor environment. A well-designed 

façade minimizes operational energy while also achieving ideal daylighting conditions and 

allowing for ventilation. Maintaining this balance is a challenging design task. With growing 

computational resources, it is now possible to simulate these behaviors and develop robust 

workflows to estimate the performance of building façades. However, these methods are not 

widespread due to the manual effort required to establish the building model, which is parametric 

in nature, and the challenge of analyzing data while exploring design decisions. Additionally, 

there is a new category of façade solutions that are dynamic, adding more complexity to the 

design task.  

This dissertation first proposes and demonstrates two new early design methods that 

improve upon the accessibility and flexibility of surrogate model-based workflows. The latter half 

of this dissertation focuses on optimizing dynamic façades, specifically in the glazing category, in 

order to begin to integrate dynamic façades with traditional early design decisions. The first study 

addresses the issue of accessibility by proposing a new tree-based surrogate model workflow that 

filters a large generalizable design space, making it reusable. Three early design spaces were 

constructed, and using this workflow, the large pre-computed dataset can be filtered to provide 

specific variable importance and performance estimates across early design changes and multiple 

projects.  

The second study demonstrates a second workflow that, instead of filtering down a 

generalizable design space, allows for the addition of new design variables to a custom 

parametric model and corresponding surrogate model with fewer simulations. It accomplishes this 

through the application of a tabular transfer learning approach paired with random walks 
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sampling. Through a building façade case study, it is shown that applying this workflow can 

significantly reduce the number of samples required to achieve sufficient surrogate model 

performance compared to classical machine learning approaches. This approach reduces the time 

between applying early design changes, improving the flexibility of surrogate model-based 

workflows. However, considering dynamic façade elements in the early design process would 

improve flexibility further and introduce more creative, sustainable design solutions, which are 

the focus of the second half of this dissertation.   

The third study shifts to fundamental questions regarding dynamic façade performance, 

specifically in dynamic glazing. In this work, parametric energy simulations were conducted to 

determine the optimal dynamic glazing properties across multiple climates. This allowed for the 

determination of the ideal relationship between these properties, intended to guide future product 

development. It also identifies the ideal transition temperature for such technology and offers 

guidance on decoupling strategies for each climate zone.  

Finally, the fourth study begins to integrate traditional early design decisions considered 

in the first two studies with those from the third study. A series of constrained optimization runs 

were conducted to demonstrate the consequences of traditional sequential early design process 

that considers building geometry somewhat independently of façade materials. In the unique 

scenario of dynamic glazing applications, it is beneficial to consider dynamic glazing variables in 

the early stages since they are sensitive to orientation, self-shading, and radiant heat exchange 

with respect to building form. This work paves the way for a fully integrated design workflow 

that accounts for both static and dynamic design decisions, generating more innovative façade 

options necessary to meet current and future sustainability goals. 
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Chapter 1 
 

Introduction 

Motivation 

 Historically, building façades regulate light, heat, and ventilation, and also influence the 

visual impression of the building. While these are still the primary considerations when designing 

a building façade today, there are more advanced design solutions that are available in response to 

the need to reduce operational energy. Because building façades facilitate the light, heat, and 

ventilation exchange from the outdoor environment to indoors, they affect the operational energy, 

specifically the electricity usage from the heating, cooling, and fans (HVAC system) and lighting 

system, which are a substantial portion of total operational energy. These systems are necessary 

to meet the demands of modern work and residential environments and to ensure occupant 

comfort. This is an urgent issue as the building sector accounted for about 38% of US energy 

consumption in 2022 [6], and the building façade has a significant impact on the total operational 

energy of a building [7].  

 However, it has been demonstrated that it is possible to reduce the operational energy by 

optimizing the ‘static’ and ‘dynamic’ façade design elements and accounting for their interaction 

with the controls of the HVAC and lighting systems. The static design elements include such 

aspects as the window-to-wall ratio and window orientation, which should be considered in the 

early stages when the design is most flexible [8]. Meanwhile, the dynamic design elements 

include decisions like shading devices and changeable materials. The ability of designers to 

engage with both of these decision categories has been enhanced through the availability of 

computational power, which will be extensively explored in this dissertation.  
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 Increased computational power has led to the integration of simulation software into 

building design workflows. It has allowed for not only the evaluation of different design 

configurations, but also the ability to explore the effects of design variables and balance 

performance objectives with other design criteria [9]. There are many approaches that range from 

design catalogs [10], [11] to surrogate model-based workflows [12] to formal optimization [13], 

[14], with varying levels of designer intervention. Surrogate model-based workflows involve 

generating simulation data and training a statistical or machine learning model to replace the 

expensive simulation during exploration. This workflow is particularly approachable with 

available open-source packages, and an example is demonstrated in Figure 1-1. Regardless, these 

approaches enable informed, data-driven design decisions for static and dynamic façade design 

elements, although they are not typically designed at the same stage. However, they require 

significant computational and manual effort to establish a parametric model and generate data, so 

they are not yet widely accessible. Furthermore, when adjustments are required, as is often the 

case in early building design, the process must be repeated, thus making them not very flexible 

from a designer’s perspective.  

 

 
Figure 1-1: An example of a surrogate model-based workflow.  
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 Within the dynamic façade design element category, increased computational power has 

also facilitated the development and specification of new façade materials, particularly 

changeable materials. Changeable façade materials adjust their properties over time due to 

passive or active control, including opaque materials like dynamic insulation [15], as well as 

transparent materials such as dynamic windows [16]. Given the prevalence of glazing in modern 

architecture, this dissertation will focus on the impacts of dynamic windows. Dynamic windows 

have been demonstrated to reduce operational energy by more than 50% in terms of primary 

energy [17] depending on the baseline used in the calculation, the orientation, and the climate. 

However, it is hypothesized that further savings can be achieved by decoupling the solar heat and 

light properties [18], but these limits have not yet been established. On the specification side, 

dynamic windows are often implemented after the building façade geometry has been 

determined, which leaves little flexibility in the specification and tuning of the technology. It is 

unclear how to best integrate dynamic window considerations into the early design process and 

how much additional savings could be achieved.  

 As building electricity usage increases to offset the effects of the climate crisis [19], 

targeting building façade improvements is crucial to reach sustainability goals within the building 

sector. The work in this dissertation proposes improvements to the design of ‘static’ and 

‘dynamic’ façade elements that balance the performance with practical design criteria. While 

considering both façade types, it also engages with two different computational methodologies: 

surrogate-model based design approaches, and automated optimization. 
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Background 

Simulation-driven early stage building façade design 

 Building façade design requires the integration of experts in mechanical systems and 

daylighting, in addition to structural engineering and construction, which are beyond the scope of 

this dissertation. Often, there is a tradeoff between achieving ideal daylighting conditions and 

energy consumption. Simulation software allows designers to estimate the performance of façade 

design options and compare them. In collaboration with an architect, the team seeks to identify a 

design that balances technical objectives such as spatial daylight autonomy and energy use 

intensity (EUI) with other design criteria [8]. The use of data-driven decision-making can make a 

significant impact on sustainability goals, particularly in the early stages when the design is most 

flexible. However, over the past decade, designers have evolved from using simulation software 

solely to evaluate designs to using it to discover new design directions through parametric design 

[20]. Rather than manually constructing a few design options and running simulations for them, 

the model is constructed parametrically, and a sampling technique or optimization algorithm 

facilitates the generation of a dataset, which can be used to consider many more options than 

previously achievable.  

Parametric design spaces and design space exploration 

 A performance-based parametric design space consists of at least one variable and one 

objective [21]. Once the variables and their bounds are determined by the designer, the parametric 

model is typically constructed in a visual programming environment such as Grasshopper [22]. 

Parametric models for building façades might include variables related to WWR [23], overall 

form [24], or shading devices [25]. Then, the design space is sampled through one of many 
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methods, including traditional sampling methods like grid-sampling and Latin Hypercube 

sampling (LHS), performance-based sampling [26], or formal optimization procedures where data 

is generated as a byproduct. Since simulation software is integrated into such environments, 

simulations are often conducted directly within it to generate a dataset. While this is a powerful 

workflow for façade design, managing and navigating large datasets in practice can be 

challenging.  

 In response, researchers have proposed various design space exploration techniques. The 

most directed is perhaps an optimization-based approach, although interactive optimization 

workflows [27] allow for designer interventions. However, optimization-based approaches may 

not be appropriate for the earliest stages of design. More open-ended approaches include design 

catalogs [28], performance maps [29], [30], and various performance metrics [31], which equip 

designers with performance information without pointing to a single solution. The basis for many 

of these methods is a surrogate model. With the availability of open source statistical and 

machine learning packages, surrogate model-based workflows are becoming increasingly 

accessible to designers. 

Surrogate model-based workflows 

 A surrogate model is a statistical or machine learning model that estimates the objective 

function. Surrogate modeling has been widely implemented in other engineering fields, but it was 

only recently introduced to the building design domain as a means to reduce reliance on 

expensive simulations and make inferences [12], [32]. Within a parametric design context, once a 

parametric dataset is generated, a surrogate model can be trained to estimate the objective, 

effectively replacing simulation software as the design space is explored. Additionally, many 

surrogate models provide supplementary metrics like variable importance, enriching the design 
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process further. Yet, the process of constructing a parametric model, generating data, and training 

an appropriate surrogate model is time-consuming in practice, and in the earliest stages when the 

design is still changing, it is likely for some or all of these steps to be repeated.  

 One approach to alleviate this issue is to construct a series of generalizable parametric 

models that can be filtered down to apply to many projects and through early design changes 

[33], [34]. An example of such design spaces might include sidelit room daylighting analysis. 

Another approach to make surrogate models more flexible is to allow for the addition of new 

variables to an existing parametric model and corresponding surrogate model without starting 

from scratch. Both approaches require the application of new methods. The goal is to make 

surrogate model-based workflows more accessible and flexible for designing sustainable building 

façades.  

Dynamic façades  

 While the previous sections primarily address static façade design decisions, increased 

computational power has also affected the development and specification of dynamic façade 

systems. Dynamic façades are mechanisms that change their properties in response to 

environmental or indoor conditions, often for the purpose of reducing the HVAC and lighting 

electricity usage. Although the term ‘dynamic façades’ does include mechanical devices like 

exterior shading structures [35], this dissertation will specifically focus on material-level dynamic 

façades designed for windows. Windows were selected as the focus because they are a thermal 

vulnerability in the façade. Additionally, they are of great interest to architects, especially 

considering the proliferation of glazed façades in modern architecture.  

 Dynamic window technologies include both passive technologies like thermochromic 

glazing [36], which responds to heat from incident radiation, and active technologies such as 
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electrochromic glazing [16], which transitions based on the applied voltage. Some technologies 

have been demonstrated to reduce operation energy by 5-57% [17]. However, for many of these 

technologies, solar and visible light transmission are coupled, and it is likely that decoupling them 

would yield higher savings in certain climates. Furthermore, technologies that are controlled 

based on incident solar radiation are highly sensitive to orientation, which is a ‘static’ design 

decision typically determined before the implementation of the technology. Since some ‘static’ 

decisions affect dynamic glazing performance, integrating dynamic glazing design considerations 

into the early stages may also lead to greater energy savings.  

Optimization of dynamic glazing systems  

 The optical and thermal behavior of dynamic glazing systems can be studied through a 

standalone software suite consisting of WINDOW, Optics, and EnergyPlus. The impact on whole 

building energy usage is calculated through EnergyPlus. Within the EnergyPlus Energy 

Management System (EMS), different construction states made up of simple glazing materials 

can be modulated to mimic the behavior of dynamic glazing materials. An EMS program contains 

a program that incorporates various sensors and actuators. For dynamic glazing programs, the 

sensors are usually outdoor air temperature, incident radiation, or window surface temperature, 

depending on the control scheme. The actuators are the window constructions, and the program 

specifies the construction state switching control logic. Paired with Python or MATLAB 

programming environments, optimization algorithms can be implemented to determine the 

optimal configurations. This workflow allows us to test different technologies and control 

strategies, quantify energy savings, and ultimately inform product development [37].  

 Yet, since simplified versions have been integrated into visual programming software, as 

well as daylighting software, these technologies can be simulated for real-world buildings that 
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feature complex geometries. Many dynamic glazing technologies are affected by orientation, self-

shading, and radiant heat exchange in relation to building form. Therefore, rather than following 

the traditional design process that establishes the geometry and then specifies materials, it may be 

beneficial for energy savings to consider them simultaneously.  

Research objectives and questions 

 There are two primary objectives in this dissertation. The first objective is to apply 

statistical and machine learning methods to support the development of surrogate model-based 

workflows that are more responsive during the early stages of building façade design. This 

objective will focus on ‘static’ design decisions and is represented as the left column in Figure 1-

2. To achieve this objective, two pathways are proposed. The first pathway involves filtering 

down a large generalizable design space, such as a daylit room on a façade, and providing an 

updated surrogate model with variable importance metrics in real-time. This will enable 

accessible surrogate model-based workflows across different projects. Alternatively, the second 

pathway allows for the addition of new variables to an existing parametric model and 

corresponding surrogate model without starting from scratch. The goal of this approach is to 

improve the flexibility of surrogate model-based workflows and account for early design changes. 

The following questions are proposed: 

1. How can a generalizable parametric design spaces be filtered down to provide useful 

variable information for specific problems?  

2. How might we enable flexible surrogate modeling for parametric design spaces to 

support early building design? 

 The second objective relates to dynamic façade systems and is to establish the limits of 

dynamic glazing energy savings potential when integrated into whole building design scenarios. 
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The objective is shown as the right column in Figure 1-2. First, we need to understand if 

uncoupling solar and visible light is necessary to achieve greater energy savings and in which 

climates. The next need is to demonstrate the consequences of considering dynamic glazing 

properties at different stages in the design process and their effect on energy savings to develop 

design recommendations.  

3. What is the ideal range of dynamic glazing properties across different climates? 

4. Is a traditional, sequential design process appropriate for optimal dynamic glazing 

performance?   

This research agenda improves upon the façade design process, considering both ‘static’ and 

‘dynamic’ design decisions.  

Organization of dissertation 

 This dissertation is organized based on the type of design decision, the scale of design 

task, and the type of technique used (Figure 1-3). Chapters 1 and 2 consider ‘static’ façade design 

elements, beginning with generalizable design spaces at the room scale in Chapter 1, graduating 

 

 
Figure 1-2: Façade decision categories at different scales.  
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to custom design spaces at the whole building scale in Chapter 2. Both chapters leverage machine 

learning techniques to accomplish the research objectives. Chapter 3 begins again at the 

component scale, optimizing dynamic glazing, and then Chapter 4 uses real-world buildings as 

case studies to understand the different design decision categories through constrained 

optimization. Finally, the conclusion summarizes all research contributions and suggests future 

research directions.  

 

 

 

 

 

 

 

 

 

 
Figure 1-3: Organization of dissertation topics.  
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Chapter 2 
 

Dynamic subset sensitivity analysis for generalizable design spaces 

 This chapter has been published as: 

 L. E. Hinkle, G. Pavlak, L. Curtis, and N. C. Brown, “Implementing dynamic subset 

sensitivity analysis for early design datasets,” Automation in Construction, vol. 158, 2024, doi: 

10.1016/j.autcon.2023.105198.  

Introduction 

 With the integration of simulation engines into visual programming environments, 

parametric modeling techniques can be easily paired with simulation data to provide performance 

feedback during design. This approach allows designers to quickly evaluate many potential 

design configurations. In practice, it is not feasible to consider every design in the parametric 

design space, but several methods have been developed to navigate the design space efficiently. 

While some methods directly point the designer towards optimal performance, including 

automated optimization [38]–[40] and interactive optimization [13], [27], [41], [42] workflows, 

others intend to more gently guide the designer towards better performing designs, offering 

increased flexibility and opportunities for designer preference expression. Such methods include 

design catalogs [10], [43], [44], surrogate-model-based workflows that enable live manipulation 

[32], [34], and performance maps [29]. The latter methods can be most useful in the earliest 

stages when many aspects of the design are flexible [45], there are competing objectives that need 

to be synthesized [46], or designers have mixed quantitative and qualitative criteria [47]. In 

particular, surrogate modeling can be used to facilitate discussions as changes are made [12] and 
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is accessible with modern statistical tools and libraries. However, building custom parametric 

models and running simulations to generate data is time-consuming, and further adjustments may 

be required throughout early design, requiring more effort to update the surrogate model. Design 

practice moves quickly, and tools get left behind if they do not provide salient information at 

crucial points when designers really need them. Even with newly available tools, there remains a 

need for responsive and accessible performance feedback from parametric design spaces. 

In this vein, designers might prefer to use a general parametric model to determine which 

design aspects or variables tend to influence the performance before modifying the design outside 

a restrictive parametric framework. The general parametric model must contain many variables 

and configurations but have the ability to be filtered down to provide useful feedback on a 

specific design problem. As the design space is filtered to reflect project-specific criteria, 

designers can quickly discover which variables are more likely to improve performance metrics 

and where “good” settings tend to be for their problem. The process of determining which 

variables matter is a type of sensitivity analysis. Sensitivity analysis has been used for a range of 

building design problems, from model calibration [48] to setting up a design optimization 

problem [49]. While there are many existing sensitivity analysis methods appropriate for building 

design problems, few are suited for real-time analysis. As the general parametric model is 

filtered, existing sensitivity analysis methods require re-running the analysis each time, which is 

disruptive to the design process. 

One approach to allow for real-time sensitivity analysis is to split the general parametric 

model design space into many regional models to be accessed during filtering. Existing regional 

sensitivity analysis methods have been used to develop useful qualitative feedback but 

encountered low accuracy in certain regions and lacked intuitive visualizations for designers [31]. 

Depending on the sampling technique, many regions or subsets may lack data necessary to 

describe the behavior [50]. For the general parametric model to be truly flexible, it must have the 
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ability to be filtered on any design criteria and provide sensitivity analysis of sufficient accuracy 

for early design. With regional models, the designer can gain intuition on how variable behavior 

changes in each region prior to filtering to inform the initial design. However, a new method is 

required to provide this information along with real-time subset sensitivity analysis.  

In response, this paper extends and rigorously investigates a new method called dynamic 

subset sensitivity analysis [51]. The method divides a general design space into many models 

using a decision-tree-like training process and provides real-time variable sensitivity through 

interpolation techniques. This paper considers the generalizability of the method by applying it to 

three building design problems of different domains and scales. A comparison of the three 

datasets shows when the method has enough data to be successful, along which what issues may 

arise when trying to apply the method to future parametric datasets. By presenting the analyses 

side-by-side, it also demonstrates how a designer might engage with multiple objectives 

simultaneously or iteratively as they move between decision variables and scales. Through this 

work, modifications to algorithm are proposed to communicate variable behavior more accurately 

in certain regions of the design space, particularly when the response is nonlinear. The value of 

the method is evaluated for each building design problem. Finally, a set of recommendations are 

developed to implement the method on future datasets. The goal is to promote adoption of 

performance-driven parametric tools in early design, leading to more sustainable buildings. 

Literature Review 

Rapid feedback in early design 

 Parametric modeling and design space exploration are increasingly used in early design. 

Researchers have been attempting to improve such design approaches through design catalogs 
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[43], interactive and automated explorations [13], [52], and visualization techniques [30]. One of 

the main considerations in the development of these methods is computational time, specifically 

during active design exploration. General research into computation tasks shows that an 

interruption of more than 400ms seconds reduces productivity [53]. Building upon this finding, 

[54] established the roll theory, which states that “when an individual has access to the data 

necessary to perform the creative task at hand, when concentration is not broken by distractions, 

and when the individual has developed a consistent method of organizing the data, then ideas and 

solutions will suggest more ideas and solutions to successive steps of the creative process, in a 

rapid and orderly flow.” Roll theory is related to the concept of creative flow [55], which has 

been considered while creating tools for rapid design assessment [56]. To achieve this flow, 

researchers have identified and tested surrogate models that approximate performance during 

design exploration and reduce lag [57]. Designers can explore the design space and receive rapid 

feedback, facilitating team discussions [58] and guiding sustainable design decisions.  

While non-parametric, black-box surrogate models often achieve the highest accuracy, 

many researchers have implemented interpretable surrogate models with sufficient accuracy [59], 

[60]. Localized models such as decision-trees and piecewise models can provide granular variable 

sensitivity in addition to performance feedback, making them doubly advantageous if they can 

reach acceptable accuracy. The linear model tree utilized in this paper is an extension of the 

decision-tree and has been implemented in other domains such as computational fluid mechanics 

[61], data mining [62], and human computer interaction research [63]. The proposed method 

leverages the local models yielded from the linear model tree to provide real-time sensitivity 

analysis in early building design scenarios. 
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Reusable design spaces 

 Despite their potential benefits, many recent interactive design methods have not been 

widely implemented in practice due to practical considerations [64]. Building a model from 

scratch and running simulations is time-consuming depending on the response variable. Many 

researchers have shifted focus to understanding when and how building data and prediction 

models can be transferred from decision to decision and project to project. The idea of reusable 

surrogate models for engineering design is introduced in [65]. It proposes graph-based surrogate 

models for trusses and demonstrates its effectiveness in new design spaces via transfer learning. 

Several transfer learning approaches have also been proposed for building energy prediction and 

control [66], [67]. However, these approaches are in the early stages of development and are not 

yet widely used in industry. Rather than transferring data or models, another approach that is 

appropriate for early building design is to create a general design space that can be customized or 

adapted for many design problems [33], [34]. While it takes domain expertise to define a design 

space that balances specificity with generalizability to many projects, many design firms work 

repeatedly in certain geographic areas or building sectors, making this possibility feasible [68]. 

There are also domain-specific ways to reuse machine learning (ML) data for predicting the 

performance of new designs. For example, by hybridizing data modeling with physics-based 

modeling and/or using ML to predict the behavior of a single unit that can be aggregated to 

rapidly predict the performance of a full structure [69]. However, this paper focuses on the use of 

parametric datasets in early design.  
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Sensitivity analysis for building design problems 

 Sensitivity analysis has been widely implemented in building design problems to inform 

the decision-making process. It has been incorporated into model calibration procedures [48], 

formulating an optimization problem [49], and decision-making in design or operation [70], [71]. 

However, it has not yet been applied to generalizable parametric design datasets. Sensitivity 

analysis allocates the uncertainty in the response among the predictor variables and can be used to 

gauge variable importance, as well as understand variable interactions [72]. It is particularly 

useful in the early design stages when the designer is trying to discover which variables tend to 

influence the response and by how much, whether the question is related to daylight, structures, 

energy, acoustics, or another response variable. This process can help identify critical decisions, 

as well as more flexible decisions, from the onset.  

There are many established methods available to perform sensitivity analysis, both with 

and without an accompanying regression model. Most of the widely used standalone methods are 

one-at-a-time (OAT), which have local and global variations that quantify the effect of each 

variable individually. OAT sensitivity analysis has been used to address a wide range of building 

design problems, ranging from improving building life cycle assessment [73] to thermal comfort 

[74]. Many researchers have also leveraged regression models (or surrogate models) to produce 

variable importance. Specifically, standardized linear regression model coefficients [75] and 

variable selection procedures such as stepwise regression [76] have been implemented. The main 

drawback of linear regression is the linearity condition, which may not be satisfied depending on 

the data. However, some machine learning models have their own importance metrics, such as 

decision trees. For example, [77] utilized the decision tree importance metric to identify which 

variables are most important in predicting building energy consumption patterns. Yet, the output 

of many machine learning models is not directly interpretable or useful to designers [78]. Finally, 
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variance-based approaches have also been used to quantify variable importance for building 

systems [79]. These methods tend to achieve higher accuracy but require a large number of 

samples.  

The methods described above compute variable importance over the entire variable 

domain. As the design space is refined or filtered during early design, the initial sensitivity 

analysis may no longer be accurate, so the calculations must be re-run from scratch. One 

researcher approached this issue by retraining the underlying regression model on the restricted 

variable domain [80]. However, depending on how the domain was restricted, predictions were 

not consistently accurate. Another study leveraged Monte Carlo filtering and Regional Sensitivity 

Analysis (RSA) [31], but also encountered low accuracy in certain regions, and did not use 

detailed building performance simulation software to generate data, leading to further potential 

inaccuracies. Nevertheless, filtering is a valuable design space exploration technique as reusable 

parametric models emerge as a new research area.  

Data visualization for design space exploration 

 Making sensitivity analysis valuable for early design also requires careful consideration 

of how a user might engage with the data. Building design problems are often high dimensional 

and thus difficult to visualize. One of the most common methods in building design is parallel 

and radial coordinate plots [81]. Some researchers have proposed performance maps [29] or self-

organizing maps [82], [83] to preserve multivariate information and convey it to designers. 

Others have argued that reducing the number of variables through principal component analysis 

or latent space [26] can guide designers towards high-performing designs more quickly. 

Regardless, the manner in which the results are communicated is equally important as the 

underlying model [28].  
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Research gaps and contributions 

 In summary, to make use of general models in early design, a new method is required that 

quickly and accurately updates variable importance as the design space is refined and yields 

results that are easily interpretable. Although dynamic subset sensitivity analysis was initially 

proposed in [51] on a single dataset, the method has not yet been rigorously tested. There are 

many data model issues that may arise when feeding in certain datasets, such as discontinuous 

spaces, collinearity, a lack of significance for certain regions, or even just not having enough data 

to make a quality assessment of importance. In this paper, we investigate the generalizability of 

dynamic subset sensitivity analysis by testing it on three datasets from different domains and 

scales. The three datasets are based on spatial daylight autonomy of a sidelit room, energy use 

intensity of a residential retrofit, and embodied carbon of a tall timber structure. These design 

problems were selected because their datasets differ in domain and scale, but also data type, 

linearity, number of variables, and number of samples. They are also similar in structure to 

common datasets being implemented in ML-based design tools by leading firms in AEC [68], to 

the extent that these structures are commonly known. Based on the implementation for these three 

datasets, we are able to derive a set of recommendations for the method to be implemented on 

future datasets and propose improvements to the algorithm.  

Methodology 

 The overall procedure is described in Figure 2-1. First, three general design problems 

were identified, and corresponding datasets were generated or obtained, and then processed in 

preparation for training. The linear model trees were then trained, in addition to a simple linear 

regression model and traditional decision tree model for comparison. Next, the average variable 
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sensitivity was calculated in small bins to understand where in the variable domain certain 

variables tended to have a large influence on the response while accounting for other variables in 

the model. Finally, the dynamic subset sensitivity analysis was demonstrated through a few 

design scenarios. The quality of the leaf node models was evaluated through coefficient p-values, 

and modifications to the dynamic subset sensitivity analysis algorithm were implemented. Lastly, 

a set of recommendations was proposed for applying this method to future datasets.  

Problem selection 

One of the goals of the proposed method was to customize a large, general dataset 

throughout the early design stage and across many building projects. To this purpose, three 

datasets were generated or selected to represent general design problems from the domains of 

daylighting, energy, and structure (Figure 2-2).  

 

 
Figure 2-1: Overall methodology with three datasets. 
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Data generation and processing 

Three datasets were generated or obtained from the three design spaces described in the 

previous section. The following subsections provide details on data generation and processing for 

each dataset, and a summary of the variables and responses are provided in Table 2-1.  

Daylighting model and dataset 

A sidelit room model was developed to represent the domain of daylighting. In building 

practice in the United States, daylight simulations are often required to obtain LEED v4 Daylight 

 
Figure 2-2: A visualization of the geometry for the daylight, energy, and structure design spaces. 

Table 2-1: Datasets summary. 

Dataset Variables Response 
Daylight Room depth, sill height, head height, 

orientation, context distance, context height, 
number of panels, panel width, wall thickness 

Spatial Daylight 
Autonomy (%) 

Operational energy Cooling COP, R-value, U-value Energy Use Intensity 
(kWh/m2) 

Structures Building width, building length, story height, 
setback, notch X position, notch X size, notch 
Y size 

Embodied Carbon 
(kgCO2) 
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credits [84]. Therefore, this model could be useful across many spaces and projects. It is assumed 

that a designer would consult the model repeatedly for a single project as they establish the layout 

of rooms and the façade. First, the daylit room was modeled parametrically in Grasshopper to 

include nine variables: room depth, sill height, head height, orientation, context distance, context 

height, number of panels, panel width, and wall thickness (Figure 2-2). All room surfaces accord 

with LM-83 guidelines [85]. The windows were typical double-pane low-e with 61% visible 

transmittance and incorporated an automated shade. The shade fabric had 7.2% visible 

transmittance and 6.6% permeability in accordance with LM-83. Room width and room height 

were 9m and 3m, respectively, although they could be incorporated as variables in the future. The 

variable bounds are provided in Table 2-2. They were set to provide enough flexibility for 

repeated use, but still abide by modern construction standards.  

Spatial daylight autonomy (sDA) at 300 lux was the response variable, or “objective” in 

design space terms, generated using ClimateStudio in Grasshopper. To ensure enough samples for 

the regression tree, 12,500 points were sampled using Latin Hypercube sampling. The 

simulations were conducted in Pittsburgh, PA, USA, which is often overcast and at a 40.44° N 

latitude. For future datasets, sky condition and latitude could be included to make the design 

space more flexible, but these parameters were set to demonstrate the method. While designers 

might in different cases design to the typical, worst-case, or average annual behavior, these 

assumptions would be applicable when making a reusable dataset for buildings across a given 

city. The sensors were spaced at 1m and the workplane was positioned 0.762m above floor finish. 

Within the path-tracing settings, the number of rays emitted for each sensor at each pass was 500. 

The Radiance parameters considered up to 6 ambient bounces before discarding a ray. The 

dataset was split 80/20 for training and testing, and all predictor variables were scaled from 0-1 to 

ensure importance was not influenced by the variables’ scale. 
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Energy model and dataset 

The second dataset was based on a residential energy retrofit scenario. This dataset 

represents a reusable model for within a city when testing upgrades on similar residential stock. 

However, the model would have to be customized based on the feasible ranges of variables to 

consider in each individual case. An EnergyPlus model was constructed to represent a residential 

home considering upgrades on the cooling COP, exterior wall insulation, and window 

construction. Specifically, cooling COP, R-value, and U-value were included as variables (Figure 

2-2). The generic home was 331.23 m2 and assumed to contain a DX cooling coil and an electric 

heating coil. The settings for each variable are provided in Table 2-3. U-value was not controlled 

directly, as it typically varies with other window properties. Instead, 19 window constructions 

were selected and used to generate data. The U-value and solar heat gain coefficient (SHGC) 

were extracted during data processing to represent the window constructions in the dataset. 

However, because U-value and solar heat gain were highly correlated, only U-value was 

incorporated into the linear model tree to prevent collinearity issues (Figure 2-7). Previous studies 

have also shown a correlation between U-value and SHGC among existing window constructions 

[86], [87]. The R-values were converted to conductivity in the exterior wall material in 

Table 2-2: Variables in spatial daylight autonomy dataset. 

Variable Minimum Maximum 
Room depth (m) 6.00 15.00 
Sill height (m) 0.10 1.10 
Head height (m) 0.10 1.10 
Orientation (deg from south) 0.00 360.00 
Context distance (m) 3.00 15.00 
Context height (m) 0.00 15.00 
Number of panels 1 20 
Panel width (relative) 0.10 0.90 
Wall thickness (m) 0.20 1.00 
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EnergyPlus, and the cooling COP was accessed directly in EnergyPlus. All 6,859 permutations 

were simulated in Altoona, Pennsylvania, USA. The total site energy per conditioned building 

area was the response. Although grid sampling is not recommended for the proposed method (see 

limitations section), simulating 19 settings for each variable yielded high-resolution data 

sufficient for sensitivity analysis. The dataset was split 80/20 for training and testing, and all 

predictor variables were scaled from 0-1. 

Structural model and dataset 

The third dataset used to demonstrate the proposed method was an embodied carbon 

dataset initially generated by Hens et al. [88] and used to explore performance prediction for 

interactive parametric design in Zargar & Brown [89]. The dataset includes a wide variety of 

geometric configurations for a mass timber building with a post-beam-panel gravity system and a 

lateral system incorporating linear elements. For each geometry, a custom sizer based on timber 

design codes sizes each element based on applicable structural loads and fire protection criteria. 

Embodied carbon coefficients are then used to convert the building elements into carbon 

emissions equivalent values, assuming no carbon storage. The embodied carbon contributions of 

the elements are then summed to predict the overall embodied carbon of the entire structural 

system. Hens et al. [88] and Hens et al. [90] describe the methodology used to generate the 

Table 2-3: Variable options for energy dataset. 

Variable Options 
Cooling 
COP 

1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8 4.0, 4.2, 4.4, 4.6, 
4.8 

R-value (ft2-
F-h/BTU) 

12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48 

U-value 
(W/m2-K) 

0.785, 0.992, 1.062, 1.265, 1.525, 1.624, 1.704, 1.71, 1.765, 1.772, 2.143, 
2.255, 2.556, 2.72, 2.765, 3.122, 3.835, 4.513, 5.894 
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dataset in more detail. In this paper, we incorporated the independent and several partially 

dependent variables, including building width, building length, story height, setback, notch x 

position, notch x size, and notch y size into the linear model tree (Figure 2-2). The response was 

embodied carbon. Because notch x position, notch x size, notch y size, and setback depend on the 

more fundamental variables of width and length, the linear correlations were calculated to 

diagnose collinearity issues before training the linear model tree (Fig. 2-7). However, all Pearson 

correlation coefficients were within the acceptable range and thus incorporated into the model. 

Outliers were eliminated by the interquartile range (IQR) method, which resulted in 940 data 

points. The variable bounds are provided in Table 2-4. The dataset was split 80/20 for training 

and testing, and all predictor variables were scaled from 0-1. 

Training the linear model tree 

After preparing the datasets, the first step is to create regression trees that can eventually 

be used for sensitivity analysis and filtering. Figure 3 is a representation of a one-dimensional 

linear model tree, but a similar procedure follows for high dimensional spaces. The trees are built 

through recursive binary splitting, where predictor 𝑋𝑗 is split at cutpoint 𝑠 such that splitting the 

predictor space into the regions {𝑋 | 𝑋𝑗 < 𝑠} and {𝑋 | 𝑋𝑗 ≥ 𝑠} leads to the greatest reduction in the 

Table 2-4: Variables in embodied carbon dataset. 

Variable Minimum  Maximum  
Building width (normalized) 0.0005 0.9995 
Building length (normalized) 0.0005 0.9995 
Story height (m) 3.048 4.876 
Setback (relative) 0.005 9.995 
Notch X position (relative) 0.0005 0.9995 
Notch X size (relative) 0.0005 0.9995 
Notch Y size (relative) 0.00045 0.89955 
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residual sum of squares (RSS). Splitting stops based on some threshold and each terminal node, 

or leaf (Figure 2-3), contains a model that applies in the 𝑗-th region only. For traditional 

regression trees, the estimated response 𝑦̂𝑅𝑗
 is the mean response for the training observations in 

the 𝑗-th region. However, this is often an over-simplification of the true relationships. To address 

this issue, linear model trees use a linear model to estimate the response. By the end of the 

training process, each leaf node contains its own linear model. 

𝑅𝑆𝑆 = ∑ ∑ (𝑦𝑖 − 𝑦̂𝑅𝑗
)2

𝑖∈𝑅𝑗
,

𝐽
𝑗=1   (Equation 1) 

In Equation 1, the outer summation accounts for each variable and the inner summation 

accounts for all points in the specified region. While previous studies have achieved high 

accuracy with nonparametric models, it is often not possible to make inferences and inform the 

building design process. It was hypothesized that linear model trees could achieve sufficient 

accuracy for early design while allowing for dynamic interpretations about variable sensitivity 

because of how they are constructed. The correctness of this hypothesis is tested by comparing 

the results across the varying datasets.  

 

 
Figure 2-3: Linear model tree with leaf nodes in orange, after [1].  
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The termination criteria for a linear model tree are the maximum depth and minimum 

number of samples per leaf, which have to be tuned for a given dataset. For all models, the 

maximum depth was set to 8 and minimum number of samples per leaf was set to 30. If there are 

30 samples, the distribution is considered normal based on the Central Limit Theorem from 

statistics. The model achieved sufficient accuracy at this depth and enforcing at least 30 points 

per leaf ensured the model was valid. The maximum depth of 8 was selected to control training 

time while ensuring enough leaf nodes for interpolation. Once the linear model tree was built, the 

leaves were used to compute average sensitivity in small bins.  

Calculating average sensitivity over the variable domain in a multi-dimensional design 
space 

The next step is to determine how coefficients of individual leaves should be combined to 

indicate local variable importance. To get a sense of sensitivity over the entire variables’ domain, 

the average linear model coefficient was computed in small bins. The domain of each variable 𝑋𝑗 

is partitioned into 100 bins of equal length. The 𝑚-th bin is denoted by 𝑏𝑚 ≔  [
𝑚−1

100
,

𝑚

100
), for 

1 ≤ 𝑚 ≤ 100. The 𝑘-th leaf is denoted by ℓ𝑘 and the number of samples in ℓ𝑘 is 𝑛𝑘. Then, the 

domain of each variable 𝑋𝑗 is constrained by 𝑐𝑗,𝑘 ≤ 𝑋𝑗,𝑘 ≤ 𝑑𝑗,𝑘 in leaf ℓ𝑘. Let 𝜃𝑗,𝑘 be the original 

coefficient of 𝑋𝑗,𝑘 in ℓ𝑘. Then the weighted coefficient restricted to bin 𝑏𝑗,𝑚 is shown by  𝜃𝑗,𝑘,𝑚 

and is given by the following formula: 

 𝜃𝑗,𝑘,𝑚 = 𝜃𝑗,𝑘 ∗  
𝑛𝑘

𝑛(𝑏𝑗,𝑚)
∗ 𝕀(𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑗,𝑘 ≤ 0.05), (Equation 2) 

where 𝑛(𝑏𝑗,𝑚) is the number of samples in the leaves that overlap 𝑏𝑗,𝑚 for 𝑋𝑗 and 𝕀(𝑞) =

{
1 𝑖𝑓 𝑞 ≡  𝑇𝑟𝑢𝑒
0 𝑖𝑓 𝑞 ≡  𝐹𝑎𝑙𝑠𝑒

 which is normally denoted as an indicator function. This dictates that if the 

hypothesis test that determines if the variable linearly affects the response fails, the coefficient is 
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forced to zero to prevent inaccuracies in the averaging equations. Additionally, there must be at 

least one sample per bin. Figure 2-4 is a simple example to show the parts of the weighted 

coefficient equation.  

Finally, the weighted coefficient for variable 𝑋𝑗 in 𝑏𝑚 is given by: 

 𝜃𝑗,𝑚 = ∑  𝜃𝑗,𝑘,𝑚𝑘  (Equation 3) 

The result is a local sensitivity analysis over the entire domain that can be used to 

understand changes in the response. Next, the model leaves are used to update variable 

importance for user-defined intervals. 

Real-time variable sensitivity via leaf model interpretation 

 While many machine learning methods can return importance metrics, they are 

often established through training, requiring retraining if the variables and their corresponding 

bounds are modified. By precomputing linear models in regions determined by the regression 

tree, the model coefficients can be interpolated to quickly return variable information without full 

model retraining. If the user-defined intervals correspond exactly to a pre-defined region, variable 

sensitivity is provided by that model. Otherwise, the model coefficients must be interpolated 

based on the “agreement” between the user-defined intervals and the variable domains in the 

leaves. The agreement of the user restricted intervals with the constraints of ℓ𝑘 is given by: 

 

 
Figure 2-4: Weighting process in the averaging scheme.  
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𝑤̃𝑘 = (∑ 𝑤𝑘,𝑗

1

𝑝𝐽
𝑗=1 )

𝑝

, (Equation 4) 

where 𝑤𝑘,𝑗 is the amount of “agreement” of 𝑋𝑗 in ℓ𝑘 and 𝑝 > 1 is a hyperparameter. Let 

[𝑎𝑗 , 𝑏𝑗] be the user-defined interval on 𝑋𝑗. Then, the amount of agreement 𝑤𝑘,𝑗 is defined as: 

𝑤𝑘,𝑗 =  
min{d𝑗,𝑘,𝑏𝑗}−max{c𝑗,𝑘,𝑎𝑗}

𝑏𝑗−𝑎𝑗
 (Equation 5) 

where 𝑎, 𝑏, 𝑐, and 𝑑 are non-negative values. Without loss of generality, assume 

𝑤̃1, 𝑤̃2, . . . , 𝑤̃𝑡 are the top 𝑡 agreements. The total weight 𝑤𝑘 is a function of top 𝑡 agreements 

normalized by their sum: 

𝑤𝑘 =
𝑤̃𝑘

∑ 𝑤̃𝑘
𝑡
𝑘=1

 (Equation 6) 

Finally, variable importance was computed using the following formula:  

𝜽̂ = ∑ 𝑤𝑘 ⋅ 𝑎𝑏𝑠(𝜽𝑘 ⊙  𝕴(𝜽𝑘)),𝑡
𝑘=1  (Equation 7) 

where 𝜽𝑘 is the linear model coefficients at ℓ𝑘, 𝑎𝑏𝑠(⋅) is element-wise absolute value of 

a vector, 𝕴(⋅) is element-wise 𝕀(⋅) of a vector, and ⊙ is element-wise multiplication of vectors. 

The procedure is presented in Algorithm 1. Note that 𝑝 and 𝑡 are hyperparameters that can be 

tuned based on the dataset. For all datasets, 𝑝 and 𝑡 were set to 3 and 10, respectively. For higher 

values of 𝑝, the contrast between the top 𝑡 agreements becomes sharper. As 𝑡 approaches the total 

number of leaves, the impact of individual leaves gets lost due to normalization. On the other 

hand, if 𝑡 = 1, only one leaf is used, which might not be an accurate model of the user-defined 

region. Once the intervals are specified, individual predictions are made with the linear model 

tree itself. Single designs only fall into one leaf since the regions do not overlap. The prediction is 

made by the linear model in the appropriate leaf. Once this model has been established, a metric 

for overall variable importance and visualizations of how performance changes with variable 

setting modifications can both be returned to a designer without the added time of model 
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retraining. The results section first presents the dataset itself before showing these potential 

visualizations for the designer. 

Ensuring model significance 

The algorithm mentioned above proposed an improvement to eliminate the possibility of 

poor linear models in the leaf nodes affecting the interpolation calculations. While this issue did 

not necessarily arise for the daylight dataset in [91], it is an important consideration, as some 

building datasets contain highly nonlinear variables that cannot be handled during the training 

process due to a lack of data. The improvement consists of checking the coefficient p-values in 

each leaf node linear model, and if the p-value is greater than the desired level of significance (in 

this paper, 5%), the coefficient is forced to zero in the interpolation calculations (Step 10 in 

Algorithm 1). If the p-value is low, we can reject the null hypothesis, which is that the coefficient 

is equal to zero, therefore there is evidence that the coefficient is statistically different than zero. 

However, if the p-value is high, there is no evidence that the coefficient is different from zero and 

we cannot reject the null hypothesis. In this case, the coefficient is forced to zero instead of 

ignored because ignoring it would eliminate information from the region and bias the 

interpolation towards the other models that may or may not fully cover the region. The 

pseudocode for the updated interpolation algorithm is provided below in Algorithm 1. 
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Results 

 This section first presents linear model tree characteristics for each dataset before the 

results of the linear model tree interpolation procedures (Table 2-5). The daylight dataset 

produced the highest number of leaf nodes, followed by energy and structures. The training 

criteria enforced 30 samples in each leaf node and maximum depth of 8, but the number of 

samples per leaf dictated the number of leaves for the energy and structures datasets. For the 

daylight dataset, the number of panels and wall thickness were split the most, followed by 

orientation and panel width. Although orientation was split frequently, the results in the following 

sections show that the slopes were small; therefore, orientation was not important in most regions. 

Similarly, the cooling COP and R-value were split a comparable number of times, but the cooling 

COP has large slopes in some regions, and the R-value does not. Finally, building width was split 

the most for the structures dataset, followed by building length and notch Y size, which largely 

corresponds with the importance results in the following sections. 

Algorithm 1: Leaf node interpolation 
0 Input: Linear model tree, user-defined intervals, and hyperparameters 𝑝 and 𝑡 
1 For every leaf ℓ𝑘 : 
2  For every variable 𝑗: 
3   Compute amount of agreement 𝑤𝑘 ,𝑗  according to Eqn 5 
4  Compute agreement 𝑤̃𝑘  per Eqn 4 
5 Pick top 𝑡 leaves with the highest agreement 𝑤̃𝑘 . Let these leaves be ℓ1′ , … , ℓ𝑡 ′ . 
6 Compute the normalized total weight 𝑤𝑘  according to Eqn 6 
7 Initialize updated coefficients 𝜽̂ by a vector of zeros // dimension is the number of variables 
8 Iterate through all top 𝑡 leaves (Chosen in Step 5) and do the following: 
9  Let current leaf have index 𝑘′ ∈  {1′, ⋯ , t′} 
10  Update the coefficient in 𝜽̂𝑘 ′  by setting all the coefficients that have a p-value > 0.05 to 

zero // this describes 𝜽𝑘 ⊙  𝕴(𝜽𝑘 ) in Eqn 7 
11  Take the absolute value of the updated coefficients and multiply by the total weight 𝑤𝑘  
12  Replace 𝜽̂ by 𝜽̂  + 𝜽̂𝑘 ′  // output of Step 11 
13 Return 𝜽̂ 

 1 
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Figure 2-5 shows a set of designs across the design space to present the range of possible 

designs for each domain. The daylight design options face south and assume no context building. 

Notably, the objectives for the daylight and structural design spaces have a visual component, 

while the energy objective, EUI, does not.  

Table 2-5: Linear model tree characteristics. 

 Daylight Energy Structures 
Number of leaf nodes 144 58 18 
Number of splits Number of panels: 32 

Wall thickness: 29 
Orientation: 26 
Panel width: 18 
Context height: 13 
Room depth: 12 
Context distance: 5 
Head height: 5 
Sill height: 3 

U-value: 30 
Cooling COP: 14 
R-value: 13 

Building width: 7 
Building length: 3 
Notch Y size: 3 
Story height: 1 
Setback: 1 
Notch X position: 1 
Notch X size: 1 

 

 

 

 
Figure 2-5: Range of possible design for each dataset.  
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Assessing model fit 

The linear model tree fit was then assessed prior to performing calculations with the leaf 

node model coefficients to ensure the base model was reliable. For each data point in the testing 

dataset, the appropriate linear model makes the prediction as determined by the linear model tree. 

Two parametric models were trained to provide a baseline for model performance: a multiple 

linear regression model and a decision tree model. Figure 2-6 shows the actual (simulated) 

response versus the predicted response for each model for the test data. For the spatial daylight 

autonomy dataset, the multiple linear regression model and decision tree make accurate 

predictions for low sDA values. However, Figure 2-6 shows that the linear model tree captures 

some nonlinear behavior in the model and makes accurate predictions, even for higher values of 

sDA 

The linear regression model for EUI predictions mostly falls within +/- 5 kWh/m2 

absolute error, which is sufficient for early building design. However, given the nature of the 

grid-sampled data, the decision tree predicts the response with even higher accuracy. The linear 

model tree improves upon the decision tree by fitting a linear model in each region instead of 

simply averaging the data. This results in a very accurate model with high interpretability. 

However, the linear regression model does not fit the embodied carbon data as well due to non-

linear behaviors in the model and a smaller amount of data overall [88]. While the decision tree 

model is able to make predictions with about equal accuracy throughout the design space, it is 

still not accurate enough for early building design. The linear model tree is the most accurate of 

the three models. It is important to acknowledge that other non-parametric machine learning 

models such as neural networks could achieve higher accuracy, as in [89], [92] but such models 

would pose difficulty for interpretation. The information extracted from interpretable models is 

valuable to the design process and central to this paper. 
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 In addition to assessing the linear model tree fit, the linear correlations among the 

variables were checked to ensure collinearity issues are avoided. Figure 2-7 shows correlation 

coefficients for each dataset, including in at least one instance where a variable was eliminated 

due to collinearity. While the variables in the spatial daylight autonomy are not highly correlated, 

the window SHGC and window U-value are highly correlated. As previously mentioned, the U-

value was kept in the model over the SHGC because it had a stronger linear relationship to the 

EUI. Finally, although the embodied carbon variables have minor correlations, the absolute value 

of the Pearson correlation coefficients all fall below 0.065, which is reasonable for similar 

 

 
Figure 2-6: Model fit comparison for spatial daylight autonomy (top), energy use intensity 
(middle), and embodied carbon (bottom). 
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building design problems in the literature [93]. Therefore, the linear regression assumption that 

all variables are independent is valid. 

Sensitivity over the variable domain in a multi-dimensional design space 

Once the linear model trees were trained, the average coefficients for each variable were 

plotted over their domains (Figure 2-8). This figure shows where the relationship to the response 

changes, considering all the variables in the model and all possible design directions. Although 

many of the variables in the spatial daylight autonomy dataset have the same slope throughout, 

room depth and panel width show noteworthy changes. On average, panel width does not 

significantly affect sDA until it reaches ~0.5 relative width of the panel. Designers can freely 

choose within 0.10-0.50 without affecting sDA. Similarly, room depth greatly influences sDA 

until it reaches about 8.7m; at this point, increasing the room depth does not change sDA. This is 

potentially useful information while designing floorplans. In order to achieve a high sDA, other 

variables must be adjusted if the room depth is beyond 8.7m.  

 

 
Figure 2-7: Pearson correlation coefficients for spatial daylight autonomy (left), energy use 
intensity (middle) and embodied carbon (right).  
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For the energy retrofit model, only low values of cooling COP have a strong effect on the 

EUI. The simulations were conducted in ASHRAE climate Zone 5, which is heating dominated, 

so increasing the cooling COP beyond ~2.2 does not result in a significantly different EUI given 

other variables in the model. Adding insulation to the exterior walls (R-value variable) has a 

consistent though relatively smaller effect on the EUI throughout its domain. Similar to cooling 

COP, low U-values strongly affect EUI until about 3 W/m2-K. The EUI includes HVAC, lighting, 

plug, and miscellaneous loads, and at some point, the HVAC portion is minimized. This explains 

the diminishing returns of the incremental insulation and COP. The diminishing returns of the 

incremental insulation and COP. The results in Figure 2-8 only consider the coefficient 

magnitude, but they follow domain knowledge—installing new windows with a low U-value 

would improve the EUI in a heating-dominated climate. Furthermore, the results in this section 

specify at what point increasing the variable has a negligible effect. In future sections, the 

coefficient sign is considered in order to better describe the relationships. Nevertheless, Figure 2-

8 provides a high-level overview of changes in importance to EUI over the variable domain, 

assuming the other variables are present in the model.  

In the embodied carbon dataset, building width is the strongest predictor, especially for 

very narrow building widths. For very small widths, the lateral system requires extremely large 

sections to carry the lateral forces from the broad building side, so building width significantly 

affects overall performance response in this region. Building length is the second-most important 

predictor; however, the slope is relatively consistent throughout. Among the independent and 

partially dependent variables considered in [88], building width and building length had the 

strongest linear relationships (Figure 13 in [88]), which supports the results in this paper. The 

embodied carbon design space contains more non-linearities than spatial daylight autonomy and 

EUI, and although the linear model tree can capture non-linear behavior through its piece-wise 

nature, it is restricted based on the training requirements for the number of data points per leaf 
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node. Nevertheless, this result provides designers with a set of ranges to design within without 

significantly affecting the embodied carbon. 

To understand the relationships on a more granular level, Figure 2-9 shows the raw 

output of the procedure described in the calculating average sensitivity over the variable domain 

in a multi-dimensional design space section. The gray line represents the linear model coefficient 

from the overall linear regression model (shown in Fig. 2-6) for comparison. While Figure 2-8 

shows the absolute value or “importance,” Figure 2-9 shows the sign of the coefficient, which 

indicates the variables’ tendency to increase or decrease the response in each bin or region of the 

 

 
Figure 2-8: Average sensitivity in small bins for spatial daylight autonomy (left), EUI (middle), 
and embodied carbon (right). 
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domain. Comparing the two models shows similar but more detailed trends for important 

variables such as panel width and room depth for daylight and building width for structure. These 

results can also be interpreted in light of the overall model characteristics. For example, the R-

value variable in the energy dataset was split the fewest number of times, so the coefficient was 

relatively consistent throughout the design space and very similar to the overall linear regression 

model. The U-value variable shows discontinuous behavior near 2 W/m2-K because many of 

window constructions in the dataset had a U-value around this value but differing SHGC and 

other properties. While the behavior in this region is unstable, it indicates to the designer that 

there are many potential solutions in this region. This is a result of the real-world, discretely 

sampled energy variables, as well as the elimination of SHGC due to high correlation.  
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These results so far explain how the models were trained, how accurate they are for 

prediction, and how the linear model coefficients can guide designers on an expected 

performance response in a certain region of the design space. The following results demonstrate 

how these models can be aggregated to provide variable importance as designers change the 

 
Figure 2-9: Average coefficient in small bins for spatial daylight autonomy (top), EUI (middle), 
and embodied carbon (bottom).  
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possible ranges of decisions without full model retraining, since relative importance can change 

significantly in different regions of the design space.   

Dynamic subset sensitivity analysis 

Real-time variable importance 

Data-driven parametric design often involves setting variable domains, generating data, 

and fitting a prediction model. As the design is refined, variable domains are narrowed until one 

value is ultimately selected. Previously, the prediction model needed to be re-trained on the 

subset of data to provide accurate variable importance and support decisions. We instead achieve 

subset sensitivity analysis by precomputing linear regression models in regions determined by the 

tree and then interpolating between regions to estimate the variable importance in the subset. Two 

examples per design problem are shown in Figure 2-10, which includes a slider for each variable, 

the user-defined intervals, and variable importance, presenting a potential visualization for a 

design tool. It is important to note that a series of visualizations presented to the designer should 

show both (1) which variables deserve attention (by virtue of producing a large effect on 

performance, regardless of direction) and (2) how such variables tend to affect performance along 

their domains (where the variable makes the performance trend up or down). There is some loss 

of precision due to the averaging in the simpler graphics, but they are intended for rapid feedback 

for designers that can be explored in more detail if desired. To give an indication of speed, 

updating the variable importance from design scenario 1 to design scenario 2 for the daylight 

design space takes 0.003 seconds on a desktop computer with 32 GB RAM and an Intel Core i7 

2.6 GHz processor. The speed also depends on the size of the tree, but this example uses the 

largest tree among the three datasets. If the method were fully incorporated into an interactive 
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tool, possibly as a plug-in to parametric design software, the rendering speed would depend on 

the software and would likely be more substantial than the importance calculation. 

 Figure 2-10 shows two sets of design criteria imposed on each design space. Design 

scenario 1 for spatial daylight autonomy restricts room depth, and thus it is very sensitive in this 

region. With different restrictions on panel width and number of panels in design scenario 2, 

room depth is the most important variable. In the second design scenario, with different ranges 

for room depth, panel width becomes the most important variable. Similar changes are seen in the 

different design scenarios for energy, as Cooling COP or U-value can become the most important 

in different regions. In the structure dataset, building width is almost always the most important 

variable, but in certain scenarios other variables can approach its magnitude of importance to 

influencing embodied carbon. 

 

 
Figure 2-10: Dynamic subset sensitivity analysis for 2 design scenarios per dataset.  
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Significance in leaf nodes 

Although all variables are assigned a coefficient during the linear model fitting step of the 

linear model tree training procedure, it is possible that some of the variables do not significantly 

affect the response in certain regions of the design space. To determine if a variable affects the 

response, a hypothesis test is conducted where the null hypothesis is that the coefficient is equal 

to zero, which implies that there is no effect. If the p-value is less than 0.05 (5% level of 

significance), the null hypothesis is rejected and the relationship between the variable and the 

response is deemed statistically significant. Once the linear model tree was fitted, the coefficients 

with p-values higher than 0.05 were reset to zero from the calculations described in the 

methodology. This avoids biasing the results towards coefficients that are not statistically 

significant. 

Figure 2-11 illustrates how consideration of significance affects each model in this paper, 

as the blurred heatmap cells contain coefficients that were not statistically significant. The blurred 

heatmap cells have a translucent mask to represent that the coefficient p-value was higher than 

0.05. The y-axis is leaf node model index and the x-axis is variables; the color represents the 

linear model coefficient. It was important to take coefficient p-values into account to eliminate 

the possibility of a high magnitude coefficient that is not statistically significant greatly 

influencing the calculations. For example, in the structure dataset leaf node model 30 has a high 

magnitude coefficient for the width variable, but it is not statistically significant, so it must be 

excluded to avoid inaccurately representing the behavior in this region of the domain. The 

coefficients of notch X position, notch X size, and notch Y size were not statistically significant 

for many leaf node models and were thus ignored. This is consistent with the initial variable 

assessment in [88], which does not show a clear relationship to embodied carbon throughout the 

domain. In contrast, the energy dataset variables have a statistically significant relationship to the 
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response in all regions of the design space. Piece-wise linear relationships were observed in the 

initial data exploration, and all three variables are well-known retrofit strategies, leading to this 

expected result. Finally, the daylight dataset shows a mix of significant and non-significant leaf 

nodes, which seems to be most present for orientation, context distance, and context height. 

Discussion: recommendations for future datasets 

Comparing the application of dynamic subset sensitivity analysis to several general 

datasets in the architectural engineering domain reveals several benefits and potential pitfalls. 

Resulting discussion points are included as recommendations for what could be changed or 

customized for use on future datasets:  

• Sampling technique: Choose as continuous of a sampling technique as possible to ensure 

sufficient coverage of the design space for interpolation. If a grid-sampling technique was 

used to generate the data, it is possible that the variables are split at each option during the 

 

 
Figure 2-11: Linear model coefficients for each variable in each leaf node model, with a 
translucent mask on coefficients that do not have a statistically significant p-value.  
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training process. At this point, the variables would no longer be treated as variables in the leaf 

node models. Therefore, if grid-sampling is used to generate the data, it is important to make 

sure the grid is fine enough. It is recommended to use Latin Hypercube sampling or similar to 

avoid this problem.  

• P-values in leaf nodes: It is important to check the variable p-values in the leaf nodes, and if 

the p-values fall below the desired level of significance, the corresponding coefficient should 

be forced to zero in order to accurately represent variable importance. 

• Hyperparameters: The hyperparameters determine the sensitivity of the interpolation 

calculations. Increasing the power 𝑝 hyperparameter puts more emphasis on the leaf nodes 

with a higher agreement. For a design setting, it is recommended to keep the power low to 

proportionally account for the behavior in the leaf nodes, even those with a lower agreement. 

When choosing the appropriate number of leaf nodes in the calculations, hyperparameter 𝑡, it 

is important to consider the size of the dataset. The maximum 𝑡 value is the total number of 

leaf nodes in the linear model tree, which depends on the size of the dataset and the training 

requirements. 

• Leaf node model fit: It is recommended to calculate the R2 values for the leaf node models 

and to assign the leaf node models with a low R2 value a lower weight in the interpolation 

calculations. These models could also be useful information to the designer, as these regions 

are highly nonlinear and could not be handled by the linear model tree. The trends or 

tradeoffs in these regions may differ from the surrounding regions.  

• Traditional decision tree importance metric: The typical decision tree has an importance 

metric based on how much the error metric was reduced by each split. However, this only 

indicates which variables are highly nonlinear, not which variables have the steepest slopes or 

highest importance. The metrics in this paper were developed to capture this.  
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• Normalization among leaf node models: The coefficients from all the leaf node models 

could be normalized, but then the method would not provide “how much” the variables 

matter, just a relative ranking of variable importance.  

• Number of samples: In order to produce reliable linear models in each node, the algorithm 

enforces a specified number of data points per leaf node. In this paper, it was assumed the 

number of data points required per leaf node was 30 data points. The structural dataset 

contained 7 variables and 940 data points, which resulted in only eighteen leaf node models. 

During the interpolation process described in the real-time variable sensitivity via leaf model 

interpretation section, there were only 18 models to consider, versus the spatial daylight 

autonomy dataset which had 144 leaf node models to consider.  

As demonstrated in the assessing model fit section, it is also necessary to reduce 

collinearity among variables. Collinearity can be assessed by calculating the Pearson correlation 

coefficients. For example, the energy dataset in this paper had two variables, SHGC and U-Value, 

that were highly correlated, and it was necessary to eliminate one to prevent model instability 

issues. Because U-value showed a stronger linear relationship to the response EUI, SHGC was 

eliminated. Variable selection can be conducted in many other ways including stepwise selection, 

forward selection, and backward elimination. It is ultimately up to the designer to determine 

which variables to include in the model. 

Conclusion 

Summary of contributions 

This work presents a method for dynamic subset sensitivity analysis that includes a new 

procedure for ensuring coefficient significance. It then demonstrates the method’s generalizability 
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on three building design problems. This method updates variable importance in real-time as 

design criteria emerge, aiding discussion for new design directions. It also determines where in 

the variables’ domain it tends to influence the response, which provides ranges to design within 

and supports design freedom.  

Limitations and future work 

Some aspects of this specific approach depend on having linear model coefficients. The 

model tree could include quadratic or cubic terms in the linear regression models to produce local 

polynomial models. Additionally, it is possible to implement the model tree with other node 

model types such as neural networks or SVM. However, linear models were selected in this 

method to utilize the coefficients to develop importance metrics, as well as to reduce training 

time. To implement the model tree with other model types, additional importance metrics must be 

developed, especially for nonparametric models. It is likely the training time would also increase. 

Another limitation for the daylight and energy datasets is using a single location. In future 

iterations, latitude and cloud condition could be included as variables to make it more flexible. 

Finally, it could be argued that the size of the embodied carbon dataset was not large enough for a 

model tree given the nonlinear nature of many of the variables, compared to energy [94]. 

However, this example was chosen to demonstrate the method on an existing dataset that was not 

developed directly for this method. Future general datasets in the domain of structures should be 

based on a larger dataset.  
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Concluding remarks 

In this work, we investigate a new method called dynamic subset sensitivity analysis 

across three domains. Many factors on the dataset affect the effectiveness of the method, 

specifically the sampling technique and the number of samples. Considering the quality of the 

leaf node models through the coefficient p-value and R2 improve the reliability of the interpolated 

variable importance. In the future, this work could be combined with recent work on training 

design agents to learn generalizable design behavior [95]. If implemented more widely, methods 

such as dynamic subset sensitivity analysis could track with design practice to make the greatest 

impact without requiring computation specialists to generate a custom parametric model and 

simulation data for each project. 

This research is supported in part by the National Science Foundation under Grant 

#2033332. Any opinions, findings, and conclusions or recommendations expressed in this 

material are those of the authors and do not necessarily reflect the views of the NSF. 
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Chapter 3 
 

Expanding performance-based parametric design spaces through transfer 
learning 

 This chapter is under review for publication in an academic journal.  

Introduction 

Combining parametric models with simulation software enables designers to generate 

datasets that can be used to train surrogate models. Surrogate models can then replace the 

simulations in a design workflow by approximating the objective function, alleviating simulation 

wait time and facilitating exploration within the parametric design space. These faster models can 

serve as a valuable tool in collaborative decision-making by offering live performance feedback 

[32], [33]. However, despite their benefits, surrogate model workflows may unintentionally 

restrict creativity. This limitation arises from the substantial effort needed to adjust the parametric 

model and generate new data, potentially leading to premature design fixation [96], [97]. In the 

early stages of design, where many aspects are still flexible and decisions greatly influence 

building performance [45], this restriction becomes more apparent. Adding more variables to the 

initial parametric model complicates the updating of its corresponding surrogate model, 

necessitating the regeneration of simulated datasets with current tools--essentially starting from 

scratch. This wastes resources, as the source (initial design space) and target (updated design 

space) tasks are highly related.  

Ideally, the initial dataset could be leveraged to reduce the number of new simulations 

with both original and new variables required to update the surrogate model. Recent 
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developments in machine learning have shown instances where a model for a specific task can 

inform the model of a related task with limited data. This learning approach is known as transfer 

learning (TL) [98]. However, most existing TL methods are intended for image or text data, 

rather than the tabular data typical of many design space datasets. Tabular data is highly 

structured, which makes it more challenging to identify variables and patterns that generalize 

across tasks. This challenge is particularly pertinent in fields like medicine, where tabular datasets 

are common, and generating datasets is both difficult and expensive. These datasets often lack 

consistency, with variations in the inclusion of variables or columns.  

To address this limitation in existing TL approaches, a recent paper has introduced a 

relaxed-table TL method [4]. In our paper, we apply their method in the domain of parametric 

design to utilize an initial dataset, which only contains a subset of variables present in the updated 

dataset, to update the surrogate model. While this tabular tokenization-embedding method 

originated in another field, introducing it within early parametric building design introduces new 

research questions. In typical transfer learning scenarios, the challenge is that the target dataset is 

limited, and the objective is to leverage a dataset from the same domain or a similar task from a 

different domain to improve the model. However, in our case, we generate a target dataset with 

the knowledge that we already have a similar dataset (the original dataset). Thus, we must test the 

applicability of the method overall while determining an effective approach to sample from the 

new design space. 

The basic idea is visualized in Fig. 3-1. Our initial dataset is created with a parametric 

model of a building façade’s geometry, while the updated dataset includes additional variables for 

geometric flexibility, which might have been implemented by an architect or engineer after 

exploring the results of the initial model. The surrogate model is used for classification to predict 

whether designs will be “good”, “fine”, or “poor” based on simulated Annual Sun Exposure 
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(ASE). By incorporating the initial dataset through tokenization and embedding, fewer 

simulations from the updated dataset are required to adequately update the surrogate model.  

As we consider the potential benefits of this new TL approach, we compare it to classical 

machine learning methods for two reasons. First, we acknowledge that the interpretability of 

some classical methods can be valuable to the design process. Interpretable machine learning 

methods provide designers with information on variable importance and interactions that can be 

used to as an initial step in decision-making [99]. Given that the new method reduces 

interpretability, we also evaluate the performance of classical machine learning methods trained 

on limited data from the updated design space.  

Second, we recognize that the data sampling technique can affect model performance and 

is of critical importance in situations with very few samples. To try to ensure class representation 

in the limited dataset from the updated design space, we introduce a random walks sampling 

technique that efficiently incorporates data from the updated design space and we thoroughly test 

the hyperparameters, providing valuable guidance for future applications.  

Throughout this paper, we thus assess the effectiveness of TL in this specific early design 

setting paired with a random walk sampling technique and compare it to classical machine 

 

 
Figure 3-1: A summary of the performance-driven parametric design scenario.  
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learning models. We use both random walks sampling, which is suited for very small sample 

sizes, as well as Latin Hypercube sampling, which is more common in the architectural 

engineering field. The overall goal is to enhance the flexibility and responsiveness of 

performance-based parametric design in the early design process. While we demonstrate and 

rigorously test this new workflow on a realistic façade design problem, the method may be of 

future use to other design scenarios in which surrogate models are built for design exploration 

with tabular data. 

Literature review 

Performance-based parametric design 

Parametric modeling allows architects and engineers to rapidly investigate design aspects 

through manipulating variables. With the integration of simulation software in visual 

programming environments, it is common to evaluate designs with respect to performance 

objectives, such as daylight [25], [100], [101], visual comfort [102], operational energy [103], 

[104], thermal comfort [105], [106] and embodied carbon [88], [107]. For example, [25] used a 

parametric approach to design a solar screen in desert climates, where the variables included the 

number of louvers, louvers tilt angle, screen depth ratio, and screen reflectivity, and the objectives 

were spatial daylight autonomy (sDA) and annual sunlight exposure (ASE). In [102], Tabadkani 

et al. designed an origami-based dynamic façade to improve visual comfort using a parametric 

design workflow. However, in practice, setting up a parametric model and generating simulations 

can be time-intensive, even with recent advancements in simulation software. It is not always 

feasible to run extensive simulations between design iterations. Thus, researchers have developed 
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approaches to incorporate performance feedback in decision-making, usually involving some 

computation prior to exploring design options.  

Researchers have found it is often useful to sample the design space to generate a 

representative dataset, through a prescribed method like Latin Hypercube sampling [108] or 

performance-driven sampling [109], and filter through design options [110]. Yet, in some 

complex cases, it might be necessary to resort to optimization [111], [112]. Another way to 

decrease the negative impacts of computation on the design process is to reduce high dimensional 

spaces through methods such as principal component analysis or canonical correlation analysis 

[99]. Regardless of how they are created, these methods yield a synthetic dataset that can be used 

to train a surrogate model, which permits real-time performance estimations [92]. Moreover, 

surrogate modeling is particularly accessible as open-source machine learning packages have 

become readily available. However, choosing the best surrogate model depends on many factors, 

including the nature of the function, size of the dataset, evaluation metric, among others [113].  

Surrogate models in building design 

Many types of surrogate models have been tested in different building design domains 

with varying performance and interpretability [12]. Although there is no formal mathematical 

definition for interpretability [114], [115], a surrogate model is generally considered interpretable 

if designers understand the reason for the predictions. These models usually provide designers 

confidence while also providing additional information such as variable importance. In this work, 

we study a classification task, but regression is also applicable when the objective is continuous. 

For some design objectives, interpretable surrogate models such as linear regression, logistic 

regression, Naïve Bayes, or decision trees can achieve sufficient fit and provide designers with 

some intuition. Esteghamati and Flint compared the performance of 5 surrogate models to predict 
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multiple objectives related to seismic vulnerability and showed that a linear regression model was 

sufficient to estimate the seismic-induced embodied carbon emission [116]. However, depending 

on the nature of the underlying function, a more complex model may be required, including an 

ensemble method or a neural network. Neural networks are often used to predict building energy 

[117]. Nevertheless, all of these models are considered classical machine learning methods that 

require a fixed column table, i.e., all datasets involved have the same variables. 

While this workflow is helpful for making performance-driven design decisions, it is not 

flexible from a designers’ perspective. The variables must be defined prior to establishing the 

design space and exploring it, which inherently limits the number of possible designs. Gero and 

Maher expressed similar concerns in the infancy of computer-aided design, stating that in routine 

design, where all decision variables are known a priori, “the designer operates within a defined, 

closed state space” [118]. They emphasize that “creative design occurs when new design 

variables are introduced in the process of designing” [118]. Furthermore, not only must the 

parametric model be programmed in a flexible way, but each time variables are added or 

adjusted, the simulation data must be re-generated. A new model is needed because classical 

machine learning methods require all variables (columns) be present for all samples, which is the 

focus of this paper. This might prevent designers from incorporating new design directions, 

which can lead to design fixation. This is common in digital design environments as a whole 

[119]. However, it is likely that for many design problems, the added variables cause only a 

minor shift in the objective distribution. To address problems like this, TL has recently 

demonstrated many instances in which a model of a particular task can be leveraged to inform the 

model of a related task with limited data. The next section will introduce TL, its current 

applications in building design, and how it could be used to add new variables to an existing 

surrogate model compared to starting from scratch with classical methods.  
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Transfer learning and current engineering applications 

TL is a class of techniques used to improve the model performance of a task by 

leveraging the model of a related task. The data-based interpretation of TL approaches in [98] is 

most relevant for this work. According to [98], there are two main strategies for data-based 

approaches: instance weighting and feature transformation. Instance weighting assigns different 

weights to individual samples to emphasize certain samples that are more useful for the target 

task [120]. Because our application involves overlapping but different feature spaces, we instead 

focused on strategies in the feature transformation category. The feature transformation category 

includes feature mapping, feature clustering, feature selection, and feature encoding [98]. Feature 

encoding has been previously applied to building design applications in the form of autoencoders 

[121]. The tabular TL method implemented in this work also falls within this category.  

Research efforts in TL have been primarily focused on applications in computer vision and 

natural language processing (NLP). Image data and text data are considered unstructured, and 

pre-trained models in deep learning can learn general representations that are transferable across 

tasks [122]. In contrast, tabular data is highly structured, which makes it difficult to select 

variables and patterns that generalize across tasks. Although several building domains utilize 

graphs [65] and images [123] to analyze performance, many building datasets are tabular, 

particularly in practice. Currently there are some tabular approaches that involve training the 

source neural network and then copying the first 𝑛 layers to the target network, by either fine-

tuning them or freezing them [124]. This has been shown to reduce prediction error in short-term 

energy prediction applications [124], [125] and HVAC control [66] and annual building energy 

consumption [126]. However, the TL methods applied in these works require a fixed column 

table. 



54 

 

Outside of buildings, there has been research attention on developing tabular TL techniques 

for medical applications since the data is often tabular [127]. Deep models have become more 

competitive with classical machine learning for such tabular datasets [122]. Medical datasets are a 

good candidate for TL because they are difficult and expensive to produce. However, they often 

contain inconsistencies. The naïve approach would be to only use datasets with identical columns 

or drop non-overlapping columns, which would waste resources and potentially negatively impact 

the model. This was the motivation for a TL method called TransTab [4], which relaxes the fixed 

column requirement through feature encoding. In early design parametric modeling scenarios, 

adding a new variable and generating simulated data from scratch is also computationally 

expensive, and the updated design space has overlapping columns with the initial design space. In 

this work, we apply the TransTab TL method to reduce the number of simulations required to 

update the surrogate model. 

Gaps and response 

In summary, parametric models and surrogate models are powerful when paired together, 

but they are potentially restrictive, especially in the early stages of building design. To our 

knowledge, it is often difficult and computationally expensive to add variables to the parametric 

model and update the corresponding surrogate model with currently implemented methods. 

Designers must start from scratch when rebuilding their surrogate models, which discourages 

them from expanding the design space and discovering new directions. In this work, we adapt a 

tabular TL method [4] to leverage the initial data and limit the amount of new data needed to 

update the surrogate model as variables are added. This includes a novel random walks sampling 

technique to aid in class representation within the added samples. We acknowledge benefits to 

classical interpretable methods, and we thus compare their performance trained on the added data, 
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using both random walks sampling and a more conventional sampling technique, to identify 

instances when TL is useful in an early design setting. By implementing and testing TL in this 

setting, this application prevents designers from fixating on the initial design space by requiring 

fewer simulations to update it with adequate performance. The goal of the proposed workflow is 

to make performance-based parametric design more flexible and encourage designers to explore 

more designs, potentially leading to more sustainable design solutions.  

Methodology 

To demonstrate and test the method, an initial parametric design space was first 

constructed in the visual programming environment Grasshopper [22]. The model included 8 

variables, which were sampled using Latin Hypercube sampling at a rate of 𝑛 = 500. Annual 

daylight simulations were conducted using Climate Studio [128] to generate the objective: annual 

sunlight exposure (ASE). Next, ASE was binned into 3 classes to create the initial simulated 

dataset. These three classes represent a geometry that is “good”, “fine”, or “poor” from the 

perspective of desired ASE, which is an appropriate resolution at such an early design stage. The 

initial classifiers were trained and tested (training/testing split 80/20), including selected 

interpretable models and a TransTab transformer model.  

Once the initial classifiers were trained, 4 variables were added to the parametric design 

space. Additional data was generated in chunks, where the initial variables were sampled using a 

random walks algorithm and the new variables were generated using random sampling. ASE was 

binned based on the same criteria as the initial dataset. Each chunk of additional data was used in 

combination with the original encoded data through the tabular TL method [4]. Additionally, the 

new chunks of data were used to train the interpretable classifiers. This procedure was repeated 

10 times, and then repeated for different numbers of random walks and step sizes. The updated 
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parametric design space was sampled using Latin Hypercube sampling at a rate of 𝑛 = 500 to 

represent starting from scratch, and this dataset acted as the ground truth for classifier evaluation.  

The entire methodology was then repeated with a second combination of initial variables, and 

these results are included in the discussion section. The whole procedure is shown in Figure 3-2. 

Following the main simulation experiment, LHS sampling of the updated design space was also 

conducted incrementally to compare as larger amounts of samples were added. This was done 

because random walks sampling was selected specifically to generate very small additional 

datasets, while traditional sampling would likely be better with more new samples. Finally, TL 

effectiveness and class representation were checked to present a more comprehensive overview of 

model performance.   

 

 
Figure 3-2: Overall methodology for updating the performance-based parametric design space.  
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Design space formulation 

The case study in this paper is meant to demonstrate the effectiveness of tabular TL in an 

early building performance-based parametric design setting. The design example is inspired by 

The National Art Center in Tokyo, Japan [129]. We focused on the lobby space, which features a 

curved curtain wall façade facing south and contains two round, concrete blocks. The top level of 

the blocks can be occupied as cafes or galleries. Although some glare can be tolerated in 

transition areas such as lobbies, it is still a concern given the curtain wall façade. Exterior and 

interior images of the lobby are shown in Figure 3-3. 

The initial design space included 8 variables that were hypothesized to affect glare 

conditions and at the same time provide designers with a wide range of geometric design options. 

The first 4 variables related to the location of the blocks, including the location of the large block 

in the x-direction, distance between the two blocks, and the relative locations of the large and 

small blocks in the y-direction. The remaining initial variables included the blocks’ height and the 

ratio of the blocks’ top radius to lower radius, essentially modulating the blocks from cones to 

cylinders. Since this work intends to address real-world design scenarios, the added variables 

were based on a hypothetical design scenario in which the designer wants to add 3-dimensional 

 

  
Figure 3-3: Inspiration building: National Art Center Tokyo. Exterior on the left [2] and Interior 
lobby on the right [3]. 
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variables to the two façade bumps in front of the blocks. Such an expansion of variables could be 

the result of an initial architectural design meeting after parametrically exploring the first model. 

Figure 3-4 (right) shows the four added variables, which allow for the adjustment of the peak 

location on the curve used to construct the façade bumps in both the y- and z-directions. These 

variables affect the position of the block in the y-direction. A summary of all variables is 

provided in Table 3-1. All variables were normalized from 0-1 prior to training.  

 The objective function for this case study was Annual Sunlight Exposure (ASE), which is 

the percentage of the regularly occupied floor area that receives direct sunlight (>1000 lux from 

the solar disc) for more than 250 occupied hours [85]. ASE was simulated using Climate Studio 

 

 
Figure 3-4: Labeled diagram of initial variables (left) and added variables (right).  

Table 3-1: Variable details. 

Variable Description Stage added Minimum Maximum 
x1 Large block x coordinate (m from origin) Initial -5 5 
x2 Distance between blocks (m) Initial 1 9 
x3 Large block y location (relative) Initial 0 1 
x4 Small block y location (relative) Initial 0 1 
x5 Large block height (m) Initial 8 12 
x6 Large block radii ratio (relative) Initial 0.5 1 
x7 Small block height (m) Initial 5 9 
x8 Small block radii ratio (relative) Initial 0.5 1 
x9 Small block bump y coordinate (m) Updated 0 1.5 
x10 Large block bump y coordinate (m) Updated 0 1.5 
x11 Small block bump z coordinate (m) Updated 1 13 
x12 Large block bump z coordinate (m) Updated 1 13 
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aided by the Design Space Exploration toolbox [130]. All opaque surfaces including the ground 

were assigned according to LM-83 guidelines. The curtain wall glass was low-E double pane with 

61% visible transmittance and the visible transmittance of the exterior horizontal glass shades 

was 43.7%. The radiance parameters were “-ab 6 -lw 0.01 -ad 1” and there were 500 samples per 

sensor. Since many details are uncertain in the early stages of design, the ASE output was binned 

into three classes and treated as a classification problem, where “good” is <0.45 ASE, “fine” is 

0.45<0.60 ASE, and “poor” is 0.60> ASE. Figure 3-5 shows a range of potential designs in the 

updated design space in catalog format. The shading structure was removed for visualization 

purposes, but it was included in the simulations.  

Tabular transfer learning 

The selected tabular TL method is called TransTab [7]. To incorporate multiple tables 

with overlapping but inconsistent columns, TransTab assigns semantic meaning to the tabular 

data through column descriptions. This allows for the conversion of tabular data into sequences, 

similar to sentences, to train a transformer model adapted from NLP [51]. This way, knowledge 

 

 
Figure 3-5: Catalog of design options. The light blue line is the original design.  
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can be retained from the source dataset to the target dataset, regardless of whether all input 

columns are the same. A summary of the procedure is shown in Figure 3-6. First, the raw data is 

tokenized and converted into sequences using the column name or description to assign meaning 

to each cell. Then, the sequence of tokens is converted into numerical vectors through an 

embedding layer. To align all the embeddings into the same space, the embeddings are passed 

through layer normalization. Finally, the input processing is completed by concatenating the 

classification embedding [CLS], which is a token that will facilitate sequence classification.  

Next, the processed inputs are further encoded through the gated tabular transformer that 

was based on the classical transformer from NLP [131]. The gated transformer contains a multi-

head self-attention layer and gated feedforward layers. The multi-head self-attention mechanism 

and gated feedforward layers determine which features to focus on by reallocating attention 

among tokens during the training process [4]. The embedding produced at the last layer of this 

process is passed to the classifier for making predictions. Further details and equations are 

provided in [4]. TransTab is useful for several learning applications including TL. 

The TL approach was implemented in Python using the TransTab package [4]. Most of 

the TransTab defaults were maintained. The classifier included 2 transformer layers in the 

encoder and the dimension of the hidden embedding was 128. The attention module had 8 heads 

and the dimension of the feed-forward layer was 256. ReLU activations were used, and dropout 

 

 
Figure 3-6: TransTab methodology, after [4].  
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was not activated. A patience of 5 was kept for early stopping and the number of epochs was 100. 

The TransTab model was trained using the ADAM optimizer [132]. Weight decay was set to 2e-4 

for regularization. The default learning rate of 1e-4 was used in the initial classifier training; 

however, it was increased for the updated classifier training to 2e-4 as the updated datasets were 

small compared to the initial dataset. Additionally, the batch size was set to 20 for the initial 

classifier training and reduced to 15 for the updated classifier training. 

Random walks sampling 

This TL procedure requires new data to demonstrate the method, which in a design 

scenario would be generated by a designer with some expectation about its similarity to the 

original dataset. The sampling technique of the updated design space is important because the 

goal is to add as few samples as possible to update the classifier, while making sure there is 

representation for each class in the added data. It is not possible to guarantee class representation 

because we do not know how the objective function has changed. However, we assume that the 

new distribution is reasonably similar, in which case it makes sense to start sampling near the 

centroid of each class in the initial data. From there, we propose adopting a random walks 

approach. We start by calculating the centroid of each class in the initial data (Eqn. 1), where 𝒄 ∈

ℝ𝑚 is the centroid of the class, 𝑚 is the number of features, 𝒙𝑖 ∈ ℝ𝑚 represents sample 𝑖 ∈

{1, 2, … , 𝑛}, and 𝑛 is the number of samples in the class.  

𝒄 =
1

𝑛
∑ 𝒙𝑖

𝑛
𝑖=1  (Equation 1) 

Next, we initiate random walks beginning from the centroid of each class (Eqn. 3). Let 

𝒕𝑗 ∈ ℝ𝑚 be the position after step 𝑗 for 𝑗 ∈ {0, 1, … , 𝑘}, where 𝒕0 is the starting position which is 

the centroid. Let 𝑈: ℝ2 → ℝ be a function that generates a uniformly distributed random value in 
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the given interval (𝑎, 𝑏). Then, to generate a step vector 𝒔𝑗 ∈ ℝ𝑚, we apply 𝑈(. , . ) in each 

dimension as follows:  

𝒔𝑗 = (𝑈(𝑎1, 𝑏1), 𝑈(𝑎2, 𝑏2), … , 𝑈(𝑎𝑚, 𝑏𝑚)), ∀ 𝑗 ∈ {1, 2, … , 𝑘}. (Equation 2) 

Finally, we update the position vector 𝒕𝑗 using the previous position and the new step: 

𝒕𝑗 =  𝒕𝑗−1 + 𝒔𝑗 (Equation 3) 

The number of walks that are initiated dictates how many samples are added per step. For 

example, if we have 3 classes and 2 walks, we add 6 samples per step. If the data has shifted 

significantly, it is best to take larger steps, and if the designer thinks it is very similar, the steps 

should be smaller. Since we do not have any information about the added variables, they are 

randomly sampled within their bounds. This is designed to help mitigate class imbalance and 

prevent the designer from adding more data just to achieve class representation.  

Interpretable classical classifiers for comparison 

Choosing a transformer model as a surrogate model allows for TL, but it sacrifices 

interpretability. In an early design setting, it might be useful to understand the predictions from 

the surrogate model while also gaining insight on variable importance and gradients. This paper 

tests what is gained in performance with low number of samples against what is lost in 

interpretability by comparing the TL method to classical methods. In this section, we identified 

classical classifiers that 1) are interpretable and 2) have low variance out of the box. This is 

because the added dataset from the updated design space will be limited, thus the models will be 

prone to overfitting.  

Logistic regression (LR) is considered interpretable because it is a generalized linear model. 

Each feature is assigned a coefficient that can be interpreted to understand its effect on the 

prediction. To lower variance, a shrinkage penalty can be added which aids in regularization. 
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Support vector classifiers (SVC) using linear kernels also produce coefficients that can be 

interpreted. SVC overfitting can be prevented through the budget parameter, which controls the 

strength of the penalty. Alternatively, Naïve Bayes (NB) operates on Bayes’ Theorem and can be 

interpreted through conditional probabilities [114]. NB trades off increased bias for lower 

variance by assuming feature independence within classes [133]. Linear discriminant analysis 

(LDA), also Bayes-based, can be interpreted through the coefficients assigned to each feature in 

the discriminant functions [134]. Similar to previous methods, LDA employs a shrinkage penalty 

to decrease variance. Decision trees (DT) are considered interpretable, offering insights into 

variable importance by quantifying the features’ contribution to criterion reduction [114]. 

However, decision trees tend to overfit (high variance), necessitating pruning, which requires a 

large enough dataset, or ensemble methods, which sacrifices interpretability. Thus, LR, SVC with 

a linear kernel, NB, and LDA were chosen as interpretable classifiers for comparison. These 

classifiers and their hyperparameters are shown in Table 3-2. 

The Python library Scikit-learn [135] was used for all interpretable, classical classifiers. The 

parameters used to generate results for each model are provided below. Overall, the default 

parameters were maintained unless the model trained with the initial data did not converge or 

needed to be adjusted for a multi-class problem. The same hyperparameters were used for the 

initial model and updated models, as the designers in our assumed application would not have 

access to ground truth. It is important to acknowledge that TL can be a broader concept for 

classical learning, which would include stacking and ensemble methods, but they lose their 

interpretability. For this reason, these methods were excluded from this work.  

Table 3-2: Classical classifier hyperparameters. An asterisk indicates the parameter was changed 
from the default. 

Model Parameters 
Logistic Regression (LR) Penalty: L2 (default) 

Dual: False (default) 
Tolerance: 1e-4 (default) 
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Classifier evaluation 

The models were evaluted using the One-vs-Rest area under the reciever operating 

characteristic (AUROC) curve. The ROC curve is a graph that shows the trade-off between the 

true positive rate and the false positive rate for different decision thresholds for a binary classifier 

[136]. ROC curve for each class 𝑖 ∈ {1, 2, … , 𝑘} is constructed by assigning positive labels to the 

samples of class 𝑖 and negative labels to the samples of all other classes. Then, the AUROC is 

calculated for the ROC curve of each class. Finally, the average AUROC is computed by taking 

the mean of the AUROC scores over all classes (Eqn. 4).  

Inverse of regularization strength (C): 1.0 (default) 
Fit intercept: True (default) 
Intercept scaling: 1.0 (default) 
Class weight: None (default) 
Solver: Newton-cg* 
Max iterations: 500* 
Multi-class: Auto (default) 
Warm start: False (default) 

Support Vector Classifier (SVC) Regularization parameter (C): 1.0 (default) 
Kernel: Linear* 
Shrinking heuristic: True (default) 
Probability bool: True* (required for multi-class) 
Tolerance: 1e-3 (default) 
Cache size: 200 MB (default) 
Class weight: None (default) 
Max iterations: No limit (default) 
Decision function shape: one-vs-rest (default) 
Break ties: False (default) 

Naïve Bayes (NB)  Priors: None (default) 
Variance smoothing: 1e-9 (default) 

Linear discriminant analysis (LDA) Solver: Singular value decomposition (default) 
Shrinkage: None (default) 
Priors: None (default) 
Number of components: False (default) 
Tolerance: 1e-4 (default) 
Covariance estimator: None (default) 
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𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑈𝑅𝑂𝐶 =
1

𝑘
∑ 𝐴𝑈𝑅𝑂𝐶𝑖

𝑘
𝑖=1  (Equation 4), 

where 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑈𝑅𝑂𝐶 is the overall multiclass AUROC score, 𝐴𝑈𝑅𝑂𝐶𝑖 is the AUROC 

score for class 𝑖, and 𝑘 is the number of classes. This is to adopt it from its original use for binary 

classification problems. It aims to evaluate the model’s performance in distinguishing between 

multiple classes.  

Results 

To determine if TL is suitable for an early design setting, we examine 1) the performance 

compared to classical interpretable classifiers for incrementally added samples using two 

sampling techniques, 2) the effectiveness of transfer learning, and 3) the effectiveness of random 

walks sampling of the initial design space. We also explore classifier robustness, because in a real 

design scenario, the designer will not have access to ground truth. These aspects are measured 

and discussed in the remainder of the paper.   

Comparing transfer learning to classical interpretable classifiers 

Model performance depends on the quality of the target dataset. Therefore, the 

hyperparameters of the random walks sampling were rigorously tested to fairly compare the 

models, in addition to generating LHS datasets that will be discussed later in this section. Figure 

3-7 shows the average multiclass AUROC and standard deviation for samples incrementally 

added to the updated design space dataset. The two main hyperparameters in the random walks 

sampling were tested: number of random walks and step size. These influence the number of 

samples added at each iteration and the size of the step interval, respectively. For each 

combination and number of samples, the random walk sampling was repeated 10 times. The 
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classifiers were tested on the scratch dataset, which was generated by sampling the updated 

design space at a rate of 𝑛 = 500 using Latin Hypercube sampling. This measures how well the 

classifier generalized trained on limited data from the updated design space. The TL results 

include the initial data and the updated data, while the classical interpretable classifiers include 

only the updated data. 

The results of all combinations show the TL classifier yields higher multiclass AUROC 

on average. As more walks were added, the classical interpretable classifiers’ performance were 

more comparable, particularly the Naïve Bayes classifier. However, including more walks 

requires more samples to be added at each iteration, which is a disadvantage for designers. The 

 

 
Figure 3-7: The mean and standard deviation for each model type across 9 experiments. An 
asterisk indicates that some of the experiment results were not included due to lack of class 
representation. These datasets can be identified in Figure 9. 
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TL classifier is also more robust against random walks sampling hyperparameters, as shown by 

its stable average AUROC across all experiments. This is important because even if the designer 

does not tune the hyperparameters optimally, the TL method will yield an adequate performing 

classifier compared to the classical interpretable methods. The TL method is also less sensitive to 

the number of added samples, which is better for designers.  

In addition to the average performance, the standard deviation was plotted to understand 

variability over 10 repetitions. A small standard deviation indicates the classifier is more reliable 

which is important because the designer will not have access to ground truth (scratch dataset) as 

we do in a research setting. Over the repeated experiments, the TL method demonstrates low 

standard deviation across all combinations compared to the classical interpretable methods where 

the standard deviation depends on the random walks sampling hyperparameters and is frequently 

high. This is further evidence that the TL method is more robust than classical interpretable 

methods.  

The recommended hyperparameters for this case study are 1 walk, 0.1 step size, for two 

reasons. First, the TL method performance is adequate for 1 walk compared to the 2 and 3 walk 

experiments, and 1 walk allows the designer to add the fewest number of samples per iteration. 

Second, of the three 1 walk case studies, 0.1 step size shows the best class representation, which 

is discussed further in a later section. The initial dataset and results from the recommended 

random walk hyperparameters are provided in Table 3-3. This table also provides an equivalent 

number of new LHC samples required for each classical method to reach the TL performance at a 

small number of new samples (18), which will be explained next.  

Table 3-3: Initial and scratch multiclass AUROC for each classifier and average updated 
multiclass AUROC for 1 walk, 0.1 step size. 

 AUROC 
Model Description Initial 

samples 
(x1-x8) 

New 
samples 
(x1-x12) 

TL LR SVC NB LDA 
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 Although the random walks sampling was necessary for achieving class representation 

when generating very small datasets from the updated design space, other prescribed sampling 

techniques may yield better results for higher numbers of added samples. Figure 3-8 shows the 

model performances for the recommended 0.1 step size up to 90 added samples (with a faded 

circle), as well as for LHS sampling at the shared number of additional samples (with a bold X) 

across the three walks. The LHS sampling begins at 36 samples because class representation was 

not achieved at 18 samples, which would have prevented proper model training. The result shows 

that classical interpretable methods, specifically LDA for this dataset, can achieve the same or 

higher AUROC as TL with 18 samples at approximately 54 samples. However, TL still performs 

better at 54 samples, so it is still useful at that point. Once 72 samples are reached, LDA with 

LHS outperforms TL, making TL no longer valuable past this point. This result also suggests that 

fewer than 500 samples were needed to achieve near peak performance for the initial dataset. 

Additional considerations concerning sample size for both original and new sampling are 

discussed in the discussion section.  

Initial Data from 
initial design 
space 

500 - 0
.9821 

0
.9520 

0
.9495 

0
.9579 

0
.9665 

Updated 
 

Initial data 
(TL only) + 
limited data 
from new 
design space  

500 15 0.8614 - - - - 
- 15 - 0.7866 0.8090 0.8082 0.6686 

500 18 0.8732 - - - - 
- 18 - 0.7833 0.8136 0.8184 0.7402 

500 21 0.8736 - - - - 
- 21 - 0.7824 0.8106 0.8221 0.7429 

500 24 0.8731 - - - - 
- 24 - 0.7829 0.8140 0.8180 0.7633 

Equivalent Number of LHS samples required to meet 
or exceed TL performance at 18 random 
walks samples 

90+ ~72 ~90 ~72 
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Transfer learning effectiveness 

With any TL application, there is the possibility that the updated classifier performs 

worse than if it were trained on the target data only. This usually happens if the tasks are too 

different. In this case study, the source data is the initial design space dataset, and the target data 

is the updated design space dataset. Given the nature of the case study problem, it was assumed 

the source data behaved similarly to the target data. However, the TL method and a neural 

network trained only on the target data were compared to verify our assumption (Figure 3-9). 

Figure 3-9 demonstrates a significant increase in performance across all sampling experiments, 

 
Figure 3-8: Latin Hypercube sampling at shared number of additional samples across three walks 
compared to random walks sampling up to 90 added samples. 
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indicating that it is beneficial to leverage the initial model data to improve the performance of the 

updated classifier that has limited data from the updated design space. In some experiments, the 

transformer model trained on only the target data performance decreased as data was 

incrementally added, which is likely due to overfitting. Regardless, the TL method maintains high 

performance.  

Class representation through random walks sampling 

The random walks sampling for the initial variables was implemented to address the issue 

of class representation in the updated design space dataset. Figure 3-10 shows the class 

 

 
Figure 3-9: Transformer model trained only on target data compared to TL approach leveraging 
source data and target data. 
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representation for each random walks hyperparameter combination. As the step size increases, it 

becomes more difficult to attain class representation, particularly for the poor performing class 

(ASE >0.60). This is likely because the initial poor performing class is smaller than the other two 

classes, or fewer designs fall into the poor performing class with the introduction of new features. 

The objective class distribution shift is discussed further in the discussion section. While the 

results presented in this section are specific to one case study, class representation is a potential 

issue that must be considered when applying tabular TL in a performance-based parametric 

design setting.  

 

 
Figure 3-10: Class representation across all experiments. In the right column, there are datasets 
that do not contain samples in class “poor” and were not included in Figure 3-7 and 3-9.   
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Discussion 

Overall, the tabular TL approach paired with the random walks sampling of the initial 

design space yielded higher multiclass AUROC on average compared to the classical 

interpretable classifiers for very few additional samples. Regardless of random walks sampling 

hyperparameters, the TL method was able to achieve adequate multiclass AUROC (>0.85) with 

only 18 samples. As more samples were added, the classical interpretable methods performed 

comparably or better with LHS sampling; therefore, classifier selection depends on the amount of 

time the designer is willing to wait to update the surrogate model. However, some classical 

interpretable methods demonstrated large standard deviations and were not reliable for this case 

study. It is recommended to choose the TL method if very few samples are to be added, with a 

few considerations:  

• Number of classes: If the initial dataset has more classes, then more samples must be 

added at each iteration. Reduce the number of classes to add fewer samples at each 

iteration. 

• Number of walks: Fewer number of walks allows for fewer samples to be added per 

iteration. However, initializing only one walk may not fully capture the behavior in each 

class. 

• Step size: The step size should be determined based on the size of the classes and feature 

magnitudes. In some cases, it may be appropriate to set different step sizes for each class. 

It is recommended to normalize the features prior to determination to simplify the 

selection.  

• Initial features sampling technique: If the designer suspects the distribution has only 

slightly shifted, random walks sampling is recommended. However, if there is a large 

shift, it may be appropriate to choose a different sampling technique. 
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Tabular TL proved effective for this case study, primarily because the problems were 

similar. It is difficult to measure the similarity between the initial and scratch datasets given the 

feature spaces are different—i.e., the initial feature space is 8-dimensional and the updated 

feature space is 12-dimensional. However, because of how the features were constructed in 

Grasshopper, we can say that the marginal distribution according to the initial features is the 

same. Additionally, we can evaluate the class distribution between the initial and updated 

datasets, which is shown in Figure 3-11. Most designs fall into the fine performance class for both 

datasets, with more designs in the good performance class with the addition of the new variables.  

Further research is required to measure the similarity between datasets with overlapping 

feature spaces in building design problems [137]. Of course, if the datasets are too different, TL 

would not be effective and result in negative transfer. Then, it would be necessary to start from 

scratch. Nevertheless, this work demonstrates a novel workflow for applying a new tabular TL 

method and sets the stage for future implementations.  

 

 
Figure 3-11: Comparison of class distribution in the initial design space dataset and the updated 
design space dataset (scratch dataset). 
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Alternate design scenario 

It is important to acknowledge that the initial variables included in the model influence 

the performance of the classifiers. In the main design scenario (adding variables related to the 3D 

façade), knowledge was successfully transferred, however, if the objective distribution were 

changed entirely, the designer would need to start from scratch. While it is not necessarily 

possible to determine how the objective function will shift, we can demonstrate another design 

scenario starting with a different set of initial variables to begin to understand the generalizability 

of the TL method. Figure 3-12 shows the classifiers’ performance if the initial variables were the 

location of the blocks variables (x1 - x4) and the 3D façade variables (x9 - x12), and the added 

variables were those related to the shape of the blocks (x5 - x8) (Table 3-1).  

 

 
Figure 3-12: The mean and standard deviation for each model type across 9 experiments. An 
asterisk indicates that some of the experiments were not included due to lack of class 



75 

 

Overall, the TL method performs the best on average, with two exceptions: 2 walks, 0.1 

step size, 30 samples and 2 walks, 0.05 step size, 48 samples. Additionally, in this scenario, 

another experiment encountered issues with class representation (1 walk, 0.05 step size), unlike 

the main design scenario, which only experienced them with the 0.2 step size experiments. 

Nevertheless, this exercise shows that while the initial variables influence the effectiveness of TL, 

if the underlying behavior is largely maintained, it successfully reduces the number of samples 

required to update the surrogate model.  

Limitations 

While this work demonstrates the application of TL in an early design setting, it presents 

several limitations. One main limitation of applying TL techniques in early design settings is that 

many methods are intended for classification tasks. This is primarily because more of the real-

world data and current problems being studied lend themselves to classification over regression. 

However, regression is more ubiquitous in building design datasets [138], as a continuous 

objective provides more information. Nonetheless, we contend that classification remains useful, 

especially in the early stages when there is uncertainty. Instead of knowing the exact percentage 

of ASE, we only discern if it is ‘good,’ ‘fine,’ or ‘poor.’ We argue that this uncertainty is typical 

in the early design stage and serves to buffer the problem until details are sorted out. Another 

limitation, specific to this work, is that only one case study is examined. The behavior of the 

objective function in this study may not be replicated in other datasets. For instance, if a variable 

is added that drastically changes the objective, such as adding a large shading device, it is likely 

that the designer would have to start from scratch, as discussed in previous sections.  

representation. 
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Conclusion 

This paper implemented a tabular TL method on an early building design problem to 

quickly preserve performance feedback in a parametric model when the variables are updated. It 

compared the performance of the TL method to classical methods across several sampling 

situations. The selected tabular TL method, paired with random walks sampling, is useful when 

very few samples are to be added to quickly update the surrogate model. In this case study, ‘very 

few samples’ meant 18 samples. However, if the designer could generate approximately 54-72 

samples, interpretable classifiers achieved the same performance and also provided the benefit of 

interpretability. In the scenario that very few samples are to be added, we demonstrated that the 

number of simulations required to update the surrogate model can be reduced through applying 

the proposed workflow with higher confidence than classical interpretable classifiers. 

Additionally, the TL method proved more robust against sampling randomness and 

hyperparameters. This workflow could also be useful for design problems with even more costly 

simulations such as computational fluid dynamics or earthquake simulations. However, 

depending on the designer’s goals, it may be worth sacrificing performance to gain insights on the 

variables’ interactions and importance, or generating additional samples to achieve comparable 

performance. 

Further research is required to establish a metric to measure the similarity between parametric 

datasets with overlapping feature spaces and shared label spaces. Additionally, the tabular TL 

method implemented in this work and future approaches should be tested on other problems in 

building design domains. This is the case for TL in general, as it has recently been introduced to 

the field [137]. Finally, it is important to note that for a parametric model to accommodate new 

variables, it must be programmed in a flexible way. This can be accomplished through modeling 

in visual programming platforms like Grasshopper, or through the implementation of modeling 
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methodologies that allow for reusability [139]. Since many designers already work this way, this 

application of TL can help make performance-based parametric models more flexible, allowing 

for new, creative design directions that meet sustainability goals.  
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Chapter 4 
 

An exhaustive search for the optimal dynamic window properties to minimize 
building energy 

This chapter is to be submitted for publication in an academic journal. 

Introduction 

There is an increasing need to reduce building energy consumption, as the building sector 

accounts for 36% of final global energy use [140]. Electricity demand is expected to continue 

growing to combat climate change effects [19]. To reduce the energy consumption within the 

building sector, it is important to continue to improve not only system efficiencies but also the 

quality of building envelopes. Building windows are of particular interest because they are the 

thermal weak point and impact potential electric lighting savings and occupant satisfaction. One 

effective approach to reduce energy consumption is to implement double-pane windows with 

low-emissivity (low-e) coating [141], which works by reflecting infrared (IR) light. Beyond high 

performance static windows, dynamic glazing systems have been identified as a viable option to 

improve window performance [142], [143]. Dynamic glazing systems modulate their optical and 

thermal properties to adjust the visible transmittance (VT) and solar heat gain coefficient (SHGC) 

to either accept or block solar heat gains depending on outdoor conditions. These technologies 

have been demonstrated to be highly effective in certain climates, saving approximately 17% 

compared to a static baseline [144].  

However, while manipulating solar gains depending on outdoor environmental conditions 

is an effective strategy to reduce HVAC electricity usage, because solar light and heat are often 
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controlled together, it can have a negative effect on lighting electricity usage and produce an 

undesirable window appearance, which may prevent widespread adoption. For these reasons, 

there is recent interest in decoupling solar light and heat. Although it is not possible to achieve 

very low SHGC and very high VT due to inherent limitations in the definition of SHGC, it has 

been shown to be possible to achieve decoupling in the near infrared (NIR) region, which enables 

somewhat independent control of SHGC. A few such technologies have been proposed including 

a dual-band electrochromic glazing [145] and a reversible photothermal window [18]. Assuming 

we can decouple solar heat and light within physical restrictions, it is unclear what the optimal 

range of SHGC and VT is to minimize annual energy consumption in diverse climates. 

In this work, we exhaustively test the VT and SHGC for a two-state dynamic glazing 

system, considering feasibility constraints, to determine the optimal configuration across multiple 

climates. The optimal states reveal the ideal relationship and determine the strategy for 

decoupling in each climate. Once the optimal configuration is identified, the savings are 

calculated against ASHRAE standard glazing and the switching behavior is evaluated to compare 

climates. Furthermore, a sensitivity analysis is conducted to understand the importance of tuning 

the transition temperature for mixed and cold climates. This work will establish goals for future 

product development within the dynamic glazing space.  

Literature review 

Current dynamic window technologies 

Dynamic window technologies modulate their thermal and optical properties to reduce 

HVAC and lighting electricity usage. They reduce HVAC electricity usage by increasing solar 

heat transmission during cold conditions and decreasing it during warm conditions. From a 
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lighting perspective, dynamic windows can reduce electricity usage by increasing visible light 

transmission. This modulation has also been shown to affect thermal and visual comfort [146], 

[147]. It can be accomplished through a variety of mechanisms, including passive technologies 

such as thermochromic glazing [36], [148], and active technologies, for example, suspended 

particle devices [149], [150], polymer dispersed liquid crystals [151], [152], and electrochromic 

glazing [16], [153]. Passive technologies are controlled by environmental changes, typically solar 

radiation or temperature, whereas active technologies are controlled by a program that involves 

environmental measurements, system measurements such as cooling/heating load or illuminance, 

or some combination. One of the most widely adopted technologies is electrochromic glazing, 

which modulates its solar and visible light transmission through tuning the applied electrical 

voltage.   

Lee, Jeong, and Chae used a search algorithm to determine the optimal control parameter 

for electrochromic glazing and demonstrated 17.4% annual heating and cooling energy decrease 

on average compared to a static window over six locations, with outdoor air temperature as the 

control parameter [144]. Chambers et al used a Monte Carlo model to estimate the performance 

of electrochromic glazing on office buildings in Switzerland and found an average of 11% energy 

savings on the cooling and lighting loads [154]. The savings also depend on orientation. For 

example, Tavares et al showed the greatest savings from EC on the west façade in mediterranean 

climates [155]. Favoino, Overend, and Jin identified the optimal thermal and optical properties 

for general dynamic glazing that transitions on a daily and monthly basis and found between 5-

57% savings depending on climate and orientation [17]. However, this also included u-value 

modulations. Additionally, they also showed that energy savings is sensitive to the transition time 

scale, which is higher for current technologies. Warwick, Ridley, and Binions investigated the 

ideal transitioning for thermochromic glazing and found that with sharp transitions and a low 

transition temperature, 17.7% energy savings are achievable compared to standard glazing 
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systems [156]. While the building characteristics, climate, and baseline for comparison vary 

across studies, it is evident that maximizing dynamic glazing performance involves optimizing 

the transition/control parameters, switching resolution, and the properties of the glazing itself.  

In whole building energy simulations, the modulations are measured through visible light 

transmittance (VT) and solar heat gain coefficient (SHGC). SHGC is calculated based on the full 

light spectrum, including the visible portion. Therefore, it is impossible to achieve very high VT 

and very low SHGC simultaneously, but it is possible to decouple them beyond certain bounds. 

This is of current interest among researchers, as it is often desirable to maintain somewhat high 

VT to reduce light electricity usage or at least control it independently, with some potential to 

improve glare conditions or visual comfort [157]–[159]. One of the remaining issues with 

electrochromic glazing is that the visible and infrared (IR) light transmittance are highly 

dependent [160], meaning that VT and SHGC change together and in fact have a roughly linear 

relationship, as shown in Fig. 1 in [161]. This results in two or more states that range from a 

‘tinted’ state, with low SHGC and low VT, to a ‘clear’ state, with high SHGC and high VT. It is 

likely that improving the light-to-solar-gain (LSG) ratio, VT/SHGC, in the tinted state will lead to 

further electric light and HVAC electricity usage savings [142]. The most viable path thus far has 

been to decouple visible and NIR transmission, which will be discussed in the following sections.  

Decoupling solar heat and light 

Several researchers have proposed dynamic materials that manage to decouple solar heat 

and light by targeting the switching of specific regions within the light spectrum, specifically in 

the NIR region [162], [163]. There are three components of solar light that can be manipulated: 

transmission, absorption, and reflection. DeForest et al demonstrates a dual-band electrochromic 

glazing made from tungsten oxide nanocrystals that modulates between three main dynamic 
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glazing states: a tinted state that has low transmittance in the visible and NIR regions (low VT, 

low SHGC), a clear state that has low transmittance in the NIR region and high transmittance in 

the visible region (high VT, moderate SHGC), and a third clear state that has high transmittance 

in both the NIR and visible regions (high VT, high SHGC) [145]. Their dual-band dynamic 

glazing outperformed other dynamic glazing technologies and high-performance static glazing 

across multiple climates [145]. Jahid et al proposed a reversible photothermal window with 

plasmonic nanofilms that absorbs NIR [18]. During the summer, the plasmonic nanofilm is on the 

outer layer, and in the winter, it is reversed such that the nanofilm is on the inner layer. Paired 

with the central air layer that has localized heating and insulation qualities, NIR is released into 

the indoor environment. They demonstrated over 18% energy savings in mixed climates [18] 

compared to standard energy-efficient windows.  

Research gaps 

As more viable paths are identified to decouple solar heat and light, the ideal dynamic 

glazing properties is once again in question. It is unclear what the relationship between SHGC 

and VT should be to minimize energy consumption across diverse climates, assuming a 

hypothetical perspective that solar heat and light can be decoupled within physical limitations. In 

this work, we identify the optimal range of VT and SHGC and transition temperature across 

multiple climates through exhaustive grid sampling with constraints. The switching behaviors are 

investigated, and savings calculated to determine which climates benefit from such innovative 

dynamic glazing technologies. Furthermore, a sensitivity analysis is conducted to demonstrate the 

importance of the transition temperature parameter in cold and mixed climates. These 

contributions will inform the future development of dynamic glazing technologies.  
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Methodology 

The optimal two-state dynamic glazing system was determined through a constrained 

grid sampling approach (Figure 4-1). The variable search space consisted of five variables: state 1 

SHGC, state 1 VT, state 2 SHGC, state 2 VT, and the transition temperature. After all variables 

were discretized and all combinations computed, configurations that violated physical limitations 

and domain knowledge were eliminated. These constraints are detailed in further sections. Next, 

annual electricity usage across end uses was calculated through conducting EnergyPlus 

simulations. This step was accelerated via parallel computing. Then, the optimal solution was 

identified based on the lowest combined annual heating, cooling, interior lighting, and fan 

electricity usage. The savings were calculated and switching behavior verified. The baseline for 

energy savings was static ASHRAE standard glazing. Finally, a one-at-a-time sensitivity analysis 

was conducted to understand the effect of the transition temperature parameter in cold and mixed 

climates. Lastly, the tradeoff between electricity consumption and thermal comfort was measured 

by finding the pareto front. The entire process was conducted for seven ASHRAE climate zones 

and the results were compared across climates.  

 

 
Figure 4-1: Overall methodology.  
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Case study 

The DOE small office prototypical model was selected as the case study building (Figure 

4-2). It comprises of one level with one core zone and four perimeter zones. The HVAC system 

consists of a constant volume unitary heat pump system with constant speed compressors and no 

economizer. The window-to-wall ratio (WWR) for all orientations is 19.8%, excluding the glazed 

door on the south orientation, which was not included as a dynamic window. However, all 

windows were included as dynamic windows in the simulations. The simulations were conducted 

for an annual run period at a 10-minute resolution (timestep=6). Seven US cities were selected to 

represent the ASHRAE climate zones: Chicago, Phoenix, Baltimore, Atlanta, Miami, Duluth, and 

Minneapolis. Chicago, Duluth, and Minneapolis are heating-dominated climates, while Phoenix, 

Atlanta, and Miami are cooling-dominated, and Baltimore is mixed. All representative cities are 

classified as humid except Phoenix which is dry.  

 The baseline for comparison was the default window construction included in the 

prototypical model (Table 4-1) that follows ASHRAE standards. The U-value was kept the same 

for all models in each climate zone, since we only wanted to measure the effect of modulating VT 

and SHGC. 

 

 
Figure 4-2: Case study building.  

Table 4-1: Baseline window parameters. 

Climate zone Description City SHGC VT U-value (W/m2-K) 
1A Very hot humid Miami, FL 0.23 0.25 2.86 
2B Hot dry Phoenix, AZ 0.25 0.27 2.58 
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Grid sampling with constraints 

A grid sampling approach was adopted to exhaustively search the variable design space. 

The variables included the SHGC and VT for states 1 and 2, as well as the transition temperature 

(Table 4-2). The bounds for SHGC and VT were determined through surveying commercially 

available double and triple pane windows in the LBNL glazing database. Next, the variables were 

discretized and grid sampled to consider all combinations. Then, two constraints were imposed to 

ensure only feasible configurations were simulated. The first constraint dealt with the physical 

limitation of achieving high VT and low SHGC. Because SHGC accounts for the full light 

spectrum, including the visible portion, it is not physically possible to achieve very low SHGC 

and high VT simultaneously. This regions is known as the ‘forbidden region’ and it is visualized 

in red in Figure 4-3. The second constraint was imposed to ensure that when the transition 

temperature was reached, a lower SHGC was adopted. This was interpreted as eliminating any 

combinations that produced a negative slope (𝑦2−𝑦1)

(𝑥2−𝑥1)
 in Figure 4-3. After eliminating the 

infeasible combinations, 110,922 configurations were simulated for each climate zone using 

EnergyPlus. 

3A Warm humid Atlanta, GA 0.25 0.27 2.41 
4A Mixed humid Baltimore, MD 0.36 0.39 2.06 
5A Cool humid Chicago, IL 0.38 0.42 2.06 
6A Cold humid Minneapolis, MN  0.38 0.42 1.94 
7 Very cold Duluth, MN 0.40 0.44 1.66 

 

 

Table 4-2: Variable details. 

Variable Min Max Range Step No. Options 
SHGC state 1 0.1 0.8 0.7 0.05 15 
SHGC state 2 0.1 0.8 0.7 0.05 15 
VT state 1 0.05 0.8 0.75 0.05 16 
VT state 2 0.05 0.8 0.75 0.05 16 
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Data generation 

The two-state dynamic glazing was modeled using the EnergyPlus Energy Management 

System (EMS). An EMS program was developed for each window to control independently based 

on the window surface temperature. Since the windows were controlled based on the window 

surface temperature, the sensor used was ‘Surface Outside Face Temperature’ and the actuator 

used was ‘Construction State’. The program was written such that if the sensor detected a value 

greater than the transition temperature, window construction state 1 was adopted, otherwise, 

window construction state 2 was adopted. The EnergyPlus model calling point was ‘Begin 

Timestep Before Predictor,’ which means that the programs were called prior to calculating zone 

loads. To generate the IDF files, the simple glazing system objects were modified for states 1 and 

2, as well as the transition temperature which was a compact schedule object. These were 

Transition 
temperature (°C) 

0 30 30 5 7 
 

 
 

 
Figure 4-3: Fitted polynomial to represent the forbidden zone. The goal is to find the ideal two-
state dynamic glazing that minimizes electricity usage without violating the forbidden zone 
constraint. 
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accessed using the Eppy library [164] in Python. After all the IDF files were written and the 

infeasible configurations eliminated, the simulations were conducted via parallel computing. The 

simulations were batched, and each batch ran on 20 cores with 32 GB RAM memory.  

Results 

Optimal solution and savings 

The optimal solution was determined by identifying the configuration that yielded the 

greatest reduction in the combined annual heating, cooling, lighting, and fan electricity usage 

(Figure 4-4). The facility electricity usage also includes the interior equipment, exterior 

equipment, and water system, which were constant for each climate. For Chicago (cool humid), 

Baltimore (mixed humid), Atlanta (warm humid), Duluth (very cold), and Minneapolis (cold 

humid) optimal configuration required a wide range of SHGC with the minimum SHGC at 0.1 

and maximum at 0.8. However, the optimal configuration for Phoenix (hot dry) called for a 

minimum SHGC of 0.1 and maximum SHGC of only 0.2. Similarly, for Miami, the minimum 

SHGC was 0.1 and the maximum 0.15. All climates preferred a high visible transmittance, with a 

minimum VT of 0.6 and maximum of 0.8 or 0.75. Nevertheless, the LSG for state 1 is 6, 

suggesting that for all climates, decoupling SHGC and VT is important to reduce electricity 

usage. For state 2 in the hotter climates, the LSG remains between 4-5. However, in mixed and 

colder climates, the LSG is 1, which can be achieved with current products. Finally, the optimal 

transition temperature for all climates was 15 C.  
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 The implementation of the optimal dynamic glazing system led to a reduction in 

combined annual heating, cooling, lighting, and fan electricity usage of 17.40%, 9.30%, 15.48%, 

10.37%, 7.16%, 18.81%, and 17.91% for Chicago, Phoenix, Baltimore, Atlanta, Miami, Duluth, 

and Minneapolis, respectively (Figure 4-5). The savings in Phoenix were lower because the 

baseline SHGC was 0.25 and the optimal states’ SHGC was close at 0.1 and 0.2. Likewise, in 

Miami, the savings were also low with the baseline SHGC at 0.23. It also suggests that static 

glazing with high LSG may suffice in these climates. The percentage-wise reduction in each end 

use category varied per climate (Figure 4-5). In Baltimore and Atlanta, the heating electricity 

usage was reduced the greatest, whereas in Chicago, Phoenix, Duluth, and Minneapolis, the 

cooling electricity usage was reduced the most, and in Miami, the fans electricity usage was 

reduced the most. For all climates, the lighting usage was reduced only a small amount (<5%), as 

the baseline model already implemented continuous dimming control and low wattage lighting 

(6.18 W/m2).  

 
Figure 4-4: The optimal two-state dynamic glazing for each climate zone.  
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 To understand the frequency of switching between glazing states, the behavior of one 

south-facing window from the optimal configuration was plotted in Figure 4-6. Figure 4-6 shows 

the window surface temperature (in gray) and the LSG at 10-minute intervals over the year. The 

optimal transition temperature for all climates was 15 C despite different window properties. In 

Chicago and Minneapolis, the window state transitioned most frequently during the shoulder 

months. Baltimore and Atlanta followed a similar pattern, with a larger gap during the summer 

months. On the other hand, Duluth, as a very cold climate, benefited from switching states in the 

summer months. Meanwhile, Phoenix consistently transitioned between states during the winter 

and spring, but not at all during the summer and fall, as the window surface temperature did not 

fall below 15 C. Miami demonstrated very little switching between states.  

 
Figure 4-5: Reduction across end use categories for all cities. The percentage decrease for each 
category is displayed above the corresponding bar.  
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Figure 4-6: Switching behavior for a south-facing window. The left axis plots the LSG and the 
right axis plots the window surface temperature in gray.  
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 Next, to understand if there is a benefit to controlling each window independently, one 

window was plotted for each orientation for one day on or near the autumnal equinox, vernal 

equinox, or winter solstice, depending on which day was near the transition temperature for each 

climate (Figure 4-7). It appears that there is little difference when the transition temperature is 

reached among the orientations, with the exception of a few morning hours where the east and 

south orientations reach the transition temperature before the east and north orientations, as well 

as in the afternoon where the west orientation returns to the transition temperature later. 

 

 
Figure 4-7: Representative days to demonstrate differences across orientations.  
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Tradeoffs and sensitivities 

 In order to understand the importance of selecting the optimal transition temperature, 

particularly for the cold and mixed climates, a one-at-a-time type sensitivity analysis was 

conducted. Since all the cold and mixed climates selected the same dynamic window 

configuration, the data was filtered for this configuration, and then all transition temperatures 

were plotted in Figure 4-8 to quantify the difference in energy savings. It shows that the optimal 

transition temperature is near 15 C, and if the transition temperature is too high, the savings 

become negative, meaning that more energy is consumed than the baseline. This result 

demonstrates that transition temperature is also an important parameter to tune when specifying 

dynamic glazing technology.   

As mentioned previously, there has been several studies demonstrating the tradeoff 

between building energy savings and thermal comfort [146], [147]. To investigate if the optimal 

configuration sacrifices or improves thermal comfort, the facility electricity usage was plotted 

against the ASHRAE 55 simple model thermal comfort that measures the number of hours 

 

 
Figure 4-8: Transition temperature sensitivity analysis for cold and mixed climates.  
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summer or winter clothes are not comfortable (Figure 4-9). Then, the pareto front was determined 

which represents the non-dominated solutions, and it is highlighted in Figure 4-9. The optimal 

configuration for Chicago and Miami sacrifices thermal comfort, but there are other viable 

solutions along the pareto front. The optimal configuration for Phoenix, Baltimore, Atlanta, 

Duluth, and Minneapolis improve thermal comfort.  

 

 

 
Figure 4-9: Tradeoff between thermal comfort and facility electricity usage.  
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Discussion 

Through exhaustive sampling, we identified the optimal two-state dynamic glazing 

system across multiple climates, revealing the ideal ranges for SHGC and VT and relationship 

between them. In climate zone 1 (Miami) and 2 (Phoenix), both SHGC and VT varied very little 

producing small ranges and achieving fewer energy savings. This suggests that a high-

performance static glazing with very high LSG may be the most effective approach in these 

climates, rather than dynamic glazing technologies. However, in order to achieve very high VT 

(0.6) and low SHGC (0.1-0.2), solar light and heat must be decoupled. Such products in 

development include the use of silver nanoroads to achieve luminous transmittance greater than 

50% and blockage of solar radiation by approximately 80% [165] and fluidic windows with 

luminous transmittance greater than 40% and SHGC 0.24-0.26 [166]. 

In the remaining cold and mixed climates (climates 4-7), implementing dynamic glazing 

technology with a high SHGC range and overall high VT would be most effective. The results 

demonstrate that in order to maximize energy savings, it is necessary to manipulate SHGC 

independently of VT, maintaining a relatively light VT while modulating SHGC from very low 

(0.1) to very high (0.8). This allows for minimal HVAC and lighting electricity usage. It appears 

dynamic glazing with decoupled SHGC and VT would be most effective in climate zone 5-7 

which are considered cool and mixed, achieving up to ~19% combined HVAC and lighting 

energy savings. Even though dynamic glazing reduces the cooling load most percentage wise, 

climates with heating and cooling loads yield the highest total energy savings. Across all the 

climates, the optimal transition temperature was 15 C. A previous study on thermochromic 

glazing similarly found that the optimal transition temperature was 25 C across all climates tested 

[167], although the dynamic glazing properties were different.  
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While the results in this work serve as a guide for future product development, there were 

a few limitations. Firstly, the variables could have been discretized further to include more 

options, however, it would have led to significantly more simulations due to the exhaustive 

approach. Additionally, the simulations were only conducted for climates in the US, and future 

work should include more dry climates. Lastly, it has been previously shown that WWR 

influences energy savings [168], therefore it would be worthwhile to test on other building types 

with varied WWR.  

Conclusion 

This work exhaustively tested a two-state dynamic glazing system to determine the 

optimal range for VT and SHGC and ultimately identify which strategies of decoupling are viable 

for different climates. In cold or mixed climates, a dynamic glazing system with a large range in 

SHGC (0.1-0.8) and little variation, but overall high VT, is necessary to achieve maximum 

energy savings, which were over 17% in ASHRAE climate zone 5a. However, in hot climates, 

less variation is needed for SHGC and VT, instead static window products with very high LSG 

are perhaps most appropriate. In both cases, it is clear that decoupling solar heat and light to 

achieve high VT and low SHGC is necessary to maximize energy savings. Additionally, although 

cooling load is most effectively reduced through dynamic glazing, the highest overall savings 

were in mixed or cold climates that also had heating requirements. While such a dynamic glazing 

technology could be achieved in different fashions, this work identifies the optimal ranges to 

target for VT and SHGC switching. 
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Chapter 5 
 

Introducing dynamic façades in early design using constrained optimization 

 This chapter has been published as: 

L. E. Hinkle, J. Wang, and N. C. Brown, “Quantifying potential dynamic façade energy 

savings in early design using constrained optimization,” Building and Environment, vol. 221, 

Aug. 2022, doi: 10.1016/J.BUILDENV.2022.109265. 

Introduction 

Buildings consume around 40% of primary energy around the world [140], which creates 

both a challenge and a set of opportunities for designers. With the introduction of parametric 

design and rapid simulation, computational tools are increasingly leveraged during early design to 

iteratively explore features or configurations that can mitigate or offset building energy loads. 

Researchers have experimented with design approaches ranging from optioneering to automated 

optimization to produce low-energy buildings. While optimization can be implemented with 

varying degrees of user input [13], [42], [169], it can quickly direct designers towards high-

performance solutions within a design space. Within the emerging research field surrounding 

dynamic building envelope materials, including thermochromic- and electrochromic-based 

glazing [144], [153], [170], [171] and PCMs [15], [172], [173], optimization has been used to 

maximize energy savings. Dynamic building façade characteristics open the possibility of 

variation at high-resolution time intervals for external stimuli such as solar radiation, wind 

availability, and heatwaves, as well as long-term changes such as an evolving climate or new 

buildings constructed nearby that can occur years or decades into the lifetime of a building. 
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Existing studies show the performance of dynamic façade materials is highly sensitive to 

orientation, self-shading, and radiant heat exchange in relation to building shape. However, the 

dynamic material properties are often determined after the early-stage architectural design is 

established.  

Due to limitations in simulation tools and the novelty of many dynamic technologies, the 

interplay of geometric and material design decisions and their joint effects on energy performance 

have not been extensively explored using computational tools. Additionally, the steps of the 

traditional building design are often sequential, which can limit opportunity for early integration 

[45], [174], [175]. The traditional building design process for commercial buildings first 

establishes a building form, and then develops the floorplan and façade construction, which can 

separate decisions about geometry and materials [176]. Yet the façade plays a key role in 

regulating the indoor thermal environment, and materials selection heavily influences energy 

performance. It is unlikely that sequentially optimizing a building’s massing and glazing 

placement, and then its floorplan for that set geometry, and finally the façade construction will 

lead to the best overall result, since geometry, program, and materials all affect one another.  

Overall, these divergences necessitate a platform to explore complex building geometries 

and emerging dynamic building envelope materials taking both optical and thermal properties 

into account. In response, this paper first quantifies simulated energy saving across different 

optimization-based building design procedures for dynamic glazing materials via two office 

building case studies in separate climates. A comparison between approaches can evaluate the 

current sequential design process as it applies to dynamic materials and reveal the importance of 

design decisions related to dynamic materials on energy savings. Only glazing was modeled as 

dynamic rather than other opaque façade elements, due to the proliferation of highly glazed 

contemporary office buildings and the current outlook of advanced glazing technologies. 
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Following these analyses, this paper proposes a new building design process to determine the 

optimal material-geometric configuration.  

In summary, this study presents three unique contributions: 

1) it establishes a new optimization-driven framework with parametric modeling and 

simulation methods at the early design stage for taking both geometry and dynamic material 

(thermal and optical) properties into account.  

2) it increases understanding of the relationship between these two categories (geometry 

and material) of design variables towards building energy performance, especially in the context 

of intrinsic dynamic material limitations, while establishing the potential benefits of joint 

exploration; and  

3) it quantitively illustrates the architectural and performance implications of using such 

an approach in early design. It does this for a suburban commercial case study in a heating-

dominated climate and an urban commercial case study in a cooling-dominated climate, 

providing new information for two building types most likely to be designed using computational 

tools.  

Literature review 

Simulation in early design 

Computational tools are currently a vital part of building design, helping to visualize or 

automate many intricate tasks. They are utilized in all phases of design, from design ideation to 

construction documentation. In the AEC industry, one important computational area for early 

design is parametric design, which allows for the generation of numerous design iterations 

without significant manual effort [20], [21], [177]. Parametric design is often implemented 
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through visual coding platforms such as Grasshopper [22] or Dynamo [178] in which users 

develop dynamic design variables to explore combinations of these variables and ultimately 

investigate interrelated design goals. During early design, designers also make assumptions about 

building systems and occupant behavior to simulate and predict how a constructed building will 

perform.  

Creating combinations of the variables forms a “design space”, and mapping these 

designs to metrics that describe their performance, whether related to structure, energy, or 

daylighting, generates an “objective space” [130]. The goal is often to explore the design space 

with reference to the objective space in an effective and systematic manner. It has been shown 

that utilizing design space exploration methods allows designers to develop and select high 

performance design concepts for gradual refinement throughout later stages [21], [179], [180]. 

Since simulation engines across multiple domains are now accessible within a shared 

environment, research towards dynamic façade systems in buildings has taken advantage of these 

software environments used by designers today. However, there is limited existing literature that 

applies parametric design for both geometrically and materially flexible design decisions to 

understand the energy implications of designing with dynamic building materials.  

Quantifying potential dynamic façades energy savings 

Many researchers claim dynamic façades are necessary to achieve nearly net zero 

buildings (nNEB) [181]. Dynamic façades alter their form or function repeatedly and reversibly 

over time in response to environmental conditions or human controls [182]. Dynamic façade 

technologies refer to both micro-scale properties of façade materials, including thermochromic 

glazing [17], memory shape polymers [183], and phase-change materials [15], [173], [184], 

[185], and physical-scale elements such as kinetic shading devices [186], [187]. While a variety 
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of technologies are possible, this paper focuses on the micro-scale, specifically adaptive glazing 

technologies. Existing studies have demonstrated whole building energy savings of using 

dynamic façade technologies range from 8-46% [188], [189], [190], even compared with static 

high-performance envelopes. While electrochromic glazing is perhaps the most mature and 

widely implemented example, material scientists are working in coordination with architectural 

engineers to improve the thermal and optical capabilities of dynamic glazing [188]. Existing 

electrochromic glazing operates from state-to-state, where there is a strict tradeoff between 

visible transmittance (VT) and solar heat gain coefficient (SHGC). Adaptive u-value may be 

achieved through switchable insulation elements [191], thermochromic technologies that change 

emissivity [192], or other future technologies. However, several researchers have explored the 

optimization of adaptive glazing properties to justify further development of the technology.  

Several previous studies have investigated dynamic glazing technologies across multiple 

climates, on different resolutions (e.g., monthly, daily, hourly), and with various control 

strategies. Wang et al. [190] used EnergyPlus EMS to alternate both opaque assemblies and 

window construction and achieved an average of 46% energy savings across multiple climate 

zones. Favoino [17] investigated an inverse performance-oriented approach to optimize visible 

transmittance (VT), g-value, and U-value to minimize primary building energy. Using an office 

reference room with 40% window-to-wall ratio (WWR) and four cardinal orientations tested in 

multiple climates, the study showed high energy savings are achievable by adapting the 

transparent part of the building envelope alone, the largest factor being cooling energy demand. 

Since dynamic façade systems respond to outdoor climatic conditions, results varied per 

orientation and location, with the highest achievable savings 55% for an east-facing zone in 

Rome, Italy. Similarly, Tavares [193] recommended electrochromic glazing for cooling-

dominated climates and found the largest savings on the east and west façades, rather than the 

south. As mentioned previously, these findings suggest dynamic façade materials are highly 
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sensitive to their immediate environment, which is dictated by the geometry of the building. This 

notion introduces the possibility of early design intervention, which is explored throughout this 

study.  

While many researchers have focused on simulating existing or theoretical dynamic 

envelope materials, others have focused on the control algorithms themselves, which have a large 

influence over performance [194]. Hoon Lee [144] investigated various control parameters, 

including outdoor air temperature, room air temperature, solar radiation incident on windows, and 

global horizontal irradiance to develop an algorithm for optimal electrochromic performance. 

Using ASHRAE 90.1 prototype for a medium office building as a reference, the size of the 

cooling equipment was reduced by up to 20%. It was acknowledged additional savings could be 

achieved by integrating controls with air handling units, lighting controls, and shading systems; 

most importantly, the study concluded that future studies should utilize real building data. In 

additional efforts to develop a control strategy, Wang et. al [87] performed a multiple regression 

analysis of window factors based on a large database of existing windows and incorporated the 

model into an EnergyPlus simulation-based optimization study. Though this model was 

developed to optimize on an annual basis (static), it could be used to investigate optimization on a 

daily or monthly resolution, and it is indeed incorporated into the methodology of this paper. As 

in previous studies, the ASHRAE prototype model was assumed and used as a reference in 

comparing energy savings. Although this model acts as the standard, it does not capture the 

potentially complex geometries of contemporary office building architecture. 

Building geometry optimization 

In early design stages, there are opportunities to conduct optimization on building form 

and fenestration configuration [195]. For most climates, the ratio between the external surface of 
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a building and its volume most strongly correlates to energy demand, meaning that simplified 

models can be adequate [196]. However, some researchers have demonstrated exceptions. For 

example, Granaderio et al. [197] used a case study in Lisbon, Portugal to show that the surface 

area to volume building shape coefficient was not strongly correlated to energy demand. 

Similarly, while Depecker et al. [198] found a strong correlation between shape coefficient and 

energy consumption for a case study in Paris, France, there was no clear correlation for the case 

study in Carpentras, France. Further, building geometry optimization results differ depending on 

the formulation of the design space. Fang [40] performed multi-objective optimization on nine 

geometric variables for a small single-story building, reducing Energy Use Index (EUI) by up to 

20% while increasing Useful Daylight Index (UDI) by 39%. Jin and Jeong [24] used a genetic 

algorithm to optimize a free-form building shape, including geometric parameters such as top 

polygon type, top length, and tilt angle, and were able to reduce annual heat gain/loss by up 

60.4% in certain climates. While these case studies exist in specific climates and design spaces, 

they demonstrate that geometric considerations can affect building energy consumption, often in 

complex ways.  

Other researchers have approached this problem by determining the most influential 

geometric characteristics for predicting energy. Samuelson et al. [23] conducted a sensitivity 

analysis on various early design building characteristics, including WWR, glass type (static), 

building rotation, shading, and shape, and determined that, across three major cities, WWR was 

the most sensitive variable, followed by glass type and rotation. There have been several 

additional studies exploring the relationship between building geometry and building energy 

consumption, but the few that have [41] included dynamic characteristics investigated 

prototypical building types, not potentially self-shading or otherwise complex geometry. Thus, it 

is difficult to estimate the effects of dynamic façades, both in terms of energy savings and effects 

on the building design process. 
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Upon reviewing the sensitivity analysis literature above, there is a further opportunity to 

implement optimization techniques instead of exhaustive search methods, since optimization can 

more quickly find the best possible designs within a space and present those for consideration to 

the designer. However, to fully address the relationship between geometric changes under the 

direction of an architect and potential dynamic façade properties, realistic case studies must be 

developed, along with constraints that avoid architecturally infeasible solutions. If incorporating 

dynamic variables and using non-reference building geometry, an optimization procedure can 

begin to quantify the potential savings limits of modifying different variable types.  

Methodology 

The methodology investigates optimization-driven, rapid parametric modeling 

approaches for early building design in practice. As such, it required the creation of parametric 

models with realistic design variables, constraints, and model resolution that would be considered 

at this stage of design. Two case studies with different contexts and climates were modeled and 

analyzed to compare the effects of modifying building geometry and dynamic façade materials on 

building energy consumption, in sequences and combinations allowed by current simulation-

integrated design tools. The procedure for testing the case studies included developing a 

parametric design space in Grasshopper, establishing an analytical daylighting constraint, 

simulating energy performance using EnergyPlus [199] through ClimateStudio [128], using a 

local derivative-free constrained optimization algorithm to find the best performing designs for 

different sequences, and analyzing the data against multiple baselines (Figure 5-1). This section 

first describes the optimization sequences before detailing the case studies themselves. 
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Rather than a design space exploration or “catalog” approach, which generates options 

and presents them for consideration, this paper uses optimization to drive towards the best energy 

performing designs. Obtaining optimization results establishes limits for how much energy could 

potentially be saved using parametric methods, even if designers might use data generated during 

optimization only to inform decisions rather than fully automate them. The data in this paper were 

generated through eight constrained optimization runs and subsequent combinations of variable 

settings, described in Table 5-1. For each case study, this includes an optimization of geometric 

variables (Geo) and dependent dynamic glazing variables based on typical behavior (DG-E). The 

dynamic existing runs (DG-E) relied on a regression relationship between material properties U-

value, SHGC, and VT based on current material databases [87], representing a realistic 

configuration possible with current technologies. 

The optimal settings for each optimization (geometric and glazing) are then combined, 

replicating a sequential process in which the designer first optimizes one category and then 

optimizes the other category (Geo → DG-E and DG-E → Geo). Finally, to estimate the importance 

of each variable type for energy savings directly and compare with the overall optimization 

procedures, a random forest regression model was built to calculate feature importance. Figure 5-

2 summarizes relationships between the different optimization runs and combinations, listing run 

numbers for case study 1; the same sequence is repeated for case study 2.  

 
Figure 5-1: General framework for optimization procedures.  

Table 5-1: Optimization run specifications. 

Run Description Case study Dynamic glazing 
optimization 

Geometry 
optimization 1 2 
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It was hypothesized that such a sequential process may not reach the full savings 

potential, and that simultaneous optimization of both variable types is the most effective strategy. 

However, limitations in current design and simulation tools contain barriers to simultaneous 

optimization of dynamic properties at high resolution—platforms that enable fully flexible 

modeling of geometry and platforms that enable fully flexible modeling of dynamic properties (as 

opposed to existing technologies) are not fully integrated. While future possibilities for 

simultaneous optimization with full flexibility are discussed in later sections, this paper makes 

contributions by first considering both geometry and dynamic properties using available design 

methods and corresponding sequences and timescales.  

1 Geo x   x 
2 DG-E x  x  
3 Geo → DG-E x  x  
4 DG-E → Geo x   x 
5 Geo  x  x 
6 DG-E  x x  
7 Geo → DG-E  x x  
8 DG-E → Geo  x  x 

 

 

 

 
Figure 5-2: Flowchart explaining the constrained optimization runs where the run numbers 
correspond to Table 5-1.  
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Case study selection 

This study focuses on commercial buildings, which are frequently designed with 

computational approaches. Two case study sites were selected to represent common office 

building typologies (Figure 5-3). Commonalities between archetype characterization methods in 

building energy modeling include climate, population classification (urban, suburban, rural), 

fenestration specifications, and building height [200]. Given the density of large office buildings, 

this paper considers urban and suburban cases. Case study 1 was inspired by Lake Trust Credit 

Union Headquarters in central Michigan [201], which is a mid-rise suburban office building with 

ribbon windows. This building features a curved north façade, providing ample opportunity for 

geometric exploration including glazing placement as well as overall orientation and shape in 

plan. Case study 2 was inspired by 1603 Broadway in San Antonio, Texas [202]. This building is 

a high-rise with a curtain wall construction and a more compact footprint for an urban setting, 

which limits some potential geometric interventions. Dimensions, layouts, and model settings 

were approximated using Grasshopper plug-in Elk [203]. Additional information about each case 

study is provided in Table 5-2. 

 

 
Figure 5-3: Case study 1 (left) and 2 (right) location and site.  
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Design space formulation 

 In contrast to previous studies using static benchmark geometry, a design space was 

established containing flexible form, orientation, and fenestration to accurately represent early 

design, in which alternatives are considered but some affinity to an original design concept is 

maintained. This was done to quantify the energy savings potential of architect-designed office 

buildings and understand the gaps in the traditional design process that may prevent widespread 

implementation of dynamic façade materials. Parametric variables are described in Tables 5-3 

and 5-4 and visualized in Figure 5-4. In each design, three fenestration variables were 

extrapolated: sill height, head height, and the percentage of opaque panels. The façades were 

panelized into linear sections, and the percentage of opaque panels dictated how many panels 

were assigned opaque construction versus glazing. Case study 1 also included three control points 

along the curved façade, building rotation, and a variable that transitions between a linear and L-

shaped form (v8). Case study 2 allows for variation of floor area distribution between the tower 

and podium building volumes, adjustments in length-width aspect ratios, and tower location. 

Additionally, because Case study 2 is located in an urban setting with surrounding obstructions, 

Table 5-2: General case study assumptions. 

 Case study 1 Case study 2 

Inspiration building Lake Trust Credit Union 
Headquarters 1603 Broadway 

Location Brighton, Michigan San Antonio, Texas 
Gross building area (m2) 9290 58530 
ASHRAE climate zone 5 2 
Population classification suburban urban 
Window-to-wall ratio 0.4 0.4 
Number of floors 3 15 
Floor-to-floor height (m) 4.6 4.6 
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the entire building can move around on the site (v4, v5). By incorporating the unique aspects of 

each building geometry, such as the curvature and the tower/podium relationship, this study 

attempts to capture the design implications of optimizing contemporary office building 

architecture. 

 

 
Figure 5-4: Variables used to generate the design space, case study 1 (left) and 2 (right).  

Table 5-3: Case study 1 geometric variables. 

 Variable Minimum Maximum Range Original Design 
v1 Curve control point 1* (m) 0.50 0.75 0.25 0.65 
v2 Curve control point 2* (m)  0.50 1.75 1.25 1.15 
v3 Curve control point 3* (m) 0.01 0.49 0.48 0.25 
v4 Site rotation (deg) 0.00 360.00 360.00 0.00 
v5 Window fraction 0.01 0.98 0.97 0.15 
v6 Window head height (m) 2.00 4.37 2.37 3.00 
v7 Windowsill height (m) 0.20 1.00 0.80 0.65 
v8 L-shape (deg) 0.00 25.00 25.00 0.00 

 

*Moves control point with respect to the start of the defined façade curve  

 Table 5-4: Case study 2 geometric variables. 

 Variable Minimum Maximum Range Original Design 
v1 Tower: base building 

volume fraction 0.20 0.60 0.40 0.40 

v2 Base length-width aspect 
ratio 0.50 2.00 1.50 0.85 

v3 Tower length-width aspect 
ratio 0.50 2.00 1.50 0.75 

v4 Site location x 0.00 1.00 1.00 0.50 
v5 Site location y 0.00 1.00 1.00 0.50 
v6 Tower location x 0.25 0.75 0.50 0.50 
v7 Tower location y 0.25 0.75 0.50 0.35 
v8 Windowsill height (m) 0.20 1.00 0.80 0.60 
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Additional variables were established for the dynamic properties of both façades. Glazing 

properties were accessed through ClimateStudio’s window component in Grasshopper. This 

component wraps the simple window component from EnergyPlus, which allows users to create 

custom glazing by specifying VT, SHGC, and U-value. The bounds of the glazing variables were 

established by surveying existing window products in the LBNL glazing database within Climate 

Studio’s glazing component. The bounds for each glazing variable are provided in Table 5-5.  

 Window products that are commercially available abide by physical restrictions between 

VT and SHGC. In general, to decrease SHGC, VT must also decrease, which creates a tradeoff 

between building energy and daylight. Wang et al. [87] built multiple regression models to relate 

four main glazing properties: solar heat gain coefficient (SHGC), visible transmittance (VT), U-

value (U), and emissivity (E). Using a database of existing window products, Equation 1 was 

identified as the most accurate model. As current glazing technologies largely follow this 

relationship, the dynamic glazing optimization included only U-value and VT as variables, and 

SHGC was calculated using Equation 1. Emissivity was held constant at E=0.84 per typical 

window construction. 

𝑆𝐻𝐺𝐶 = 0.023 + 0.44 ∗ 𝑉𝑇 + 1.88 ∗ 𝐸 + 0.002 ∗ 𝑈 − 2.38 ∗ 𝐸2 + 0.28 ∗ 𝑉𝑇 ∗ 𝐸   

(Equation 1) [87]  

v9 Window fraction 0.01 0.98 0.97 0.3 
v10 Window head height (m) 2.00 4.37 2.37 3.5 

 

 

Table 5-5: Glazing variable bounds. 

 Variable Minimum Maximum Range Original Design 
v9/v11 U-value (W/ m2-K) 0.67 5.82 5.15 See Table 6 
v10/v12 VT 0.05 0.91 0.86 See Table 6 
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Performance evaluation 

Energy model simulations were performed in Grasshopper using the energy components 

of ClimateStudio. ClimateStudio links geometry in Rhinoceros to the EnergyPlus simulation 

engine. The formal optimization objective was to minimize the site energy consumption due to 

heating, cooling, and lighting requirements, which represent the aspects of operational energy 

which are affected by geometry and the façade (Equation 2). The objective function was subject 

to the daylighting constraint, which depended on whether the run included geometric 

optimization (left) or dynamic glazing optimization (right) (Equation 2). The daylighting 

constraint is described in following section. The envelope assumptions were determined based on 

ASHRAE 90.1 2019 in the respective climate zones. Consistent with the DOE prototype for large 

office buildings, the case study models were mechanically zoned to have four perimeter zones 

with 4.57 m zone depth and a core zone on each level. All other model settings were also based 

on ASHRAE 2019 standards and are provided in Table 5-6.  

min 𝑓(𝑥) =
∑ (𝐶𝑂𝑃 ×  𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔,𝑖) + (𝑃𝐹1 × 𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑖) + (𝑃𝐹2 × 𝑄𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔,𝑖)

𝑛
𝑖=1

𝐺𝑆𝐹
 

𝑠. 𝑡. 𝑔(𝑥) =  
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(
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𝑉𝑇
∙
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𝜃 )

< 0  𝑜𝑟  
(

0.88 ∙ 𝐷𝐹
𝑊𝑊𝑅

∙
90°

𝜃 ) − 𝑉𝑇𝑎𝑣𝑔

(
0.88 ∙ 𝐷𝐹

𝑊𝑊𝑅
∙

90°
𝜃 )

< 0 

𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 ℎ𝑜𝑢𝑟 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠  (Equation 2) 

Table 5-6: EnergyPlus settings accessed via Climate Studio. 

 Case study 1 Case study 2 Units 
Roof R-value* 5.28 4.40  K-m2/W 
Exterior Wall R-value* 2.01 1.00 K-m2/W 
Floor R-value* 2.57 1.11 K-m2/W 
Window SHGC* 0.38 0.25  
Window U-value* 2.04 2.55 W/ K-m2 
Window VT*** 0.60 0.60  

Schedule* Typical office occupancy, equipment, 
and lighting  

Occupancy* 0.05 p/m2 
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The ClimateStudio components output the idealized heating, cooling, and lighting energy 

in Joules (J). The idealized loads were converted to site energy requirements assuming the system 

efficiencies listed in Table 5-7. To make direct comparisons as building geometry changed, 

building energy consumption was normalized by the gross building area (GSF). 

Optimization method 

To find the best possible results for each case study and sequence, local derivative-free 

constrained optimization was performed on the building geometry and glazing properties. 

Specifically, COBYLA (Constrained Optimization BY Linear Approximations) was implemented 

through the Grasshopper component Radical, available with the Design Space Exploration (DSE) 

plug-in [130]. This algorithm models the objective and constraint functions by linear interpolation 

Equipment* 8.07 W/m2 
Lighting power density* 6.89 W/m2 
Daylighting* Continuous dimming, 500 lux 
Heating set point* 21 (constant setpoint – all on) °C 
Cooling set point* 24 (constant setpoint – all on) °C 

Mechanical ventilation** 
2.5 L/s/person 

0.3 L/s/zone area 
m2 

Heat recovery*** Sensible, 60% recovery effectiveness  
Infiltration** 0.5 ACH 
Peak flow**** 0.12 L/h/person 
Supply temperature*** 60 °C 
Mains temperature*** 10 °C 

 

*ASHRAE 90.1, **ASHRAE 62.1, ***Industry standard, ****LEED spreadsheet 

 

Table 5-7: Secondary energy conversion assumptions. Values from [5].  

 Load Assumption 
PF1 Heating 85% site efficient 
COP Cooling COP = 3 
PF2 Lighting 100% site efficient 
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[204]. A local derivative-free optimization approach led to shorter run times compared to 

evolutionary algorithms, since it constructs successive linear approximations of the objective 

function and constraints via a simplex of n+1 points (in n dimensions) and optimizes these 

approximations in a trust region at each step, leading to fewer evaluations [205]. For a starting 

point, all variables were set to the middle point. The convergence criterion was a 0.01 change in 

objective function.  

While building geometry was optimized on an annual basis as a static characteristic, 

glazing properties were optimized on a monthly resolution. Previous electrochromic glazing 

studies identified monthly simulations as a sufficient starting point to estimate energy savings 

[17]. Once the optimal properties for each month were determined, the monthly building energy 

values were summed to represent annual building energy. Because the beginning of each monthly 

simulation begins a new environment in EnergyPlus, there is a small discrepancy between 

summing monthly values and the result of a single annual simulation. The authors determined this 

error was less than 1% for the case study models. 

Reviewing previous related optimization studies revealed a tendency to reduce the 

glazing area and lower visible transmittance well below industry-accepted values. As the main 

arguments of this paper are based on the typical building design process at the conceptual design 

phase, it seemed inappropriate to deem the optimal solution as one with small windows with low 

visible transmittance. However, accurate daylighting simulations are computationally expensive. 

To counter the algorithm’s tendency to minimize glazing area, a daylighting proxy constraint was 

implemented on window-to-wall ratio (WWR) and VT. The minimum WWR required to meet 

daylighting requirements was calculated using a rule of thumb-based design sequence for sidelit 

spaces by Reinhart and LoVerso [206].  

This basic calculation, intended for early design, is given in Equation 3, which was used 

to formulate the constraints (Equations 4 and 5). The daylight factor (DF) was set to 2% 
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according to recommendations in the IES Handbook [207]. It was assumed there were no 

obstructions in case study 1, therefore the obstruction angle 𝜃 was set to 90°. The obstruction 

angle in case study 2 was dynamically calculated as an output of the parametric model (Figure 5-

5). During geometric optimization, the relative error between the calculated WWR ratio 

(Equation 4) and that of the actual design was entered as a formal constraint. Similarly, the 

relative error between the calculated VT and average VT among all orientations (Equation 5) was 

adopted as a formal constraint. Note that Equation 2 is an approximation and accounts only for 

diffuse daylight contribution. Further analysis would be required for glare considerations in later 

design, but these constraints help ensure realistic glazing requirements as determined by the 

architecture. 

    𝑊𝑊𝑅 >
0.088∙𝐷𝐹

𝑉𝑇
∙
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𝜃
  (Equation 3 [206]) 
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Figure 5-5: Case study 2 obstruction angle diagram. 
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Results 

In this section, the results of each constrained optimization run are first presented and 

analyzed to compare potential energy savings from manipulating different variable types. Then, 

sequentially designing with dynamic façades is evaluated. Finally, relative variable contributions 

are assessed directly.  

Optimal geometry 

The results of the simulated potential energy savings due to geometric optimization only 

are provided in Figure 5-6, offering very little savings (1-2%). The design space was formulated 

to preserve original design intent, which may have limited savings slightly. However, this result 

confirms previous evidence that building form itself is not a good indicator of energy 

consumption [23]. Yet in some cases, 1-2% savings may still be desirable, and the designer must 

weigh architectural implications while deciding if altering the building geometry is worth it. 

Despite the small savings, both cases apparently responded to climate and context. Case study 1, 

located in a suburban setting, took advantage of its ability to fully rotate and oriented the façade 

with the greatest glazing area toward the south. It is likely that this geometric alteration, in 

addition to reducing glazing area within the daylight constraint, had the largest contribution to the 

energy savings. Case study 2 was more geometrically limited to account for the challenges of 

designing in an urban setting. While case study 1 leveraged solar gains to reduce the heating load, 

case study 2 attempted to block them. More square footage was distributed to the podium, rather 

than the tower since the podium receives shade from context. However, during optimization, the 

model moved away from adjacent buildings to satisfy the daylighting constraint.  
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Optimal dynamic glazing properties 

Results for optimization of the dynamic properties are shown in Figure 5-7. A single 

dotted line follows the changing monthly setting for a glazing property on one side of the 

building. Overall savings for each constrained optimization run are provided at the bottom of 

each column.   

 
Figure 5-6: Original vs. optimized building geometry for case study 1 (top) and case study 2 
(bottom).  
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SHGC and VT 

The existing constrained optimization results account for the relationship between SHGC, 

VT, and U-value, which was previously established using existing window product data [87]. 

Case study 1 optimization selected a higher SHGC in the winter months to accept solar gains and 

decrease the heating load and selected a lower SHGC in the summer months to block solar gains 

and decrease the cooling load. The case study 2 optimization instead opted for a lower SHGC the 

majority of the year. The optimal SHGC results are appropriate given case study 1 is located in 

ASHRAE climate zone 5 (heating-dominated), and case study 2 is located in ASHRAE climate 

 
Figure 5-7: Optimal glazing properties on a monthly resolution.  
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zone 2 (cooling-dominated). For case study 1, the south façade is dominated by the SHGC so it 

must be varied, whereas the north façade is constrained by the VT variation, which will be 

discussed in the next section. On the other hand, the east and west façades are varied more for 

case study 2 due to increased surface area. The north façade maintains a high VT, since it can 

afford a higher SHGC, with limited solar radiation.  

Overall, the shapes of the existing SHGC graphs for both case studies mimic their 

respective existing VT graph. This clearly demonstrates the tradeoff between SHGC and VT in 

existing window products: in order to decrease SHGC, VT must also decrease. Due to this 

tradeoff, case study 1 existing was not able to achieve high SHGC values in the winter months. 

To the same effect, case study 2 existing only selected low SHGC in the summer for key façade 

orientations.  

Additional investigation following these results present notable features in VT variations.  

With future technologies, it might be possible to slightly push the bounds towards products with 

both higher VT and SHGC than in the statistical models used above [87]. We experimented with 

giving VT more freedom in the simulation, and we expected that the maximum and constant VT 

would be most beneficial to the energy savings. However, window VT can influence heating and 

cooling loads as well due to the heat gains generated by the electrical lights. Even with standard-

compliant lighting power density (LPD) in the simulations, the high lighting needs in commercial 

buildings may still enlarge the heat gain effects of electrical lights, which has been reported in 

other studies [208]. Future studies can test this relationship more rigorously. 

In this work, in hot climates (case study 2), such heat gains are not beneficial to save heating and 

cooling energy, so the VT value was kept at or near the upper bound (~90%) on the south and 

north façades. Increasing the VT increased daylight levels and consequently reduced the electric 

lighting load. However, VT was not at 100% in the optimal scenario in heating seasons (case 

study 1), which is mainly constrained by the low U-value in the winter. To achieve a higher 
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insulating ability of windows, low-e coatings and/or additional window panes are required, which 

typically reduce the VT value. As mentioned previously, VT is sacrificed in both existing runs to 

achieve desirable SHGC values. This allows for a high light-to-solar gain (LSG) ratio, thus 

demonstrating the effectiveness of the algorithm. 

U-value 

It is widely known that highly insulating windows reduce heating and cooling loads 

consumption, and the results of the dynamic glazing optimization runs generally agree. For case 

study 1 and case study 2, the optimal U-value was the lower bound for nine and seven of twelve 

months, respectively. However, a higher U-value was selected for the summer months in climate 

zone 5 and shoulder months in climate zone 2. During these mild weather periods, strong solar 

heat gains may significantly enhance the building cooling loads. Such increased heat gains can be 

offset by the high U-value of the building window systems because the outdoor temperature 

conditions at most times are desirable or beneficial to the heat release from the interior. For 

window orientations with higher solar heat gains, a higher U-value was selected. Further, if the 

simulations were conducted on an hourly resolution, a lower U-value would be selected during 

the day, and a higher U-value would be selected during the night. While additional studies can 

investigate these phenomena in more detail, the optimization still largely gives intuitive results 

that would be helpful at the early stages of design.  

Although U-value is not strongly correlated to SHGC and VT [87], there are still losses to 

address by manipulating this glazing property: to increase the thermal insulating ability of glazing 

systems, VT and SHGC will be somewhat reduced due to the addition of glazing layers or low-e 

coatings. 
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Since most months optimized to the lower bound, it was difficult to understand if 

modulating the U-value contributed to energy savings. To answer this question, a “high-

performance” static baseline model was used to quantify the savings due to the dynamic aspect 

alone. The high-performance glazing adopted the lower bound of the U-value from the 

optimization and maintained the ASHRAE recommended SHGC value. The high-performance 

static model performed better than the baseline, but the dynamic model exceeded it by 5% and 

3% respectively for case study 1 and case study 2. This suggests adopting dynamic glazing is a 

viable step in reducing building energy consumption. Energy savings comparisons are discussed 

further in the next section. 

Comparing sequential optimization results 

After determining potential savings from each category separately (runs 1, 2, 5, and 6), 

existing dynamic glazing properties were optimized using the optimal geometric configuration 

(runs 3 and 7) and an additional constrained optimization was conducted on the building 

geometry with the existing dynamic glazing optimal settings (runs 4 and 8). Figure 5-8 shows the 

results of these two design procedures. Case study 1 achieved 1% reduction in heating, cooling, 

and lighting load energy from the geometric optimization and up to 19% reduction from the 

dynamic glazing optimization. Similarly, case study 2 achieved 2% reduction in heating, cooling, 

and lighting load energy from the geometric optimization and up to 13% reduction from the 

dynamic glazing optimization.  
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Designers might assume that combining the optimal variable settings from each 

constrained optimization run would yield the highest energy savings. However, because the 

geometric optimization altered the building orientation and form, thus altering many aspects of 

the fenestration, the combination did not lead to greater savings (runs 3 and 7). Compared to the 

existing dynamic glazing optimization, the energy savings values differed by 3% for case study 1. 

The relationship between dynamic glazing and building geometry is also demonstrated by the 

additional sequential optimization run (runs 4 and 8). For these runs, the optimal existing 

dynamic glazing settings were set, and the building geometry was optimized. For case study 1, 

optimizing the building geometry with the optimal existing glazing settings resulted in a loss of 

about 5% savings compared to the dynamic glazing optimization alone. This suggests the 

performance of dynamic glazing is not only dependent on the climate zone, but also the effects of 

window orientation, self-shading, and radiant heat exchange in relation the building shape. A 

direct comparison of the energy use reduction for each procedure is provided in Figure 5-9.  

 
Figure 5-8: Combining optimal settings for sequential optimization. Run numbers correspond 
with Table 5-1.  
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The results show that making geometric adjustments warrants a new set of optimal 

dynamic glazing settings, and vice versa. Therefore, to truly understand the full potential of 

dynamic glazing in architect-designed buildings with atypical geometries, an additional 

optimization run would need to be conducted with all 16 variables and 18 variables for case 

studies 1 and 2, respectively. We predict that building geometry and dynamic façade materials 

must be considered simultaneously to achieve the optimal geometric-material combination for 

minimal energy consumption. Unfortunately, limitations in existing engineering software prevent 

exploration of complex geometry, and limitations in parametric environments prevent the full 

customization of dynamic materials. This suggests an avenue for extensive tool development and 

future research, towards a future in which designers use simulation to specify dynamic materials 

that can adapt to necessary conditions, along with building geometries that afford the most 

flexibility for achieving future energy savings through dynamic properties.  

 

 
Figure 5-9: Energy savings comparison.  
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Considering variable importance directly 

To analyze which individual variables were most influential in predicting building energy 

usage, a random forest regression model was built to first predict energy consumption and then 

calculate feature importance. This secondary analysis complements the findings of the overall 

optimization procedure by attempting to understand variables at a more granular level. To create 

this data model, case study 1 and case study 2 design spaces were sampled at a rate of n=1000 

using the Latin Hypercube Sampling method. The dependent variable was the combined annual 

heating, cooling, and lighting load (converted to secondary energy) divided by the gross square 

footage. The training and validation data were split at a ratio of 0.6. The random forest module 

from scikit learn [135] was implemented and tuned before calculating feature importance, 

reaching an 87.2% accuracy on the case study 1 test set and an 83.6% accuracy on the test set for 

case study 2. Figure 5-10 shows the collective influence of the four main categories of variables: 

percentage of opaque panels variable, other window geometry variables (sill height and head 

height), and window performance (SHGC, VT, and U-value). Both case study 1 and case study 2 

identified the single most important variable as the percentage of opaque panels, which most 

strongly influences WWR. Note that there were three variables affecting fenestration size: 

percentage of opaque panels, sill height, and head height. The collective influence of the three 

variables that together dictate WWR was the most important category in predicting building 

energy usage, followed by window performance.  
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It is noteworthy that control points from case study 1 (v1, v2, v3) are not important 

features based on this model, reinforcing the notion that energy is not frequently “form-giving” 

for design. Likewise, the length: width aspect ratios in case study 2 (v2 and v3) were also deemed 

unimportant. However, because dynamic glazing does not yet outperform opaque construction, 

the amount and configuration of glazing matters most. This furthers the importance of exploring 

building geometry and façade materials in early design, as many geometric decisions are still 

relevant. 

Discussion 

The results demonstrate that a sequential design process is not necessarily fit for dynamic 

façade technologies. Because dynamic façades are sensitive to orientation, self-shading, and 

radiant heat exchange in relation to the building shape, simply applying the optimal values for the 

climate zone can lead to potential missed savings. Dynamic façade technologies introduce a 

unique opportunity to explore building geometry and envelope materials in early design to find 

the optimal geometric-material combination. However, it is currently difficult in conceptual 

design to structure an optimization problem with different resolutions using current design 

tools—building geometry is optimized on an annual basis, and dynamic façades are optimized on 

 
Figure 5-10: Random forest variable importance.  
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a monthly or hourly resolution. At minimum, we conclude that to maximize the potential savings 

of dynamic glazing or dynamic building envelope materials in general, it is important to consider 

building geometry and orientation while developing proper control algorithms. Further, the 

design lessons learned here suggest fundamental changes in the early design process when 

working with dynamic façades and encourage further computational tool development. Given the 

cutting-edge and often open-source nature of digital design tools, it is likely that further 

modifications to existing software could make simultaneous optimization of geometry and 

façades increasingly accessible to designers in practice.  

Furthermore, many previous studies on building energy optimization use rectangular 

buildings or prototypical models. This study provides an example of geometry optimization for 

more expressive architectural designs. While it is possible to achieve 2% energy savings in these 

examples, drastic geometric changes often influence performance in other engineering domains or 

substantially alter the original design intent. For example, the optimal geometric configuration for 

case study 1 required the building to rotate 117° clockwise. While this is a simple parametric 

adjustment, it would have huge implications for how the massing relates to the site. In case study 

2, the shifting of the tower on the podium would likewise have considerable influence on the 

structural performance. Because decisions related to building geometry require consensus 

between architects and other engineering disciplines, implementing these changes may or may 

not be beneficial to the whole project. On the other hand, assuming dynamic envelope materials 

become more commercially available, the high energy savings potential from dynamic glazing 

creates a compelling argument for their importance in design.  

There are several notable limitations to this study. Although a monthly resolution was 

sufficient to demonstrate the geometric-material relationship, future studies at a higher resolution 

(daily or hourly) across multiple climate zones would provide a more robust understanding of 

dynamic façade performance in various design settings. As advanced simulation tools and 
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advanced geometry tools are futher integrated, it will likely be possible in the future to conduct 

this framework in another platform and increase the resolution. Further, a simulation-based 

daylighting constraint could offer a more thorough treatment of daylight compared to the 

analytical constraint applied in this study. Nevertheless, the case studies were modeled with 

current, appropriate design variables and simulation resolution for early design, which reveals 

significant implications for both architecture and building performance.     

Conclusion 

In this study, we investigated the implications of automated sequential optimization while 

designing with dynamic glazing materials. While geometric optimization alone achieved only 2% 

energy savings, dynamic material optimization savings reached up to 19%. However, when 

combined in sequence, around 5% potential energy savings are lost. The paper also determines 

the relative importance of different decision categories in early design. The results are in 

accordance with previous findings or assumptions about the building design process established 

by studying these properties separately, such as the limits of geometric optimization on savings 

compared to façade materials [23] and the relative importance of WWR [209]. However, by using 

repeated constrained optimization runs that consider geometry, façades, and realistic design 

constraints altogether, the data in this paper provides a comprehensive analysis of these 

interrelated building features and how they are manipulated during design. 

This study leaves several areas for further research. More extensive simulation of modern 

building geometries and types requires increasing access for designers and allowing for 

customization of dynamic components in parametric environments. Other issues to address 

include increasing the resolution of the simulation and allowing for continuous transitions, rather 

than state-to-state. Additionally, there are opportunities for multi-disciplinary optimization 
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(MDO) [112], [210], [211] and further studies with multi-objective methodologies, as opposed to 

constrained optimization. Such studies could provide new insight into early design strategies for 

balancing adjacent objectives in conjunction with operational energy use. As daylighting 

simulations become less computationally expensive, including a daylight objective such as spatial 

daylight autonomy (sDA) or a glare metric will also provide more detailed information. Finally, a 

more extensive treatment of simultaneous optimization for flexible geometric variables and 

façade characteristics should be conducted for geometries outside the typical rectilinear 

prototypes, once tools are developed to make this accessible within design software.  

While dynamic façades show considerable promise for improving the sustainability of 

future buildings, several barriers remain to their frequent adoption in architecture, making them a 

topic of ongoing research. As the fundamental material and technological questions surrounding 

dynamic façades are being answered, it is critical that digital design approaches develop to make 

these technologies accessible for design practitioners. This paper hopes to stimulate further 

investigation into how dynamic façade considerations can be better incorporated into advanced 

design approaches, including parametric design and optimization. 
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Chapter 6 
 

Conclusion 

Summary of contributions 

Surrogate model-based workflows 

 The first half of this dissertation focused on addressing two limitations of surrogate 

model-based workflows: accessibility and flexibility. Although the idea of generalizable design 

spaces was initially proposed in [33], new exploration methods were required to make the data 

useful during the early design stages and across multiple projects. In Chapter 2, a novel 

sensitivity analysis named dynamic subset sensitivity analysis was proposed. This method 

provides updated variable importance by interpolating regional surrogate models outputs from a 

tree-like model. The method was demonstrated across three domains, and a set of 

recommendations was developed for future implementation. Looking forward, in order for these 

models to be truly generalizable, climate information should be incorporated into the surrogate 

model. For example, the daylighting analysis developed for Pittsburgh, PA, US, cannot be used in 

Phoenix, AZ, US, since their sky conditions differ. Additionally, further work is required to 

identify and construct all repeated subproblems.  

 While dynamic subset sensitivity analysis works to filter a large generalizable design 

space, improving accessibility, the workflow in Chapter 3 allows for the expansion of a custom 

design space to improve flexibility. Chapter 3 proposes a new workflow that combines a tabular 

transfer learning method with random walks sampling to significantly reduce the number of 

additional samples required to update the surrogate model when new variables are added to the 
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parametric model. Through a unique façade case study, it was shown that far fewer simulations 

are needed to update the surrogate model and achieve adequate performance via this workflow. 

This enables greater flexibility in the early design stages, where changes are frequent. Future 

work is required to establish or adopt techniques for determining when transfer learning is 

effective for early building design models, as well as further testing on case studies from other 

building system domains.  

 To advance surrogate model-based workflows for building façade design, ‘static’ design 

decisions were included as variables in these two studies. However, the next two studies 

investigated ‘dynamic’ design improvements.  

Dynamic façade design 

 The second half of this dissertation focused on dynamic façade design, optimizing 

dynamic glazing on a whole building basis, both as a component using prototypical buildings 

(Chapter 4) and as an integrated design decision in real-world building design scenarios (Chapter 

5). Chapter 4 first finds the optimal two-state dynamic glazing configuration across multiple 

climates to determine the ideal relationship between SHGC and VT via parametric energy 

simulations. The results show that in order to maximize energy savings for cold and mixed 

climates, there must be a large range of SHGC, while modulating VT is less important. However, 

in hot climates, a much smaller range is required for SHGC modulations, and VT modulations 

have a greater impact on energy savings. In both situations, the analyses demonstrate the need to 

decouple solar heat and light to maximize energy savings, either as a static or dynamic window 

technology. It also established the energy savings potential by tuning SHGC and VT alone on a 

ten-minute resolution, which was up to 17.4% in ASHRAE climate zone 5a. This chapter focused 

on dynamic glazing on the component level, using prototypical buildings as case studies to 
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develop direction for future product development. Chapter 5 begins to combine ‘static’ and 

‘dynamic’ design decisions in a constrained optimization workflow using real-world building 

examples.  

 In Chapter 5, a series of constrained optimization workflows were conducted to quantify 

the missed energy savings due to optimizing ‘static’ variables first and then ‘dynamic’ variables 

(in this case, dynamic glazing properties) according to traditional building design processes, and 

vice versa. The results showed that by following a sequential optimization approach, up to 5% of 

energy savings were missed, suggesting that dynamic façade variables should be considered in 

conjunction with ‘static’ variables that affect their control and operation. As new dynamic façade 

systems are developed and implemented, designers should consider adopting an integrated design 

approach. 

Future work 

 The studies in this dissertation lay the foundation for a surrogate model-based workflow 

that incorporates both ‘static’ and ‘dynamic’ façade design decisions. There are two main 

considerations when accomplishing this, 1) whether the dynamic façade technology is already 

established or custom and actively designed during building design, and 2) the dimensionality of 

the design space. If the dynamic façade is already established, for example, electrochromic 

glazing, it can likely be considered in surrogate model-based workflows within the simulation 

itself (e.g., there is an electrochromic glazing object within EnergyPlus). However, if the dynamic 

façade is custom and there are variables related to it, more effort is required to develop a custom 

component. In both cases, but particularly in the latter, there is the potential to produce a very 

high-dimensional design space, which would require significant computational resources.  
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 To mitigate this barrier, it would be best to consider only static design variables that 

significantly affect the control and operation of dynamic façade technologies. For example, the 

WWR has been shown to affect the effectiveness of dynamic glazing [212]. Additionally, other 

geometric variables such as room depth (which would influence illuminance distribution and 

sensor placement) or even categorical variables like space type (which would affect the 

operation) have the potential to interact with dynamic façade variables. However, dynamic 

glazing that is controlled based on solar radiation or outdoor air temperature may not be affected 

by all static design decisions. Further research is required to determine this and adopt appropriate 

dimensionality reduction methods to make this workflow feasible.  

 Another area of future research related to the workflows developed in this dissertation is 

the ability to translate early design surrogate models to later stages of design. It is possible that 

transfer learning techniques could be leveraged to transition the surrogate model from low-

resolution information in early design stages to high resolution in the later stages. This would 

eliminate redundancies throughout the design process and continue to improve the accessibility 

and flexibility of surrogate model-based workflows.  
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