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ABSTRACT

Building facades are an important aspect of the building envelope, regulating the light,
heat, and ventilation exchange from the outdoors to the indoor environment. A well-designed
facade minimizes operational energy while also achieving ideal daylighting conditions and
allowing for ventilation. Maintaining this balance is a challenging design task. With growing
computational resources, it is now possible to simulate these behaviors and develop robust
workflows to estimate the performance of building fagades. However, these methods are not
widespread due to the manual effort required to establish the building model, which is parametric
in nature, and the challenge of analyzing data while exploring design decisions. Additionally,
there is a new category of fagade solutions that are dynamic, adding more complexity to the
design task.

This dissertation first proposes and demonstrates two new early design methods that
improve upon the accessibility and flexibility of surrogate model-based workflows. The latter half
of this dissertation focuses on optimizing dynamic facades, specifically in the glazing category, in
order to begin to integrate dynamic fagades with traditional early design decisions. The first study
addresses the issue of accessibility by proposing a new tree-based surrogate model workflow that
filters a large generalizable design space, making it reusable. Three early design spaces were
constructed, and using this workflow, the large pre-computed dataset can be filtered to provide
specific variable importance and performance estimates across early design changes and multiple
projects.

The second study demonstrates a second workflow that, instead of filtering down a
generalizable design space, allows for the addition of new design variables to a custom
parametric model and corresponding surrogate model with fewer simulations. It accomplishes this

through the application of a tabular transfer learning approach paired with random walks



v
sampling. Through a building fagade case study, it is shown that applying this workflow can
significantly reduce the number of samples required to achieve sufficient surrogate model
performance compared to classical machine learning approaches. This approach reduces the time
between applying early design changes, improving the flexibility of surrogate model-based
workflows. However, considering dynamic fagade elements in the early design process would
improve flexibility further and introduce more creative, sustainable design solutions, which are
the focus of the second half of this dissertation.

The third study shifts to fundamental questions regarding dynamic facade performance,
specifically in dynamic glazing. In this work, parametric energy simulations were conducted to
determine the optimal dynamic glazing properties across multiple climates. This allowed for the
determination of the ideal relationship between these properties, intended to guide future product
development. It also identifies the ideal transition temperature for such technology and offers
guidance on decoupling strategies for each climate zone.

Finally, the fourth study begins to integrate traditional early design decisions considered
in the first two studies with those from the third study. A series of constrained optimization runs
were conducted to demonstrate the consequences of traditional sequential early design process
that considers building geometry somewhat independently of facade materials. In the unique
scenario of dynamic glazing applications, it is beneficial to consider dynamic glazing variables in
the early stages since they are sensitive to orientation, self-shading, and radiant heat exchange
with respect to building form. This work paves the way for a fully integrated design workflow
that accounts for both static and dynamic design decisions, generating more innovative facade

options necessary to meet current and future sustainability goals.
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Chapter 1

Introduction

Motivation

Historically, building fagades regulate light, heat, and ventilation, and also influence the
visual impression of the building. While these are still the primary considerations when designing
a building facade today, there are more advanced design solutions that are available in response to
the need to reduce operational energy. Because building fagades facilitate the light, heat, and
ventilation exchange from the outdoor environment to indoors, they affect the operational energy,
specifically the electricity usage from the heating, cooling, and fans (HVAC system) and lighting
system, which are a substantial portion of total operational energy. These systems are necessary
to meet the demands of modern work and residential environments and to ensure occupant
comfort. This is an urgent issue as the building sector accounted for about 38% of US energy
consumption in 2022 [6], and the building facade has a significant impact on the total operational
energy of a building [7].

However, it has been demonstrated that it is possible to reduce the operational energy by
optimizing the ‘static’ and ‘dynamic’ facade design elements and accounting for their interaction
with the controls of the HVAC and lighting systems. The static design elements include such
aspects as the window-to-wall ratio and window orientation, which should be considered in the
early stages when the design is most flexible [8]. Meanwhile, the dynamic design elements
include decisions like shading devices and changeable materials. The ability of designers to
engage with both of these decision categories has been enhanced through the availability of

computational power, which will be extensively explored in this dissertation.



Increased computational power has led to the integration of simulation software into
building design workflows. It has allowed for not only the evaluation of different design
configurations, but also the ability to explore the effects of design variables and balance
performance objectives with other design criteria [9]. There are many approaches that range from
design catalogs [10], [11] to surrogate model-based workflows [12] to formal optimization [13],
[14], with varying levels of designer intervention. Surrogate model-based workflows involve
generating simulation data and training a statistical or machine learning model to replace the
expensive simulation during exploration. This workflow is particularly approachable with
available open-source packages, and an example is demonstrated in Figure 1-1. Regardless, these
approaches enable informed, data-driven design decisions for static and dynamic fagade design
elements, although they are not typically designed at the same stage. However, they require
significant computational and manual effort to establish a parametric model and generate data, so
they are not yet widely accessible. Furthermore, when adjustments are required, as is often the
case in early building design, the process must be repeated, thus making them not very flexible

from a designer’s perspective.

Construct %
parametric

x Explore
model X, O
X

design space

Generate Train

simulated B surrogate
data : : model

Figure 1-1: An example of a surrogate model-based workflow.



Within the dynamic facade design element category, increased computational power has
also facilitated the development and specification of new facade materials, particularly
changeable materials. Changeable facade materials adjust their properties over time due to
passive or active control, including opaque materials like dynamic insulation [15], as well as
transparent materials such as dynamic windows [16]. Given the prevalence of glazing in modern
architecture, this dissertation will focus on the impacts of dynamic windows. Dynamic windows
have been demonstrated to reduce operational energy by more than 50% in terms of primary
energy [17] depending on the baseline used in the calculation, the orientation, and the climate.
However, it is hypothesized that further savings can be achieved by decoupling the solar heat and
light properties [18], but these limits have not yet been established. On the specification side,
dynamic windows are often implemented after the building fagade geometry has been
determined, which leaves little flexibility in the specification and tuning of the technology. It is
unclear how to best integrate dynamic window considerations into the early design process and
how much additional savings could be achieved.

As building electricity usage increases to offset the effects of the climate crisis [19],
targeting building fagade improvements is crucial to reach sustainability goals within the building
sector. The work in this dissertation proposes improvements to the design of ‘static’ and
‘dynamic’ facade elements that balance the performance with practical design criteria. While
considering both facade types, it also engages with two different computational methodologies:

surrogate-model based design approaches, and automated optimization.



Background

Simulation-driven early stage building facade design

Building fagade design requires the integration of experts in mechanical systems and
daylighting, in addition to structural engineering and construction, which are beyond the scope of
this dissertation. Often, there is a tradeoff between achieving ideal daylighting conditions and
energy consumption. Simulation software allows designers to estimate the performance of facade
design options and compare them. In collaboration with an architect, the team seeks to identify a
design that balances technical objectives such as spatial daylight autonomy and energy use
intensity (EUI) with other design criteria [8]. The use of data-driven decision-making can make a
significant impact on sustainability goals, particularly in the early stages when the design is most
flexible. However, over the past decade, designers have evolved from using simulation software
solely to evaluate designs to using it to discover new design directions through parametric design
[20]. Rather than manually constructing a few design options and running simulations for them,
the model is constructed parametrically, and a sampling technique or optimization algorithm
facilitates the generation of a dataset, which can be used to consider many more options than

previously achievable.

Parametric design spaces and design space exploration

A performance-based parametric design space consists of at least one variable and one
objective [21]. Once the variables and their bounds are determined by the designer, the parametric
model is typically constructed in a visual programming environment such as Grasshopper [22].
Parametric models for building facades might include variables related to WWR [23], overall

form [24], or shading devices [25]. Then, the design space is sampled through one of many



methods, including traditional sampling methods like grid-sampling and Latin Hypercube
sampling (LHS), performance-based sampling [26], or formal optimization procedures where data
is generated as a byproduct. Since simulation software is integrated into such environments,
simulations are often conducted directly within it to generate a dataset. While this is a powerful
workflow for facade design, managing and navigating large datasets in practice can be
challenging.

In response, researchers have proposed various design space exploration techniques. The
most directed is perhaps an optimization-based approach, although interactive optimization
workflows [27] allow for designer interventions. However, optimization-based approaches may
not be appropriate for the earliest stages of design. More open-ended approaches include design
catalogs [28], performance maps [29], [30], and various performance metrics [31], which equip
designers with performance information without pointing to a single solution. The basis for many
of these methods is a surrogate model. With the availability of open source statistical and
machine learning packages, surrogate model-based workflows are becoming increasingly

accessible to designers.

Surrogate model-based workflows

A surrogate model is a statistical or machine learning model that estimates the objective
function. Surrogate modeling has been widely implemented in other engineering fields, but it was
only recently introduced to the building design domain as a means to reduce reliance on
expensive simulations and make inferences [12], [32]. Within a parametric design context, once a
parametric dataset is generated, a surrogate model can be trained to estimate the objective,
effectively replacing simulation software as the design space is explored. Additionally, many

surrogate models provide supplementary metrics like variable importance, enriching the design
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process further. Yet, the process of constructing a parametric model, generating data, and training
an appropriate surrogate model is time-consuming in practice, and in the earliest stages when the
design is still changing, it is likely for some or all of these steps to be repeated.

One approach to alleviate this issue is to construct a series of generalizable parametric
models that can be filtered down to apply to many projects and through early design changes
[33], [34]. An example of such design spaces might include sidelit room daylighting analysis.
Another approach to make surrogate models more flexible is to allow for the addition of new
variables to an existing parametric model and corresponding surrogate model without starting
from scratch. Both approaches require the application of new methods. The goal is to make
surrogate model-based workflows more accessible and flexible for designing sustainable building

fagades.

Dynamic facades

While the previous sections primarily address static fagcade design decisions, increased
computational power has also affected the development and specification of dynamic fagade
systems. Dynamic fagades are mechanisms that change their properties in response to
environmental or indoor conditions, often for the purpose of reducing the HVAC and lighting
electricity usage. Although the term ‘dynamic fagades’ does include mechanical devices like
exterior shading structures [35], this dissertation will specifically focus on material-level dynamic
facades designed for windows. Windows were selected as the focus because they are a thermal
vulnerability in the fagade. Additionally, they are of great interest to architects, especially
considering the proliferation of glazed facades in modern architecture.

Dynamic window technologies include both passive technologies like thermochromic

glazing [36], which responds to heat from incident radiation, and active technologies such as



electrochromic glazing [16], which transitions based on the applied voltage. Some technologies
have been demonstrated to reduce operation energy by 5-57% [17]. However, for many of these
technologies, solar and visible light transmission are coupled, and it is likely that decoupling them
would yield higher savings in certain climates. Furthermore, technologies that are controlled
based on incident solar radiation are highly sensitive to orientation, which is a ‘static’ design
decision typically determined before the implementation of the technology. Since some ‘static’
decisions affect dynamic glazing performance, integrating dynamic glazing design considerations

into the early stages may also lead to greater energy savings.

Optimization of dynamic glazing systems

The optical and thermal behavior of dynamic glazing systems can be studied through a
standalone software suite consisting of WINDOW, Optics, and EnergyPlus. The impact on whole
building energy usage is calculated through EnergyPlus. Within the EnergyPlus Energy
Management System (EMS), different construction states made up of simple glazing materials
can be modulated to mimic the behavior of dynamic glazing materials. An EMS program contains
a program that incorporates various sensors and actuators. For dynamic glazing programs, the
sensors are usually outdoor air temperature, incident radiation, or window surface temperature,
depending on the control scheme. The actuators are the window constructions, and the program
specifies the construction state switching control logic. Paired with Python or MATLAB
programming environments, optimization algorithms can be implemented to determine the
optimal configurations. This workflow allows us to test different technologies and control
strategies, quantify energy savings, and ultimately inform product development [37].

Yet, since simplified versions have been integrated into visual programming software, as

well as daylighting software, these technologies can be simulated for real-world buildings that
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feature complex geometries. Many dynamic glazing technologies are affected by orientation, self-
shading, and radiant heat exchange in relation to building form. Therefore, rather than following
the traditional design process that establishes the geometry and then specifies materials, it may be

beneficial for energy savings to consider them simultaneously.

Research objectives and questions

There are two primary objectives in this dissertation. The first objective is to apply
statistical and machine learning methods to support the development of surrogate model-based
workflows that are more responsive during the early stages of building facade design. This
objective will focus on ‘static’ design decisions and is represented as the left column in Figure 1-
2. To achieve this objective, two pathways are proposed. The first pathway involves filtering
down a large generalizable design space, such as a daylit room on a fagade, and providing an
updated surrogate model with variable importance metrics in real-time. This will enable
accessible surrogate model-based workflows across different projects. Alternatively, the second
pathway allows for the addition of new variables to an existing parametric model and
corresponding surrogate model without starting from scratch. The goal of this approach is to
improve the flexibility of surrogate model-based workflows and account for early design changes.
The following questions are proposed:

1. How can a generalizable parametric design spaces be filtered down to provide useful
variable information for specific problems?

2. How might we enable flexible surrogate modeling for parametric design spaces to
support early building design?

The second objective relates to dynamic fagade systems and is to establish the limits of

dynamic glazing energy savings potential when integrated into whole building design scenarios.



The objective is shown as the right column in Figure 1-2. First, we need to understand if
uncoupling solar and visible light is necessary to achieve greater energy savings and in which
climates. The next need is to demonstrate the consequences of considering dynamic glazing
properties at different stages in the design process and their effect on energy savings to develop
design recommendations.

3. What is the ideal range of dynamic glazing properties across different climates?

4. Is atraditional, sequential design process appropriate for optimal dynamic glazing

performance?

Facade design decision category

Static Dynamic

Component

Scale
S
tnung,/
J

Building

rerer e \
Somee
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Figure 1-2: Facade decision categories at different scales.

This research agenda improves upon the facade design process, considering both ‘static’ and

‘dynamic’ design decisions.

Organization of dissertation

This dissertation is organized based on the type of design decision, the scale of design
task, and the type of technique used (Figure 1-3). Chapters 1 and 2 consider ‘static’ facade design

elements, beginning with generalizable design spaces at the room scale in Chapter 1, graduating
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to custom design spaces at the whole building scale in Chapter 2. Both chapters leverage machine
learning techniques to accomplish the research objectives. Chapter 3 begins again at the
component scale, optimizing dynamic glazing, and then Chapter 4 uses real-world buildings as
case studies to understand the different design decision categories through constrained
optimization. Finally, the conclusion summarizes all research contributions and suggests future

research directions.

Introduction

Ch 1: Dynamic subset sensitivity Ch 3: Understanding the effects
analysis for generalizable @ @ of dynamic glazing
design spaces properties

Ch 2: Expanding performance- Ch 4: Introducing dynamic
based parametric design facades in early design
spaces through TL using constrained opt

Machine Learning
Optimization

Conclusion

Figure 1-3: Organization of dissertation topics.
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Chapter 2

Dynamic subset sensitivity analysis for generalizable design spaces

This chapter has been published as:
L. E. Hinkle, G. Pavlak, L. Curtis, and N. C. Brown, “Implementing dynamic subset
sensitivity analysis for early design datasets,” Automation in Construction, vol. 158, 2024, doi:

10.1016/j.autcon.2023.105198.

Introduction

With the integration of simulation engines into visual programming environments,
parametric modeling techniques can be easily paired with simulation data to provide performance
feedback during design. This approach allows designers to quickly evaluate many potential
design configurations. In practice, it is not feasible to consider every design in the parametric
design space, but several methods have been developed to navigate the design space efficiently.
While some methods directly point the designer towards optimal performance, including
automated optimization [38]-[40] and interactive optimization [13], [27], [41], [42] workflows,
others intend to more gently guide the designer towards better performing designs, offering
increased flexibility and opportunities for designer preference expression. Such methods include
design catalogs [10], [43], [44], surrogate-model-based workflows that enable live manipulation
[32], [34], and performance maps [29]. The latter methods can be most useful in the earliest
stages when many aspects of the design are flexible [45], there are competing objectives that need
to be synthesized [46], or designers have mixed quantitative and qualitative criteria [47]. In

particular, surrogate modeling can be used to facilitate discussions as changes are made [12] and
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is accessible with modern statistical tools and libraries. However, building custom parametric
models and running simulations to generate data is time-consuming, and further adjustments may
be required throughout early design, requiring more effort to update the surrogate model. Design
practice moves quickly, and tools get left behind if they do not provide salient information at
crucial points when designers really need them. Even with newly available tools, there remains a
need for responsive and accessible performance feedback from parametric design spaces.

In this vein, designers might prefer to use a general parametric model to determine which
design aspects or variables tend to influence the performance before modifying the design outside
a restrictive parametric framework. The general parametric model must contain many variables
and configurations but have the ability to be filtered down to provide useful feedback on a
specific design problem. As the design space is filtered to reflect project-specific criteria,
designers can quickly discover which variables are more likely to improve performance metrics
and where “good” settings tend to be for their problem. The process of determining which
variables matter is a type of sensitivity analysis. Sensitivity analysis has been used for a range of
building design problems, from model calibration [48] to setting up a design optimization
problem [49]. While there are many existing sensitivity analysis methods appropriate for building
design problems, few are suited for real-time analysis. As the general parametric model is
filtered, existing sensitivity analysis methods require re-running the analysis each time, which is
disruptive to the design process.

One approach to allow for real-time sensitivity analysis is to split the general parametric
model design space into many regional models to be accessed during filtering. Existing regional
sensitivity analysis methods have been used to develop useful qualitative feedback but
encountered low accuracy in certain regions and lacked intuitive visualizations for designers [31].
Depending on the sampling technique, many regions or subsets may lack data necessary to

describe the behavior [50]. For the general parametric model to be truly flexible, it must have the



13

ability to be filtered on any design criteria and provide sensitivity analysis of sufficient accuracy
for early design. With regional models, the designer can gain intuition on how variable behavior
changes in each region prior to filtering to inform the initial design. However, a new method is
required to provide this information along with real-time subset sensitivity analysis.

In response, this paper extends and rigorously investigates a new method called dynamic
subset sensitivity analysis [51]. The method divides a general design space into many models
using a decision-tree-like training process and provides real-time variable sensitivity through
interpolation techniques. This paper considers the generalizability of the method by applying it to
three building design problems of different domains and scales. A comparison of the three
datasets shows when the method has enough data to be successful, along which what issues may
arise when trying to apply the method to future parametric datasets. By presenting the analyses
side-by-side, it also demonstrates how a designer might engage with multiple objectives
simultaneously or iteratively as they move between decision variables and scales. Through this
work, modifications to algorithm are proposed to communicate variable behavior more accurately
in certain regions of the design space, particularly when the response is nonlinear. The value of
the method is evaluated for each building design problem. Finally, a set of recommendations are
developed to implement the method on future datasets. The goal is to promote adoption of

performance-driven parametric tools in early design, leading to more sustainable buildings.

Literature Review

Rapid feedback in early design

Parametric modeling and design space exploration are increasingly used in early design.

Researchers have been attempting to improve such design approaches through design catalogs
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[43], interactive and automated explorations [13], [52], and visualization techniques [30]. One of
the main considerations in the development of these methods is computational time, specifically
during active design exploration. General research into computation tasks shows that an
interruption of more than 400ms seconds reduces productivity [53]. Building upon this finding,
[54] established the roll theory, which states that “when an individual has access to the data
necessary to perform the creative task at hand, when concentration is not broken by distractions,
and when the individual has developed a consistent method of organizing the data, then ideas and
solutions will suggest more ideas and solutions to successive steps of the creative process, in a
rapid and orderly flow.” Roll theory is related to the concept of creative flow [55], which has
been considered while creating tools for rapid design assessment [56]. To achieve this flow,
researchers have identified and tested surrogate models that approximate performance during
design exploration and reduce lag [57]. Designers can explore the design space and receive rapid
feedback, facilitating team discussions [58] and guiding sustainable design decisions.

While non-parametric, black-box surrogate models often achieve the highest accuracy,
many researchers have implemented interpretable surrogate models with sufficient accuracy [59],
[60]. Localized models such as decision-trees and piecewise models can provide granular variable
sensitivity in addition to performance feedback, making them doubly advantageous if they can
reach acceptable accuracy. The linear model tree utilized in this paper is an extension of the
decision-tree and has been implemented in other domains such as computational fluid mechanics
[61], data mining [62], and human computer interaction research [63]. The proposed method
leverages the local models yielded from the linear model tree to provide real-time sensitivity

analysis in early building design scenarios.
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Reusable design spaces

Despite their potential benefits, many recent interactive design methods have not been
widely implemented in practice due to practical considerations [64]. Building a model from
scratch and running simulations is time-consuming depending on the response variable. Many
researchers have shifted focus to understanding when and how building data and prediction
models can be transferred from decision to decision and project to project. The idea of reusable
surrogate models for engineering design is introduced in [65]. It proposes graph-based surrogate
models for trusses and demonstrates its effectiveness in new design spaces via transfer learning.
Several transfer learning approaches have also been proposed for building energy prediction and
control [66], [67]. However, these approaches are in the early stages of development and are not
yet widely used in industry. Rather than transferring data or models, another approach that is
appropriate for early building design is to create a general design space that can be customized or
adapted for many design problems [33], [34]. While it takes domain expertise to define a design
space that balances specificity with generalizability to many projects, many design firms work
repeatedly in certain geographic areas or building sectors, making this possibility feasible [68].
There are also domain-specific ways to reuse machine learning (ML) data for predicting the
performance of new designs. For example, by hybridizing data modeling with physics-based
modeling and/or using ML to predict the behavior of a single unit that can be aggregated to
rapidly predict the performance of a full structure [69]. However, this paper focuses on the use of

parametric datasets in early design.
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Sensitivity analysis for building design problems

Sensitivity analysis has been widely implemented in building design problems to inform
the decision-making process. It has been incorporated into model calibration procedures [48],
formulating an optimization problem [49], and decision-making in design or operation [70], [71].
However, it has not yet been applied to generalizable parametric design datasets. Sensitivity
analysis allocates the uncertainty in the response among the predictor variables and can be used to
gauge variable importance, as well as understand variable interactions [72]. It is particularly
useful in the early design stages when the designer is trying to discover which variables tend to
influence the response and by how much, whether the question is related to daylight, structures,
energy, acoustics, or another response variable. This process can help identify critical decisions,
as well as more flexible decisions, from the onset.

There are many established methods available to perform sensitivity analysis, both with
and without an accompanying regression model. Most of the widely used standalone methods are
one-at-a-time (OAT), which have local and global variations that quantify the effect of each
variable individually. OAT sensitivity analysis has been used to address a wide range of building
design problems, ranging from improving building life cycle assessment [73] to thermal comfort
[74]. Many researchers have also leveraged regression models (or surrogate models) to produce
variable importance. Specifically, standardized linear regression model coefficients [75] and
variable selection procedures such as stepwise regression [76] have been implemented. The main
drawback of linear regression is the linearity condition, which may not be satisfied depending on
the data. However, some machine learning models have their own importance metrics, such as
decision trees. For example, [77] utilized the decision tree importance metric to identify which
variables are most important in predicting building energy consumption patterns. Yet, the output

of many machine learning models is not directly interpretable or useful to designers [78]. Finally,
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variance-based approaches have also been used to quantify variable importance for building
systems [79]. These methods tend to achieve higher accuracy but require a large number of
samples.

The methods described above compute variable importance over the entire variable
domain. As the design space is refined or filtered during early design, the initial sensitivity
analysis may no longer be accurate, so the calculations must be re-run from scratch. One
researcher approached this issue by retraining the underlying regression model on the restricted
variable domain [80]. However, depending on how the domain was restricted, predictions were
not consistently accurate. Another study leveraged Monte Carlo filtering and Regional Sensitivity
Analysis (RSA) [31], but also encountered low accuracy in certain regions, and did not use
detailed building performance simulation software to generate data, leading to further potential
inaccuracies. Nevertheless, filtering is a valuable design space exploration technique as reusable

parametric models emerge as a new research area.

Data visualization for design space exploration

Making sensitivity analysis valuable for early design also requires careful consideration
of how a user might engage with the data. Building design problems are often high dimensional
and thus difficult to visualize. One of the most common methods in building design is parallel
and radial coordinate plots [81]. Some researchers have proposed performance maps [29] or self-
organizing maps [82], [83] to preserve multivariate information and convey it to designers.
Others have argued that reducing the number of variables through principal component analysis
or latent space [26] can guide designers towards high-performing designs more quickly.
Regardless, the manner in which the results are communicated is equally important as the

underlying model [28].
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Research gaps and contributions

In summary, to make use of general models in early design, a new method is required that
quickly and accurately updates variable importance as the design space is refined and yields
results that are easily interpretable. Although dynamic subset sensitivity analysis was initially
proposed in [51] on a single dataset, the method has not yet been rigorously tested. There are
many data model issues that may arise when feeding in certain datasets, such as discontinuous
spaces, collinearity, a lack of significance for certain regions, or even just not having enough data
to make a quality assessment of importance. In this paper, we investigate the generalizability of
dynamic subset sensitivity analysis by testing it on three datasets from different domains and
scales. The three datasets are based on spatial daylight autonomy of a sidelit room, energy use
intensity of a residential retrofit, and embodied carbon of a tall timber structure. These design
problems were selected because their datasets differ in domain and scale, but also data type,
linearity, number of variables, and number of samples. They are also similar in structure to
common datasets being implemented in ML-based design tools by leading firms in AEC [68], to
the extent that these structures are commonly known. Based on the implementation for these three
datasets, we are able to derive a set of recommendations for the method to be implemented on

future datasets and propose improvements to the algorithm.

Methodology

The overall procedure is described in Figure 2-1. First, three general design problems
were identified, and corresponding datasets were generated or obtained, and then processed in
preparation for training. The linear model trees were then trained, in addition to a simple linear

regression model and traditional decision tree model for comparison. Next, the average variable
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sensitivity was calculated in small bins to understand where in the variable domain certain
variables tended to have a large influence on the response while accounting for other variables in
the model. Finally, the dynamic subset sensitivity analysis was demonstrated through a few
design scenarios. The quality of the leaf node models was evaluated through coefficient p-values,
and modifications to the dynamic subset sensitivity analysis algorithm were implemented. Lastly,

a set of recommendations was proposed for applying this method to future datasets.

Identify design problem Generate or obtain Train Compute Interpolate
+ parameterize performance data ~—> linear model ree+ ——— average variable —> leaves as design space
P comparable models sensitivity in small bins is filtered

o <)

Figure 2-1: Overall methodology with three datasets.

Problem selection

One of the goals of the proposed method was to customize a large, general dataset
throughout the early design stage and across many building projects. To this purpose, three
datasets were generated or selected to represent general design problems from the domains of

daylighting, energy, and structure (Figure 2-2).
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Objective 1: Spatial Daylight Autonomy Objective 2: Energy Use Intensity Objective 3: Embodied Carbon
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Figure 2-2: A visualization of the geometry for the daylight, energy, and structure design spaces.

Data generation and processing

Three datasets were generated or obtained from the three design spaces described in the
previous section. The following subsections provide details on data generation and processing for

each dataset, and a summary of the variables and responses are provided in Table 2-1.

Table 2-1: Datasets summary.

Dataset Variables Response

Daylight Room depth, sill height, head height, Spatial Daylight
orientation, context distance, context height, Autonomy (%)
number of panels, panel width, wall thickness

Operational energy | Cooling COP, R-value, U-value Energy Use Intensity

(kWh/m?)

Structures Building width, building length, story height, | Embodied Carbon
setback, notch X position, notch X size, notch | (kgCO2)
Y size

Daylighting model and dataset

A sidelit room model was developed to represent the domain of daylighting. In building

practice in the United States, daylight simulations are often required to obtain LEED v4 Daylight
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credits [84]. Therefore, this model could be useful across many spaces and projects. It is assumed
that a designer would consult the model repeatedly for a single project as they establish the layout
of rooms and the fagade. First, the daylit room was modeled parametrically in Grasshopper to
include nine variables: room depth, sill height, head height, orientation, context distance, context
height, number of panels, panel width, and wall thickness (Figure 2-2). All room surfaces accord
with LM-83 guidelines [85]. The windows were typical double-pane low-e with 61% visible
transmittance and incorporated an automated shade. The shade fabric had 7.2% visible
transmittance and 6.6% permeability in accordance with LM-83. Room width and room height
were 9m and 3m, respectively, although they could be incorporated as variables in the future. The
variable bounds are provided in Table 2-2. They were set to provide enough flexibility for
repeated use, but still abide by modern construction standards.

Spatial daylight autonomy (sDA) at 300 lux was the response variable, or “objective” in
design space terms, generated using ClimateStudio in Grasshopper. To ensure enough samples for
the regression tree, 12,500 points were sampled using Latin Hypercube sampling. The
simulations were conducted in Pittsburgh, PA, USA, which is often overcast and at a 40.44° N
latitude. For future datasets, sky condition and latitude could be included to make the design
space more flexible, but these parameters were set to demonstrate the method. While designers
might in different cases design to the typical, worst-case, or average annual behavior, these
assumptions would be applicable when making a reusable dataset for buildings across a given
city. The sensors were spaced at 1m and the workplane was positioned 0.762m above floor finish.
Within the path-tracing settings, the number of rays emitted for each sensor at each pass was 500.
The Radiance parameters considered up to 6 ambient bounces before discarding a ray. The
dataset was split 80/20 for training and testing, and all predictor variables were scaled from 0-1 to

ensure importance was not influenced by the variables’ scale.
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Table 2-2: Variables in spatial daylight autonomy dataset.

Variable Minimum Maximum
Room depth (m) 6.00 15.00
Sill height (m) 0.10 1.10
Head height (m) 0.10 1.10
Orientation (deg from south) | 0.00 360.00
Context distance (m) 3.00 15.00
Context height (m) 0.00 15.00
Number of panels 1 20
Panel width (relative) 0.10 0.90
Wall thickness (m) 0.20 1.00
Energy model and dataset

The second dataset was based on a residential energy retrofit scenario. This dataset
represents a reusable model for within a city when testing upgrades on similar residential stock.
However, the model would have to be customized based on the feasible ranges of variables to
consider in each individual case. An EnergyPlus model was constructed to represent a residential
home considering upgrades on the cooling COP, exterior wall insulation, and window
construction. Specifically, cooling COP, R-value, and U-value were included as variables (Figure
2-2). The generic home was 331.23 m? and assumed to contain a DX cooling coil and an electric
heating coil. The settings for each variable are provided in Table 2-3. U-value was not controlled
directly, as it typically varies with other window properties. Instead, 19 window constructions
were selected and used to generate data. The U-value and solar heat gain coefficient (SHGC)
were extracted during data processing to represent the window constructions in the dataset.
However, because U-value and solar heat gain were highly correlated, only U-value was
incorporated into the linear model tree to prevent collinearity issues (Figure 2-7). Previous studies
have also shown a correlation between U-value and SHGC among existing window constructions

[86], [87]. The R-values were converted to conductivity in the exterior wall material in
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EnergyPlus, and the cooling COP was accessed directly in EnergyPlus. All 6,859 permutations
were simulated in Altoona, Pennsylvania, USA. The total site energy per conditioned building
area was the response. Although grid sampling is not recommended for the proposed method (see
limitations section), simulating 19 settings for each variable yielded high-resolution data
sufficient for sensitivity analysis. The dataset was split 80/20 for training and testing, and all

predictor variables were scaled from 0-1.

Table 2-3: Variable options for energy dataset.

Variable Options

Cooling 1.2,14,1.6,18,2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.84.0,4.2,4.4, 4.6,
CoP 4.8

R-value (ft*- | 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48
F-h/BTU)

U-value 0.785,0.992, 1.062, 1.265, 1.525, 1.624, 1.704, 1.71, 1.765, 1.772, 2.143,
(W/m*-K) 2.255,2.556,2.72,2.765,3.122, 3.835, 4.513, 5.894

Structural model and dataset

The third dataset used to demonstrate the proposed method was an embodied carbon
dataset initially generated by Hens et al. [88] and used to explore performance prediction for
interactive parametric design in Zargar & Brown [89]. The dataset includes a wide variety of
geometric configurations for a mass timber building with a post-beam-panel gravity system and a
lateral system incorporating linear elements. For each geometry, a custom sizer based on timber
design codes sizes each element based on applicable structural loads and fire protection criteria.
Embodied carbon coefficients are then used to convert the building elements into carbon
emissions equivalent values, assuming no carbon storage. The embodied carbon contributions of
the elements are then summed to predict the overall embodied carbon of the entire structural

system. Hens et al. [88] and Hens et al. [90] describe the methodology used to generate the
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dataset in more detail. In this paper, we incorporated the independent and several partially
dependent variables, including building width, building length, story height, setback, notch x
position, notch x size, and notch y size into the linear model tree (Figure 2-2). The response was
embodied carbon. Because notch x position, notch x size, notch y size, and setback depend on the
more fundamental variables of width and length, the linear correlations were calculated to
diagnose collinearity issues before training the linear model tree (Fig. 2-7). However, all Pearson
correlation coefficients were within the acceptable range and thus incorporated into the model.
Outliers were eliminated by the interquartile range (IQR) method, which resulted in 940 data
points. The variable bounds are provided in Table 2-4. The dataset was split 80/20 for training

and testing, and all predictor variables were scaled from 0-1.

Table 2-4: Variables in embodied carbon dataset.

Variable Minimum Maximum
Building width (normalized) | 0.0005 0.9995
Building length (normalized) | 0.0005 0.9995
Story height (m) 3.048 4.876
Setback (relative) 0.005 9.995
Notch X position (relative) 0.0005 0.9995
Notch X size (relative) 0.0005 0.9995
Notch Y size (relative) 0.00045 0.89955

Training the linear model tree

After preparing the datasets, the first step is to create regression trees that can eventually
be used for sensitivity analysis and filtering. Figure 3 is a representation of a one-dimensional
linear model tree, but a similar procedure follows for high dimensional spaces. The trees are built

through recursive binary splitting, where predictor X; is split at cutpoint s such that splitting the

predictor space into the regions {X | X; < s} and {X | X; = S} leads to the greatest reduction in the
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residual sum of squares (RSS). Splitting stops based on some threshold and each terminal node,
or leaf (Figure 2-3), contains a model that applies in the j-th region only. For traditional

regression trees, the estimated response 37R]. is the mean response for the training observations in

the j-th region. However, this is often an over-simplification of the true relationships. To address
this issue, linear model trees use a linear model to estimate the response. By the end of the
training process, each leaf node contains its own linear model.

RSS = 2], Sier,(vi = r,)*, (Equation 1)

In Equation 1, the outer summation accounts for each variable and the inner summation
accounts for all points in the specified region. While previous studies have achieved high
accuracy with nonparametric models, it is often not possible to make inferences and inform the
building design process. It was hypothesized that linear model trees could achieve sufficient
accuracy for early design while allowing for dynamic interpretations about variable sensitivity
because of how they are constructed. The correctness of this hypothesis is tested by comparing

the results across the varying datasets.

) ‘ ’ At
T

Figure 2-3: Linear model tree with leaf nodes in orange, after [1].
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The termination criteria for a linear model tree are the maximum depth and minimum
number of samples per leaf, which have to be tuned for a given dataset. For all models, the
maximum depth was set to 8 and minimum number of samples per leaf was set to 30. If there are
30 samples, the distribution is considered normal based on the Central Limit Theorem from
statistics. The model achieved sufficient accuracy at this depth and enforcing at least 30 points
per leaf ensured the model was valid. The maximum depth of 8 was selected to control training
time while ensuring enough leaf nodes for interpolation. Once the linear model tree was built, the

leaves were used to compute average sensitivity in small bins.

Calculating average sensitivity over the variable domain in a multi-dimensional design
space

The next step is to determine how coefficients of individual leaves should be combined to
indicate local variable importance. To get a sense of sensitivity over the entire variables’ domain,

the average linear model coefficient was computed in small bins. The domain of each variable X;

is partitioned into 100 bins of equal length. The m-th bin is denoted by b,,, = [TT_OI,%), for

1 < m < 100. The k-th leaf is denoted by £, and the number of samples in €}, is n;. Then, the
domain of each variable X; is constrained by ¢; , < X < d;j in leaf £;. Let 8; ; be the original
coefficient of X; , in £). Then the weighted coefficient restricted to bin bj ., is shown by 9j‘k‘m
and is given by the following formula:

O, km = O * =+ 1(p — value ;; < 0.05), (Equation 2)

n(bjm)
where n(bjlm) is the number of samples in the leaves that overlap b; , for X; and I(q) =

{1ifq = True

) which is normally denoted as an indicator function. This dictates that if the
0if q = False

hypothesis test that determines if the variable linearly affects the response fails, the coefficient is
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forced to zero to prevent inaccuracies in the averaging equations. Additionally, there must be at
least one sample per bin. Figure 2-4 is a simple example to show the parts of the weighted

coefficient equation.

n(bm)= 10 10 19 9 14 5

Figure 2-4: Weighting process in the averaging scheme.

Finally, the weighted coefficient for variable X; in by, is given by:
éj,m =Yk éj,k,m (Equation 3)
The result is a local sensitivity analysis over the entire domain that can be used to
understand changes in the response. Next, the model leaves are used to update variable

importance for user-defined intervals.

Real-time variable sensitivity via leaf model interpretation

While many machine learning methods can return importance metrics, they are
often established through training, requiring retraining if the variables and their corresponding
bounds are modified. By precomputing linear models in regions determined by the regression
tree, the model coefficients can be interpolated to quickly return variable information without full
model retraining. If the user-defined intervals correspond exactly to a pre-defined region, variable
sensitivity is provided by that model. Otherwise, the model coefficients must be interpolated
based on the “agreement” between the user-defined intervals and the variable domains in the

leaves. The agreement of the user restricted intervals with the constraints of €}, is given by:
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1

P
Wy, = (Z§=1 Wk,jp) , (Equation 4)
where wy ; is the amount of “agreement” of X; in £} and p > 1 is a hyperparameter. Let
[aj, bj] be the user-defined interval on X;. Then, the amount of agreement wy ; is defined as:

_ min{dj_k,b]-}—max{c]-,k,aj}
Whj =

b, (Equation 5)

where a, b, ¢, and d are non-negative values. Without loss of generality, assume
W1, Wy, ..., W, are the top t agreements. The total weight wy, is a function of top t agreements

normalized by their sum:

__ Wk
=
Zk:1 Wk

Wy (Equation 6)

Finally, variable importance was computed using the following formula:
0=3!_,wy abs(0;, © I(8y)), (Equation 7)

where 0y, is the linear model coefficients at £, abs(-) is element-wise absolute value of
a vector, J(-) is element-wise I(+) of a vector, and © is element-wise multiplication of vectors.
The procedure is presented in Algorithm 1. Note that p and t are hyperparameters that can be
tuned based on the dataset. For all datasets, p and t were set to 3 and 10, respectively. For higher
values of p, the contrast between the top t agreements becomes sharper. As t approaches the total
number of leaves, the impact of individual leaves gets lost due to normalization. On the other
hand, if t = 1, only one leaf is used, which might not be an accurate model of the user-defined
region. Once the intervals are specified, individual predictions are made with the linear model
tree itself. Single designs only fall into one leaf since the regions do not overlap. The prediction is
made by the linear model in the appropriate leaf. Once this model has been established, a metric
for overall variable importance and visualizations of how performance changes with variable

setting modifications can both be returned to a designer without the added time of model
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retraining. The results section first presents the dataset itself before showing these potential

visualizations for the designer.

Ensuring model significance

The algorithm mentioned above proposed an improvement to eliminate the possibility of
poor linear models in the leaf nodes affecting the interpolation calculations. While this issue did
not necessarily arise for the daylight dataset in [91], it is an important consideration, as some
building datasets contain highly nonlinear variables that cannot be handled during the training
process due to a lack of data. The improvement consists of checking the coefficient p-values in
each leaf node linear model, and if the p-value is greater than the desired level of significance (in
this paper, 5%), the coefficient is forced to zero in the interpolation calculations (Step 10 in
Algorithm 1). If the p-value is low, we can reject the null hypothesis, which is that the coefficient
is equal to zero, therefore there is evidence that the coefficient is statistically different than zero.
However, if the p-value is high, there is no evidence that the coefficient is different from zero and
we cannot reject the null hypothesis. In this case, the coefficient is forced to zero instead of
ignored because ignoring it would eliminate information from the region and bias the
interpolation towards the other models that may or may not fully cover the region. The

pseudocode for the updated interpolation algorithm is provided below in Algorithm 1.
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Algorithm 1: Leaf node interpolation
Input: Linear model tree, user-defined intervals, and hyperparameters p and t
For every leaf #,:
For every variable j:
| Compute amount of agreement wj, ; according to Eqn 5
Compute agreement W, per Eqn 4
Pick top t leaves with the highest agreement ;.. Let these leaves be £, ..., €.
Compute the normalized total weight w;, according to Eqn 6
Initialize updated coefficients 8 by a vector of zeros // dimension is the number of variables
Iterate through all top t leaves (Chosen in Step 5) and do the following:
Let current leaf have index k' € .-, t}
0 Update the coefficient in ak' by setting all the coefficients that have a p-value > 0.05 to
zero // this describes 8, © J(6,) in Eqn 7
11 Take the absolute value of the updated coefficients and multiply by the total weight w;,
12 Replace @ by 8 + 8, // output of Step 11
13 Return

— O 00 IO\ L A W — O

Results

This section first presents linear model tree characteristics for each dataset before the
results of the linear model tree interpolation procedures (Table 2-5). The daylight dataset
produced the highest number of leaf nodes, followed by energy and structures. The training
criteria enforced 30 samples in each leaf node and maximum depth of 8, but the number of
samples per leaf dictated the number of leaves for the energy and structures datasets. For the
daylight dataset, the number of panels and wall thickness were split the most, followed by
orientation and panel width. Although orientation was split frequently, the results in the following
sections show that the slopes were small; therefore, orientation was not important in most regions.
Similarly, the cooling COP and R-value were split a comparable number of times, but the cooling
COP has large slopes in some regions, and the R-value does not. Finally, building width was split
the most for the structures dataset, followed by building length and notch Y size, which largely

corresponds with the importance results in the following sections.



Table 2-5: Linear model tree characteristics.
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Panel width: 18
Context height: 13
Room depth: 12
Context distance: 5
Head height: 5

Sill height: 3

Daylight Energy Structures
Number of leaf nodes | 144 58 18
Number of splits Number of panels: 32 | U-value: 30 Building width: 7
Wall thickness: 29 Cooling COP: 14 Building length: 3
Orientation: 26 R-value: 13 Notch Y size: 3

Story height: 1
Setback: 1

Notch X position: 1
Notch X size: 1

Figure 2-5 shows a set of designs across the design space to present the range of possible

designs for each domain. The daylight design options face south and assume no context building.

Notably, the objectives for the daylight and structural design spaces have a visual component,

while the energy objective, EUI, does not.

sDA: 0.86
Daylight
EUL: 63.77
Energy~ o
LI
EC: 1.35 E+6
Structure

sDA: 0.79 sDA: 0.51

EUI: 74.47 EUI: 80.96
.? B?
L pnes " pEe

EC: 1.53 E+6 EC:1.71 E+6

sDA: 0.51 sDA: 0.39

EUI- 88.29 EUI: 96.76
!? !?
2 L

EC: 1.89 E+6 EC: 2.07 £+6

|

L |

Figure 2-5: Range of possible design for each dataset.

sDA: 0.18 sDA: 0.02

EUI: 104.32 EUI: 113.48
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EC. 225 E+0 EC: 243 E+6




32

Assessing model fit

The linear model tree fit was then assessed prior to performing calculations with the leaf
node model coefficients to ensure the base model was reliable. For each data point in the testing
dataset, the appropriate linear model makes the prediction as determined by the linear model tree.
Two parametric models were trained to provide a baseline for model performance: a multiple
linear regression model and a decision tree model. Figure 2-6 shows the actual (simulated)
response versus the predicted response for each model for the test data. For the spatial daylight
autonomy dataset, the multiple linear regression model and decision tree make accurate
predictions for low sDA values. However, Figure 2-6 shows that the linear model tree captures
some nonlinear behavior in the model and makes accurate predictions, even for higher values of
sDA

The linear regression model for EUI predictions mostly falls within +/- 5 kWh/m?
absolute error, which is sufficient for early building design. However, given the nature of the
grid-sampled data, the decision tree predicts the response with even higher accuracy. The linear
model tree improves upon the decision tree by fitting a linear model in each region instead of
simply averaging the data. This results in a very accurate model with high interpretability.
However, the linear regression model does not fit the embodied carbon data as well due to non-
linear behaviors in the model and a smaller amount of data overall [88]. While the decision tree
model is able to make predictions with about equal accuracy throughout the design space, it is
still not accurate enough for early building design. The linear model tree is the most accurate of
the three models. It is important to acknowledge that other non-parametric machine learning
models such as neural networks could achieve higher accuracy, as in [89], [92] but such models
would pose difficulty for interpretation. The information extracted from interpretable models is

valuable to the design process and central to this paper.
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Figure 2-6: Model fit comparison for spatial daylight autonomy (top), energy use intensity
(middle), and embodied carbon (bottom).

In addition to assessing the linear model tree fit, the linear correlations among the
variables were checked to ensure collinearity issues are avoided. Figure 2-7 shows correlation
coefficients for each dataset, including in at least one instance where a variable was eliminated
due to collinearity. While the variables in the spatial daylight autonomy are not highly correlated,
the window SHGC and window U-value are highly correlated. As previously mentioned, the U-
value was kept in the model over the SHGC because it had a stronger linear relationship to the
EUL Finally, although the embodied carbon variables have minor correlations, the absolute value

of the Pearson correlation coefficients all fall below 0.065, which is reasonable for similar
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building design problems in the literature [93]. Therefore, the linear regression assumption that

all variables are independent is valid.
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Figure 2-7: Pearson correlation coefficients for spatial daylight autonomy (left), energy use
intensity (middle) and embodied carbon (right).

Sensitivity over the variable domain in a multi-dimensional design space

Once the linear model trees were trained, the average coefficients for each variable were
plotted over their domains (Figure 2-8). This figure shows where the relationship to the response
changes, considering all the variables in the model and all possible design directions. Although
many of the variables in the spatial daylight autonomy dataset have the same slope throughout,
room depth and panel width show noteworthy changes. On average, panel width does not
significantly affect sDA until it reaches ~0.5 relative width of the panel. Designers can freely
choose within 0.10-0.50 without affecting sDA. Similarly, room depth greatly influences sDA
until it reaches about 8.7m; at this point, increasing the room depth does not change sDA. This is
potentially useful information while designing floorplans. In order to achieve a high sDA, other

variables must be adjusted if the room depth is beyond 8.7m.
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For the energy retrofit model, only low values of cooling COP have a strong effect on the
EUI. The simulations were conducted in ASHRAE climate Zone 5, which is heating dominated,
so increasing the cooling COP beyond ~2.2 does not result in a significantly different EUI given
other variables in the model. Adding insulation to the exterior walls (R-value variable) has a
consistent though relatively smaller effect on the EUI throughout its domain. Similar to cooling
COP, low U-values strongly affect EUI until about 3 W/m?-K. The EUI includes HVAC, lighting,
plug, and miscellaneous loads, and at some point, the HVAC portion is minimized. This explains
the diminishing returns of the incremental insulation and COP. The diminishing returns of the
incremental insulation and COP. The results in Figure 2-8 only consider the coefficient
magnitude, but they follow domain knowledge—installing new windows with a low U-value
would improve the EUI in a heating-dominated climate. Furthermore, the results in this section
specify at what point increasing the variable has a negligible effect. In future sections, the
coefficient sign is considered in order to better describe the relationships. Nevertheless, Figure 2-
8 provides a high-level overview of changes in importance to EUI over the variable domain,
assuming the other variables are present in the model.

In the embodied carbon dataset, building width is the strongest predictor, especially for
very narrow building widths. For very small widths, the lateral system requires extremely large
sections to carry the lateral forces from the broad building side, so building width significantly
affects overall performance response in this region. Building length is the second-most important
predictor; however, the slope is relatively consistent throughout. Among the independent and
partially dependent variables considered in [88], building width and building length had the
strongest linear relationships (Figure 13 in [88]), which supports the results in this paper. The
embodied carbon design space contains more non-linearities than spatial daylight autonomy and
EUI, and although the linear model tree can capture non-linear behavior through its piece-wise

nature, it is restricted based on the training requirements for the number of data points per leaf
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node. Nevertheless, this result provides designers with a set of ranges to design within without

significantly affecting the embodied carbon.
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Figure 2-8: Average sensitivity in small bins for spatial daylight autonomy (left), EUI (middle),

and embodied carbon (right).

To understand the relationships on a more granular level, Figure 2-9 shows the raw

output of the procedure described in the calculating average sensitivity over the variable domain

in a multi-dimensional design space section. The gray line represents the linear model coefficient

from the overall linear regression model (shown in Fig. 2-6) for comparison. While Figure 2-8

shows the absolute value or “importance,” Figure 2-9 shows the sign of the coefficient, which

indicates the variables’ tendency to increase or decrease the response in each bin or region of the
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domain. Comparing the two models shows similar but more detailed trends for important
variables such as panel width and room depth for daylight and building width for structure. These
results can also be interpreted in light of the overall model characteristics. For example, the R-
value variable in the energy dataset was split the fewest number of times, so the coefficient was
relatively consistent throughout the design space and very similar to the overall linear regression
model. The U-value variable shows discontinuous behavior near 2 W/m?-K because many of
window constructions in the dataset had a U-value around this value but differing SHGC and
other properties. While the behavior in this region is unstable, it indicates to the designer that
there are many potential solutions in this region. This is a result of the real-world, discretely

sampled energy variables, as well as the elimination of SHGC due to high correlation.
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Figure 2-9: Average coefficient in small bins for spatial daylight autonomy (top), EUI (middle),
and embodied carbon (bottom).

These results so far explain how the models were trained, how accurate they are for
prediction, and how the linear model coefficients can guide designers on an expected
performance response in a certain region of the design space. The following results demonstrate

how these models can be aggregated to provide variable importance as designers change the
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possible ranges of decisions without full model retraining, since relative importance can change

significantly in different regions of the design space.

Dynamic subset sensitivity analysis

Real-time variable importance

Data-driven parametric design often involves setting variable domains, generating data,
and fitting a prediction model. As the design is refined, variable domains are narrowed until one
value is ultimately selected. Previously, the prediction model needed to be re-trained on the
subset of data to provide accurate variable importance and support decisions. We instead achieve
subset sensitivity analysis by precomputing linear regression models in regions determined by the
tree and then interpolating between regions to estimate the variable importance in the subset. Two
examples per design problem are shown in Figure 2-10, which includes a slider for each variable,
the user-defined intervals, and variable importance, presenting a potential visualization for a
design tool. It is important to note that a series of visualizations presented to the designer should
show both (1) which variables deserve attention (by virtue of producing a large effect on
performance, regardless of direction) and (2) sow such variables tend to affect performance along
their domains (where the variable makes the performance trend up or down). There is some loss
of precision due to the averaging in the simpler graphics, but they are intended for rapid feedback
for designers that can be explored in more detail if desired. To give an indication of speed,
updating the variable importance from design scenario 1 to design scenario 2 for the daylight
design space takes 0.003 seconds on a desktop computer with 32 GB RAM and an Intel Core i7
2.6 GHz processor. The speed also depends on the size of the tree, but this example uses the

largest tree among the three datasets. If the method were fully incorporated into an interactive
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tool, possibly as a plug-in to parametric design software, the rendering speed would depend on

the software and would likely be more substantial than the importance calculation.
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Figure 2-10: Dynamic subset sensitivity analysis for 2 design scenarios per dataset.

Figure 2-10 shows two sets of design criteria imposed on each design space. Design
scenario 1 for spatial daylight autonomy restricts room depth, and thus it is very sensitive in this
region. With different restrictions on panel width and number of panels in design scenario 2,
room depth is the most important variable. In the second design scenario, with different ranges
for room depth, panel width becomes the most important variable. Similar changes are seen in the
different design scenarios for energy, as Cooling COP or U-value can become the most important
in different regions. In the structure dataset, building width is almost always the most important
variable, but in certain scenarios other variables can approach its magnitude of importance to

influencing embodied carbon.
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Significance in leaf nodes

Although all variables are assigned a coefficient during the linear model fitting step of the
linear model tree training procedure, it is possible that some of the variables do not significantly
affect the response in certain regions of the design space. To determine if a variable affects the
response, a hypothesis test is conducted where the null hypothesis is that the coefficient is equal
to zero, which implies that there is no effect. If the p-value is less than 0.05 (5% level of
significance), the null hypothesis is rejected and the relationship between the variable and the
response is deemed statistically significant. Once the linear model tree was fitted, the coefficients
with p-values higher than 0.05 were reset to zero from the calculations described in the
methodology. This avoids biasing the results towards coefficients that are not statistically
significant.

Figure 2-11 illustrates how consideration of significance affects each model in this paper,
as the blurred heatmap cells contain coefficients that were not statistically significant. The blurred
heatmap cells have a translucent mask to represent that the coefficient p-value was higher than
0.05. The y-axis is leaf node model index and the x-axis is variables; the color represents the
linear model coefficient. It was important to take coefficient p-values into account to eliminate
the possibility of a high magnitude coefficient that is not statistically significant greatly
influencing the calculations. For example, in the structure dataset leaf node model 30 has a high
magnitude coefficient for the width variable, but it is not statistically significant, so it must be
excluded to avoid inaccurately representing the behavior in this region of the domain. The
coefficients of notch X position, notch X size, and notch Y size were not statistically significant
for many leaf node models and were thus ignored. This is consistent with the initial variable
assessment in [88], which does not show a clear relationship to embodied carbon throughout the

domain. In contrast, the energy dataset variables have a statistically significant relationship to the
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response in all regions of the design space. Piece-wise linear relationships were observed in the
initial data exploration, and all three variables are well-known retrofit strategies, leading to this
expected result. Finally, the daylight dataset shows a mix of significant and non-significant leaf

nodes, which seems to be most present for orientation, context distance, and context height.

-1.0 -0.5 0.0 05 -0 0 -1 0 1 2 3
Coefficient Coefficient Coefficient Tes

Figure 2-11: Linear model coefficients for each variable in each leaf node model, with a
translucent mask on coefficients that do not have a statistically significant p-value.

Discussion: recommendations for future datasets

Comparing the application of dynamic subset sensitivity analysis to several general
datasets in the architectural engineering domain reveals several benefits and potential pitfalls.
Resulting discussion points are included as recommendations for what could be changed or
customized for use on future datasets:

e Sampling technique: Choose as continuous of a sampling technique as possible to ensure
sufficient coverage of the design space for interpolation. If a grid-sampling technique was

used to generate the data, it is possible that the variables are split at each option during the
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training process. At this point, the variables would no longer be treated as variables in the leaf
node models. Therefore, if grid-sampling is used to generate the data, it is important to make
sure the grid is fine enough. It is recommended to use Latin Hypercube sampling or similar to
avoid this problem.

P-values in leaf nodes: It is important to check the variable p-values in the leaf nodes, and if
the p-values fall below the desired level of significance, the corresponding coefficient should
be forced to zero in order to accurately represent variable importance.

Hyperparameters: The hyperparameters determine the sensitivity of the interpolation
calculations. Increasing the power p hyperparameter puts more emphasis on the leaf nodes
with a higher agreement. For a design setting, it is recommended to keep the power low to
proportionally account for the behavior in the leaf nodes, even those with a lower agreement.
When choosing the appropriate number of leaf nodes in the calculations, hyperparameter ¢, it
is important to consider the size of the dataset. The maximum t value is the total number of
leaf nodes in the linear model tree, which depends on the size of the dataset and the training
requirements.

Leaf node model fit: It is recommended to calculate the R? values for the leaf node models
and to assign the leaf node models with a low R? value a lower weight in the interpolation
calculations. These models could also be useful information to the designer, as these regions
are highly nonlinear and could not be handled by the linear model tree. The trends or
tradeoffs in these regions may differ from the surrounding regions.

Traditional decision tree importance metric: The typical decision tree has an importance
metric based on how much the error metric was reduced by each split. However, this only
indicates which variables are highly nonlinear, not which variables have the steepest slopes or

highest importance. The metrics in this paper were developed to capture this.
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o Normalization among leaf node models: The coefficients from all the leaf node models
could be normalized, but then the method would not provide “how much” the variables
matter, just a relative ranking of variable importance.

e Number of samples: In order to produce reliable linear models in each node, the algorithm
enforces a specified number of data points per leaf node. In this paper, it was assumed the
number of data points required per leaf node was 30 data points. The structural dataset
contained 7 variables and 940 data points, which resulted in only eighteen leaf node models.
During the interpolation process described in the real-time variable sensitivity via leaf model
interpretation section, there were only 18 models to consider, versus the spatial daylight

autonomy dataset which had 144 leaf node models to consider.

As demonstrated in the assessing model fit section, it is also necessary to reduce
collinearity among variables. Collinearity can be assessed by calculating the Pearson correlation
coefficients. For example, the energy dataset in this paper had two variables, SHGC and U-Value,
that were highly correlated, and it was necessary to eliminate one to prevent model instability
issues. Because U-value showed a stronger linear relationship to the response EUI, SHGC was
eliminated. Variable selection can be conducted in many other ways including stepwise selection,
forward selection, and backward elimination. It is ultimately up to the designer to determine

which variables to include in the model.

Conclusion

Summary of contributions

This work presents a method for dynamic subset sensitivity analysis that includes a new

procedure for ensuring coefficient significance. It then demonstrates the method’s generalizability
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on three building design problems. This method updates variable importance in real-time as
design criteria emerge, aiding discussion for new design directions. It also determines where in
the variables’ domain it tends to influence the response, which provides ranges to design within

and supports design freedom.

Limitations and future work

Some aspects of this specific approach depend on having linear model coefficients. The
model tree could include quadratic or cubic terms in the linear regression models to produce local
polynomial models. Additionally, it is possible to implement the model tree with other node
model types such as neural networks or SVM. However, linear models were selected in this
method to utilize the coefficients to develop importance metrics, as well as to reduce training
time. To implement the model tree with other model types, additional importance metrics must be
developed, especially for nonparametric models. It is likely the training time would also increase.
Another limitation for the daylight and energy datasets is using a single location. In future
iterations, latitude and cloud condition could be included as variables to make it more flexible.
Finally, it could be argued that the size of the embodied carbon dataset was not large enough for a
model tree given the nonlinear nature of many of the variables, compared to energy [94].
However, this example was chosen to demonstrate the method on an existing dataset that was not
developed directly for this method. Future general datasets in the domain of structures should be

based on a larger dataset.
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Concluding remarks

In this work, we investigate a new method called dynamic subset sensitivity analysis
across three domains. Many factors on the dataset affect the effectiveness of the method,
specifically the sampling technique and the number of samples. Considering the quality of the
leaf node models through the coefficient p-value and R? improve the reliability of the interpolated
variable importance. In the future, this work could be combined with recent work on training
design agents to learn generalizable design behavior [95]. If implemented more widely, methods
such as dynamic subset sensitivity analysis could track with design practice to make the greatest
impact without requiring computation specialists to generate a custom parametric model and
simulation data for each project.

This research is supported in part by the National Science Foundation under Grant
#2033332. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the NSF.
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Chapter 3

Expanding performance-based parametric design spaces through transfer
learning

This chapter is under review for publication in an academic journal.

Introduction

Combining parametric models with simulation software enables designers to generate
datasets that can be used to train surrogate models. Surrogate models can then replace the
simulations in a design workflow by approximating the objective function, alleviating simulation
wait time and facilitating exploration within the parametric design space. These faster models can
serve as a valuable tool in collaborative decision-making by offering live performance feedback
[32], [33]. However, despite their benefits, surrogate model workflows may unintentionally
restrict creativity. This limitation arises from the substantial effort needed to adjust the parametric
model and generate new data, potentially leading to premature design fixation [96], [97]. In the
early stages of design, where many aspects are still flexible and decisions greatly influence
building performance [45], this restriction becomes more apparent. Adding more variables to the
initial parametric model complicates the updating of its corresponding surrogate model,
necessitating the regeneration of simulated datasets with current tools--essentially starting from
scratch. This wastes resources, as the source (initial design space) and target (updated design
space) tasks are highly related.

Ideally, the initial dataset could be leveraged to reduce the number of new simulations

with both original and new variables required to update the surrogate model. Recent
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developments in machine learning have shown instances where a model for a specific task can
inform the model of a related task with limited data. This learning approach is known as transfer
learning (TL) [98]. However, most existing TL methods are intended for image or text data,
rather than the tabular data typical of many design space datasets. Tabular data is highly
structured, which makes it more challenging to identify variables and patterns that generalize
across tasks. This challenge is particularly pertinent in fields like medicine, where tabular datasets
are common, and generating datasets is both difficult and expensive. These datasets often lack
consistency, with variations in the inclusion of variables or columns.

To address this limitation in existing TL approaches, a recent paper has introduced a
relaxed-table TL method [4]. In our paper, we apply their method in the domain of parametric
design to utilize an initial dataset, which only contains a subset of variables present in the updated
dataset, to update the surrogate model. While this tabular tokenization-embedding method
originated in another field, introducing it within early parametric building design introduces new
research questions. In typical transfer learning scenarios, the challenge is that the target dataset is
limited, and the objective is to leverage a dataset from the same domain or a similar task from a
different domain to improve the model. However, in our case, we generate a target dataset with
the knowledge that we already have a similar dataset (the original dataset). Thus, we must test the
applicability of the method overall while determining an effective approach to sample from the
new design space.

The basic idea is visualized in Fig. 3-1. Our initial dataset is created with a parametric
model of a building fagade’s geometry, while the updated dataset includes additional variables for
geometric flexibility, which might have been implemented by an architect or engineer after
exploring the results of the initial model. The surrogate model is used for classification to predict

whether designs will be “good”, “fine”, or “poor” based on simulated Annual Sun Exposure
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(ASE). By incorporating the initial dataset through tokenization and embedding, fewer

simulations from the updated dataset are required to adequately update the surrogate model.
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Figure 3-1: A summary of the performance-driven parametric design scenario.

As we consider the potential benefits of this new TL approach, we compare it to classical
machine learning methods for two reasons. First, we acknowledge that the interpretability of
some classical methods can be valuable to the design process. Interpretable machine learning
methods provide designers with information on variable importance and interactions that can be
used to as an initial step in decision-making [99]. Given that the new method reduces
interpretability, we also evaluate the performance of classical machine learning methods trained
on limited data from the updated design space.

Second, we recognize that the data sampling technique can affect model performance and
is of critical importance in situations with very few samples. To try to ensure class representation
in the limited dataset from the updated design space, we introduce a random walks sampling
technique that efficiently incorporates data from the updated design space and we thoroughly test
the hyperparameters, providing valuable guidance for future applications.

Throughout this paper, we thus assess the effectiveness of TL in this specific early design

setting paired with a random walk sampling technique and compare it to classical machine
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learning models. We use both random walks sampling, which is suited for very small sample
sizes, as well as Latin Hypercube sampling, which is more common in the architectural
engineering field. The overall goal is to enhance the flexibility and responsiveness of
performance-based parametric design in the early design process. While we demonstrate and
rigorously test this new workflow on a realistic facade design problem, the method may be of
future use to other design scenarios in which surrogate models are built for design exploration

with tabular data.

Literature review

Performance-based parametric design

Parametric modeling allows architects and engineers to rapidly investigate design aspects
through manipulating variables. With the integration of simulation software in visual
programming environments, it is common to evaluate designs with respect to performance
objectives, such as daylight [25], [100], [101], visual comfort [102], operational energy [103],
[104], thermal comfort [105], [106] and embodied carbon [88], [107]. For example, [25] used a
parametric approach to design a solar screen in desert climates, where the variables included the
number of louvers, louvers tilt angle, screen depth ratio, and screen reflectivity, and the objectives
were spatial daylight autonomy (sDA) and annual sunlight exposure (ASE). In [102], Tabadkani
et al. designed an origami-based dynamic fagade to improve visual comfort using a parametric
design workflow. However, in practice, setting up a parametric model and generating simulations
can be time-intensive, even with recent advancements in simulation software. It is not always

feasible to run extensive simulations between design iterations. Thus, researchers have developed
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approaches to incorporate performance feedback in decision-making, usually involving some
computation prior to exploring design options.

Researchers have found it is often useful to sample the design space to generate a
representative dataset, through a prescribed method like Latin Hypercube sampling [108] or
performance-driven sampling [109], and filter through design options [110]. Yet, in some
complex cases, it might be necessary to resort to optimization [111], [112]. Another way to
decrease the negative impacts of computation on the design process is to reduce high dimensional
spaces through methods such as principal component analysis or canonical correlation analysis
[99]. Regardless of how they are created, these methods yield a synthetic dataset that can be used
to train a surrogate model, which permits real-time performance estimations [92]. Moreover,
surrogate modeling is particularly accessible as open-source machine learning packages have
become readily available. However, choosing the best surrogate model depends on many factors,

including the nature of the function, size of the dataset, evaluation metric, among others [113].

Surrogate models in building design

Many types of surrogate models have been tested in different building design domains
with varying performance and interpretability [12]. Although there is no formal mathematical
definition for interpretability [114], [115], a surrogate model is generally considered interpretable
if designers understand the reason for the predictions. These models usually provide designers
confidence while also providing additional information such as variable importance. In this work,
we study a classification task, but regression is also applicable when the objective is continuous.
For some design objectives, interpretable surrogate models such as linear regression, logistic
regression, Naive Bayes, or decision trees can achieve sufficient fit and provide designers with

some intuition. Esteghamati and Flint compared the performance of 5 surrogate models to predict
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multiple objectives related to seismic vulnerability and showed that a linear regression model was
sufficient to estimate the seismic-induced embodied carbon emission [116]. However, depending
on the nature of the underlying function, a more complex model may be required, including an
ensemble method or a neural network. Neural networks are often used to predict building energy
[117]. Nevertheless, all of these models are considered classical machine learning methods that
require a fixed column table, i.e., all datasets involved have the same variables.

While this workflow is helpful for making performance-driven design decisions, it is not
flexible from a designers’ perspective. The variables must be defined prior to establishing the
design space and exploring it, which inherently limits the number of possible designs. Gero and
Maher expressed similar concerns in the infancy of computer-aided design, stating that in routine
design, where all decision variables are known a priori, “the designer operates within a defined,
closed state space” [118]. They emphasize that “creative design occurs when new design
variables are introduced in the process of designing” [118]. Furthermore, not only must the
parametric model be programmed in a flexible way, but each time variables are added or
adjusted, the simulation data must be re-generated. A new model is needed because classical
machine learning methods require all variables (columns) be present for all samples, which is the
focus of this paper. This might prevent designers from incorporating new design directions,
which can lead to design fixation. This is common in digital design environments as a whole
[119]. However, it is likely that for many design problems, the added variables cause only a
minor shift in the objective distribution. To address problems like this, TL has recently
demonstrated many instances in which a model of a particular task can be leveraged to inform the
model of a related task with limited data. The next section will introduce TL, its current
applications in building design, and how it could be used to add new variables to an existing

surrogate model compared to starting from scratch with classical methods.
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Transfer learning and current engineering applications

TL is a class of techniques used to improve the model performance of a task by
leveraging the model of a related task. The data-based interpretation of TL approaches in [98] is
most relevant for this work. According to [98], there are two main strategies for data-based
approaches: instance weighting and feature transformation. Instance weighting assigns different
weights to individual samples to emphasize certain samples that are more useful for the target
task [120]. Because our application involves overlapping but different feature spaces, we instead
focused on strategies in the feature transformation category. The feature transformation category
includes feature mapping, feature clustering, feature selection, and feature encoding [98]. Feature
encoding has been previously applied to building design applications in the form of autoencoders
[121]. The tabular TL method implemented in this work also falls within this category.

Research efforts in TL have been primarily focused on applications in computer vision and
natural language processing (NLP). Image data and text data are considered unstructured, and
pre-trained models in deep learning can learn general representations that are transferable across
tasks [122]. In contrast, tabular data is highly structured, which makes it difficult to select
variables and patterns that generalize across tasks. Although several building domains utilize
graphs [65] and images [123] to analyze performance, many building datasets are tabular,
particularly in practice. Currently there are some tabular approaches that involve training the
source neural network and then copying the first n layers to the target network, by either fine-
tuning them or freezing them [124]. This has been shown to reduce prediction error in short-term
energy prediction applications [124], [125] and HVAC control [66] and annual building energy
consumption [126]. However, the TL methods applied in these works require a fixed column

table.
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Outside of buildings, there has been research attention on developing tabular TL techniques
for medical applications since the data is often tabular [127]. Deep models have become more
competitive with classical machine learning for such tabular datasets [122]. Medical datasets are a
good candidate for TL because they are difficult and expensive to produce. However, they often
contain inconsistencies. The naive approach would be to only use datasets with identical columns
or drop non-overlapping columns, which would waste resources and potentially negatively impact
the model. This was the motivation for a TL method called TransTab [4], which relaxes the fixed
column requirement through feature encoding. In early design parametric modeling scenarios,
adding a new variable and generating simulated data from scratch is also computationally
expensive, and the updated design space has overlapping columns with the initial design space. In
this work, we apply the TransTab TL method to reduce the number of simulations required to

update the surrogate model.

Gaps and response

In summary, parametric models and surrogate models are powerful when paired together,
but they are potentially restrictive, especially in the early stages of building design. To our
knowledge, it is often difficult and computationally expensive to add variables to the parametric
model and update the corresponding surrogate model with currently implemented methods.
Designers must start from scratch when rebuilding their surrogate models, which discourages
them from expanding the design space and discovering new directions. In this work, we adapt a
tabular TL method [4] to leverage the initial data and limit the amount of new data needed to
update the surrogate model as variables are added. This includes a novel random walks sampling
technique to aid in class representation within the added samples. We acknowledge benefits to

classical interpretable methods, and we thus compare their performance trained on the added data,



55

using both random walks sampling and a more conventional sampling technique, to identify
instances when TL is useful in an early design setting. By implementing and testing TL in this
setting, this application prevents designers from fixating on the initial design space by requiring
fewer simulations to update it with adequate performance. The goal of the proposed workflow is
to make performance-based parametric design more flexible and encourage designers to explore

more designs, potentially leading to more sustainable design solutions.

Methodology

To demonstrate and test the method, an initial parametric design space was first
constructed in the visual programming environment Grasshopper [22]. The model included 8
variables, which were sampled using Latin Hypercube sampling at a rate of n = 500. Annual
daylight simulations were conducted using Climate Studio [128] to generate the objective: annual
sunlight exposure (ASE). Next, ASE was binned into 3 classes to create the initial simulated
dataset. These three classes represent a geometry that is “good”, “fine”, or “poor” from the
perspective of desired ASE, which is an appropriate resolution at such an early design stage. The
initial classifiers were trained and tested (training/testing split 80/20), including selected
interpretable models and a TransTab transformer model.

Once the initial classifiers were trained, 4 variables were added to the parametric design
space. Additional data was generated in chunks, where the initial variables were sampled using a
random walks algorithm and the new variables were generated using random sampling. ASE was
binned based on the same criteria as the initial dataset. Each chunk of additional data was used in
combination with the original encoded data through the tabular TL method [4]. Additionally, the
new chunks of data were used to train the interpretable classifiers. This procedure was repeated

10 times, and then repeated for different numbers of random walks and step sizes. The updated
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parametric design space was sampled using Latin Hypercube sampling at a rate of n = 500 to
represent starting from scratch, and this dataset acted as the ground truth for classifier evaluation.
The entire methodology was then repeated with a second combination of initial variables, and
these results are included in the discussion section. The whole procedure is shown in Figure 3-2.
Following the main simulation experiment, LHS sampling of the updated design space was also
conducted incrementally to compare as larger amounts of samples were added. This was done
because random walks sampling was selected specifically to generate very small additional
datasets, while traditional sampling would likely be better with more new samples. Finally, TL
effectiveness and class representation were checked to present a more comprehensive overview of

model performance.
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Figure 3-2: Overall methodology for updating the performance-based parametric design space.
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Design space formulation

The case study in this paper is meant to demonstrate the effectiveness of tabular TL in an
early building performance-based parametric design setting. The design example is inspired by
The National Art Center in Tokyo, Japan [129]. We focused on the lobby space, which features a
curved curtain wall fagade facing south and contains two round, concrete blocks. The top level of
the blocks can be occupied as cafes or galleries. Although some glare can be tolerated in
transition areas such as lobbies, it is still a concern given the curtain wall fagade. Exterior and

interior images of the lobby are shown in Figure 3-3.

Figure 3-3: Inspiration building: National Art Center Tokyo. Exterior on the left [2] and Interior
lobby on the right [3].

The initial design space included 8 variables that were hypothesized to affect glare
conditions and at the same time provide designers with a wide range of geometric design options.
The first 4 variables related to the location of the blocks, including the location of the large block
in the x-direction, distance between the two blocks, and the relative locations of the large and
small blocks in the y-direction. The remaining initial variables included the blocks’ height and the
ratio of the blocks’ top radius to lower radius, essentially modulating the blocks from cones to
cylinders. Since this work intends to address real-world design scenarios, the added variables

were based on a hypothetical design scenario in which the designer wants to add 3-dimensional
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variables to the two facade bumps in front of the blocks. Such an expansion of variables could be

the result of an initial architectural design meeting after parametrically exploring the first model.

Figure 3-4 (right) shows the four added variables, which allow for the adjustment of the peak

location on the curve used to construct the fagade bumps in both the y- and z-directions. These

variables affect the position of the block in the y-direction. A summary of all variables is

provided in Table 3-1. All variables were normalized from 0-1 prior to training.

Figure 3-4: Labeled diagram of initial variables (left) and added variables (right).

Table 3-1: Variable details.

Variable | Description Stage added | Minimum | Maximum
X1 Large block x coordinate (m from origin) | Initial -5 5
X2 Distance between blocks (m) Initial 1 9
X3 Large block y location (relative) Initial 0 1
X4 Small block y location (relative) Initial 0 1
X5 Large block height (m) Initial 8 12
X6 Large block radii ratio (relative) Initial 0.5 1
X7 Small block height (m) Initial 5 9
X8 Small block radii ratio (relative) Initial 0.5 1
X9 Small block bump y coordinate (m) Updated 0 1.5
X10 Large block bump y coordinate (m) Updated 0 1.5
X11 Small block bump z coordinate (m) Updated 1 13
X12 Large block bump z coordinate (m) Updated 1 13

The objective function for this case study was Annual Sunlight Exposure (ASE), which is

the percentage of the regularly occupied floor area that receives direct sunlight (>1000 lux from

the solar disc) for more than 250 occupied hours [85]. ASE was simulated using Climate Studio
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aided by the Design Space Exploration toolbox [130]. All opaque surfaces including the ground
were assigned according to LM-83 guidelines. The curtain wall glass was low-E double pane with
61% visible transmittance and the visible transmittance of the exterior horizontal glass shades
was 43.7%. The radiance parameters were “-ab 6 -Iw 0.01 -ad 1” and there were 500 samples per
sensor. Since many details are uncertain in the early stages of design, the ASE output was binned
into three classes and treated as a classification problem, where “good” is <0.45 ASE, “fine” is
0.45<0.60 ASE, and “poor” is 0.60> ASE. Figure 3-5 shows a range of potential designs in the
updated design space in catalog format. The shading structure was removed for visualization

purposes, but it was included in the simulations.

ASE: 0.60 ASE: 0.48 ASE: 0.44 ASE: 0.56 ASE: 0.42
ASE: 0.46 ASE: 0.51 ASE: 0.56 ASE: 0.40 ASE: 0.73
ASE: 0.46 ASE: 0.50 ASE: 0.42 ASE: 0.49 ASE: 0.62

Original design
—— Current design

Figure 3-5: Catalog of design options. The light blue line is the original design.

Tabular transfer learning

The selected tabular TL method is called TransTab [7]. To incorporate multiple tables
with overlapping but inconsistent columns, TransTab assigns semantic meaning to the tabular
data through column descriptions. This allows for the conversion of tabular data into sequences,

similar to sentences, to train a transformer model adapted from NLP [51]. This way, knowledge
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can be retained from the source dataset to the target dataset, regardless of whether all input
columns are the same. A summary of the procedure is shown in Figure 3-6. First, the raw data is
tokenized and converted into sequences using the column name or description to assign meaning
to each cell. Then, the sequence of tokens is converted into numerical vectors through an
embedding layer. To align all the embeddings into the same space, the embeddings are passed
through layer normalization. Finally, the input processing is completed by concatenating the
classification embedding [CLS], which is a token that will facilitate sequence classification.
Next, the processed inputs are further encoded through the gated tabular transformer that
was based on the classical transformer from NLP [131]. The gated transformer contains a multi-
head self-attention layer and gated feedforward layers. The multi-head self-attention mechanism
and gated feedforward layers determine which features to focus on by reallocating attention
among tokens during the training process [4]. The embedding produced at the last layer of this
process is passed to the classifier for making predictions. Further details and equations are

provided in [4]. TransTab is useful for several learning applications including TL.

Tokenize & Normalize &
Embed Align Concatenate Gated —>y
Transformer

Numerical token
embedding

Encoded representation

Classification
embedding

Figure 3-6: TransTab methodology, after [4].

The TL approach was implemented in Python using the TransTab package [4]. Most of
the TransTab defaults were maintained. The classifier included 2 transformer layers in the
encoder and the dimension of the hidden embedding was 128. The attention module had 8 heads

and the dimension of the feed-forward layer was 256. ReLU activations were used, and dropout
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was not activated. A patience of 5 was kept for early stopping and the number of epochs was 100.
The TransTab model was trained using the ADAM optimizer [132]. Weight decay was set to 2e-4
for regularization. The default learning rate of 1e-4 was used in the initial classifier training;
however, it was increased for the updated classifier training to 2e-4 as the updated datasets were
small compared to the initial dataset. Additionally, the batch size was set to 20 for the initial

classifier training and reduced to 15 for the updated classifier training.

Random walks sampling

This TL procedure requires new data to demonstrate the method, which in a design
scenario would be generated by a designer with some expectation about its similarity to the
original dataset. The sampling technique of the updated design space is important because the
goal is to add as few samples as possible to update the classifier, while making sure there is
representation for each class in the added data. It is not possible to guarantee class representation
because we do not know how the objective function has changed. However, we assume that the
new distribution is reasonably similar, in which case it makes sense to start sampling near the
centroid of each class in the initial data. From there, we propose adopting a random walks
approach. We start by calculating the centroid of each class in the initial data (Eqn. 1), where ¢ €
R™ is the centroid of the class, m is the number of features, x; € R™ represents sample i €

{1,2, ...,n}, and n is the number of samples in the class.
c= % 1 x; (Equation 1)
Next, we initiate random walks beginning from the centroid of each class (Eqn. 3). Let
t € R™ be the position after step j for j € {0, 1, ..., k}, where t,, is the starting position which is

the centroid. Let U: R? — R be a function that generates a uniformly distributed random value in
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the given interval (a, b). Then, to generate a step vector s; € R™, we apply U(.,.) in each
dimension as follows:
sj = (U(al,bl), U(ay, by), ..., U(am, bm)), Vj€e{l,2,..,k}. (Equation 2)
Finally, we update the position vector ¢; using the previous position and the new step:
t; = tj_, + s; (Equation 3)

The number of walks that are initiated dictates how many samples are added per step. For
example, if we have 3 classes and 2 walks, we add 6 samples per step. If the data has shifted
significantly, it is best to take larger steps, and if the designer thinks it is very similar, the steps
should be smaller. Since we do not have any information about the added variables, they are
randomly sampled within their bounds. This is designed to help mitigate class imbalance and

prevent the designer from adding more data just to achieve class representation.

Interpretable classical classifiers for comparison

Choosing a transformer model as a surrogate model allows for TL, but it sacrifices
interpretability. In an early design setting, it might be useful to understand the predictions from
the surrogate model while also gaining insight on variable importance and gradients. This paper
tests what is gained in performance with low number of samples against what is lost in
interpretability by comparing the TL method to classical methods. In this section, we identified
classical classifiers that 1) are interpretable and 2) have low variance out of the box. This is
because the added dataset from the updated design space will be limited, thus the models will be
prone to overfitting.

Logistic regression (LR) is considered interpretable because it is a generalized linear model.
Each feature is assigned a coefficient that can be interpreted to understand its effect on the

prediction. To lower variance, a shrinkage penalty can be added which aids in regularization.



63

Support vector classifiers (SVC) using linear kernels also produce coefficients that can be
interpreted. SVC overfitting can be prevented through the budget parameter, which controls the
strength of the penalty. Alternatively, Naive Bayes (NB) operates on Bayes’ Theorem and can be
interpreted through conditional probabilities [114]. NB trades off increased bias for lower
variance by assuming feature independence within classes [133]. Linear discriminant analysis
(LDA), also Bayes-based, can be interpreted through the coefficients assigned to each feature in
the discriminant functions [134]. Similar to previous methods, LDA employs a shrinkage penalty
to decrease variance. Decision trees (DT) are considered interpretable, offering insights into
variable importance by quantifying the features’ contribution to criterion reduction [114].
However, decision trees tend to overfit (high variance), necessitating pruning, which requires a
large enough dataset, or ensemble methods, which sacrifices interpretability. Thus, LR, SVC with
a linear kernel, NB, and LDA were chosen as interpretable classifiers for comparison. These
classifiers and their hyperparameters are shown in Table 3-2.

The Python library Scikit-learn [135] was used for all interpretable, classical classifiers. The
parameters used to generate results for each model are provided below. Overall, the default
parameters were maintained unless the model trained with the initial data did not converge or
needed to be adjusted for a multi-class problem. The same hyperparameters were used for the
initial model and updated models, as the designers in our assumed application would not have
access to ground truth. It is important to acknowledge that TL can be a broader concept for
classical learning, which would include stacking and ensemble methods, but they lose their

interpretability. For this reason, these methods were excluded from this work.

Table 3-2: Classical classifier hyperparameters. An asterisk indicates the parameter was changed
from the default.

Model Parameters

Logistic Regression (LR) Penalty: L2 (default)
Dual: False (default)
Tolerance: 1e-4 (default)
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Inverse of regularization strength (C): 1.0 (default)
Fit intercept: True (default)

Intercept scaling: 1.0 (default)

Class weight: None (default)

Solver: Newton-cg*

Max iterations: 500*

Multi-class: Auto (default)

Warm start: False (default)

Support Vector Classifier (SVC)

Regularization parameter (C): 1.0 (default)
Kernel: Linear*

Shrinking heuristic: True (default)

Probability bool: True* (required for multi-class)
Tolerance: 1e-3 (default)

Cache size: 200 MB (default)

Class weight: None (default)

Max iterations: No limit (default)

Decision function shape: one-vs-rest (default)
Break ties: False (default)

Naive Bayes (NB)

Priors: None (default)
Variance smoothing: 1e-9 (default)

Linear discriminant analysis (LDA)

Solver: Singular value decomposition (default)
Shrinkage: None (default)

Priors: None (default)

Number of components: False (default)
Tolerance: 1e-4 (default)

Covariance estimator: None (default)

Classifier evaluation

The models were evaluted using the One-vs-Rest area under the reciever operating

characteristic (AUROC) curve. The ROC curve is a graph that shows the trade-off between the

true positive rate and the false positive rate for different decision thresholds for a binary classifier

[136]. ROC curve for each class i € {1, 2, ..., k} is constructed by assigning positive labels to the

samples of class i and negative labels to the samples of all other classes. Then, the AUROC is

calculated for the ROC curve of each class. Finally, the average AUROC is computed by taking

the mean of the AUROC scores over all classes (Eqn. 4).
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average AUROC =~ XX, AUROC; (Equation 4),
where average AUROC is the overall multiclass AUROC score, AUROC; is the AUROC
score for class i, and k is the number of classes. This is to adopt it from its original use for binary
classification problems. It aims to evaluate the model’s performance in distinguishing between

multiple classes.

Results

To determine if TL is suitable for an early design setting, we examine 1) the performance
compared to classical interpretable classifiers for incrementally added samples using two
sampling techniques, 2) the effectiveness of transfer learning, and 3) the effectiveness of random
walks sampling of the initial design space. We also explore classifier robustness, because in a real
design scenario, the designer will not have access to ground truth. These aspects are measured

and discussed in the remainder of the paper.

Comparing transfer learning to classical interpretable classifiers

Model performance depends on the quality of the target dataset. Therefore, the
hyperparameters of the random walks sampling were rigorously tested to fairly compare the
models, in addition to generating LHS datasets that will be discussed later in this section. Figure
3-7 shows the average multiclass AUROC and standard deviation for samples incrementally
added to the updated design space dataset. The two main hyperparameters in the random walks
sampling were tested: number of random walks and step size. These influence the number of
samples added at each iteration and the size of the step interval, respectively. For each

combination and number of samples, the random walk sampling was repeated 10 times. The
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classifiers were tested on the scratch dataset, which was generated by sampling the updated

design space at a rate of n = 500 using Latin Hypercube sampling. This measures how well the

classifier generalized trained on limited data from the updated design space. The TL results

include the initial data and the updated data, while the classical interpretable classifiers include

only the updated data.
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Figure 3-7: The mean and standard deviation for each model type across 9 experiments. An
asterisk indicates that some of the experiment results were not included due to lack of class
representation. These datasets can be identified in Figure 9.

The results of all combinations show the TL classifier yields higher multiclass AUROC
on average. As more walks were added, the classical interpretable classifiers’ performance were
more comparable, particularly the Naive Bayes classifier. However, including more walks

requires more samples to be added at each iteration, which is a disadvantage for designers. The
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TL classifier is also more robust against random walks sampling hyperparameters, as shown by
its stable average AUROC across all experiments. This is important because even if the designer
does not tune the hyperparameters optimally, the TL method will yield an adequate performing
classifier compared to the classical interpretable methods. The TL method is also less sensitive to
the number of added samples, which is better for designers.

In addition to the average performance, the standard deviation was plotted to understand
variability over 10 repetitions. A small standard deviation indicates the classifier is more reliable
which is important because the designer will not have access to ground truth (scratch dataset) as
we do in a research setting. Over the repeated experiments, the TL method demonstrates low
standard deviation across all combinations compared to the classical interpretable methods where
the standard deviation depends on the random walks sampling hyperparameters and is frequently
high. This is further evidence that the TL method is more robust than classical interpretable
methods.

The recommended hyperparameters for this case study are 1 walk, 0.1 step size, for two
reasons. First, the TL method performance is adequate for 1 walk compared to the 2 and 3 walk
experiments, and 1 walk allows the designer to add the fewest number of samples per iteration.
Second, of the three 1 walk case studies, 0.1 step size shows the best class representation, which
is discussed further in a later section. The initial dataset and results from the recommended
random walk hyperparameters are provided in Table 3-3. This table also provides an equivalent
number of new LHC samples required for each classical method to reach the TL performance at a

small number of new samples (18), which will be explained next.

Table 3-3: Initial and scratch multiclass AUROC for each classifier and average updated
multiclass AUROC for 1 walk, 0.1 step size.

AUROC

Model Description | Initial New TL LR SVC NB LDA
samples | samples
xi-x3) | (X1-X12)
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Initial Data from 500 -
initial design 9821 | 9520 | .9495 | 9579 | .9665
space
Updated | Initial data 500 15 0.8614 - - - -
(TL only) + -1 15 0.7866 | 0.8090 | 0.8082 | 0.6686
limited data | 500 18 0.8732 - - - -
from new -1 18 - 0.7833 | 0.8136 | 0.8184 | 0.7402
design space | 500 21 0.8736 | - - - -
-1 21 - 0.7824 | 0.8106 | 0.8221 | 0.7429
500 24 0.8731 - - - -
-1 24 - 0.7829 | 0.8140 | 0.8180 | 0.7633
Equivalent | Number of LHS samples required to meet
or exceed TL performance at 18 random 90+ ~72 ~90 ~72
walks samples

Although the random walks sampling was necessary for achieving class representation
when generating very small datasets from the updated design space, other prescribed sampling
techniques may yield better results for higher numbers of added samples. Figure 3-8 shows the
model performances for the recommended 0.1 step size up to 90 added samples (with a faded
circle), as well as for LHS sampling at the shared number of additional samples (with a bold X)
across the three walks. The LHS sampling begins at 36 samples because class representation was
not achieved at 18 samples, which would have prevented proper model training. The result shows
that classical interpretable methods, specifically LDA for this dataset, can achieve the same or
higher AUROC as TL with 18 samples at approximately 54 samples. However, TL still performs
better at 54 samples, so it is still useful at that point. Once 72 samples are reached, LDA with
LHS outperforms TL, making TL no longer valuable past this point. This result also suggests that
fewer than 500 samples were needed to achieve near peak performance for the initial dataset.
Additional considerations concerning sample size for both original and new sampling are

discussed in the discussion section.
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Figure 3-8: Latin Hypercube sampling at shared number of additional samples across three walks
compared to random walks sampling up to 90 added samples.

Transfer learning effectiveness

With any TL application, there is the possibility that the updated classifier performs

worse than if it were trained on the target data only. This usually happens if the tasks are too

different. In this case study, the source data is the initial design space dataset, and the target data

is the updated design space dataset. Given the nature of the case study problem, it was assumed

the source data behaved similarly to the target data. However, the TL method and a neural

network trained only on the target data were compared to verify our assumption (Figure 3-9).

Figure 3-9 demonstrates a significant increase in performance across all sampling experiments,
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indicating that it is beneficial to leverage the initial model data to improve the performance of the

updated classifier that has limited data from the updated design space. In some experiments, the

transformer model trained on only the target data performance decreased as data was

incrementally added, which is likely due to overfitting. Regardless, the TL method maintains high

performance.
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Figure 3-9: Transformer model trained only on target data compared to TL approach leveraging
source data and target data.

Class representation through random walks sampling

The random walks sampling for the initial variables was implemented to address the issue

of class representation in the updated design space dataset. Figure 3-10 shows the class
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representation for each random walks hyperparameter combination. As the step size increases, it
becomes more difficult to attain class representation, particularly for the poor performing class
(ASE >0.60). This is likely because the initial poor performing class is smaller than the other two
classes, or fewer designs fall into the poor performing class with the introduction of new features.
The objective class distribution shift is discussed further in the discussion section. While the
results presented in this section are specific to one case study, class representation is a potential
issue that must be considered when applying tabular TL in a performance-based parametric

design setting.
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Figure 3-10: Class representation across all experiments. In the right column, there are datasets
that do not contain samples in class “poor” and were not included in Figure 3-7 and 3-9.
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Discussion

Overall, the tabular TL approach paired with the random walks sampling of the initial
design space yielded higher multiclass AUROC on average compared to the classical
interpretable classifiers for very few additional samples. Regardless of random walks sampling
hyperparameters, the TL method was able to achieve adequate multiclass AUROC (>0.85) with
only 18 samples. As more samples were added, the classical interpretable methods performed
comparably or better with LHS sampling; therefore, classifier selection depends on the amount of
time the designer is willing to wait to update the surrogate model. However, some classical
interpretable methods demonstrated large standard deviations and were not reliable for this case
study. It is recommended to choose the TL method if very few samples are to be added, with a
few considerations:

e Number of classes: If the initial dataset has more classes, then more samples must be

added at each iteration. Reduce the number of classes to add fewer samples at each
iteration.

e Number of walks: Fewer number of walks allows for fewer samples to be added per

iteration. However, initializing only one walk may not fully capture the behavior in each
class.

o Step size: The step size should be determined based on the size of the classes and feature
magnitudes. In some cases, it may be appropriate to set different step sizes for each class.
It is recommended to normalize the features prior to determination to simplify the
selection.

o Initial features sampling technique: If the designer suspects the distribution has only

slightly shifted, random walks sampling is recommended. However, if there is a large

shift, it may be appropriate to choose a different sampling technique.
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Tabular TL proved effective for this case study, primarily because the problems were
similar. It is difficult to measure the similarity between the initial and scratch datasets given the
feature spaces are different—i.e., the initial feature space is 8-dimensional and the updated
feature space is 12-dimensional. However, because of how the features were constructed in
Grasshopper, we can say that the marginal distribution according to the initial features is the
same. Additionally, we can evaluate the class distribution between the initial and updated
datasets, which is shown in Figure 3-11. Most designs fall into the fine performance class for both

datasets, with more designs in the good performance class with the addition of the new variables.
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Figure 3-11: Comparison of class distribution in the initial design space dataset and the updated
design space dataset (scratch dataset).

Further research is required to measure the similarity between datasets with overlapping
feature spaces in building design problems [137]. Of course, if the datasets are too different, TL
would not be effective and result in negative transfer. Then, it would be necessary to start from
scratch. Nevertheless, this work demonstrates a novel workflow for applying a new tabular TL

method and sets the stage for future implementations.
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It is important to acknowledge that the initial variables included in the model influence

the performance of the classifiers. In the main design scenario (adding variables related to the 3D

facade), knowledge was successfully transferred, however, if the objective distribution were

changed entirely, the designer would need to start from scratch. While it is not necessarily

possible to determine how the objective function will shift, we can demonstrate another design

scenario starting with a different set of initial variables to begin to understand the generalizability

of the TL method. Figure 3-12 shows the classifiers’ performance if the initial variables were the

location of the blocks variables (X; - x4) and the 3D facade variables (x9 - X2), and the added

variables were those related to the shape of the blocks (xs - x3) (Table 3-1).
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representation.

Overall, the TL method performs the best on average, with two exceptions: 2 walks, 0.1
step size, 30 samples and 2 walks, 0.05 step size, 48 samples. Additionally, in this scenario,
another experiment encountered issues with class representation (1 walk, 0.05 step size), unlike
the main design scenario, which only experienced them with the 0.2 step size experiments.
Nevertheless, this exercise shows that while the initial variables influence the effectiveness of TL,
if the underlying behavior is largely maintained, it successfully reduces the number of samples

required to update the surrogate model.

Limitations

While this work demonstrates the application of TL in an early design setting, it presents
several limitations. One main limitation of applying TL techniques in early design settings is that
many methods are intended for classification tasks. This is primarily because more of the real-
world data and current problems being studied lend themselves to classification over regression.
However, regression is more ubiquitous in building design datasets [138], as a continuous
objective provides more information. Nonetheless, we contend that classification remains useful,
especially in the early stages when there is uncertainty. Instead of knowing the exact percentage
of ASE, we only discern if it is ‘good,” ‘fine,” or ‘poor.” We argue that this uncertainty is typical
in the early design stage and serves to buffer the problem until details are sorted out. Another
limitation, specific to this work, is that only one case study is examined. The behavior of the
objective function in this study may not be replicated in other datasets. For instance, if a variable
is added that drastically changes the objective, such as adding a large shading device, it is likely

that the designer would have to start from scratch, as discussed in previous sections.
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Conclusion

This paper implemented a tabular TL method on an early building design problem to
quickly preserve performance feedback in a parametric model when the variables are updated. It
compared the performance of the TL method to classical methods across several sampling
situations. The selected tabular TL method, paired with random walks sampling, is useful when
very few samples are to be added to quickly update the surrogate model. In this case study, ‘very
few samples’ meant 18 samples. However, if the designer could generate approximately 54-72
samples, interpretable classifiers achieved the same performance and also provided the benefit of
interpretability. In the scenario that very few samples are to be added, we demonstrated that the
number of simulations required to update the surrogate model can be reduced through applying
the proposed workflow with higher confidence than classical interpretable classifiers.
Additionally, the TL method proved more robust against sampling randomness and
hyperparameters. This workflow could also be useful for design problems with even more costly
simulations such as computational fluid dynamics or earthquake simulations. However,
depending on the designer’s goals, it may be worth sacrificing performance to gain insights on the
variables’ interactions and importance, or generating additional samples to achieve comparable
performance.

Further research is required to establish a metric to measure the similarity between parametric
datasets with overlapping feature spaces and shared label spaces. Additionally, the tabular TL
method implemented in this work and future approaches should be tested on other problems in
building design domains. This is the case for TL in general, as it has recently been introduced to
the field [137]. Finally, it is important to note that for a parametric model to accommodate new
variables, it must be programmed in a flexible way. This can be accomplished through modeling

in visual programming platforms like Grasshopper, or through the implementation of modeling
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methodologies that allow for reusability [139]. Since many designers already work this way, this
application of TL can help make performance-based parametric models more flexible, allowing

for new, creative design directions that meet sustainability goals.
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Chapter 4

An exhaustive search for the optimal dynamic window properties to minimize
building energy

This chapter is to be submitted for publication in an academic journal.

Introduction

There is an increasing need to reduce building energy consumption, as the building sector
accounts for 36% of final global energy use [140]. Electricity demand is expected to continue
growing to combat climate change effects [19]. To reduce the energy consumption within the
building sector, it is important to continue to improve not only system efficiencies but also the
quality of building envelopes. Building windows are of particular interest because they are the
thermal weak point and impact potential electric lighting savings and occupant satisfaction. One
effective approach to reduce energy consumption is to implement double-pane windows with
low-emissivity (low-e) coating [141], which works by reflecting infrared (IR) light. Beyond high
performance static windows, dynamic glazing systems have been identified as a viable option to
improve window performance [142], [143]. Dynamic glazing systems modulate their optical and
thermal properties to adjust the visible transmittance (VT) and solar heat gain coefficient (SHGC)
to either accept or block solar heat gains depending on outdoor conditions. These technologies
have been demonstrated to be highly effective in certain climates, saving approximately 17%
compared to a static baseline [144].

However, while manipulating solar gains depending on outdoor environmental conditions

is an effective strategy to reduce HVAC electricity usage, because solar light and heat are often
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controlled together, it can have a negative effect on lighting electricity usage and produce an
undesirable window appearance, which may prevent widespread adoption. For these reasons,
there is recent interest in decoupling solar light and heat. Although it is not possible to achieve
very low SHGC and very high VT due to inherent limitations in the definition of SHGC, it has
been shown to be possible to achieve decoupling in the near infrared (NIR) region, which enables
somewhat independent control of SHGC. A few such technologies have been proposed including
a dual-band electrochromic glazing [145] and a reversible photothermal window [18]. Assuming
we can decouple solar heat and light within physical restrictions, it is unclear what the optimal
range of SHGC and VT is to minimize annual energy consumption in diverse climates.

In this work, we exhaustively test the VT and SHGC for a two-state dynamic glazing
system, considering feasibility constraints, to determine the optimal configuration across multiple
climates. The optimal states reveal the ideal relationship and determine the strategy for
decoupling in each climate. Once the optimal configuration is identified, the savings are
calculated against ASHRAE standard glazing and the switching behavior is evaluated to compare
climates. Furthermore, a sensitivity analysis is conducted to understand the importance of tuning
the transition temperature for mixed and cold climates. This work will establish goals for future

product development within the dynamic glazing space.

Literature review

Current dynamic window technologies

Dynamic window technologies modulate their thermal and optical properties to reduce
HVAC and lighting electricity usage. They reduce HVAC electricity usage by increasing solar

heat transmission during cold conditions and decreasing it during warm conditions. From a
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lighting perspective, dynamic windows can reduce electricity usage by increasing visible light
transmission. This modulation has also been shown to affect thermal and visual comfort [146],
[147]. It can be accomplished through a variety of mechanisms, including passive technologies
such as thermochromic glazing [36], [148], and active technologies, for example, suspended
particle devices [149], [150], polymer dispersed liquid crystals [151], [152], and electrochromic
glazing [16], [153]. Passive technologies are controlled by environmental changes, typically solar
radiation or temperature, whereas active technologies are controlled by a program that involves
environmental measurements, system measurements such as cooling/heating load or illuminance,
or some combination. One of the most widely adopted technologies is electrochromic glazing,
which modulates its solar and visible light transmission through tuning the applied electrical
voltage.

Lee, Jeong, and Chae used a search algorithm to determine the optimal control parameter
for electrochromic glazing and demonstrated 17.4% annual heating and cooling energy decrease
on average compared to a static window over six locations, with outdoor air temperature as the
control parameter [144]. Chambers et al used a Monte Carlo model to estimate the performance
of electrochromic glazing on office buildings in Switzerland and found an average of 11% energy
savings on the cooling and lighting loads [154]. The savings also depend on orientation. For
example, Tavares et al showed the greatest savings from EC on the west facade in mediterranean
climates [155]. Favoino, Overend, and Jin identified the optimal thermal and optical properties
for general dynamic glazing that transitions on a daily and monthly basis and found between 5-
57% savings depending on climate and orientation [17]. However, this also included u-value
modulations. Additionally, they also showed that energy savings is sensitive to the transition time
scale, which is higher for current technologies. Warwick, Ridley, and Binions investigated the
ideal transitioning for thermochromic glazing and found that with sharp transitions and a low

transition temperature, 17.7% energy savings are achievable compared to standard glazing
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systems [156]. While the building characteristics, climate, and baseline for comparison vary
across studies, it is evident that maximizing dynamic glazing performance involves optimizing
the transition/control parameters, switching resolution, and the properties of the glazing itself.

In whole building energy simulations, the modulations are measured through visible light
transmittance (VT) and solar heat gain coefficient (SHGC). SHGC is calculated based on the full
light spectrum, including the visible portion. Therefore, it is impossible to achieve very high VT
and very low SHGC simultaneously, but it is possible to decouple them beyond certain bounds.
This is of current interest among researchers, as it is often desirable to maintain somewhat high
VT to reduce light electricity usage or at least control it independently, with some potential to
improve glare conditions or visual comfort [157]-[159]. One of the remaining issues with
electrochromic glazing is that the visible and infrared (IR) light transmittance are highly
dependent [160], meaning that VT and SHGC change together and in fact have a roughly linear
relationship, as shown in Fig. 1 in [161]. This results in two or more states that range from a
‘tinted’ state, with low SHGC and low VT, to a ‘clear’ state, with high SHGC and high VT. It is
likely that improving the light-to-solar-gain (LSG) ratio, VI/SHGC, in the tinted state will lead to
further electric light and HVAC electricity usage savings [142]. The most viable path thus far has

been to decouple visible and NIR transmission, which will be discussed in the following sections.

Decoupling solar heat and light

Several researchers have proposed dynamic materials that manage to decouple solar heat
and light by targeting the switching of specific regions within the light spectrum, specifically in
the NIR region [162], [163]. There are three components of solar light that can be manipulated:
transmission, absorption, and reflection. DeForest et al demonstrates a dual-band electrochromic

glazing made from tungsten oxide nanocrystals that modulates between three main dynamic
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glazing states: a tinted state that has low transmittance in the visible and NIR regions (low VT,
low SHGC), a clear state that has low transmittance in the NIR region and high transmittance in
the visible region (high VT, moderate SHGC), and a third clear state that has high transmittance
in both the NIR and visible regions (high VT, high SHGC) [145]. Their dual-band dynamic
glazing outperformed other dynamic glazing technologies and high-performance static glazing
across multiple climates [145]. Jahid et al proposed a reversible photothermal window with
plasmonic nanofilms that absorbs NIR [18]. During the summer, the plasmonic nanofilm is on the
outer layer, and in the winter, it is reversed such that the nanofilm is on the inner layer. Paired
with the central air layer that has localized heating and insulation qualities, NIR is released into
the indoor environment. They demonstrated over 18% energy savings in mixed climates [18]

compared to standard energy-efficient windows.

Research gaps

As more viable paths are identified to decouple solar heat and light, the ideal dynamic
glazing properties is once again in question. It is unclear what the relationship between SHGC
and VT should be to minimize energy consumption across diverse climates, assuming a
hypothetical perspective that solar heat and light can be decoupled within physical limitations. In
this work, we identify the optimal range of VT and SHGC and transition temperature across
multiple climates through exhaustive grid sampling with constraints. The switching behaviors are
investigated, and savings calculated to determine which climates benefit from such innovative
dynamic glazing technologies. Furthermore, a sensitivity analysis is conducted to demonstrate the
importance of the transition temperature parameter in cold and mixed climates. These

contributions will inform the future development of dynamic glazing technologies.
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Methodology

The optimal two-state dynamic glazing system was determined through a constrained
grid sampling approach (Figure 4-1). The variable search space consisted of five variables: state 1
SHGC, state 1 VT, state 2 SHGC, state 2 VT, and the transition temperature. After all variables
were discretized and all combinations computed, configurations that violated physical limitations
and domain knowledge were eliminated. These constraints are detailed in further sections. Next,
annual electricity usage across end uses was calculated through conducting EnergyPlus
simulations. This step was accelerated via parallel computing. Then, the optimal solution was
identified based on the lowest combined annual heating, cooling, interior lighting, and fan
electricity usage. The savings were calculated and switching behavior verified. The baseline for
energy savings was static ASHRAE standard glazing. Finally, a one-at-a-time sensitivity analysis
was conducted to understand the effect of the transition temperature parameter in cold and mixed
climates. Lastly, the tradeoff between electricity consumption and thermal comfort was measured
by finding the pareto front. The entire process was conducted for seven ASHRAE climate zones

and the results were compared across climates.
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Figure 4-1: Overall methodology.



84

Case study

The DOE small office prototypical model was selected as the case study building (Figure
4-2). It comprises of one level with one core zone and four perimeter zones. The HVAC system
consists of a constant volume unitary heat pump system with constant speed compressors and no
economizer. The window-to-wall ratio (WWR) for all orientations is 19.8%, excluding the glazed
door on the south orientation, which was not included as a dynamic window. However, all
windows were included as dynamic windows in the simulations. The simulations were conducted
for an annual run period at a 10-minute resolution (timestep=6). Seven US cities were selected to
represent the ASHRAE climate zones: Chicago, Phoenix, Baltimore, Atlanta, Miami, Duluth, and
Minneapolis. Chicago, Duluth, and Minneapolis are heating-dominated climates, while Phoenix,
Atlanta, and Miami are cooling-dominated, and Baltimore is mixed. All representative cities are

classified as humid except Phoenix which is dry.
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Figure 4-2: Case study building.

The baseline for comparison was the default window construction included in the
prototypical model (Table 4-1) that follows ASHRAE standards. The U-value was kept the same
for all models in each climate zone, since we only wanted to measure the effect of modulating VT

and SHGC.

Table 4-1: Baseline window parameters.

Climate zone | Description City SHGC | VT U-value (W/m*-K)
1A Very hot humid | Miami, FL 0.23 0.25 2.86
2B Hot dry Phoenix, AZ 0.25 0.27 2.58
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3A Warm humid Atlanta, GA 0.25 0.27 2.41
4A Mixed humid Baltimore, MD 0.36 0.39 2.06
S5A Cool humid Chicago, IL 0.38 0.42 2.06
6A Cold humid Minneapolis, MN | 0.38 0.42 1.94
7 Very cold Duluth, MN 0.40 0.44 1.66

Grid sampling with constraints

A grid sampling approach was adopted to exhaustively search the variable design space.
The variables included the SHGC and VT for states 1 and 2, as well as the transition temperature
(Table 4-2). The bounds for SHGC and VT were determined through surveying commercially
available double and triple pane windows in the LBNL glazing database. Next, the variables were
discretized and grid sampled to consider all combinations. Then, two constraints were imposed to
ensure only feasible configurations were simulated. The first constraint dealt with the physical
limitation of achieving high VT and low SHGC. Because SHGC accounts for the full light
spectrum, including the visible portion, it is not physically possible to achieve very low SHGC
and high VT simultaneously. This regions is known as the ‘forbidden region’ and it is visualized
in red in Figure 4-3. The second constraint was imposed to ensure that when the transition
temperature was reached, a lower SHGC was adopted. This was interpreted as eliminating any

combinations that produced a negative slope % in Figure 4-3. After eliminating the
2741

infeasible combinations, 110,922 configurations were simulated for each climate zone using

EnergyPlus.

Table 4-2: Variable details.

Variable Min Max Range Step No. Options
SHGC state 1 0.1 0.8 0.7 0.05 15
SHGC state 2 0.1 0.8 0.7 0.05 15
VT state | 0.05 0.8 0.75 0.05 16
VT state 2 0.05 0.8 0.75 0.05 16
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Figure 4-3: Fitted polynomial to represent the forbidden zone. The goal is to find the ideal two-

state dynamic glazing that minimizes electricity usage without violating the forbidden zone
constraint.

Data generation

The two-state dynamic glazing was modeled using the EnergyPlus Energy Management
System (EMS). An EMS program was developed for each window to control independently based
on the window surface temperature. Since the windows were controlled based on the window
surface temperature, the sensor used was ‘Surface Outside Face Temperature’ and the actuator
used was ‘Construction State’. The program was written such that if the sensor detected a value
greater than the transition temperature, window construction state 1 was adopted, otherwise,
window construction state 2 was adopted. The EnergyPlus model calling point was ‘Begin
Timestep Before Predictor,” which means that the programs were called prior to calculating zone
loads. To generate the IDF files, the simple glazing system objects were modified for states 1 and

2, as well as the transition temperature which was a compact schedule object. These were
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accessed using the Eppy library [164] in Python. After all the IDF files were written and the
infeasible configurations eliminated, the simulations were conducted via parallel computing. The

simulations were batched, and each batch ran on 20 cores with 32 GB RAM memory.

Results

Optimal solution and savings

The optimal solution was determined by identifying the configuration that yielded the
greatest reduction in the combined annual heating, cooling, lighting, and fan electricity usage
(Figure 4-4). The facility electricity usage also includes the interior equipment, exterior
equipment, and water system, which were constant for each climate. For Chicago (cool humid),
Baltimore (mixed humid), Atlanta (warm humid), Duluth (very cold), and Minneapolis (cold
humid) optimal configuration required a wide range of SHGC with the minimum SHGC at 0.1
and maximum at 0.8. However, the optimal configuration for Phoenix (hot dry) called for a
minimum SHGC of 0.1 and maximum SHGC of only 0.2. Similarly, for Miami, the minimum
SHGC was 0.1 and the maximum 0.15. All climates preferred a high visible transmittance, with a
minimum VT of 0.6 and maximum of 0.8 or 0.75. Nevertheless, the LSG for state 1 is 6,
suggesting that for all climates, decoupling SHGC and VT is important to reduce electricity
usage. For state 2 in the hotter climates, the LSG remains between 4-5. However, in mixed and
colder climates, the LSG is 1, which can be achieved with current products. Finally, the optimal

transition temperature for all climates was 15 C.
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Figure 4-4: The optimal two-state dynamic glazing for each climate zone.

The implementation of the optimal dynamic glazing system led to a reduction in
combined annual heating, cooling, lighting, and fan electricity usage of 17.40%, 9.30%, 15.48%,
10.37%, 7.16%, 18.81%, and 17.91% for Chicago, Phoenix, Baltimore, Atlanta, Miami, Duluth,
and Minneapolis, respectively (Figure 4-5). The savings in Phoenix were lower because the
baseline SHGC was 0.25 and the optimal states’ SHGC was close at 0.1 and 0.2. Likewise, in
Miami, the savings were also low with the baseline SHGC at 0.23. It also suggests that static
glazing with high LSG may suffice in these climates. The percentage-wise reduction in each end
use category varied per climate (Figure 4-5). In Baltimore and Atlanta, the heating electricity
usage was reduced the greatest, whereas in Chicago, Phoenix, Duluth, and Minneapolis, the
cooling electricity usage was reduced the most, and in Miami, the fans electricity usage was
reduced the most. For all climates, the lighting usage was reduced only a small amount (<5%), as
the baseline model already implemented continuous dimming control and low wattage lighting

(6.18 W/m?).
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To understand the frequency of switching between glazing states, the behavior of one
south-facing window from the optimal configuration was plotted in Figure 4-6. Figure 4-6 shows
the window surface temperature (in gray) and the LSG at 10-minute intervals over the year. The
optimal transition temperature for all climates was 15 C despite different window properties. In
Chicago and Minneapolis, the window state transitioned most frequently during the shoulder
months. Baltimore and Atlanta followed a similar pattern, with a larger gap during the summer
months. On the other hand, Duluth, as a very cold climate, benefited from switching states in the
summer months. Meanwhile, Phoenix consistently transitioned between states during the winter
and spring, but not at all during the summer and fall, as the window surface temperature did not

fall below 15 C. Miami demonstrated very little switching between states.
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Next, to understand if there is a benefit to controlling each window independently, one
window was plotted for each orientation for one day on or near the autumnal equinox, vernal
equinox, or winter solstice, depending on which day was near the transition temperature for each
climate (Figure 4-7). It appears that there is little difference when the transition temperature is
reached among the orientations, with the exception of a few morning hours where the east and
south orientations reach the transition temperature before the east and north orientations, as well

as in the afternoon where the west orientation returns to the transition temperature later.
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In order to understand the importance of selecting the optimal transition temperature,

particularly for the cold and mixed climates, a one-at-a-time type sensitivity analysis was

conducted. Since all the cold and mixed climates selected the same dynamic window

configuration, the data was filtered for this configuration, and then all transition temperatures

were plotted in Figure 4-8 to quantify the difference in energy savings. It shows that the optimal

transition temperature is near 15 C, and if the transition temperature is too high, the savings

become negative, meaning that more energy is consumed than the baseline. This result

demonstrates that transition temperature is also an important parameter to tune when specifying

dynamic glazing technology.
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Figure 4-8: Transition temperature sensitivity analysis for cold and mixed climates.

As mentioned previously, there has been several studies demonstrating the tradeoff

between building energy savings and thermal comfort [146], [147]. To investigate if the optimal

configuration sacrifices or improves thermal comfort, the facility electricity usage was plotted

against the ASHRAE 55 simple model thermal comfort that measures the number of hours



93

summer or winter clothes are not comfortable (Figure 4-9). Then, the pareto front was determined

which represents the non-dominated solutions, and it is highlighted in Figure 4-9. The optimal

configuration for Chicago and Miami sacrifices thermal comfort, but there are other viable

solutions along the pareto front. The optimal configuration for Phoenix, Baltimore, Atlanta,

Duluth, and Minneapolis improve thermal comfort.
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Discussion

Through exhaustive sampling, we identified the optimal two-state dynamic glazing
system across multiple climates, revealing the ideal ranges for SHGC and VT and relationship
between them. In climate zone 1 (Miami) and 2 (Phoenix), both SHGC and VT varied very little
producing small ranges and achieving fewer energy savings. This suggests that a high-
performance static glazing with very high LSG may be the most effective approach in these
climates, rather than dynamic glazing technologies. However, in order to achieve very high VT
(0.6) and low SHGC (0.1-0.2), solar light and heat must be decoupled. Such products in
development include the use of silver nanoroads to achieve luminous transmittance greater than
50% and blockage of solar radiation by approximately 80% [165] and fluidic windows with
luminous transmittance greater than 40% and SHGC 0.24-0.26 [166].

In the remaining cold and mixed climates (climates 4-7), implementing dynamic glazing
technology with a high SHGC range and overall high VT would be most effective. The results
demonstrate that in order to maximize energy savings, it is necessary to manipulate SHGC
independently of VT, maintaining a relatively light VT while modulating SHGC from very low
(0.1) to very high (0.8). This allows for minimal HVAC and lighting electricity usage. It appears
dynamic glazing with decoupled SHGC and VT would be most effective in climate zone 5-7
which are considered cool and mixed, achieving up to ~19% combined HVAC and lighting
energy savings. Even though dynamic glazing reduces the cooling load most percentage wise,
climates with heating and cooling loads yield the highest total energy savings. Across all the
climates, the optimal transition temperature was 15 C. A previous study on thermochromic
glazing similarly found that the optimal transition temperature was 25 C across all climates tested

[167], although the dynamic glazing properties were different.
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While the results in this work serve as a guide for future product development, there were
a few limitations. Firstly, the variables could have been discretized further to include more
options, however, it would have led to significantly more simulations due to the exhaustive
approach. Additionally, the simulations were only conducted for climates in the US, and future
work should include more dry climates. Lastly, it has been previously shown that WWR
influences energy savings [168], therefore it would be worthwhile to test on other building types

with varied WWR.

Conclusion

This work exhaustively tested a two-state dynamic glazing system to determine the
optimal range for VT and SHGC and ultimately identify which strategies of decoupling are viable
for different climates. In cold or mixed climates, a dynamic glazing system with a large range in
SHGC (0.1-0.8) and little variation, but overall high VT, is necessary to achieve maximum
energy savings, which were over 17% in ASHRAE climate zone 5a. However, in hot climates,
less variation is needed for SHGC and VT, instead static window products with very high LSG
are perhaps most appropriate. In both cases, it is clear that decoupling solar heat and light to
achieve high VT and low SHGC is necessary to maximize energy savings. Additionally, although
cooling load is most effectively reduced through dynamic glazing, the highest overall savings
were in mixed or cold climates that also had heating requirements. While such a dynamic glazing
technology could be achieved in different fashions, this work identifies the optimal ranges to

target for VT and SHGC switching.
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Chapter 5

Introducing dynamic facades in early design using constrained optimization

This chapter has been published as:
L. E. Hinkle, J. Wang, and N. C. Brown, “Quantifying potential dynamic facade energy
savings in early design using constrained optimization,” Building and Environment, vol. 221,

Aug. 2022, doi: 10.1016/J.BUILDENV.2022.109265.

Introduction

Buildings consume around 40% of primary energy around the world [140], which creates
both a challenge and a set of opportunities for designers. With the introduction of parametric
design and rapid simulation, computational tools are increasingly leveraged during early design to
iteratively explore features or configurations that can mitigate or offset building energy loads.
Researchers have experimented with design approaches ranging from optioneering to automated
optimization to produce low-energy buildings. While optimization can be implemented with
varying degrees of user input [13], [42], [169], it can quickly direct designers towards high-
performance solutions within a design space. Within the emerging research field surrounding
dynamic building envelope materials, including thermochromic- and electrochromic-based
glazing [144], [153],[170], [171] and PCMSs [15], [172], [173], optimization has been used to
maximize energy savings. Dynamic building fagade characteristics open the possibility of
variation at high-resolution time intervals for external stimuli such as solar radiation, wind
availability, and heatwaves, as well as long-term changes such as an evolving climate or new

buildings constructed nearby that can occur years or decades into the lifetime of a building.
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Existing studies show the performance of dynamic fagade materials is highly sensitive to
orientation, self-shading, and radiant heat exchange in relation to building shape. However, the
dynamic material properties are often determined after the early-stage architectural design is
established.

Due to limitations in simulation tools and the novelty of many dynamic technologies, the
interplay of geometric and material design decisions and their joint effects on energy performance
have not been extensively explored using computational tools. Additionally, the steps of the
traditional building design are often sequential, which can limit opportunity for early integration
[45], [174], [175]. The traditional building design process for commercial buildings first
establishes a building form, and then develops the floorplan and fagade construction, which can
separate decisions about geometry and materials [176]. Yet the facade plays a key role in
regulating the indoor thermal environment, and materials selection heavily influences energy
performance. It is unlikely that sequentially optimizing a building’s massing and glazing
placement, and then its floorplan for that set geometry, and finally the fagade construction will
lead to the best overall result, since geometry, program, and materials all affect one another.

Overall, these divergences necessitate a platform to explore complex building geometries
and emerging dynamic building envelope materials taking both optical and thermal properties
into account. In response, this paper first quantifies simulated energy saving across different
optimization-based building design procedures for dynamic glazing materials via two office
building case studies in separate climates. A comparison between approaches can evaluate the
current sequential design process as it applies to dynamic materials and reveal the importance of
design decisions related to dynamic materials on energy savings. Only glazing was modeled as
dynamic rather than other opaque fagade elements, due to the proliferation of highly glazed

contemporary office buildings and the current outlook of advanced glazing technologies.



98

Following these analyses, this paper proposes a new building design process to determine the
optimal material-geometric configuration.

In summary, this study presents three unique contributions:

1) it establishes a new optimization-driven framework with parametric modeling and
simulation methods at the early design stage for taking both geometry and dynamic material
(thermal and optical) properties into account.

2) it increases understanding of the relationship between these two categories (geometry
and material) of design variables towards building energy performance, especially in the context
of intrinsic dynamic material limitations, while establishing the potential benefits of joint
exploration; and

3) it quantitively illustrates the architectural and performance implications of using such
an approach in early design. It does this for a suburban commercial case study in a heating-
dominated climate and an urban commercial case study in a cooling-dominated climate,
providing new information for two building types most likely to be designed using computational

tools.

Literature review

Simulation in early design

Computational tools are currently a vital part of building design, helping to visualize or
automate many intricate tasks. They are utilized in all phases of design, from design ideation to
construction documentation. In the AEC industry, one important computational area for early
design is parametric design, which allows for the generation of numerous design iterations

without significant manual effort [20], [21], [177]. Parametric design is often implemented
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through visual coding platforms such as Grasshopper [22] or Dynamo [178] in which users
develop dynamic design variables to explore combinations of these variables and ultimately
investigate interrelated design goals. During early design, designers also make assumptions about
building systems and occupant behavior to simulate and predict how a constructed building will
perform.

Creating combinations of the variables forms a “design space”, and mapping these
designs to metrics that describe their performance, whether related to structure, energy, or
daylighting, generates an “objective space” [130]. The goal is often to explore the design space
with reference to the objective space in an effective and systematic manner. It has been shown
that utilizing design space exploration methods allows designers to develop and select high
performance design concepts for gradual refinement throughout later stages [21], [179], [180].
Since simulation engines across multiple domains are now accessible within a shared
environment, research towards dynamic fagade systems in buildings has taken advantage of these
software environments used by designers today. However, there is limited existing literature that
applies parametric design for both geometrically and materially flexible design decisions to

understand the energy implications of designing with dynamic building materials.

Quantifying potential dynamic facades energy savings

Many researchers claim dynamic fagades are necessary to achieve nearly net zero
buildings (nNEB) [181]. Dynamic fagades alter their form or function repeatedly and reversibly
over time in response to environmental conditions or human controls [182]. Dynamic fagade
technologies refer to both micro-scale properties of facade materials, including thermochromic
glazing [17], memory shape polymers [183], and phase-change materials [15], [173], [184],

[185], and physical-scale elements such as kinetic shading devices [186], [187]. While a variety



100

of technologies are possible, this paper focuses on the micro-scale, specifically adaptive glazing
technologies. Existing studies have demonstrated whole building energy savings of using
dynamic facade technologies range from 8-46% [188], [189], [190], even compared with static
high-performance envelopes. While electrochromic glazing is perhaps the most mature and
widely implemented example, material scientists are working in coordination with architectural
engineers to improve the thermal and optical capabilities of dynamic glazing [188]. Existing
electrochromic glazing operates from state-to-state, where there is a strict tradeoff between
visible transmittance (VT) and solar heat gain coefficient (SHGC). Adaptive u-value may be
achieved through switchable insulation elements [191], thermochromic technologies that change
emissivity [192], or other future technologies. However, several researchers have explored the
optimization of adaptive glazing properties to justify further development of the technology.
Several previous studies have investigated dynamic glazing technologies across multiple
climates, on different resolutions (e.g., monthly, daily, hourly), and with various control
strategies. Wang et al. [190] used EnergyPlus EMS to alternate both opaque assemblies and
window construction and achieved an average of 46% energy savings across multiple climate
zones. Favoino [17] investigated an inverse performance-oriented approach to optimize visible
transmittance (VT), g-value, and U-value to minimize primary building energy. Using an office
reference room with 40% window-to-wall ratio (WWR) and four cardinal orientations tested in
multiple climates, the study showed high energy savings are achievable by adapting the
transparent part of the building envelope alone, the largest factor being cooling energy demand.
Since dynamic fagade systems respond to outdoor climatic conditions, results varied per
orientation and location, with the highest achievable savings 55% for an east-facing zone in
Rome, Italy. Similarly, Tavares [193] recommended electrochromic glazing for cooling-
dominated climates and found the largest savings on the east and west facades, rather than the

south. As mentioned previously, these findings suggest dynamic fagade materials are highly
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sensitive to their immediate environment, which is dictated by the geometry of the building. This
notion introduces the possibility of early design intervention, which is explored throughout this
study.

While many researchers have focused on simulating existing or theoretical dynamic
envelope materials, others have focused on the control algorithms themselves, which have a large
influence over performance [194]. Hoon Lee [144] investigated various control parameters,
including outdoor air temperature, room air temperature, solar radiation incident on windows, and
global horizontal irradiance to develop an algorithm for optimal electrochromic performance.
Using ASHRAE 90.1 prototype for a medium office building as a reference, the size of the
cooling equipment was reduced by up to 20%. It was acknowledged additional savings could be
achieved by integrating controls with air handling units, lighting controls, and shading systems;
most importantly, the study concluded that future studies should utilize real building data. In
additional efforts to develop a control strategy, Wang et. al [87] performed a multiple regression
analysis of window factors based on a large database of existing windows and incorporated the
model into an EnergyPlus simulation-based optimization study. Though this model was
developed to optimize on an annual basis (static), it could be used to investigate optimization on a
daily or monthly resolution, and it is indeed incorporated into the methodology of this paper. As
in previous studies, the ASHRAE prototype model was assumed and used as a reference in
comparing energy savings. Although this model acts as the standard, it does not capture the

potentially complex geometries of contemporary office building architecture.

Building geometry optimization

In early design stages, there are opportunities to conduct optimization on building form

and fenestration configuration [195]. For most climates, the ratio between the external surface of
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a building and its volume most strongly correlates to energy demand, meaning that simplified
models can be adequate [196]. However, some researchers have demonstrated exceptions. For
example, Granaderio et al. [197] used a case study in Lisbon, Portugal to show that the surface
area to volume building shape coefficient was not strongly correlated to energy demand.
Similarly, while Depecker et al. [198] found a strong correlation between shape coefficient and
energy consumption for a case study in Paris, France, there was no clear correlation for the case
study in Carpentras, France. Further, building geometry optimization results differ depending on
the formulation of the design space. Fang [40] performed multi-objective optimization on nine
geometric variables for a small single-story building, reducing Energy Use Index (EUI) by up to
20% while increasing Useful Daylight Index (UDI) by 39%. Jin and Jeong [24] used a genetic
algorithm to optimize a free-form building shape, including geometric parameters such as top
polygon type, top length, and tilt angle, and were able to reduce annual heat gain/loss by up
60.4% in certain climates. While these case studies exist in specific climates and design spaces,
they demonstrate that geometric considerations can affect building energy consumption, often in
complex ways.

Other researchers have approached this problem by determining the most influential
geometric characteristics for predicting energy. Samuelson et al. [23] conducted a sensitivity
analysis on various early design building characteristics, including WWR, glass type (static),
building rotation, shading, and shape, and determined that, across three major cities, WWR was
the most sensitive variable, followed by glass type and rotation. There have been several
additional studies exploring the relationship between building geometry and building energy
consumption, but the few that have [41] included dynamic characteristics investigated
prototypical building types, not potentially self-shading or otherwise complex geometry. Thus, it
is difficult to estimate the effects of dynamic fagades, both in terms of energy savings and effects

on the building design process.



103

Upon reviewing the sensitivity analysis literature above, there is a further opportunity to
implement optimization techniques instead of exhaustive search methods, since optimization can
more quickly find the best possible designs within a space and present those for consideration to
the designer. However, to fully address the relationship between geometric changes under the
direction of an architect and potential dynamic facade properties, realistic case studies must be
developed, along with constraints that avoid architecturally infeasible solutions. If incorporating
dynamic variables and using non-reference building geometry, an optimization procedure can

begin to quantify the potential savings limits of modifying different variable types.

Methodology

The methodology investigates optimization-driven, rapid parametric modeling
approaches for early building design in practice. As such, it required the creation of parametric
models with realistic design variables, constraints, and model resolution that would be considered
at this stage of design. Two case studies with different contexts and climates were modeled and
analyzed to compare the effects of modifying building geometry and dynamic facade materials on
building energy consumption, in sequences and combinations allowed by current simulation-
integrated design tools. The procedure for testing the case studies included developing a
parametric design space in Grasshopper, establishing an analytical daylighting constraint,
simulating energy performance using EnergyPlus [199] through ClimateStudio [128], using a
local derivative-free constrained optimization algorithm to find the best performing designs for
different sequences, and analyzing the data against multiple baselines (Figure 5-1). This section

first describes the optimization sequences before detailing the case studies themselves.



104

Parametric Design Space Daylight Constraint Energy Simulation Constrained Optimization Data Analysis

Figure 5-1: General framework for optimization procedures.

Rather than a design space exploration or “catalog” approach, which generates options
and presents them for consideration, this paper uses optimization to drive towards the best energy
performing designs. Obtaining optimization results establishes limits for how much energy could
potentially be saved using parametric methods, even if designers might use data generated during
optimization only to inform decisions rather than fully automate them. The data in this paper were
generated through eight constrained optimization runs and subsequent combinations of variable
settings, described in Table 5-1. For each case study, this includes an optimization of geometric
variables (Geo) and dependent dynamic glazing variables based on typical behavior (DG-E). The
dynamic existing runs (DG-E) relied on a regression relationship between material properties U-
value, SHGC, and VT based on current material databases [87], representing a realistic
configuration possible with current technologies.

The optimal settings for each optimization (geometric and glazing) are then combined,
replicating a sequential process in which the designer first optimizes one category and then
optimizes the other category (Geo — DG-E and DG-E — Geo). Finally, to estimate the importance
of each variable type for energy savings directly and compare with the overall optimization
procedures, a random forest regression model was built to calculate feature importance. Figure 5-
2 summarizes relationships between the different optimization runs and combinations, listing run

numbers for case study 1; the same sequence is repeated for case study 2.

Table 5-1: Optimization run specifications.

Case study Dynamic glazing Geometry
1 | 2 optimization optimization

Run Description
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1 Geo X X
2 DG-E X X
3 Geo — DG-E X X
4 DG-E — Geo X X
5 Geo X X
6 DG-E X X
7 Geo — DG-E X X
8 DG-E — Geo X X

It was hypothesized that such a sequential process may not reach the full savings
potential, and that simultaneous optimization of both variable types is the most effective strategy.
However, limitations in current design and simulation tools contain barriers to simultaneous
optimization of dynamic properties at high resolution—platforms that enable fully flexible
modeling of geometry and platforms that enable fully flexible modeling of dynamic properties (as
opposed to existing technologies) are not fully integrated. While future possibilities for
simultaneous optimization with full flexibility are discussed in later sections, this paper makes
contributions by first considering both geometry and dynamic properties using available design

methods and corresponding sequences and timescales.

Design Space Formulation

l

Dynamic Glazing.  Dynamic Glazing

Geometry® Existing(‘) Existing e . Geometrye

_ constrained
RF + Variable Importance optimization

Figure 5-2: Flowchart explaining the constrained optimization runs where the run numbers
correspond to Table 5-1.
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Case study selection

Case Study 1 - Brighton, MI Case Study 2 - San Antonio, TX

\

Figure 5-3: Case study 1 (left) and 2 (right) location and site.

This study focuses on commercial buildings, which are frequently designed with
computational approaches. Two case study sites were selected to represent common office
building typologies (Figure 5-3). Commonalities between archetype characterization methods in
building energy modeling include climate, population classification (urban, suburban, rural),
fenestration specifications, and building height [200]. Given the density of large office buildings,
this paper considers urban and suburban cases. Case study 1 was inspired by Lake Trust Credit
Union Headquarters in central Michigan [201], which is a mid-rise suburban office building with
ribbon windows. This building features a curved north fagade, providing ample opportunity for
geometric exploration including glazing placement as well as overall orientation and shape in
plan. Case study 2 was inspired by 1603 Broadway in San Antonio, Texas [202]. This building is
a high-rise with a curtain wall construction and a more compact footprint for an urban setting,
which limits some potential geometric interventions. Dimensions, layouts, and model settings
were approximated using Grasshopper plug-in Elk [203]. Additional information about each case

study is provided in Table 5-2.
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Table 5-2: General case study assumptions.

Case study 1 Case study 2
Inspiration building EZEZ;J:::ezredlt Union 1603 Broadway
Location Brighton, Michigan San Antonio, Texas
Gross building area (m?) | 9290 58530
ASHRAE climate zone | 5 2
Population classification | suburban urban
Window-to-wall ratio 0.4 0.4
Number of floors 3 15
Floor-to-floor height (m) | 4.6 4.6

Design space formulation

In contrast to previous studies using static benchmark geometry, a design space was
established containing flexible form, orientation, and fenestration to accurately represent early
design, in which alternatives are considered but some affinity to an original design concept is
maintained. This was done to quantify the energy savings potential of architect-designed office
buildings and understand the gaps in the traditional design process that may prevent widespread
implementation of dynamic fagade materials. Parametric variables are described in Tables 5-3
and 5-4 and visualized in Figure 5-4. In each design, three fenestration variables were
extrapolated: sill height, head height, and the percentage of opaque panels. The facades were
panelized into linear sections, and the percentage of opaque panels dictated how many panels
were assigned opaque construction versus glazing. Case study 1 also included three control points
along the curved fagade, building rotation, and a variable that transitions between a linear and L-
shaped form (vs). Case study 2 allows for variation of floor area distribution between the tower
and podium building volumes, adjustments in length-width aspect ratios, and tower location.

Additionally, because Case study 2 is located in an urban setting with surrounding obstructions,
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the entire building can move around on the site (v4, vs). By incorporating the unique aspects of

each building geometry, such as the curvature and the tower/podium relationship, this study

attempts to capture the design implications of optimizing contemporary office building

architecture.

opaque:
transparent

L~
At /7 indow sill

control points

pannnstil V6 + head heights

V4 building rotation

opaque:
transparent

'

site location x,y

V1 tower:base building volume

Figure 5-4: Variables used to generate the design space, case study 1 (left) and 2 (right).

Table 5-3: Case study 1 geometric variables.

Variable Minimum | Maximum | Range Original Design
vl Curve control point 1* (m) | 0.50 0.75 0.25 0.65
v2 Curve control point 2* (m) | 0.50 1.75 1.25 1.15
v3 Curve control point 3* (m) | 0.01 0.49 0.48 0.25
v4 Site rotation (deg) 0.00 360.00 360.00 0.00
v5 Window fraction 0.01 0.98 0.97 0.15
vo Window head height (m) 2.00 4.37 2.37 3.00
v7 Windowsill height (m) 0.20 1.00 0.80 0.65
v8 L-shape (deg) 0.00 25.00 25.00 0.00
*Moves control point with respect to the start of the defined facade curve
Table 5-4: Case study 2 geometric variables.
Variable Minimum | Maximum | Range Original Design
vl Tower: base building 0.20 0.60 0.40 0.40
volume fraction
v2 Ba.se length-width aspect 0.50 200 1.50 0.85
ratio
v3 Toyver length-width aspect 0.50 200 1.50 0.75
ratio
v4 Site location x 0.00 1.00 1.00 0.50
v5 Site location y 0.00 1.00 1.00 0.50
v6 Tower location x 0.25 0.75 0.50 0.50
v7 Tower location y 0.25 0.75 0.50 0.35
v8 Windowsill height (m) 0.20 1.00 0.80 0.60
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v9

Window fraction

0.01

0.98

0.97

0.3

v10

2.00

4.37

2.37

3.5

Window head height (m)

Additional variables were established for the dynamic properties of both facades. Glazing
properties were accessed through ClimateStudio’s window component in Grasshopper. This
component wraps the simple window component from EnergyPlus, which allows users to create
custom glazing by specifying VT, SHGC, and U-value. The bounds of the glazing variables were
established by surveying existing window products in the LBNL glazing database within Climate

Studio’s glazing component. The bounds for each glazing variable are provided in Table 5-5.

Table 5-5: Glazing variable bounds.

Variable Minimum | Maximum | Range Original Design
vo/vll U-value (W/ m*K) | 0.67 5.82 5.15 See Table 6
vl0/v12 | VT 0.05 0.91 0.86 See Table 6

Window products that are commercially available abide by physical restrictions between
VT and SHGC. In general, to decrease SHGC, VT must also decrease, which creates a tradeoff
between building energy and daylight. Wang et al. [87] built multiple regression models to relate
four main glazing properties: solar heat gain coefficient (SHGC), visible transmittance (VT), U-
value (U), and emissivity (E). Using a database of existing window products, Equation 1 was
identified as the most accurate model. As current glazing technologies largely follow this
relationship, the dynamic glazing optimization included only U-value and VT as variables, and
SHGC was calculated using Equation 1. Emissivity was held constant at E=0.84 per typical
window construction.
SHGC = 0.023 + 044« VT + 1.88 xE + 0.002 « U — 2.38 * E2 + 0.28 x VT = E

(Equation 1) [87]
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Performance evaluation

Energy model simulations were performed in Grasshopper using the energy components
of ClimateStudio. ClimateStudio links geometry in Rhinoceros to the EnergyPlus simulation
engine. The formal optimization objective was to minimize the site energy consumption due to
heating, cooling, and lighting requirements, which represent the aspects of operational energy
which are affected by geometry and the fagade (Equation 2). The objective function was subject
to the daylighting constraint, which depended on whether the run included geometric
optimization (left) or dynamic glazing optimization (right) (Equation 2). The daylighting
constraint is described in following section. The envelope assumptions were determined based on
ASHRAE 90.1 2019 in the respective climate zones. Consistent with the DOE prototype for large
office buildings, the case study models were mechanically zoned to have four perimeter zones
with 4.57 m zone depth and a core zone on each level. All other model settings were also based

on ASHRAE 2019 standards and are provided in Table 5-6.

?:1(COP X Qcooling,i) + (PF1 X Qheating,i) + (PFZ X Qlighting,i)

min f(x) = CSF
0.88-DF 90° 0.88-DF 90°
o B O ),
it (0.88-DF.E) (0.88-DF.ﬂ>
VT 0 WWR 0

where i is the load condition at a particular hour and n is the number of hours (Equation 2)

Table 5-6: EnergyPlus settings accessed via Climate Studio.

Case study 1 Case study 2 Units
Roof R-value* 5.28 4.40 K-m*W
Exterior Wall R-value* 2.01 1.00 K-m*W
Floor R-value* 2.57 1.11 K-m*W
Window SHGC* 0.38 0.25
Window U-value* 2.04 2.55 W/ K-m?
Window VT#*** 0.60 0.60
Schedule* zzgllci;lgit;ce occupancy, equipment,
Occupancy* 0.05 p/m?
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Equipment* 8.07 W/m?
Lighting power density* 6.89 W/m?
Daylighting* Continuous dimming, 500 lux
Heating set point* 21 (constant setpoint — all on) °C
Cooling set point™* 24 (constant setpoint — all on) °C

2.5 L/s/person
Mechanical ventilation** 03 L/zs/zone area

m

Heat recovery™*** Sensible, 60% recovery effectiveness
Infiltration** 0.5 ACH
Peak flow**** 0.12 L/h/person
Supply temperature™** 60 °C
Mains temperature™*** 10 °C

*ASHRAE 90.1, **ASHRAE 62.1, ***Industry standard, ****LEED spreadsheet

The ClimateStudio components output the idealized heating, cooling, and lighting energy
in Joules (J). The idealized loads were converted to site energy requirements assuming the system
efficiencies listed in Table 5-7. To make direct comparisons as building geometry changed,

building energy consumption was normalized by the gross building area (GSF).

Table 5-7: Secondary energy conversion assumptions. Values from [5].

Load Assumption
PF, Heating 85% site efficient
cop Cooling COP=3
PF» Lighting 100% site efficient

Optimization method

To find the best possible results for each case study and sequence, local derivative-free
constrained optimization was performed on the building geometry and glazing properties.
Specifically, COBYLA (Constrained Optimization BY Linear Approximations) was implemented
through the Grasshopper component Radical, available with the Design Space Exploration (DSE)

plug-in [130]. This algorithm models the objective and constraint functions by linear interpolation
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[204]. A local derivative-free optimization approach led to shorter run times compared to
evolutionary algorithms, since it constructs successive linear approximations of the objective
function and constraints via a simplex of n+1 points (in #» dimensions) and optimizes these
approximations in a trust region at each step, leading to fewer evaluations [205]. For a starting
point, all variables were set to the middle point. The convergence criterion was a 0.01 change in
objective function.

While building geometry was optimized on an annual basis as a static characteristic,
glazing properties were optimized on a monthly resolution. Previous electrochromic glazing
studies identified monthly simulations as a sufficient starting point to estimate energy savings
[17]. Once the optimal properties for each month were determined, the monthly building energy
values were summed to represent annual building energy. Because the beginning of each monthly
simulation begins a new environment in EnergyPlus, there is a small discrepancy between
summing monthly values and the result of a single annual simulation. The authors determined this
error was less than 1% for the case study models.

Reviewing previous related optimization studies revealed a tendency to reduce the
glazing area and lower visible transmittance well below industry-accepted values. As the main
arguments of this paper are based on the typical building design process at the conceptual design
phase, it seemed inappropriate to deem the optimal solution as one with small windows with low
visible transmittance. However, accurate daylighting simulations are computationally expensive.
To counter the algorithm’s tendency to minimize glazing area, a daylighting proxy constraint was
implemented on window-to-wall ratio (WWR) and VT. The minimum WWR required to meet
daylighting requirements was calculated using a rule of thumb-based design sequence for sidelit
spaces by Reinhart and LoVerso [206].

This basic calculation, intended for early design, is given in Equation 3, which was used

to formulate the constraints (Equations 4 and 5). The daylight factor (DF) was set to 2%
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according to recommendations in the IES Handbook [207]. It was assumed there were no
obstructions in case study 1, therefore the obstruction angle 8 was set to 90°. The obstruction
angle in case study 2 was dynamically calculated as an output of the parametric model (Figure 5-
5). During geometric optimization, the relative error between the calculated WWR ratio
(Equation 4) and that of the actual design was entered as a formal constraint. Similarly, the
relative error between the calculated VT and average VT among all orientations (Equation 5) was
adopted as a formal constraint. Note that Equation 2 is an approximation and accounts only for
diffuse daylight contribution. Further analysis would be required for glare considerations in later
design, but these constraints help ensure realistic glazing requirements as determined by the

architecture.

0.088-DF 90

WWR >
VT 3

(Equation 3 [206])

(0 .088 DF 90° )

SEeDES < 0 (Equation 4)
( VT T)

0.088:DF 90°) .,

( Wwffss DF)90 = <0 (Equation 5)
( WWR T)

Figure 5-5: Case study 2 obstruction angle diagram.
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Results

In this section, the results of each constrained optimization run are first presented and
analyzed to compare potential energy savings from manipulating different variable types. Then,
sequentially designing with dynamic fagades is evaluated. Finally, relative variable contributions

are assessed directly.

Optimal geometry

The results of the simulated potential energy savings due to geometric optimization only
are provided in Figure 5-6, offering very little savings (1-2%). The design space was formulated
to preserve original design intent, which may have limited savings slightly. However, this result
confirms previous evidence that building form itself is not a good indicator of energy
consumption [23]. Yet in some cases, 1-2% savings may still be desirable, and the designer must
weigh architectural implications while deciding if altering the building geometry is worth it.
Despite the small savings, both cases apparently responded to climate and context. Case study 1,
located in a suburban setting, took advantage of its ability to fully rotate and oriented the facade
with the greatest glazing area toward the south. It is likely that this geometric alteration, in
addition to reducing glazing area within the daylight constraint, had the largest contribution to the
energy savings. Case study 2 was more geometrically limited to account for the challenges of
designing in an urban setting. While case study 1 leveraged solar gains to reduce the heating load,
case study 2 attempted to block them. More square footage was distributed to the podium, rather
than the tower since the podium receives shade from context. However, during optimization, the

model moved away from adjacent buildings to satisfy the daylighting constraint.
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Original Building Geometry Optimized Building Geometry

0 Energy Savings 100

212
0 Energy Savings 100

Figure 5-6: Original vs. optimized building geometry for case study 1 (top) and case study 2
(bottom).

Optimal dynamic glazing properties

Results for optimization of the dynamic properties are shown in Figure 5-7. A single
dotted line follows the changing monthly setting for a glazing property on one side of the
building. Overall savings for each constrained optimization run are provided at the bottom of

each column.
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Figure 5-7: Optimal glazing properties on a monthly resolution.

SHGC and VT

The existing constrained optimization results account for the relationship between SHGC,
VT, and U-value, which was previously established using existing window product data [87].
Case study 1 optimization selected a higher SHGC in the winter months to accept solar gains and
decrease the heating load and selected a lower SHGC in the summer months to block solar gains
and decrease the cooling load. The case study 2 optimization instead opted for a lower SHGC the
majority of the year. The optimal SHGC results are appropriate given case study 1 is located in

ASHRAE climate zone 5 (heating-dominated), and case study 2 is located in ASHRAE climate
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zone 2 (cooling-dominated). For case study 1, the south fagade is dominated by the SHGC so it
must be varied, whereas the north facade is constrained by the VT variation, which will be
discussed in the next section. On the other hand, the east and west facades are varied more for
case study 2 due to increased surface area. The north fagade maintains a high VT, since it can
afford a higher SHGC, with limited solar radiation.

Overall, the shapes of the existing SHGC graphs for both case studies mimic their
respective existing VT graph. This clearly demonstrates the tradeoff between SHGC and VT in
existing window products: in order to decrease SHGC, VT must also decrease. Due to this
tradeoff, case study 1 existing was not able to achieve high SHGC values in the winter months.
To the same effect, case study 2 existing only selected low SHGC in the summer for key facade
orientations.

Additional investigation following these results present notable features in VT variations.
With future technologies, it might be possible to slightly push the bounds towards products with
both higher VT and SHGC than in the statistical models used above [87]. We experimented with
giving VT more freedom in the simulation, and we expected that the maximum and constant VT
would be most beneficial to the energy savings. However, window VT can influence heating and
cooling loads as well due to the heat gains generated by the electrical lights. Even with standard-
compliant lighting power density (LPD) in the simulations, the high lighting needs in commercial
buildings may still enlarge the heat gain effects of electrical lights, which has been reported in
other studies [208]. Future studies can test this relationship more rigorously.

In this work, in hot climates (case study 2), such heat gains are not beneficial to save heating and
cooling energy, so the VT value was kept at or near the upper bound (~90%) on the south and
north facades. Increasing the VT increased daylight levels and consequently reduced the electric
lighting load. However, VT was not at 100% in the optimal scenario in heating seasons (case

study 1), which is mainly constrained by the low U-value in the winter. To achieve a higher
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insulating ability of windows, low-e coatings and/or additional window panes are required, which
typically reduce the VT value. As mentioned previously, VT is sacrificed in both existing runs to
achieve desirable SHGC values. This allows for a high light-to-solar gain (LSG) ratio, thus

demonstrating the effectiveness of the algorithm.

U-value

It is widely known that highly insulating windows reduce heating and cooling loads
consumption, and the results of the dynamic glazing optimization runs generally agree. For case
study 1 and case study 2, the optimal U-value was the lower bound for nine and seven of twelve
months, respectively. However, a higher U-value was selected for the summer months in climate
zone 5 and shoulder months in climate zone 2. During these mild weather periods, strong solar
heat gains may significantly enhance the building cooling loads. Such increased heat gains can be
offset by the high U-value of the building window systems because the outdoor temperature
conditions at most times are desirable or beneficial to the heat release from the interior. For
window orientations with higher solar heat gains, a higher U-value was selected. Further, if the
simulations were conducted on an hourly resolution, a lower U-value would be selected during
the day, and a higher U-value would be selected during the night. While additional studies can
investigate these phenomena in more detail, the optimization still largely gives intuitive results
that would be helpful at the early stages of design.

Although U-value is not strongly correlated to SHGC and VT [87], there are still losses to
address by manipulating this glazing property: to increase the thermal insulating ability of glazing
systems, VT and SHGC will be somewhat reduced due to the addition of glazing layers or low-e

coatings.
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Since most months optimized to the lower bound, it was difficult to understand if
modulating the U-value contributed to energy savings. To answer this question, a “high-
performance” static baseline model was used to quantify the savings due to the dynamic aspect
alone. The high-performance glazing adopted the lower bound of the U-value from the
optimization and maintained the ASHRAE recommended SHGC value. The high-performance
static model performed better than the baseline, but the dynamic model exceeded it by 5% and
3% respectively for case study 1 and case study 2. This suggests adopting dynamic glazing is a
viable step in reducing building energy consumption. Energy savings comparisons are discussed

further in the next section.

Comparing sequential optimization results

After determining potential savings from each category separately (runs 1, 2, 5, and 6),
existing dynamic glazing properties were optimized using the optimal geometric configuration
(runs 3 and 7) and an additional constrained optimization was conducted on the building
geometry with the existing dynamic glazing optimal settings (runs 4 and 8). Figure 5-8 shows the
results of these two design procedures. Case study 1 achieved 1% reduction in heating, cooling,
and lighting load energy from the geometric optimization and up to 19% reduction from the
dynamic glazing optimization. Similarly, case study 2 achieved 2% reduction in heating, cooling,
and lighting load energy from the geometric optimization and up to 13% reduction from the

dynamic glazing optimization.
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Figure 5-8: Combining optimal settings for sequential optimization. Run numbers correspond
with Table 5-1.

Designers might assume that combining the optimal variable settings from each
constrained optimization run would yield the highest energy savings. However, because the
geometric optimization altered the building orientation and form, thus altering many aspects of
the fenestration, the combination did not lead to greater savings (runs 3 and 7). Compared to the
existing dynamic glazing optimization, the energy savings values differed by 3% for case study 1.
The relationship between dynamic glazing and building geometry is also demonstrated by the
additional sequential optimization run (runs 4 and 8). For these runs, the optimal existing
dynamic glazing settings were set, and the building geometry was optimized. For case study 1,
optimizing the building geometry with the optimal existing glazing settings resulted in a loss of
about 5% savings compared to the dynamic glazing optimization alone. This suggests the
performance of dynamic glazing is not only dependent on the climate zone, but also the effects of
window orientation, self-shading, and radiant heat exchange in relation the building shape. A

direct comparison of the energy use reduction for each procedure is provided in Figure 5-9.
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Figure 5-9: Energy savings comparison.

The results show that making geometric adjustments warrants a new set of optimal
dynamic glazing settings, and vice versa. Therefore, to truly understand the full potential of
dynamic glazing in architect-designed buildings with atypical geometries, an additional
optimization run would need to be conducted with all 16 variables and 18 variables for case
studies 1 and 2, respectively. We predict that building geometry and dynamic fagade materials
must be considered simultaneously to achieve the optimal geometric-material combination for
minimal energy consumption. Unfortunately, limitations in existing engineering software prevent
exploration of complex geometry, and limitations in parametric environments prevent the full
customization of dynamic materials. This suggests an avenue for extensive tool development and
future research, towards a future in which designers use simulation to specify dynamic materials
that can adapt to necessary conditions, along with building geometries that afford the most

flexibility for achieving future energy savings through dynamic properties.
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Considering variable importance directly

To analyze which individual variables were most influential in predicting building energy
usage, a random forest regression model was built to first predict energy consumption and then
calculate feature importance. This secondary analysis complements the findings of the overall
optimization procedure by attempting to understand variables at a more granular level. To create
this data model, case study 1 and case study 2 design spaces were sampled at a rate of n=1000
using the Latin Hypercube Sampling method. The dependent variable was the combined annual
heating, cooling, and lighting load (converted to secondary energy) divided by the gross square
footage. The training and validation data were split at a ratio of 0.6. The random forest module
from scikit learn [135] was implemented and tuned before calculating feature importance,
reaching an 87.2% accuracy on the case study 1 test set and an 83.6% accuracy on the test set for
case study 2. Figure 5-10 shows the collective influence of the four main categories of variables:
percentage of opaque panels variable, other window geometry variables (sill height and head
height), and window performance (SHGC, VT, and U-value). Both case study 1 and case study 2
identified the single most important variable as the percentage of opaque panels, which most
strongly influences WWR. Note that there were three variables affecting fenestration size:
percentage of opaque panels, sill height, and head height. The collective influence of the three
variables that together dictate WWR was the most important category in predicting building

energy usage, followed by window performance.
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Figure 5-10: Random forest variable importance.

It is noteworthy that control points from case study 1 (vi, v2, v3) are not important
features based on this model, reinforcing the notion that energy is not frequently “form-giving”
for design. Likewise, the length: width aspect ratios in case study 2 (v, and v3) were also deemed
unimportant. However, because dynamic glazing does not yet outperform opaque construction,
the amount and configuration of glazing matters most. This furthers the importance of exploring
building geometry and fagade materials in early design, as many geometric decisions are still

relevant.

Discussion

The results demonstrate that a sequential design process is not necessarily fit for dynamic
facade technologies. Because dynamic fagades are sensitive to orientation, self-shading, and
radiant heat exchange in relation to the building shape, simply applying the optimal values for the
climate zone can lead to potential missed savings. Dynamic fagade technologies introduce a
unique opportunity to explore building geometry and envelope materials in early design to find
the optimal geometric-material combination. However, it is currently difficult in conceptual
design to structure an optimization problem with different resolutions using current design

tools—building geometry is optimized on an annual basis, and dynamic fagades are optimized on
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a monthly or hourly resolution. At minimum, we conclude that to maximize the potential savings
of dynamic glazing or dynamic building envelope materials in general, it is important to consider
building geometry and orientation while developing proper control algorithms. Further, the
design lessons learned here suggest fundamental changes in the early design process when
working with dynamic fagades and encourage further computational tool development. Given the
cutting-edge and often open-source nature of digital design tools, it is likely that further
modifications to existing software could make simultaneous optimization of geometry and
facades increasingly accessible to designers in practice.

Furthermore, many previous studies on building energy optimization use rectangular
buildings or prototypical models. This study provides an example of geometry optimization for
more expressive architectural designs. While it is possible to achieve 2% energy savings in these
examples, drastic geometric changes often influence performance in other engineering domains or
substantially alter the original design intent. For example, the optimal geometric configuration for
case study 1 required the building to rotate 117° clockwise. While this is a simple parametric
adjustment, it would have huge implications for how the massing relates to the site. In case study
2, the shifting of the tower on the podium would likewise have considerable influence on the
structural performance. Because decisions related to building geometry require consensus
between architects and other engineering disciplines, implementing these changes may or may
not be beneficial to the whole project. On the other hand, assuming dynamic envelope materials
become more commercially available, the high energy savings potential from dynamic glazing
creates a compelling argument for their importance in design.

There are several notable limitations to this study. Although a monthly resolution was
sufficient to demonstrate the geometric-material relationship, future studies at a higher resolution
(daily or hourly) across multiple climate zones would provide a more robust understanding of

dynamic fagcade performance in various design settings. As advanced simulation tools and
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advanced geometry tools are futher integrated, it will likely be possible in the future to conduct
this framework in another platform and increase the resolution. Further, a simulation-based
daylighting constraint could offer a more thorough treatment of daylight compared to the
analytical constraint applied in this study. Nevertheless, the case studies were modeled with
current, appropriate design variables and simulation resolution for early design, which reveals

significant implications for both architecture and building performance.

Conclusion

In this study, we investigated the implications of automated sequential optimization while
designing with dynamic glazing materials. While geometric optimization alone achieved only 2%
energy savings, dynamic material optimization savings reached up to 19%. However, when
combined in sequence, around 5% potential energy savings are lost. The paper also determines
the relative importance of different decision categories in early design. The results are in
accordance with previous findings or assumptions about the building design process established
by studying these properties separately, such as the limits of geometric optimization on savings
compared to fagade materials [23] and the relative importance of WWR [209]. However, by using
repeated constrained optimization runs that consider geometry, facades, and realistic design
constraints altogether, the data in this paper provides a comprehensive analysis of these
interrelated building features and how they are manipulated during design.

This study leaves several areas for further research. More extensive simulation of modern
building geometries and types requires increasing access for designers and allowing for
customization of dynamic components in parametric environments. Other issues to address
include increasing the resolution of the simulation and allowing for continuous transitions, rather

than state-to-state. Additionally, there are opportunities for multi-disciplinary optimization
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(MDO) [112],[210], [211] and further studies with multi-objective methodologies, as opposed to

constrained optimization. Such studies could provide new insight into early design strategies for
balancing adjacent objectives in conjunction with operational energy use. As daylighting
simulations become less computationally expensive, including a daylight objective such as spatial
daylight autonomy (sDA) or a glare metric will also provide more detailed information. Finally, a
more extensive treatment of simultaneous optimization for flexible geometric variables and
facade characteristics should be conducted for geometries outside the typical rectilinear
prototypes, once tools are developed to make this accessible within design software.

While dynamic fagades show considerable promise for improving the sustainability of
future buildings, several barriers remain to their frequent adoption in architecture, making them a
topic of ongoing research. As the fundamental material and technological questions surrounding
dynamic fagades are being answered, it is critical that digital design approaches develop to make
these technologies accessible for design practitioners. This paper hopes to stimulate further
investigation into how dynamic fagcade considerations can be better incorporated into advanced

design approaches, including parametric design and optimization.
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Chapter 6

Conclusion

Summary of contributions

Surrogate model-based workflows

The first half of this dissertation focused on addressing two limitations of surrogate
model-based workflows: accessibility and flexibility. Although the idea of generalizable design
spaces was initially proposed in [33], new exploration methods were required to make the data
useful during the early design stages and across multiple projects. In Chapter 2, a novel
sensitivity analysis named dynamic subset sensitivity analysis was proposed. This method
provides updated variable importance by interpolating regional surrogate models outputs from a
tree-like model. The method was demonstrated across three domains, and a set of
recommendations was developed for future implementation. Looking forward, in order for these
models to be truly generalizable, climate information should be incorporated into the surrogate
model. For example, the daylighting analysis developed for Pittsburgh, PA, US, cannot be used in
Phoenix, AZ, US, since their sky conditions differ. Additionally, further work is required to
identify and construct all repeated subproblems.

While dynamic subset sensitivity analysis works to filter a large generalizable design
space, improving accessibility, the workflow in Chapter 3 allows for the expansion of a custom
design space to improve flexibility. Chapter 3 proposes a new workflow that combines a tabular
transfer learning method with random walks sampling to significantly reduce the number of

additional samples required to update the surrogate model when new variables are added to the
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parametric model. Through a unique facade case study, it was shown that far fewer simulations
are needed to update the surrogate model and achieve adequate performance via this workflow.
This enables greater flexibility in the early design stages, where changes are frequent. Future
work is required to establish or adopt techniques for determining when transfer learning is
effective for early building design models, as well as further testing on case studies from other
building system domains.

To advance surrogate model-based workflows for building facade design, ‘static’ design
decisions were included as variables in these two studies. However, the next two studies

investigated ‘dynamic’ design improvements.

Dynamic facade design

The second half of this dissertation focused on dynamic facade design, optimizing
dynamic glazing on a whole building basis, both as a component using prototypical buildings
(Chapter 4) and as an integrated design decision in real-world building design scenarios (Chapter
5). Chapter 4 first finds the optimal two-state dynamic glazing configuration across multiple
climates to determine the ideal relationship between SHGC and VT via parametric energy
simulations. The results show that in order to maximize energy savings for cold and mixed
climates, there must be a large range of SHGC, while modulating VT is less important. However,
in hot climates, a much smaller range is required for SHGC modulations, and VT modulations
have a greater impact on energy savings. In both situations, the analyses demonstrate the need to
decouple solar heat and light to maximize energy savings, either as a static or dynamic window
technology. It also established the energy savings potential by tuning SHGC and VT alone on a
ten-minute resolution, which was up to 17.4% in ASHRAE climate zone 5a. This chapter focused

on dynamic glazing on the component level, using prototypical buildings as case studies to
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develop direction for future product development. Chapter 5 begins to combine ‘static’ and
‘dynamic’ design decisions in a constrained optimization workflow using real-world building
examples.

In Chapter 5, a series of constrained optimization workflows were conducted to quantify
the missed energy savings due to optimizing ‘static’ variables first and then ‘dynamic’ variables
(in this case, dynamic glazing properties) according to traditional building design processes, and
vice versa. The results showed that by following a sequential optimization approach, up to 5% of
energy savings were missed, suggesting that dynamic facade variables should be considered in
conjunction with ‘static’ variables that affect their control and operation. As new dynamic fagade
systems are developed and implemented, designers should consider adopting an integrated design

approach.

Future work

The studies in this dissertation lay the foundation for a surrogate model-based workflow
that incorporates both ‘static’ and ‘dynamic’ fagade design decisions. There are two main
considerations when accomplishing this, 1) whether the dynamic fagade technology is already
established or custom and actively designed during building design, and 2) the dimensionality of
the design space. If the dynamic fagade is already established, for example, electrochromic
glazing, it can likely be considered in surrogate model-based workflows within the simulation
itself (e.g., there is an electrochromic glazing object within EnergyPlus). However, if the dynamic
facade is custom and there are variables related to it, more effort is required to develop a custom
component. In both cases, but particularly in the latter, there is the potential to produce a very

high-dimensional design space, which would require significant computational resources.
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To mitigate this barrier, it would be best to consider only static design variables that
significantly affect the control and operation of dynamic fagade technologies. For example, the
WWR has been shown to affect the effectiveness of dynamic glazing [212]. Additionally, other
geometric variables such as room depth (which would influence illuminance distribution and
sensor placement) or even categorical variables like space type (which would affect the
operation) have the potential to interact with dynamic fagade variables. However, dynamic
glazing that is controlled based on solar radiation or outdoor air temperature may not be affected
by all static design decisions. Further research is required to determine this and adopt appropriate
dimensionality reduction methods to make this workflow feasible.

Another area of future research related to the workflows developed in this dissertation is
the ability to translate early design surrogate models to later stages of design. It is possible that
transfer learning techniques could be leveraged to transition the surrogate model from low-
resolution information in early design stages to high resolution in the later stages. This would
eliminate redundancies throughout the design process and continue to improve the accessibility

and flexibility of surrogate model-based workflows.
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