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  ABSTRACT  

Design space exploration (DSE) strategies are increasingly used in architectural and 

engineering practice to generate and identify improved solutions. However, DSE often demands 

complex processes that require disciplinary knowledge and a firm grasp of exploration tools. 

While parametric platforms and optimization algorithms can enable a designer to rapidly 

construct and evaluate numerous design options in response to multi-disciplinary criteria, these 

tools may be less useful if not properly leveraged. Specifically, design students, who are 

developing their disciplinary knowledge, may not yet have the skills to thoroughly model and 

explore a design space. Alternatively, pre-built parametric models can provide performance 

feedback and allow for design exploration without extensive knowledge of the design tool. Such 

digital environments are useful for beginning designers to illustrate design relationships and to 

foster multi-objective thinking. Yet, these tools may not enable full design autonomy as is 

required in building design practice. Understanding how students and practitioners approach 

multi-objective design tasks using unrestricted DSE techniques can inform characteristics of their 

optimization strategies and reveal unexpected outcomes of working with design tools that provide 

performance feedback. 

In response, I investigate the design space exploration behaviors of building designers at 

different educational stages, reporting on aspects of their design efficacy, multi-disciplinary 

thinking, and optimization techniques. Through a series of design studies, this body of work 

contributes to design process research and optimization education by examining how designers 

with different levels of experience seek improved design solutions in exploration tools. The first 

study examined how pre-design students performed in a parametric environment and how they 

prioritized different building design criteria. The second study asked mixed teams of architecture 

and engineering students to engage in a collaborative, parametric design task and investigated 
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their efficacy and exploration when working in a parametric tool. While the first two studies 

focus on exploration in a pre-built parametric model, studies 3 and 4 expand the design space to 

prompt participants to develop their own parametric models and perform optimization strategies. 

Study 3 uses design sessions from graduate student participants to develop a code to describe and 

categorize optimization behaviors and study 4 expands on the work to include practitioners and 

compare their behaviors based on cognitive loads.  

Across these studies, multiple streams of data were gathered and evaluated using varying 

research methods. Surveys and interviews were used to collect information about designers’ self-

perception, priorities, and design thinking, while the digital tools recorded the designers’ 

performance, behavior, and eye movements. These datasets were analyzed and interpreted using 

different methods of evaluation including the Consensual Assessment Technique for design 

efficacy, the Situated FBS Ontology to define phases of the design process, and the Index of 

Cognitive activity to measure cognitive effort. While students were able to readily explore pre-

built design spaces to develop solutions, they followed more rote patterns when developing a 

parametric model for design optimization compared to practitioners. Although parametric models 

can support rapid design exploration, optimization tools prompted more diversity of design 

processes and cognitive efforts for practitioners compared to students. These results challenge 

some established understandings of cognitive load, but also illustrate how experts will perform 

tasks with greater sophistication beyond basic step-by-step procedures. I conclude by relating the 

outcomes from the presented research to levels of designers’ development and propose 

opportunities to use DSE tools in education strategies that can reinforce students’ investigative 

design processes. 
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Chapter 1 
 

Introduction 

 

As cities expand, infrastructure ages, and climate changes, the concerns of our built 

environment grow more complex. Our world requires architecture that accounts for 

environmental impacts, material resourcefulness, and energy efficiency while also addressing 

cultural, social, and programmatic needs. In response, building designers are tasked with 

developing high performing, cross-disciplinary design solutions. To do so, architects and 

engineers often integrate iterative computational tools into their design process to aid in the 

development and examination of multi-objective designs [1], [2]. One approach that enables 

designers to quickly probe design options is the process of design space exploration (DSE). DSE 

can refer to a systematic analysis of desirable design solutions in a space of tentative design 

points [3]. However, DSE can also more broadly refer to “the activity of exploring design 

alternatives prior to implementation” as described by Kang et al. [4]. Digital DSE tools, such as 

parametric models and optimization algorithms, can provide visual and performance feedback 

while enabling a designer to rapidly consider a range of design options with objective 

performance feedback. Figure 1-1 illustrates designers exploring a surface in a model space with 

editable variables and a plot comparing feedback of the model’s performance objectives. 
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Figure 1-1. An example of a parametric model with a model space, three variables, and a 
comparative plot of objective feedback. 

DSE tools are used by both architects and engineers to achieve multi-objective goals [2], 

[5] and have prompted academics to investigate the broader application of DSE in parametric and 

optimization design processes. Previous research has considered decision-making procedures in 

parametric tools [6]–[9], the advantages of parametric design for technical performance [10]–

[14], and the inclusion of parametric thinking in design education [15]–[17]. While research 

supports the incorporation of parametric strategies in building design for their exploration 

possibilities, parametric models alone do not provide design guidance. As an additional resource 

for developing and evaluating high performing buildings, some building design optimization tools 

can quickly generate many design options from a parametric model and highlight solutions that 

best align with quantitative goals provided by the designer. Research into building optimization 

processes has examined its algorithmic methods [18]–[22], considered potential benefits towards 

design performance [23]–[30] and investigated its applications in practice [31]–[33]. However, in 

considering optimization strategies, just because a designer knows how to use a tool, does not 

mean they know how to best employ a tool. To achieve the benefits of optimization techniques, 

designers must be prepared to incorporate performance feedback into their design decisions. For a 

student, who is learning how to use DSE tools while still developing their designerly skills, the 

benefits of design feedback may not be fully comprehended. When equipping designers to 
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perform DSE strategies in practice, it is prudent to consider what preparations for multi-objective 

thinking are evident int their disciplinary instruction. 

Computational tools have become integral in design education, but exploration strategies 

are not widely taught and may be difficult for students to apply. Additionally, learning how to use 

a digital tool can be more challenging than grasping the intended design lessons. Theories in 

mental workload associate learning with increased cognitive effort [34] which can limit task 

performance. Due to their experience in a task, experts are expected to exhibit lower cognitive 

loads and follow more precise design procedures compared to novice designers [35]. 

Optimization models produce new information about a design with each iteration and new 

projects may present novel design challenges. If designers with less DSE experience are still 

developing skill sets within a tool, their efficacy in decision-making may be restricted. 

Nevertheless, researchers and educators support that teaching optimization methods and 

incorporating more multi-objective thinking is necessary in leading design students into the future 

of professional practice [31], [36]. Teaching DSE tools alone may not be enough to ensure 

improved design performance, though. Understanding how designers with different levels of 

experience behave when exploring design spaces may better inform how to sculpt their education 

and identify opportunities to improve cognitive efficacy in DSE tool. 

1.1 Thesis Scope 

In response, this body of work examines the evolution of building designers’ behavior 

and performance when exploring a parametric space for improved design solutions and makes 

suggestions for design stakeholders. Figure 1-2 provides the titles and order of the four studies 

included in this dissertation.  
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Figure 1-2. Outline graphic summarizing the body of the dissertation. 

The first study presented considers the proficiency and perceptions of pre-design 

students, prior to beginning their education as architects or engineers, when exploring a 

parametric model. The results of the study suggest that while pre-design students can navigate 

towards better performing designs in a parametric tool, they may struggle to address multi-

disciplinary design concerns. The second study presents the efficacy and exploration techniques 

of mixed-discipline student design teams when collaborating in a parametric tool. It concludes 

that since expected performance differences based on team composition did not occur with the 

introduction of a parametric environment, tools that provide geometric and numeric design 

performance feedback may positively influence design process outcomes regardless of team 

disciplinary composition.  

To better describe designer and DSE tool interaction, the third study reports the behaviors 

of graduate student designers when developing and evaluating a parametric model using 

optimization techniques. A code was developed to recognize optimization design actions and 

themes in the participants’ optimization design strategies were determined. While some student 

participants integrated optimization feedback into their designs, not all achieved full or even 

partial integration, indicating a variety of approaches to optimization for students who are still 

learning how to best apply the tool. Broadening the research to encompass design behavior 
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beyond theoretical application from student experience, the fourth study includes design session 

data from practitioners who have implemented building optimization techniques when developing 

built projects. Using various streams of mental workload metrics from established eye-tracking 

techniques, the paper from the fourth study compares the design strategies and cognitive efforts 

of the students to practitioners to deepen our understanding of design process across levels of 

experience in optimization tools. Aspects of the practitioners’ mental workload aligned with 

established knowledge in design expertise, like having lower cognitive load, but they also 

exhibited a wider range of strategies and cognitive responses compared to students, confounding 

which techniques may lead to better informed building design decisions. Although tools that 

provide rapid performance feedback can support effective design space exploration, they may 

also introduce unexpected cognitive burdens when interpreting information about a design. 

In the conclusion of this dissertation, I draw on contributions from these studies, paired 

with existing research and experience, to make suggestions for design stakeholders in academia 

and tool development. It is intended to encourage education of DSE techniques and resolve some 

of the challenges in using DSE tools for developing designers. 
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Chapter 2 
 

Background 

Improving the built environment for the benefit of our world requires effective design 

strategies and relies on formative design tools. How we prepare designers to respond to complex, 

multi-disciplinary design challenges in digital environments can impact their design processes 

and influence their design efforts. In evaluating behaviors of designers, from pre-design students 

to practitioners, when exploring building design spaces, the work presented in this dissertation 

contributes to the rich body of research that strives to capture the increasing complexity of design 

processes and supports opportunities for improvement in the pursuit of building design. 

2.1 Design Space Explorations 

In a broad sense, design space exploration (DSE) can be defined as searching a set of 

design options prior to implementation [1] but can also refer to seeking a solution that satisfies 

desirable objective goals from a set of tentative design points [2]. In architectural design, tentative 

design points can have associated qualities and quantities that represent the characteristics of a 

building. Figure 2-1 provides an example of a model with a design space and an objective space. 

In this example, the tower has four possible solutions defined by its two variables, height and 

width. In each solution, the height and width are different and are also inversely related. In the 

Design Space, the variables of each solution are plotted to illustrate their relationships. The model 

also has two objectives, structure and sunlight, which are plotted in the Objective Space with 

representative performance scores. Note that a performance score is not the same as the actual 

value of the objective. In this example sunlight and structure do not have the same units nor do 
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they share a similar relationship within their dimensions. More daylight and less structure are 

generally considered advantageous to reduce artificial light and decrease construction costs. To 

better capture the complexity of these goals, objectives are often normalized so they can be 

compared without units and organized so that “0” is the goal of all objectives in an optimization 

algorithm. However, the objective goals of a design are frequently inversely related such that no 

perfect numeric solution exists. When this occurs, a designer may prioritize certain objectives, or 

they will rely on their own intuition and select a design based on criteria not captured in the 

objective space. Manually generating different model iterations with multiple design variables is 

a time intense process and exploring model performances individually also requires repetitive 

effort. Alternatively, digital tools, such as parametric models, readily enable a designer to 

produce design variations [3] and optimization tools can rapidly search for “better” performing 

design solutions, supporting more efficient design processes [4]–[6]. 

 
Figure 2-1. Example tower model with a Design Space and an Objective space, illustrating the 
relationship between variables and objectives. 
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2.1.1 Parametric Tools 

Parametric tools allow for DSE and are supported by previous research as a viable 

environment for design decision-making that build on established models of design process. 

There is much literature discussing theories of design process [7]–[10], with most models 

establishing a phase for problem definition, one for design development, and one of resolution 

analysis. Some researchers have also considered how a designer knows which phase to perform, 

such as Cross’ designerly ways of knowing [11] which describes a designers’ cognitive reflection 

on design actions. Distinguishing conscience decisions during the design phases is important 

when accounting for potential influences on design thinking. As digital tools become integral to 

design formulation, researchers have also considered how technology may impact the design 

process [12]–[14]. Literature shows that when a computer is used to support or make key 

decisions, there are different schemes to identify a designer’s cognitive or computational 

decisions [15], [16]. However, other research differentiates that a parametric model cannot 

replace the ingenuity of a human designer [17]. In a general definition, Woodbury describes 

parametric design as an exploration of associated relationships of geometric concepts [18]. 

Oxman adds to this definition stating “the designer ‘designs’ the code of the parametric schema in 

order to design the design object” [19]. Although designing a parametric model may supersede 

designing the building as a cognitive effort, Oxman also acknowledges that parametric design is 

“a unique and distinctive model of creativity and innovation in parametric design thinking.” [19]. 

Oxman’s assessment re-affirms what earlier research into parametric design and cognition has 

established: parametric thinking is legitimate approach to exploring and solving complex design 

problems [20]–[23].  

In addition to enabling viable design processes, incorporating parametric tools into 

parametric thinking can improve the performance of built designs [24], [25]. Parametric tools can 



14 

 

readily provide technical performance feedback, which is beneficial for multi-disciplinary 

exploration [26], [27]. They have been useful for producing and evaluating building criteria such 

as architectural forms [28], structural design [29], building energy [30], daylight and glare [31], 

[32], and urban planning [28]. In application of built work, parametric tools are used by esteemed 

design firms, such as ARUP [33], Foster + Partners [34], NBBJ Architects [15], and UNStudio 

[15]. They are also used by research designers, such as the Block Group, who employed 

parametric strategies to explore forms with structural and material feedback to develop their 

innovative Beyond Bending pavilion at the 2016 Venice Biennale [35]. In all these examples, 

though, design teams are composed of either both architects and building engineers or designers 

with multi-disciplinary backgrounds to draw upon the expertise of both professions. DSE tools 

can support multi-objective problem solving and encourage collaborative efforts, but the users 

must also have a designerly sense of effective design decisions. 

2.1.1.1 Multi-Disciplinary Design 

Multi-disciplinary design relies on design tools that can produce various streams of 

feedback and requires that designers interpret the results. The existence of a design team with 

both architects and building engineers, however, does not guarantee effective collaboration. 

While diversity in design teams can lead to more creative solutions, this outcome is dependent on 

a shared understanding and conducive design environment [36]. Unfavorable to collaboration, 

many design tools inherently favor the aptitude of specific professions to allow for expertise of 

design, such as sketching and geometric modeling for architects and detailed analysis tools for 

engineers. However, the multi-objective feedback provided by parametric models, such as 

Grasshopper, may allow designers to approach the design environment with more shared 

influence and integrate feedback from the tools more readily. Previous research has shown that 
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designers’ cognitive effort towards design knowledge can change during parametric design, 

relying more on the tool’s rule algorithms for design decisions as the designers progressed 

through the design session [20]. This is useful in considering design behavior in parametric tools 

and suggests how the tools could be leveraged for multi-disciplinary design. While a designer 

must know how to work in a parametric space, gaps in their disciplinary expertise may be 

supported by the tool’s logic. In addition, parametric tools enable designers to generate numerous 

design options with multiple design criteria. This process results in a massive search space, 

though, and exploring each design individually for its objective performance is time intensive and 

requires automation [2]. Additional tools and techniques are required to further support effective 

DSE strategies with multi-objective considerations. 

2.1.2 Optimization Tools 

To help parse design solutions from a parametric space, designers use optimization 

algorithms to rapidly search the design space for solutions that meet their desired goals. This 

process supports designers in making more informed decisions [37]. However, objective spaces 

rarely contain one, “best” solution and a designer may iterate between their model and the 

optimization tool’s feedback, honing in on a design solution that they desire [38]. Figure 2-2 

illustrates the cyclical process between a designer and the tool as the designer refines and 

variables in the design space. While the optimization tool provides informed feedback with each 

iteration, selecting a final design will often depend on more than just quantitative goals, 

accounting for qualitative requirements, relying on the designer’s intuition, and, perhaps, 

responding to a client’s preference. 
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Figure 2-2. The iterative design process between a designer and an optimization tool as the designer 
refines the design space to a solution that they find desirable. 

Optimization tools can thus help designers make informed decisions while still allowing 

for design freedom. Nielson reports optimization as an opportunity for human and machine 

cooperation [39] and Liu et al. describes optimization-based design exploration as a mutual 

influence between building massing and façade design [40]. Additional research reports the 

benefits of optimization on design performance such as for building simulations [41], [42], 

structural performance [43]–[45], and enclosure design [46]–[48]. While optimization techniques 

allow for rapid exploration and quick performance feedback, some designers criticized digital 

design space exploration for its limitation in design thinking and potential design fixation 

compared to traditional sketching processes [49]. Nevertheless, optimization strategies have been 

used in a variety of practices [37], [50] and help designers find improved design solutions to 

complex design problems [51]–[53]. For optimization tools to be useful, though, a designer must 

know how to effectively incorporate optimization strategies into their design processes and their 

design education may equip them to use complex DSE tools. 

2.2 Designer Education 

With the broadening application of DSE strategies in practice, preparing students to join 

design professions may require their education to incorporate more DSE techniques and reinforce 

multi-objective thinking. However, research in design identity suggests that students may not be 
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prepared to respond to cross-disciplinary design tasks as they can behave in a way they find 

emblematic to their identified profession [54], [55]. While architecture students are strong at 

creative thinking, they may shy away from rigorous quantitative analysis [56] and engineering 

students can sometimes struggle to solve open ended problems [57]. These limitations may curb 

their efficacy as designers when responding to multi-disciplinary design tasks and influence their 

collaborative decision-making in mixed design teams. As a potential solution, parametric tools 

with design performance feedback can bridge gaps in disciplinary understanding.  

2.2.1 Disciplinary Distinctions 

Architects and engineers are trained to address different design concerns which allows for 

expertise to support better performing buildings, however, their scopes are rarely exclusive. 

Although building engineers generally have technical specialties, such as in structural or 

mechanical systems, they still work with an architect to achieve a wholistic vision. And while 

architects may be responsible for addressing programmatic needs, visual appearance, and project 

cohesion, they are also concerned with performative characteristics, such as enclosure systems, 

and construction management, such as cost and timeline. Despite their overlaps in design 

considerations, the professions’ training distinguishes them by providing engineers with a strong 

math- and science-based context for design while architects receive extensive practice in spatial 

design and idea expression. Moreover, in the United States, two different governing bodies 

oversee accreditation of architecture and engineering degree programs: the National Architectural 

Accrediting Board (NAAB) and the Accreditation Board for Engineering and Technology 

(ABET). These agencies require different criteria of a curriculum before approving an accredited 

degree. For example, it is expected that architecture students complete a series of design studios 

while engineers must understand calculus. 
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Architecture and engineering were not always independent professions, though. Prior to 

the industrial revolution, a “building master” was responsible for all design aspects of a building, 

but with advances in technology, materials, and construction techniques, expertise emerged. 

There was strategic value in distributing design responsibility, allowing for innovative 

approaches, and improving design performance. In addition, around the turn of the 20th century, 

specificity in building design was further delineated with the growth of institutional education. A 

person intrigued by engineering or architecture could pursue a degree that aligned with their 

topical interests and cognitive strengths. While disciplinary distinctions have led building 

designers to achieve monumental feats in building construction, they have also led to assumed 

contention. In his book titled “Architect and Engineer: A Study in Sibling Rivalry,” Andrew Saint 

explains how architects and engineers have too neatly compartmentalized their own histories and 

capabilities, driving them apart and limiting what they can collectively achieve [58]. He adds that 

the professions are more connected than many people tend to believe, and the disciplines cannot 

work separate from each other. Building educators have called for improved understanding 

between the professions [59], with books discussing the overlaps in their disciplinary interests 

[60-62]. Nevertheless, recent research acknowledges that the professions have different 

preferences for tools, like building performance simulations [63]. 

With advances in multi-disciplinary technology, such as collaborative design tools and 

parametric environments, there is an opportunity to reassimilate responsibilities and design 

processes of architects and engineers. Although paradigm shifts are not exclusive to academic 

venues, disciplinary education may support more multi-objective thinking with introductions to 

parametric techniques and optimization thinking. 
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2.2.2 Design Education in Optimization 

Although parametric strategies have been incorporated in student education [64]–[66], 

concepts of optimization are not prevalently included in traditional architectural or engineering 

education. While some educators lead courses that directly teach optimization strategies [67]–

[69], there are not established approaches for instruction of systematic improved design 

performance in these domains, which has been criticized as a limitation to the tools’ application 

[70]. In addition, there is support from educators that teaching optimization methods in 

architecture is important in leading architecture students into the future of building design [71] 

and that there is a need for more multi-objective thinking in design fields [50]. However, the 

advantages of optimization techniques may not be immediately evident to students without 

understanding the challenges faced by practitioners when navigating complex design objectives. 

Constructing a parametric model and using optimization tools effectively requires skills in the 

design environment and practice in addressing multiple design goals. Regardless of experience, 

though, projects can vary by their requirements and contexts which may prompt practitioners to 

re-learn about their design approaches. To better educate student designers about advantageous 

optimization strategies, it is useful to differentiate novice and expert levels of understanding in 

DSE tools. 

2.2.3 Expertise in Design 

There is much consideration given design expertise, with researchers reporting 

differences of novice and expert design approaches in terms of idea formulation [72], the kinds of 

knowledge they use [73], and patterns in their cognitive effort [74]. In general, experts are 

expected to use more precise strategies and exert less cognitive effort compared to novices [72]–
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[75]. Increased cognitive load is associated with the retention of new information [76] which 

requires working memory to process new data into long-term, permanent knowledge [77], [78]. 

As a result, expertise often aligns with less cognitive load since experts are not interpreting new 

data. However, building design frequently evokes novel solutions with each new project, 

prompting the generation of new information that may challenge an expert’s mental effort [79]. In 

addition, task complexity can demand more working memory [80], which can impact a designer’s 

performance [81]. Building design exploration requires the consideration of many criteria that 

often have complicated relationships. As a result, navigating optimization design tasks may 

impact design cognition in unexpected ways. 

Understanding how cognition, task complexity, and design expertise unintentionally 

influence DSE strategies can reveal which design approaches lead to more effectual design 

outcomes. They may also suggest opportunities to improve DSE education. From studying the 

relationship between cognition and new information, researchers have been able to influence 

instruction tactics for more effectual learning. Kirschner states “…limitations of working memory 

can be circumvented by coding multiple elements of information as one element in cognitive 

schemata, by automating rules, and by using more than one presentation modality” [82]. In short, 

learners are more likely to retain information when it is presented in several forms and delivered 

with consistency. This pedagogical advice is best applied during DSE education, as opposed to in 

practice, since exploration and optimization is a complex task [2] and may be difficult to refine 

later in career development. In addition, architectural proficiency in rapidly evolving 

computational tools can be transient [79], which challenges what may qualify as “expertise” in 

building design. For many research studies that compare designers’ level of knowledge, an 

“expert” is measured by years of experience in a field. However, a recent paper by Tan [83] 

suggests that traditional understandings of expertise may not fully capture a designer’s 

understanding of a topic. As an alternative, Tan describes expertise as an extension of experience, 
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adaptability, perceptiveness, and motivation. When responding to complex design problems in 

evolving DSE environments, a designer’s ability to synthesize, reflect, and adapt is more telling 

than the number of years a designer has worked in their field. Moreover, design capability and 

evidence of disciplinary knowledge may change depending on the tools being used and the 

complexity of the design task.  

In considering the evolution of designer competence and behavior in DSE environments, 

this dissertation relies on research in parametric design, multi-disciplinary education, and design 

process cognition to present four new studies that contribute to design understanding. It also 

makes suggestions for DSE stakeholders, such as instructors in academia and tool developers, to 

better connect research findings to practice. Below, I briefly introduce each study and outline the 

research gap it addresses, methods used, and conclusions taken from the results. In the concluding 

remarks of this dissertation, I discuss opportunities to apply the information collected from the 

studies to design education. 

2.3 Research Methods 

A series of studies were conducted which considered the perceptions, efficacy, and 

behaviors of designers when working in DSE tools, summarized in Fig. 2-3. The studies focused 

on stages of designer development from before beginning their professional education, to solving 

multi-disciplinary problems as students, and to completing complex design challenges in practice. 

The studies’ design tasks and environments prompted greater exploration as the designers’ level 

of experience increased. Pre-built parametric models were used in the first two studies with an 

unconstrained design space used in studies three and four. I provide an overview of each studies’ 

research goals, the methods used, and a summary of the results which provide insight into 
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designerly behavior in DSE activities. The studies reveal opportunities to enhance designer 

education in multi-objective thinking and design exploration. 

 

Figure 2-3.  Outline of the four studies with the participants’ level of education, a summary of the 
design task goal, and the type of model space used. 

2.3.1 Assessing Pre-Design Student Perception 

Before evaluating design behavior in complex design tools, the performance of potential 

designers in an approachable design space was considered. A design study, conducted in a 

parametric modeling tool with visual objective feedback, captured pre-design students’ 

perceptions of self-competency in engineering related subjects and compared their performance 

behaviors in the tool to the design criteria that they valued. The study asked, how do pre-design 

students’ self-competency in STEM relate to their design exploration, performance, and 

perception of goals when working a parametric space. From this study, the more exclusive self-

competency a student felt in STEM subjects, the more they iterated in the tool and the better their 

final designs performed. However, the STEM self-competent students also ranked appearance 

lower than the quantitative criteria. While it was expected that STEM self-competent students 
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would create improved design solutions and it is advantageous for them to iterate more in the 

parametric design space, it may be that engineering oriented students are inclined to not consider 

criteria that are not included in their subject of interest. This may limit their efficacy when 

responding to multidisciplinary design tasks in their career and influence their efficacy in diverse 

design teams. Also, 83% of all students submitted solutions that performed better than the starting 

design, suggesting that they were able to effectively respond in the parametric design tool despite 

having never used it before. It may be that parametric exploration can enable performative design 

decisions without extensive design experience. 

This work is published in: 

Bunt, S., Hinkle, L., Walton, A. & Brown, N. (2023). Relationship between high school 

STEM Self-competency and behavior in a parametric building design activity. In 2023 ASEE 

Annual Conference & Exposition Proceedings. 

2.3.2 Evaluating Student Team Multi-Disciplinary Collaboration 

Design teams are often comprised of diverse members to address multi-disciplinary 

considerations, which can lead to more creative solutions, but this outcome is dependent on a 

shared understanding between teammates and a conducive environment [84]. The behavior of 

diverse building designers when given multi-objective tasks may not yield the predicted results of 

increased creativity and design efficacy as they have their own criteria and tools for achieving 

their disciplinary goals. To better understand this division of effort, a design study was conducted 

which asked pairs of Architect+Architect, Engineer+Engineer, and Architect+Engineer to 

respond to a design task with both architecture and engineering focused criteria in an equally 

approachable parametric model. The research asked, how does team composition relate to design 

efficacy and exploration in a shared, live parametric design environment? While it was expected 
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that the teams of mixed designers would develop more effective solutions, as evaluated by 4 

design experts, no team type developed better performing designs with statistical significance. No 

team type displayed differentiating exploration strategies either. It may be that student designers 

are not yet distinguishable enough in their discipline to display differences in design strategies or 

that a parametric modeling tool with both qualitative and quantitative feedback can benefit the 

efforts of a design team in absence of the design member counterpart. More detailed research was 

needed focusing on the design behavior of designers when developing and exploring a design 

space. 

This work is primarily published in: 

Bunt, S. & Brown, N. (2023). Design efficacy and exploration behavior of student 

architect-engineer design teams in shared parametric environments. Buildings 13(5), 1296. 

https://doi.org/10.3390/buildings13051296 

2.3.3 Characterizing Student Designerly Behavior 

While optimization techniques have increasingly been used in design fields, the exact 

behaviors of designers when developing a model for optimization is less clear. In response, a 

third design study asked: what behaviors do student designers, trained in optimization techniques, 

exhibit when designing in a parametric space with optimization goals? The study documented and 

coded the behaviors of student designers when creating a design in a parametric space with multi-

disciplinary design goals and optimization strategies. Gero and Kannengiesser’s Situated FBS 

Ontology [85] was used to identify event shifts in the optimization design process, isolating 

design techniques in the designers’ decision-making, and allowing the strategies of design 

optimization students to be compared. This work reported iterative loops in optimizations 

strategies including complete cycles in which the designer integrated feedback from the 

https://doi.org/10.3390/buildings13051296
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optimization tool into their design and course cycles in which the designer did not review the 

performance feedback from the tool at all. This work, qualitative in nature, provides a language 

by which to further describe design behavior in optimization and allows for more specific, 

quantitative analysis in future research questions. In particular, understanding how the design 

behaviors of students compare to that of practitioners is important in making suggestions for the 

academic development of building designers. 

This work is published in: 

Bunt, S., Berdanier, C. G. P., & Brown, N. C. (2023b). Observing Architectural 

Engineering Graduate Students’ Design Optimization Behaviors Using Eye-Tracking Methods. 

Journal of Civil Engineering Education, 149(4). https://doi.org/10.1061/JCEECD.EIENG-1889  

2.3.4 Comparing Student and Practitioner Strategies and Cognition 

A fourth study asked: how do student and practitioner behaviors and cognitive loads 

compare when designing in a parametric space with optimization goals? To address this question, 

the study from part three was expanded to include design sessions from building design 

practitioners. Their design behaviors were reported by session events and organized into 

optimization cycles. To discuss differences in in their design thinking, the cognitive responses of 

students and practitioners were compared using three eye-tracking metrics: scaled Index of 

Cognitive Activity [86], fixation count, and fixation durations. Although research suggests that 

eye behavior can indicate changes in mental effort when interpreting new information, it is 

possible that design optimization tasks elicit unexpected cognitive responses. In general, it is 

expected that experts express lower cognition loads compared to novices because they are less 

likely to be learning while performing a design task. While the practitioners in this study 

demonstrated lower overall cognitive loads compared to the students, they also had a wider 

https://doi.org/10.1061/JCEECD.EIENG-1889
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spread of cognitive responses in the three metrics and used a greater variety of design strategies. 

The practitioners more consistently incorporated design feedback from the optimization tools, but 

also opted for more design autonomy in two of the sessions. Meanwhile, differences in student 

techniques and cognitive efforts were less diverse. This work supports presumptions of decreased 

cognitive effort for practitioners, but also confounds expectations of individual design behavior in 

optimization strategies. It may be that optimization tasks elicit distinct design processes when 

navigating design knowledge with parametric modeling and layering algorithmic performance 

feedback. Future work will organize the sessions by optimization cycles, rather than design 

experience, to examine cognition in complete design events and identify optimization procedures 

that may lead to lower cognitive effort.  

This work will be submitted to a future journal. 

2.3.5 Concluding Remarks 

In the conclusion of my dissertation, I make suggestions for design stakeholders to better 

connect the research to opportunities for application. I make recommendations to educators for 

how to use DSE environments as instructional tools depending on the experience of their students 

and their teaching goals. For optimization tool developers, I illustrate different ways to provide 

performance feedback and reduce erroneous streams of information. In acknowledging a gap 

between existing DSE tools and instruction of complete optimization strategies, I propose an 

optimization teaching tool that guides learners through the steps of incorporating design feedback 

into their decisions. Through a series of instructional phases, it allows for increased design 

freedom while prompting optimization behavior. The tool would be a pre-built model in an 

approachable design environment but could provide numerous examples and illustrate multi-

disciplinary design thinking through different building typologies. These suggestions are guided 



27 

 

by the results of the four presented studies which are outlined in Table 2-1. The table states gaps 

in existing research, highlights the studies’ research questions, describes the methods used, and 

summarizes the outcomes. 

 

Table 2-1. Contribution stating the gap in research, research questions, methods used to address the 
question, and the outcomes from the research. 
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Chapter 3 
 

Assessing Pre-Design Student Perceptions 

Work in this chapter was originally published as S. Bunt, L Hinkle, A. Walton, N. C. 

Brown, “Relationship between High School STEM Self-Competency and Behavior in a 

Parametric Building Design Activity,” in 2023 ASEE Annual Conference & Exposition, 

Baltimore, Maryland: American Society of Engineering Education, June 25, 2023. The version 

presented in this document is expended with more detail. 

Abstract 

Building designers receive discipline-specific education which prepares them to address 

distinct design goals, but they may struggle to address criteria not considered part of their 

profession based on their disciplinary identity. In STEM subjects, such as engineering, high 

school students’ perception of their own competency is positively related to their performance. 

Although this is beneficial for engineering design, it is unclear how students who identify 

strongly with STEM prior to professional training may account for non-STEM design objectives 

compared to STEM-related criteria. This research considers how pre-design students’ STEM self-

competency can predict their behavior when responding to a building design task with technical 

and non-technical goals. A study was conducted which asked high school students about their 

STEM competency and instructed them to develop a conceptual skyscraper design in an age-

accessible, digital design environment. The design tool contained a parametric model which 

provided visual and performance feedback about energy use, daylight, and cost as the students 

changed skyscraper variables. Students with higher STEM self-competency (SC) selected higher-
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performing designs, viewed more design iterations, and ranked the building’s appearance as their 

lowest priority. These results inform future design educators about student outlook prior to any 

professional training and reveal potential limitations in student approaches to multidisciplinary 

building design tasks.  

3.1 Introduction 

Aspects of college students’ career choices are influenced by how closely they identify 

with the subject matter, particularly in STEM fields [1], which may influence them to behave in a 

way they feel is emblematic of that profession [2]. This is relevant to majors such as engineering 

and architecture that require collaborative design expertise but can often define and approach 

their design goals differently [3]. Since design is a complex, challenging endeavor that requires 

both skillsets, educators in each profession may seek to avoid rigid self-classifications among 

students. For example, engineering majors can benefit from understanding they can be creative, 

synthetic thinkers, and architects can learn to incorporate calculations more productively during 

design.  

Recent efforts in engineering education have sought to develop such crossover skills 

among engineers, including problem-based learning [4], [5] and integrated design studios with 

architecture students. As an approach to multi-disciplinary design, emerging parametric modeling 

tools, which can provide both geometric and numeric feedback, have been shown to improve 

design performance [6]–[8] and are a viable environment for design decision making [9]. It is 

unclear, though, how the disciplines approach these tools differently because of their varying 

professional training, outlook, and experience. In addition, little is known about how students 

may use these tools based on their design aptitudes at various stages of development. It is likely 

that as students gain training and eventual experience as designers, their approach to using a 
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computational tool will increase in similarity to experts. This could be partially due to improving 

aptitudes, but it may also be influenced by a learned professional outlook or orientation. 

However, student perceptions of creativity and technical fields may emerge and even solidify 

prior to starting college coursework [10]. College-level instructors may thus encounter prior 

biases when formally teaching design to students for the first time.  

Before entering secondary education, students are not yet characterized by an associated 

future profession—they are not yet “engineering” students. Instead, as the acronym STEM 

(Science, Technology, Engineering, and Math) has become a widespread term in education to 

strengthen and grow student awareness of these subjects, strong STEM associations may 

influence students’ thinking about design in unintended ways. While positive exposure to STEM 

fields can lead to more participation in STEM activities, students may approach design tasks with 

a narrower, STEM-oriented focus, rather than a comprehensive solution that includes non-

technical considerations. Previous research has shown that a student’s self-perception of their 

performance in STEM subjects can positively predict their actual STEM performance [1], but less 

is known about how STEM-competent students navigate non-STEM goals, particularly if they 

identify more exclusively within STEM fields. 

 In response, this research examines how high school students’ self-competency 

in STEM (STEM SC) relates to their design performance, exploration, and priorities when 

responding to a parametric building design activity. Three research questions are asked:  

RQ1: How does student STEM SC relate to their design performance in parametric 

building design? In this study, “design performance” refers to the ability of students to generate 

solutions that have good performance in quantitative metrics such as low energy usage. Previous 

research shows that student self-efficacy and performance are positively related both outside of 

STEM [11] and in STEM [12]. However, this study evaluates performance specifically in a 

building design exercise with quantitative goals that are simulated within a parametric design 
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tool. This relationship can reflect potential student effectiveness in technical building design, but 

it does not fully reflect student behavior. The extent of their exploration with the design space can 

suggest their intended engagement of the task, prompting the second research question:  

RQ2: How does high school student STEM SC relate to their design exploration? 

Engaging with many possible solutions can reflect a designer’s intent and suggest a level of 

interest in the material. Hazari acknowledges interest as a measure for identity in STEM subjects 

[13], and iterative exploration is fundamental to problem-solving [14]. Yet building design tasks 

often have many goals which may capture designers’ interests differently, as they may prioritize 

some criteria over others. The third research question asks:  

RQ3: How does student STEM SC relate to the design criteria that they value? In 

building design, rarely is a single design consideration isolated from holistic problem solving. 

Multi-disciplinary problem-solving is necessary but may be limited if a student with a strong 

STEM SC does not value goals that are not considered part of traditional STEM criteria, such as 

aspects of building appearance.  

To answer these questions, a study was conducted at a high school in the Northeastern 

United States that asked students about their relationship with STEM both directly and indirectly. 

They then respond to a building design task with three technical criteria and one qualitative 

criterion. Students worked in a readily accessible parametric modeling tool that collected 

information about their exploration and performance, while a survey recorded their priorities 

when designing. Design performance was assessed using simplified performance simulations for 

building cost, energy use, and artificial light required. These relative metrics were presented back 

to students during their exploration, allowing them to prioritize between quantitative and 

qualitative objectives. The resulting correlations can prompt educators to incorporate more 

intentional multi-disciplinary thinking in K-12 curriculum to better prepare students for complex 

problems if they pursue design professions. 
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3.2 Background 

Considerable research has already been conducted on engineering creative thinking and 

STEM education. However, less is known about how students’ natural approaches to a design 

task might be influenced by STEM self-competency before initial exposure to formal design 

training of any type. We use the term self-competency to describe students’ perception of what 

they can accomplish with their abilities, following Susan Harter [15], but applying the concept to 

more specific academic subdomains. In addition, theoretical frameworks such as expectancy-

value theory support that students’ expectancy to be able to perform a task, combined with 

students’ value of a task, can predict outcomes of engagement and achievement [16], [17]. 

Assessing self-competency also allows us to engage with literature that considers performance-

competency as an indicator for identity, which is central to our research, since professional 

identify formation may influence design behavior. 

Further, we consider “exclusive” self-competency by asking students about their abilities 

in STEM versus non-STEM courses on a continuum. While students may be good at both types 

of subjects, American architecture and engineering programs usually enforce a binary—with few 

exceptions, students will largely graduate with professional training and a degree in only one or 

the other.  In this context, the goal is to understand how far a student may be identifying in either 

direction prior to receiving any formal design training. We thus begin the review with what has 

been established about engineers and architects’ design behavior, before working backwards to 

how these behaviors may have been influenced earlier in education. 
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3.2.1 Design Thinking in Engineering and Architecture 

Effective building design requires both technical and experiential considerations, which 

are addressed by engineers and architects through their disciplinary expertise. Although their 

distinctions may be less clear with newer digital tools, it has been observed that the professions 

approach design differently in pursuit of their disciplinary goals [3] and receive distinct 

professional training. This training is useful when addressing their expert tasks but may cause 

conflict when addressing multidisciplinary problems. Engineering students mostly follow 

outcome-based strategies [18] but can struggle to solve open-ended or ill-defined tasks [19], 

especially if their curriculum has not adequately prepared them for these problem types that occur 

in the workplace. On the other hand, architecture students are strong at creative thinking, but may 

shy away from rigorous quantitative analysis [20]. Thus, university-level instructors may need to 

consider how they promote potential design orientations by the tasks they assign and provide 

design environments that require diverse approaches to problem-solving.  

3.2.2 Parametric Thinking and Modeling in Design 

One context in which design creativity might be stimulated is parametric modeling, 

which allows designers to generate and consider a wide range of potential solutions. In parametric 

modeling, variables control characteristics of a building such as height and window size, while 

performance objectives can be calculated rapidly, sometimes even providing live design feedback 

depending on the scale of the problem. Design solutions can then be explored by both architects 

and engineers for qualitative and quantitative properties. These tools have been used in previous 

research as a viable environment for design decision making [6], [7], [21], [22]. Professionals 

have also used parametric modelling in practice when iterating design performance analysis, such 



44 

 

as ARUP [23] and Foster + Partners [24]. In addition, computational thinking has been 

incorporated in student education [25], and parametric models have been used as teaching tools to 

improve learning [26] and support STEM education [27], [28].  

Thus, even though exploration in a parametric design tool does not represent a 

comprehensive design process from start to finish, it is intuitive enough for even K-12 students 

and can capture some design behavior. Understanding how pre-design students use these tools 

prior to professional training can inform strategies for their disciplinary education, but grade 

school students may not have a clear understanding of what is expected of building design fields. 

A more relatable, generalizable proxy is needed to measure their potential success and identity in 

building design professions. 

3.2.3 The Influence of STEM 

In the last two decades, a strong emphasis on STEM subjects has empowered young 

thinkers, given agency to groups underrepresented in the fields [29], and accentuated STEM 

recognition early in grade school. Incorporating STEM concepts early can have potential benefits, 

such as fostering student positive perception of STEM values [30] and increasing interest in 

STEM related fields for future careers [31], [32], but it could also contribute to challenges in 

cross-disciplinary problem solving. Children begin to identify their career interests and 

aspirations as early as elementary school [33]–[35] and greater STEM identity leads students to 

pursue STEM fields in their career [1]. However, there are also negative stereotypes surrounding 

STEM, such as it being less creative and boring [10], which can have negative impacts on student 

pursuit of STEM professions and STEM self-competency. These stereotypes may be influenced 

by real factors such as the fact that performance in math, often perceived as less creative, is a 

reoccurring predictor for STEM pursuits when compared to other subjects and influential 
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variables [36], [37]. For pre-engineering students who perform well at math, many may come to 

college thinking that as a “STEM student” they are only good at solving numerical problems, 

while pre-architecture students may have negative associations with STEM and be intimidated by 

calculations. Therefore, how a student perceives STEM can influence their building design 

pursuits. 

 Discerning how students think of STEM relies on various social identity theories [38]–

[40]. STEM identity has been defined as how well individuals see themselves as an accepted 

member of STEM [41] or if they think of themselves as a scientist, technology user, engineer, or 

mathematician [42]. Subdividing identity into three interrelated components, Carlone and 

Johnson [43] defined STEM identity as performance (demonstrate activity), competency 

(knowledgeable in activity), and recognition (credible by others). Accounting for a person’s sense 

of choice in self-perception, Hazari [13] built on Carlone and Johnson to add interest to STEM 

identity. Hazari also combined performance with competency to measure an individual’s belief 

about their own abilities to perform and understand a STEM subject. However, both Carlone and 

Johnson and Hazari focused on only science subjects in STEM. To understand identity more 

broadly, Dou and Chian [44] surveyed all STEM fields individually, relying on performance-

competency as an indicator for identity along with recognition and interest. Their research 

acknowledged that recognition and interest can be difficult to define depending on a student’s 

understanding of what is involved in STEM fields and students are not yet in career positions for 

professional recognition. As a result, performance-competency can capture both ability and 

perception of efficacy, and it is a predictor for better performance [11]. Additionally, greater 

STEM self-efficacy has been shown to predict improved STEM performance [1]. 

While some studies have separated engineering from other STEM fields for more specific 

understanding of the profession [45], [46], this paper also considers differences between 

engineers and architects, which both contribute to building design. STEM has always included 
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“engineering,” but “architecture” was not officially recognized by Congress as a STEM subject 

until 2019 [47]. It is unclear if the general population is aware of its recent inclusion. 

Nevertheless, there is a call for more systematic research of how STEM and design relate in 

education [48], [49]. 

Based on gaps in the research, this paper examines if STEM SC can predict pre-design 

student performance and engagement in a building parametric design tool, and how the students 

prioritize different criteria. How students use parametric tools prior to formal training is important 

because this is an emerging environment for multi-disciplinary building design. 

3.3 Methods 

This paper studies STEM SC and design behavior in an intuitive, age-appropriate design 

exercise facilitated in an online computational design tool. 

3.3.1 Participants 

The IRB approved study was conducted at a public high school in the Northeastern US 

with 107 ninth and tenth grade participants. The overall high school population is 71.4% white 

with a total minority enrollment of 28.6%. The school performs between 17-28% above average 

in the state’s annual Mathematics, Reading, and Science proficiency exams with a 91% 

graduation rate. Of the participants, 50 were boys, 53 were girls, 3 were gender non-conforming, 

and 1 preferred not to answer. All students were enrolled in the Environmental Sciences or 

Chemistry class at the high school in either honors or non-honors tracks, based on the school’s 

distinctions of academic rigor. Of the participants, 67 were honors students and 40 were not.  
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3.3.2 Design Session 

The study protocol was conducted during the school day and lasted 1 hour and 15 

minutes. The activity was voluntary and parental consent was obtained. An alternative activity 

was provided for students who chose not to participate. Students were not graded on their 

performance, and the activity did not relate to their coursework. The study design included an 

intake survey, two introduction videos, a design session, and a final survey (Figure 3-1). The 

intake survey captured their demographics and STEM SCs; the videos introduced skyscrapers and 

the design task; the design tool used during the design session recorded the students’ design 

exploration and final design performance; and the final survey asked the students which of the 

design criteria they prioritized when designing.  

 
Figure 3-1. A summary of the protocol during the design sessions. 

3.3.2.1 Preliminary Material 

At the beginning of the study, students completed a survey which collected demographic 

information and asked about their self-competency in STEM. In this survey, the acronym for 

STEM was spelled out so the students were aware of which subjects were included in the 

category of STEM. Self-competency was isolated from other dimensions of STEM identity to 

narrow potential variations in STEM biases, which can occur with recognition and interest. The 

participants may not understand architecture or engineering professions specifically to determine 

their personal interests, nor have they yet entered the professions to be recognized for their 
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efforts. The focus of the research was not disclosed to the students to avoid influencing their 

perceptions of the questions and research task. They were asked “Which statement most 

accurately describes you?” and responded by moving a slider between “I am strong in STEM 

related subjects” and “I am strong in subjects not considered part of STEM,” with the slider 

starting in the middle. When recording their STEM Self-Competency (STEM SC), it was 

important to not bias student responses with leading phrases that would prompt undue 

associations. The full pre- and post-survey is provided in Appendix A. 

We followed a similar question structure from a previous study of STEM competency 

which provided statements such as “I think I am very good at: Figuring out science activities,” 

and students responded with how closely they agreed [50]. While agreement style of survey 

questions are legitimate forms of data collection, in the context of our study, this type of question 

may suggest a “yes” response as affirmative, while a “no” may be viewed as negative. Therefore, 

our question about STEM SC was intentionally phrased in a neutral way to enable students to 

emphasize strengths in different areas. Self-competency in STEM is not inherently exclusive and 

if a student felt like they identified with both statements, they could place the slider in between 

the options. In answering the third research question, students who view themselves more 

exclusively in a STEM context may be limited in their approaches to consider multidisciplinary 

design criteria. In addition, providing a concise question as opposed to a multi-faceted 

questionnaire also avoids student survey fatigue as a part of the study session. Although the slider 

was not presented numerically to students, results were captured in discrete settings. 

The students were shown an 8-minute video made for the study that presented skyscraper 

design ideas and focused on building characteristics of energy, daylighting, cost, and appearance. 

The video advised that skyscrapers are advantageous when they are larger because that increases 

the square footage, but that increases costs. A building with a larger surface area also allows for 

more natural daylight through windows, reducing the need for artificial light during working 
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hours, but this larger building will also use more energy. Participants were shown ten examples of 

built skyscrapers, illustrating a range of form and color, to explain how appearance is also an 

important part of skyscraper design to give a city or building tenant an identity. 

3.3.2.2 Design Task 

The design task asked students to present a solution for a new skyscraper in Austin, TX 

that would serve as a high-performance office building for Google. To help focus their design 

efforts, the students were advised to minimize three Objective Metrics: energy use, artificial light, 

and cost. They were also provided the freedom to prioritize between each. The objectives were 

calculated by multiplying the normalized values of the variables by a coefficient, based on the 

variables’ approximate proportional impact on the objective, and adding the results. A table 

explaining how the variables were related to calculate the performance metrics is provided in 

Appendix B. The quantitative goals had inverse relationships such that no perfect design exists 

where all three criteria can be minimized. They were also told that Google wanted a visually 

appealing design as a non-technical design goal. 

3.3.2.3 Design Tool 

A digital tool was developed that allowed the students to work in 3D modeling space 

without previous modeling skills and provided the students with live performance feedback about 

their designs. The tool also collected data about the students’ design behavior and performance of 

their final design. Participants used a custom website created for the study using a file hosting 

platform called Shapediver [51]. The Shapediver API was used to embed a pre-built Grasshopper 

file which defines 3D geometry, variables, and design performance values. The skyscraper model 
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with surrounding site context had eleven variables and provided quantitative feedback for the 

three objectives through a dynamic bar graph which changed with the variables. Seven of the 

variables edited the geometry of the skyscraper and four of the variables changed aspects of the 

exterior enclosure panels. 

All variables impacted at least one performance metric, except for the color of the panels, 

which related only to the buildings’ appearance. The underlying values of the performance bars, 

not shown to the users, were calculated based on the intuitive behavior of a building with similar 

features. These simplified relationships prevented the need for running full simulation programs 

to supply quantitative feedback, avoiding design fatigue. The quantitative objectives have 

different dimensions of measurement and were thus normalized and presented in graphical form 

for easy student interpretation. The students’ goal was to minimize the objectives, but since the 

objectives have inverse relationships, no solution minimized or maximized all. An overview of 

the tool is provided in Figure 3-2, showing the website interface with the skyscraper model and 

performance bars, along with the design variables. As the students worked in the tool, the website 

collected data about how often they changed each variable and recorded the final objective values 

at the end of the session. The final objective values were averaged to measure the Objective 

Performance. 
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Figure 3-2. Sample of the design tool showing the 11 variables and the modeling space with the 
skyscraper and performance feedback bars. 

As the students worked in the tool, the website collected data about how often they 

changed each variable and recorded the final objective values at the end of the session. The final 

objective values were averaged to measure the Objective Performance. 

3.3.3 Assessment 

This study focused on STEM Self-competency and the three Objective Metrics as proxies 

for student design behavior because of their relevancy to building design thinking and the 

population of interest. Linear regression models of the study’s Objective Metrics vs STEM SC 

were used to determine if STEM SC is a predictor for the Objective Metrics. Design performance 

was determined by how well the students minimized the task’s design criteria. STEM design 

performance is a part of STEM identity [43] and is a proxy of quality in creativity for the SVS 

and CAT methods. The number of design iterations can also positively reflect model engagement 

since iterative exploration is considered intrinsic to creative problem-solving [14] and can also 
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account for a student’s interest in the subject material. Prioritization of objectives, particularly 

“appearance” as a non-STEM goal, was measured directly through a survey. Collectively, these 

assessments suggest how pre-design student perception can predict their design behavior in the 

parametric building tool and incorporate multi-disciplinary design in the future.  

3.4 Results 

A sample of final design screenshots is shown in Figure 3-3. Although this study did not 

investigate visual performance of the students’ designs, the samples are presented to show the 

range of visual solutions, by color, shape, and window patterning, that the students developed in 

the parametric space.  

 
Figure 3-3. A sample of 16 final designs provided by the students. 

Figure 3-4 shows the distribution of STEM SC of the students where 0 indicates that the 

students reported more exclusive strong performance in STEM subjects and conversely 10 

indicates that the students reported strong in subjects that are not considered part of STEM. The 

histogram of students’ STEM SC leans slightly towards STEM related subjects with a median 

value of 4 and a mean of 4.45. A normal, centered distribution was not expected since STEM SC 
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is not necessarily well distributed across all populations, and the study was conducted in an 

Environmental Science class. 

 
Figure 3-4. Histogram distribution of the students STEM SC. 

For the design performance, exploration, and appearance rank datasets, simple linear 

regression analysis was used to examine the linear relationship between the variables and STEM 

SC using the statistics tool Minitab. The Anderson-Darling normality test verified that the data 

was normally distributed (p=0.0248 for performance, p=0.026 for iterations, and p<0.005 for 

appearance rank at a α=0.05 level of significance). Distribution plots of the datasets were visually 

inspected for outlier data and none were identified. 

3.4.1 Design Performance and STEM SC 

Because the goal of the design task was to minimize the objectives, a larger Objective 

Performance value indicated a poorer performing design, where a smaller Objective Performance 

was desired. Figure 3-5 shows a histogram of the Objective Performance values and a plot of 

STEM SC and Objective Performance. The p-value for the Regression Analysis of students’ 

STEM SC and Objective Performance is p=0.001, so there is sufficient evidence at the α=0.05 

level to conclude that STEM SC can predict student performance. The left end of the x-axis 
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indicates students who identified more closely with STEM and the right are those who identified 

more with non-STEM subjects. Students who associated themselves more closely with STEM 

subjects had quantitatively better performing designs. 

 
Figure 3-5. (a) the distribution of Objective Performance values and (b) a plot of Design 
Performance v STEM SC, showing the regression line of the data. 

3.4.2 Design Exploration and STEM SC 

This research is also interested in understanding the relationship between STEM SC and 

student exploration in the parametric design tool. Figure 3-6 shows the distribution of iterations, 

with the fewest number being 8 and the greatest being 259, and a plot of STEM SC versus 

Iterations. The p-value for the regression analysis of students’ STEM SC and Iterations is 

p=0.008, so there is sufficient evidence at the α=0.05 level to conclude that STEM SC can predict 

the number of iterations students considered in the design task. The left end of the x-axis 

indicates students who identified more closely with STEM and the right are those who identified 

more with non-STEM subjects. From the regression line, closer STEM identifying students 

explored more iterations. 
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Figure 3-6. (a) the distribution of iterations and (b) a plot of iterations v STEM SC, showing the 
regression line of the data. 

3.4.3 Design Focus and STEM SC 

How the students ranked criteria in order of importance was also recorded. Figure 3-7(a) 

shows the number of students who ranked each criterion by priority. A rank of 1 is the highest 

rank while 4 is the lowest. While a greater number of students ranked “appearance” as their most 

important criterion compared to the other criteria, “appearance” was also the lowest priority for a 

larger number of participants. Figure 7(b) shows a plot of STEM SC to appearance rank with the 

fitted regression line and the p-value of the Regression Analysis. With a p-value of p=0.062, 

STEM SC does not predict Appearance rank; adjusting to a α =0.10 level would indicate 

significant prediction. In the context of this research, it is worth considering the positive 

relationship between higher STEM SC and ranking appearance as a lower priority. 
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Figure 3-7. (a) the number of participants who ranked each criterion and (b) the fitted line plot of 
the regression analysis for Appearance Rank v STEM SC. 

3.4.4 Variables for Future Consideration: Gender and Honors Courses 

Although they are not the main focus of this study, there has been considerable recent 

interest in how STEM identity relates to both gender [38], [52] and participation in honors-level 

courses [53]. In this section we provide preliminary consideration of these factors as they may 

complicate our narrative. However, the intention here is to stimulate further discussion and 

research rather than present new claims. Excluding the small number of alternative responses, the 

p-value for the Pearson Correlation between Class Type and Gender was p=0.215, which can be 

considered nearly uncorrelated, so we investigated the variables separately without concern for 

collinearity between the groups.  

Linear Regressions of the variables were run for each of the study’s objective metric on 

STEM SC for Class Type and Gender. Table 3-1 shows each of the p-values for each regression. 

Values that are significant at a α=0.10 level of significance are bolded. For Honors students and 

Boys, their STEM SC was significant in predicting their Objective Metric, while STEM SC was 

not a predictor of the Non-honors students and Girls.  
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Table 3-1. P-values of linear regression analysis of the study’s Objective Metrics vs STEM SC, 
with values of significance in bold. 

 

3.5 Discussion 

Overall, the findings suggest that more exclusive self-competency in STEM does relate 

positively to performance and model exploration in a parametric building tool while designing, 

which is advantageous if these students pursue STEM or building engineering careers. However, 

the study suggests that strong STEM SC could bias their ability to value qualities not considered 

part of STEM, leading to challenges in multi-disciplinary problem solving later in their education 

or careers. Examining the results by research question describes the relationship in more detail.   

RQ1: How does student STEM SC relate to design performance in parametric building 

design? Students who expressed greater exclusive self-competency with STEM developed better 

performing designs, based on the tasks three quantitative criteria. It was expected that students 

who had greater STEM SC would navigate the technical objectives better than Non-STEM SC 

students, however, it was possible that the parametric building modeling tool would prompt 

different results in a new design space. It is necessary to also consider to what extent the students 

engaged with the tool.  

RQ2: How does student STEM SC relate to their design exploration? The students who 

identified with greater STEM SC considered a greater number of iterations within the design 

space. Creating more iterations can reflect greater interest in the activity, as students may iterate 

while divergently exploring the design space to generate and consider very different options. If 
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the number of design iterations did not vary by STEM SC, it could be that the design tool limited 

creativity or that the tool or task were not responsive to STEM identity. However, the students’ 

STEM SC did predict interaction exploration indicative of engaged, creative problem-solving. It 

is worth noting that creating more iterations alone does not fully capture the students’ response to 

the design task and their perception of non-technical goals, as they might have also iterated 

repeatedly on only slightly different design outcomes seeking the best possible design. 

RQ3: How does student STEM SC relate to the design criteria that they value? Student 

STEM SC did predict “appearance” rank at a α =0.10 level of significance, as students with 

strong STEM SC ranked it a lower priority compared to the other criteria. This inverse 

relationship can suggest students with a greater STEM SC may not value visual architectural 

goals as highly as quantitative goals. This could be a barrier to cross-disciplinary thinking in their 

professional pursuits. 

These conclusions can inform how K-12 educators approach presenting STEM topics. As 

expected, students who identified closer to STEM had better performing technical designs, but 

they also ranked “appearance” lower on their priorities. If the STEM-identifying students pursue 

careers in building design, they may struggle to incorporate non-technical goals in their design. 

Interdisciplinary design can be challenging to achieve [54] and research has shown that engineers 

can sometimes struggle to understand other viewpoints, but difficulty with multidisciplinary 

design is not ubiquitous to all engineers [55]. As observed in this study, the more exclusive 

STEM-identifying students created more iterations, which indicates greater engagement and may 

also show an interest in design exploration. For educators, concepts of STEM should be 

introduced in the context of other dimensions of design so that students can think in a multi-

disciplinary way. A summary of the results is shown in Figure 3-8. 
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Figure 3-8. Graphic summary of the results, with STEM SC relationship to (a) design performance, 
(b) iterations, and (c) appearance rank. 

There are several limitations and areas for future work. While this paper focuses on 

relationships between STEM SC and various characteristics of design behavior, it does not 

exhaustively consider additional variables that may influence STEM identity in the first place. As 

shown in our dataset, gender and participation in Honors courses may have even stronger 

correlations with our Objective Metrics than STEM SC, and there are statistically significant 

differences in behavior when comparing populations with these characteristics. In addition, the 

students’ enjoyment, as an extension of interest, in responding to the building design task was 

shown in our dataset and did not predict our Objective Metrics. Such variables likely influence 

both STEM SC, tool usage, and design behavior in complex ways, but they are left for future 

study. This paper also relies on a single continuum question to evaluate “exclusive” STEM SC. 

Future work can incorporate additional assessments of self-competency and/or self-efficacy while 

determining how they relate to design behavior. Design behavior could likewise be evaluated for 

different building types and other variables. 

3.6 Conclusion 

This paper presents a design study which investigated how high school student self-

competency in STEM relates to design behavior in a parametric building tool. As parametric tools 
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are increasingly used in building design fields, understanding how pre-students navigate 

parametric spaces is valuable in improving their education as future designers since these tools 

can challenge them to consider multidisciplinary criteria. The study used a parametric skyscraper 

design task to collect information about the students’ design activity. While a different task may 

elicit different results based on students’ interests, aspects of skyscraper design are reoccurring 

challenges for architects and engineers, requiring synthesis between technical and experiential 

design goals. In this study, the students who reported greater self-confidence with STEM subjects 

developed better performing designs and explored more iterations, but they also ranked 

“appearance” as a lower priority. These results suggest that varied design approaches that are 

eventually interpreted as disciplinary differences might seem natural before any formal design 

training occurs. They also inform educators about gaps in expected student performance in 

parametric tools and suggest that pre-designer education should emphasize multidisciplinary 

problem-solving to avoid narrowing student competency for those interested in design 

professions. 
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Chapter 4 
 

Evaluating Multi-disciplinary Collaboration 

This work was originally published as S. Bunt, and N. C. Brown, “Design Efficacy and 

Exploration Behavior of Student Architect-Engineer Design Teams in Shared Parametric 

Environments,” Buildings, vol. 13, no. 5, 1296, April 2023, doi: 10.3390/buildings13051296. The 

version presented in this document is expended with more detail. 

Abstract 

Increasingly, architects and building engineers use parametric modeling programs to 

explore design solutions as professionals and as students. However, little is known about their 

combined efficacy and exploration in these tools when working in mixed design teams. While 

disciplinarily diverse teams of designers have been shown to develop more creative design 

solutions, this occurs primarily when there is a conducive environment and shared understanding 

of design goals. Because architects and engineers are traditionally taught to use different tools 

and processes to address their professional goals, indicators of student combined efficacy in 

parametric tools are unclear. In response, this research uses a conceptual design experiment to 

study aspects of design efficacy and exploration behavior of student architect-architect, engineer-

engineer, and architect-engineer pairs within a live parametric modeling tool. Dimensions of their 

collaborative exploration within the tool were recorded, and their success at achieving the desired 

criteria was rated by professionals. Noticeable performance differences between team types were 

expected, including that the mixed design teams would better balance all goals and that the 

homogenous teams would better address their own disciplinary criteria. However, this was not the 
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case when working in a shared, multidisciplinary digital environment as the teams performed 

similarly despite having different member composition. We discuss several factors, such as the 

effect of digital design feedback and still developing student design process, that may have a 

relationship with the design efficacy of the teams when using the study’s parametric modeling 

tool. Future research can further investigate the effect of mutually approachable working 

environments on design team performance. 

Keywords: Collaborative design; parametric design; human-computer interaction; 

conceptual design; integrated design 

4.1 Introduction 

As the building needs of our society grow in scale and dimension, design objectives for 

the built environment become more entangled, requiring architects and building engineers to 

collaborate wholistically on design solutions. Their goals are rarely independent of each other’s 

influence, and major redesigns late in design phases due to incohesive decisions can cost time, 

money, and the integrity of the design team. When developing comprehensive proposals during 

the conceptual design phase, computational tools such as parametric modeling can allow 

designers to rapidly iterate across possibilities and consider qualitative and quantitative 

objectives. Rather than rebuilding a model for each design variation, parametric models enable 

designers to easily explore different solutions by changing variables that control objectives in a 

design problem. However, historically architects and building engineers have followed different 

design processes to achieve their goals [1], [2]. Yet the exact nature of these differences are not 

fully agreed upon and may be changing with technology and evolving disciplines [3]–[6]. For 

example, researchers have proposed that engineers assume problems can be well-defined, start 

with problem-analysis, and emphasize the “vertical” dimension (linear, procedural) of systems 
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engineering, while architects assume partially defined problems and approach them with an 

opportunistic, argumentative process that emphasizes the horizontal dimension (iterative, 

problem-solving) [1]. Yet there is diversity among engineering disciplines in their exact 

approach, and there has been more recent emphasis on iterative problem-solving for engineering 

problems, potentially breaking this dichotomy [7], [8].     

Despite this ambiguity, many researchers still observe differences specific to architects 

and building engineers [6], [9]–[11], and different approaches may hinder their combined efficacy 

when working in parametric tools. Stemming from their disciplinary training as students, they 

may even approach design differently based on the professional identity of their collaborators 

[12]. Research has shown that diversity in teams can lead to more creative solutions, but an 

inconducive design environment and lack of shared understanding can impede design 

performance [13]. At the same time, designers increasingly use digital forms of communication to 

collaborate, such as video meetings with screensharing for quicker feedback about design 

performance. When working in remote, parametric environments, it is unclear how students’ 

disciplinary identity may predict their design efficacy and behavior when collaborating with 

designers of similar or different educational backgrounds. 

4.1.1 Parametric Models as Design Tools 

Parametric 3D-modeling tools allow designers to readily explore design options by 

adjusting model variables and reviewing geometric and performance feedback, which can enable 

quick, multi-disciplinary decision-making. These tools can potentially improve on traditionally 

separate design and analysis software, which may not most optimally address the range of 

complex requirements [14]. For example, architects rely heavily on sketching [15] and digital 

geometry tools [16] while building engineers use discipline-specific analysis programs such as 
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SAP2000 and ETABs for structural design or EnergyPlus for energy modeling. While previous 

research has shown 3D digital modeling to be a less conducive environment for collaboration 

compared to sketching [17], this was due to the tedious nature of digital model building and may 

not apply to all forms of digital design exploration. An advantage to computational tools is that 

they enable efficient design responses and allow for more avenues of communication between the 

professions [18].  

Specifically useful for early design collaboration, parametric 3D modeling tools allow 

designers to quickly explore a range of qualitative design options and receive multi-dimensional 

feedback about quantitative design performance [19], [20]. Such an environment allows rapid 

exploration, albeit with more constraints, but also provides more information about the design 

than a sketch. These tools can improve design performance [21], and previous research has 

supported that working in parametric models is a viable environment for design decision-making 

[22]–[27]. Parametric design tools can be part of an equally accessible environment for different 

professions that provides quick, simultaneous feedback about both geometry and performance 

[28]–[30]. Building designers increasingly use parametric design thinking to explore solutions in 

a variety of applications, such as building forms [31], structural design [28], building energy [29], 

and urban development [32]. Some established examples of parametric modelling in practice 

include the Beyond Bending pavilion at the 2016 Venice Biennale [33] and the iterative 

structural, energy, or daylighting analyses used by firms like ARUP [34] and Foster + Partners 

[35]. 

In addition, computational design tools can be combined with digital platforms for 

collaboration. Due to shifts in the nature of work, expedited by the pandemic in 2020, online 

video meetings are increasingly used by the AEC community to design real buildings [36] and 

can be beneficial to conceptual design development [37]. As remote work becomes more 

normalized, digital mediums are increasingly used as the context for real design conversations in 
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both engineering and architecture [36], [38]. As an alternative to screen sharing and sketching in 

remote meeting platforms, shared online parametric models and their corresponding 

visualizations can provide an additional form of feedback. While dynamics within design teams 

in digital technologies have been studied before [39]–[41], much of the work does not account for 

the context of parametric design environments, nor do they directly connect team efficacy based 

on team composition and defined design criteria. Understanding disciplinary identity when using 

these tools may influence how designers approach collaboration in computational platforms, 

resulting in differences of combined team design efficacy.  

4.1.2 Collaborative Design Processes of Architect-Engineer Teams 

Collaboration between diverse teams has been studied, characterized, and documented 

[13], [42]–[45], but there is still much to understand about the specific interactions of engineers 

and architects, particularly when attempting to evaluate indicators of design efficacy. To best 

include efforts of both architects and engineers, whose performance could be measured by 

different metrics, we follow Marriam-Webster dictionary’s definition of efficacy to be “the power 

to produce an effect.” Specific to buildings, design efficacy can be used to describe successful 

achievement of desired outcomes such as cost, sustainability, efficiency, and discipline-specific 

goals like spatial needs and structural requirements. Previously, engineering efficacy has been 

measured by how thoroughly engineers are able to address specified criteria [46] and by 

measurable, outcome-based metrics [47], [48]. Conversely, efficacy in architecture is harder to 

identify as architectural goals can be more qualitative or experiential. Methods such as the 

Consensual Assessment Technique (CAT) method [49] have been used to evaluate design quality 

when criteria are subjective and less measurable, such as in graphic design [50]. 
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Also significant is that building designers rarely work alone and must consider both 

qualitative and quantitative goals, which can obscure representations of their design process. 

While diversity in design teams stimulates creativity, with heterogeneous teams benefitting from 

a combination of expert perspectives, improved team performance most readily occurs if there is 

shared vocabulary and a conducive design environment [13]. The team should also share similar 

conceptual cognitive structures [51], which may differ by profession. While diverse teams of 

engineers and architects work towards the same end goal of a building, some acknowledge their 

different design processes and have shown they use separate design tools [52]. However, as 

argued earlier as it is a main motivator of this paper, the development of new design models and 

the context of digital tools makes the distinctions of their processes are less clear.  

No model of design process has perfectly captured the activities of a whole profession [3] 

and the integration of digital tools have further confounded understanding of design process. 

Oxman [4] recognized that while some concepts reoccur in digital tools, design methods can vary 

depending on the media used. Design process models in parametric tools of architects have been 

illustrated by Stals et. al. [26] as the amplified exploration of ideas compared to processes 

supported by traditional tools. Oxman [27] considered parametric design as a shift in 

understanding of design thinking, less bound by a representative model. However, these studies 

on parametric tools did not consider the differences between architects’ and engineers’ 

exploration. Increasingly, architects and engineers work in these tools together, therefore studying 

the collaborative efforts is valuable to better understand and eventually incentivize effective 

teamwork, given potential disciplinary barriers. Such challenges in design collaboration may stem 

from designers' education where they begin to identify with a profession [53]. Understanding the 

behaviors of student populations when using these tools can inform how they may collaborate in 

parametric environments in their future careers. 
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4.1.3 Decision Processes of Student Designers 

While many assert that architects and engineers follow different design processes, there is 

evidence to support that student designers may not yet possess the cognitive processes that are 

emblematic to their profession. Kavakli and Gero [54] found that when comparing series of 

cognitive actions in design, students followed a greater range of sequences of cognitive processes 

compared to experts, who employed a smaller range of sequence variation and were more 

efficient in their cognitive actions. Similarly, Ahmed et al. [55] found that students tend to follow 

“trial and error” processes and do not have as refined design strategies as professionals, who were 

more systematic. However, these studies do not account for the influence of computational 

decision-making on design. Abdelmohsen and Do [56] found that novice architect designers 

performed prolonged processes to achieve the same goal as experts when responding to both 

sketching and parametric modeling tasks. In their study, though, students worked independently 

and did not account for team collaboration in parametric tools. 

As students are still developing as design thinkers in their fields, it is important to 

consider how they may collaborate with teammates who are trained in a different discipline. 

Architecture and engineering students often receive divergent instruction on how to address 

design goals when working in digital tools. While engineers have traditionally followed problem-

solving methods with an emphasis on “right” answers [57], this has been challenged recently as 

instructors incorporate more project-based learning [58]. There is also increased discussion of 

preparing engineers for cross-disciplinary design thinking [59]–[61]. Conversely, architectural 

education emphasizes spatial thinking with 3D modeling and incorporates digital forms of 

learning though emerging tools [15], parametric models [62], optioneering [63], and collaborative 

methods [64]. While distinctions in design education may become harder to define as both 

disciplines evolve, many still note disciplinary divides between architecture and engineering 
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education and practice [11]. Both types of expertise also tend to play defined roles in practice. In 

traditional building design procedures, architects may finalize many characteristics of a building 

before consulting with their engineers, limiting the autonomy of engineers to positively influence 

the design. Researchers from both professions suggest that early integration of engineers in the 

building design process can improve design performance and efficiency [65], [66], but early 

integration has its challenges as the professions have developed different disciplinary cultures 

[67]. Overcoming these issues can be considered in their education as multi-disciplinary thinkers, 

but we need to first understand how they behave in mixed teams working in a parametric 

modeling environment. 

4.1.4 Research Questions and Hypotheses 

In response, this research asks two questions about student architect and engineer 

designers: (1) How does team composition relate to design efficacy in a shared, live 

parametric design environment? And (2) How does team composition relate to design 

exploration in this environment? To answer these questions, a study was developed that 

compared pairs of two architecture students (A+A), two engineering students (E+E), and one of 

each discipline (A+E) as they jointly responded digitally to a conceptual design task with two 

engineering and two architectural criteria. Thirty pairs of designers, with ten of each team type, 

worked in an equally accessible online parametric design space which allowed them to explore a 

pre-built model using editable sliders. The model provided considerable geometric diversity and 

real-time engineering feedback, addressing simulated performance needs of both professions and 

reducing barriers in aptitude of disciplinary tool familiarity. The teams’ ability to address the four 

criteria, as assessed by professional evaluators, was used to measure the efficacy of the final 



75 

 

designs. Audio, video, and tool-use recordings of the design sessions captured information about 

the teams’ collaborative efforts and design exploration. 

 It was hypothesized that the diverse teams (A+E) would be more effective at addressing 

all the design criteria and that design strategies would vary by team type. This hypothesis was 

based on previous literature describing the environment-dependent benefits of diverse teams. 

However, we noted the potential of no significant differences between team performance, 

possibly indicating unexpected and equalizing influences of the parametric tool on design 

processes. We also considered that disciplinary differences might not yet emerge in mutually 

approachable environments for student designers who are not yet experts in their field. 

Additionally, as this study was conducted through a digital video interface, it speaks to the 

potential screensharing strategies present in remote, collaborative working environments. 

Understanding how student architects and engineers cooperate in digital, parametric platforms 

can discern effective team strategies in emerging design environments, inform educators about 

the preparedness of future designers to think multi-objectively, and reveal unexpected influences 

of parametric tools on conceptual design processes. 

4.2 Materials and Methods 

To understand how diverse pairs of student engineers and architects perform compared to 

same-wise pairs, this research relied on two digital design tools that are increasingly used in 

practice: a readily approachable parametric modeling platform, and remote video meetings to host 

collaborative design sessions. While parametric design can occur at various stages of building 

development and be applied to many scales of design detail, this work focused on the conceptual 

design phase of a stadium roof, which required both architectural and engineering input and was 

an approachable task for student designers. Although naturally occurring design processes can 
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manifest in many environments, this work focused on parametric models as design tools to 

capture evidence of effective behavior specifically in this medium.  

The teams worked remotely in an online parametric tool, not native to either discipline, 

which provided visual and numeric feedback. The intent was to facilitate an environment that was 

not directly familiar and thus did not favor the efforts of either profession. Participants performed 

the design task together in an online video meeting, which was able to record information about 

their exploration. In addition, the teams submitted screenshots of their final design and a design 

statement, which four professional designers used to evaluate team efficacy in addressing the 

design task objectives. Figure 4-1 illustrates the study’s protocol with an example of the design 

tool interface. 

 
Figure 4-1. Methodology. Overview of the methodology, design task, tools, and data. collected 
from the study. The sample tool interface shows 4 of 10 parameters controlling the model and a 
sample of the 3D modeling space with visual geometric and performance feedback. 
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4.2.1 Design Session Procedure and Participants 

The study was conducted through recorded online video meetings and the sessions lasted 

approximately one hour. In the first 20 minutes, the teams were briefed on the study tools, given 

the design task, and allowed 5 minutes to become familiar with the materials before developing a 

design with their assigned partner. The teams were then allowed 30-35 minutes to work on their 

design and submit deliverables from the design task. 

Prior to running the study and collecting data, the interface and protocol were piloted on 

3 teams to verify the clarity of the design task, usability of the tool, and accuracy of the data 

collection methods. The sample participants were either members of the research team who did 

not participate in the script development or graduate students in an architectural engineering 

program with at least 1 year of experience in 3D parametric modeling. The sample participants 

were able to finish the task in the allotted time. Upon completing the test design session, these 

sample participants provided feedback about the study’s procedures, which were then further 

refined. The sample data was used to ensure the reliability of the data collection, processing, and 

analysis approaches. 

This study was approved by the researchers’ Institutional Review Board. Participants 

were structures-focused engineering or architecture students from one of two large, public U.S. 

Universities. Participation was limited to 4th or 5th year undergraduates with AEC internship 

experience for engineers and National Architecture Accrediting Board (NAAB) accredited 

structures courses for architects, or students of either discipline at the graduate level. Participants 

were paired based on disciplinary major and availability. The research questions of the study 

were not revealed to the participants so to not influence their performance. While the moderator 

was available to answer questions, they had minimal interaction with the teams during design and 

did not prompt any behaviors. 
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Although the students may experience more elaborate design challenges over longer 

periods of time through their coursework or in their future professional practice, replicating 

extensive, multi-year design processes is beyond the scope of this paper’s research questions. It 

has been established that design study protocols must consider limitations of tools and resources 

to collect clear, dependable data [68]. To reduce cognitive fatigue and minimize uncontrollable 

external influences on team behavior, this research used a concise design task and focused 

metrics to evaluate the team processes. 

4.2.2 Design Task Criteria 

The conceptual design task asked participants to develop the geometry of an Olympic 

stadium roof for a fictional site plan in a tropical climate. There is precedent for stadium roof 

design as a good sample project to judge designer performance in parametric modeling [34]. The 

design statement provided to the designers contained four criteria used as design goals and to 

assess the efficacy of the teams. Two of the criteria were qualitative requirements that aligned 

with architectural values: that the design be iconic and site appropriate. The other two 

quantitative requirements aligned with engineering goals: that the roof shade a certain percentage 

of seats during noon on the summer solstice and not exceed a maximum deflection limit, which 

the participants were required to calculate. These goals were considered accessible based on 

participants’ level of study and degree requirements. For final deliverables of their proposed 

conceptual design, teams were asked to submit 3-6 screenshots and a 5-8 sentence design 

statement that discussed how their design addressed the prompt. Additional detail of the design 

task and requirements can be found in Appendix C. 
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4.2.3 Design Environment Details 

The study’s primary tool consisted of an online parametric stadium roof model that the 

designers could edit by changing ten variable sliders. The tool was intended to be neutral to not 

favor the capabilities of one profession over the other, and novel to the designers, in that no 

participant had used the exact interface before. While the parametric model would limit the 

detailed development of the project, this design task asks the participants to focus on developing 

the roof design in the late-conceptual design phase, when aspects like the structural systems and 

likely materials would have already been decided. 

The model was constructed in the parametric modeling program Grasshopper and 

uploaded to Shapediver [69], an online file hosting platform that allows external users to change 

model variables and obtain design feedback without editing the base file. Shapediver and similar 

cloud-based platforms have been gaining popularity in several fields due to their ease of access 

from a browser and utility in developing 3D model solutions. The Shapediver API interface was 

used to embed the model in a custom website, built for the study, that tracked user click and 

design data, such as when variables were changed. Before designing, participants were shown 

how to use the tool and they independently accessed the website during the video meeting. They 

were briefed on how to share their screens, but screen sharing was not required nor explicitly 

encouraged. Figure 4-2 shows the structure of the tool’s files and examples of three screensharing 

strategies that may be used by the design teams, such as one person sharing their screen and the 

other watching for the whole session, one person sharing their screen while the other person 

keeps working or sharing screens back and forth throughout the session. 
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Figure 4-2. The design tool’s structure and possible screensharing strategies used by participants 
to collaborate in the tool. 

The tool’s ten editable sliders mostly modified geometric qualities of the stadium and the 

variables all impacted the four design criteria in some capacity. Authentic to a design challenge in 

practice, the base model was built such that no “best” solution existed. For example, a larger roof 

area improved shading, but also increased deflection, which was undesirable. In the model, the 

quantitative criteria were achievable for a range of visual solutions but could not be met under all 

variable settings. Providing ten variables allowed designers of both types to consider 

combinations of solutions and use different approaches to explore the design space. The variables 

were mostly continuous, which gave participants the ability to directly manipulate the design. 

Collectively across all variables, there were over 5 trillion possible solutions. While the 

parametric model would limit the detailed development of the project, this design task asks the 

participants to focus on developing the roof design in the late-conceptual design phase, when 

some aspects such as the structural systems and likely materials would have already been 

decided. In addition, the tool used Karamba3D [70] to perform live deflection calculations of the 

roof as the users changed the variables. Details about the tool’s variables and internal calculations 

of deflection and seat shading can be found in Appendix D. 
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4.2.4 Methods for Evaluating Team Efficacy and Exploration 

To answer the study’s research questions, three streams of data were evaluated: final 

design efficacy based on professionals’ evaluations, exploration behavior based on engagement 

with the tool, and team collaboration strategies based on how they chose to work remotely in the 

video meeting. 

4.2.4.1 Assessing Team Efficacy 

Following the design task, team efficacy was assessed by four professionals (one licensed 

engineer, one engineering professor, one licensed architect, and one architecture professor) for 

how well the teams addressed the criteria in their visual submissions and design statements, based 

on the requirements of the design task. All reviewers held professional degrees in their field and 

were located at schools or firms in the southwestern US, northeastern US, or western Europe. The 

licensed professionals had at least 8 years of experience in practice and the professors taught for 

at least 7 years. Their evaluation followed the Consensual Assessment Technique method [49], 

which uses professionals to evaluate design quality, responding to questions about criteria 

performance using a Likert scale. The questionnaire and additional details for their evaluation 

procedures are provided in Appendix E. The CAT method is often used in evaluating design ideas 

that rely on qualitative evaluation, but it has been used in engineering applications as well [71]. 

The professional evaluators were asked “how well did the project from team X address criterion 

Y of the design task.” They reported their opinions on a five-item scale including the responses 

“not at all,” “somewhat well,” “moderately well,” very well,” or “extremely well.” The 

professionals completed their assessments individually and were not told which team type they 

were evaluating. To mitigate evaluation fatigue, each professional evaluated only 12 designs (four 
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of each team type). To verify the agreeance between the evaluators, they evaluated six of the 

same projects and six different projects. For the same six projects that they evaluated, an 

Intraclass Correlation Coefficient was calculated for all criteria. 

4.2.4.2 Assessing Team Collaborative Design Exploration 

In addition to efficacy, design exploration was documented by measuring the teams’ 

interaction with the design tool using click data and by observing how the teams collaborated in 

the shared work environment. As the professions increasingly rely on online forms of design 

cooperation, considering the student participants’ behavior when working in the digital 

environment can inform how the professions use these tools when designing. 

To capture the designers’ exploration of the tool, we included a tracking mechanism in 

the design website that recorded variable changes and corresponding iterations during the session. 

Comparing differences in number of variables explored and iterations tested can suggest the 

relative breadth of the design exploration. Yu [25] observed that parametric design has two kinds 

of cognitive processes: “design knowledge,” which relies on a designer’s knowledge for their 

decisions, and “rule algorithm,” in which the designer’s decisions respond to the rules of the 

model. Using more variables and creating more iterations can reflect the application of both 

cognitive processes. Although the teams in our study did not exhaustively engage all the 

variables, they mostly adjusted all variables at least once. In the time allowance of the study, this 

reflected enough dimensions for authentic engagement, but not too many variables for the 

designers to consider. The numbers of iterations were compared to the efficacy ratings for each 

criterion, since more iteration may relate to improved design performance. Significant iteration, 

though, might align with an architect’s process, whereas an engineering process may lead more 

directly to a solution.  
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4.2.4.3 Assessing Team Screensharing 

The method by which the teams chose to collaborate in their visual efforts was also 

noted. Although previous research has considered collaboration through digital file exchange 

[72], it did not account for active environment engagement. Alternatively, virtual reality tools can 

allow two users to move around in the same environment with an integrated video platform, but 

virtual reality is not yet pervasive in architecture and engineering firms for collaborative design 

environments. In the online environment used in this study, participants were allowed to choose 

how to work in the digital modeling environment. They could develop their solutions through 

various screen-sharing tactics, which were observed by team type. The researchers noted which 

partner shared screens, how long they shared, and if they alternated screensharing. This empirical 

approach to describing team collaboration styles allowed the researchers to note new behaviors as 

they occurred. If the majority of a team type’s pairs followed the same screensharing method to 

develop their models, it may speak to a likeness in collaborative process, but if all the pairs 

behave differently, this would further confound the disciplinary process identities when working 

in video shared, parametric design environments.  

4.3 Results 

A total of 30 designs were created, with 10 designs from each team type. Figure 4-3 

shows screenshots of 18 of the 30 projects. Initial visual assessment suggests a range of solutions 

with the most visually noticeable characteristics being plan shape, roof angle, and roof coverage. 

However, the professionals’ assessments provide more critical examination of the teams’ 

efficacy, which provided a baseline by which to compare the teams’ collaboration and design 

space exploration.  
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Figure 4-3. A sample of eighteen of the thirty final designs with six from each team type. 

4.3.1 Professional Assessment of Team Efficacy 

To determine team efficacy, four professionals evaluated the projects for how well the 

design pairs addressed the four criteria. Figure 4-4 shows the professional’s evaluations as box 

and whisker plots of the team type efficacy for each objective. The A+A teams had higher 

average effectiveness than the other teams at meeting all four criteria, but in “site” and 

“deflection,” at least one of the A+A teams was judged to have not addressed the criteria at all. 

The A+E teams had the lowest average effectiveness in “iconic,” “shading,” and “deflection,” 

with the largest range in performance. While the E+E teams were not more effective than the 

other team types at any criteria, all E+E teams were at least somewhat effective at addressing the 

four criteria. 
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Figure 4-4. The professional assessment of efficacy for each team type of each criterion. 

A Kruskal-Wallis test was performed for each criterion to determine if there were any 

statistical differences between team types at a p=0.05 level of significance. No team type was 

significantly different in efficacy of achieving any of the four criteria, with deflection having the 

lowest p-value of 0.334. Since five of the twelve team type criteria had evaluations scoring from 

0 to 1, the outlying values in the large range may have overly influenced the data, reducing the 

data’s statistical significance. To test if the large ranges had a negative impact on statistical 

significance, the highest and lowest evaluation value for each team type in each criterion were 

removed, and the Kruskal-Wallis tests were run again. While the p-values for each criterion in the 

Kruskal-Wallis test were closer to a significance level of 0.05, they were still not significant. The 

p-values from these tests are shown in Table 4-1. 

Table 4-1. The p-values of Kruskal-Wallis tests for significantly different results in team type 
efficacy. 

 

Based on their ratings, an Intraclass Correlation Coefficient was calculated across all the 

evaluators for all criteria. It was found to be 0.719, which meets an acceptable level of 
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agreeability. While coefficients between 0.900 and 1.000 are considered in very high agreeance, 

and above 0.7 are considered acceptably high, interpretation of coefficients are conditional to 

each application. In this study, because the assessments are both qualitative and quantitative, 

judged by four raters with unique expertise, and use an evaluation scale with five options, an 

agreeance of greater than 90% would be unexpected. The CAT method for creativity evaluation, 

which often uses ICC to consider evaluator agreeance, assumes that the professionals all have the 

same area of expertise. In contrast, this study uses both architects and engineers to evaluate the 

projects, who have their own areas of expertise, and still meets a level of agreeance above 0.7 

with an ICC of 0.719. 

4.3.2 Characteristics in Collaborative Exploration 

The teams’ exploration of the design space was measured by their engagement with the 

design tool and by their behavior when collaborating in the online environment. 

4.3.2.1 Characteristics in Collaborative Exploration 

Figure 4-5 shows the number of iterations and average variables changed for each team 

type. No team type explored a statistically greater number of iterations than the other team types 

nor changed a greater number of variables, based on a Kruskal-Wallis test at p=0.05 level of 

significance. However, comparing iterations to individual criteria may yield more informative 

results. 
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Figure 4-5. Design exploration of teams by (a) the number of iterations explored by each team type 
and (b) the number of variables changed by each team type. 

When considering the relationship between the number of iterations created by each team 

type to the efficacy performance ratings for each criterion, a pattern emerges. Figure 4-6 shows 

the plots of Criteria Ratings vs. Iterations for each criterion and their fitted linear regression line. 

The figure also provides the slope for each linear regression equation and the p-value at a 0.05 

level of significance based on a simple linear regression analysis for statistical significance 

between the variables. For the test, the null hypothesis is that the slope is 0 and the alternative 

hypothesis is that the slope is not 0. The p-values of the regression analyses are greater than 0.05, 

therefore there is not enough evidence to say that iterations have a linear statistical relationship to 

criteria efficacy. However, the signs of the slopes for their relationship are consistent in each 

criterion. While more iterations relate positively to greater criteria efficacy for the E+E and A+E 

teams, the opposite is true for the A+A teams, for which the relationship is negative or negligible.  
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Figure 4-6. Plots of criteria efficacy rating vs iterations by each team, showing the fitted linear 
regression line for each team type and stating the slope of the simple regression analysis equation 
and its associated p-value. 

4.3.2.2 Screen Sharing the Collaborative Environment 

When working collaboratively in the design environment, we noted several patterns on 

how pairs explored the model while using the remote design tools. Figure 4-7 shows a sample of 

the different screensharing strategies and the number of teams for each team type that followed 

the strategies. The most common method for sharing ideas, labeled Strategy 1, was when one 

team member shared their screen within 5 minutes of starting their session and moved in the 
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model while the other designer watched and made suggestions. This strategy was followed by 5 

A+A teams, 7 E+E teams, and 4 A+E teams.  Strategy 2 was when one person shared, but their 

partner continued working in their own model. Strategy 3 was when each teammate shared their 

screen at least once. In some cases, teams shared their screen multiple times. Strategy 4 represents 

other methods. For example, team AE10 never screenshared, but verbally updated each other 

about their variable settings when they found solutions that they liked. Team AA8 worked 

independently and only shared their design towards the end of the session. A third team, AE4, 

chose to screenshare both designers’ screens while allowing both designers to control the mouse. 

There was no screensharing method consistently used by a team type. 

 
Figure 4-7. The strategies used by the team types when screensharing, showing 13 of the teams’ 
strategies. 
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4.4 Discussion 

In summary, we hypothesized that when working in a parametric, digital modelling 

environment, diverse teams would show significantly better performance when A+E, A+A, and 

E+E pairs were given the same design task, but this finding was not supported by the data. It was 

also expected that explicit behaviors based on team type would become evident in efficacy or 

design space exploration. However, this was not the case. It was surprising that the teams 

performed similarly and did not show greater proficiency at addressing their own disciplinary 

design criteria. While some differences between team types were noted, few rose to the level of 

statistical significance at traditional confidence levels. Further discussion for each research 

question is given below: 

RQ 1: How does team composition relate to design efficacy in a shared, live 

parametric design environment? Diverse pairs of building designers were not significantly 

more effective at addressing the design criteria than same-wise pairs, despite what is predicted by 

existing literature. Although the provided parametric design environment may not have allowed 

for enough design diversity between team types, it is possible that for the student designers, live 

feedback from the parametric tool may have benefitted the efforts of the teams in absence of other 

discipline. In a traditional practice workflow, the professions serve their own roles and provide 

disciplinary expertise, and there is a lag in communication while they perform their respective 

responsibilities in sequence. The shared modeling space with multidisciplinary feedback may 

have partially performed jobs of both architects and engineers at the resolution of early-stage 

design. However, it is also possible that student designers are not yet proficient in their field and 

did not perform in a way that is emblematic to their profession and therefore did not show 

differences in performance. In addition, Lee et al. [51] reports that, regarding creativity, simply 

including designers with different backgrounds does not guarantee improved results if the 
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designers do not share mental models for problem solving. Future research should consider 

whether providing live, visual, quantitative feedback, alongside geometric flexibility, can help 

serve roles of both professions and increase the ability of homogeneous pairs to manage 

multidisciplinary criteria. 

RQ 2: How does team composition relate to design exploration in this environment? 

Although no team type explored the model significantly more based on number of iterations and 

number of variables changed, the increase of iterations compared to team type efficacy does 

suggest some differences between groups. While greater iterations related to improved design 

efficacy ratings for the E+E and A+E teams, the same was not true for A+A teams. Since iterative 

processes are associated with architects [42], an increase in iterations should have, theoretically, 

improved the design performance by all teams, especially the A+A teams. Also, no team type 

consistently followed the same strategy for sharing screens to develop their designs. 

Screensharing in collaboration is not specific to a particular profession and may not differ by 

disciplinary background, but it is important in effective student education [73], [74]. The students 

in this study may be better at working remotely through screensharing due to their remote 

experiences in the Covid-19 pandemic. In addition, the relationship of team type characteristics to 

team efficacy is inconclusive, suggesting that diversity in engineering and architect teams does 

not guarantee improved results when considered in the context of a collaborative, parametric 

environment.  

A summary of what was learned regarding each research question is provided in Figure 

4-8. Overall, the study’s metrics may suggest the presence of an equalizing influence of 

parametric tools on efficacy and exploration or that student designers do not have differing 

behavior between professions in the provided design environment. Parametric tools have been 

shown to positively support design performance [75], and it could be that the mutually 

approachable environment influenced the design process. However, impacts on design team 
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performance can be generally hard to discern, as previous research on construction design teams 

have also shown inconclusive results [76]. Although further research is needed to understand the 

impact of multi-disciplinary tools on mixed disciplinary teams, the lack of distinct differences 

presented in this paper provides a baseline for assessing exploration and efficacy in the context of 

collaborative design. 

 
Figure 4-8. Summary of the findings from the study, focusing on the team efficacy and how efficacy 
related to collaboration and design exploration. 

4.4.1 Limitations 

There are several limitations to the study. Despite its methodological advantages, using a 

pre-made parametric design space does not allow for exhaustive analysis of all possible 

conceptual design approaches for buildings. However, as McGrath [68] established, there are 

three goals in understanding and quantifying team group interaction: generalizing of evidence 

from a large population, precision of measurements, and realism of the simulation. This study 

conducted concise yet somewhat abstract design simulations to achieve precision of measurement 

across a reasonably large population, which sacrificed some aspects of realism of the design 

simulation. However, having fewer participants with rich data is reasonable for studying design to 
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capture the subtlety and depth of the process, particularly in studies which follow protocol 

analysis methods [77] (p. 15).  

McGrath also acknowledges that to evaluate the results of a team groups study, one 

should be critical of the methods and tools used that are specific to the study or profession. While 

this study uses one design challenge, in focusing on just the stadium roof, the designers were able 

to complete the task in the allotted time and respond to the disciplinary specific design goals 

using their respective knowledge. Other limitations could include perceived ambiguity in the 

design criteria, or the fact that the data collected for collaboration and exploration does not 

perfectly characterize those corresponding behaviors—there is some subjectivity in mapping 

between data collection and behavior for a specific design challenge. Nevertheless, the study 

relied on established methods for design evaluation and had clear protocols for data collection to 

determine statistical significance in the design teams’ different characteristics.  

4.5 Conclusions 

This paper presented the results of a design study that considered relationships between 

efficacy and behavior of diverse and same-wise pairs of student engineer and architect designers. 

While it was expected that diverse teams would be more effective at addressing varied design 

criteria, a professional assessment of the designs did not suggest that any team type performed 

significantly better than the others. However, the lack of significant differences in design 

performance and behavior raises questions about the influence of the digital design environment 

on the design process—it is possible that an online digital modeling platform may have 

influenced design strategies to converge. Subtle differences between the A+A and E+E teams’ 

behavior suggest narratives relating to team type characteristics, but there are few notable 

distinctions. In applying these results to practice, it may be that parametric modeling tools can be 
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helpful for designers of either architecture or engineering backgrounds to explore design spaces. 

Such approaches may not be useful for all professional firms or all design stages, but managers 

may consider opportunities afforded with parametric models especially during conceptual design 

and other instances in which options are visually compared by multidisciplinary teams. Future 

work will consider how teams of professional engineers and architects may collaborate when 

working on the same design task in a more extensive design scenario. This will overcome 

limitations introduced by the reliance on the parametric design space. In addition, the methods 

used in this study could be applied to understanding the behaviors of larger building design teams 

over more extensive design sessions. As design tools evolve and design requirements continue to 

push construction boundaries, it is important to continually understand effective indicators of 

architect-engineer team performance. 
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Chapter 5 
 

Characterizing Student Designerly Behavior in Optimization Tools 

This work was originally published as S. Bunt, C. G. P. Berdanier, and N. C. Brown, 

“Observing Architectural Engineering Graduate Students’ Design Optimization Behaviors Using 

Eye-Tracking Methods,” Journal of Civil Engineering Education, vol 149, no. 4, June 2023, doi: 

10.1061/JCEECD.EIENG-188. The version presented in this document is expended with more 

detail. 

Abstract 

Parametric optimization techniques allow building designers to pursue multiple 

performance objectives, which can benefit the overall design. However, the strategies used by 

architecture and engineering graduate students when working with optimization tools are unclear, 

and ineffective computational design procedures may limit their success as future designers. In 

response, this research identifies several designerly behaviors of graduate students when 

responding to a conceptual building design optimization task. It uses eye-tracking, screen 

recording, and empirical methods to code their behaviors following the situated FBS framework. 

From these data streams, three different types of design iterations emerge: one by the designer 

alone, one by the optimizer alone, and one by the designer incorporating feedback from the 

optimizer. Based on the timing and frequency of these loops, student participants were 

characterized as completing partial, crude, or complete optimization cycles while developing their 

designs. This organization of optimization techniques establishes reoccurring strategies employed 

by developing designers, which can encourage future pedagogical approaches that empower 
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students to incorporate complete optimization cycles while improving their designs. It can also be 

used in future research studies to establish clear links between types of design optimization 

behavior and design quality. 

Practical Applications 

Increasingly, building designers use digital optimization tools to explore and improve 

designs. This research identifies and categorizes several distinct design behaviors when using 

optimization tools that have not been previously recognized. Applying these categories to 

describe graduate student designer behavior allows educators to find opportunities for improving 

design education. While there is no set standard for how optimization tools should be used, 

different strategies range in the potential they create for simulation feedback to improve the 

design. Although all study participants were able to implement an optimization feature, they did 

not all fully integrate the feedback into their design decisions. From this research we observe that 

it is not enough to explain algorithms and show a student how to run an optimization tool, but 

these tools must be taught in the context of robust design approaches. Educators wishing to 

identify their students’ design strategies can use the methods and language established in this 

paper to assess student comprehension of optimization techniques. Future work can apply the 

behaviors that investigate other dimensions of optimization in design, such as design quality and 

comparing categories of designers. 

5.1 Introduction 

As digital tools evolve, emerging computational strategies allow designers in the 

Architecture-Engineering-Construction (AEC) industry to address an increasing number of 
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building performance criteria early in the design process. In particular, parametric design 

strategies, where a model is readily edited and explored by editable variables, enable AEC 

designers to rapidly consider numerous potential options while meeting disciplinary goals. Within 

parametric models, optimization techniques can systematically find the best options in terms of 

quantitative design goals such as energy use or structural efficiency [1], [2]. However, there is 

uncertainty about how to best apply optimization during design, especially for emerging 

interactive optimization approaches that let designers manage qualitative and quantitative goals 

simultaneously. Optimization can speed up certain design subtasks, and it can help find high-

performance solutions within a design space that might be difficult to find otherwise [3]. Yet it 

also requires a designer to formulate, analyze, and in some cases iterate a defined set of variables, 

objectives, and constraints, which may change the timeline or nature of activities in a typical 

design procedure. 

While there is considerable established literature describing designer behavior in general, 

little is known about how diverse optimization tools influence design, particularly in the domain 

of architectural engineering education, as students gradually learn how to incorporate 

optimization. One source of potential confusion stems from the range of design tools that are 

described as employing optimization, especially in practice. On the one hand, some define 

“design optimization” very broadly as the process of systematically and quantitatively improving 

on a current solution, as in the case of building simulation [4]–[6]. On the other end of the 

spectrum, some only use the term “optimization” to refer to numerical simulation and/or formal 

mathematical optimization [7], [8], even in the context of building design. In the middle are 

heuristic techniques such as evolutionary algorithms that designers might implement alongside 

their own qualitative preferences, either a priori, a posteriori [9], or interactively [10]–[12]. In all 

cases, the designer is left to establish their own sequence and timing for establishing the 

parametric variables and their relationships in the first place. If instructed to formulate their own 
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design spaces and optimize a design, students might employ any of these approaches, with 

various degrees of completeness or effectiveness. Yet the characteristics of these ranging 

strategies have not been established.  

In response, this research asks: what patterns of design behaviors do architecture and 

engineering graduate students employ while constructing and exploring a parametric model using 

optimization-based tools? Potential patterns include iterative decision loops involving the 

designer, an automated algorithm, or both, as well as their timing and frequency within a design 

session. Investigating how this group of designers, who are neither novices nor experts, utilize 

different optimization techniques can inform which strategies they employ with optimization 

tools. To investigate design in situ, a research study was conducted which asked participants to 

create a visually appealing atrium enclosure that addressed measurable concerns of daylighting, 

energy use, and structural performance. Eye-tracking data, screen recordings, and observational 

assessment were used together to apply the situated FBS framework [13].  

This framework allowed for identifying multidimensional steps in the design process, 

describing design session events, and discerning varying strategies among the participants. The 

student participants showed a range of behaviors in their use of optimization techniques —some 

spent considerable time formulating the problem and used optimization techniques near the end 

of the design session, while others adjusted the problem more frequently as they ran smaller 

iterative explorations. These diverse strategies are used to distinguish several distinct design 

iteration types and corresponding behaviors that are detailed in the results and discussion. In 

understanding the rich characteristics of designer strategies through qualitative methods, we can 

first discern these behaviors through deep analysis before future quantitative studies establish 

their prevalence among designer populations. 
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5.2 Background 

The AEC professions are continually tasked with providing high performing solutions, 

but the numerous considerations in building design rarely align. To manage potentially competing 

objectives, designers have incorporated computational exploration and optimization tools, which 

can account for multidisciplinary performance, to make more informed design decisions. While 

the feedback and guidance from these emerging design approaches can improve outcomes, 

designerly strategies for utilizing optimization in the context of design theory have yet to be 

thoroughly examined. In particular, the optimization patterns of intermediate designers, such as 

graduate level architecture and engineering students who have experience with design strategies 

but are still developing their optimization skills, are largely unknown. 

5.2.1 Designerly Behaviors in the Design Process 

To systematically characterize designer behavior when using optimization tools, and to 

determine how these tools potentially alter traditional processes, it is first necessary to ground the 

research in a conceptual framework for design behavior. Although design is a complex series of 

decisions, researchers have identified general characteristics of the design process [14]–[17], 

which are used to recognize reoccurring design strategies. Most of these models establish a phase 

for problem definition, one for design development, and one for solution analysis, with 

opportunities for iteration throughout. However, these models are very broad in their scope. 

Several researchers have considered characteristics of design behaviors when working 

collaboratively with computation tools [18], particularly in the medium of parametric modeling 

[19]–[22]. Literature shows that when a computer is used to support or make key decisions, there 

are different schemes by which to identify a designer’s cognitive or computational decisions [20], 
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[23], [24]. In some cases, incorporating parametric modeling and rule-based digital software can 

improve the efficiency of design [25], [26]. However, other research has differentiated that 

parametric modeling is still the result of a tool and cannot replace the ingenuity of a human 

designer [27]. In fact, precedent study observations show that in practice, parametric design 

focuses on more controlled, rule-based designs rather than a vast multitude of solutions [28]. This 

narrowing of potential designs based on designers’ knowledge and intuition may also be evident 

in optimization strategies. 

While these prior investigations of parametric design strategies inform aspects of this 

paper, we based our optimization-related study on the situated FBS framework [13], which is an 

extension of the fundamental and widely applied FBS ontology [29]. Gero’s original ontology has 

been used by many design disciplines to model, code, and analyze design behaviors [30]–[32]. It 

models the design process by first assigning the characteristics of the desired artifact into three 

primary categories: function (the role of the artifact), behavior (how the artifact performs), and 

structure (the qualities of the artifact). The development of these characteristics is identified by 

eight types of fundamental design moves, which create a framework to define the design process. 

However, although the original FBS provided a clear foundation to describe a range of design 

tasks, it did not account for the influence of cognitive context on design. 

In response, Gero and Kannengiesser [13] present a revised method called the situated 

FBS framework (Figure 5-1), which considered an additional, recursive dimension of design: the 

conceptual environment. This new framework expanded the original 8 processes into three 

conceptual environments: an external world, an interpreted world, and an expected world. By 

dividing the FBS elements into each world and categorizing the processes as an action, 

interpretation, or focusing, the situated FBS framework provides a more extensive strategy by 

which to map the evolution of the design process. For example, within the synthesis, analysis, and 

evaluation processes, an expected behavior (Bei) motivates the designer’s idea for a structure 
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(Sei) (process 11), which the designer then represents that structure externally (Se) as a sketch or 

3D model (process 12). Next, the designer considers whether the representation aligns with their 

idea (process 13). Simultaneously, that structure produces an associated behavior (process 14), 

which the designer can compare to the expected behavior (process 15). If considered adequate, 

the designer can proceed to documentation, or they may repeat the processes going as far back as 

reframing Functions (process 16). 

 
Figure 5-1. Situated FBS framework with emphasis on the processes focused on in this paper, and 
the situatedness and interaction of three worlds, after concepts of Gero and Kannengiesser [13]. 

With this framework, design researchers can incorporate more comprehensive modeling 

of iterative thinking and the regeneration of ideas. Even with these adjustments, the FBS ontology 

has been criticized for its ambiguity [33], [34] while others emphasize FBS’s applicability [35]. 

Nevertheless, the FBS ontology has been used to model design in many disciplines [36], [37], 

including parametric building design [38]. Its expanded version, the situated FBS framework, 

also presents several advantages for this study of optimization strategies. It provides an order by 



110 

 

which to identify design events and organizes the relationships between the designer’s ideas, the 

behavioral bounds of the design, and the realization of the design artifact. It also acknowledges 

the iterative loop between what the designer envisions and what manifests externally (shifting 

between the 3 worlds), which can occur in parametric, rule-based design exploration. 

Parametric design tools have been shown to help designers produce unconventional 

solutions [24], [28], some of which may not have been originally conceived by the designer. The 

uniqueness of the designs and potential for innovation have been assessed by traditional methods 

for measuring creativity and shown that parametric thinking is a viable form of design [39]. In 

addition, this method of idea generation prompts consideration of a designer’s source for decision 

making. In Yu et al.’s study [38], the researchers defined a subset of characteristics in the FBS 

ontology and classified the designer’s decisions as either “design knowledge” or “rule algorithm” 

to differentiate the source of cognitive effort throughout the phases of the design session. We also 

identify subsets of decisions within the situated FBS framework in this paper to codify the 

participants’ design process and identify design events unique to optimization. Differentiating 

between decisions focused on developing the artifact or developing the optimization approach is 

valuable in evaluating computational design behaviors, especially as the use of digital tools to 

solve complex building challenges becomes more pervasive. 

5.2.2 Building Optimization as a Design Technique 

As the performance needs of our built environment grow more stringent, it is increasingly 

difficult to address multiple design considerations across a range of professional specialties. 

Although achieving an effective, holistic design is advantageous, building performance criteria 

vary in units, scale, and importance, making them difficult to empirically compare and optimize 

[1], [40]. For example, the benefits of increasing natural daylight with more windows can 
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compete with the goal of reducing energy consumption. Building optimization quickly becomes 

convoluted as there are many numerical and experiential criteria, such as spatial, structural, and 

mechanical objectives [2]. Furthermore, when AEC disciplines collaborate on optimization 

projects, it has been shown that an iterative process emerges between the designers and their 

optimization tools [41]. 

Traditionally, designers relied on knowledge to find effective solutions, but 

computational tools allow designers to rapidly explore a range of solutions with quick 

performance feedback, enabling more efficient production of high-performance designs for 

architects and engineers [10], [42], [43]. However, some designers criticize digital design space 

exploration for its limitations in design thinking and potential design fixation compared to 

traditional sketching processes [44]. Nevertheless, optimization has been utilized by a variety of 

engineering disciplines with advantageous results [2], [45], [46] and research has shown that the 

use of computational tools is a viable method for design in AEC [10], [11], [47]. In particular, the 

applicability of optimization in computer aided architectural design has been suggested early in 

the development of building computation simulation [48]. However, due to the emerging nature 

of optimization tools, the best practices for their use are still being defined. At this point, strategic 

optimization education can impact the effective implementation of such tools by graduate 

designers and is not unique to just optimization. 

5.2.3 Student Designers Working in Digital Tools 

It has been suggested that parametric design is advantageous to the development of a 

designer because it prompts the setting of constraints on a design task to find different solutions 

rather than focusing on one solution [49]. Yet students may be limited in their ability to fully 

execute a design since they are still developing as designers themselves and are still mastering 
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design tools [50]. In addition, curriculum standards in building design education vary by 

discipline, and the influence of pedagogical systems on problem-solving strategies are somewhat 

unpredictable [51]. Specific to optimization pedagogy, recently developed courses in architecture 

and engineering programs have introduced optimization to students with promising initial results 

[52]–[54], but the learning outcomes of these courses are not standardized, and the tools and 

processes used vary by institution. Nevertheless, much of the emerging research that considers 

early-stage optimization tools focuses on student participants [43], [55]–[57], so there is value in 

identifying specific sources of student limitations in design environments, particularly for 

optimization. 

Considering this population, it has been shown that novice designers tend to use less 

sophisticated processes compared to experts [58], [59], which may hinder effective use of 

optimization methods. Intermediate designers, though, such as graduate-level architect and 

engineer students, represent a stage in education development in which designers possess a 

foundation for disciplinary design decisions and have experience working with design tools, but 

are still developing as effective problem solvers. Identifying graduate student designer strategies 

while they make decisions with optimization tools may help categorize effective behaviors, 

improving tools for design development, and enhance learning processes for graduate students as 

future experts. Accounting for the context of proliferating digital tools in AEC, this research 

focuses on optimization behavior in conceptual building design. 

5.3 Methods 

This IRB approved study asked graduate-level architect and engineering design students 

to propose an optimized solution in response to a conceptual building design task. The multi-

method research design employed eye-tracking, screen recordings, and interviews to capture 
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different streams of data from the design sessions. Observational data analysis and artifact 

analysis techniques were used to qualitatively code the design segments within the situated FBS 

framework. Our analysis protocol was also employed to identify designerly events unique to 

optimization, relating reoccurring behaviors between designers to potentially effective 

optimization strategies.  

5.3.1 Participants 

The streams of observational and interview data were collected from a sample size of 10 

architecture (5) and architectural engineering (5) graduate students at a research-intensive public 

university in the northeastern United States. This population is of special interest to understand 

the design practices of designers at an intermediate educational stage rather than those of novice 

undergraduates (who typically have not developed either design or engineering skillsets) or 

practitioners (who are fully expert in their designerly ways). While this sample size may seem 

small, each participant generates 3 hours of video screen capture data, eye-tracking data, and 

interview data, supporting a multi-stream qualitative study. This amount of data is quite large and 

rich considering the purpose of this study is to identify and characterize the types of optimization 

behaviors rather than conduct predictive or generalizable statistics. Participants included 6 

women and 4 men. They were recruited by email announcement of the study to the architecture 

and architectural engineering department and were compensated with a $20 gift card. The 

participants completed a survey before beginning the design task and reported at least 1 year of 

experience (average 3.5 years) and a moderate level of confidence with the study’s modelling 

tools, along with at least 1 year of experience in optimization. Amount of time spent in design 

practice among participants, which can occur before or during the pursuit of graduate degrees, 

ranged from 0-10 years. By studying graduate-level designers, we elicit a deep understanding of 
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how the design learning process occurs as architects and engineers move past their novice design 

tendencies.  

5.3.2 Design Session 

All design sessions were conducted in a controlled research space equipped with a 

computer, eye-tracking hardware, and software. The research procedure is shown in Figure 5-2. 

After the participants were situated at the computer, they were briefed on the design task through 

a standard video introduction and their eye-tracking setup was calibrated for their sitting position. 

After watching the design task video, but before working in the digital space, the designers were 

provided with paper and pencils to take notes or sketch on paper for 5-10 minutes, which enabled 

them to create initial ideas separate from the model space. They then proceeded to work in the 

digital modeling tools to develop their design and produce optimized solutions. The designers 

were prompted to work for as long as they felt comfortable, resulting in sessions that lasted 

approximately 3 hours. 

 
Figure 5-2. Summary of the events in a design session, showing the data that was collected, and a 
preview of the digital design interface. 
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While Grasshopper in Rhinoceros was used as a consistent parametric modeling platform, 

the designers were able to choose their own optimization plugins, since the application of these 

tools is a part of authentic design behavior. In this study, the participants preferred using either 

Galapagos [60], presumably adding their own prioritization mechanism to manage multiple 

objectives or Design Space Exploration’s Multi-Objective Optimization tool [42] to find 

optimized solutions. Notably, both tools preview intermittent design iterations while running, 

such that designers can make visual assessments before the tool has completed its optimization 

loop. It is also worth noting that these chosen tools do not fully enable interactive human-in-the-

loop optimization at the scale of design generations or internal dynamic data visualization, which 

are possible using newer or less common parametric tools, such as Stormcloud [61], Wallacei X 

[62], and Stepper [63]. Full documentation of design strategies with these tools would require 

future analysis. 

The participants could repeatedly use their optimization tool in the session if they wished, 

but they were not explicitly prompted to do so. After settling on a final design, the designers were 

asked to submit 2-4 screenshots of their proposal and a written design statement to give to a 

fictional client. Immediately following submission of their deliverables, the researcher 

interviewed the participants using a semi-structured interview protocol, asking about their goals 

for their design, how they approached completing the design, and what they would do differently 

if they had more time. The interviews were used as cognitive proxies to contextually ensure that 

behaviors were correctly interpreted. 

5.3.3 Design Task 

The design task asked participants to develop a glass atrium infill for a fictional 

university client in Phoenix, Arizona. This site was chosen because of the region’s hot and sunny 
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summer climate, which is easily recognized or readily learned in an online search. A university 

setting was used for site context to prompt the need for visually exciting designs, and for its 

accessibility to the participants. The design task required the designers to address at least two of 

three provided objectives. The first objective is to maximize daylighting during the summer 

solstice (June 21) at noon. While building designs often consider daylight at multiple times 

throughout the year, full daylighting simulations can take hours or even days to run. Focusing on 

a significant instance in time is a common design strategy that eliminates wait times and reduces 

required computation power. The second goal is to minimize solar radiation. Within the task, 

reducing the surface area of the atrium will reduce solar radiation, as will substituting thicker 

glass or opaque panels with better u-values. The third objective is to minimize the elastic energy 

of the structure, as calculated by Karamba3D [64]. It is desirable to have a structure with less 

deflection because it will allow for smaller members to build. Reducing structural weight can also 

reduce costs. Optimizing a whole structural system is a complex task but asking the designers to 

focus on two of these three goals provides a conceivable and numeric goal for them to manage in 

the constraints of this conceptual design task. 

The designers were given the design task through two introduction videos. In the first 

video, the fictional client showed four example atriums that the university admires. Although 

providing examples to the participants may bias their design solutions and prompt them to imitate 

what they are shown [65], clients often share their visions for a project during an authentic design 

process in practice. Providing participants with examples of atriums also frames the design task in 

terms of parametric thinking, which was the intended design environment of this study. However, 

before introducing the designers to the study’s computational tool, participants were allowed to 

sketch or write out initial ideas, permitting them to first consider ideas not constrained to the 

computational environment. 
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Participants were also provided with a base file containing the site context, important 

points of reference, and pre-built scripts that calculate the objectives. The script required that the 

participants provide surfaces for the intended solid panels, surfaces for the glass panels, the 

structure represented as lines, and the structural support points. In this way, the designers could 

focus their efforts on working towards an optimized solution, and the study was given a 

consistent frame for simplified performance simulation between the designers. Moreover, this 

study focuses on optimization tactics, not on the designer’s ability to assemble a structural 

analysis simulation.  

5.3.4 Qualitative Coding and Characterization of Design Behaviors 

During the design session, the participants’ behaviors were captured by screen recording 

and tracking their eye gaze data using EyeWorks eye-tracking hardware [66]. Eye tracking, 

combined with screen capture recordings, is a robust method to understand design behaviors 

because it offers the ability for researchers to not just capture outcomes, but also actions and 

patterns of behaviors paired with information about what the participant is looking at or turning 

their attention toward. These types of data are highly complex, with each minute of participant 

behavior resulting in hundreds if not thousands of potential data points for each participant 

generated over a ~3 hour design task.  

The researchers also observed the design session to record times when the participant 

sketched or encountered difficulties with the tool, and to facilitate an immediate follow up 

interview about the participant’s rationales for critical design decisions. The follow up interviews 

asked the designers to elaborate on their design decisions and what difficulties they encountered. 

They were also asked, if given more time, what would they do differently to further refine their 

design. 
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5.3.4.1 Data Analysis 

To analyze the streams of data, various methods were employed. First, the video 

recordings were reviewed and activities that did not pertain to the design session were removed, 

such as saving and restarting the program. Second, the eye-tracking data were initially analyzed 

using digital tools to interpret broad patterns in participant behavior. Using additional software 

from EyeWorks, the eye gaze data was paired with two Regions of Interest (ROI) on the screen to 

identify if the participant looked in the parametric space (Grasshopper), the 3D modeling space 

(Rhino), or away from the screen altogether. These tools help interpret the digital information 

representing design behavior. 

When working in these tools, a designer develops their model by programming geometry 

in the parametric space and viewing their model in the 3D modeling space. While these regions 

stay the same for each participant, the displays inside the regions are dynamic as participants 

rotate or zoom in on the design or pan across their script. Thus, a significant dwell time in an ROI 

shows either consideration of the design artifact or computational manipulations of the design. 

Figure 5-3 shows where the two ROI’s are on the screen (the 3D modeling space and the 

parametric space), a preview of what may be displayed in the spaces, and a brief description of 

what occurs in the spaces. Eye tracking was thus required to accurately identify loops between 

Regions of Interest, which eventually helped define behaviors. 
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Figure 5-3. Two regions of interest (ROI) on the screen and descriptions of the regions. 

The output video files from the eye-tracking data were analyzed using observational 

qualitative data analysis processes, called “coding,” honed for observational and time-resolved 

research to characterize design behaviors. These methods work abductively from existing 

frameworks for design cognition to accurately describe the breadth of behaviors observed [67]. A 

codebook describing the names and definitions of the design activities, which could be 

categorized, was developed through literature and piloted iteratively on the data in consensus with 

the other members of the research team and strongly grounded in design theory. After this 

iterative codebook was developed, a single researcher rewatched all the design sessions and 

notated the presence of every design behavior and their time stamps. The coding comprised of 

elements from the situated FBS framework in identifying the iterative process between Function, 

Behavior, and Structure in the context of the optimization environment. The typology of 

behaviors captured, aggregate percentages of behaviors captured over time, and the ordering in 

which behaviors occur through the duration of the design challenge are used to answer the 

research question related to patterns of design behaviors. 

The interview recordings were employed as an external validation method to ensure that 

the research team was interpreting behaviors accurately, particularly for critical decisions, but 

were not independently thematically analyzed for this study. The interview questions are 
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provided in Appendix F. Together, the multiple streams of qualitative data (screen recording, eye 

tracking, and interview transcripts) are used to inform the interpretation of the behaviors as they 

relate to architectural engineering design education. 

5.3.4.2 Event Codes 

We determined 13 events of behavior that manifested across all ten participants. Figure 5-

4 shows the coding of events in the situated FBS framework to the conceptual optimization 

process. The code also highlights several concrete events identified in this study, which define the 

behavioral structure of the individual sessions. The sessions were divided into two primary 

phases, “pre-modeling” and “modeling,” which are determined by the placing of a first 

component in Grasshopper. Placing the first component is coded as a process 12 in which the 

designer manifests their idea for an artifact in the external world. In this study, the pre-modeling 

phase is mostly rapid formulation (processes 1-10), and although sketching in the Pre-modeling 

phase is also a process 12 since it allows the designer to externalize their ideas onto paper, the 

formulation processes are informally executed and not within the scope of this paper. 
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 Figure 5-4. Coded behaviors in this study from the situated FBS framework. 

5.3.4.3 Synthesis Events 

We also captured the occurrence of “synthesis events” as a manifestation of the 

processes. Synthesis events include a process 11, which is envisioning solutions (Sei) from 

formulated behavior (Bei), and process 12, which is externalizing the solution. In this study, 

process 11 was an internal decision, so this step was not explicitly captured. However, synthesis 

process 12 accounts for many of the designer’s actions and was divided into 4 categories to better 

describe the designer’s externalized decisions. Most of the actions in the parametric space that 

create structure (Se) are when the designer places a static component, but there are other events 

which relate directly to the optimization process. Following precedent from Yu et al. [38], which 

divided Function, Behavior, and Structure into knowledge-based and rule-based cognitive 

decisions, this research identified 3 events within process 12 in this study: the introduction of a 

variable to the model, a return to sketching on paper, and the defining of solid and clear panels. 
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Introducing a variable suggests the potential for that element to be influenced by optimization 

feedback. Notably, not all the variables created in each session were used in the optimization 

events, which turns them into parameters in formal optimization language. Overall, individual 

narratives concerning the use of variables inform each designers’ process. The process 12 event 

of “returning to sketching” is also not always present in every session, but it is determined when a 

designer looks away from the screen and picks up their writing utensil. All designers created 

surfaces in their design and discerned between solid and glass panels. Until this event occurs, 

their design decisions are geometric and do not considered materiality, which is a Behavior aspect 

of the design. 

5.3.4.4 Pre-analysis and Analysis Events 

Other definitive events in this study are when participants first plug elements into the 

objective value generators and when they first activate their optimization tool. Shifting to the 

generator signifies a transition from relying on design knowledge to preparing for optimization 

feedback. The designers may return to design knowledge after interacting with the objective 

generator, but this is an event unique to the optimization process, and the timing of its occurrence 

in the session informs how integral the designers see optimization in their final solution. To meet 

the requirements of the objective generators, they may also have to restructure part of their 

model, relying on a mixture of design knowledge and parametric knowledge. 

A further indicator is when the designer starts preparing the optimization tool to optimize 

the design. This is not always an efficient process, particularly for the student designers, as the 

planning for optimization sometimes prompts reevaluation of design variables. Once the 

optimization tool is run, a series of analysis, evaluation, and synthesis processes (13, 14, 15, and 
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12) occur between the designer and optimization tool from which the designer can make a design 

decision. 

5.3.4.5 Evaluation and Documentation Events 

Before proceeding to documentation, a designer will verify if the behavior of the design 

meets the expected behavior. In early conceptual design development, this process is largely 

driven by the optimization tool, which minimizes the objective values. However, the designer 

may consider the results manually and decide to repeat earlier processes or proceed to 

documentation. In some cases, a designer may follow process 16, which is an opportunity to 

change the function of the design by changing which of the two objectives they wish to pursue. 

This process did not occur in this study’s design sessions. 

The final event defined in this study is the shift to documentation. This is defined as 

when the designer opens the writing document and begins to compose their design statement or 

take screenshots of their final design. In some cases, the designers refine the representation of 

their design in preparation for documentation, such as applying color to the different panels. 

5.3.5 Evaluation of Designer Behavior 

Coding and identifying these processes allowed the design team to compare reoccurring 

behaviors, design focus, and significant events. In following the situated FBS framework, a series 

of repeated actions are identified in the conceptual design optimization sessions. While Gero and 

Kannengiesser acknowledged types of design “Reformulations,” this research identifies iterations 

performed by the designer, by the optimizer, and by the designer and the optimizer together, 

shown in Figure 5-5. Prior to running the optimization tool, the designers ran through process 11, 
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12, and 13, in a series of iterative loops. These loops were identified by the designers’ dwell time 

in the Grasshopper canvas and the modeling space, as recorded by the eye-tracking tool. 

 
Figure 5-5. Illustration of the identified iteration loops including iteration loop A (IA), iteration 
loop B (IB), and iteration loop C (IC). 

Appropriate dwell times are often determined by the task context [68] and are difficult to 

standardize [69]. While eye tracking has been used in many areas, its application in 3D 

architectural modeling tools is less common. Dwell times that are measured in milliseconds tend 

to correspond to small Areas of Interest, like a button on a webpage. However, this research uses 

Regions of Interest that correspond to how participants consider the design versus manipulating 

the design script. Both activities likely require dwell times in the small number of seconds, which 

have also been considered in relation to programming activities [70]. Frequency of looking at the 

regions is significant, as iterative loops were identified at the resolution that patterns emerged for 

the design sessions. Based on researcher experience with the design tools and iteratively testing 

different timeframes, the sessions were divided into 0-4 seconds, 4-12 seconds, and 12+ seconds. 

Glancing in the model ROI for less than 4 seconds was determined to be a “check” that the 

Grasshopper command was doing the intended purpose, rather than a responsive assessment of 

the design associated with a process 13. Looking at either region for longer than 12 seconds 

indicated that the designer was focusing on component assembly in Grasshopper (ROI2) or 

reflecting on the representation of their model (ROI 1). An Iteration Loop A (IA) was determined 

when the designer looked back and forth between Grasshopper and the modeling space at least 
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once, for 4-12 seconds in each region. IA loops can be counted, providing a metric by which to 

compare the designers’ iterative behaviors. 

The second Iteration loop is performed by the optimization tool, Iteration Loop B (IB), 

starting from process 14 to 15, 11, and 12. It runs through these rapidly and iteratively until 

stopping back at Bi. Notably, the optimization tool does not perform process 13, as it cannot 

consider if the external structure aligns with the designer’s interpreted structure. After running the 

optimizer, the designer may continue to move through synthesis, analysis, and evaluation 

processes based on abstract goals, or move directly onto documentation. If they respond to the 

optimization feedback and make adjustments, then that is considered an Iteration Loop C (IC). 

This iterative process is similar to the interactive behavior identified by Geyer et al. [41] as a 

designer works back and forth between design modeling and optimization. 

These iteration loops allowed us to identify how early the designers ran their optimization 

tool in the session, what processes they followed after reviewing the results, and if they repeated 

the optimization. IA loops were identified automatically based on relationships in the eye-

tracking data. Although IB and IC loops contain defined actions, not open to interpretation or 

variation of researcher perspective, they did require manual recordings of when a certain 

component was placed, connected, or manipulated in the screen recordings. A member of the 

research team reviewed the sessions twice to verify that the processes were accurately identified. 

The occurrence of the iteration loops, types of Structure moves, and optimization events produce 

narratives that enable comparison between participants. 

5.4 Results 

Based on the coding structure, simplified session time plots are shown in Figure 5-6. The 

sessions are divided into Pre-modeling and Modeling phases. The beginning of the Modeling 
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phase is marked with “0 minutes.” The horizontal line in each diagram is the session timeline 

from sessions beginning to end. Along the timeline, the IA (Designers) loops are plotted, showing 

their occurrence and duration. Similarly, below the timeline, iteration types IB (Optimizers) and 

IC (Designer with optimizer) are shown with blocks, indicating when and for how long each loop 

lasted. Above the timeline, significant events within the optimization process are also labeled 

according to their triggers in the previous section. Plugging their design into the objective value 

generator (“obj.”) represents an active, cognitive engagement with the design objectives. Later in 

each session, the opening of an optimization tool and preparing to run it (“prep optimizer”) is 

considered the beginning of the optimization process. At the end of each timeline, the time spent 

documenting the design is shown as a thicker gray band. 
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Figure 5-6. Design session behavior time plots. 
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The sessions are organized by three categories of optimization behavior, as determined 

by reoccurring characteristics. A “Complete Optimization Cycle” is when the participant 

completed at least one full IC iteration and there is evidence of informed edits to their design, 

such as the presence of an IA iteration after optimizing or a substantial amount of time spent 

considering results. A “Coarse Optimization Cycle” is when the designers completed at least one 

IC iteration, but the cycles did not influence any notable changes in the design. The third cycle, a 

“Partial Optimization Cycle,” is when the designer did not complete a full IC iteration, meaning 

they did not consider the best performing suggestions from the optimization tool. Although the 

cycle categories do not indicate the quality of design idea or the efficacy of resulting design 

performance, they do organize a system by which to understand optimization techniques and 

discuss nuances between behaviors. The next three sections describe in detail representative 

participants for each type of cycle. 

5.4.1 Complete Optimization Cycle 

The Complete Optimization Cycle participants closely followed an expected optimization 

process in which a designer integrates behavioral (process 14 and 15) considerations in the 

development of their design and completes at least one full designer-optimizer (IC) iteration, with 

observable edits to their design, before documenting their project. Figure 5-7 shows detailed 

session time plots of Participants 01 and 03, who exhibited characteristics of the Complete Cycle. 

In these detailed session time plots, creation of a new variable is indicated by a circle, and a 

participant returning to sketching by picking up their writing utensil is shown by a triangle. The 

figure also shows when the designers defined the difference between solid and glass panels in 

their model (Sp) along with notable instances within the eye gaze fixations.  
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 Figure 5-7. Complete optimization cycle sessions with detailed time plots from Participants 
01 and 03. 

The enlarged portion of the Eye Gaze Fixation plot for Participant 01 shows three 

examples of IA iteration. The designer looked back and forth between the model space and 

parametric space for at least 4-12 second clusters, suggesting a loop of design edits, which was 

confirmed by researcher observation. As the sessions progress and the designers focus more on 

preparing for the optimization process, the occurrences of IA loops become less frequent. 

However, each designer also completed an IA loop between optimization runs, suggesting that an 

informed change was made to the design before running the final optimization loop. Several 

smaller differences are apparent, however. Participant 01 returned to sketching after placing a 

component and before developing their model, while Participant 03 immediately started to create 

variables. Also, as indicated by the early square notations in the IB zone, Participant 03 used a 

direct form-finding tool to achieve an optimized structural shape first rather than use “structure” 

as an objective in a parametric optimization run. This is a distinct form of optimization based on 

setting optimality criteria and seeking those criteria directly, but it is only possible in a parametric 
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environment designed specifically for this purpose. It was thus coded for summary statistics as an 

optimization loop but represented differently from an IB loop.  

5.4.2 Coarse Optimization Cycle 

Figure 5-8 shows the detailed time plots two designers who exhibited a “Coarse 

Optimization Cycle.” It includes Participants 05 and 06, who completed IC loops but did not use 

optimization strategies thoroughly and thus presented subtle differences in their sessions. The IC 

loops of these sessions are very brief compared to Participants 01 and 03. Although the brevity of 

an IB loop will depend on the robustness of the chosen tool and the simplicity of a design, time 

spent considering the optimized options (process 15) can reflect the sophistication of the 

optimization run or the intent of the designer. These two participants ran several IB loops in a 

short time because the design options were not as diverse as they envisioned, but they did not 

know how to manipulate the variables to produce optimization results that aligned with their 

vision. Participant 05 did not engage in optimization events until late in their session and realized 

the structure of their model’s code was not compatible with the requirements of objective 

generators. The participant rebuilt part of the model and lost some of the qualities from their 

original design. The detail from Participant 05’s time plot in Figure 5-8 shows their focus on 

Grasshopper space as they manipulated code.  
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Figure 5-8. Coarse optimization cycle sessions with detailed time plots from Participants 05 and 
06. 

While other sessions show sparse IA iterations as participants adjusted code, Participant 

06’s time plot shows a density of IA iterations before preparing the optimization tool. This 

behavior suggests that, for Participant 06 to correctly activate the objective generators, they had 

to change their design and repeatedly view the results in the model space. The absence of this 

behavior in the other sessions suggests that this designer’s solution developed in response to the 

guided requirements of the study, not exclusively by their own vision for the project. This 

dependency on prompted Grasshopper coding may reflect less experience with parametric and 

optimization design techniques. Although this participant could wield optimization tools, issues 

with self-driven design performance may arise if they were to employ optimization techniques in 

future, professional projects where design efficacy and efficiency are imperative.  
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5.4.3 Partial Optimization Cycle 

Figure 5-9 shows the plots for Participants 02 and 04, who did not complete an IC loop 

during the study. This characteristic is considered a “Partial Optimization Cycle.” Although most 

of the designers responded to the optimization tool’s feedback, Participant 04 started writing their 

final design statement before completing their first optimization run. This suggests that either the 

variables affecting the participant’s design were not dependent on the optimization feedback, or 

that the participant did not consider their optimization routine to have possible benefits for 

informing a final design decision. However, a lack of IC iterations does not always mean that 

optimization techniques were not used to improve the design. In Participant 02’s first two 

optimization runs, they watched the tool generate a range of possible designs while it ran. After 

briefly seeing that the possible solutions were not as varied as they hoped, the designer stopped 

the optimizer’s automated process and edited their design variables to create more variations of 

possible solutions. This was an informed action as part of a process 13 (considering the physical 

structure of the design), but not a process 15, and therefore not an IC iteration. Nevertheless, the 

optimization tool was integrated into the participant’s design strategy. 



133 

 

 
Figure 5-9. Partial optimization cycle sessions with detailed time plots from Participants 02 and 04. 

5.4.4 Optimization Characteristics 

Figure 5-10 summarizes the optimization characteristics for six representative sessions 

that were analyzed in more detail. The figure shows what percentage of the session had transpired 

before the participant engaged with the objectives’ components and when they started to prepare 

the optimization tool. The participants began using the objective components at between 43-75% 

of the timeline, suggesting a transition from developing the structure of the model to considering 

the behaviors of their model. After plugging their designs into the objective generators, 

participants began to optimize at different times as well. While Participant 03 started to optimize 

as early as halfway through the session, Participant 05 did not start optimizing until near the end 

of their session. Figure 5-10 also indicates which of the two objectives the participants focused on 

in their optimization sequences. Finally, it states how many IA, IB, and IC iterations that the 
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participants performed and how many variables were used in their final IB run. The parenthetical 

number (5) for Participant 03’s IB loops shows the number of direct form-finding runs employed.  

 
Figure 5-10. Summary of characteristics from the optimization portion of each session. 

The number of variables used in the final optimization output varies by participant. 

Participant 05 had the most variables, which may explain why they spent so much time 

generating code before beginning to optimize, but Participant 04 had a similar delay with fewer 

variables. Although all designers created variables (parametric sliders) early in their design, only 

Participants 01 and 06 used all of these sliders in their optimization process. In some cases, 

variables were only used by the designer to consider design variations outside of the optimization 

framework. 

5.5 Discussion 

To summarize, several design patterns emerge from the results. Three iterative loops 

were identified from applying the situated FBS ontology to differentiate iterations from the 

designer, the optimization tool, and from the designer and optimization tool together. These loops 

can show when a designer relies on their own design knowledge to make decisions or when they 

use optimization feedback to inform their design. The occurrence of these loops defined the three 

categories of design strategies based on their presence, timing, and repetition. 
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This research shows that the graduate student designers use optimization with varying 

degrees of intent. While some used optimization feedback to understand the extents of their 

parametric model (like Participant 02) or inform changes to their design (like Participant 01 and 

03), others did not fully integrate optimization into their design strategies. This behavior is 

evident in sessions that did not make edits between optimization IB iterations (like Participant 05) 

or did not complete an IC iteration (like Participant 04). Participant 04 showed a partial use of 

optimization tools, and their behaviors suggest that their vision for their design was not 

responsive to optimization feedback, since their documentation was started before the optimizer 

completed its assessment. Not using optimization feedback in this case may reflect design fatigue 

within the context of the study, as their session lasted longer than the other participants’. From 

observing their parametric model, though, their optimization variables controlled only subtle 

changes to the model, suggesting that optimization as an influencer in design was not part of their 

strategy. Only partial or no use of optimization feedback in student designers may indicate a lack 

of experience or comfort with optimization tools, or it may simply show a preference for other 

design approaches. 

Although the participants tended to create many variables (or parametric sliders) early in 

their design session, not all variables were included in the optimizer’s process. Many of the 

variables were used to explore design options manually rather than as part of their performance-

driven investigation, but they could also have been used to set a parameter or constraint that did 

not change during optimization. While previous research has discerned schemes for processing 

parametric design behavior [20], [71] and identified an iterative loop between design decisions 

and optimization [41], the findings from this experiment confirm the presence of these loops 

while developing a parametric script during design. This paper thus adds to existing knowledge 

by showing how early and frequently students modify their model structure in response to an 

optimization cycle.  
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5.5.1 Implications for Design Pedagogy 

In categorizing the sessions by optimization behaviors, we establish an initial method to 

identify the characteristics of graduate student designers, which can inform future curricular 

development and even student assessment if measured directly. Students with experience using 

optimization tools do not always fully incorporate them into their decision-making process in a 

way that leverages optimization’s strengths. If the goal of having optimization in the curriculum 

is to empower students to include such automated or interactive optimization runs to improve 

design outcomes, then additional emphasis must be placed on contextualizing optimization for 

design. This could include formal teaching of strategies for variable selection and parametric 

problem definition, visual interpretation of results, and how to use optimization iteratively to 

arrive at a satisfying result. Particular topics of emphasis may differ across the disciplines in the 

study, as the goals of optimization in an architecture studio or graduate engineering course are 

likely different. 

In addition, when considering how much of the design session the participants spent 

optimizing, the results suggest that incorporating objective feedback earlier in the design session 

aligns with more IC designer-optimizer iterations. The designers who started preparing for the 

objective feedback sooner in the sessions ran more optimization iterations. While getting to the 

optimization process sooner provides more opportunities for design improvement, it does not 

ensure quality of design expression. However, in optimization education, emphasizing the early 

and integrated use of optimization for student designers can at least prompt more engagement 

with the approach. 

Finally, this study noted that when given the choice, most participants selected either the 

default evolutionary solver native to the software itself or a multi-objective optimization tool that 

uses an evolutionary process to generate approximations of the Pareto front for further 



137 

 

consideration. If instructors seek to encourage students to use faster gradient-based algorithms, 

interactive tools, or other methods beyond evolutionary algorithms, more emphasis on these 

alternative methods is likely needed. These tool preferences may also have occurred for practical 

reasons, such as ease of access or use, rather than because students thought they would achieve 

the best results, but this would have to be determined through future study. 

5.5.2 Limitations 

As with any study, there are some limitations to the findings. Although there were only 

ten participants, the data generated from this project is insightfully rich in ways that have not 

been presented in the AEC design literature before by using deep multimethod qualitative and 

time-resolved observational research methods. Our data set from ten participants represents 

approximately thirty hours of in situ observational data employing multiple strands of time-

resolved data, offering a unique depth of insight useful to design theorists and educators. Further, 

the goal of the study was to identify designerly behavior during optimization in intermediate-level 

designers to promote theory-informed transferability of the research findings, not to understand 

how predictively generalizable these patterns occur across larger populations. We leave this to 

future work. The advantages and affordances of using deep qualitative methods will always be 

balanced with a pragmatic tradeoff of sample size, as has been well-established in the qualitative 

research methods literature. We meet the requirements of qualitative research methodologies by 

grounding our work in theory, establishing theoretical and pragmatic validity [72] through our use 

of and interpretation of results through FBS design theory, and are satisfied with our codebook in 

that we reached saturation such that no new themes emerged during analysis [73], [74]. 

In addition, this chapter does not present the disciplinary backgrounds of the studies’ 

participants, which was discussed in section 2.2.1. Analysis and discussion of their disciplinary 
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backgrounds are presented in the paper “Optimization strategies of architecture and engineering 

graduate students: responding to data during design” included in the proceedings of the 2023 

CAAD Futures 2023 conference. The details of the participants’ education as an architect or 

engineer was excluded from this dissertation because these distinctions were less influential on 

differences of design behavior when comparing students to practitioners in optimization. 

Other limitations to this study include that the design task focuses on a conceptual design 

challenge, which does not capture all possible strategies that may be used when developing a full 

project. However, optimization strategies are often used to explore solutions at early phases of 

design to investigate concepts of interest. Studying a design challenge with a narrow activity 

scope rather than a comprehensive design process creates many advantages for data collection, 

but may also diminish its authenticity. In addition, since students were able to select their own 

tools, this study does not cover behaviors across the full range of optimization possibilities, 

including more emerging interactive optimization strategies. Finally, this study does not assess 

design quality directly, so it assumes that full incorporation of optimization into design simply 

gives the best future opportunity for high-quality designs. Several of these limitations are left for 

future work. 

5.6 Conclusion 

This paper presented the findings from a study which considered the designerly behaviors 

of graduate student designers in architecture and architectural engineering when responding to a 

building design optimization task. The study used eye-tracking and screen recording methods to 

record data and coded the designerly behaviors following the situated FBS framework. Three 

types of design iteration loops were used to characterize partial, coarse, and complete 

optimization cycles by participants. These findings from this study, while of interest to education 
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and design cognition researchers in advancing foundational theory, also offer significant 

opportunities to modify and augment graduate-level design curricula in architectural engineering 

and related fields. As the categories of cycles suggest, while the students understood how to run 

the optimization tools, not all were prepared to use the performance feedback in their own 

designs. While graduate-level education may show students how to use the optimization tools, 

students need to know how to integrate the tools in design projects as well. In much of 

architectural engineering education curricula, digital design tools are often taught secondary to 

design concepts, which is appropriate for certain applications, but incorporating digital tools in 

graduate-level education can better prepare student designers to use the tools effectively rather 

than as an afterthought. 

In addition, the use of observational methods in an authentic design challenge offers 

insight on common issues, obstacles, or ineffective design strategies often employed that may be 

missed in typical “expert vs novice” studies. The impact of this work lies in the preparation of a 

future workforce that is computationally agile in their future careers, helping them use simulation 

feedback to design buildings that are more energy-efficient, low carbon, safe, and durable.  

In future work, it is necessary to consider how the categories of optimization behavior 

proposed here relate to other variables in the optimization design process, as well as to the quality 

of design outcomes. For example, future behavioral studies that evaluate the quality of designs 

produced can indicate which optimization-based processes are more effective and should thus be 

taught to student designers. The methods for observing optimization behavior presented in this 

paper provide a scheme by which to continue to examine designers’ optimization strategies. They 

can be adjusted to accommodate the discovery of new techniques and tools using quantitative 

methods. Nevertheless, this study observed several clear patterns in design optimization behavior, 

showing that earlier and iterative incorporation of optimization runs by graduate student designers 

can lead to more critical engagement with the feedback they provide. 
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Chapter 6 
 

Comparing Student and Practitioner Strategies and Cognition  

This work will be submitted to a future journal publication as S. Bunt, C. G. P. Berdanier, 

N. C. Brown, “Comparing optimization strategies and cognitive processes of building design 

students and practitioners.” 

Abstract 

Optimization techniques are increasingly used in building design practice to support 

improved design solutions, however, designerly behaviors may be confounded by the cognitive 

influences of emerging optimization tools. Expertise is associated with reduced mental workload 

whereas absorbing new knowledge increases working memory. When developing and exploring a 

parametric model for optimization, designers iteratively receive information about their design’s 

performance, and design cognition may be impacted by feedback loops in the design process. To 

understand the relationships between optimization strategies, cognitive loads, and experience with 

optimization tools, a study was conducted that tasked graduate students and practitioners to use 

optimization tools in response to a multi-objective, atrium roof design task. The design sessions 

were analyzed for significant design events and organized into optimization cycles of behavior. 

Eye-tracking methods were used to evaluate the designers’ cognitive efforts, including ICA, 

fixation counts, and fixation durations. While the practitioners exhibited cognitive efforts aligning 

with their expected expertise, they also used a greater diversity of strategies compared to the 

students, who responded to optimization feedback less frequently. This paper reports variations in 
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their behavior and discusses what may influence designers to approach optimization tasks with 

different strategies.  

Keywords: design process; optimization strategies; cognitive load, design expertise 

6.1 Introduction 

While addressing complex, multi-disciplinary objectives in design practice, architects and 

engineers are increasingly augmenting their processes with digital tools. For example, parametric 

design can support designers’ decisions as they iterate a model towards improved performance 

with less manual effort. Within parametric environments, optimization tools rapidly search for 

solutions that meet a designer’s quantitative requirements. When multiple objectives are present, 

which require prioritization to manage trade-offs, a designer can explore curated options provided 

by the tool rather than survey all possible solutions. Thus, while optimization algorithms can 

reduce aimless investigations by directing users to high-performance regions of the design space, 

they can also produce many design options with the potential for unconsidered new information.  

This new information is likely to be processed differently by designers with varying 

levels of training, experience, and expertise. Novice and expert design approaches have been 

shown to be different in terms of cognitive effort [1], idea formulation [2], and the kinds of 

knowledge they use [3]. Such differences may be particularly acute in the context of 

optimization-based design tools. To achieve the potential benefits afforded by computational 

optimization, designers must know how to properly use the tools to their advantage. Emerging 

digital tools require new skills on top of traditional design training. Thus, students who are 

learning about building systems and how to properly design them at the same time they are 

learning how to appropriately use optimization might be overwhelmed by the new information. In 
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contrast, practicing designers have already acquired design experience in their domain, and those 

experienced in optimization may be more comfortable in integrating optimization into their 

natural design approach in diverse ways. 

The concept of cognitive load may be helpful in distinguishing students from 

practitioners, helping educators identify which gaps remain in their education. Research has 

established that increased cognitive load is correlated with the retention of new information [4] 

and task complexity can demand more working memory [5]. Working memory is also associated 

with increased cognitive load [6] and is responsible for processing new information into long-

term, permanent knowledge [7], [8]. As a result, expertise often aligns with less cognitive load 

since an expert is not interpreting new information. Yet building design evokes novel solutions 

with each new project. 

In addition, since emerging optimization tools prompt new strategies for design 

exploration, the processes and cognitive behaviors of expert designers may not align with 

expected characteristics from established research. Previously, novices have been known to use 

less efficient strategies and exert greater cognitive effort compared to experts [1]–[3], [9]. 

However, research specific to computational building design suggests that design expertise is 

ephemeral with the evolution of new tools, and that rapid design feedback leads designers to 

continually learn about their model [10]. While designers may use different approaches 

depending on their expertise, it is possible that they exert similar amounts of mental effort when 

performing optimization processes. As a result, workflow benefits from using optimization 

techniques to explore design options may be reduced if a designer’s efforts are restricted by 

increased cognitive load.  

To better understand differences between student and practitioner design optimization 

strategies, with potential insights coming from both identified behaviors and measurements of 
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cognitive load, a design study was conducted that asked students and practitioners to respond to a 

building design task with multi-objective goals. Participants were instructed to use optimization 

tools to seek improved design proposals. We follow Tan’s [11] description of expertise based on 

experienced knowledge to identify optimization practitioners, who have applied optimization 

techniques to design projects for implementation. Conversely, we identify students as designers 

who have had exposure to optimization tools and techniques but have not yet applied 

optimization in practice. From each participants’ design session, screen recordings, eye-tracking 

data, and interview feedback were collected. From this data, the optimization strategies were 

categorized based on completeness and uniformity following the established protocol for 

identifying optimization processes from chapter 5 [12]. 

In addition, eye-tracking tools collected pupil dilation and gaze data to measure mental 

workloads and evaluate the cognitive efforts exhibited by the designers using different strategies. 

Based on previous research, we expected differences in design cognition between the two groups, 

with the practitioners exhibiting less overall cognitive effort. However, there is not a standardized 

process for incorporating optimization techniques in design and we considered the possibility that 

session outcomes could vary by participant. This paper presents the range of strategies observed 

and discusses why complex design processes may elicit cognition results that are not explained by 

traditional metrics. Moreover, understanding distinctions in optimization processes between 

students and practitioners can influence how educators prepare designers to enter the profession 

to better address multi-objective design challenges. 
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6.2 Background 

While cognitive load theory has established relationships between cognition and 

information [4], and researchers in design fields have used it to describe design behavior, less is 

known about cognitive effort in design optimization processes. Engineering design research has 

also considered cognitive load during prototyping design tasks with an emphasis on design 

outcomes [13],[14]. However, little research has focused on design cognition in architectural 

building optimization. Since building designers use optimization techniques in practice, their 

strategies and mental workload may affect their design performance.  

6.2.1 Optimization in Building Design 

Multi-objective optimization techniques are used in building design practice to explore 

otherwise difficult to compare design goals [15], [16]. Optimization tools can provide 

performance feedback about daylight [17], energy consumption [18], [19], and structural 

performance [21], and have been shown to improve design process [21]. Despite its usefulness, 

optimization processes in building design require sophisticated strategies to explore a design 

space and identify improved solutions. 

While “design optimization” can refer to formal mathematical optimization [22], [23], or 

to the process of systematically improving the design performance of a current solution as might 

be used in building simulations [24], [25], recent research acknowledges the potential for design 

exploration in the process of optimization [26]–[28]. In applying optimization techniques in 3D 

building modeling spaces, designers may rely on both numeric and geometric feedback to iterate 

and improve a building’s performance. For example, a designer might construct a model with 

variables and objectives, apply an optimization tool to find solutions that meet the goals of the 
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design problem, and either select a design from the tool’s output or edit the model in pursuit of 

other iterations. Exploration ends at the designer’s discretion. 

Due to the complexity of building design goals, with objectives spanning qualitative and 

quantitative dimensions, recognizing when to stop designing or to continue iterating requires 

elevated design knowledge from the designer. Previous researchers have recognized the 

challenges of navigating optimization tool feedback, proposing additional tools for interpreting 

information [29]. Additional studies have identified hinderances in using optimization tools, such 

as slow evaluation times with poor user interfaces [30] and a lack of established design processes 

[31]. With no standard for how to approach design optimization challenges, it is difficult to 

determine what strategies may be associated with greater optimization knowledge. Established 

distinctions between experts and novices may provide initial expectations of optimization 

techniques, but a designer’s experience in optimization may be more useful to determine their 

design processes rather than years of experience in their profession. 

6.2.2 Practice in Design Techniques 

Previous research has shown that variation in amount of professional experience often 

result in different design processes [3], [9] with studies focusing on various aspects of design. 

Ahmed et al [2] observed that novice designers tended to use trial-and-error techniques while 

experienced designers were more systematic in design approaches. In comparing series of 

cognitive actions in design, Kavakli and Gero [1] found that novice designers followed more 

sequences of cognitive processes compared to experts, who had smaller variations in sequences 

and were more efficient in their cognitive actions. More specific to developing design spaces, 

Abdelmohsen and Do [32] found that novice architect designers performed prolonged processes 
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to achieve the same goal as experts when responding to both sketching and parametric modeling 

tasks. However, in a study by Atman et al. [33] that focused on engineering design contexts, 

differences in expertise resulted in longer design sessions and an increase in design 

considerations for experts, but not necessarily increased design quality.  

A recent paper by Tan [11] identified that existing models for expertise may not be best 

suited to describe expertise in all areas of design. Tan acknowledges that some existing, 

quantitative metrics for expertise, such as years of experience, may not capture the knowledge 

gained from performing a particular design task in practice. Tan also acknowledges that 

qualifying experience as a proxy for expertise may be subjective since it is abstract and prone to 

personal interpretation, but it nevertheless speaks to skills rather than numerical performance, 

which is not always measurable in design fields. In addition to experiential knowledge, Tan 

describes expertise as requiring adaptability, perceptiveness, and motivational support. In 

building design, many projects have their own unique contexts, challenging designers to adjust 

their design schemes, and new technologies and advances in techniques require designers to 

redefine their design paradigms. Such changes of design thinking are likely to affect our 

understanding of cognitive activity in design as well. 

6.2.3 Cognition in Design Tasks 

Since architectural building design requires visual and numeric decision-making, 

researchers have considered eye-tracking methods for data collection as a metric for cognitive 

load in design [34]. Many metrics are available in eye-tracking methods, such as fixation, 

saccades, gazes in areas of interest, and pupil dilation, and each can explain different behaviors 

and mental efforts related to the task being studied. 
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One metric of cognitive load is the Index of Cognitive Activity (ICA) which registers 

mental workload by relying on pupil dilation to indicate changes in brain activity, which has been 

associated with increased cognition [35], [36]. ICA is a patented metric [37] and can be 

calculated in the Workload Module software by EyeWorks [38]. Because raw ICA data can be 

difficult to interpret, Workload also produces a Scaled ICA metric for the left and right eyes. It 

detects and removes invalid pupil measurements and scales the pupil signal for each participant to 

a value between 0 and 1, with 1 being the maximum ICA that the participant experienced in the 

session. Research has found that for some tasks, an increase in ICA can reflect increases in 

cognitive effort [39], [40]. However, other research has questioned the accuracy of ICA in 

different contexts [41], [42] and found that it is not an effective measurement of cognitive load 

when participants are responding to two tasks simultaneously [43]. It is appropriate to consider 

additional streams of data when examining cognitive loads. 

Another measurement of cognition is the number of fixations and duration of fixations 

during a task, which can indicate changes in cognitive processes [44]. However, the relationships 

of fixations to mental workload are also unclear, depending on the type of mental workload [45]. 

Some research found that longer fixations related to increased mental workload when interacting 

with artificial environments [46], while another found an inverse relationship between workload 

and fixation duration when playing an approachable video game [47]. An increase in the number 

of fixations may also indicate increased engagement with a task rather than the length of the 

fixation as a measure for mental workload. Nevertheless, fixations can provide an additional 

stream of information when evaluating cognitive behaviors. 

Specific to design challenges, eye tracking data can also tell conflicting narratives. 

Research by Zimmerer et al. [48] has shown that eye parameters are more strongly influenced by 

tasks rather than by cognitive load. Zimmerer et al. attribute this result to design processes 
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complexity which may cause different patterns in gaze behavior. Dissaux and Jancart [10] 

acknowledge that designers are iteratively learning from their tools when developing design 

ideas, and receiving information repetitively may disrupt previously established expectations of 

design thinking.  

As the relationship between experience, cogitation, and design process in optimization 

strategies is unclear, the research presented in this paper considers the behaviors and mental 

efforts of students and practitioners when responding to a building optimization design task. 

6.3 Methods 

To compare characteristics between students and practitioners, we used a controlled 

design study that asked participants to develop a design for an atrium roof and we collected 

different streams of recorded data from their design sessions. Participants worked in a 3D, 

parametric modeling platform using optimization tools and reflected on their design decisions in a 

post-design session interview. In following appropriate protocol standards, this research is IRB 

approved and follows established eye-tracking and design behavior methods to examine the 

participants’ design processes. 

6.3.1 Participants 

For this study, ten graduate students and nine design practitioners first completed an 

intake survey form which verified that they had enough experience within their field and with the 

study’s design tools to respond to the design task. The students were from the Architecture or 

Architectural Engineering Department at a University in the North-eastern US and reported that 
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they had at least 1 year of experience with Grasshopper and completed a course on design 

optimization. We considered their differences in disciplinary background in our paper 

“Optimization Strategies of Architecture and Engineering Graduate Students: Responding to Data 

During Design” [49], but this paper focuses on differences between groups of students and 

practitioners. All designers possessed educational experience in geometric and technical design, 

and we do not differentiate their educational background. For the practitioners, we followed a 

description for expertise defined by Tan [11] that states experiential knowledge can be used to 

qualify a designer’s expertise. Similar definitions have been used in other research as well, in 

which experts have more contextual knowledge than a novice [33], [50]. We identified the 

practitioners’ expertise by their use of optimization strategies in practice and confirmed that they 

had used optimization tools and techniques in a building design firm to develop at least 5 designs 

for a client. The practitioners also had at least 5 years of work experience in design firms. The 

practitioners were employed from 7 different firms, lived in 3 cities, and all had bachelor’s and 

master’s degrees in building design. Two of the practitioners were trained in Architectural 

Engineering, two in Civil Engineering, four in architecture, and one had a bachelor’s degree in 

architecture and a master’s in engineering. The purpose of this study is not to obtain generalizable 

results about the students and practitioners but rather identify different strategies and variations in 

cognitive load of designers while they developed and explored a design space for optimization. 

After completing the survey, an initial interview was used to verify the practitioners’ 

understanding of optimization in the context of building design in the study’s tools. The interview 

also asked the practitioners about their use of optimization tactics in practice. Individual design 

sessions were then scheduled with each participant. 
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6.3.2 Design Sessions 

The design sessions were conducted in either the researchers’ office on the university’s 

campus for the students or in the office spaces of design firms across the Northeastern and 

Midwest US for the practitioners. A member of the research team visited each practitioner to 

better facilitate their participation in the study. For each session, the designers worked on a 

computer provided by the researchers that hosted the study’s tools and recorded the session data. 

Two screens were connected to the computer: one for the participant to work from and one for the 

researcher to watch the session. A table mounted eye tracker was used to collect data from the 

participant’s eye movements and the designer’s screens were recorded using EyeWorks Record 

(EyeTracking). Figure 6-1 shows the study’s set up. 

 
Figure 6-1. Set up of the study’s tools for the design sessions. 

Before beginning the 3D modeling portion of the session, the participants were briefed on 

the design task by introductory videos which ensured that each participant received the same 

instruction. The participants were allowed to ask questions about the task before their eyes were 

calibrated to their position in front of the screen and data recording began. 
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6.3.2.1 Design Task 

 The design task asked participants to develop a conceptual atrium roof for a fictional 

courtyard in the Southwestern US. The location was chosen since the environmental conditions of 

the region can readily be found online if the participant was not already familiar with the dry, 

sunny climate. Participants were instructed to consider the geometric and visual appearance of 

their design and select at least two of three quantitative objectives to optimize: daylight, energy, 

and/or structural elasticity. The study required the designers to work in Grasshopper, a parametric 

modeling tool hosted by the 3D modeling tool Rhinoceros, but participants were allowed to use 

any optimization plug-in tool for Grasshopper that they desired including Galapagos, Goat, 

Octopus, Wallacei [49], or DSE tools [52]. Participants were provided a starting Grasshopper 

script that included a model of the existing context for their design and calculations for 

instantaneous measurements of daylight, energy, and structural elasticity for noon on the summer 

solstice. Daylight and energy were calculated by angles of the design’s surface to the sun and 

structural elasticity was calculated by Karama3D [53], a structural analysis program made for 

Grasshopper’s parametric interface. Because this study focused on behaviors in optimization, we 

did not want the participants to run simulations. While running simulations can provide 

comprehensive information about a building’s design, it can also add to the length of a design 

session, induce design fatigue, and may have deviated the designers’ attention away from the 

purposes of this study. 

Participants were asked to submit 3-5 screenshots of their design proposals and provide a 

brief design statement to the client, explaining their design intentions. The participants were not 

instructed on when to start writing their statement and were free to shift between design and 

writing. Notably, the participants were not explicitly instructed or required to use optimization 

tools to find an improved design solution. 
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6.3.2.2 End of Session Interview 

 After completing the design challenge, the eye recording was stopped, and the 

participants were prompted to reflect on their design sessions. They were asked to describe how 

they approached the design challenge and what they found to be the most challenging. 

Additionally, the researcher asked the participants about unique behaviors that were observed 

during the design sessions, such as starting a second design option. 

6.3.3 Comparing Session Strategies and Cognition 

Two primary streams of data are used to compare the behaviors of students to 

practitioners: evaluation of their design strategies by optimization cycles and cognitive load as 

measured by their eye-tracking data. Previous research has used both objective and subjective 

means to validate cognitive effort [42] as a single metric may not fully capture the complexity of 

a 3–4-hour design task. 

6.3.3.1 Design Session Evaluations 

The screen recordings of the design sessions were reviewed, and key design events 

related to the optimization process were identified. This allowed the design sessions to be 

compared for differences in strategies. Figure 6-2 illustrates the events on a sample timeline 

showing when participants engaged with the objective feedback, when they began to prepare the 

optimization tool, how often and how long they ran an optimization tool, how often and how long 

they reviewed the feedback from the tool, and when they wrote, if at all, while still developing 

their design. 



162 
 

 

 
Figure 6-2. An example time plot of the key events in the design sessions. 

The sessions were also evaluated for their category of optimization cycles, following the 

method that was established in chapter 5 [12]. In chapter 5, optimization behaviors are described 

by three categories: (1) complete cycle in which a designer runs an optimization tool, reviews the 

results, and edits their design in response, (2) coarse cycle in which they run a tool and review 

results, but do not edit their design, and (3) partial cycle in which an optimization tool is run, but 

the numerical results are not reviewed. These cycles are identified by the presence of iteration 

loops between the designer and optimization tools as the designer gazes at the modeling space 

and parametric space. Instances of partial cycles were attributed to events in which designers use 

a tool to explore geometric limits to a design or do not understand how to best incorporate design 

performance feedback in their design. The work presented in this current paper uses these 

established cycles while including new data from the practitioners to compare the range of cycles 

exhibited by the two groups of participants. 
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6.3.3.2 Eye-tracking Data 

To discuss differences in cognitive effort between the designers, we use three established 

metrics for cognition, which were collected by the eye-tracker: mean scaled ICA, fixation Count, 

and fixation duration. 

The Mean scaled ICA for each participant was calculated by averaging the scaled ICA 

values between the left and the right eyes, which can indicate an increase in cognitive load [54]. 

Eye-works Workload Module calculates scaled ICA following a patented process [37] and 

normalizes the values for each participant on a 0.0 to 1.0 scale to produce scaled ICA values. 

Eye-works also recognizes when data was not received for a pupil and these items with their 

corresponding eye were removed from the data set. Some research reports that a higher ICA 

indicates an increase in cognitive load [39], however, other research found that ICA does not 

reflect cognitive load under all types of tasks [41]. As an additional measure for cognitive load in 

our study, other streams of eye-tracking data were considered. 

The number of fixations and the duration of the fixations were examined across the two 

groups of students and practitioners. Fixations are measured when a participant looks at an area or 

region of interest and stops scanning across the screen. The design sessions lasted between 2-4.5 

hours, so numerous fixations were collected for each participant. To better interpret the data 

across the sessions, the number of fixations every 5 minutes was used to determine fixation count. 

More screen fixations are sometimes associated with increased cognitive load as an indicator for 

processing new information, however, the duration of fixations can also indicate breaks in mental 

workflow. We also considered the duration of fixations for the participants as shorter durations 

should align with greater expertise in the parametric tool. 
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6.4 Results 

The recordings of the design sessions, the researcher’s notes, and the eye-tracking data 

were used to report categorical descriptions of design strategies and themes in the designers’ 

cognition. The information is presented as a comparison between the students and practitioners, 

and, as an additional assessment of design behavior, the metrics for mental workload are arranged 

by optimization cycles.  

6.4.1 Summaries and Categories of Design Sessions 

From inspection of the session events, it is observed that the practitioners employed a 

wider variety of strategies in responding to the design task compared to the students. Figure 6-3 

illustrates the key events on time plots of each session. While the students showed variations in 

the timing of their techniques, they mostly ran the optimization tool 1-4 times and reviewed the 

results before writing. The practitioners, however, used a wider range of different approaches. 

Participant P01 chose not to use the optimization tools to address the design task and instead 

relied on their own intuition and a sun path simulation to develop their design, resulting in an 

empty session plot. When asked during the post-session interview why they chose not to use 

optimization tools, despite being instructed to find a high performing building, they responded 

that the sun path simulation would solve concerns of shading while still producing a visually 

appealing design and that for this design, they would optimize aspects of structural design at a 

later phase of construction. P02 also did not use an optimization tool but reviewed the objective 

values and tried to minimize them manually. P04 ran the optimization tool 15 times (10 more 

times than any other participant) as they tried to resolve unexpected problems in their model, such 

the optimization tool proposing zero structural members to minimize structural elasticity. Unlike 
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any other participant, P06 started preparing the optimization tool before plugging into the 

objective feedback, indicating their active awareness of optimization in their design procedure. 

Participants P03, P05, P06, and P07 started writing about their design while the optimizer was 

running, with P06 writing before even optimizing. One student, S04, started writing before they 

finished designing, but the student also did not review the numerical results from the optimization 

tool and treated optimization as an afterthought to their own design decisions. 
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Figure 6-3. The session plots of the design sessions. 

In addition to the session plots, the optimization cycles of the participants are considered. 

Two of the practitioners chose not to run the optimization tool at all, which introduced the 

possibility of a fourth option in the categories of optimization cycles: independent. Six of the nine 
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practitioners used a complete optimization session, indicating they incorporated feedback from 

the optimization tool in their design. Meanwhile, five of the ten students used a coarse cycle 

meaning they did not edit their design after reviewing the numerical results from the optimization 

tool. Figure 6-4 shows the number of students and practitioners who used the different 

optimization cycles. 

 
Figure 6-4. The number of complete, coarse, and partial cycles of the students and practitioners. 

6.4.2 Cognition Assessments 

6.4.2.1 Mean Scaled ICA 

The Index of Cognitive Activity was averaged for the left and right eyes for each 

participant and a Welch’s t-test, which is an ANOVA test that assumes nonequal variance, was 

used to determine if the participants’ Mean ICA (MICA) were statistically different. Because the 

data is skewed, a Levene test for equal variance was used to determine that the datasets do not 

have equal variance. From the Welch’s t-test, the students’ and practitioners’ MICA was 

statistically different (p<0.000) at a α=0.05 level of significance with the students having a higher 

MICA. Figure 6-5a shows a plot of their mean MICAs. According to Marshall [39] higher levels 
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of ICA indicate increased overall cognitive load during the design sessions, but additional metrics 

should be used to understand the cognitive load of the participants. The means of each 

participant’s Mean ICA were also considered and are shown in Figure 6-5b. While the 

practitioners as a group had a lower MICA, the practitioners also had a wider range of mean 

MICA compared to the students. 

 
                             (a)                                                                (b) 

Figure 6-5. (a) the mean plots of the MICA of the students and practitioners and (b) the mean plots 
of the MICA of each participant by group. 

6.4.2.2 Fixation Counts and Durations 

The number of eye-fixations and the duration of the fixations were also considered. A 

fixation is recorded in EyeWorks when a participants’ eyes focus on the screen. A Levene test for 

equal variance was used to determine that the datasets do not have equal variance. A Welch’s t-

test was run to determine the statistical difference between the number of fixations every minute 

for the students and practitioners as well as the duration of the fixations. Reporting the total 

number of fixations would not reflect the different lengths of design sessions, so average fixation 

count by each minute allows the sessions to be compared. A minute was used because it is a 

standard measurement of time. At a α=0.05 level of significance, the two groups fixation counts 
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and durations are statistically different (p<0.000), however, there was statistical significance 

within the two groups as well. Figure 6-6a shows the mean and interval plots of fixation counts of 

the students and practitioners as groups and Figure 6-6b shows the mean interval plots of fixation 

counts for each participant. The practitioners’ mean values had a greater range than the students. 

The same is true for the fixation durations with the groups having statistically different fixation 

durations (p<0.000) at a α=0.05 level of significance. Figure 6-7a shows the mean interval plots 

of the fixation durations for the students and practitioners and Figure 6-7b shows the mean 

interval plots of the fixation durations for each participant. 

 
       (a)                                                                  (b) 

Figure 6-6. (a) The mean interval plots for the students’ and practitioners’ fixation counts and (b) 
the mean interval plots of the fixation counts for each participant. 
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            (a)                                                               (b) 

Figure 6-7. (a) The mean interval plots of the fixation durations of the students and practitioners 
and (b) the mean interval plots of fixation durations for each participant. 

6.4.3 Cognitive Load of Optimization Cycles 

Since the strategies and mental efforts of the participants when organized by experience 

do not confirm existing theories on expertise, the eye-tracking data were also organized by 

optimization cycles as an additional evaluation of the sessions. Figure 6-8 shows the scaled 

MICA, fixation counts, and fixation durations for all Complete, Coarse, Partial, and Independent 

cycles. While no optimization cycle group had the lowest or highest eye metric consistently, the 

participants who used Complete Cycles exhibited the largest range of all three eye-tracking 

metrics. It may be design feedback in optimization strategies cannot predict design cognitive 

load. 
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Figure 6-8. The mean values of the optimization cycles for each of the eye metrics. 

6.5 Discussion 

While the practitioners exerted lower mental effort when averaged over their design 

sessions, their cognitive loads and design strategies also had a larger spread within their group 

compared to students. Experienced knowledge is not necessarily an indicator for cognitive effort 

in this optimization task, which is contrary to what was expected from previous research [1]. 

When considering their optimization cycles, fewer students incorporated design feedback into 

their final solutions which suggests they processed less new information. While it is likely that 

students are more practiced in solving short optimization tasks from their recent design education, 
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the practitioners may approach problems with more fluid strategies because of broader 

experiences in application. Although the task prompted designers to use optimization techniques, 

P01 decided the optimization tool was not necessary at this phase of the project and P02 wanted 

to be more in control of the output of the design, caring more about form in the conceptual phase 

of design than specific numerical feedback. Alternatively, six of the nine practitioners included 

design feedback into their decisions, as identified by their type of optimization cycles but their 

behaviors varied by repetition of exploration, incorporation of writing, and occurrences of key 

optimization design events. These characteristics reflect differences in design procedures, but do 

not necessarily align with receiving new information. It is unclear exactly what about their 

varying design strategies would prompt a larger spread of different cognitive loads. 

Research by Zimmerer et al. [46] acknowledges that design tasks influence eye 

parameters more strongly than cognitive load, which may provide insight into the spread of 

cognition in our study. For their research, Zimmerer et al., provided design engineers with 

different design assignments and posited that the diversity of tasks likely contributed to different 

gaze behavior. Similarly, the participants in our study were free to proceed with any design 

process they desired, resulting in different strategies. While our atrium design task was well 

defined for a building facade, the unprompted development and exploration of a model for 

optimization may have led each participants’ cognitive response to behave as if their design tasks 

were all different.  

It is also possible that the eye-tracking metrics used in this study do not precisely capture 

mental effort in the optimization design task. While there is a trend in the eye measurement data 

across students and practitioners, individual designers did not express consistently high or low 

cognitive effort across all metrics. Fixation count and duration indicate focused attention on one 

area of a screen, which may not align with receiving new information in a design space with a 
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geometric interface. A designer may look at an area before deciding their next action but is not 

actively receiving new information. In addition, scaled ICA can be an ineffective measurement 

for cognitive load when responding to more than one task [43]. In this study’s design sessions, the 

participants performed multiple, integrated actions, including geometry development and 

optimization refinement, with freedom to progress at their own pace. They decided when to 

perform each action, with some happening simultaneously, like exploration and writing 

(participants S04, P03, P05, P06, and P07). Complexity in optimization design processes may 

increase concurrent tasks, and therefore increase cognitive effort, regardless of expertise, which 

can hinder proficiency in achieving a design task [55]. We also organized the participants by their 

optimization cycles to provide an additional structure to discuss differences between the 

designers’ strategies. 

Grouping the participants by their optimization cycle revealed that participants who used 

Complete Cycles had the greatest range of results in all three eye-tracking metrics compared to 

the other cycles. This result further confounds expected behaviors from the designers as Complete 

Cycles should, in theory, interpret more new information and therefore increase cognitive load. 

Zimmerer et al.’s claim that diversity of tasks influence eye parameters more strongly than 

cognitive load may explain why the eye-tracking data does not align in all three metrics for any 

one of the cycles. To better understand how optimization techniques influence design cognition, 

future work should examine the events of the optimization cycles with measurements of cognitive 

load throughout the sessions. Dissecting the sessions for changes in eye data may reveal 

additional insight about when designers focused more cognitive effort. 

In addition, practitioners often engage with optimization tools over long periods of time 

during a project’s development. The design task in this study was a plausible design problem 

approachable by all participants but was nevertheless a condensed design challenge. Accounting 
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for how practitioners incorporate optimization tools in application of their work may reveal 

additional information about their design behaviors and processes. However, describing design 

behavior on a larger timeline requires additional metrics and introduces challenges in comparing 

groups of designers with mixed expertise. For the purposes of investigating the impact of design 

feedback on focused design process, this study provides initial comparisons between of students’ 

and practitioners’ optimization strategies and cognitive efforts when responding to the same 

design task. 

6.5.1 Limitations 

While this work is valuable in understanding how practitioners use optimization tools, 

there are limitations to the scope of the research. The disciplinary background of the practitioners 

and students is provided in a summary of the participants, but is not included as a variable in the 

analysis. While this body of work focuses on difference between students and practitioners, future 

work can compare differences of disciplinary behavior in optimization tools respond to specific 

research questions. 

In addition, there is a difference between the number of students and practitioners who 

participated, which may create an imbalance of data feedback. However, each participant 

produced a large amount of data, creating massive datasets from each session. This research is 

qualitative in the number of participants included, but quantitative in the amount of data 

generated. In addition, collecting practitioners’ data for design studies is highly demanding. For 

this study, a member of the research team coordinated meeting with each full-time practitioner, 

visited each firm through several trips, and set up the research tools to conduct the design 
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sessions at the convenience of the practitioners. The data collected from this process allows us to 

understand initial differences between students and practitioners in optimization environments. 

6.6 Conclusion 

This paper reported the differences between students and practitioners when using 

optimization tools in response to a building design task. It used event plots and optimization 

cycles to examine the designers’ behaviors and eye-tracking metrics to consider the cognitive 

effort exhibited by the designers during their design sessions. Practitioners exhibited a wider 

range of strategies and mental workload compared to the students, which may result from their 

experience in using optimization techniques in the built world, however, feedback loops in design 

optimization processes may also disrupt expected cognitive efforts. Although optimization tools 

can readily identify solutions with improved design performance, they may also impact design 

exploration and behavior. Tool developers and optimization design educators may consider 

examples from established theories in information delivery methods to decrease cumbersome 

cognition during optimization tasks [56]. As an alternative to classifying strategies by expertise, 

future research will consider optimization cycles to organize proficiency in design techniques and 

will further investigate the impact of receiving design information on cognitive load and 

optimization process.  
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Chapter 7 
 

Conclusion 

This body of work investigates the progression of designerly behaviors through the 

development of design space exploration processes and identifies themes and strategies in 

building optimization. Although the students were able to readily explore a prebuilt design space 

for improved design solutions in studies 1 and 2, the practitioners exhibited a wider range of 

strategies when constructing and exploring a model for optimization compared to students in 

studies 3 and 4. While this work does not intend to make generalizable statements about all 

designers in these groups, capturing and describing their design behavior is useful in making 

suggestions for design stakeholders. A recent review of empirical multidisciplinary design studies 

criticized a lack of generalizability and low industrial relevance of research in related topics [1]. 

In response, this dissertation also makes suggestions for academia and tool developers to better 

connect research to application: 

7.1 Suggestions for Stakeholders  

Computational tools are prevalent in design education for 3D modeling and design 

analysis but evoke different responses from students as they develop into practitioners. Their 

different behaviors can be leveraged to improve their instruction and may inform tool 

development. 
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7.1.1 Options for Educators 

When accounting for design autonomy, educators may consider which strategies they 

would like to encourage students to pursue, depending on the learning goals of the course. If an 

educator would like to illustrate objective relationships across disciplinary goals, a pre-built 

parametric model may be a useful teaching tool. In the first two studies, the students explored a 

pre-built design space that provided design performance feedback and their responses suggest 

informed design decisions. Study 1 reported that 83% of the pre-design students produced 

improved design solutions from the starting model, despite having never previously used the tool. 

They grasped the relationship between objectives in model and were able to isolate designs with 

better quantitative performance while still producing visual diversity. From this study, pre-built 

models can illustrate design relationships and encourage designers to consider a diversity of 

objectives. In Study 2, the teams with only two architects or two engineers were able to produce 

designs with the same efficacy as teams with mixed disciplinary backgrounds. When working in 

the pre-built model, students accounted for design criteria that were not considered part of their 

disciplinary scope. Although design limits are pre-determined in a pre-built design space, they 

may still elicit a variety of solutions and prompt exploratory behavior. In an additional 

publication, I make a case for parametric models as teaching tools, emphasizing their advantages 

as providing pedagogical formative feedback [2]. Formative feedback, defined by Shute [3] is 

“information communicated to the learner that is intended to modify his or her thinking or 

behavior for the purpose of improving learning.” Formative feedback should be timely 

(immediate feedback about performance), supportive (affirmative of correct answers), 

nonevaluative (or reduce cognitive load), and specific (reduced uncertainty). Parametric tools can 

achieve these requirements when illustrating many design topics including urban planning [4], 

structural design [5], and daylighting [6]. However, educators may want to prompt students to 
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develop their own boundaries for a design, which would require more modeling freedom. 

Constructing a model from scratch would allow the autonomy in design but may also be time 

intensive [7] and result in incomplete optimization cycles from students. Nevertheless, 

researchers suggest the positive inclusion of more optimization strategies in architectural design 

education [8], [9]. Even if students do not pursue DSE as a strategy in their career, introducing 

DSE as a way of design thinking may allow them to consider multi-disciplinary design with more 

precision in future pursuits. Notably, the practitioners from study 4 reported that they have used 

optimization tools for façade design, sculpture installations, and cost engineering. The knowledge 

acquired in pursuing optimization thinking extends beyond building design, however, and a 

student must first learn how to use the tools. Figure 7-1 summarizes the advantages and 

disadvantages for instruction that are suggested by the design exploration actions of the studies. 

 
Figure 7-1. Summary of advantages and disadvantages of different design tool approaches for 
educators. 
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7.1.2 Feedback for Tool Developers 

Students can benefit from learning optimization tools, but the programs should also be 

approachable and useful in supporting their education. Although optimization tools are more 

widely applied in building design, there are criticisms about its functionality. Wortmann [7] 

acknowledges barriers to the use of multi-objective optimization, such as long analysis run times 

and poor user interface. Similarly, Tian, et al. [10] reports that long calculation time, a lack of 

adequate advertisement, and a lack of standard procedures in optimization are hinderances to the 

use of optimization tools. In addition, researchers have expressed a need in building design 

industry to prepare designers to use optimization tools [8], [9], [11]. Both instructional techniques 

and educational tools may better support students’ understanding of optimization processes. In an 

effort to overcome tool based issues, I provide suggestions to tool developers based on 

observations from the four studies reported in this dissertation and from existing literature.  

Figure 7-2 outlines differences in the studies’ tools, illustrating the program structure of 

the model interfaces, the presentation style of performance feedback, and opportunities for an 

instructional optimization tool. While Grasshopper was used in all the studies, it was not directly 

accessed by designers in Studies 1 & 2. Grasshopper script was projected in Shapediver [12], a 

file hosting tool that allows users to explore a Grasshopper space without editing the original file. 

Shapediver uses an intuitive interface and reduces the need for designers to learn Grasshopper to 

explore a design space. Alternatively, Studies 3 &4 required designers to work in grasshopper and 

prompted them to use optimization tools to find improved solutions. These behaviors require 

substantial knowledge of the programs and comprehension of disciplinary ideas. The gaps in 

skillsets between Studies 1 & 2 and studies 3 & 4 are considerable. For interpreting design 

performance feedback, delivery methods also varied between the studies provided in 

“presentation style of feedback.” Quantitative objective feedback can be provided as a number 
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that the designer must interpret, as in Study 3 and 4, but feedback can also be illustrated. Study 1 

used bar graphs and colors to show changes in design performance, and Study 2 projected the two 

quantitative objects on a section cut of the design. In Study 03 and 04, the objective values were 

provided as numbers from Grasshopper that could be supplied to an optimization tool. Notably, 

the optimization program Octopus actively plots design options in an objective space that 

designers can explore. However, only three of the nineteen participants in Study 4 used Octopus. 

Tool designers may consider how to better highlight advantages of their programs so that 

designers recognize their visual benefits. Nevertheless, it may be difficult for a tool developer to 

predict how a designer will use their tool. As observed in the first two studies, students can 

readily use parametric tools and explore pre-built design spaces, but from studies three and four, 

constructing a design space for higher-level analysis was shown to elicit a range of unexpected 

design strategies. Previous researchers have recognized the challenges of navigating optimization 

tool feedback and Peng & Gero proposed an additional computational tool that supports decision-

making by acting as a liaison between the designer and optimization tools [13]. While the tool 

was useful in their study, the tool did not attempt to educate the designer. Furthermore, there is a 

gap between pre-built parametric tools and full freedom design space exploration tools that could 

be addressed by an instructive optimization tool, identified in Figure 7-2. 
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Figure 7-2. Summary of tools illustrating the tool structure, presentation style of feedback, and 
instruction opportunities in the tools. 

As a potential solution to introduce optimization techniques to developing designers, I 

propose the concept of an optimization tool called The Optimization Prompter. This tool would 

guide designers from manually searching for improved solutions to incorporating optimization 

feedback into their decisions. Through a series of phases, the design space would unlock more 

editable variables, or parameters, for the designer to explore and introduce new objectives to 

consider. At a later phase, the user would be introduced to an optimization element that would 

search the design space and display design options on a 2D or 3D plot. Next, the designer could 

control which parameters and objectives they want to include in their optimization search. 

Additional optimization strategies can be introduced, such as weighing the importance of 

objectives for optimization. A summary of these phases is provided in Figure 7-3. Pre-built 

models would be required for this tool, but could vary by building type, project site, and 
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disciplinary application. An instructional tool like the Optimization Prompter may lead designers 

to perform more Complete Cycles, incorporating performance feedback into their design. 

 
Figure 7-3. Summary of the phases suggested in The Optimization Prompter tool. 

Applying the information collected from this dissertation, I have made suggestions for 

educators and tool developers with interests in optimization. Instructors can leverage student 

behavior when exploring a design space to teach design concepts and tool developers can create 

an instructional tool for design optimization. These suggestions are not exhaustive for all 

stakeholders but provide initial ideas for encouraging design space exploration strategies. 

7.2 Limitations and Future Work 

Although this dissertation reports findings from four research studies, spanning across 

different levels of experience and methods of assessment, there are still gaps in the work. Each 

study has different sets of participants and different design tasks, which introduce numerous 

variables between the results. However, holding the variables constant would reduce the accuracy 

of the studies in other ways, such as reducing the appropriateness of design tasks to the research 

questions. As established by McGrath, when conducting studies on people, precision in one 
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dimension of the research will inevitably reduce accuracy in another [14]. Nevertheless, there are 

limitations to the extent of this body of work that needs to be addressed. 

While this dissertation makes suggestions for academia, none of the research studies 

involve student performance in response to classroom instruction, which limits application of the 

results to direct changes of pedagogies. Monitoring student behavior throughout a course or after 

receiving instruction with parametric and optimization tools would address research questions 

pertaining to student learning. This paper does not discuss learning styles or pedagogical 

techniques, which would add context to the development of designers. In particular, describing 

differences in disciplinary education may impact how a designer uses DSE tools. Chapter 2 

acknowledges some disciplinary differences of design education and Chapter 4 focuses on 

disciplinary composition in teams, but this dissertation does not distinguish differences between 

architects and engineers for the studies discussed in Chapter 3, 5, and 6. Future work can 

investigate disciplinary differences to address the gap in knowledge regarding how pedagogy may 

impact design behavior in optimization tools. 

The tools used in these studies were also highly specific, which narrows the application 

of the results to all types of parametric or optimization environments. Optimization techniques 

can be used in other building design tools, such as Dynamo for Revit or coding in Python, which 

may produce different types of data. However, the tools used, Rhino and Grasshopper, are 

prominent in the building design industry and provide an initial understanding of behavior in DSE 

tools. This paper does not discuss details of Rhino, Grasshopper, or Shapediver, or report their 

potential drawbacks and limitations from a design perspective. The validity of the digital tools 

has been well established through their common use by researchers, educators, designers, and tool 

developers, so it is assumed that these tools adequately support design decision making. 

In addition, several characteristics of the studies are subjective, which can pose 

difficulties for repeatability and applicability to broader populations. Qualitative goals, such as 
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“appearance” in chapter 3 or “iconic” in chapter 4, are not clearly defined and were open to 

interpretation by the participants who may not have interpreted the words with consistent 

definitions. When evaluating the quality of the designers, as in chapter 4, differences of 

interpretations may have impacted the statistically insignificant results. However, in architectural 

building design, qualitative goals are inherently subjective and letting participants respond with 

their own interpretations was authentic to their design thinking and behavior.  

Future work will continue to consider designer development across levels of education 

and investigate opportunities to improve designer performance within DSE tools. Research from 

studies 3 and 4 will further examine cognitive effort associated with optimization behavior to 

suggest new understandings for models of design processes in complex, DSE environments. In 

addition, future work will consider the role of pedagogy in preparing students to use parametric 

and optimization tools effectively and how tool instruction can better support design strategies. 

7.3 A Final Thought 

The studies presented in this dissertation scale across the development of DSE designers’ 

strategies and use increasingly sophisticated methods to assess design behavior. Existing research 

protocols were used, including event recordings, eye-tracking metrics, and professional 

evaluations, and established design processes frameworks were employed to develop a novel 

measurement for classifying optimization behavior. By identifying strategies, outcomes, and 

cognitive efforts of evolving designers, this dissertation highlights advantages and challenges of 

using multi-objective tools and emphasizes difference in design techniques by level of 

experience. Design, in any medium, is a complex task and there are opportunities to investigate 

each stage of the work further through additional research questions. Nevertheless, this work 

contributes to understanding design space exploration strategies in academia and practice and 
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provides insights about designerly behaviors when solving multi-disciplinary challenges in 

emerging building design tools.  
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Appendix A 

The Pre-design task survey (Figure A1) and post-design task survey (Figure A2) for 

Chapter 3 (study 1) are presented below. The pre-design task survey was provided to the study’s 

participants at the beginning of the design study, prior to explaining the design task details. The 

post-design task survey was provided to the participants after completing the design task: 

 

Figure A1. The pre-design task survey for Chapter 3. 
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Figure A2. The post-design task survey for Chapter 3. 
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Appendix B 

The performance objectives for the parametric model from Chapter 3 (study 1) were 

calculated by multiplying the normalized values of the variables by a coefficient, based on the 

variables’ approximate proportional impact on the objective, and adding the results. Table B1 

provides the coefficients for each variable for each performance objective. A dash indicates that 

the variable has no impact on the performance objective: 

Table B1. The coefficients for calculating the performance objectives from Chapter 3. 

Variable Cost Energy Darkness 
Shape 0.1 0.05 0.1 
Height 0.37 0.18 0.24 
Top rotate 0.12 0.05 0.05 
Middle height 0.05   0.05 
Middle scale 0.08 0.05 0.08 
Top scale 0.08 0.05 0.08 
Window pattern  - 0.22 0.4 
Color  -  - - 
Window Thickness 0.04 0.18 - 
Wall Thickness 0.08 0.22 - 
Base 0.08  -  - 
 TOTAL 1 1 1 

 

 

 

 

 

 



197 

 

Appendix C 

Figure C1 shows the site plan and the design task that was provided to the participants 

from Chapter 4 (study 2). The design task was provided in paragraph form with design criteria 

embedded so the designers would need to identify the design goals on their own observation. Two 

of the criteria aligned with architectural values: that the design be iconic and site appropriate. The 

other two requirements aligned with engineering goals: that the roof shade 82% of seats during 

noon on the summer solstice and not exceed a maximum deflection limit of l/180. The shading 

goal was determined by inspecting existing stadiums for how many seats were shaded on average 

during the summer solstice. This threshold was also shown during model exploration and test 

sessions to approximate a percentage goal that was achievable under many variables’ settings to 

allow for design flexibility but would challenge the participants to respond to the need for shade. 

A deflection of l/180 is a typical limit for several types of structures in building codes.  

 
Figure C1. (a) The site plan (b) and design task for Chapter 4. 
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Appendix D 

Used in Chapter 4 (study 2), Figure D1 shows the names of the variables and graphic 

representations of what they change. All variables, except “truss depth,” could impact the overall 

visual appearance of the model. Meanwhile, the criteria to be appropriate on site was most 

affected by “plan shape,” “hole scale,” and “angle of roof.” For the quantitative criteria, “truss 

depth,” “hole scale,” “bay count,” and “roof height” directly impacted deflection, and the “cover 

size,” “hole angle,” “hole scale,” and “roof height” greatly impacted the percentage of seats 

shaded. The variables slid on different increments, depending on the decimal places of the units.  

Participants were provided with the Figure D1 graphic with the design task to help navigate the 

model’s variables.  

 
Figure D1. The ten editable variables in the design tool with their name, images of what they change 
in the model, and the range of their values for Chapter 4. 
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The stadium roof model from Chapter 4 (study 2) was developed in Grasshopper and 

used Karamba3D [69] to perform live deflection calculations of the roof as participants changed 

the variables. The participants did not directly interact with Karamba3D, but the structural 

analysis program ran in the background while they worked. The percentage of seats shaded was 

calculated within Grasshopper by projecting the angle of the sun on August 15 (an approximate 

date for the Olympics) for a theoretical tropical climate approximately 12 degrees north of the 

equator on seats visible in the section cut. Figure D2 shows the tool’s section cut display and two 

quantitative feedback metrics. 

 
Figure D2. The tool’s section cut display, showing the maximum deflection, deflection shape, and 
the percentage of seats shaded from the sun for Chapter 4. 
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Appendix E 

The four professionals from Chapter 4 (study 2) were asked to review twelve projects: 6 

were the same for all professionals and 6 were different. The professionals responded to the 

research request independently and remotely through the online survey tool, Qualtrics. They were 

provided with a link to view, but not download or edit, the teams’ deliverables document that 

included the teams’ summary statement and screenshots of their design. The projects were 

renamed “Pair XX” so that the professionals did not know the disciplinary association of the 

participants or the team’s identity. Figure C1 shows an example of one of the project’s 

evaluations from the online survey. A small image of the specific project was supplied in addition 

to the pair name to make sure the professionals were evaluation the correct project. 

 

Figure E1. Example of a project’s evaluation question for the professionals’ survey for Chapter 4. 
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Appendix F 

 Below are the post-design session interview questions from Chapter 5 and 6 (study 3 and 

4). Additional questions about the designers’ behaviors were asked on an individual basis, such as 

their thought process when performing certain acts like starting a second design file. 

1. Can you tell me about your strategy for completing this design challenge?  
2. Did you find any aspect of the process difficult? If so, what?  
3. What did you find to be the easiest?  
4. What were the criteria on which you based your design?  
5. Why did you pick the two criteria that you picked?  
6. What was your envisioned goal for this project?  
7. How do you feel your final designs aligned with these goals?  
8. If you had more time, would you do anything differently for your design?  
9. If you could have interacted with the client, what might you have asked?  
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