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ABSTRACT

Design space exploration (DSE) strategies are increasingly used in architectural and
engineering practice to generate and identify improved solutions. However, DSE often demands
complex processes that require disciplinary knowledge and a firm grasp of exploration tools.
While parametric platforms and optimization algorithms can enable a designer to rapidly
construct and evaluate numerous design options in response to multi-disciplinary criteria, these
tools may be less useful if not properly leveraged. Specifically, design students, who are
developing their disciplinary knowledge, may not yet have the skills to thoroughly model and
explore a design space. Alternatively, pre-built parametric models can provide performance
feedback and allow for design exploration without extensive knowledge of the design tool. Such
digital environments are useful for beginning designers to illustrate design relationships and to
foster multi-objective thinking. Yet, these tools may not enable full design autonomy as is
required in building design practice. Understanding how students and practitioners approach
multi-objective design tasks using unrestricted DSE techniques can inform characteristics of their
optimization strategies and reveal unexpected outcomes of working with design tools that provide
performance feedback.

In response, I investigate the design space exploration behaviors of building designers at
different educational stages, reporting on aspects of their design efficacy, multi-disciplinary
thinking, and optimization techniques. Through a series of design studies, this body of work
contributes to design process research and optimization education by examining how designers
with different levels of experience seek improved design solutions in exploration tools. The first
study examined how pre-design students performed in a parametric environment and how they
prioritized different building design criteria. The second study asked mixed teams of architecture

and engineering students to engage in a collaborative, parametric design task and investigated
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their efficacy and exploration when working in a parametric tool. While the first two studies
focus on exploration in a pre-built parametric model, studies 3 and 4 expand the design space to
prompt participants to develop their own parametric models and perform optimization strategies.
Study 3 uses design sessions from graduate student participants to develop a code to describe and
categorize optimization behaviors and study 4 expands on the work to include practitioners and
compare their behaviors based on cognitive loads.

Across these studies, multiple streams of data were gathered and evaluated using varying
research methods. Surveys and interviews were used to collect information about designers’ self-
perception, priorities, and design thinking, while the digital tools recorded the designers’
performance, behavior, and eye movements. These datasets were analyzed and interpreted using
different methods of evaluation including the Consensual Assessment Technique for design
efficacy, the Situated FBS Ontology to define phases of the design process, and the Index of
Cognitive activity to measure cognitive effort. While students were able to readily explore pre-
built design spaces to develop solutions, they followed more rote patterns when developing a
parametric model for design optimization compared to practitioners. Although parametric models
can support rapid design exploration, optimization tools prompted more diversity of design
processes and cognitive efforts for practitioners compared to students. These results challenge
some established understandings of cognitive load, but also illustrate how experts will perform
tasks with greater sophistication beyond basic step-by-step procedures. I conclude by relating the
outcomes from the presented research to levels of designers’ development and propose
opportunities to use DSE tools in education strategies that can reinforce students’ investigative

design processes.
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Chapter 1

Introduction

As cities expand, infrastructure ages, and climate changes, the concerns of our built
environment grow more complex. Our world requires architecture that accounts for
environmental impacts, material resourcefulness, and energy efficiency while also addressing
cultural, social, and programmatic needs. In response, building designers are tasked with
developing high performing, cross-disciplinary design solutions. To do so, architects and
engineers often integrate iterative computational tools into their design process to aid in the
development and examination of multi-objective designs [1], [2]. One approach that enables
designers to quickly probe design options is the process of design space exploration (DSE). DSE
can refer to a systematic analysis of desirable design solutions in a space of tentative design
points [3]. However, DSE can also more broadly refer to “the activity of exploring design
alternatives prior to implementation” as described by Kang et al. [4]. Digital DSE tools, such as
parametric models and optimization algorithms, can provide visual and performance feedback
while enabling a designer to rapidly consider a range of design options with objective
performance feedback. Figure 1-1 illustrates designers exploring a surface in a model space with

editable variables and a plot comparing feedback of the model’s performance objectives.



Figure 1-1. An example of a parametric model with a model space, three variables, and a
comparative plot of objective feedback.

DSE tools are used by both architects and engineers to achieve multi-objective goals [2],
[5] and have prompted academics to investigate the broader application of DSE in parametric and
optimization design processes. Previous research has considered decision-making procedures in
parametric tools [6]-[9], the advantages of parametric design for technical performance [10]—
[14], and the inclusion of parametric thinking in design education [15]-[17]. While research
supports the incorporation of parametric strategies in building design for their exploration
possibilities, parametric models alone do not provide design guidance. As an additional resource
for developing and evaluating high performing buildings, some building design optimization tools
can quickly generate many design options from a parametric model and highlight solutions that
best align with quantitative goals provided by the designer. Research into building optimization
processes has examined its algorithmic methods [18]-[22], considered potential benefits towards
design performance [23]-[30] and investigated its applications in practice [31]-[33]. However, in
considering optimization strategies, just because a designer knows sow to use a tool, does not
mean they know how to best employ a tool. To achieve the benefits of optimization techniques,
designers must be prepared to incorporate performance feedback into their design decisions. For a
student, who is learning how to use DSE tools while still developing their designerly skills, the

benefits of design feedback may not be fully comprehended. When equipping designers to
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perform DSE strategies in practice, it is prudent to consider what preparations for multi-objective
thinking are evident int their disciplinary instruction.

Computational tools have become integral in design education, but exploration strategies
are not widely taught and may be difficult for students to apply. Additionally, learning how to use
a digital tool can be more challenging than grasping the intended design lessons. Theories in
mental workload associate learning with increased cognitive effort [34] which can limit task
performance. Due to their experience in a task, experts are expected to exhibit lower cognitive
loads and follow more precise design procedures compared to novice designers [35].
Optimization models produce new information about a design with each iteration and new
projects may present novel design challenges. If designers with less DSE experience are still
developing skill sets within a tool, their efficacy in decision-making may be restricted.
Nevertheless, researchers and educators support that teaching optimization methods and
incorporating more multi-objective thinking is necessary in leading design students into the future
of professional practice [31], [36]. Teaching DSE tools alone may not be enough to ensure
improved design performance, though. Understanding how designers with different levels of
experience behave when exploring design spaces may better inform how to sculpt their education

and identify opportunities to improve cognitive efficacy in DSE tool.

1.1 Thesis Scope

In response, this body of work examines the evolution of building designers’ behavior
and performance when exploring a parametric space for improved design solutions and makes
suggestions for design stakeholders. Figure 1-2 provides the titles and order of the four studies

included in this dissertation.



Figure 1-2. Outline graphic summarizing the body of the dissertation.

The first study presented considers the proficiency and perceptions of pre-design
students, prior to beginning their education as architects or engineers, when exploring a
parametric model. The results of the study suggest that while pre-design students can navigate
towards better performing designs in a parametric tool, they may struggle to address multi-
disciplinary design concerns. The second study presents the efficacy and exploration techniques
of mixed-discipline student design teams when collaborating in a parametric tool. It concludes
that since expected performance differences based on team composition did not occur with the
introduction of a parametric environment, tools that provide geometric and numeric design
performance feedback may positively influence design process outcomes regardless of team
disciplinary composition.

To better describe designer and DSE tool interaction, the third study reports the behaviors
of graduate student designers when developing and evaluating a parametric model using
optimization techniques. A code was developed to recognize optimization design actions and
themes in the participants’ optimization design strategies were determined. While some student
participants integrated optimization feedback into their designs, not all achieved full or even
partial integration, indicating a variety of approaches to optimization for students who are still

learning how to best apply the tool. Broadening the research to encompass design behavior
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[2]

beyond theoretical application from student experience, the fourth study includes design session
data from practitioners who have implemented building optimization techniques when developing
built projects. Using various streams of mental workload metrics from established eye-tracking
techniques, the paper from the fourth study compares the design strategies and cognitive efforts
of the students to practitioners to deepen our understanding of design process across levels of
experience in optimization tools. Aspects of the practitioners’ mental workload aligned with
established knowledge in design expertise, like having lower cognitive load, but they also
exhibited a wider range of strategies and cognitive responses compared to students, confounding
which techniques may lead to better informed building design decisions. Although tools that
provide rapid performance feedback can support effective design space exploration, they may
also introduce unexpected cognitive burdens when interpreting information about a design.

In the conclusion of this dissertation, I draw on contributions from these studies, paired
with existing research and experience, to make suggestions for design stakeholders in academia
and tool development. It is intended to encourage education of DSE techniques and resolve some

of the challenges in using DSE tools for developing designers.
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Chapter 2

Background

Improving the built environment for the benefit of our world requires effective design
strategies and relies on formative design tools. How we prepare designers to respond to complex,
multi-disciplinary design challenges in digital environments can impact their design processes
and influence their design efforts. In evaluating behaviors of designers, from pre-design students
to practitioners, when exploring building design spaces, the work presented in this dissertation
contributes to the rich body of research that strives to capture the increasing complexity of design

processes and supports opportunities for improvement in the pursuit of building design.

2.1 Design Space Explorations

In a broad sense, design space exploration (DSE) can be defined as searching a set of
design options prior to implementation [1] but can also refer to seeking a solution that satisfies
desirable objective goals from a set of tentative design points [2]. In architectural design, tentative
design points can have associated qualities and quantities that represent the characteristics of a
building. Figure 2-1 provides an example of a model with a design space and an objective space.
In this example, the tower has four possible solutions defined by its two variables, height and
width. In each solution, the height and width are different and are also inversely related. In the
Design Space, the variables of each solution are plotted to illustrate their relationships. The model
also has two objectives, structure and sunlight, which are plotted in the Objective Space with
representative performance scores. Note that a performance score is not the same as the actual

value of the objective. In this example sunlight and structure do not have the same units nor do
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they share a similar relationship within their dimensions. More daylight and less structure are
generally considered advantageous to reduce artificial light and decrease construction costs. To
better capture the complexity of these goals, objectives are often normalized so they can be
compared without units and organized so that “0” is the goal of all objectives in an optimization
algorithm. However, the objective goals of a design are frequently inversely related such that no
perfect numeric solution exists. When this occurs, a designer may prioritize certain objectives, or
they will rely on their own intuition and select a design based on criteria not captured in the
objective space. Manually generating different model iterations with multiple design variables is
a time intense process and exploring model performances individually also requires repetitive
effort. Alternatively, digital tools, such as parametric models, readily enable a designer to
produce design variations [3] and optimization tools can rapidly search for “better” performing

design solutions, supporting more efficient design processes [4]—[6].

Figure 2-1. Example tower model with a Design Space and an Objective space, illustrating the
relationship between variables and objectives.



13

2.1.1 Parametric Tools

Parametric tools allow for DSE and are supported by previous research as a viable
environment for design decision-making that build on established models of design process.
There is much literature discussing theories of design process [7]-[10], with most models
establishing a phase for problem definition, one for design development, and one of resolution
analysis. Some researchers have also considered how a designer knows which phase to perform,
such as Cross’ designerly ways of knowing [11] which describes a designers’ cognitive reflection
on design actions. Distinguishing conscience decisions during the design phases is important
when accounting for potential influences on design thinking. As digital tools become integral to
design formulation, researchers have also considered how technology may impact the design
process [12]-[14]. Literature shows that when a computer is used to support or make key
decisions, there are different schemes to identify a designer’s cognitive or computational
decisions [15], [16]. However, other research differentiates that a parametric model cannot
replace the ingenuity of a human designer [17]. In a general definition, Woodbury describes
parametric design as an exploration of associated relationships of geometric concepts [18].
Oxman adds to this definition stating “the designer ‘designs’ the code of the parametric schema in
order to design the design object” [19]. Although designing a parametric model may supersede
designing the building as a cognitive effort, Oxman also acknowledges that parametric design is
“a unique and distinctive model of creativity and innovation in parametric design thinking.” [19].
Oxman’s assessment re-affirms what earlier research into parametric design and cognition has
established: parametric thinking is legitimate approach to exploring and solving complex design
problems [20]-[23].

In addition to enabling viable design processes, incorporating parametric tools into

parametric thinking can improve the performance of built designs [24], [25]. Parametric tools can
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readily provide technical performance feedback, which is beneficial for multi-disciplinary
exploration [26], [27]. They have been useful for producing and evaluating building criteria such
as architectural forms [28], structural design [29], building energy [30], daylight and glare [31],
[32], and urban planning [28]. In application of built work, parametric tools are used by esteemed
design firms, such as ARUP [33], Foster + Partners [34], NBBJ Architects [15], and UNStudio
[15]. They are also used by research designers, such as the Block Group, who employed
parametric strategies to explore forms with structural and material feedback to develop their
innovative Beyond Bending pavilion at the 2016 Venice Biennale [35]. In all these examples,
though, design teams are composed of either both architects and building engineers or designers
with multi-disciplinary backgrounds to draw upon the expertise of both professions. DSE tools
can support multi-objective problem solving and encourage collaborative efforts, but the users

must also have a designerly sense of effective design decisions.

2.1.1.1 Multi-Disciplinary Design

Multi-disciplinary design relies on design tools that can produce various streams of
feedback and requires that designers interpret the results. The existence of a design team with
both architects and building engineers, however, does not guarantee effective collaboration.
While diversity in design teams can lead to more creative solutions, this outcome is dependent on
a shared understanding and conducive design environment [36]. Unfavorable to collaboration,
many design tools inherently favor the aptitude of specific professions to allow for expertise of
design, such as sketching and geometric modeling for architects and detailed analysis tools for
engineers. However, the multi-objective feedback provided by parametric models, such as
Grasshopper, may allow designers to approach the design environment with more shared

influence and integrate feedback from the tools more readily. Previous research has shown that
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designers’ cognitive effort towards design knowledge can change during parametric design,
relying more on the tool’s rule algorithms for design decisions as the designers progressed
through the design session [20]. This is useful in considering design behavior in parametric tools
and suggests how the tools could be leveraged for multi-disciplinary design. While a designer
must know how to work in a parametric space, gaps in their disciplinary expertise may be
supported by the tool’s logic. In addition, parametric tools enable designers to generate numerous
design options with multiple design criteria. This process results in a massive search space,
though, and exploring each design individually for its objective performance is time intensive and
requires automation [2]. Additional tools and techniques are required to further support effective

DSE strategies with multi-objective considerations.

2.1.2 Optimization Tools

To help parse design solutions from a parametric space, designers use optimization
algorithms to rapidly search the design space for solutions that meet their desired goals. This
process supports designers in making more informed decisions [37]. However, objective spaces
rarely contain one, “best” solution and a designer may iterate between their model and the
optimization tool’s feedback, honing in on a design solution that they desire [38]. Figure 2-2
illustrates the cyclical process between a designer and the tool as the designer refines and
variables in the design space. While the optimization tool provides informed feedback with each
iteration, selecting a final design will often depend on more than just quantitative goals,
accounting for qualitative requirements, relying on the designer’s intuition, and, perhaps,

responding to a client’s preference.
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Figure 2-2. The iterative design process between a designer and an optimization tool as the designer
refines the design space to a solution that they find desirable.

Optimization tools can thus help designers make informed decisions while still allowing
for design freedom. Nielson reports optimization as an opportunity for human and machine
cooperation [39] and Liu et al. describes optimization-based design exploration as a mutual
influence between building massing and facade design [40]. Additional research reports the
benefits of optimization on design performance such as for building simulations [41], [42],
structural performance [43]-[45], and enclosure design [46]-[48]. While optimization techniques
allow for rapid exploration and quick performance feedback, some designers criticized digital
design space exploration for its limitation in design thinking and potential design fixation
compared to traditional sketching processes [49]. Nevertheless, optimization strategies have been
used in a variety of practices [37], [50] and help designers find improved design solutions to
complex design problems [51]—[53]. For optimization tools to be useful, though, a designer must
know how to effectively incorporate optimization strategies into their design processes and their

design education may equip them to use complex DSE tools.

2.2 Designer Education

With the broadening application of DSE strategies in practice, preparing students to join
design professions may require their education to incorporate more DSE techniques and reinforce

multi-objective thinking. However, research in design identity suggests that students may not be
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prepared to respond to cross-disciplinary design tasks as they can behave in a way they find
emblematic to their identified profession [54], [55]. While architecture students are strong at
creative thinking, they may shy away from rigorous quantitative analysis [56] and engineering
students can sometimes struggle to solve open ended problems [57]. These limitations may curb
their efficacy as designers when responding to multi-disciplinary design tasks and influence their
collaborative decision-making in mixed design teams. As a potential solution, parametric tools

with design performance feedback can bridge gaps in disciplinary understanding.

2.2.1 Disciplinary Distinctions

Architects and engineers are trained to address different design concerns which allows for
expertise to support better performing buildings, however, their scopes are rarely exclusive.
Although building engineers generally have technical specialties, such as in structural or
mechanical systems, they still work with an architect to achieve a wholistic vision. And while
architects may be responsible for addressing programmatic needs, visual appearance, and project
cohesion, they are also concerned with performative characteristics, such as enclosure systems,
and construction management, such as cost and timeline. Despite their overlaps in design
considerations, the professions’ training distinguishes them by providing engineers with a strong
math- and science-based context for design while architects receive extensive practice in spatial
design and idea expression. Moreover, in the United States, two different governing bodies
oversee accreditation of architecture and engineering degree programs: the National Architectural
Accrediting Board (NAAB) and the Accreditation Board for Engineering and Technology
(ABET). These agencies require different criteria of a curriculum before approving an accredited
degree. For example, it is expected that architecture students complete a series of design studios

while engineers must understand calculus.
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Architecture and engineering were not always independent professions, though. Prior to
the industrial revolution, a “building master” was responsible for all design aspects of a building,
but with advances in technology, materials, and construction techniques, expertise emerged.
There was strategic value in distributing design responsibility, allowing for innovative
approaches, and improving design performance. In addition, around the turn of the 20" century,
specificity in building design was further delineated with the growth of institutional education. A
person intrigued by engineering or architecture could pursue a degree that aligned with their
topical interests and cognitive strengths. While disciplinary distinctions have led building
designers to achieve monumental feats in building construction, they have also led to assumed
contention. In his book titled “Architect and Engineer: A Study in Sibling Rivalry,” Andrew Saint
explains how architects and engineers have too neatly compartmentalized their own histories and
capabilities, driving them apart and limiting what they can collectively achieve [58]. He adds that
the professions are more connected than many people tend to believe, and the disciplines cannot
work separate from each other. Building educators have called for improved understanding
between the professions [59], with books discussing the overlaps in their disciplinary interests
[60-62]. Nevertheless, recent research acknowledges that the professions have different
preferences for tools, like building performance simulations [63].

With advances in multi-disciplinary technology, such as collaborative design tools and
parametric environments, there is an opportunity to reassimilate responsibilities and design
processes of architects and engineers. Although paradigm shifts are not exclusive to academic
venues, disciplinary education may support more multi-objective thinking with introductions to

parametric techniques and optimization thinking.
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2.2.2 Design Education in Optimization

Although parametric strategies have been incorporated in student education [64]-[66],
concepts of optimization are not prevalently included in traditional architectural or engineering
education. While some educators lead courses that directly teach optimization strategies [67 ]
[69], there are not established approaches for instruction of systematic improved design
performance in these domains, which has been criticized as a limitation to the tools’ application
[70]. In addition, there is support from educators that teaching optimization methods in
architecture is important in leading architecture students into the future of building design [71]
and that there is a need for more multi-objective thinking in design fields [50]. However, the
advantages of optimization techniques may not be immediately evident to students without
understanding the challenges faced by practitioners when navigating complex design objectives.
Constructing a parametric model and using optimization tools effectively requires skills in the
design environment and practice in addressing multiple design goals. Regardless of experience,
though, projects can vary by their requirements and contexts which may prompt practitioners to
re-learn about their design approaches. To better educate student designers about advantageous
optimization strategies, it is useful to differentiate novice and expert levels of understanding in

DSE tools.

2.2.3 Expertise in Design

There is much consideration given design expertise, with researchers reporting
differences of novice and expert design approaches in terms of idea formulation [72], the kinds of
knowledge they use [73], and patterns in their cognitive effort [74]. In general, experts are

expected to use more precise strategies and exert less cognitive effort compared to novices [72]-
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[75]. Increased cognitive load is associated with the retention of new information [76] which
requires working memory to process new data into long-term, permanent knowledge [77], [78].
As aresult, expertise often aligns with less cognitive load since experts are not interpreting new
data. However, building design frequently evokes novel solutions with each new project,
prompting the generation of new information that may challenge an expert’s mental effort [79]. In
addition, task complexity can demand more working memory [80], which can impact a designer’s
performance [81]. Building design exploration requires the consideration of many criteria that
often have complicated relationships. As a result, navigating optimization design tasks may
impact design cognition in unexpected ways.

Understanding how cognition, task complexity, and design expertise unintentionally
influence DSE strategies can reveal which design approaches lead to more effectual design
outcomes. They may also suggest opportunities to improve DSE education. From studying the
relationship between cognition and new information, researchers have been able to influence
instruction tactics for more effectual learning. Kirschner states “...limitations of working memory
can be circumvented by coding multiple elements of information as one element in cognitive
schemata, by automating rules, and by using more than one presentation modality” [82]. In short,
learners are more likely to retain information when it is presented in several forms and delivered
with consistency. This pedagogical advice is best applied during DSE education, as opposed to in
practice, since exploration and optimization is a complex task [2] and may be difficult to refine
later in career development. In addition, architectural proficiency in rapidly evolving
computational tools can be transient [79], which challenges what may qualify as “expertise” in
building design. For many research studies that compare designers’ level of knowledge, an
“expert” is measured by years of experience in a field. However, a recent paper by Tan [83]
suggests that traditional understandings of expertise may not fully capture a designer’s

understanding of a topic. As an alternative, Tan describes expertise as an extension of experience,
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adaptability, perceptiveness, and motivation. When responding to complex design problems in
evolving DSE environments, a designer’s ability to synthesize, reflect, and adapt is more telling
than the number of years a designer has worked in their field. Moreover, design capability and
evidence of disciplinary knowledge may change depending on the tools being used and the
complexity of the design task.

In considering the evolution of designer competence and behavior in DSE environments,
this dissertation relies on research in parametric design, multi-disciplinary education, and design
process cognition to present four new studies that contribute to design understanding. It also
makes suggestions for DSE stakeholders, such as instructors in academia and tool developers, to
better connect research findings to practice. Below, I briefly introduce each study and outline the
research gap it addresses, methods used, and conclusions taken from the results. In the concluding
remarks of this dissertation, I discuss opportunities to apply the information collected from the

studies to design education.

2.3 Research Methods

A series of studies were conducted which considered the perceptions, efficacy, and
behaviors of designers when working in DSE tools, summarized in Fig. 2-3. The studies focused
on stages of designer development from before beginning their professional education, to solving
multi-disciplinary problems as students, and to completing complex design challenges in practice.
The studies’ design tasks and environments prompted greater exploration as the designers’ level
of experience increased. Pre-built parametric models were used in the first two studies with an
unconstrained design space used in studies three and four. I provide an overview of each studies’

research goals, the methods used, and a summary of the results which provide insight into
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designerly behavior in DSE activities. The studies reveal opportunities to enhance designer

education in multi-objective thinking and design exploration.

Figure 2-3. Outline of the four studies with the participants’ level of education, a summary of the
design task goal, and the type of model space used.

2.3.1 Assessing Pre-Design Student Perception

Before evaluating design behavior in complex design tools, the performance of potential
designers in an approachable design space was considered. A design study, conducted in a
parametric modeling tool with visual objective feedback, captured pre-design students’
perceptions of self-competency in engineering related subjects and compared their performance
behaviors in the tool to the design criteria that they valued. The study asked, how do pre-design
students’ self-competency in STEM relate to their design exploration, performance, and
perception of goals when working a parametric space. From this study, the more exclusive self-
competency a student felt in STEM subjects, the more they iterated in the tool and the better their
final designs performed. However, the STEM self-competent students also ranked appearance

lower than the quantitative criteria. While it was expected that STEM self-competent students
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would create improved design solutions and it is advantageous for them to iterate more in the
parametric design space, it may be that engineering oriented students are inclined to not consider
criteria that are not included in their subject of interest. This may limit their efficacy when
responding to multidisciplinary design tasks in their career and influence their efficacy in diverse
design teams. Also, 83% of all students submitted solutions that performed better than the starting
design, suggesting that they were able to effectively respond in the parametric design tool despite
having never used it before. It may be that parametric exploration can enable performative design
decisions without extensive design experience.

This work is published in:

Bunt, S., Hinkle, L., Walton, A. & Brown, N. (2023). Relationship between high school
STEM Self-competency and behavior in a parametric building design activity. In 2023 ASEE

Annual Conference & Exposition Proceedings.

2.3.2 Evaluating Student Team Multi-Disciplinary Collaboration

Design teams are often comprised of diverse members to address multi-disciplinary
considerations, which can lead to more creative solutions, but this outcome is dependent on a
shared understanding between teammates and a conducive environment [84]. The behavior of
diverse building designers when given multi-objective tasks may not yield the predicted results of
increased creativity and design efficacy as they have their own criteria and tools for achieving
their disciplinary goals. To better understand this division of effort, a design study was conducted
which asked pairs of Architect+Architect, Engineer+Engineer, and Architect+Engineer to
respond to a design task with both architecture and engineering focused criteria in an equally
approachable parametric model. The research asked, how does team composition relate to design

efficacy and exploration in a shared, live parametric design environment? While it was expected
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that the teams of mixed designers would develop more effective solutions, as evaluated by 4
design experts, no team type developed better performing designs with statistical significance. No
team type displayed differentiating exploration strategies either. It may be that student designers
are not yet distinguishable enough in their discipline to display differences in design strategies or
that a parametric modeling tool with both qualitative and quantitative feedback can benefit the
efforts of a design team in absence of the design member counterpart. More detailed research was
needed focusing on the design behavior of designers when developing and exploring a design
space.

This work is primarily published in:

Bunt, S. & Brown, N. (2023). Design efficacy and exploration behavior of student
architect-engineer design teams in shared parametric environments. Buildings 13(5), 1296.

https.://doi.org/10.3390/buildings13051296

2.3.3 Characterizing Student Designerly Behavior

While optimization techniques have increasingly been used in design fields, the exact
behaviors of designers when developing a model for optimization is less clear. In response, a
third design study asked: what behaviors do student designers, trained in optimization techniques,
exhibit when designing in a parametric space with optimization goals? The study documented and
coded the behaviors of student designers when creating a design in a parametric space with multi-
disciplinary design goals and optimization strategies. Gero and Kannengiesser’s Situated FBS
Ontology [85] was used to identify event shifts in the optimization design process, isolating
design techniques in the designers’ decision-making, and allowing the strategies of design
optimization students to be compared. This work reported iterative loops in optimizations

strategies including complete cycles in which the designer integrated feedback from the


https://doi.org/10.3390/buildings13051296

25

optimization tool into their design and course cycles in which the designer did not review the
performance feedback from the tool at all. This work, qualitative in nature, provides a language
by which to further describe design behavior in optimization and allows for more specific,
quantitative analysis in future research questions. In particular, understanding how the design
behaviors of students compare to that of practitioners is important in making suggestions for the
academic development of building designers.

This work is published in:

Bunt, S., Berdanier, C. G. P., & Brown, N. C. (2023b). Observing Architectural
Engineering Graduate Students’ Design Optimization Behaviors Using Eye-Tracking Methods.

Journal of Civil Engineering Education, 149(4). hitps://doi.org/10.1061/JCEECD.EIENG-1889

2.3.4 Comparing Student and Practitioner Strategies and Cognition

A fourth study asked: how do student and practitioner behaviors and cognitive loads
compare when designing in a parametric space with optimization goals? To address this question,
the study from part three was expanded to include design sessions from building design
practitioners. Their design behaviors were reported by session events and organized into
optimization cycles. To discuss differences in in their design thinking, the cognitive responses of
students and practitioners were compared using three eye-tracking metrics: scaled Index of
Cognitive Activity [86], fixation count, and fixation durations. Although research suggests that
eye behavior can indicate changes in mental effort when interpreting new information, it is
possible that design optimization tasks elicit unexpected cognitive responses. In general, it is
expected that experts express lower cognition loads compared to novices because they are less
likely to be learning while performing a design task. While the practitioners in this study

demonstrated lower overall cognitive loads compared to the students, they also had a wider
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spread of cognitive responses in the three metrics and used a greater variety of design strategies.
The practitioners more consistently incorporated design feedback from the optimization tools, but
also opted for more design autonomy in two of the sessions. Meanwhile, differences in student
techniques and cognitive efforts were less diverse. This work supports presumptions of decreased
cognitive effort for practitioners, but also confounds expectations of individual design behavior in
optimization strategies. It may be that optimization tasks elicit distinct design processes when
navigating design knowledge with parametric modeling and layering algorithmic performance
feedback. Future work will organize the sessions by optimization cycles, rather than design
experience, to examine cognition in complete design events and identify optimization procedures
that may lead to lower cognitive effort.

This work will be submitted to a future journal.

2.3.5 Concluding Remarks

In the conclusion of my dissertation, I make suggestions for design stakeholders to better
connect the research to opportunities for application. I make recommendations to educators for
how to use DSE environments as instructional tools depending on the experience of their students
and their teaching goals. For optimization tool developers, I illustrate different ways to provide
performance feedback and reduce erroneous streams of information. In acknowledging a gap
between existing DSE tools and instruction of complete optimization strategies, | propose an
optimization teaching tool that guides learners through the steps of incorporating design feedback
into their decisions. Through a series of instructional phases, it allows for increased design
freedom while prompting optimization behavior. The tool would be a pre-built model in an
approachable design environment but could provide numerous examples and illustrate multi-

disciplinary design thinking through different building typologies. These suggestions are guided
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by the results of the four presented studies which are outlined in Table 2-1. The table states gaps
in existing research, highlights the studies’ research questions, describes the methods used, and

summarizes the outcomes.

Table 2-1. Contribution stating the gap in research, research questions, methods used to address the
question, and the outcomes from the research.
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Chapter 3

Assessing Pre-Design Student Perceptions

Work in this chapter was originally published as S. Bunt, L Hinkle, A. Walton, N. C.
Brown, “Relationship between High School STEM Self-Competency and Behavior in a
Parametric Building Design Activity,” in 2023 ASEE Annual Conference & Exposition,
Baltimore, Maryland: American Society of Engineering Education, June 25, 2023. The version

presented in this document is expended with more detail.

Abstract

Building designers receive discipline-specific education which prepares them to address
distinct design goals, but they may struggle to address criteria not considered part of their
profession based on their disciplinary identity. In STEM subjects, such as engineering, high
school students’ perception of their own competency is positively related to their performance.
Although this is beneficial for engineering design, it is unclear how students who identify
strongly with STEM prior to professional training may account for non-STEM design objectives
compared to STEM-related criteria. This research considers how pre-design students’ STEM self-
competency can predict their behavior when responding to a building design task with technical
and non-technical goals. A study was conducted which asked high school students about their
STEM competency and instructed them to develop a conceptual skyscraper design in an age-
accessible, digital design environment. The design tool contained a parametric model which
provided visual and performance feedback about energy use, daylight, and cost as the students

changed skyscraper variables. Students with higher STEM self-competency (SC) selected higher-
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performing designs, viewed more design iterations, and ranked the building’s appearance as their
lowest priority. These results inform future design educators about student outlook prior to any
professional training and reveal potential limitations in student approaches to multidisciplinary

building design tasks.

3.1 Introduction

Aspects of college students’ career choices are influenced by how closely they identify
with the subject matter, particularly in STEM fields [1], which may influence them to behave in a
way they feel is emblematic of that profession [2]. This is relevant to majors such as engineering
and architecture that require collaborative design expertise but can often define and approach
their design goals differently [3]. Since design is a complex, challenging endeavor that requires
both skillsets, educators in each profession may seek to avoid rigid self-classifications among
students. For example, engineering majors can benefit from understanding they can be creative,
synthetic thinkers, and architects can learn to incorporate calculations more productively during
design.

Recent efforts in engineering education have sought to develop such crossover skills
among engineers, including problem-based learning [4], [5] and integrated design studios with
architecture students. As an approach to multi-disciplinary design, emerging parametric modeling
tools, which can provide both geometric and numeric feedback, have been shown to improve
design performance [6]-[8] and are a viable environment for design decision making [9]. It is
unclear, though, how the disciplines approach these tools differently because of their varying
professional training, outlook, and experience. In addition, little is known about how students
may use these tools based on their design aptitudes at various stages of development. It is likely

that as students gain training and eventual experience as designers, their approach to using a
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computational tool will increase in similarity to experts. This could be partially due to improving
aptitudes, but it may also be influenced by a learned professional outlook or orientation.
However, student perceptions of creativity and technical fields may emerge and even solidify
prior to starting college coursework [10]. College-level instructors may thus encounter prior
biases when formally teaching design to students for the first time.

Before entering secondary education, students are not yet characterized by an associated
future profession—they are not yet “engineering” students. Instead, as the acronym STEM
(Science, Technology, Engineering, and Math) has become a widespread term in education to
strengthen and grow student awareness of these subjects, strong STEM associations may
influence students’ thinking about design in unintended ways. While positive exposure to STEM
fields can lead to more participation in STEM activities, students may approach design tasks with
a narrower, STEM-oriented focus, rather than a comprehensive solution that includes non-
technical considerations. Previous research has shown that a student’s self-perception of their
performance in STEM subjects can positively predict their actual STEM performance [1], but less
is known about how STEM-competent students navigate non-STEM goals, particularly if they
identify more exclusively within STEM fields.

In response, this research examines how high school students’ self-competency
in STEM (STEM SC) relates to their design performance, exploration, and priorities when
responding to a parametric building design activity. Three research questions are asked:

RQ1: How does student STEM SC relate to their design performance in parametric
building design? In this study, “design performance” refers to the ability of students to generate
solutions that have good performance in quantitative metrics such as low energy usage. Previous
research shows that student self-efficacy and performance are positively related both outside of
STEM [11] and in STEM [12]. However, this study evaluates performance specifically in a

building design exercise with quantitative goals that are simulated within a parametric design
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tool. This relationship can reflect potential student effectiveness in technical building design, but
it does not fully reflect student behavior. The extent of their exploration with the design space can
suggest their intended engagement of the task, prompting the second research question:

RQ2: How does high school student STEM SC relate to their design exploration?
Engaging with many possible solutions can reflect a designer’s intent and suggest a level of
interest in the material. Hazari acknowledges interest as a measure for identity in STEM subjects
[13], and iterative exploration is fundamental to problem-solving [ 14]. Yet building design tasks
often have many goals which may capture designers’ interests differently, as they may prioritize
some criteria over others. The third research question asks:

RQ3: How does student STEM SC relate to the design criteria that they value? In
building design, rarely is a single design consideration isolated from holistic problem solving.
Multi-disciplinary problem-solving is necessary but may be limited if a student with a strong
STEM SC does not value goals that are not considered part of traditional STEM criteria, such as
aspects of building appearance.

To answer these questions, a study was conducted at a high school in the Northeastern
United States that asked students about their relationship with STEM both directly and indirectly.
They then respond to a building design task with three technical criteria and one qualitative
criterion. Students worked in a readily accessible parametric modeling tool that collected
information about their exploration and performance, while a survey recorded their priorities
when designing. Design performance was assessed using simplified performance simulations for
building cost, energy use, and artificial light required. These relative metrics were presented back
to students during their exploration, allowing them to prioritize between quantitative and
qualitative objectives. The resulting correlations can prompt educators to incorporate more
intentional multi-disciplinary thinking in K-12 curriculum to better prepare students for complex

problems if they pursue design professions.
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3.2 Background

Considerable research has already been conducted on engineering creative thinking and
STEM education. However, less is known about how students’ natural approaches to a design
task might be influenced by STEM self-competency before initial exposure to formal design
training of any type. We use the term self-competency to describe students’ perception of what
they can accomplish with their abilities, following Susan Harter [15], but applying the concept to
more specific academic subdomains. In addition, theoretical frameworks such as expectancy-
value theory support that students’ expectancy to be able to perform a task, combined with
students’ value of a task, can predict outcomes of engagement and achievement [16], [17].
Assessing self-competency also allows us to engage with literature that considers performance-
competency as an indicator for identity, which is central to our research, since professional
identify formation may influence design behavior.

Further, we consider “exclusive” self-competency by asking students about their abilities
in STEM versus non-STEM courses on a continuum. While students may be good at both types
of subjects, American architecture and engineering programs usually enforce a binary—with few
exceptions, students will largely graduate with professional training and a degree in only one or
the other. In this context, the goal is to understand how far a student may be identifying in either
direction prior to receiving any formal design training. We thus begin the review with what has
been established about engineers and architects’ design behavior, before working backwards to

how these behaviors may have been influenced earlier in education.
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3.2.1 Design Thinking in Engineering and Architecture

Effective building design requires both technical and experiential considerations, which
are addressed by engineers and architects through their disciplinary expertise. Although their
distinctions may be less clear with newer digital tools, it has been observed that the professions
approach design differently in pursuit of their disciplinary goals [3] and receive distinct
professional training. This training is useful when addressing their expert tasks but may cause
conflict when addressing multidisciplinary problems. Engineering students mostly follow
outcome-based strategies [18] but can struggle to solve open-ended or ill-defined tasks [19],
especially if their curriculum has not adequately prepared them for these problem types that occur
in the workplace. On the other hand, architecture students are strong at creative thinking, but may
shy away from rigorous quantitative analysis [20]. Thus, university-level instructors may need to
consider how they promote potential design orientations by the tasks they assign and provide

design environments that require diverse approaches to problem-solving.

3.2.2 Parametric Thinking and Modeling in Design

One context in which design creativity might be stimulated is parametric modeling,
which allows designers to generate and consider a wide range of potential solutions. In parametric
modeling, variables control characteristics of a building such as height and window size, while
performance objectives can be calculated rapidly, sometimes even providing live design feedback
depending on the scale of the problem. Design solutions can then be explored by both architects
and engineers for qualitative and quantitative properties. These tools have been used in previous
research as a viable environment for design decision making [6], [7], [21], [22]. Professionals

have also used parametric modelling in practice when iterating design performance analysis, such
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as ARUP [23] and Foster + Partners [24]. In addition, computational thinking has been
incorporated in student education [25], and parametric models have been used as teaching tools to
improve learning [26] and support STEM education [27], [28].

Thus, even though exploration in a parametric design tool does not represent a
comprehensive design process from start to finish, it is intuitive enough for even K-12 students
and can capture some design behavior. Understanding how pre-design students use these tools
prior to professional training can inform strategies for their disciplinary education, but grade
school students may not have a clear understanding of what is expected of building design fields.
A more relatable, generalizable proxy is needed to measure their potential success and identity in

building design professions.

3.2.3 The Influence of STEM

In the last two decades, a strong emphasis on STEM subjects has empowered young
thinkers, given agency to groups underrepresented in the fields [29], and accentuated STEM
recognition early in grade school. Incorporating STEM concepts early can have potential benefits,
such as fostering student positive perception of STEM values [30] and increasing interest in
STEM related fields for future careers [31], [32], but it could also contribute to challenges in
cross-disciplinary problem solving. Children begin to identify their career interests and
aspirations as early as elementary school [33]-[35] and greater STEM identity leads students to
pursue STEM fields in their career [1]. However, there are also negative stereotypes surrounding
STEM, such as it being less creative and boring [10], which can have negative impacts on student
pursuit of STEM professions and STEM self-competency. These stereotypes may be influenced
by real factors such as the fact that performance in math, often perceived as less creative, is a

reoccurring predictor for STEM pursuits when compared to other subjects and influential
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variables [36], [37]. For pre-engineering students who perform well at math, many may come to
college thinking that as a “STEM student” they are only good at solving numerical problems,
while pre-architecture students may have negative associations with STEM and be intimidated by
calculations. Therefore, how a student perceives STEM can influence their building design
pursuits.

Discerning how students think of STEM relies on various social identity theories [38]—
[40]. STEM identity has been defined as how well individuals see themselves as an accepted
member of STEM [41] or if they think of themselves as a scientist, technology user, engineer, or
mathematician [42]. Subdividing identity into three interrelated components, Carlone and
Johnson [43] defined STEM identity as performance (demonstrate activity), competency
(knowledgeable in activity), and recognition (credible by others). Accounting for a person’s sense
of choice in self-perception, Hazari [13] built on Carlone and Johnson to add interest to STEM
identity. Hazari also combined performance with competency to measure an individual’s belief
about their own abilities to perform and understand a STEM subject. However, both Carlone and
Johnson and Hazari focused on only science subjects in STEM. To understand identity more
broadly, Dou and Chian [44] surveyed all STEM fields individually, relying on performance-
competency as an indicator for identity along with recognition and interest. Their research
acknowledged that recognition and interest can be difficult to define depending on a student’s
understanding of what is involved in STEM fields and students are not yet in career positions for
professional recognition. As a result, performance-competency can capture both ability and
perception of efficacy, and it is a predictor for better performance [11]. Additionally, greater
STEM self-efficacy has been shown to predict improved STEM performance [1].

While some studies have separated engineering from other STEM fields for more specific
understanding of the profession [45], [46], this paper also considers differences between

engineers and architects, which both contribute to building design. STEM has always included
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“engineering,” but “architecture” was not officially recognized by Congress as a STEM subject
until 2019 [47]. It is unclear if the general population is aware of its recent inclusion.
Nevertheless, there is a call for more systematic research of how STEM and design relate in
education [48], [49].

Based on gaps in the research, this paper examines if STEM SC can predict pre-design
student performance and engagement in a building parametric design tool, and how the students
prioritize different criteria. How students use parametric tools prior to formal training is important

because this is an emerging environment for multi-disciplinary building design.

3.3 Methods

This paper studies STEM SC and design behavior in an intuitive, age-appropriate design

exercise facilitated in an online computational design tool.

3.3.1 Participants

The IRB approved study was conducted at a public high school in the Northeastern US
with 107 ninth and tenth grade participants. The overall high school population is 71.4% white
with a total minority enrollment of 28.6%. The school performs between 17-28% above average
in the state’s annual Mathematics, Reading, and Science proficiency exams with a 91%
graduation rate. Of the participants, 50 were boys, 53 were girls, 3 were gender non-conforming,
and 1 preferred not to answer. All students were enrolled in the Environmental Sciences or
Chemistry class at the high school in either honors or non-honors tracks, based on the school’s

distinctions of academic rigor. Of the participants, 67 were honors students and 40 were not.
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3.3.2 Design Session

The study protocol was conducted during the school day and lasted 1 hour and 15
minutes. The activity was voluntary and parental consent was obtained. An alternative activity
was provided for students who chose not to participate. Students were not graded on their
performance, and the activity did not relate to their coursework. The study design included an
intake survey, two introduction videos, a design session, and a final survey (Figure 3-1). The
intake survey captured their demographics and STEM SCs; the videos introduced skyscrapers and
the design task; the design tool used during the design session recorded the students’ design
exploration and final design performance; and the final survey asked the students which of the

design criteria they prioritized when designing.

Figure 3-1. A summary of the protocol during the design sessions.

3.3.2.1 Preliminary Material

At the beginning of the study, students completed a survey which collected demographic
information and asked about their self-competency in STEM. In this survey, the acronym for
STEM was spelled out so the students were aware of which subjects were included in the
category of STEM. Self-competency was isolated from other dimensions of STEM identity to
narrow potential variations in STEM biases, which can occur with recognition and interest. The
participants may not understand architecture or engineering professions specifically to determine

their personal interests, nor have they yet entered the professions to be recognized for their
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efforts. The focus of the research was not disclosed to the students to avoid influencing their
perceptions of the questions and research task. They were asked “Which statement most
accurately describes you?” and responded by moving a slider between “I am strong in STEM
related subjects” and “I am strong in subjects not considered part of STEM,” with the slider
starting in the middle. When recording their STEM Self-Competency (STEM SC), it was
important to not bias student responses with leading phrases that would prompt undue
associations. The full pre- and post-survey is provided in Appendix A.

We followed a similar question structure from a previous study of STEM competency
which provided statements such as “I think I am very good at: Figuring out science activities,”
and students responded with how closely they agreed [50]. While agreement style of survey
questions are legitimate forms of data collection, in the context of our study, this type of question
may suggest a “yes” response as affirmative, while a “no” may be viewed as negative. Therefore,
our question about STEM SC was intentionally phrased in a neutral way to enable students to
emphasize strengths in different areas. Self-competency in STEM is not inherently exclusive and
if a student felt like they identified with both statements, they could place the slider in between
the options. In answering the third research question, students who view themselves more
exclusively in a STEM context may be limited in their approaches to consider multidisciplinary
design criteria. In addition, providing a concise question as opposed to a multi-faceted
questionnaire also avoids student survey fatigue as a part of the study session. Although the slider
was not presented numerically to students, results were captured in discrete settings.

The students were shown an 8-minute video made for the study that presented skyscraper
design ideas and focused on building characteristics of energy, daylighting, cost, and appearance.
The video advised that skyscrapers are advantageous when they are larger because that increases
the square footage, but that increases costs. A building with a larger surface area also allows for

more natural daylight through windows, reducing the need for artificial light during working
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hours, but this larger building will also use more energy. Participants were shown ten examples of
built skyscrapers, illustrating a range of form and color, to explain how appearance is also an

important part of skyscraper design to give a city or building tenant an identity.

3.3.2.2 Design Task

The design task asked students to present a solution for a new skyscraper in Austin, TX
that would serve as a high-performance office building for Google. To help focus their design
efforts, the students were advised to minimize three Objective Metrics: energy use, artificial light,
and cost. They were also provided the freedom to prioritize between each. The objectives were
calculated by multiplying the normalized values of the variables by a coefficient, based on the
variables’ approximate proportional impact on the objective, and adding the results. A table
explaining how the variables were related to calculate the performance metrics is provided in
Appendix B. The quantitative goals had inverse relationships such that no perfect design exists
where all three criteria can be minimized. They were also told that Google wanted a visually

appealing design as a non-technical design goal.

3.3.2.3 Design Tool

A digital tool was developed that allowed the students to work in 3D modeling space
without previous modeling skills and provided the students with live performance feedback about
their designs. The tool also collected data about the students’ design behavior and performance of
their final design. Participants used a custom website created for the study using a file hosting
platform called Shapediver [51]. The Shapediver API was used to embed a pre-built Grasshopper

file which defines 3D geometry, variables, and design performance values. The skyscraper model
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with surrounding site context had eleven variables and provided quantitative feedback for the
three objectives through a dynamic bar graph which changed with the variables. Seven of the
variables edited the geometry of the skyscraper and four of the variables changed aspects of the
exterior enclosure panels.

All variables impacted at least one performance metric, except for the color of the panels,
which related only to the buildings’ appearance. The underlying values of the performance bars,
not shown to the users, were calculated based on the intuitive behavior of a building with similar
features. These simplified relationships prevented the need for running full simulation programs
to supply quantitative feedback, avoiding design fatigue. The quantitative objectives have
different dimensions of measurement and were thus normalized and presented in graphical form
for easy student interpretation. The students’ goal was to minimize the objectives, but since the
objectives have inverse relationships, no solution minimized or maximized all. An overview of
the tool is provided in Figure 3-2, showing the website interface with the skyscraper model and
performance bars, along with the design variables. As the students worked in the tool, the website
collected data about how often they changed each variable and recorded the final objective values
at the end of the session. The final objective values were averaged to measure the Objective

Performance.
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Figure 3-2. Sample of the design tool showing the 11 variables and the modeling space with the
skyscraper and performance feedback bars.

As the students worked in the tool, the website collected data about how often they
changed each variable and recorded the final objective values at the end of the session. The final

objective values were averaged to measure the Objective Performance.

3.3.3 Assessment

This study focused on STEM Self-competency and the three Objective Metrics as proxies
for student design behavior because of their relevancy to building design thinking and the
population of interest. Linear regression models of the study’s Objective Metrics vs STEM SC
were used to determine if STEM SC is a predictor for the Objective Metrics. Design performance
was determined by how well the students minimized the task’s design criteria. STEM design
performance is a part of STEM identity [43] and is a proxy of quality in creativity for the SVS
and CAT methods. The number of design iterations can also positively reflect model engagement

since iterative exploration is considered intrinsic to creative problem-solving [14] and can also
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account for a student’s interest in the subject material. Prioritization of objectives, particularly
“appearance” as a non-STEM goal, was measured directly through a survey. Collectively, these
assessments suggest how pre-design student perception can predict their design behavior in the

parametric building tool and incorporate multi-disciplinary design in the future.

3.4 Results

A sample of final design screenshots is shown in Figure 3-3. Although this study did not
investigate visual performance of the students’ designs, the samples are presented to show the
range of visual solutions, by color, shape, and window patterning, that the students developed in

the parametric space.

Figure 3-3. A sample of 16 final designs provided by the students.

Figure 3-4 shows the distribution of STEM SC of the students where 0 indicates that the
students reported more exclusive strong performance in STEM subjects and conversely 10
indicates that the students reported strong in subjects that are not considered part of STEM. The
histogram of students” STEM SC leans slightly towards STEM related subjects with a median

value of 4 and a mean of 4.45. A normal, centered distribution was not expected since STEM SC
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is not necessarily well distributed across all populations, and the study was conducted in an

Environmental Science class.

Figure 3-4. Histogram distribution of the students STEM SC.

For the design performance, exploration, and appearance rank datasets, simple linear
regression analysis was used to examine the linear relationship between the variables and STEM
SC using the statistics tool Minitab. The Anderson-Darling normality test verified that the data
was normally distributed (p=0.0248 for performance, p=0.026 for iterations, and p<0.005 for
appearance rank at a 0=0.05 level of significance). Distribution plots of the datasets were visually

inspected for outlier data and none were identified.

3.4.1 Design Performance and STEM SC

Because the goal of the design task was to minimize the objectives, a larger Objective
Performance value indicated a poorer performing design, where a smaller Objective Performance
was desired. Figure 3-5 shows a histogram of the Objective Performance values and a plot of
STEM SC and Objective Performance. The p-value for the Regression Analysis of students’
STEM SC and Objective Performance is p=0.001, so there is sufficient evidence at the a=0.05

level to conclude that STEM SC can predict student performance. The left end of the x-axis
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indicates students who identified more closely with STEM and the right are those who identified
more with non-STEM subjects. Students who associated themselves more closely with STEM

subjects had quantitatively better performing designs.

Figure 3-5. (a) the distribution of Objective Performance values and (b) a plot of Design
Performance v STEM SC, showing the regression line of the data.

3.4.2 Design Exploration and STEM SC

This research is also interested in understanding the relationship between STEM SC and
student exploration in the parametric design tool. Figure 3-6 shows the distribution of iterations,
with the fewest number being 8 and the greatest being 259, and a plot of STEM SC versus
Iterations. The p-value for the regression analysis of students’ STEM SC and Iterations is
p=0.008, so there is sufficient evidence at the a=0.05 level to conclude that STEM SC can predict
the number of iterations students considered in the design task. The left end of the x-axis
indicates students who identified more closely with STEM and the right are those who identified
more with non-STEM subjects. From the regression line, closer STEM identifying students

explored more iterations.
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Figure 3-6. (a) the distribution of iterations and (b) a plot of iterations v STEM SC, showing the
regression line of the data.

3.4.3 Design Focus and STEM SC

How the students ranked criteria in order of importance was also recorded. Figure 3-7(a)
shows the number of students who ranked each criterion by priority. A rank of 1 is the highest
rank while 4 is the lowest. While a greater number of students ranked “appearance” as their most
important criterion compared to the other criteria, “appearance” was also the lowest priority for a
larger number of participants. Figure 7(b) shows a plot of STEM SC to appearance rank with the
fitted regression line and the p-value of the Regression Analysis. With a p-value of p=0.062,
STEM SC does not predict Appearance rank; adjusting to a a =0.10 level would indicate
significant prediction. In the context of this research, it is worth considering the positive

relationship between higher STEM SC and ranking appearance as a lower priority.
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Figure 3-7. (a) the number of participants who ranked each criterion and (b) the fitted line plot of
the regression analysis for Appearance Rank v STEM SC.

3.4.4 Variables for Future Consideration: Gender and Honors Courses

Although they are not the main focus of this study, there has been considerable recent
interest in how STEM identity relates to both gender [38], [52] and participation in honors-level
courses [53]. In this section we provide preliminary consideration of these factors as they may
complicate our narrative. However, the intention here is to stimulate further discussion and
research rather than present new claims. Excluding the small number of alternative responses, the
p-value for the Pearson Correlation between Class Type and Gender was p=0.215, which can be
considered nearly uncorrelated, so we investigated the variables separately without concern for
collinearity between the groups.

Linear Regressions of the variables were run for each of the study’s objective metric on
STEM SC for Class Type and Gender. Table 3-1 shows each of the p-values for each regression.
Values that are significant at a a=0.10 level of significance are bolded. For Honors students and
Boys, their STEM SC was significant in predicting their Objective Metric, while STEM SC was

not a predictor of the Non-honors students and Girls.
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Table 3-1. P-values of linear regression analysis of the study’s Objective Metrics vs STEM SC,
with values of significance in bold.

Iterations | Objective Performance | Appearance Rank
Honors 0.005 0.002 0.085
Non-honors 0.971 0.239 0.794
Boys 0.005 0.000 0.098
Girls 0.411 0.257 0.214

3.5 Discussion

Overall, the findings suggest that more exclusive self-competency in STEM does relate
positively to performance and model exploration in a parametric building tool while designing,
which is advantageous if these students pursue STEM or building engineering careers. However,
the study suggests that strong STEM SC could bias their ability to value qualities not considered
part of STEM, leading to challenges in multi-disciplinary problem solving later in their education
or careers. Examining the results by research question describes the relationship in more detail.

RQI1: How does student STEM SC relate to design performance in parametric building
design? Students who expressed greater exclusive self-competency with STEM developed better
performing designs, based on the tasks three quantitative criteria. It was expected that students
who had greater STEM SC would navigate the technical objectives better than Non-STEM SC
students, however, it was possible that the parametric building modeling tool would prompt
different results in a new design space. It is necessary to also consider to what extent the students
engaged with the tool.

RQ2: How does student STEM SC relate to their design exploration? The students who
identified with greater STEM SC considered a greater number of iterations within the design
space. Creating more iterations can reflect greater interest in the activity, as students may iterate

while divergently exploring the design space to generate and consider very different options. If
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the number of design iterations did not vary by STEM SC, it could be that the design tool limited
creativity or that the tool or task were not responsive to STEM identity. However, the students’
STEM SC did predict interaction exploration indicative of engaged, creative problem-solving. It
is worth noting that creating more iterations alone does not fully capture the students’ response to
the design task and their perception of non-technical goals, as they might have also iterated
repeatedly on only slightly different design outcomes seeking the best possible design.

RQ3: How does student STEM SC relate to the design criteria that they value? Student
STEM SC did predict “appearance” rank at a a =0.10 level of significance, as students with
strong STEM SC ranked it a lower priority compared to the other criteria. This inverse
relationship can suggest students with a greater STEM SC may not value visual architectural
goals as highly as quantitative goals. This could be a barrier to cross-disciplinary thinking in their
professional pursuits.

These conclusions can inform how K-12 educators approach presenting STEM topics. As
expected, students who identified closer to STEM had better performing technical designs, but
they also ranked “appearance” lower on their priorities. If the STEM-identifying students pursue
careers in building design, they may struggle to incorporate non-technical goals in their design.
Interdisciplinary design can be challenging to achieve [54] and research has shown that engineers
can sometimes struggle to understand other viewpoints, but difficulty with multidisciplinary
design is not ubiquitous to all engineers [55]. As observed in this study, the more exclusive
STEM-identifying students created more iterations, which indicates greater engagement and may
also show an interest in design exploration. For educators, concepts of STEM should be
introduced in the context of other dimensions of design so that students can think in a multi-

disciplinary way. A summary of the results is shown in Figure 3-8.
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Figure 3-8. Graphic summary of the results, with STEM SC relationship to (a) design performance,
(b) iterations, and (c) appearance rank.

There are several limitations and areas for future work. While this paper focuses on
relationships between STEM SC and various characteristics of design behavior, it does not
exhaustively consider additional variables that may influence STEM identity in the first place. As
shown in our dataset, gender and participation in Honors courses may have even stronger
correlations with our Objective Metrics than STEM SC, and there are statistically significant
differences in behavior when comparing populations with these characteristics. In addition, the
students’ enjoyment, as an extension of interest, in responding to the building design task was
shown in our dataset and did not predict our Objective Metrics. Such variables likely influence
both STEM SC, tool usage, and design behavior in complex ways, but they are left for future
study. This paper also relies on a single continuum question to evaluate “exclusive” STEM SC.
Future work can incorporate additional assessments of self-competency and/or self-efficacy while
determining how they relate to design behavior. Design behavior could likewise be evaluated for

different building types and other variables.

3.6 Conclusion

This paper presents a design study which investigated how high school student self-

competency in STEM relates to design behavior in a parametric building tool. As parametric tools
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are increasingly used in building design fields, understanding how pre-students navigate
parametric spaces is valuable in improving their education as future designers since these tools
can challenge them to consider multidisciplinary criteria. The study used a parametric skyscraper
design task to collect information about the students’ design activity. While a different task may
elicit different results based on students’ interests, aspects of skyscraper design are reoccurring
challenges for architects and engineers, requiring synthesis between technical and experiential
design goals. In this study, the students who reported greater self-confidence with STEM subjects
developed better performing designs and explored more iterations, but they also ranked
“appearance” as a lower priority. These results suggest that varied design approaches that are
eventually interpreted as disciplinary differences might seem natural before any formal design
training occurs. They also inform educators about gaps in expected student performance in
parametric tools and suggest that pre-designer education should emphasize multidisciplinary
problem-solving to avoid narrowing student competency for those interested in design
professions.
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Chapter 4

Evaluating Multi-disciplinary Collaboration

This work was originally published as S. Bunt, and N. C. Brown, “Design Efficacy and
Exploration Behavior of Student Architect-Engineer Design Teams in Shared Parametric
Environments,” Buildings, vol. 13, no. 5, 1296, April 2023, doi: 10.3390/buildings13051296. The

version presented in this document is expended with more detail.

Abstract

Increasingly, architects and building engineers use parametric modeling programs to
explore design solutions as professionals and as students. However, little is known about their
combined efficacy and exploration in these tools when working in mixed design teams. While
disciplinarily diverse teams of designers have been shown to develop more creative design
solutions, this occurs primarily when there is a conducive environment and shared understanding
of design goals. Because architects and engineers are traditionally taught to use different tools
and processes to address their professional goals, indicators of student combined efficacy in
parametric tools are unclear. In response, this research uses a conceptual design experiment to
study aspects of design efficacy and exploration behavior of student architect-architect, engineer-
engineer, and architect-engineer pairs within a live parametric modeling tool. Dimensions of their
collaborative exploration within the tool were recorded, and their success at achieving the desired
criteria was rated by professionals. Noticeable performance differences between team types were
expected, including that the mixed design teams would better balance all goals and that the

homogenous teams would better address their own disciplinary criteria. However, this was not the
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case when working in a shared, multidisciplinary digital environment as the teams performed
similarly despite having different member composition. We discuss several factors, such as the
effect of digital design feedback and still developing student design process, that may have a
relationship with the design efficacy of the teams when using the study’s parametric modeling
tool. Future research can further investigate the effect of mutually approachable working
environments on design team performance.

Keywords: Collaborative design; parametric design; human-computer interaction;

conceptual design; integrated design

4.1 Introduction

As the building needs of our society grow in scale and dimension, design objectives for
the built environment become more entangled, requiring architects and building engineers to
collaborate wholistically on design solutions. Their goals are rarely independent of each other’s
influence, and major redesigns late in design phases due to incohesive decisions can cost time,
money, and the integrity of the design team. When developing comprehensive proposals during
the conceptual design phase, computational tools such as parametric modeling can allow
designers to rapidly iterate across possibilities and consider qualitative and quantitative
objectives. Rather than rebuilding a model for each design variation, parametric models enable
designers to easily explore different solutions by changing variables that control objectives in a
design problem. However, historically architects and building engineers have followed different
design processes to achieve their goals [1], [2]. Yet the exact nature of these differences are not
fully agreed upon and may be changing with technology and evolving disciplines [3]-[6]. For
example, researchers have proposed that engineers assume problems can be well-defined, start

with problem-analysis, and emphasize the “vertical” dimension (linear, procedural) of systems
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engineering, while architects assume partially defined problems and approach them with an
opportunistic, argumentative process that emphasizes the horizontal dimension (iterative,
problem-solving) [1]. Yet there is diversity among engineering disciplines in their exact
approach, and there has been more recent emphasis on iterative problem-solving for engineering
problems, potentially breaking this dichotomy [7], [8].

Despite this ambiguity, many researchers still observe differences specific to architects
and building engineers [6], [9]-[11], and different approaches may hinder their combined efficacy
when working in parametric tools. Stemming from their disciplinary training as students, they
may even approach design differently based on the professional identity of their collaborators
[12]. Research has shown that diversity in teams can lead to more creative solutions, but an
inconducive design environment and lack of shared understanding can impede design
performance [13]. At the same time, designers increasingly use digital forms of communication to
collaborate, such as video meetings with screensharing for quicker feedback about design
performance. When working in remote, parametric environments, it is unclear how students’
disciplinary identity may predict their design efficacy and behavior when collaborating with

designers of similar or different educational backgrounds.

4.1.1 Parametric Models as Design Tools

Parametric 3D-modeling tools allow designers to readily explore design options by
adjusting model variables and reviewing geometric and performance feedback, which can enable
quick, multi-disciplinary decision-making. These tools can potentially improve on traditionally
separate design and analysis software, which may not most optimally address the range of
complex requirements [14]. For example, architects rely heavily on sketching [15] and digital

geometry tools [16] while building engineers use discipline-specific analysis programs such as
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SAP2000 and ETABs for structural design or EnergyPlus for energy modeling. While previous
research has shown 3D digital modeling to be a less conducive environment for collaboration
compared to sketching [17], this was due to the tedious nature of digital model building and may
not apply to all forms of digital design exploration. An advantage to computational tools is that
they enable efficient design responses and allow for more avenues of communication between the
professions [18].

Specifically useful for early design collaboration, parametric 3D modeling tools allow
designers to quickly explore a range of qualitative design options and receive multi-dimensional
feedback about quantitative design performance [19], [20]. Such an environment allows rapid
exploration, albeit with more constraints, but also provides more information about the design
than a sketch. These tools can improve design performance [21], and previous research has
supported that working in parametric models is a viable environment for design decision-making
[22]-[27]. Parametric design tools can be part of an equally accessible environment for different
professions that provides quick, simultaneous feedback about both geometry and performance
[28]-[30]. Building designers increasingly use parametric design thinking to explore solutions in
a variety of applications, such as building forms [31], structural design [28], building energy [29],
and urban development [32]. Some established examples of parametric modelling in practice
include the Beyond Bending pavilion at the 2016 Venice Biennale [33] and the iterative
structural, energy, or daylighting analyses used by firms like ARUP [34] and Foster + Partners
[35].

In addition, computational design tools can be combined with digital platforms for
collaboration. Due to shifts in the nature of work, expedited by the pandemic in 2020, online
video meetings are increasingly used by the AEC community to design real buildings [36] and
can be beneficial to conceptual design development [37]. As remote work becomes more

normalized, digital mediums are increasingly used as the context for real design conversations in
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both engineering and architecture [36], [38]. As an alternative to screen sharing and sketching in
remote meeting platforms, shared online parametric models and their corresponding
visualizations can provide an additional form of feedback. While dynamics within design teams
in digital technologies have been studied before [39]-[41], much of the work does not account for
the context of parametric design environments, nor do they directly connect team efficacy based
on team composition and defined design criteria. Understanding disciplinary identity when using
these tools may influence how designers approach collaboration in computational platforms,

resulting in differences of combined team design efficacy.

4.1.2 Collaborative Design Processes of Architect-Engineer Teams

Collaboration between diverse teams has been studied, characterized, and documented
[13], [42]-[45], but there is still much to understand about the specific interactions of engineers
and architects, particularly when attempting to evaluate indicators of design efficacy. To best
include efforts of both architects and engineers, whose performance could be measured by
different metrics, we follow Marriam-Webster dictionary’s definition of efficacy to be “the power
to produce an effect.” Specific to buildings, design efficacy can be used to describe successful
achievement of desired outcomes such as cost, sustainability, efficiency, and discipline-specific
goals like spatial needs and structural requirements. Previously, engineering efficacy has been
measured by how thoroughly engineers are able to address specified criteria [46] and by
measurable, outcome-based metrics [47], [48]. Conversely, efficacy in architecture is harder to
identify as architectural goals can be more qualitative or experiential. Methods such as the
Consensual Assessment Technique (CAT) method [49] have been used to evaluate design quality

when criteria are subjective and less measurable, such as in graphic design [50].
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Also significant is that building designers rarely work alone and must consider both
qualitative and quantitative goals, which can obscure representations of their design process.
While diversity in design teams stimulates creativity, with heterogeneous teams benefitting from
a combination of expert perspectives, improved team performance most readily occurs if there is
shared vocabulary and a conducive design environment [13]. The team should also share similar
conceptual cognitive structures [51], which may differ by profession. While diverse teams of
engineers and architects work towards the same end goal of a building, some acknowledge their
different design processes and have shown they use separate design tools [52]. However, as
argued earlier as it is a main motivator of this paper, the development of new design models and
the context of digital tools makes the distinctions of their processes are less clear.

No model of design process has perfectly captured the activities of a whole profession [3]
and the integration of digital tools have further confounded understanding of design process.
Oxman [4] recognized that while some concepts reoccur in digital tools, design methods can vary
depending on the media used. Design process models in parametric tools of architects have been
illustrated by Stals et. al. [26] as the amplified exploration of ideas compared to processes
supported by traditional tools. Oxman [27] considered parametric design as a shift in
understanding of design thinking, less bound by a representative model. However, these studies
on parametric tools did not consider the differences between architects’ and engineers’
exploration. Increasingly, architects and engineers work in these tools together, therefore studying
the collaborative efforts is valuable to better understand and eventually incentivize effective
teamwork, given potential disciplinary barriers. Such challenges in design collaboration may stem
from designers' education where they begin to identify with a profession [53]. Understanding the
behaviors of student populations when using these tools can inform how they may collaborate in

parametric environments in their future careers.
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4.1.3 Decision Processes of Student Designers

While many assert that architects and engineers follow different design processes, there is
evidence to support that student designers may not yet possess the cognitive processes that are
emblematic to their profession. Kavakli and Gero [54] found that when comparing series of
cognitive actions in design, students followed a greater range of sequences of cognitive processes
compared to experts, who employed a smaller range of sequence variation and were more
efficient in their cognitive actions. Similarly, Ahmed et al. [55] found that students tend to follow
“trial and error” processes and do not have as refined design strategies as professionals, who were
more systematic. However, these studies do not account for the influence of computational
decision-making on design. Abdelmohsen and Do [56] found that novice architect designers
performed prolonged processes to achieve the same goal as experts when responding to both
sketching and parametric modeling tasks. In their study, though, students worked independently
and did not account for team collaboration in parametric tools.

As students are still developing as design thinkers in their fields, it is important to
consider how they may collaborate with teammates who are trained in a different discipline.
Architecture and engineering students often receive divergent instruction on how to address
design goals when working in digital tools. While engineers have traditionally followed problem-
solving methods with an emphasis on “right” answers [57], this has been challenged recently as
instructors incorporate more project-based learning [58]. There is also increased discussion of
preparing engineers for cross-disciplinary design thinking [59]-[61]. Conversely, architectural
education emphasizes spatial thinking with 3D modeling and incorporates digital forms of
learning though emerging tools [15], parametric models [62], optioneering [63], and collaborative
methods [64]. While distinctions in design education may become harder to define as both

disciplines evolve, many still note disciplinary divides between architecture and engineering
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education and practice [11]. Both types of expertise also tend to play defined roles in practice. In
traditional building design procedures, architects may finalize many characteristics of a building
before consulting with their engineers, limiting the autonomy of engineers to positively influence
the design. Researchers from both professions suggest that early integration of engineers in the
building design process can improve design performance and efficiency [65], [66], but early
integration has its challenges as the professions have developed different disciplinary cultures
[67]. Overcoming these issues can be considered in their education as multi-disciplinary thinkers,
but we need to first understand how they behave in mixed teams working in a parametric

modeling environment.

4.1.4 Research Questions and Hypotheses

In response, this research asks two questions about student architect and engineer
designers: (1) How does team composition relate to design efficacy in a shared, live
parametric design environment? And (2) How does team composition relate to design
exploration in this environment? To answer these questions, a study was developed that
compared pairs of two architecture students (A+A), two engineering students (E+E), and one of
each discipline (A+E) as they jointly responded digitally to a conceptual design task with two
engineering and two architectural criteria. Thirty pairs of designers, with ten of each team type,
worked in an equally accessible online parametric design space which allowed them to explore a
pre-built model using editable sliders. The model provided considerable geometric diversity and
real-time engineering feedback, addressing simulated performance needs of both professions and
reducing barriers in aptitude of disciplinary tool familiarity. The teams’ ability to address the four

criteria, as assessed by professional evaluators, was used to measure the efficacy of the final
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designs. Audio, video, and tool-use recordings of the design sessions captured information about
the teams’ collaborative efforts and design exploration.

It was hypothesized that the diverse teams (A+E) would be more effective at addressing
all the design criteria and that design strategies would vary by team type. This hypothesis was
based on previous literature describing the environment-dependent benefits of diverse teams.
However, we noted the potential of no significant differences between team performance,
possibly indicating unexpected and equalizing influences of the parametric tool on design
processes. We also considered that disciplinary differences might not yet emerge in mutually
approachable environments for student designers who are not yet experts in their field.
Additionally, as this study was conducted through a digital video interface, it speaks to the
potential screensharing strategies present in remote, collaborative working environments.
Understanding how student architects and engineers cooperate in digital, parametric platforms
can discern effective team strategies in emerging design environments, inform educators about
the preparedness of future designers to think multi-objectively, and reveal unexpected influences

of parametric tools on conceptual design processes.

4.2 Materials and Methods

To understand how diverse pairs of student engineers and architects perform compared to
same-wise pairs, this research relied on two digital design tools that are increasingly used in
practice: a readily approachable parametric modeling platform, and remote video meetings to host
collaborative design sessions. While parametric design can occur at various stages of building
development and be applied to many scales of design detail, this work focused on the conceptual
design phase of a stadium roof, which required both architectural and engineering input and was

an approachable task for student designers. Although naturally occurring design processes can
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manifest in many environments, this work focused on parametric models as design tools to
capture evidence of effective behavior specifically in this medium.

The teams worked remotely in an online parametric tool, not native to either discipline,
which provided visual and numeric feedback. The intent was to facilitate an environment that was
not directly familiar and thus did not favor the efforts of either profession. Participants performed
the design task together in an online video meeting, which was able to record information about
their exploration. In addition, the teams submitted screenshots of their final design and a design
statement, which four professional designers used to evaluate team efficacy in addressing the
design task objectives. Figure 4-1 illustrates the study’s protocol with an example of the design

tool interface.

Figure 4-1. Methodology. Overview of the methodology, design task, tools, and data. collected
from the study. The sample tool interface shows 4 of 10 parameters controlling the model and a
sample of the 3D modeling space with visual geometric and performance feedback.
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4.2.1 Design Session Procedure and Participants

The study was conducted through recorded online video meetings and the sessions lasted
approximately one hour. In the first 20 minutes, the teams were briefed on the study tools, given
the design task, and allowed 5 minutes to become familiar with the materials before developing a
design with their assigned partner. The teams were then allowed 30-35 minutes to work on their
design and submit deliverables from the design task.

Prior to running the study and collecting data, the interface and protocol were piloted on
3 teams to verify the clarity of the design task, usability of the tool, and accuracy of the data
collection methods. The sample participants were either members of the research team who did
not participate in the script development or graduate students in an architectural engineering
program with at least 1 year of experience in 3D parametric modeling. The sample participants
were able to finish the task in the allotted time. Upon completing the test design session, these
sample participants provided feedback about the study’s procedures, which were then further
refined. The sample data was used to ensure the reliability of the data collection, processing, and
analysis approaches.

This study was approved by the researchers’ Institutional Review Board. Participants
were structures-focused engineering or architecture students from one of two large, public U.S.
Universities. Participation was limited to 4th or 5th year undergraduates with AEC internship
experience for engineers and National Architecture Accrediting Board (NAAB) accredited
structures courses for architects, or students of either discipline at the graduate level. Participants
were paired based on disciplinary major and availability. The research questions of the study
were not revealed to the participants so to not influence their performance. While the moderator
was available to answer questions, they had minimal interaction with the teams during design and

did not prompt any behaviors.
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Although the students may experience more elaborate design challenges over longer
periods of time through their coursework or in their future professional practice, replicating
extensive, multi-year design processes is beyond the scope of this paper’s research questions. It
has been established that design study protocols must consider limitations of tools and resources
to collect clear, dependable data [68]. To reduce cognitive fatigue and minimize uncontrollable
external influences on team behavior, this research used a concise design task and focused

metrics to evaluate the team processes.

4.2.2 Design Task Criteria

The conceptual design task asked participants to develop the geometry of an Olympic
stadium roof for a fictional site plan in a tropical climate. There is precedent for stadium roof
design as a good sample project to judge designer performance in parametric modeling [34]. The
design statement provided to the designers contained four criteria used as design goals and to
assess the efficacy of the teams. Two of the criteria were qualitative requirements that aligned
with architectural values: that the design be iconic and site appropriate. The other two
quantitative requirements aligned with engineering goals: that the roof shade a certain percentage
of seats during noon on the summer solstice and not exceed a maximum deflection limit, which
the participants were required to calculate. These goals were considered accessible based on
participants’ level of study and degree requirements. For final deliverables of their proposed
conceptual design, teams were asked to submit 3-6 screenshots and a 5-8 sentence design
statement that discussed how their design addressed the prompt. Additional detail of the design

task and requirements can be found in Appendix C.
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4.2.3 Design Environment Details

The study’s primary tool consisted of an online parametric stadium roof model that the
designers could edit by changing ten variable sliders. The tool was intended to be neutral to not
favor the capabilities of one profession over the other, and novel to the designers, in that no
participant had used the exact interface before. While the parametric model would limit the
detailed development of the project, this design task asks the participants to focus on developing
the roof design in the late-conceptual design phase, when aspects like the structural systems and
likely materials would have already been decided.

The model was constructed in the parametric modeling program Grasshopper and
uploaded to Shapediver [69], an online file hosting platform that allows external users to change
model variables and obtain design feedback without editing the base file. Shapediver and similar
cloud-based platforms have been gaining popularity in several fields due to their ease of access
from a browser and utility in developing 3D model solutions. The Shapediver API interface was
used to embed the model in a custom website, built for the study, that tracked user click and
design data, such as when variables were changed. Before designing, participants were shown
how to use the tool and they independently accessed the website during the video meeting. They
were briefed on how to share their screens, but screen sharing was not required nor explicitly
encouraged. Figure 4-2 shows the structure of the tool’s files and examples of three screensharing
strategies that may be used by the design teams, such as one person sharing their screen and the
other watching for the whole session, one person sharing their screen while the other person

keeps working or sharing screens back and forth throughout the session.
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Figure 4-2. The design tool’s structure and possible screensharing strategies used by participants
to collaborate in the tool.

The tool’s ten editable sliders mostly modified geometric qualities of the stadium and the
variables all impacted the four design criteria in some capacity. Authentic to a design challenge in
practice, the base model was built such that no “best” solution existed. For example, a larger roof
area improved shading, but also increased deflection, which was undesirable. In the model, the
quantitative criteria were achievable for a range of visual solutions but could not be met under all
variable settings. Providing ten variables allowed designers of both types to consider
combinations of solutions and use different approaches to explore the design space. The variables
were mostly continuous, which gave participants the ability to directly manipulate the design.
Collectively across all variables, there were over 5 trillion possible solutions. While the
parametric model would limit the detailed development of the project, this design task asks the
participants to focus on developing the roof design in the late-conceptual design phase, when
some aspects such as the structural systems and likely materials would have already been
decided. In addition, the tool used Karamba3D [70] to perform live deflection calculations of the
roof as the users changed the variables. Details about the tool’s variables and internal calculations

of deflection and seat shading can be found in Appendix D.



81

4.2.4 Methods for Evaluating Team Efficacy and Exploration

To answer the study’s research questions, three streams of data were evaluated: final
design efficacy based on professionals’ evaluations, exploration behavior based on engagement
with the tool, and team collaboration strategies based on how they chose to work remotely in the

video meeting.

4.2.4.1 Assessing Team Efficacy

Following the design task, team efficacy was assessed by four professionals (one licensed
engineer, one engineering professor, one licensed architect, and one architecture professor) for
how well the teams addressed the criteria in their visual submissions and design statements, based
on the requirements of the design task. All reviewers held professional degrees in their field and
were located at schools or firms in the southwestern US, northeastern US, or western Europe. The
licensed professionals had at least 8 years of experience in practice and the professors taught for
at least 7 years. Their evaluation followed the Consensual Assessment Technique method [49],
which uses professionals to evaluate design quality, responding to questions about criteria
performance using a Likert scale. The questionnaire and additional details for their evaluation
procedures are provided in Appendix E. The CAT method is often used in evaluating design ideas
that rely on qualitative evaluation, but it has been used in engineering applications as well [71].
The professional evaluators were asked “how well did the project from team X address criterion
Y of the design task.” They reported their opinions on a five-item scale including the responses
“not at all,” “somewhat well,” “moderately well,” very well,” or “extremely well.” The
professionals completed their assessments individually and were not told which team type they

were evaluating. To mitigate evaluation fatigue, each professional evaluated only 12 designs (four
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of each team type). To verify the agreeance between the evaluators, they evaluated six of the
same projects and six different projects. For the same six projects that they evaluated, an

Intraclass Correlation Coefficient was calculated for all criteria.

4.2.4.2 Assessing Team Collaborative Design Exploration

In addition to efficacy, design exploration was documented by measuring the teams’
interaction with the design tool using click data and by observing how the teams collaborated in
the shared work environment. As the professions increasingly rely on online forms of design
cooperation, considering the student participants’ behavior when working in the digital
environment can inform how the professions use these tools when designing.

To capture the designers’ exploration of the tool, we included a tracking mechanism in
the design website that recorded variable changes and corresponding iterations during the session.
Comparing differences in number of variables explored and iterations tested can suggest the
relative breadth of the design exploration. Yu [25] observed that parametric design has two kinds
of cognitive processes: “design knowledge,” which relies on a designer’s knowledge for their
decisions, and “rule algorithm,” in which the designer’s decisions respond to the rules of the
model. Using more variables and creating more iterations can reflect the application of both
cognitive processes. Although the teams in our study did not exhaustively engage all the
variables, they mostly adjusted all variables at least once. In the time allowance of the study, this
reflected enough dimensions for authentic engagement, but not too many variables for the
designers to consider. The numbers of iterations were compared to the efficacy ratings for each
criterion, since more iteration may relate to improved design performance. Significant iteration,
though, might align with an architect’s process, whereas an engineering process may lead more

directly to a solution.
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4.2.4.3 Assessing Team Screensharing

The method by which the teams chose to collaborate in their visual efforts was also
noted. Although previous research has considered collaboration through digital file exchange
[72], it did not account for active environment engagement. Alternatively, virtual reality tools can
allow two users to move around in the same environment with an integrated video platform, but
virtual reality is not yet pervasive in architecture and engineering firms for collaborative design
environments. In the online environment used in this study, participants were allowed to choose
how to work in the digital modeling environment. They could develop their solutions through
various screen-sharing tactics, which were observed by team type. The researchers noted which
partner shared screens, how long they shared, and if they alternated screensharing. This empirical
approach to describing team collaboration styles allowed the researchers to note new behaviors as
they occurred. If the majority of a team type’s pairs followed the same screensharing method to
develop their models, it may speak to a likeness in collaborative process, but if all the pairs
behave differently, this would further confound the disciplinary process identities when working

in video shared, parametric design environments.

4.3 Results

A total of 30 designs were created, with 10 designs from each team type. Figure 4-3
shows screenshots of 18 of the 30 projects. Initial visual assessment suggests a range of solutions
with the most visually noticeable characteristics being plan shape, roof angle, and roof coverage.
However, the professionals’ assessments provide more critical examination of the teams’
efficacy, which provided a baseline by which to compare the teams’ collaboration and design

space exploration.



Figure 4-3. A sample of eighteen of the thirty final designs with six from each team type.

4.3.1 Professional Assessment of Team Efficacy

To determine team efficacy, four professionals evaluated the projects for how well the
design pairs addressed the four criteria. Figure 4-4 shows the professional’s evaluations as box
and whisker plots of the team type efficacy for each objective. The A+A teams had higher
average effectiveness than the other teams at meeting all four criteria, but in “site” and
“deflection,” at least one of the A+A teams was judged to have not addressed the criteria at all.

99 ¢

The A+E teams had the lowest average effectiveness in “iconic,” “shading,” and “deflection,”

with the largest range in performance. While the E+E teams were not more effective than the
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other team types at any criteria, all E+E teams were at least somewhat effective at addressing the

four criteria.



Figure 4-4. The professional assessment of efficacy for each team type of each criterion.

A Kruskal-Wallis test was performed for each criterion to determine if there were any

statistical differences between team types at a p=0.05 level of significance. No team type was
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significantly different in efficacy of achieving any of the four criteria, with deflection having the

lowest p-value of 0.334. Since five of the twelve team type criteria had evaluations scoring from

0 to 1, the outlying values in the large range may have overly influenced the data, reducing the
data’s statistical significance. To test if the large ranges had a negative impact on statistical

significance, the highest and lowest evaluation value for each team type in each criterion were

removed, and the Kruskal-Wallis tests were run again. While the p-values for each criterion in the

Kruskal-Wallis test were closer to a significance level of 0.05, they were still not significant. The

p-values from these tests are shown in Table 4-1.

Table 4-1. The p-values of Kruskal-Wallis tests for significantly different results in team type

efficacy.
Criteria All Projects Remove max. and min.
Iconic 0.535 0.461
Site Appropriate 0.439 0.357
Shading 0.495 0.462
Deflection 0.334 0.136

Based on their ratings, an Intraclass Correlation Coefficient was calculated across all the

evaluators for all criteria. It was found to be 0.719, which meets an acceptable level of
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agreeability. While coefficients between 0.900 and 1.000 are considered in very high agreeance,
and above 0.7 are considered acceptably high, interpretation of coefficients are conditional to
each application. In this study, because the assessments are both qualitative and quantitative,
judged by four raters with unique expertise, and use an evaluation scale with five options, an
agreeance of greater than 90% would be unexpected. The CAT method for creativity evaluation,
which often uses ICC to consider evaluator agreeance, assumes that the professionals all have the
same area of expertise. In contrast, this study uses both architects and engineers to evaluate the
projects, who have their own areas of expertise, and still meets a level of agreeance above 0.7

with an ICC of 0.719.

4.3.2 Characteristics in Collaborative Exploration

The teams’ exploration of the design space was measured by their engagement with the

design tool and by their behavior when collaborating in the online environment.

4.3.2.1 Characteristics in Collaborative Exploration

Figure 4-5 shows the number of iterations and average variables changed for each team
type. No team type explored a statistically greater number of iterations than the other team types
nor changed a greater number of variables, based on a Kruskal-Wallis test at p=0.05 level of
significance. However, comparing iterations to individual criteria may yield more informative

results.
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Figure 4-5. Design exploration of teams by (a) the number of iterations explored by each team type
and (b) the number of variables changed by each team type.

When considering the relationship between the number of iterations created by each team
type to the efficacy performance ratings for each criterion, a pattern emerges. Figure 4-6 shows
the plots of Criteria Ratings vs. Iterations for each criterion and their fitted linear regression line.
The figure also provides the slope for each linear regression equation and the p-value at a 0.05
level of significance based on a simple linear regression analysis for statistical significance
between the variables. For the test, the null hypothesis is that the slope is 0 and the alternative
hypothesis is that the slope is not 0. The p-values of the regression analyses are greater than 0.05,
therefore there is not enough evidence to say that iterations have a linear statistical relationship to
criteria efficacy. However, the signs of the slopes for their relationship are consistent in each
criterion. While more iterations relate positively to greater criteria efficacy for the E+E and A+E

teams, the opposite is true for the A+A teams, for which the relationship is negative or negligible.
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Figure 4-6. Plots of criteria efficacy rating vs iterations by each team, showing the fitted linear
regression line for each team type and stating the slope of the simple regression analysis equation
and its associated p-value.

4.3.2.2 Screen Sharing the Collaborative Environment

When working collaboratively in the design environment, we noted several patterns on
how pairs explored the model while using the remote design tools. Figure 4-7 shows a sample of
the different screensharing strategies and the number of teams for each team type that followed
the strategies. The most common method for sharing ideas, labeled Strategy 1, was when one

team member shared their screen within 5 minutes of starting their session and moved in the
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model while the other designer watched and made suggestions. This strategy was followed by 5
A+A teams, 7 E+E teams, and 4 A+E teams. Strategy 2 was when one person shared, but their
partner continued working in their own model. Strategy 3 was when each teammate shared their
screen at least once. In some cases, teams shared their screen multiple times. Strategy 4 represents
other methods. For example, team AE10 never screenshared, but verbally updated each other
about their variable settings when they found solutions that they liked. Team AA8 worked
independently and only shared their design towards the end of the session. A third team, AE4,
chose to screenshare both designers’ screens while allowing both designers to control the mouse.

There was no screensharing method consistently used by a team type.

Figure 4-7. The strategies used by the team types when screensharing, showing 13 of the teams’
strategies.
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4.4 Discussion

In summary, we hypothesized that when working in a parametric, digital modelling
environment, diverse teams would show significantly better performance when A+E, A+A, and
E+E pairs were given the same design task, but this finding was not supported by the data. It was
also expected that explicit behaviors based on team type would become evident in efficacy or
design space exploration. However, this was not the case. It was surprising that the teams
performed similarly and did not show greater proficiency at addressing their own disciplinary
design criteria. While some differences between team types were noted, few rose to the level of
statistical significance at traditional confidence levels. Further discussion for each research
question is given below:

RQ 1: How does team composition relate to design efficacy in a shared, live
parametric design environment? Diverse pairs of building designers were not significantly
more effective at addressing the design criteria than same-wise pairs, despite what is predicted by
existing literature. Although the provided parametric design environment may not have allowed
for enough design diversity between team types, it is possible that for the student designers, live
feedback from the parametric tool may have benefitted the efforts of the teams in absence of other
discipline. In a traditional practice workflow, the professions serve their own roles and provide
disciplinary expertise, and there is a lag in communication while they perform their respective
responsibilities in sequence. The shared modeling space with multidisciplinary feedback may
have partially performed jobs of both architects and engineers at the resolution of early-stage
design. However, it is also possible that student designers are not yet proficient in their field and
did not perform in a way that is emblematic to their profession and therefore did not show
differences in performance. In addition, Lee et al. [51] reports that, regarding creativity, simply

including designers with different backgrounds does not guarantee improved results if the
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designers do not share mental models for problem solving. Future research should consider
whether providing live, visual, quantitative feedback, alongside geometric flexibility, can help
serve roles of both professions and increase the ability of homogeneous pairs to manage
multidisciplinary criteria.

RQ 2: How does team composition relate to design exploration in this environment?
Although no team type explored the model significantly more based on number of iterations and
number of variables changed, the increase of iterations compared to team type efficacy does
suggest some differences between groups. While greater iterations related to improved design
efficacy ratings for the E+E and A+E teams, the same was not true for A+A teams. Since iterative
processes are associated with architects [42], an increase in iterations should have, theoretically,
improved the design performance by all teams, especially the A+A teams. Also, no team type
consistently followed the same strategy for sharing screens to develop their designs.
Screensharing in collaboration is not specific to a particular profession and may not differ by
disciplinary background, but it is important in effective student education [73], [74]. The students
in this study may be better at working remotely through screensharing due to their remote
experiences in the Covid-19 pandemic. In addition, the relationship of team type characteristics to
team efficacy is inconclusive, suggesting that diversity in engineering and architect teams does
not guarantee improved results when considered in the context of a collaborative, parametric
environment.

A summary of what was learned regarding each research question is provided in Figure
4-8. Overall, the study’s metrics may suggest the presence of an equalizing influence of
parametric tools on efficacy and exploration or that student designers do not have differing
behavior between professions in the provided design environment. Parametric tools have been
shown to positively support design performance [75], and it could be that the mutually

approachable environment influenced the design process. However, impacts on design team
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performance can be generally hard to discern, as previous research on construction design teams
have also shown inconclusive results [76]. Although further research is needed to understand the
impact of multi-disciplinary tools on mixed disciplinary teams, the lack of distinct differences
presented in this paper provides a baseline for assessing exploration and efficacy in the context of

collaborative design.

Figure 4-8. Summary of the findings from the study, focusing on the team efficacy and how efficacy
related to collaboration and design exploration.

4.4.1 Limitations

There are several limitations to the study. Despite its methodological advantages, using a
pre-made parametric design space does not allow for exhaustive analysis of all possible
conceptual design approaches for buildings. However, as McGrath [68] established, there are
three goals in understanding and quantifying team group interaction: generalizing of evidence
from a large population, precision of measurements, and realism of the simulation. This study
conducted concise yet somewhat abstract design simulations to achieve precision of measurement
across a reasonably large population, which sacrificed some aspects of realism of the design

simulation. However, having fewer participants with rich data is reasonable for studying design to
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capture the subtlety and depth of the process, particularly in studies which follow protocol
analysis methods [77] (p. 15).

McGrath also acknowledges that to evaluate the results of a team groups study, one
should be critical of the methods and tools used that are specific to the study or profession. While
this study uses one design challenge, in focusing on just the stadium roof, the designers were able
to complete the task in the allotted time and respond to the disciplinary specific design goals
using their respective knowledge. Other limitations could include perceived ambiguity in the
design criteria, or the fact that the data collected for collaboration and exploration does not
perfectly characterize those corresponding behaviors—there is some subjectivity in mapping
between data collection and behavior for a specific design challenge. Nevertheless, the study
relied on established methods for design evaluation and had clear protocols for data collection to

determine statistical significance in the design teams’ different characteristics.

4.5 Conclusions

This paper presented the results of a design study that considered relationships between
efficacy and behavior of diverse and same-wise pairs of student engineer and architect designers.
While it was expected that diverse teams would be more effective at addressing varied design
criteria, a professional assessment of the designs did not suggest that any team type performed
significantly better than the others. However, the lack of significant differences in design
performance and behavior raises questions about the influence of the digital design environment
on the design process—it is possible that an online digital modeling platform may have
influenced design strategies to converge. Subtle differences between the A+A and E+E teams’
behavior suggest narratives relating to team type characteristics, but there are few notable

distinctions. In applying these results to practice, it may be that parametric modeling tools can be
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helpful for designers of either architecture or engineering backgrounds to explore design spaces.
Such approaches may not be useful for all professional firms or all design stages, but managers
may consider opportunities afforded with parametric models especially during conceptual design
and other instances in which options are visually compared by multidisciplinary teams. Future
work will consider how teams of professional engineers and architects may collaborate when
working on the same design task in a more extensive design scenario. This will overcome
limitations introduced by the reliance on the parametric design space. In addition, the methods
used in this study could be applied to understanding the behaviors of larger building design teams
over more extensive design sessions. As design tools evolve and design requirements continue to
push construction boundaries, it is important to continually understand effective indicators of
architect-engineer team performance.
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Chapter 5

Characterizing Student Designerly Behavior in Optimization Tools

This work was originally published as S. Bunt, C. G. P. Berdanier, and N. C. Brown,
“Observing Architectural Engineering Graduate Students’ Design Optimization Behaviors Using
Eye-Tracking Methods,” Journal of Civil Engineering Education, vol 149, no. 4, June 2023, doi:
10.1061/JCEECD.EIENG-188. The version presented in this document is expended with more

detail.

Abstract

Parametric optimization techniques allow building designers to pursue multiple
performance objectives, which can benefit the overall design. However, the strategies used by
architecture and engineering graduate students when working with optimization tools are unclear,
and ineffective computational design procedures may limit their success as future designers. In
response, this research identifies several designerly behaviors of graduate students when
responding to a conceptual building design optimization task. It uses eye-tracking, screen
recording, and empirical methods to code their behaviors following the situated FBS framework.
From these data streams, three different types of design iterations emerge: one by the designer
alone, one by the optimizer alone, and one by the designer incorporating feedback from the
optimizer. Based on the timing and frequency of these loops, student participants were
characterized as completing partial, crude, or complete optimization cycles while developing their
designs. This organization of optimization techniques establishes reoccurring strategies employed

by developing designers, which can encourage future pedagogical approaches that empower
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students to incorporate complete optimization cycles while improving their designs. It can also be
used in future research studies to establish clear links between types of design optimization

behavior and design quality.

Practical Applications

Increasingly, building designers use digital optimization tools to explore and improve
designs. This research identifies and categorizes several distinct design behaviors when using
optimization tools that have not been previously recognized. Applying these categories to
describe graduate student designer behavior allows educators to find opportunities for improving
design education. While there is no set standard for how optimization tools should be used,
different strategies range in the potential they create for simulation feedback to improve the
design. Although all study participants were able to implement an optimization feature, they did
not all fully integrate the feedback into their design decisions. From this research we observe that
it is not enough to explain algorithms and show a student how to run an optimization tool, but
these tools must be taught in the context of robust design approaches. Educators wishing to
identify their students’ design strategies can use the methods and language established in this
paper to assess student comprehension of optimization techniques. Future work can apply the
behaviors that investigate other dimensions of optimization in design, such as design quality and

comparing categories of designers.

5.1 Introduction

As digital tools evolve, emerging computational strategies allow designers in the

Architecture-Engineering-Construction (AEC) industry to address an increasing number of
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building performance criteria early in the design process. In particular, parametric design
strategies, where a model is readily edited and explored by editable variables, enable AEC
designers to rapidly consider numerous potential options while meeting disciplinary goals. Within
parametric models, optimization techniques can systematically find the best options in terms of
quantitative design goals such as energy use or structural efficiency [1], [2]. However, there is
uncertainty about how to best apply optimization during design, especially for emerging
interactive optimization approaches that let designers manage qualitative and quantitative goals
simultaneously. Optimization can speed up certain design subtasks, and it can help find high-
performance solutions within a design space that might be difficult to find otherwise [3]. Yet it
also requires a designer to formulate, analyze, and in some cases iterate a defined set of variables,
objectives, and constraints, which may change the timeline or nature of activities in a typical
design procedure.

While there is considerable established literature describing designer behavior in general,
little is known about how diverse optimization tools influence design, particularly in the domain
of architectural engineering education, as students gradually learn how to incorporate
optimization. One source of potential confusion stems from the range of design tools that are
described as employing optimization, especially in practice. On the one hand, some define
“design optimization” very broadly as the process of systematically and quantitatively improving
on a current solution, as in the case of building simulation [4]-[6]. On the other end of the
spectrum, some only use the term “optimization” to refer to numerical simulation and/or formal
mathematical optimization [7], [8], even in the context of building design. In the middle are
heuristic techniques such as evolutionary algorithms that designers might implement alongside
their own qualitative preferences, either a priori, a posteriori [9], or interactively [10]-[12]. In all
cases, the designer is left to establish their own sequence and timing for establishing the

parametric variables and their relationships in the first place. If instructed to formulate their own
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design spaces and optimize a design, students might employ any of these approaches, with
various degrees of completeness or effectiveness. Yet the characteristics of these ranging
strategies have not been established.

In response, this research asks: what patterns of design behaviors do architecture and
engineering graduate students employ while constructing and exploring a parametric model using
optimization-based tools? Potential patterns include iterative decision loops involving the
designer, an automated algorithm, or both, as well as their timing and frequency within a design
session. Investigating how this group of designers, who are neither novices nor experts, utilize
different optimization techniques can inform which strategies they employ with optimization
tools. To investigate design in situ, a research study was conducted which asked participants to
create a visually appealing atrium enclosure that addressed measurable concerns of daylighting,
energy use, and structural performance. Eye-tracking data, screen recordings, and observational
assessment were used together to apply the situated FBS framework [13].

This framework allowed for identifying multidimensional steps in the design process,
describing design session events, and discerning varying strategies among the participants. The
student participants showed a range of behaviors in their use of optimization techniques —some
spent considerable time formulating the problem and used optimization techniques near the end
of the design session, while others adjusted the problem more frequently as they ran smaller
iterative explorations. These diverse strategies are used to distinguish several distinct design
iteration types and corresponding behaviors that are detailed in the results and discussion. In
understanding the rich characteristics of designer strategies through qualitative methods, we can
first discern these behaviors through deep analysis before future quantitative studies establish

their prevalence among designer populations.



107

5.2 Background

The AEC professions are continually tasked with providing high performing solutions,
but the numerous considerations in building design rarely align. To manage potentially competing
objectives, designers have incorporated computational exploration and optimization tools, which
can account for multidisciplinary performance, to make more informed design decisions. While
the feedback and guidance from these emerging design approaches can improve outcomes,
designerly strategies for utilizing optimization in the context of design theory have yet to be
thoroughly examined. In particular, the optimization patterns of intermediate designers, such as
graduate level architecture and engineering students who have experience with design strategies

but are still developing their optimization skills, are largely unknown.

5.2.1 Designerly Behaviors in the Design Process

To systematically characterize designer behavior when using optimization tools, and to
determine how these tools potentially alter traditional processes, it is first necessary to ground the
research in a conceptual framework for design behavior. Although design is a complex series of
decisions, researchers have identified general characteristics of the design process [14]-[17],
which are used to recognize reoccurring design strategies. Most of these models establish a phase
for problem definition, one for design development, and one for solution analysis, with
opportunities for iteration throughout. However, these models are very broad in their scope.

Several researchers have considered characteristics of design behaviors when working
collaboratively with computation tools [18], particularly in the medium of parametric modeling
[19]-22]. Literature shows that when a computer is used to support or make key decisions, there

are different schemes by which to identify a designer’s cognitive or computational decisions [20],
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[23], [24]. In some cases, incorporating parametric modeling and rule-based digital software can
improve the efficiency of design [25], [26]. However, other research has differentiated that
parametric modeling is still the result of a tool and cannot replace the ingenuity of a human
designer [27]. In fact, precedent study observations show that in practice, parametric design
focuses on more controlled, rule-based designs rather than a vast multitude of solutions [28]. This
narrowing of potential designs based on designers’ knowledge and intuition may also be evident
in optimization strategies.

While these prior investigations of parametric design strategies inform aspects of this
paper, we based our optimization-related study on the situated FBS framework [13], which is an
extension of the fundamental and widely applied FBS ontology [29]. Gero’s original ontology has
been used by many design disciplines to model, code, and analyze design behaviors [30]-[32]. It
models the design process by first assigning the characteristics of the desired artifact into three
primary categories: function (the role of the artifact), behavior (how the artifact performs), and
structure (the qualities of the artifact). The development of these characteristics is identified by
eight types of fundamental design moves, which create a framework to define the design process.
However, although the original FBS provided a clear foundation to describe a range of design
tasks, it did not account for the influence of cognitive context on design.

In response, Gero and Kannengiesser [13] present a revised method called the situated
FBS framework (Figure 5-1), which considered an additional, recursive dimension of design: the
conceptual environment. This new framework expanded the original 8 processes into three
conceptual environments: an external world, an interpreted world, and an expected world. By
dividing the FBS elements into each world and categorizing the processes as an action,
interpretation, or focusing, the situated FBS framework provides a more extensive strategy by
which to map the evolution of the design process. For example, within the synthesis, analysis, and

evaluation processes, an expected behavior (Bei) motivates the designer’s idea for a structure
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(Sei) (process 11), which the designer then represents that structure externally (Se) as a sketch or
3D model (process 12). Next, the designer considers whether the representation aligns with their
idea (process 13). Simultaneously, that structure produces an associated behavior (process 14),
which the designer can compare to the expected behavior (process 15). If considered adequate,
the designer can proceed to documentation, or they may repeat the processes going as far back as

reframing Functions (process 16).

Figure 5-1. Situated FBS framework with emphasis on the processes focused on in this paper, and
the situatedness and interaction of three worlds, after concepts of Gero and Kannengiesser [13].

With this framework, design researchers can incorporate more comprehensive modeling
of iterative thinking and the regeneration of ideas. Even with these adjustments, the FBS ontology
has been criticized for its ambiguity [33], [34] while others emphasize FBS’s applicability [35].
Nevertheless, the FBS ontology has been used to model design in many disciplines [36], [37],
including parametric building design [38]. Its expanded version, the situated FBS framework,

also presents several advantages for this study of optimization strategies. It provides an order by
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which to identify design events and organizes the relationships between the designer’s ideas, the
behavioral bounds of the design, and the realization of the design artifact. It also acknowledges
the iterative loop between what the designer envisions and what manifests externally (shifting
between the 3 worlds), which can occur in parametric, rule-based design exploration.

Parametric design tools have been shown to help designers produce unconventional
solutions [24], [28], some of which may not have been originally conceived by the designer. The
uniqueness of the designs and potential for innovation have been assessed by traditional methods
for measuring creativity and shown that parametric thinking is a viable form of design [39]. In
addition, this method of idea generation prompts consideration of a designer’s source for decision
making. In Yu et al.’s study [38], the researchers defined a subset of characteristics in the FBS
ontology and classified the designer’s decisions as either “design knowledge” or “rule algorithm”
to differentiate the source of cognitive effort throughout the phases of the design session. We also
identify subsets of decisions within the situated FBS framework in this paper to codify the
participants’ design process and identify design events unique to optimization. Differentiating
between decisions focused on developing the artifact or developing the optimization approach is
valuable in evaluating computational design behaviors, especially as the use of digital tools to

solve complex building challenges becomes more pervasive.

5.2.2 Building Optimization as a Design Technique

As the performance needs of our built environment grow more stringent, it is increasingly
difficult to address multiple design considerations across a range of professional specialties.
Although achieving an effective, holistic design is advantageous, building performance criteria
vary in units, scale, and importance, making them difficult to empirically compare and optimize

[1], [40]. For example, the benefits of increasing natural daylight with more windows can
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compete with the goal of reducing energy consumption. Building optimization quickly becomes
convoluted as there are many numerical and experiential criteria, such as spatial, structural, and
mechanical objectives [2]. Furthermore, when AEC disciplines collaborate on optimization
projects, it has been shown that an iterative process emerges between the designers and their
optimization tools [41].

Traditionally, designers relied on knowledge to find effective solutions, but
computational tools allow designers to rapidly explore a range of solutions with quick
performance feedback, enabling more efficient production of high-performance designs for
architects and engineers [10], [42], [43]. However, some designers criticize digital design space
exploration for its limitations in design thinking and potential design fixation compared to
traditional sketching processes [44]. Nevertheless, optimization has been utilized by a variety of
engineering disciplines with advantageous results [2], [45], [46] and research has shown that the
use of computational tools is a viable method for design in AEC [10], [11], [47]. In particular, the
applicability of optimization in computer aided architectural design has been suggested early in
the development of building computation simulation [48]. However, due to the emerging nature
of optimization tools, the best practices for their use are still being defined. At this point, strategic
optimization education can impact the effective implementation of such tools by graduate

designers and is not unique to just optimization.

5.2.3 Student Designers Working in Digital Tools

It has been suggested that parametric design is advantageous to the development of a
designer because it prompts the setting of constraints on a design task to find different solutions
rather than focusing on one solution [49]. Yet students may be limited in their ability to fully

execute a design since they are still developing as designers themselves and are still mastering
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design tools [50]. In addition, curriculum standards in building design education vary by
discipline, and the influence of pedagogical systems on problem-solving strategies are somewhat
unpredictable [51]. Specific to optimization pedagogy, recently developed courses in architecture
and engineering programs have introduced optimization to students with promising initial results
[52]-[54], but the learning outcomes of these courses are not standardized, and the tools and
processes used vary by institution. Nevertheless, much of the emerging research that considers
carly-stage optimization tools focuses on student participants [43], [55]-[57], so there is value in
identifying specific sources of student limitations in design environments, particularly for
optimization.

Considering this population, it has been shown that novice designers tend to use less
sophisticated processes compared to experts [58], [59], which may hinder effective use of
optimization methods. Intermediate designers, though, such as graduate-level architect and
engineer students, represent a stage in education development in which designers possess a
foundation for disciplinary design decisions and have experience working with design tools, but
are still developing as effective problem solvers. Identifying graduate student designer strategies
while they make decisions with optimization tools may help categorize effective behaviors,
improving tools for design development, and enhance learning processes for graduate students as
future experts. Accounting for the context of proliferating digital tools in AEC, this research

focuses on optimization behavior in conceptual building design.

5.3 Methods

This IRB approved study asked graduate-level architect and engineering design students
to propose an optimized solution in response to a conceptual building design task. The multi-

method research design employed eye-tracking, screen recordings, and interviews to capture
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different streams of data from the design sessions. Observational data analysis and artifact
analysis techniques were used to qualitatively code the design segments within the situated FBS
framework. Our analysis protocol was also employed to identify designerly events unique to
optimization, relating reoccurring behaviors between designers to potentially effective

optimization strategies.

5.3.1 Participants

The streams of observational and interview data were collected from a sample size of 10
architecture (5) and architectural engineering (5) graduate students at a research-intensive public
university in the northeastern United States. This population is of special interest to understand
the design practices of designers at an intermediate educational stage rather than those of novice
undergraduates (who typically have not developed either design or engineering skillsets) or
practitioners (who are fully expert in their designerly ways). While this sample size may seem
small, each participant generates 3 hours of video screen capture data, eye-tracking data, and
interview data, supporting a multi-stream qualitative study. This amount of data is quite large and
rich considering the purpose of this study is to identify and characterize the types of optimization
behaviors rather than conduct predictive or generalizable statistics. Participants included 6
women and 4 men. They were recruited by email announcement of the study to the architecture
and architectural engineering department and were compensated with a $20 gift card. The
participants completed a survey before beginning the design task and reported at least 1 year of
experience (average 3.5 years) and a moderate level of confidence with the study’s modelling
tools, along with at least 1 year of experience in optimization. Amount of time spent in design
practice among participants, which can occur before or during the pursuit of graduate degrees,

ranged from 0-10 years. By studying graduate-level designers, we elicit a deep understanding of
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how the design learning process occurs as architects and engineers move past their novice design

tendencies.

5.3.2 Design Session

All design sessions were conducted in a controlled research space equipped with a
computer, eye-tracking hardware, and software. The research procedure is shown in Figure 5-2.
After the participants were situated at the computer, they were briefed on the design task through
a standard video introduction and their eye-tracking setup was calibrated for their sitting position.
After watching the design task video, but before working in the digital space, the designers were
provided with paper and pencils to take notes or sketch on paper for 5-10 minutes, which enabled
them to create initial ideas separate from the model space. They then proceeded to work in the
digital modeling tools to develop their design and produce optimized solutions. The designers
were prompted to work for as long as they felt comfortable, resulting in sessions that lasted

approximately 3 hours.

Figure 5-2. Summary of the events in a design session, showing the data that was collected, and a
preview of the digital design interface.
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While Grasshopper in Rhinoceros was used as a consistent parametric modeling platform,
the designers were able to choose their own optimization plugins, since the application of these
tools is a part of authentic design behavior. In this study, the participants preferred using either
Galapagos [60], presumably adding their own prioritization mechanism to manage multiple
objectives or Design Space Exploration’s Multi-Objective Optimization tool [42] to find
optimized solutions. Notably, both tools preview intermittent design iterations while running,
such that designers can make visual assessments before the tool has completed its optimization
loop. It is also worth noting that these chosen tools do not fully enable interactive human-in-the-
loop optimization at the scale of design generations or internal dynamic data visualization, which
are possible using newer or less common parametric tools, such as Stormcloud [61], Wallacei X
[62], and Stepper [63]. Full documentation of design strategies with these tools would require
future analysis.

The participants could repeatedly use their optimization tool in the session if they wished,
but they were not explicitly prompted to do so. After settling on a final design, the designers were
asked to submit 2-4 screenshots of their proposal and a written design statement to give to a
fictional client. Immediately following submission of their deliverables, the researcher
interviewed the participants using a semi-structured interview protocol, asking about their goals
for their design, how they approached completing the design, and what they would do differently
if they had more time. The interviews were used as cognitive proxies to contextually ensure that

behaviors were correctly interpreted.

5.3.3 Design Task

The design task asked participants to develop a glass atrium infill for a fictional

university client in Phoenix, Arizona. This site was chosen because of the region’s hot and sunny
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summer climate, which is easily recognized or readily learned in an online search. A university
setting was used for site context to prompt the need for visually exciting designs, and for its
accessibility to the participants. The design task required the designers to address at least two of
three provided objectives. The first objective is to maximize daylighting during the summer
solstice (June 21) at noon. While building designs often consider daylight at multiple times
throughout the year, full daylighting simulations can take hours or even days to run. Focusing on
a significant instance in time is a common design strategy that eliminates wait times and reduces
required computation power. The second goal is to minimize solar radiation. Within the task,
reducing the surface area of the atrium will reduce solar radiation, as will substituting thicker
glass or opaque panels with better u-values. The third objective is to minimize the elastic energy
of the structure, as calculated by Karamba3D [64]. It is desirable to have a structure with less
deflection because it will allow for smaller members to build. Reducing structural weight can also
reduce costs. Optimizing a whole structural system is a complex task but asking the designers to
focus on two of these three goals provides a conceivable and numeric goal for them to manage in
the constraints of this conceptual design task.

The designers were given the design task through two introduction videos. In the first
video, the fictional client showed four example atriums that the university admires. Although
providing examples to the participants may bias their design solutions and prompt them to imitate
what they are shown [65], clients often share their visions for a project during an authentic design
process in practice. Providing participants with examples of atriums also frames the design task in
terms of parametric thinking, which was the intended design environment of this study. However,
before introducing the designers to the study’s computational tool, participants were allowed to
sketch or write out initial ideas, permitting them to first consider ideas not constrained to the

computational environment.
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Participants were also provided with a base file containing the site context, important
points of reference, and pre-built scripts that calculate the objectives. The script required that the
participants provide surfaces for the intended solid panels, surfaces for the glass panels, the
structure represented as lines, and the structural support points. In this way, the designers could
focus their efforts on working towards an optimized solution, and the study was given a
consistent frame for simplified performance simulation between the designers. Moreover, this
study focuses on optimization tactics, not on the designer’s ability to assemble a structural

analysis simulation.

5.3.4 Qualitative Coding and Characterization of Design Behaviors

During the design session, the participants’ behaviors were captured by screen recording
and tracking their eye gaze data using EyeWorks eye-tracking hardware [66]. Eye tracking,
combined with screen capture recordings, is a robust method to understand design behaviors
because it offers the ability for researchers to not just capture outcomes, but also actions and
patterns of behaviors paired with information about what the participant is looking at or turning
their attention toward. These types of data are highly complex, with each minute of participant
behavior resulting in hundreds if not thousands of potential data points for each participant
generated over a ~3 hour design task.

The researchers also observed the design session to record times when the participant
sketched or encountered difficulties with the tool, and to facilitate an immediate follow up
interview about the participant’s rationales for critical design decisions. The follow up interviews
asked the designers to elaborate on their design decisions and what difficulties they encountered.
They were also asked, if given more time, what would they do differently to further refine their

design.
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5.3.4.1 Data Analysis

To analyze the streams of data, various methods were employed. First, the video
recordings were reviewed and activities that did not pertain to the design session were removed,
such as saving and restarting the program. Second, the eye-tracking data were initially analyzed
using digital tools to interpret broad patterns in participant behavior. Using additional software
from EyeWorks, the eye gaze data was paired with two Regions of Interest (ROI) on the screen to
identify if the participant looked in the parametric space (Grasshopper), the 3D modeling space
(Rhino), or away from the screen altogether. These tools help interpret the digital information
representing design behavior.

When working in these tools, a designer develops their model by programming geometry
in the parametric space and viewing their model in the 3D modeling space. While these regions
stay the same for each participant, the displays inside the regions are dynamic as participants
rotate or zoom in on the design or pan across their script. Thus, a significant dwell time in an ROI
shows either consideration of the design artifact or computational manipulations of the design.
Figure 5-3 shows where the two ROI’s are on the screen (the 3D modeling space and the
parametric space), a preview of what may be displayed in the spaces, and a brief description of
what occurs in the spaces. Eye tracking was thus required to accurately identify loops between

Regions of Interest, which eventually helped define behaviors.
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Figure 5-3. Two regions of interest (ROI) on the screen and descriptions of the regions.

The output video files from the eye-tracking data were analyzed using observational
qualitative data analysis processes, called “coding,” honed for observational and time-resolved
research to characterize design behaviors. These methods work abductively from existing
frameworks for design cognition to accurately describe the breadth of behaviors observed [67]. A
codebook describing the names and definitions of the design activities, which could be
categorized, was developed through literature and piloted iteratively on the data in consensus with
the other members of the research team and strongly grounded in design theory. After this
iterative codebook was developed, a single researcher rewatched all the design sessions and
notated the presence of every design behavior and their time stamps. The coding comprised of
elements from the situated FBS framework in identifying the iterative process between Function,
Behavior, and Structure in the context of the optimization environment. The typology of
behaviors captured, aggregate percentages of behaviors captured over time, and the ordering in
which behaviors occur through the duration of the design challenge are used to answer the
research question related to patterns of design behaviors.

The interview recordings were employed as an external validation method to ensure that
the research team was interpreting behaviors accurately, particularly for critical decisions, but

were not independently thematically analyzed for this study. The interview questions are
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provided in Appendix F. Together, the multiple streams of qualitative data (screen recording, eye
tracking, and interview transcripts) are used to inform the interpretation of the behaviors as they

relate to architectural engineering design education.

5.3.4.2 Event Codes

We determined 13 events of behavior that manifested across all ten participants. Figure 5-
4 shows the coding of events in the situated FBS framework to the conceptual optimization
process. The code also highlights several concrete events identified in this study, which define the
behavioral structure of the individual sessions. The sessions were divided into two primary
phases, “pre-modeling” and “modeling,” which are determined by the placing of a first
component in Grasshopper. Placing the first component is coded as a process 12 in which the
designer manifests their idea for an artifact in the external world. In this study, the pre-modeling
phase is mostly rapid formulation (processes 1-10), and although sketching in the Pre-modeling
phase is also a process 12 since it allows the designer to externalize their ideas onto paper, the

formulation processes are informally executed and not within the scope of this paper.
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Figure 5-4. Coded behaviors in this study from the situated FBS framework.

5.3.4.3 Synthesis Events

We also captured the occurrence of “synthesis events” as a manifestation of the
processes. Synthesis events include a process 11, which is envisioning solutions (Sei) from
formulated behavior (Bei), and process 12, which is externalizing the solution. In this study,
process 11 was an internal decision, so this step was not explicitly captured. However, synthesis
process 12 accounts for many of the designer’s actions and was divided into 4 categories to better
describe the designer’s externalized decisions. Most of the actions in the parametric space that
create structure (Se) are when the designer places a static component, but there are other events
which relate directly to the optimization process. Following precedent from Yu et al. [38], which
divided Function, Behavior, and Structure into knowledge-based and rule-based cognitive
decisions, this research identified 3 events within process 12 in this study: the introduction of a

variable to the model, a return to sketching on paper, and the defining of solid and clear panels.
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Introducing a variable suggests the potential for that element to be influenced by optimization
feedback. Notably, not all the variables created in each session were used in the optimization
events, which turns them into parameters in formal optimization language. Overall, individual
narratives concerning the use of variables inform each designers’ process. The process 12 event
of “returning to sketching” is also not always present in every session, but it is determined when a
designer looks away from the screen and picks up their writing utensil. All designers created
surfaces in their design and discerned between solid and glass panels. Until this event occurs,
their design decisions are geometric and do not considered materiality, which is a Behavior aspect

of the design.

5.3.4.4 Pre-analysis and Analysis Events

Other definitive events in this study are when participants first plug elements into the
objective value generators and when they first activate their optimization tool. Shifting to the
generator signifies a transition from relying on design knowledge to preparing for optimization
feedback. The designers may return to design knowledge after interacting with the objective
generator, but this is an event unique to the optimization process, and the timing of its occurrence
in the session informs how integral the designers see optimization in their final solution. To meet
the requirements of the objective generators, they may also have to restructure part of their
model, relying on a mixture of design knowledge and parametric knowledge.

A further indicator is when the designer starts preparing the optimization tool to optimize
the design. This is not always an efficient process, particularly for the student designers, as the
planning for optimization sometimes prompts reevaluation of design variables. Once the

optimization tool is run, a series of analysis, evaluation, and synthesis processes (13, 14, 15, and
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12) occur between the designer and optimization tool from which the designer can make a design

decision.

5.3.4.5 Evaluation and Documentation Events

Before proceeding to documentation, a designer will verify if the behavior of the design
meets the expected behavior. In early conceptual design development, this process is largely
driven by the optimization tool, which minimizes the objective values. However, the designer
may consider the results manually and decide to repeat earlier processes or proceed to
documentation. In some cases, a designer may follow process 16, which is an opportunity to
change the function of the design by changing which of the two objectives they wish to pursue.
This process did not occur in this study’s design sessions.

The final event defined in this study is the shift to documentation. This is defined as
when the designer opens the writing document and begins to compose their design statement or
take screenshots of their final design. In some cases, the designers refine the representation of

their design in preparation for documentation, such as applying color to the different panels.

5.3.5 Evaluation of Designer Behavior

Coding and identifying these processes allowed the design team to compare reoccurring
behaviors, design focus, and significant events. In following the situated FBS framework, a series
of repeated actions are identified in the conceptual design optimization sessions. While Gero and
Kannengiesser acknowledged types of design “Reformulations,” this research identifies iterations
performed by the designer, by the optimizer, and by the designer and the optimizer together,

shown in Figure 5-5. Prior to running the optimization tool, the designers ran through process 11,
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12, and 13, in a series of iterative loops. These loops were identified by the designers’ dwell time

in the Grasshopper canvas and the modeling space, as recorded by the eye-tracking tool.

Figure 5-5. Illustration of the identified iteration loops including iteration loop A (IA), iteration
loop B (IB), and iteration loop C (IC).

Appropriate dwell times are often determined by the task context [68] and are difficult to
standardize [69]. While eye tracking has been used in many areas, its application in 3D
architectural modeling tools is less common. Dwell times that are measured in milliseconds tend
to correspond to small Areas of Interest, like a button on a webpage. However, this research uses
Regions of Interest that correspond to how participants consider the design versus manipulating
the design script. Both activities likely require dwell times in the small number of seconds, which
have also been considered in relation to programming activities [70]. Frequency of looking at the
regions is significant, as iterative loops were identified at the resolution that patterns emerged for
the design sessions. Based on researcher experience with the design tools and iteratively testing
different timeframes, the sessions were divided into 0-4 seconds, 4-12 seconds, and 12+ seconds.
Glancing in the model ROI for less than 4 seconds was determined to be a “check” that the
Grasshopper command was doing the intended purpose, rather than a responsive assessment of
the design associated with a process 13. Looking at either region for longer than 12 seconds
indicated that the designer was focusing on component assembly in Grasshopper (ROI2) or
reflecting on the representation of their model (ROI 1). An Iteration Loop A (IA) was determined

when the designer looked back and forth between Grasshopper and the modeling space at least
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once, for 4-12 seconds in each region. [A loops can be counted, providing a metric by which to
compare the designers’ iterative behaviors.

The second Iteration loop is performed by the optimization tool, Iteration Loop B (IB),
starting from process 14 to 15, 11, and 12. It runs through these rapidly and iteratively until
stopping back at Bi. Notably, the optimization tool does not perform process 13, as it cannot
consider if the external structure aligns with the designer’s interpreted structure. After running the
optimizer, the designer may continue to move through synthesis, analysis, and evaluation
processes based on abstract goals, or move directly onto documentation. If they respond to the
optimization feedback and make adjustments, then that is considered an Iteration Loop C (IC).
This iterative process is similar to the interactive behavior identified by Geyer et al. [41] as a
designer works back and forth between design modeling and optimization.

These iteration loops allowed us to identify how early the designers ran their optimization
tool in the session, what processes they followed after reviewing the results, and if they repeated
the optimization. IA loops were identified automatically based on relationships in the eye-
tracking data. Although IB and IC loops contain defined actions, not open to interpretation or
variation of researcher perspective, they did require manual recordings of when a certain
component was placed, connected, or manipulated in the screen recordings. A member of the
research team reviewed the sessions twice to verify that the processes were accurately identified.
The occurrence of the iteration loops, types of Structure moves, and optimization events produce

narratives that enable comparison between participants.

5.4 Results

Based on the coding structure, simplified session time plots are shown in Figure 5-6. The

sessions are divided into Pre-modeling and Modeling phases. The beginning of the Modeling
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phase is marked with “0 minutes.” The horizontal line in each diagram is the session timeline
from sessions beginning to end. Along the timeline, the IA (Designers) loops are plotted, showing
their occurrence and duration. Similarly, below the timeline, iteration types IB (Optimizers) and
IC (Designer with optimizer) are shown with blocks, indicating when and for how long each loop
lasted. Above the timeline, significant events within the optimization process are also labeled
according to their triggers in the previous section. Plugging their design into the objective value
generator (“obj.”) represents an active, cognitive engagement with the design objectives. Later in
each session, the opening of an optimization tool and preparing to run it (“prep optimizer”) is
considered the beginning of the optimization process. At the end of each timeline, the time spent

documenting the design is shown as a thicker gray band.
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Figure 5-6. Design session behavior time plots.
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The sessions are organized by three categories of optimization behavior, as determined
by reoccurring characteristics. A “Complete Optimization Cycle” is when the participant
completed at least one full IC iteration and there is evidence of informed edits to their design,
such as the presence of an IA iteration after optimizing or a substantial amount of time spent
considering results. A “Coarse Optimization Cycle” is when the designers completed at least one
IC iteration, but the cycles did not influence any notable changes in the design. The third cycle, a
“Partial Optimization Cycle,” is when the designer did not complete a full IC iteration, meaning
they did not consider the best performing suggestions from the optimization tool. Although the
cycle categories do not indicate the quality of design idea or the efficacy of resulting design
performance, they do organize a system by which to understand optimization techniques and
discuss nuances between behaviors. The next three sections describe in detail representative

participants for each type of cycle.

5.4.1 Complete Optimization Cycle

The Complete Optimization Cycle participants closely followed an expected optimization
process in which a designer integrates behavioral (process 14 and 15) considerations in the
development of their design and completes at least one full designer-optimizer (IC) iteration, with
observable edits to their design, before documenting their project. Figure 5-7 shows detailed
session time plots of Participants 01 and 03, who exhibited characteristics of the Complete Cycle.
In these detailed session time plots, creation of a new variable is indicated by a circle, and a
participant returning to sketching by picking up their writing utensil is shown by a triangle. The
figure also shows when the designers defined the difference between solid and glass panels in

their model (Sp) along with notable instances within the eye gaze fixations.
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Figure 5-7. Complete optimization cycle sessions with detailed time plots from Participants
01 and 03.

The enlarged portion of the Eye Gaze Fixation plot for Participant 01 shows three
examples of IA iteration. The designer looked back and forth between the model space and
parametric space for at least 4-12 second clusters, suggesting a loop of design edits, which was
confirmed by researcher observation. As the sessions progress and the designers focus more on
preparing for the optimization process, the occurrences of 1A loops become less frequent.
However, each designer also completed an IA loop between optimization runs, suggesting that an
informed change was made to the design before running the final optimization loop. Several
smaller differences are apparent, however. Participant 01 returned to sketching after placing a
component and before developing their model, while Participant 03 immediately started to create
variables. Also, as indicated by the early square notations in the IB zone, Participant 03 used a
direct form-finding tool to achieve an optimized structural shape first rather than use “structure”
as an objective in a parametric optimization run. This is a distinct form of optimization based on

setting optimality criteria and seeking those criteria directly, but it is only possible in a parametric
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environment designed specifically for this purpose. It was thus coded for summary statistics as an

optimization loop but represented differently from an IB loop.

5.4.2 Coarse Optimization Cycle

Figure 5-8 shows the detailed time plots two designers who exhibited a “Coarse
Optimization Cycle.” It includes Participants 05 and 06, who completed IC loops but did not use
optimization strategies thoroughly and thus presented subtle differences in their sessions. The IC
loops of these sessions are very brief compared to Participants 01 and 03. Although the brevity of
an IB loop will depend on the robustness of the chosen tool and the simplicity of a design, time
spent considering the optimized options (process 15) can reflect the sophistication of the
optimization run or the intent of the designer. These two participants ran several IB loops in a
short time because the design options were not as diverse as they envisioned, but they did not
know how to manipulate the variables to produce optimization results that aligned with their
vision. Participant 05 did not engage in optimization events until late in their session and realized
the structure of their model’s code was not compatible with the requirements of objective
generators. The participant rebuilt part of the model and lost some of the qualities from their
original design. The detail from Participant 05’s time plot in Figure 5-8 shows their focus on

Grasshopper space as they manipulated code.
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Figure 5-8. Coarse optimization cycle sessions with detailed time plots from Participants 05 and
06.

While other sessions show sparse A iterations as participants adjusted code, Participant
06’s time plot shows a density of IA iterations before preparing the optimization tool. This
behavior suggests that, for Participant 06 to correctly activate the objective generators, they had
to change their design and repeatedly view the results in the model space. The absence of this
behavior in the other sessions suggests that this designer’s solution developed in response to the
guided requirements of the study, not exclusively by their own vision for the project. This
dependency on prompted Grasshopper coding may reflect less experience with parametric and
optimization design techniques. Although this participant could wield optimization tools, issues
with self-driven design performance may arise if they were to employ optimization techniques in

future, professional projects where design efficacy and efficiency are imperative.
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5.4.3 Partial Optimization Cycle

Figure 5-9 shows the plots for Participants 02 and 04, who did not complete an IC loop
during the study. This characteristic is considered a “Partial Optimization Cycle.” Although most
of the designers responded to the optimization tool’s feedback, Participant 04 started writing their
final design statement before completing their first optimization run. This suggests that either the
variables affecting the participant’s design were not dependent on the optimization feedback, or
that the participant did not consider their optimization routine to have possible benefits for
informing a final design decision. However, a lack of IC iterations does not always mean that
optimization techniques were not used to improve the design. In Participant 02’s first two
optimization runs, they watched the tool generate a range of possible designs while it ran. After
briefly seeing that the possible solutions were not as varied as they hoped, the designer stopped
the optimizer’s automated process and edited their design variables to create more variations of
possible solutions. This was an informed action as part of a process 13 (considering the physical
structure of the design), but not a process 15, and therefore not an IC iteration. Nevertheless, the

optimization tool was integrated into the participant’s design strategy.
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Figure 5-9. Partial optimization cycle sessions with detailed time plots from Participants 02 and 04.

5.4.4 Optimization Characteristics

Figure 5-10 summarizes the optimization characteristics for six representative sessions
that were analyzed in more detail. The figure shows what percentage of the session had transpired
before the participant engaged with the objectives’ components and when they started to prepare
the optimization tool. The participants began using the objective components at between 43-75%
of the timeline, suggesting a transition from developing the structure of the model to considering
the behaviors of their model. After plugging their designs into the objective generators,
participants began to optimize at different times as well. While Participant 03 started to optimize
as early as halfway through the session, Participant 05 did not start optimizing until near the end
of their session. Figure 5-10 also indicates which of the two objectives the participants focused on

in their optimization sequences. Finally, it states how many IA, IB, and IC iterations that the
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participants performed and how many variables were used in their final IB run. The parenthetical

number (5) for Participant 03°s IB loops shows the number of direct form-finding runs employed.

Figure 5-10. Summary of characteristics from the optimization portion of each session.

The number of variables used in the final optimization output varies by participant.
Participant 05 had the most variables, which may explain why they spent so much time
generating code before beginning to optimize, but Participant 04 had a similar delay with fewer
variables. Although all designers created variables (parametric sliders) early in their design, only
Participants 01 and 06 used all of these sliders in their optimization process. In some cases,
variables were only used by the designer to consider design variations outside of the optimization

framework.

5.5 Discussion

To summarize, several design patterns emerge from the results. Three iterative loops
were identified from applying the situated FBS ontology to differentiate iterations from the
designer, the optimization tool, and from the designer and optimization tool together. These loops
can show when a designer relies on their own design knowledge to make decisions or when they
use optimization feedback to inform their design. The occurrence of these loops defined the three

categories of design strategies based on their presence, timing, and repetition.
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This research shows that the graduate student designers use optimization with varying
degrees of intent. While some used optimization feedback to understand the extents of their
parametric model (like Participant 02) or inform changes to their design (like Participant 01 and
03), others did not fully integrate optimization into their design strategies. This behavior is
evident in sessions that did not make edits between optimization IB iterations (like Participant 05)
or did not complete an IC iteration (like Participant 04). Participant 04 showed a partial use of
optimization tools, and their behaviors suggest that their vision for their design was not
responsive to optimization feedback, since their documentation was started before the optimizer
completed its assessment. Not using optimization feedback in this case may reflect design fatigue
within the context of the study, as their session lasted longer than the other participants’. From
observing their parametric model, though, their optimization variables controlled only subtle
changes to the model, suggesting that optimization as an influencer in design was not part of their
strategy. Only partial or no use of optimization feedback in student designers may indicate a lack
of experience or comfort with optimization tools, or it may simply show a preference for other
design approaches.

Although the participants tended to create many variables (or parametric sliders) early in
their design session, not all variables were included in the optimizer’s process. Many of the
variables were used to explore design options manually rather than as part of their performance-
driven investigation, but they could also have been used to set a parameter or constraint that did
not change during optimization. While previous research has discerned schemes for processing
parametric design behavior [20], [71] and identified an iterative loop between design decisions
and optimization [41], the findings from this experiment confirm the presence of these loops
while developing a parametric script during design. This paper thus adds to existing knowledge
by showing how early and frequently students modify their model structure in response to an

optimization cycle.



136

5.5.1 Implications for Design Pedagogy

In categorizing the sessions by optimization behaviors, we establish an initial method to
identify the characteristics of graduate student designers, which can inform future curricular
development and even student assessment if measured directly. Students with experience using
optimization tools do not always fully incorporate them into their decision-making process in a
way that leverages optimization’s strengths. If the goal of having optimization in the curriculum
is to empower students to include such automated or interactive optimization runs to improve
design outcomes, then additional emphasis must be placed on contextualizing optimization for
design. This could include formal teaching of strategies for variable selection and parametric
problem definition, visual interpretation of results, and how to use optimization iteratively to
arrive at a satisfying result. Particular topics of emphasis may differ across the disciplines in the
study, as the goals of optimization in an architecture studio or graduate engineering course are
likely different.

In addition, when considering how much of the design session the participants spent
optimizing, the results suggest that incorporating objective feedback earlier in the design session
aligns with more IC designer-optimizer iterations. The designers who started preparing for the
objective feedback sooner in the sessions ran more optimization iterations. While getting to the
optimization process sooner provides more opportunities for design improvement, it does not
ensure quality of design expression. However, in optimization education, emphasizing the early
and integrated use of optimization for student designers can at least prompt more engagement
with the approach.

Finally, this study noted that when given the choice, most participants selected either the
default evolutionary solver native to the software itself or a multi-objective optimization tool that

uses an evolutionary process to generate approximations of the Pareto front for further
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consideration. If instructors seek to encourage students to use faster gradient-based algorithms,
interactive tools, or other methods beyond evolutionary algorithms, more emphasis on these
alternative methods is likely needed. These tool preferences may also have occurred for practical
reasons, such as ease of access or use, rather than because students thought they would achieve

the best results, but this would have to be determined through future study.

5.5.2 Limitations

As with any study, there are some limitations to the findings. Although there were only
ten participants, the data generated from this project is insightfully rich in ways that have not
been presented in the AEC design literature before by using deep multimethod qualitative and
time-resolved observational research methods. Our data set from ten participants represents
approximately thirty hours of in situ observational data employing multiple strands of time-
resolved data, offering a unique depth of insight useful to design theorists and educators. Further,
the goal of the study was to identify designerly behavior during optimization in intermediate-level
designers to promote theory-informed transferability of the research findings, not to understand
how predictively generalizable these patterns occur across larger populations. We leave this to
future work. The advantages and affordances of using deep qualitative methods will always be
balanced with a pragmatic tradeoff of sample size, as has been well-established in the qualitative
research methods literature. We meet the requirements of qualitative research methodologies by
grounding our work in theory, establishing theoretical and pragmatic validity [72] through our use
of and interpretation of results through FBS design theory, and are satisfied with our codebook in
that we reached saturation such that no new themes emerged during analysis [73], [74].

In addition, this chapter does not present the disciplinary backgrounds of the studies’

participants, which was discussed in section 2.2.1. Analysis and discussion of their disciplinary
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backgrounds are presented in the paper “Optimization strategies of architecture and engineering
graduate students: responding to data during design” included in the proceedings of the 2023
CAAD Futures 2023 conference. The details of the participants’ education as an architect or
engineer was excluded from this dissertation because these distinctions were less influential on
differences of design behavior when comparing students to practitioners in optimization.

Other limitations to this study include that the design task focuses on a conceptual design
challenge, which does not capture all possible strategies that may be used when developing a full
project. However, optimization strategies are often used to explore solutions at early phases of
design to investigate concepts of interest. Studying a design challenge with a narrow activity
scope rather than a comprehensive design process creates many advantages for data collection,
but may also diminish its authenticity. In addition, since students were able to select their own
tools, this study does not cover behaviors across the full range of optimization possibilities,
including more emerging interactive optimization strategies. Finally, this study does not assess
design quality directly, so it assumes that full incorporation of optimization into design simply
gives the best future opportunity for high-quality designs. Several of these limitations are left for

future work.

5.6 Conclusion

This paper presented the findings from a study which considered the designerly behaviors
of graduate student designers in architecture and architectural engineering when responding to a
building design optimization task. The study used eye-tracking and screen recording methods to
record data and coded the designerly behaviors following the situated FBS framework. Three
types of design iteration loops were used to characterize partial, coarse, and complete

optimization cycles by participants. These findings from this study, while of interest to education
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and design cognition researchers in advancing foundational theory, also offer significant
opportunities to modify and augment graduate-level design curricula in architectural engineering
and related fields. As the categories of cycles suggest, while the students understood how to run
the optimization tools, not all were prepared to use the performance feedback in their own
designs. While graduate-level education may show students how to use the optimization tools,
students need to know how to integrate the tools in design projects as well. In much of
architectural engineering education curricula, digital design tools are often taught secondary to
design concepts, which is appropriate for certain applications, but incorporating digital tools in
graduate-level education can better prepare student designers to use the tools effectively rather
than as an afterthought.

In addition, the use of observational methods in an authentic design challenge offers
insight on common issues, obstacles, or ineffective design strategies often employed that may be
missed in typical “expert vs novice” studies. The impact of this work lies in the preparation of a
future workforce that is computationally agile in their future careers, helping them use simulation
feedback to design buildings that are more energy-efficient, low carbon, safe, and durable.

In future work, it is necessary to consider how the categories of optimization behavior
proposed here relate to other variables in the optimization design process, as well as to the quality
of design outcomes. For example, future behavioral studies that evaluate the quality of designs
produced can indicate which optimization-based processes are more effective and should thus be
taught to student designers. The methods for observing optimization behavior presented in this
paper provide a scheme by which to continue to examine designers’ optimization strategies. They
can be adjusted to accommodate the discovery of new techniques and tools using quantitative
methods. Nevertheless, this study observed several clear patterns in design optimization behavior,
showing that earlier and iterative incorporation of optimization runs by graduate student designers

can lead to more critical engagement with the feedback they provide.
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Chapter 6

Comparing Student and Practitioner Strategies and Cognition

This work will be submitted to a future journal publication as S. Bunt, C. G. P. Berdanier,
N. C. Brown, “Comparing optimization strategies and cognitive processes of building design

students and practitioners.”

Abstract

Optimization techniques are increasingly used in building design practice to support
improved design solutions, however, designerly behaviors may be confounded by the cognitive
influences of emerging optimization tools. Expertise is associated with reduced mental workload
whereas absorbing new knowledge increases working memory. When developing and exploring a
parametric model for optimization, designers iteratively receive information about their design’s
performance, and design cognition may be impacted by feedback loops in the design process. To
understand the relationships between optimization strategies, cognitive loads, and experience with
optimization tools, a study was conducted that tasked graduate students and practitioners to use
optimization tools in response to a multi-objective, atrium roof design task. The design sessions
were analyzed for significant design events and organized into optimization cycles of behavior.
Eye-tracking methods were used to evaluate the designers’ cognitive efforts, including ICA,
fixation counts, and fixation durations. While the practitioners exhibited cognitive efforts aligning
with their expected expertise, they also used a greater diversity of strategies compared to the

students, who responded to optimization feedback less frequently. This paper reports variations in
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their behavior and discusses what may influence designers to approach optimization tasks with
different strategies.

Keywords: design process; optimization strategies; cognitive load, design expertise

6.1 Introduction

While addressing complex, multi-disciplinary objectives in design practice, architects and
engineers are increasingly augmenting their processes with digital tools. For example, parametric
design can support designers’ decisions as they iterate a model towards improved performance
with less manual effort. Within parametric environments, optimization tools rapidly search for
solutions that meet a designer’s quantitative requirements. When multiple objectives are present,
which require prioritization to manage trade-offs, a designer can explore curated options provided
by the tool rather than survey all possible solutions. Thus, while optimization algorithms can
reduce aimless investigations by directing users to high-performance regions of the design space,
they can also produce many design options with the potential for unconsidered new information.

This new information is likely to be processed differently by designers with varying
levels of training, experience, and expertise. Novice and expert design approaches have been
shown to be different in terms of cognitive effort [1], idea formulation [2], and the kinds of
knowledge they use [3]. Such differences may be particularly acute in the context of
optimization-based design tools. To achieve the potential benefits afforded by computational
optimization, designers must know how to properly use the tools to their advantage. Emerging
digital tools require new skills on top of traditional design training. Thus, students who are
learning about building systems and how to properly design them at the same time they are

learning how to appropriately use optimization might be overwhelmed by the new information. In
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contrast, practicing designers have already acquired design experience in their domain, and those
experienced in optimization may be more comfortable in integrating optimization into their
natural design approach in diverse ways.

The concept of cognitive load may be helpful in distinguishing students from
practitioners, helping educators identify which gaps remain in their education. Research has
established that increased cognitive load is correlated with the retention of new information [4]
and task complexity can demand more working memory [5]. Working memory is also associated
with increased cognitive load [6] and is responsible for processing new information into long-
term, permanent knowledge [7], [8]. As a result, expertise often aligns with less cognitive load
since an expert is not interpreting new information. Yet building design evokes novel solutions
with each new project.

In addition, since emerging optimization tools prompt new strategies for design
exploration, the processes and cognitive behaviors of expert designers may not align with
expected characteristics from established research. Previously, novices have been known to use
less efficient strategies and exert greater cognitive effort compared to experts [1]-[3], [9].
However, research specific to computational building design suggests that design expertise is
ephemeral with the evolution of new tools, and that rapid design feedback leads designers to
continually learn about their model [10]. While designers may use different approaches
depending on their expertise, it is possible that they exert similar amounts of mental effort when
performing optimization processes. As a result, workflow benefits from using optimization
techniques to explore design options may be reduced if a designer’s efforts are restricted by
increased cognitive load.

To better understand differences between student and practitioner design optimization

strategies, with potential insights coming from both identified behaviors and measurements of
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cognitive load, a design study was conducted that asked students and practitioners to respond to a
building design task with multi-objective goals. Participants were instructed to use optimization
tools to seek improved design proposals. We follow Tan’s [11] description of expertise based on
experienced knowledge to identify optimization practitioners, who have applied optimization
techniques to design projects for implementation. Conversely, we identify students as designers
who have had exposure to optimization tools and techniques but have not yet applied
optimization in practice. From each participants’ design session, screen recordings, eye-tracking
data, and interview feedback were collected. From this data, the optimization strategies were
categorized based on completeness and uniformity following the established protocol for
identifying optimization processes from chapter 5 [12].

In addition, eye-tracking tools collected pupil dilation and gaze data to measure mental
workloads and evaluate the cognitive efforts exhibited by the designers using different strategies.
Based on previous research, we expected differences in design cognition between the two groups,
with the practitioners exhibiting less overall cognitive effort. However, there is not a standardized
process for incorporating optimization techniques in design and we considered the possibility that
session outcomes could vary by participant. This paper presents the range of strategies observed
and discusses why complex design processes may elicit cognition results that are not explained by
traditional metrics. Moreover, understanding distinctions in optimization processes between
students and practitioners can influence how educators prepare designers to enter the profession

to better address multi-objective design challenges.
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6.2 Background

While cognitive load theory has established relationships between cognition and
information [4], and researchers in design fields have used it to describe design behavior, less is
known about cognitive effort in design optimization processes. Engineering design research has
also considered cognitive load during prototyping design tasks with an emphasis on design
outcomes [13],[14]. However, little research has focused on design cognition in architectural
building optimization. Since building designers use optimization techniques in practice, their

strategies and mental workload may affect their design performance.

6.2.1 Optimization in Building Design

Multi-objective optimization techniques are used in building design practice to explore
otherwise difficult to compare design goals [15], [16]. Optimization tools can provide
performance feedback about daylight [17], energy consumption [18], [19], and structural
performance [21], and have been shown to improve design process [21]. Despite its usefulness,
optimization processes in building design require sophisticated strategies to explore a design
space and identify improved solutions.

While “design optimization” can refer to formal mathematical optimization [22], [23], or
to the process of systematically improving the design performance of a current solution as might
be used in building simulations [24], [25], recent research acknowledges the potential for design
exploration in the process of optimization [26]-[28]. In applying optimization techniques in 3D
building modeling spaces, designers may rely on both numeric and geometric feedback to iterate
and improve a building’s performance. For example, a designer might construct a model with

variables and objectives, apply an optimization tool to find solutions that meet the goals of the
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design problem, and either select a design from the tool’s output or edit the model in pursuit of
other iterations. Exploration ends at the designer’s discretion.

Due to the complexity of building design goals, with objectives spanning qualitative and
quantitative dimensions, recognizing when to stop designing or to continue iterating requires
elevated design knowledge from the designer. Previous researchers have recognized the
challenges of navigating optimization tool feedback, proposing additional tools for interpreting
information [29]. Additional studies have identified hinderances in using optimization tools, such
as slow evaluation times with poor user interfaces [30] and a lack of established design processes
[31]. With no standard for how to approach design optimization challenges, it is difficult to
determine what strategies may be associated with greater optimization knowledge. Established
distinctions between experts and novices may provide initial expectations of optimization
techniques, but a designer’s experience in optimization may be more useful to determine their

design processes rather than years of experience in their profession.

6.2.2 Practice in Design Techniques

Previous research has shown that variation in amount of professional experience often
result in different design processes [3], [9] with studies focusing on various aspects of design.
Ahmed et al [2] observed that novice designers tended to use trial-and-error techniques while
experienced designers were more systematic in design approaches. In comparing series of
cognitive actions in design, Kavakli and Gero [1] found that novice designers followed more
sequences of cognitive processes compared to experts, who had smaller variations in sequences
and were more efficient in their cognitive actions. More specific to developing design spaces,

Abdelmohsen and Do [32] found that novice architect designers performed prolonged processes
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to achieve the same goal as experts when responding to both sketching and parametric modeling
tasks. However, in a study by Atman et al. [33] that focused on engineering design contexts,
differences in expertise resulted in longer design sessions and an increase in design
considerations for experts, but not necessarily increased design quality.

A recent paper by Tan [11] identified that existing models for expertise may not be best
suited to describe expertise in all areas of design. Tan acknowledges that some existing,
quantitative metrics for expertise, such as years of experience, may not capture the knowledge
gained from performing a particular design task in practice. Tan also acknowledges that
qualifying experience as a proxy for expertise may be subjective since it is abstract and prone to
personal interpretation, but it nevertheless speaks to skills rather than numerical performance,
which is not always measurable in design fields. In addition to experiential knowledge, Tan
describes expertise as requiring adaptability, perceptiveness, and motivational support. In
building design, many projects have their own unique contexts, challenging designers to adjust
their design schemes, and new technologies and advances in techniques require designers to
redefine their design paradigms. Such changes of design thinking are likely to affect our

understanding of cognitive activity in design as well.

6.2.3 Cognition in Design Tasks

Since architectural building design requires visual and numeric decision-making,
researchers have considered eye-tracking methods for data collection as a metric for cognitive
load in design [34]. Many metrics are available in eye-tracking methods, such as fixation,
saccades, gazes in areas of interest, and pupil dilation, and each can explain different behaviors

and mental efforts related to the task being studied.



156

One metric of cognitive load is the Index of Cognitive Activity (ICA) which registers
mental workload by relying on pupil dilation to indicate changes in brain activity, which has been
associated with increased cognition [35], [36]. ICA is a patented metric [37] and can be
calculated in the Workload Module software by EyeWorks [38]. Because raw ICA data can be
difficult to interpret, Workload also produces a Scaled ICA metric for the left and right eyes. It
detects and removes invalid pupil measurements and scales the pupil signal for each participant to
a value between 0 and 1, with 1 being the maximum ICA that the participant experienced in the
session. Research has found that for some tasks, an increase in ICA can reflect increases in
cognitive effort [39], [40]. However, other research has questioned the accuracy of ICA in
different contexts [41], [42] and found that it is not an effective measurement of cognitive load
when participants are responding to two tasks simultaneously [43]. It is appropriate to consider
additional streams of data when examining cognitive loads.

Another measurement of cognition is the number of fixations and duration of fixations
during a task, which can indicate changes in cognitive processes [44]. However, the relationships
of fixations to mental workload are also unclear, depending on the type of mental workload [45].
Some research found that longer fixations related to increased mental workload when interacting
with artificial environments [46], while another found an inverse relationship between workload
and fixation duration when playing an approachable video game [47]. An increase in the number
of fixations may also indicate increased engagement with a task rather than the length of the
fixation as a measure for mental workload. Nevertheless, fixations can provide an additional
stream of information when evaluating cognitive behaviors.

Specific to design challenges, eye tracking data can also tell conflicting narratives.
Research by Zimmerer et al. [48] has shown that eye parameters are more strongly influenced by

tasks rather than by cognitive load. Zimmerer et al. attribute this result to design processes
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complexity which may cause different patterns in gaze behavior. Dissaux and Jancart [10]
acknowledge that designers are iteratively learning from their tools when developing design
ideas, and receiving information repetitively may disrupt previously established expectations of
design thinking.

As the relationship between experience, cogitation, and design process in optimization
strategies is unclear, the research presented in this paper considers the behaviors and mental

efforts of students and practitioners when responding to a building optimization design task.

6.3 Methods

To compare characteristics between students and practitioners, we used a controlled
design study that asked participants to develop a design for an atrium roof and we collected
different streams of recorded data from their design sessions. Participants worked in a 3D,
parametric modeling platform using optimization tools and reflected on their design decisions in a
post-design session interview. In following appropriate protocol standards, this research is IRB
approved and follows established eye-tracking and design behavior methods to examine the

participants’ design processes.

6.3.1 Participants

For this study, ten graduate students and nine design practitioners first completed an
intake survey form which verified that they had enough experience within their field and with the
study’s design tools to respond to the design task. The students were from the Architecture or

Architectural Engineering Department at a University in the North-eastern US and reported that
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they had at least 1 year of experience with Grasshopper and completed a course on design
optimization. We considered their differences in disciplinary background in our paper
“Optimization Strategies of Architecture and Engineering Graduate Students: Responding to Data
During Design” [49], but this paper focuses on differences between groups of students and
practitioners. All designers possessed educational experience in geometric and technical design,
and we do not differentiate their educational background. For the practitioners, we followed a
description for expertise defined by Tan [11] that states experiential knowledge can be used to
qualify a designer’s expertise. Similar definitions have been used in other research as well, in
which experts have more contextual knowledge than a novice [33], [50]. We identified the
practitioners’ expertise by their use of optimization strategies in practice and confirmed that they
had used optimization tools and techniques in a building design firm to develop at least 5 designs
for a client. The practitioners also had at least 5 years of work experience in design firms. The
practitioners were employed from 7 different firms, lived in 3 cities, and all had bachelor’s and
master’s degrees in building design. Two of the practitioners were trained in Architectural
Engineering, two in Civil Engineering, four in architecture, and one had a bachelor’s degree in
architecture and a master’s in engineering. The purpose of this study is not to obtain generalizable
results about the students and practitioners but rather identify different strategies and variations in
cognitive load of designers while they developed and explored a design space for optimization.
After completing the survey, an initial interview was used to verify the practitioners’
understanding of optimization in the context of building design in the study’s tools. The interview
also asked the practitioners about their use of optimization tactics in practice. Individual design

sessions were then scheduled with each participant.
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6.3.2 Design Sessions

The design sessions were conducted in either the researchers’ office on the university’s
campus for the students or in the office spaces of design firms across the Northeastern and
Midwest US for the practitioners. A member of the research team visited each practitioner to
better facilitate their participation in the study. For each session, the designers worked on a
computer provided by the researchers that hosted the study’s tools and recorded the session data.
Two screens were connected to the computer: one for the participant to work from and one for the
researcher to watch the session. A table mounted eye tracker was used to collect data from the
participant’s eye movements and the designer’s screens were recorded using EyeWorks Record

(EyeTracking). Figure 6-1 shows the study’s set up.

Figure 6-1. Set up of the study’s tools for the design sessions.

Before beginning the 3D modeling portion of the session, the participants were briefed on
the design task by introductory videos which ensured that each participant received the same
instruction. The participants were allowed to ask questions about the task before their eyes were

calibrated to their position in front of the screen and data recording began.
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6.3.2.1 Design Task

The design task asked participants to develop a conceptual atrium roof for a fictional
courtyard in the Southwestern US. The location was chosen since the environmental conditions of
the region can readily be found online if the participant was not already familiar with the dry,
sunny climate. Participants were instructed to consider the geometric and visual appearance of
their design and select at least two of three quantitative objectives to optimize: daylight, energy,
and/or structural elasticity. The study required the designers to work in Grasshopper, a parametric
modeling tool hosted by the 3D modeling tool Rhinoceros, but participants were allowed to use
any optimization plug-in tool for Grasshopper that they desired including Galapagos, Goat,
Octopus, Wallacei [49], or DSE tools [52]. Participants were provided a starting Grasshopper
script that included a model of the existing context for their design and calculations for
instantaneous measurements of daylight, energy, and structural elasticity for noon on the summer
solstice. Daylight and energy were calculated by angles of the design’s surface to the sun and
structural elasticity was calculated by Karama3D [53], a structural analysis program made for
Grasshopper’s parametric interface. Because this study focused on behaviors in optimization, we
did not want the participants to run simulations. While running simulations can provide
comprehensive information about a building’s design, it can also add to the length of a design
session, induce design fatigue, and may have deviated the designers’ attention away from the
purposes of this study.

Participants were asked to submit 3-5 screenshots of their design proposals and provide a
brief design statement to the client, explaining their design intentions. The participants were not
instructed on when to start writing their statement and were free to shift between design and
writing. Notably, the participants were not explicitly instructed or required to use optimization

tools to find an improved design solution.
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6.3.2.2 End of Session Interview

After completing the design challenge, the eye recording was stopped, and the
participants were prompted to reflect on their design sessions. They were asked to describe how
they approached the design challenge and what they found to be the most challenging.
Additionally, the researcher asked the participants about unique behaviors that were observed

during the design sessions, such as starting a second design option.

6.3.3 Comparing Session Strategies and Cognition

Two primary streams of data are used to compare the behaviors of students to
practitioners: evaluation of their design strategies by optimization cycles and cognitive load as
measured by their eye-tracking data. Previous research has used both objective and subjective
means to validate cognitive effort [42] as a single metric may not fully capture the complexity of

a 3—4-hour design task.

6.3.3.1 Design Session Evaluations

The screen recordings of the design sessions were reviewed, and key design events
related to the optimization process were identified. This allowed the design sessions to be
compared for differences in strategies. Figure 6-2 illustrates the events on a sample timeline
showing when participants engaged with the objective feedback, when they began to prepare the
optimization tool, how often and how long they ran an optimization tool, how often and how long
they reviewed the feedback from the tool, and when they wrote, if at all, while still developing

their design.
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Figure 6-2. An example time plot of the key events in the design sessions.

The sessions were also evaluated for their category of optimization cycles, following the
method that was established in chapter 5 [12]. In chapter 5, optimization behaviors are described
by three categories: (1) complete cycle in which a designer runs an optimization tool, reviews the
results, and edits their design in response, (2) coarse cycle in which they run a tool and review
results, but do not edit their design, and (3) partial cycle in which an optimization tool is run, but
the numerical results are not reviewed. These cycles are identified by the presence of iteration
loops between the designer and optimization tools as the designer gazes at the modeling space
and parametric space. Instances of partial cycles were attributed to events in which designers use
a tool to explore geometric limits to a design or do not understand how to best incorporate design
performance feedback in their design. The work presented in this current paper uses these
established cycles while including new data from the practitioners to compare the range of cycles

exhibited by the two groups of participants.
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6.3.3.2 Eye-tracking Data

To discuss differences in cognitive effort between the designers, we use three established
metrics for cognition, which were collected by the eye-tracker: mean scaled ICA, fixation Count,
and fixation duration.

The Mean scaled ICA for each participant was calculated by averaging the scaled ICA
values between the left and the right eyes, which can indicate an increase in cognitive load [54].
Eye-works Workload Module calculates scaled ICA following a patented process [37] and
normalizes the values for each participant on a 0.0 to 1.0 scale to produce scaled ICA values.
Eye-works also recognizes when data was not received for a pupil and these items with their
corresponding eye were removed from the data set. Some research reports that a higher ICA
indicates an increase in cognitive load [39], however, other research found that ICA does not
reflect cognitive load under all types of tasks [41]. As an additional measure for cognitive load in
our study, other streams of eye-tracking data were considered.

The number of fixations and the duration of the fixations were examined across the two
groups of students and practitioners. Fixations are measured when a participant looks at an area or
region of interest and stops scanning across the screen. The design sessions lasted between 2-4.5
hours, so numerous fixations were collected for each participant. To better interpret the data
across the sessions, the number of fixations every 5 minutes was used to determine fixation count.
More screen fixations are sometimes associated with increased cognitive load as an indicator for
processing new information, however, the duration of fixations can also indicate breaks in mental
workflow. We also considered the duration of fixations for the participants as shorter durations

should align with greater expertise in the parametric tool.
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6.4 Results

The recordings of the design sessions, the researcher’s notes, and the eye-tracking data
were used to report categorical descriptions of design strategies and themes in the designers’
cognition. The information is presented as a comparison between the students and practitioners,
and, as an additional assessment of design behavior, the metrics for mental workload are arranged

by optimization cycles.

6.4.1 Summaries and Categories of Design Sessions

From inspection of the session events, it is observed that the practitioners employed a
wider variety of strategies in responding to the design task compared to the students. Figure 6-3
illustrates the key events on time plots of each session. While the students showed variations in
the timing of their techniques, they mostly ran the optimization tool 1-4 times and reviewed the
results before writing. The practitioners, however, used a wider range of different approaches.
Participant PO1 chose not to use the optimization tools to address the design task and instead
relied on their own intuition and a sun path simulation to develop their design, resulting in an
empty session plot. When asked during the post-session interview why they chose not to use
optimization tools, despite being instructed to find a high performing building, they responded
that the sun path simulation would solve concerns of shading while still producing a visually
appealing design and that for this design, they would optimize aspects of structural design at a
later phase of construction. P02 also did not use an optimization tool but reviewed the objective
values and tried to minimize them manually. P04 ran the optimization tool 15 times (10 more
times than any other participant) as they tried to resolve unexpected problems in their model, such

the optimization tool proposing zero structural members to minimize structural elasticity. Unlike
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any other participant, P06 started preparing the optimization tool before plugging into the
objective feedback, indicating their active awareness of optimization in their design procedure.
Participants P03, P05, P06, and P07 started writing about their design while the optimizer was
running, with P06 writing before even optimizing. One student, S04, started writing before they
finished designing, but the student also did not review the numerical results from the optimization

tool and treated optimization as an afterthought to their own design decisions.
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Figure 6-3. The session plots of the design sessions.

In addition to the session plots, the optimization cycles of the participants are considered.
Two of the practitioners chose not to run the optimization tool at all, which introduced the

possibility of a fourth option in the categories of optimization cycles: independent. Six of the nine



167

practitioners used a complete optimization session, indicating they incorporated feedback from
the optimization tool in their design. Meanwhile, five of the ten students used a coarse cycle
meaning they did not edit their design after reviewing the numerical results from the optimization
tool. Figure 6-4 shows the number of students and practitioners who used the different

optimization cycles.

Figure 6-4. The number of complete, coarse, and partial cycles of the students and practitioners.

6.4.2 Cognition Assessments

6.4.2.1 Mean Scaled ICA

The Index of Cognitive Activity was averaged for the left and right eyes for each
participant and a Welch’s t-test, which is an ANOVA test that assumes nonequal variance, was
used to determine if the participants’ Mean ICA (MICA) were statistically different. Because the
data is skewed, a Levene test for equal variance was used to determine that the datasets do not
have equal variance. From the Welch’s t-test, the students’ and practitioners’ MICA was
statistically different (p<0.000) at a a=0.05 level of significance with the students having a higher

MICA. Figure 6-5a shows a plot of their mean MICAs. According to Marshall [39] higher levels
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of ICA indicate increased overall cognitive load during the design sessions, but additional metrics
should be used to understand the cognitive load of the participants. The means of each
participant’s Mean ICA were also considered and are shown in Figure 6-5b. While the
practitioners as a group had a lower MICA, the practitioners also had a wider range of mean

MICA compared to the students.

(a) (b)

Figure 6-5. (a) the mean plots of the MICA of the students and practitioners and (b) the mean plots
of the MICA of each participant by group.

6.4.2.2 Fixation Counts and Durations

The number of eye-fixations and the duration of the fixations were also considered. A
fixation is recorded in EyeWorks when a participants’ eyes focus on the screen. A Levene test for
equal variance was used to determine that the datasets do not have equal variance. A Welch’s t-
test was run to determine the statistical difference between the number of fixations every minute
for the students and practitioners as well as the duration of the fixations. Reporting the total
number of fixations would not reflect the different lengths of design sessions, so average fixation
count by each minute allows the sessions to be compared. A minute was used because it is a

standard measurement of time. At a a=0.05 level of significance, the two groups fixation counts
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and durations are statistically different (p<0.000), however, there was statistical significance
within the two groups as well. Figure 6-6a shows the mean and interval plots of fixation counts of
the students and practitioners as groups and Figure 6-6b shows the mean interval plots of fixation
counts for each participant. The practitioners’ mean values had a greater range than the students.
The same is true for the fixation durations with the groups having statistically different fixation
durations (p<0.000) at a a=0.05 level of significance. Figure 6-7a shows the mean interval plots
of the fixation durations for the students and practitioners and Figure 6-7b shows the mean

interval plots of the fixation durations for each participant.

(a) (b)

Figure 6-6. (a) The mean interval plots for the students’ and practitioners’ fixation counts and (b)
the mean interval plots of the fixation counts for each participant.
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(a) (b)

Figure 6-7. (a) The mean interval plots of the fixation durations of the students and practitioners
and (b) the mean interval plots of fixation durations for each participant.

6.4.3 Cognitive Load of Optimization Cycles

Since the strategies and mental efforts of the participants when organized by experience
do not confirm existing theories on expertise, the eye-tracking data were also organized by
optimization cycles as an additional evaluation of the sessions. Figure 6-8 shows the scaled
MICA, fixation counts, and fixation durations for all Complete, Coarse, Partial, and Independent
cycles. While no optimization cycle group had the lowest or highest eye metric consistently, the
participants who used Complete Cycles exhibited the largest range of all three eye-tracking
metrics. It may be design feedback in optimization strategies cannot predict design cognitive

load.
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Figure 6-8. The mean values of the optimization cycles for each of the eye metrics.

6.5 Discussion

While the practitioners exerted lower mental effort when averaged over their design
sessions, their cognitive loads and design strategies also had a larger spread within their group
compared to students. Experienced knowledge is not necessarily an indicator for cognitive effort
in this optimization task, which is contrary to what was expected from previous research [1].
When considering their optimization cycles, fewer students incorporated design feedback into
their final solutions which suggests they processed less new information. While it is likely that

students are more practiced in solving short optimization tasks from their recent design education,
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the practitioners may approach problems with more fluid strategies because of broader
experiences in application. Although the task prompted designers to use optimization techniques,
P01 decided the optimization tool was not necessary at this phase of the project and P02 wanted
to be more in control of the output of the design, caring more about form in the conceptual phase
of design than specific numerical feedback. Alternatively, six of the nine practitioners included
design feedback into their decisions, as identified by their type of optimization cycles but their
behaviors varied by repetition of exploration, incorporation of writing, and occurrences of key
optimization design events. These characteristics reflect differences in design procedures, but do
not necessarily align with receiving new information. It is unclear exactly what about their
varying design strategies would prompt a larger spread of different cognitive loads.

Research by Zimmerer et al. [46] acknowledges that design tasks influence eye
parameters more strongly than cognitive load, which may provide insight into the spread of
cognition in our study. For their research, Zimmerer et al., provided design engineers with
different design assignments and posited that the diversity of tasks likely contributed to different
gaze behavior. Similarly, the participants in our study were free to proceed with any design
process they desired, resulting in different strategies. While our atrium design task was well
defined for a building facade, the unprompted development and exploration of a model for
optimization may have led each participants’ cognitive response to behave as if their design tasks
were all different.

It is also possible that the eye-tracking metrics used in this study do not precisely capture
mental effort in the optimization design task. While there is a trend in the eye measurement data
across students and practitioners, individual designers did not express consistently high or low
cognitive effort across all metrics. Fixation count and duration indicate focused attention on one

area of a screen, which may not align with receiving new information in a design space with a
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geometric interface. A designer may look at an area before deciding their next action but is not
actively receiving new information. In addition, scaled ICA can be an ineffective measurement
for cognitive load when responding to more than one task [43]. In this study’s design sessions, the
participants performed multiple, integrated actions, including geometry development and
optimization refinement, with freedom to progress at their own pace. They decided when to
perform each action, with some happening simultaneously, like exploration and writing
(participants S04, P03, P05, P06, and P07). Complexity in optimization design processes may
increase concurrent tasks, and therefore increase cognitive effort, regardless of expertise, which
can hinder proficiency in achieving a design task [55]. We also organized the participants by their
optimization cycles to provide an additional structure to discuss differences between the
designers’ strategies.

Grouping the participants by their optimization cycle revealed that participants who used
Complete Cycles had the greatest range of results in all three eye-tracking metrics compared to
the other cycles. This result further confounds expected behaviors from the designers as Complete
Cycles should, in theory, interpret more new information and therefore increase cognitive load.
Zimmerer et al.’s claim that diversity of tasks influence eye parameters more strongly than
cognitive load may explain why the eye-tracking data does not align in all three metrics for any
one of the cycles. To better understand how optimization techniques influence design cognition,
future work should examine the events of the optimization cycles with measurements of cognitive
load throughout the sessions. Dissecting the sessions for changes in eye data may reveal
additional insight about when designers focused more cognitive effort.

In addition, practitioners often engage with optimization tools over long periods of time
during a project’s development. The design task in this study was a plausible design problem

approachable by all participants but was nevertheless a condensed design challenge. Accounting
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for how practitioners incorporate optimization tools in application of their work may reveal
additional information about their design behaviors and processes. However, describing design
behavior on a larger timeline requires additional metrics and introduces challenges in comparing
groups of designers with mixed expertise. For the purposes of investigating the impact of design
feedback on focused design process, this study provides initial comparisons between of students’
and practitioners’ optimization strategies and cognitive efforts when responding to the same

design task.

6.5.1 Limitations

While this work is valuable in understanding how practitioners use optimization tools,
there are limitations to the scope of the research. The disciplinary background of the practitioners
and students is provided in a summary of the participants, but is not included as a variable in the
analysis. While this body of work focuses on difference between students and practitioners, future
work can compare differences of disciplinary behavior in optimization tools respond to specific
research questions.

In addition, there is a difference between the number of students and practitioners who
participated, which may create an imbalance of data feedback. However, each participant
produced a large amount of data, creating massive datasets from each session. This research is
qualitative in the number of participants included, but quantitative in the amount of data
generated. In addition, collecting practitioners’ data for design studies is highly demanding. For
this study, a member of the research team coordinated meeting with each full-time practitioner,

visited each firm through several trips, and set up the research tools to conduct the design
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sessions at the convenience of the practitioners. The data collected from this process allows us to

understand initial differences between students and practitioners in optimization environments.

6.6 Conclusion

This paper reported the differences between students and practitioners when using
optimization tools in response to a building design task. It used event plots and optimization
cycles to examine the designers’ behaviors and eye-tracking metrics to consider the cognitive
effort exhibited by the designers during their design sessions. Practitioners exhibited a wider
range of strategies and mental workload compared to the students, which may result from their
experience in using optimization techniques in the built world, however, feedback loops in design
optimization processes may also disrupt expected cognitive efforts. Although optimization tools
can readily identify solutions with improved design performance, they may also impact design
exploration and behavior. Tool developers and optimization design educators may consider
examples from established theories in information delivery methods to decrease cumbersome
cognition during optimization tasks [56]. As an alternative to classifying strategies by expertise,
future research will consider optimization cycles to organize proficiency in design techniques and
will further investigate the impact of receiving design information on cognitive load and
optimization process.

Acknowledgements: This material is based upon research supported by the National
Science Foundation under CMMI Grant No. 2033332. Any opinions, findings, and conclusions

are those of the authors and do not necessarily reflect the views of the supporting agency.



(1]

(2]

(4]

[6]
[7]

(8]

176

References

M. Kavakli and J. S. Gero, “Strategic knowledge differences between an expert and a novice
designer,” in Human Behavior in Design, U. Lindemann, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 42-52. doi: 10.1007/978-3-662-07811-2.

S. Ahmed, K. M. Wallace, and L. T. Blessing, “Understanding the differences between how
novice and experienced designers approach design tasks,” Res Eng Des, vol. 14, no. 1, pp. 1-11,
Feb. 2003, doi: 10.1007/s00163-002-0023-z.

B. Lawson and K. Dorst, “Acquiring design expertise,” in Computational and Cognitive Models
of Creative Design VI: Reprints of International Conference of Computational and Cognitive
Models of Creative Design, J. Gero and M. Lou Maher, Eds., Heron Island, Australia: Key Centre
of Design Computing and Cognition, Dec. 2005.

J. Sweller, “Cognitive load during problem solving: Effects on learning,” Cogn Sci, vol. 12, no. 2,
pp- 257-285, Jun. 1988, doi: 10.1016/0364-0213(88)90023-7.

F. G. W. C. Paas and J. J. G. Van Merriénboer, “The efficiency of instructional conditions: An
approach to combine mental effort and performance measures,” Human Factors: The Journal of
the Human Factors and Ergonomics Society, vol. 35, no. 4, pp. 737-743, Dec. 1993, doi:
10.1177/001872089303500412.

A. Baddeley, Working Memory. Clarendon Press/Oxford University Press, 1986.

G. H. Bower, “Cognitive psychology: an introduction,” in Handbook of learning and cognitive
processes: Introduction to concepts and issues, W. K. Estes, Ed., Hillsdale, New Jersey: Erlbaum,
1975, pp. 25-80.

M. Chi, R. Glaser, and E. Rees, “Expertise in problem solving,” in Advances in the psychology of

human intelligence, R. Sternberg, Ed., Hillsdale, New Jersey: Erlbaum, 1982, pp. 7-75.



[9]

[10]

[12]

[13]

[14]

[15]

177

N. Cross, “Expertise in design: an overview,” Des Stud, vol. 25, no. 5, pp. 427-441, Sep. 2004,
doi: 10.1016/j.destud.2004.06.002.

T. Dissaux and S. Jancart, “Impact of cognitive load associated with learning and using
parametric tools in architectural design,” in XIX Congreso Internacional de Expresion Grdfica
Arquitectonica, junio 2022, Universidad Politécnica de Cartagena, 2022, pp. 643—646. doi:
10.31428/10317/11415.

S. Tan, “Towards an integrative approach to researching design expertise,” Des Stud, vol. 74, p.
101017, May 2021, doi: 10.1016/j.destud.2021.101017.

S. Bunt, C. G. P. Berdanier, and N. C. Brown, “Observing Architectural Engineering Graduate
Students’ Design Optimization Behaviors Using Eye-Tracking Methods,” Journal of Civil
Engineering Education, vol. 149, no. 4, Oct. 2023, doi: 10.1061/JCEECD.EIENG-1889.

N. Calpin, and J. Menold, “The cognitive costs of design tasks: the evolution of cognitive load in
design and its relationship with design outcomes,” in ASME 34th International Conference on
Design Theory and Methodology (DTM), St. Louis, Missouri, USA, vol. 6, 2022, pp

N. Calpin, and J. Menold, “The cognitive costs of design tasks: examining cognitive load through
verbal and physical indicators,” J Mech Des, vol. 145, no. 10, p. 101401, Aug. 2023, doi:
10.1115/1.4062976.

D. Yang, L. Wang, and G. Ji, “Optimization-assisted building design - cases study of design
optimization based on real-world projects’” in the 40th Conference on Education and Research in
Computer Aided Architectural Design in Europe (eCAADe 2022), B. Pak, G. Wurzer, and R.
Stouffs, Eds., Ghent, 2022, pp. 609—-618.

L. Wilson, J. Danforth, C. C. Davila, and D. Harvey, “How to Generate a Thousand Master Plans:
A Framework for Computational Urban Design,” in SimAUD 2019, Atlanta, Georgia: Society for

Modeling and Simulation International, Apr. 2019, pp. 113-120.



[17]

[19]

[20]

[21]

[22]

(23]

[24]

178

T. Wortmann, “Model-based Optimization for Architectural Design: Optimizing Daylight and
Glare in Grasshopper,” Technology|Architecture + Design, vol. 1, no. 2, pp. 176-185, Nov. 2017,
doi: 10.1080/24751448.2017.1354615.

E. Touloupaki and T. Theodosiou, “Optimization of building form to minimize energy
consumption through parametric modelling,” Procedia Environ Sci, vol. 38, pp. 509-514, 2017,
doi: 10.1016/j.proenv.2017.03.114.

S.-H. Lin and D. J. Gerber, “Evolutionary energy performance feedback for design:
Multidisciplinary design optimization and performance boundaries for design decision support,”
Energy Build, vol. 84, pp. 426-441, Dec. 2014, doi: 10.1016/j.enbuild.2014.08.034.

J. Felkner, E. Chatzi, and T. Kotnik, “Interactive particle swarm optimization for the architectural
design of truss structures,” in 2013 IEEE Symposium on Computational Intelligence for
Engineering Solutions (CIES), J. Felkner, E. Chatzi, and T. Kotnick, Eds., Singapore: IEEE, Apr.
2013, pp. 15-22. doi: 10.1109/CIES.2013.6611723.

N. C. Brown and C. T. Mueller, “The effect of performance feedback and optimization on the
conceptual design process,” in International Association of Spatial Structures Annual Symposium,
Tokyo, Sep. 2016. [Online]. Available: https://www.researchgate.net/publication/316107726

S. Attia, J. L. M. Hensen, L. Beltran, and A. De Herde, “Selection criteria for building
performance simulation tools: contrasting architects’ and engineers’ needs,” J Build Perform
Simul, vol. 5, no. 3, pp. 155-169, May 2012, doi: 10.1080/19401493.2010.549573.

J. Nocedal and S. J. Wright, “Chapter 1 Introduction,” in Numerical Optimization, Second.2006,
pp. 1-9.

P. Heiselberg, H. Brohus, A. Hesselholt, H. Rasmussen, E. Seinre, and S. Thomas, “Application
of sensitivity analysis in design of sustainable buildings,” Renew Energy, vol. 34, no. 9, pp.

2030-2036, Sep. 2009, doi: 10.1016/j.renene.2009.02.016.



[25]

[27]

(28]

[29]

[30]

[31]

[32]

179

A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based optimization methods
applied to building performance analysis,” App! Energy, vol. 113, pp. 1043—-1058, Jan. 2014, doi:
10.1016/j.apenergy.2013.08.061.

J. Mukkavaara, “Exploration and Optimization of Building Design Solutions using
Computational Design,” Doctoral, Lulea University of Technology, 2021.

L. Wang, “Workflow for applying optimization-based design exploration to early-stage
architectural design — Case study based on EvoMass,” International Journal of Architectural
Computing, vol. 20, no. 1, pp. 41-60, Mar. 2022, doi: 10.1177/14780771221082254.

X. Liu, L. Wang, and G. Ji, “Optimization-Based Design Exploration of the Mutual Influence
Between Building Massing and Fagade Design,” in 2022 Annual Modeling and Simulation
Conference (ANNSIM), IEEE, Jul. 2022, pp. 487—499. doi:
10.23919/ANNSIM55834.2022.9859405.

W. Peng and J. S. Gero, “Concept Formation in a Design Optimization Tool,” in /nnovations in
Design & Decision Support Systems in Architecture and Urban Planning, J. P. Van Leeuwen and
H. J. P. Timmermans, Eds., Dordrecht: Springer Netherlands, 2006, pp. 293-308. doi:
10.1007/978-1-4020-5060-2_19.

T. Wortmann, “Architectural Design Optimization—Results from a User Survey,” KnE Social
Sciences, Nov. 2019, doi: 10.18502/kss.v3127.5550.

Z. Tian, X. Zhang, X. Jin, X. Zhou, B. Si, and X. Shi, “Towards adoption of building energy
simulation and optimization for passive building design: A survey and a review,” Energy Build,
vol. 158, pp. 1306—1316, Jan. 2018, doi: 10.1016/j.enbuild.2017.11.022.

S. M. Abdelmohsen and E. Y.-L. Do, “Analyzing the significance of problem solving expertise
and computational tool proficiency in design ideation,” in CAAD Futures, T. Tidafi and T. Dorta,

Eds., 2009, pp. 273-287.



[33]

[36]

[37]

[38]

[39]

[40]

[41]

180

C. J. Atman, R. S. Adams, M. E. Cardella, J. Turns, S. Mosborg, and J. Saleem, “Engineering
Design Processes: A Comparison of Students and Expert Practitioners,” Journal of Engineering
Education, vol. 96, no. 4, pp. 359-379, Oct. 2007, doi: 10.1002/j.2168-9830.2007.tb00945 .x.

R. Yu and J. Gero, “Exploring Designers’ Cognitive Load When Viewing Different Digital
Representations of Spaces: A Pilot Study,” 2017, pp. 457—467. doi: 10.1007/978-981-10-3518-
0_40.

E. Granholm, R. F. Asarnow, A. J. Sarkin, and K. L. Dykes, “Pupillary responses index cognitive
resource limitations,” Psychophysiology, vol. 33, no. 4, pp. 457461, Jul. 1996, doi:
10.1111/j.1469-8986.1996.tb01071.x.

S. Ahern and J. Beatty, “Pupillary responses during information processing vary with scholastic
aptitude test scores,” Science (1979), vol. 205, no. 4412, pp. 1289-1292, Sep. 1979, doi:
10.1126/science.472746.

S. P. Marshall, “Method and apparatus for eye tracking and monitoring pupil dilation to evaluate
cognitive activity,” US6090051A, 2000

EyeTracking, “EyeWorks Software.”

S. P. Marshall, “The Index of Cognitive Activity: measuring cognitive workload,” in Proceedings
o' the IEEE 7th Conference on Human Factors and Power Plants, IEEE, 2002, pp. 7-5-7-9. doi:
10.1109/HFPP.2002.1042860.

M. Bartels and S. P. Marshall, “Measuring cognitive workload across different eye tracking
hardware platforms,” in Proceedings of the Symposium on Eye Tracking Research and
Applications, New York, NY, USA: ACM, Mar. 2012, pp. 161-164. doi:
10.1145/2168556.2168582.

J. N. Czerniak, N. Schierhorst, C. Brandl, A. Mertens, M. Schwalm, and V. Nitsch, “A meta-

analytic review of the reliability of the Index of Cognitive Activity concerning task-evoked



[42]

[43]

[44]

[45]

[46]

[47]

[48]

181

cognitive workload and light influences,” Acta Psychol (Amst), vol. 220, p. 103402, Oct. 2021,
doi: 10.1016/j.actpsy.2021.103402.

A. Korbach, R. Briinken, and B. Park, “Differentiating Different Types of Cognitive Load: a
Comparison of Different Measures,” Educ Psychol Rev, vol. 30, no. 2, pp. 503-529, Jun. 2018,
doi: 10.1007/s10648-017-9404-8.

J. Vogels, V. Demberg, and J. Kray, “The Index of Cognitive Activity as a Measure of Cognitive
Processing Load in Dual Task Settings,” Front Psychol, vol. 9, Nov. 2018, doi:
10.3389/fpsyg.2018.02276.

M. A. Just and P. A. Carpenter, “Eye fixations and cognitive processes,” Cogn Psychol, vol. 8,
no. 4, pp. 441-480, 1976.

J.-C. Liu, K.-A. Li, S.-L. Yeh, and S.-Y. Chien, “Assessing Perceptual Load and Cognitive Load
by Fixation-Related Information of Eye Movements,” Sensors, vol. 22, no. 3, p. 1187, Feb. 2022,
doi: 10.3390/s22031187.

L. L. Di Stasi, A. Antoli, and J. J. Cafias, “Evaluating mental workload while interacting with
computer-generated artificial environments,” Entertain Comput, vol. 4, no. 1, pp. 63—69, Feb.
2013, doi: 10.1016/j.entcom.2011.03.005.

R. Mallick, D. Slayback, J. Touryan, A. J. Ries, and B. J. Lance, “The use of eye metrics to index
cognitive workload in video games,” in 2016 IEEE Second Workshop on Eye Tracking and
Visualization (ETVIS), IEEE, Oct. 2016, pp. 60—64. doi: 10.1109/ETVIS.2016.7851168.

C. Zimmerer, T. Nelius, and S. Matthiesen, “Using eye tracking to measure cognitive load of
designers in situ,” in Design Computing and Cognition’22, Cham: Springer International
Publishing, 2023, pp. 481-495. doi: 10.1007/978-3-031-20418-0_29.

S. Bunt, C. Berdanier, and N. Brown, “Optimization strategies of architecture and engineering

graduate students: Responding to data during design,” in Computer-Aided Architectural Design.



[51]

[52]

[53]

[54]

[55]

[56]

182

Interconnections: Co-computing Beyond Boundaries. CAAD Futures 2023. Communications in
Computer and Information Science, M. Turrin, C. Andriotis, and A. Rafiee, Eds., Cham:
Springer, 2023, pp. 174-189. doi: 10.1007/978-3-031-37189-9_12.

M. T. H. chi, “Two approaches to the study of experts’ characteristics,” in The Cambridge
Handbook of Expertise and Expert Performance, Cambridge, U.K.: Cambridge University Press,
2006, pp. 21-30.

Wallacei X, “www.wallacei.com.” Makki, M., 2018.

N. C. Brown and C. T. Mueller, “Gradient-based guidance for controlling performance in early
design exploration,” in Proc., IASS Annual Symp., Madrid, Spain: International Association for
Shell and Spatial Structures, 2018.

C. Preisinger and M. Heimrath, “Karamba—A toolkit for parametric structural design,”
Structural Engineering International, vol. 24, no. 2, pp. 217-221, May 2014, doi:
10.2749/101686614X13830790993483.

B. Fehringer, “Optimizing the usage of pupillary based indicators for cognitive workload,” J Eye
Mov Res, vol. 14, no. 2, Jun. 2021, doi: 10.16910/jemr.14.2.4.

J. Sweller, P. Ayres, and S. Kalyuga, “Measuring Cognitive Load,” in Cognitive Load Theory,
New York, NY: Springer New York, 2011, pp. 71-85. doi: 10.1007/978-1-4419-8126-4 6.

P. Chandler and J. Sweller, “Cognitive load theory and the format of instruction,” Cogn Instr, vol.

8, no. 4, pp. 293-332, Dec. 1991, doi: 10.1207/s1532690xci0804 2.



183

Chapter 7

Conclusion

This body of work investigates the progression of designerly behaviors through the
development of design space exploration processes and identifies themes and strategies in
building optimization. Although the students were able to readily explore a prebuilt design space
for improved design solutions in studies 1 and 2, the practitioners exhibited a wider range of
strategies when constructing and exploring a model for optimization compared to students in
studies 3 and 4. While this work does not intend to make generalizable statements about all
designers in these groups, capturing and describing their design behavior is useful in making
suggestions for design stakeholders. A recent review of empirical multidisciplinary design studies
criticized a lack of generalizability and low industrial relevance of research in related topics [1].
In response, this dissertation also makes suggestions for academia and tool developers to better

connect research to application:

7.1 Suggestions for Stakeholders

Computational tools are prevalent in design education for 3D modeling and design
analysis but evoke different responses from students as they develop into practitioners. Their
different behaviors can be leveraged to improve their instruction and may inform tool

development.
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7.1.1 Options for Educators

When accounting for design autonomy, educators may consider which strategies they
would like to encourage students to pursue, depending on the learning goals of the course. If an
educator would like to illustrate objective relationships across disciplinary goals, a pre-built
parametric model may be a useful teaching tool. In the first two studies, the students explored a
pre-built design space that provided design performance feedback and their responses suggest
informed design decisions. Study 1 reported that 83% of the pre-design students produced
improved design solutions from the starting model, despite having never previously used the tool.
They grasped the relationship between objectives in model and were able to isolate designs with
better quantitative performance while still producing visual diversity. From this study, pre-built
models can illustrate design relationships and encourage designers to consider a diversity of
objectives. In Study 2, the teams with only two architects or two engineers were able to produce
designs with the same efficacy as teams with mixed disciplinary backgrounds. When working in
the pre-built model, students accounted for design criteria that were not considered part of their
disciplinary scope. Although design limits are pre-determined in a pre-built design space, they
may still elicit a variety of solutions and prompt exploratory behavior. In an additional
publication, I make a case for parametric models as teaching tools, emphasizing their advantages
as providing pedagogical formative feedback [2]. Formative feedback, defined by Shute [3] is
“information communicated to the learner that is intended to modify his or her thinking or
behavior for the purpose of improving learning.” Formative feedback should be timely
(immediate feedback about performance), supportive (affirmative of correct answers),
nonevaluative (or reduce cognitive load), and specific (reduced uncertainty). Parametric tools can
achieve these requirements when illustrating many design topics including urban planning [4],

structural design [5], and daylighting [6]. However, educators may want to prompt students to
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develop their own boundaries for a design, which would require more modeling freedom.
Constructing a model from scratch would allow the autonomy in design but may also be time
intensive [7] and result in incomplete optimization cycles from students. Nevertheless,
researchers suggest the positive inclusion of more optimization strategies in architectural design
education [8], [9]. Even if students do not pursue DSE as a strategy in their career, introducing
DSE as a way of design thinking may allow them to consider multi-disciplinary design with more
precision in future pursuits. Notably, the practitioners from study 4 reported that they have used
optimization tools for facade design, sculpture installations, and cost engineering. The knowledge
acquired in pursuing optimization thinking extends beyond building design, however, and a
student must first learn how to use the tools. Figure 7-1 summarizes the advantages and

disadvantages for instruction that are suggested by the design exploration actions of the studies.

Figure 7-1. Summary of advantages and disadvantages of different design tool approaches for
educators.
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7.1.2 Feedback for Tool Developers

Students can benefit from learning optimization tools, but the programs should also be
approachable and useful in supporting their education. Although optimization tools are more
widely applied in building design, there are criticisms about its functionality. Wortmann [7]
acknowledges barriers to the use of multi-objective optimization, such as long analysis run times
and poor user interface. Similarly, Tian, et al. [10] reports that long calculation time, a lack of
adequate advertisement, and a lack of standard procedures in optimization are hinderances to the
use of optimization tools. In addition, researchers have expressed a need in building design
industry to prepare designers to use optimization tools [8], [9], [11]. Both instructional techniques
and educational tools may better support students’ understanding of optimization processes. In an
effort to overcome tool based issues, I provide suggestions to tool developers based on
observations from the four studies reported in this dissertation and from existing literature.

Figure 7-2 outlines differences in the studies’ tools, illustrating the program structure of
the model interfaces, the presentation style of performance feedback, and opportunities for an
instructional optimization tool. While Grasshopper was used in all the studies, it was not directly
accessed by designers in Studies 1 & 2. Grasshopper script was projected in Shapediver [12], a
file hosting tool that allows users to explore a Grasshopper space without editing the original file.
Shapediver uses an intuitive interface and reduces the need for designers to learn Grasshopper to
explore a design space. Alternatively, Studies 3 &4 required designers to work in grasshopper and
prompted them to use optimization tools to find improved solutions. These behaviors require
substantial knowledge of the programs and comprehension of disciplinary ideas. The gaps in
skillsets between Studies 1 & 2 and studies 3 & 4 are considerable. For interpreting design
performance feedback, delivery methods also varied between the studies provided in

“presentation style of feedback.” Quantitative objective feedback can be provided as a number
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that the designer must interpret, as in Study 3 and 4, but feedback can also be illustrated. Study 1
used bar graphs and colors to show changes in design performance, and Study 2 projected the two
quantitative objects on a section cut of the design. In Study 03 and 04, the objective values were
provided as numbers from Grasshopper that could be supplied to an optimization tool. Notably,
the optimization program Octopus actively plots design options in an objective space that
designers can explore. However, only three of the nineteen participants in Study 4 used Octopus.
Tool designers may consider how to better highlight advantages of their programs so that
designers recognize their visual benefits. Nevertheless, it may be difficult for a tool developer to
predict how a designer will use their tool. As observed in the first two studies, students can
readily use parametric tools and explore pre-built design spaces, but from studies three and four,
constructing a design space for higher-level analysis was shown to elicit a range of unexpected
design strategies. Previous researchers have recognized the challenges of navigating optimization
tool feedback and Peng & Gero proposed an additional computational tool that supports decision-
making by acting as a liaison between the designer and optimization tools [13]. While the tool
was useful in their study, the tool did not attempt to educate the designer. Furthermore, there is a
gap between pre-built parametric tools and full freedom design space exploration tools that could

be addressed by an instructive optimization tool, identified in Figure 7-2.
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Figure 7-2. Summary of tools illustrating the tool structure, presentation style of feedback, and
instruction opportunities in the tools.

As a potential solution to introduce optimization techniques to developing designers, I
propose the concept of an optimization tool called The Optimization Prompter. This tool would
guide designers from manually searching for improved solutions to incorporating optimization
feedback into their decisions. Through a series of phases, the design space would unlock more
editable variables, or parameters, for the designer to explore and introduce new objectives to
consider. At a later phase, the user would be introduced to an optimization element that would
search the design space and display design options on a 2D or 3D plot. Next, the designer could
control which parameters and objectives they want to include in their optimization search.
Additional optimization strategies can be introduced, such as weighing the importance of
objectives for optimization. A summary of these phases is provided in Figure 7-3. Pre-built

models would be required for this tool, but could vary by building type, project site, and
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disciplinary application. An instructional tool like the Optimization Prompter may lead designers

to perform more Complete Cycles, incorporating performance feedback into their design.

Figure 7-3. Summary of the phases suggested in The Optimization Prompter tool.

Applying the information collected from this dissertation, I have made suggestions for
educators and tool developers with interests in optimization. Instructors can leverage student
behavior when exploring a design space to teach design concepts and tool developers can create
an instructional tool for design optimization. These suggestions are not exhaustive for all

stakeholders but provide initial ideas for encouraging design space exploration strategies.

7.2 Limitations and Future Work

Although this dissertation reports findings from four research studies, spanning across
different levels of experience and methods of assessment, there are still gaps in the work. Each
study has different sets of participants and different design tasks, which introduce numerous
variables between the results. However, holding the variables constant would reduce the accuracy
of the studies in other ways, such as reducing the appropriateness of design tasks to the research

questions. As established by McGrath, when conducting studies on people, precision in one
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dimension of the research will inevitably reduce accuracy in another [14]. Nevertheless, there are
limitations to the extent of this body of work that needs to be addressed.

While this dissertation makes suggestions for academia, none of the research studies
involve student performance in response to classroom instruction, which limits application of the
results to direct changes of pedagogies. Monitoring student behavior throughout a course or after
receiving instruction with parametric and optimization tools would address research questions
pertaining to student learning. This paper does not discuss learning styles or pedagogical
techniques, which would add context to the development of designers. In particular, describing
differences in disciplinary education may impact how a designer uses DSE tools. Chapter 2
acknowledges some disciplinary differences of design education and Chapter 4 focuses on
disciplinary composition in teams, but this dissertation does not distinguish differences between
architects and engineers for the studies discussed in Chapter 3, 5, and 6. Future work can
investigate disciplinary differences to address the gap in knowledge regarding how pedagogy may
impact design behavior in optimization tools.

The tools used in these studies were also highly specific, which narrows the application
of the results to all types of parametric or optimization environments. Optimization techniques
can be used in other building design tools, such as Dynamo for Revit or coding in Python, which
may produce different types of data. However, the tools used, Rhino and Grasshopper, are
prominent in the building design industry and provide an initial understanding of behavior in DSE
tools. This paper does not discuss details of Rhino, Grasshopper, or Shapediver, or report their
potential drawbacks and limitations from a design perspective. The validity of the digital tools
has been well established through their common use by researchers, educators, designers, and tool
developers, so it is assumed that these tools adequately support design decision making.

In addition, several characteristics of the studies are subjective, which can pose

difficulties for repeatability and applicability to broader populations. Qualitative goals, such as
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“appearance” in chapter 3 or “iconic” in chapter 4, are not clearly defined and were open to
interpretation by the participants who may not have interpreted the words with consistent
definitions. When evaluating the quality of the designers, as in chapter 4, differences of
interpretations may have impacted the statistically insignificant results. However, in architectural
building design, qualitative goals are inherently subjective and letting participants respond with
their own interpretations was authentic to their design thinking and behavior.

Future work will continue to consider designer development across levels of education
and investigate opportunities to improve designer performance within DSE tools. Research from
studies 3 and 4 will further examine cognitive effort associated with optimization behavior to
suggest new understandings for models of design processes in complex, DSE environments. In
addition, future work will consider the role of pedagogy in preparing students to use parametric

and optimization tools effectively and how tool instruction can better support design strategies.

7.3 A Final Thought

The studies presented in this dissertation scale across the development of DSE designers’
strategies and use increasingly sophisticated methods to assess design behavior. Existing research
protocols were used, including event recordings, eye-tracking metrics, and professional
evaluations, and established design processes frameworks were employed to develop a novel
measurement for classifying optimization behavior. By identifying strategies, outcomes, and
cognitive efforts of evolving designers, this dissertation highlights advantages and challenges of
using multi-objective tools and emphasizes difference in design techniques by level of
experience. Design, in any medium, is a complex task and there are opportunities to investigate
each stage of the work further through additional research questions. Nevertheless, this work

contributes to understanding design space exploration strategies in academia and practice and
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provides insights about designerly behaviors when solving multi-disciplinary challenges in

emerging building design tools.

References

M. Nguyen and C. Mougenot, “A systematic review of empirical studies on multidisciplinary
design collaboration: Findings, methods, and challenges,” Des Stud, vol. 81, p. 101120, Jul. 2022,
doi: 10.1016/j.destud.2022.101120.

S. Bunt, “Parametric Tools as Teaching Instruments in Architectural Education,” in 2023
NCBDS: Known and UnKnown Territories, Fargo, North Dakota: National Conference on the
Beginning Design Students, 2023.

V. J. Shute, “Focus on Formative Feedback,” Rev Educ Res, vol. 78, no. 1, pp. 153—-189, Mar.
2008, doi: 10.3102/0034654307313795.

M. Schnabel, “Architectural parametric designing,” in Communicating Space(s): 24th eCAADe
Conference Proceedings, Volos, Greece, 20006, pp. 216-221.

N. C. Brown and C. T. Mueller, “The effect of performance feedback and optimization on the
conceptual design process,” in International Association of Spatial Structures Annual Symposium,
Tokyo, Sep. 2016. [Online]. Available: https://www.researchgate.net/publication/316107726

Q. Liu, X. Han, Y. Yan, and J. Ren, “A parametric design method for the lighting environment of
a library building based on building performance evaluation,” Energies (Basel), vol. 16, no. 2, p.
832, Jan. 2023, doi: 10.3390/en16020832.

T. Wortmann, “Architectural Design Optimization—Results from a User Survey,” KnE Social
Sciences, Nov. 2019, doi: 10.18502/kss.v3i27.5550.

W. Peng, “Teaching reform and optimization design of architectural performance course,” Int J

Soc Sci Edu Res, vol. 4, no. 9, pp. 48-52, 2021.



[9]

[10]

[12]

[13]

[14]

193

J. M. Cichocka, W. N. Browne, and E. Rodriguez, “Optimization in the architectural practce,” in
22nd International Conference of the Association for Computer-Aided Architectural Design
Research in Asia (CAADRIA), P. Janssen, P. Loh, A. Raonic, and M. A. Schnabel, Eds., Hong
Kong: The Association for Computer-Aided Architectural Design Research in Asia, 2017, pp.
387-397.

Z. Tian, X. Zhang, X. Jin, X. Zhou, B. Si, and X. Shi, “Towards adoption of building energy
simulation and optimization for passive building design: A survey and a review,” Energy Build,
vol. 158, pp. 13061316, Jan. 2018, doi: 10.1016/j.enbuild.2017.11.022.

J. S. Gero and S. Sarkar, “How to make design optimization more useful to designers,” in
ANZAScA, 2005.

Shapediver GmbH, “Shapediver.” Wien, Austria, 2019.

W. Peng and J. S. Gero, “Concept Formation in a Design Optimization Tool,” in Innovations in
Design & Decision Support Systems in Architecture and Urban Planning, J. P. Van Leeuwen and
H. J. P. Timmermans, Eds., Dordrecht: Springer Netherlands, 2006, pp. 293—-308. doi:
10.1007/978-1-4020-5060-2_19.

J. E. McGrath, “Method for Study of Groups,” in Groups: interactions and performance, New

Jersey: Prentice-Hall Inc., 1984, pp. 31-37.



194

Appendix A

The Pre-design task survey (Figure A1) and post-design task survey (Figure A2) for
Chapter 3 (study 1) are presented below. The pre-design task survey was provided to the study’s
participants at the beginning of the design study, prior to explaining the design task details. The

post-design task survey was provided to the participants after completing the design task:

Figure A1l. The pre-design task survey for Chapter 3.
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Figure A2. The post-design task survey for Chapter 3.
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Appendix B

The performance objectives for the parametric model from Chapter 3 (study 1) were
calculated by multiplying the normalized values of the variables by a coefficient, based on the
variables’ approximate proportional impact on the objective, and adding the results. Table B1
provides the coefficients for each variable for each performance objective. A dash indicates that
the variable has no impact on the performance objective:

Table B1. The coefficients for calculating the performance objectives from Chapter 3.

Variable Cost Energy | Darkness
Shape 0.1 0.05 0.1
Height 0.37 0.18 0.24
Top rotate 0.12 0.05 0.05
Middle height 0.05 0.05
Middle scale 0.08 0.05 0.08
Top scale 0.08 0.05 0.08
Window pattern - 0.22 0.4
Color - - -
Window Thickness 0.04 0.18 -
Wall Thickness 0.08 0.22 -
Base 0.08 - -
TOTAL 1 1 1
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Appendix C

Figure C1 shows the site plan and the design task that was provided to the participants
from Chapter 4 (study 2). The design task was provided in paragraph form with design criteria
embedded so the designers would need to identify the design goals on their own observation. Two
of the criteria aligned with architectural values: that the design be iconic and site appropriate. The
other two requirements aligned with engineering goals: that the roof shade 82% of seats during
noon on the summer solstice and not exceed a maximum deflection limit of 1/180. The shading
goal was determined by inspecting existing stadiums for how many seats were shaded on average
during the summer solstice. This threshold was also shown during model exploration and test
sessions to approximate a percentage goal that was achievable under many variables’ settings to
allow for design flexibility but would challenge the participants to respond to the need for shade.

A deflection of 1/180 is a typical limit for several types of structures in building codes.

Figure C1. (a) The site plan (b) and design task for Chapter 4.
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Appendix D

Used in Chapter 4 (study 2), Figure D1 shows the names of the variables and graphic
representations of what they change. All variables, except “truss depth,” could impact the overall
visual appearance of the model. Meanwhile, the criteria to be appropriate on site was most
affected by “plan shape,” “hole scale,” and “angle of roof.” For the quantitative criteria, “truss
depth,” “hole scale,” “bay count,” and “roof height” directly impacted deflection, and the “cover
size,” “hole angle,” “hole scale,” and “roof height” greatly impacted the percentage of seats
shaded. The variables slid on different increments, depending on the decimal places of the units.
Participants were provided with the Figure D1 graphic with the design task to help navigate the

model’s variables.

Figure D1. The ten editable variables in the design tool with their name, images of what they change
in the model, and the range of their values for Chapter 4.



199

The stadium roof model from Chapter 4 (study 2) was developed in Grasshopper and
used Karamba3D [69] to perform live deflection calculations of the roof as participants changed
the variables. The participants did not directly interact with Karamba3D, but the structural
analysis program ran in the background while they worked. The percentage of seats shaded was
calculated within Grasshopper by projecting the angle of the sun on August 15 (an approximate
date for the Olympics) for a theoretical tropical climate approximately 12 degrees north of the
equator on seats visible in the section cut. Figure D2 shows the tool’s section cut display and two

quantitative feedback metrics.

Figure D2. The tool’s section cut display, showing the maximum deflection, deflection shape, and
the percentage of seats shaded from the sun for Chapter 4.
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Appendix E

The four professionals from Chapter 4 (study 2) were asked to review twelve projects: 6
were the same for all professionals and 6 were different. The professionals responded to the
research request independently and remotely through the online survey tool, Qualtrics. They were
provided with a link to view, but not download or edit, the teams’ deliverables document that
included the teams’ summary statement and screenshots of their design. The projects were
renamed “Pair XX” so that the professionals did not know the disciplinary association of the
participants or the team’s identity. Figure C1 shows an example of one of the project’s
evaluations from the online survey. A small image of the specific project was supplied in addition

to the pair name to make sure the professionals were evaluation the correct project.

Figure E1. Example of a project’s evaluation question for the professionals’ survey for Chapter 4.
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Below are the post-design session interview questions from Chapter 5 and 6 (study 3 and

4). Additional questions about the designers’ behaviors were asked on an individual basis, such as

their thought process when performing certain acts like starting a second design file.

SRR I I .

Can you tell me about your strategy for completing this design challenge?
Did you find any aspect of the process difficult? If so, what?

What did you find to be the easiest?

What were the criteria on which you based your design?

Why did you pick the two criteria that you picked?

What was your envisioned goal for this project?

How do you feel your final designs aligned with these goals?

If you had more time, would you do anything differently for your design?
If you could have interacted with the client, what might you have asked?
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