
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

On spectral bias reduction of multi-scale neural networks for regression

problems

Bo Wang a,b, Heng Yuan a, Lizuo Liu b, Wenzhong Zhang c, Wei Cai b ,∗

a LCSM(MOE), School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081, Hunan, PR China
b Department of Mathematics, Southern Methodist University, Dallas, 75275, TX, USA
c Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 21500, Jiangsu, PR China

A R T I C L E I N F O

MSC:

35Q68

65N35

65T99

65K10

Keywords:

Multi-scale deep neural network

Spectral bias

Diffusion equation

Gradient descent method

A B S T R A C T

In this paper, we derive diffusion equation models in the spectral domain to study the evolution of the training

error of two-layer multiscale deep neural networks (MscaleDNN) (Cai and Xu, 2019; Liu et al., 2020), which

is designed to reduce the spectral bias of fully connected deep neural networks in approximating oscillatory

functions. The diffusion models are obtained from the spectral form of the error equation of the MscaleDNN,

derived with a neural tangent kernel approach and gradient descent training and a sine activation function,

assuming a vanishing learning rate and infinite network width and domain size. The involved diffusion

coefficients are shown to have larger supports if more scales are used in the MscaleDNN, and thus, the proposed

diffusion equation models in the frequency domain explain the MscaleDNN’s spectral bias reduction capability.

The diffusion model in the Fourier-spectral domain allows us to understand clearly the training error decay for

different Fourier-frequencies. The numerical results of the diffusion models for a two-layer MscaleDNN training

match the error evolution of the actual gradient descent training with a reasonably large network width, thus

validating the effectiveness of the diffusion models. Meanwhile, the numerical results for MscaleDNN show

error decay over a wide frequency range and confirm the advantage of using MscaleDNN to approximate

functions with a wide range of frequencies.

1. Introduction

Deep learning algorithms have achieved great success in computer

vision (Krizhevsky, Sutskever, & Hinton, 2012; Simonyan & Zisserman,

2015; Traore, Kamsu-Foguem, & Tangara, 2018), natural language

processing (Lauriola, Lavelli, & Aiolli, 2022; Otter, Medina, & Kalita,

2020; Young, Hazarika, Poria, & Cambria, 2018) and many other

areas. Their computational power with the help of graphics processing

units (GPUs) and capability of handling high-dimensional problems

have led the computational community to investigate their potentials

in applied mathematics research. As a result, a new research field

known as scientific machine learning has become active in the past few

years.

An important task in scientific machine learning is to use deep

neural networks (DNNs) to approximate functions or solutions of par-

tial differential equations (PDEs). The idea of using neural networks

to solve PDEs goes back to the 1990s (Dissanayake & Phan-Thien,

1994; Lagaris, Likas, & Fotiadis, 1998). In general, four categories of

deep PDE solvers have been investigated. The first category is the

∗ Corresponding author.

E-mail address: cai@smu.edu (W. Cai).

use of deep neural networks to improve classical numerical meth-

ods (Greenfeld, Galun, Basri, Yavneh, & Kimmel, 2019; Hsieh, Zhao,

Eismann, Mirabella, & Ermon, 2018; Um, Brand, Fei, Holl, & Thuerey,

2020). In the second category, the solution operators between infinite-

dimensional spaces are approximated by neural networks (Anandkumar

et al., 2020; Li et al., 2021; Li, Kovachki et al., 2020). In the third cate-

gory, deep neural networks are utilized to approximate the solutions of

PDEs directly, such as physics-informed neural networks (PINNs) (Cai,

Li, & Liu, 2020; Liu & Yang, 2021; Oommen V, Bora, Zhang, & Kar-

niadakis, 2024; Raissi & Karniadakis, 2018; Raissi, Perdikaris, & Kar-

niadakis, 2019), the deep Ritz method (Hu, Jin, & Zhou, 2022; Liao

& Ming, 2019; Müller & Zeinhofer, 2019; W.E & Yu, 2018), and

Galerkin methods based on a variational form (Ainsworth & Dong,

2021; Chen, Huang, Wang, & Yang, 2023; Zang, Bao, Ye, & Zhou,

2020). Lastly, Feynman–Kac formula approaches utilize the connection

between linear and nonlinear PDEs and (backward) stochastic differen-

tial equations to construct loss functions for learning algorithms (Beck,

W.E, & Jentzen, 2019; Cai, 2023; Han, Jentzen, & W.E, 2018; Han &
Long, 2020; W.E, Han, & Jentzen, 2017; Zhang & Cai, 2022).

https://doi.org/10.1016/j.neunet.2025.107179

Received 11 October 2024; Received in revised form 3 January 2025; Accepted 14 January 2025



B. Wang et al.

Despite their many successes for a wide range of applications,

recent studies on the convergence of deep learning algorithms in the-

ories and practical computations show that standard fully connected

DNNs have difficulties in learning high-frequency functions, a phe-

nomenon referred to as ‘‘spectral bias’’ (Rahaman et al., 2019) or

‘‘F-Principle’’ (Xu, Zhang, & Luo, 2024; Xu, Zhang, Luo, Xiao, & Ma,

2020) in the literature. To overcome this bias, several strategies have

been introduced to design neural networks with better frequency res-

olution, producing promising results. For solving PDEs, a multi-scale

DNN (MscaleDNN) (Cai & Xu, 2019; Li, John Xu, & Zhang, 2020; Liu,

Cai, & Xu, 2020; Lu, Popuri, Ding, Balachandar, & Beg, 2018; Wang,

Zhang, & Cai, 2020; Zhang, Cai, & John Xu, 2023), which consists

of a series of parallel fully connected sub-neural networks receiving

scaled inputs, has been proposed to learn highly oscillating solutions.

Each individual scaled subnetwork in the MscaleDNN is designed to
approximate a segment of frequency content of the target function, and

the effect of the scaling is to convert a specific range of high-frequency

content to a lower one so that the learning can be accomplished much

faster. It was also proposed in Cai and Xu (2019), Liu et al. (2020)

that the MscaleDNN should use activation functions with a localized

frequency profile, such as the sine function and compact supported

functions (hat functions and B-splines, etc.). In a related work for image

and 3D shape reconstruction, the Fourier feature networks, which

in fact can be obtained from the MscaleDNN with a sine activation

function in their first layer, use the sinusoidal mapping on their inputs

and dramatically improve the learning performance (Mildenhall, Srini-

vasan, Tancik, Barron, Ramamoorthi, & Ng, 2021; Tancik et al., 2020;

Zhong, Bepler, Berger, & Davis, 2021). Adaptive activation functions

including sine and other periodic functions have been shown to give

improved convergence and better approximation in many applica-

tions (Jagtap, Shin, Kawaguchi, & Karniadakis, 2022; Sitzmann, Martel,

Bergman, Lindell, & Wetzstein, 2020).

To analyze the convergence of deep learning algorithms, the neural

tangent kernel (NTK), introduced in Jacot, Gabriel, and Hongler (2018),

has been a very effective tool to study the evolution of DNNs in

function spaces during training (Arora, Du, Hu, Li, & Wang, 2019;

Lee et al., 2019; Luo, Ma, John Xu, & Zhang, 2022; Peng, Hu, &

John Xu, 2023; W.E, Ma, & Wu, 2020), and the eigenvector space of

the NTK determine the convergence of the DNNs. The convergence and

spectral bias of the standard fully connected models and the improved

performance of the afore-mentioned Fourier feature embedded neural

networks can be explained by using the NTK. In fact, the NTK theory

suggests that standard fully connected DNN have a kernel with a rapid

frequency falloff, which prevents them from being able to represent the

high-frequency contents of target functions effectively. Fourier feature

embedded neural networks have been designed to modify the Fourier

spectrum of the NTK so that a faster training convergence for high

frequency components can be achieved (Mildenhall et al., 2021; Tancik

et al., 2020; Wang, Wang, & Perdikaris, 2021; Zhong et al., 2021).

Most of the convergence analysis so far has been done in the

physical domain (Lee et al., 2019; Luo et al., 2022; Peng et al., 2023;

Ronen, Jacobs, Kasten, & Kritchman, 2019; Tancik et al., 2020). Some

explicit formulas of NTKs have been reported for two-layers neural

networks with the ReLU activation function (Arora et al., 2019; Cho

& Saul, 2009; Ronen et al., 2019; Tsuchida, Roosta, & Gallagher, 2018;

Williams, 1996; Xie, Liang, & Song, 2017). The behaviors of the NTK

are usually obtained by analyzing the eigenvalues of the corresponding

Gram matrix (Peng et al., 2023; Tancik et al., 2020). In this paper,

in order to illuminate the mechanism behind the observed reduced

spectral bias in the convergence of the MscaleDNN in approximating

highly oscillatory functions and PDE solutions (Cai & Xu, 2019; Liu

et al., 2020; Wang et al., 2020), we will derive an error diffusion

model, using the NTK approach, but in the Fourier spectral domain for

a two-layered MscaleDNN with a sine activation function for the case

of vanishing learning rate and infinite network width and domain size.

Our contribution is threefold: (i) we prove that the gradient descent

training is equivalent to a diffusion problem in the Fourier spectral

domain; (ii) the diffusion coefficients can be determined by the Fourier

transform of the NTK; (iii) the MscaleDNNs with more scales result in
diffusion coefficients with larger value and support in the frequency

domain. Therefore, our theoretical results provide a clear mathemat-

ical explanation why the MscaleDNN can learn much faster over a

wider range of frequencies. Also, due to the connection between the

MscaleDNN and Fourier feature network (Tancik et al., 2020), the pre-

sented theory can be applied to the latter, as well. The diffusion model

in the Fourier-spectral domain allows us to understand clearly the

training error decay in terms of the Fourier-frequencies, as commonly

done in the filtering theory of Fourier signal processing (Oppenheim,

1999).

The rest of the paper is organized as follows. In Section 2, a brief

review of the MscaleDNN is given. Section 3 derives the diffusion equa-

tion models for the training error of high dimensional fitting problem.

Analysis of the spectral bias reduction of a two layer MscaleDNN will

be done by solving the error diffusion equation models using a Hermite

spectral method in Section 4. The numerical results show that the

MscaleDNN leads to faster convergence over wider range of frequencies

when the number of scales is increased. Finally, Section 5 gives a

conclusion and future work.

2. A review of the multi-scale DNN (mscalednn)

The frequency bias behavior of the deep learning algorithms (Rahaman

et al., 2019; Xu et al., 2020) has inspired the development and usage

of the MscaleDNN in various applications. The MscaleDNN is simply a
combination of several fully connected DNNs with different scales on

their inputs. It is very convenient to replace a fully connected DNN by

a MscaleDNN with equal number of total neurons in a deep learning

algorithm while much better results can be expected. The main idea of

the MscaleDNN is to do a radial scaling in the frequency domain such

that the learning is performed on functions of scaled-down frequency

ranges (Liu et al., 2020; Wang et al., 2020; Zhang et al., 2023).

To illustrate the idea, let us consider the DNN approximation of

a given band-limited target function 𝑓 (𝒙), 𝒙 ∈ R
𝑑 , whose Fourier

transform

𝑓 (𝝃) ∶=  [𝑓 ](𝝃) = ∫
R𝑑

𝑓 (𝒙)𝑒−i2𝜋𝝃
T𝒙d𝒙, (1)

has a compact support, i.e.,

supp𝑓 (𝝃) ⊂ 𝐵𝐾 (𝟎) ∶= {𝝃 ∈ R
𝑑 , |𝝃| ≤ 𝐾}.

Note that the hyper-sphere 𝐵𝐾 (𝟎) in the frequency domain can be

partitioned into a union of 𝑠 + 1 concentric annulus with uniform

or non-uniform radial dimension, e.g., for the case of uniform radial

dimension,

𝐵𝐾 (𝟎) =
𝑠⋃

𝑗=0
𝐴𝑗, 𝐴𝑗 ∶=

{
𝝃 ∈ R

𝑑 ,
𝑗 𝐾
𝑠 + 1

≤ |𝝃| ≤ (𝑗 + 1)𝐾
𝑠 + 1

}
.

Then, the target function in the frequency domain has a decomposition

𝑓 (𝝃) =
𝑠∑

𝑗=0
𝐼𝐴𝑗

(𝝃)𝑓 (𝝃) ∶=
𝑠∑

𝑗=0
𝑓𝑗 (𝝃), (2)

where 𝐼𝐴𝑗
(𝝃) is the indicator function of the set 𝐴𝑗 . From its definition,

the component 𝑓𝑗 (𝝃) has a supp𝑓𝑗 (𝝃) ⊂ 𝐴𝑗 , for 𝑗 = 0, 1,… , 𝑠. A

corresponding decomposition of (2) in the physical domain is given by

𝑓 (𝒙) =
𝑠∑

𝑗=0
𝑓𝑗 (𝒙), (3)

with 𝑓𝑗 (𝒙) being the inverse Fourier transform

𝑓𝑗 (𝒙) = −1[𝑓𝑗 ](𝒙) ∶= ∫
R𝑑

𝑓𝑗 (𝝃)𝑒i2𝜋𝝃
T𝒙d𝝃.

With the decomposition (2), an appropriate scaling can be used to
transform the component 𝑓𝑗 (𝝃) from the high frequency region 𝐴𝑗 to a



B. Wang et al.

Fig. 1. Sketches of a fully connected DNN and a Multi-scale DNN.

low frequency region 𝐴𝑗∕𝛼𝑗 . The scaled version of 𝑓𝑗 (𝝃) is defined as

𝑓
(scale)
𝑗 (𝝃) = 𝑓𝑗 (𝛼𝑗𝝃), (4)

where 𝛼𝑗 > 1 is an appropriate scaling factor for 𝐴𝑗 . By the identity

 [𝑔(𝑎𝒙)](𝝃) =
( 1|𝑎| )𝑑 [𝑔]

( 𝝃
𝑎

)
,

the scaling (4) in the frequency domain leads to

𝑓
(scale)
𝑗 (𝒙) ∶= −1[𝑓 (scale)

𝑗 ](𝒙) = 1
𝛼𝑑𝑗

𝑓𝑗

(
𝒙

𝛼𝑗

)
,

or equivalently

𝑓𝑗 (𝒙) = 𝛼𝑑𝑗 𝑓
(scale)
𝑗 (𝛼𝑗𝒙). (5)

By choosing an appropriate scale 𝛼𝑗 , we are able to make the Fourier

spectrum of 𝑓 scale
𝑗 (𝝃) into a lower frequency range, i.e.,

supp𝑓 scale
𝑗 (𝝃) ⊂

{
𝝃 ∈ R

𝑑 ,
𝑗 𝐾

(𝑠 + 1)𝛼𝑗
≤ |𝝃| ≤ (𝑗 + 1)𝐾

(𝑠 + 1)𝛼𝑗

}
.

As a result of the spectral bias of DNN, a fully connected DNN

𝑓 (𝒙;𝜽𝑗 ) with parameters 𝜽𝑗 can be trained to learn 𝑓
(scale)
𝑗 (𝒙) very fast

if (𝑗+ 1)𝐾∕((𝑠+ 1)𝛼𝑗 ) is small enough. Therefore, the decomposition (3)

and scaling formula (5) implies that a deep learning algorithm using a
neural network in the form

𝑠(𝒙;𝜽) =
𝑠∑

𝑗=0
𝛼𝑑𝑗 𝑓 (𝛼𝑗𝒙;𝜽𝑗 ) (6)

can be expected to have a more uniform convergence and less spec-

tral bias, i.e., frequency uniform approximation to any band-limited

function 𝑓 (𝒙). Deep neural networks defined by (6) are named as the

MscaleDNN and a schematic comparison between fully connected DNN

and MscaleDNN is shown in Fig. 1.

Previous work presented in Cai and Xu (2019), Liu et al. (2020),

Wang et al. (2020) have shown that the MscaleDNN can reduce spectral

bias significantly in learning highly oscillatory functions, however,

mathematical analysis on the mechanism has not been presented in

the literature. The following analysis will build a foundation for the

MscaleDNN and provide a strategy to manipulate the neural networks.

3. Error diffusion equation model of a two-layer mscalednn

In this section, the convergence of a machine learning algorithm for

𝑑-dimensional regression problems with two layers multi-scale neural

networks is analyzed. We will show that the evolution of the error can

be modeled by a diffusion equation in the Fourier frequency domain as

the width of the network goes to infinity and learning rate approaches

to zero.

Consider a regression problem with an objective function 𝑦 = 𝑓 (𝒙)
defined in a bounded domain 𝛺 ⊂ R

𝑑 . The machine learning algorithm

with a neural network denoted by  (𝒙,𝜽) and mean square loss

𝐿(𝜽) = 1
2 ∫𝛺 | (𝒙,𝜽) − 𝑓 (𝒙)|2𝑑𝒙, (7)

will be discussed in the following analysis.

The gradient descent dynamics based on the loss functional (7) is

𝜽(𝑘+1) = 𝜽(𝑘) − 𝜏∇𝐿(𝜽(𝑘)), (8)

where 𝜏 is the learning rate. By regarding 𝜏 as the time step size, the

continuum limit dynamics at 𝜏 → 0 is

d𝜽(𝑡)
d𝑡

= −∇𝐿(𝜽(𝑡)). (9)

With the mean square loss function (7) and the chain rule of differen-

tiation, we obtain

𝜕𝑡 (𝒙,𝜽) =[∇𝜽 (𝒙,𝜽)]T d𝜽
d𝑡

= − ∫𝛺(∇𝜃 (𝒙,𝜽))T∇𝜽 (𝒙′, 𝜃)( (𝒙′, 𝜃) − 𝑓 (𝒙′))𝑑𝒙′

∶= − ∫𝛺 𝛩(𝒙,𝒙′;𝜽)( (𝒙′,𝜽) − 𝑓 (𝒙′))𝑑𝒙′,

(10)

for the dynamics of the network function  (𝒙, 𝜃), where

𝛩(𝒙,𝒙′;𝜽) = (∇𝜃 (𝒙,𝜽))T∇𝜽 (𝒙′, 𝜃), (11)

is the neural tangent kernel (NTK) proposed in Jacot et al. (2018).

For our analysis, we consider a two-layer multi-scale neural network

(see. Fig. 1 (right)) with a constant coefficient (1) in the output layer

as follows

𝑠(𝒙,𝜽) =
1√
𝑁

𝑠∑
𝑗=0

𝛼𝑑𝑗

𝑞∑
𝑘=1

𝜎(𝜽T𝑗 𝑞+𝑘𝛼𝑗𝒙 + 𝑏𝑗 𝑞+𝑘), 𝒙 ∈ 𝛺 ∶= [−1, 1]𝑑 , (12)

where 𝑠+ 1 is the number of scales, {𝛼𝑗}𝑠𝑗=0 are the scaling factors, 𝑞 is

the number of neurons for each scale, 𝑁 = (𝑠 + 1)𝑞 is the total number

of neurons in the hidden layer. Apparently, the network includes the

standard fully connected neural network with one hidden layer as a
special case of 𝑠 = 0. For this two-layer multi-scale neural network, a
direct calculation gives its NTK

𝛩𝑠(𝒙,𝒙′;𝜽) =
𝑠∑

𝑗=0

𝛼2𝑑𝑗 (𝛼2𝑗 𝒙
T𝒙′ + 1)

𝑁

𝑞∑
𝑘=1

𝜎′(𝜽T𝑗 𝑞+𝑘𝛼𝑝𝒙 + 𝑏𝑗 𝑞+𝑘)𝜎′(𝜽T𝑗 𝑞+𝑘𝛼𝑗𝒙
′ + 𝑏𝑗 𝑞+𝑘).

(13)

Setting the activation function

𝜎(𝑥) = sin(𝑥)

and assuming all the parameters {𝜃𝑗 𝑘} in 𝜽𝑗 = (𝜃𝑗1, 𝜃𝑗2,… , 𝜃𝑗 𝑑 )T, {𝑏𝑗}
are independent random variables of normal distribution, then, by the

law of large numbers and identity



B. Wang et al.

Fig. 2. The NTKs in (13) and the limit NTK in (14) (𝑑 = 3, 𝑠 = 3).

(2𝜋)−
𝑑+1
2 ∫

R𝑑+1
𝑒i(𝜽

T𝒙+𝑦𝑏)𝑒−
|𝜽|2+𝑏2

2 𝑑𝜽𝑑 𝑏 = 𝑒−
|𝒙|2+𝑦2

2 , ∀𝒙 ∈ R
𝑑 , 𝑦 ∈ R,

we have

lim
𝑞→∞

𝛩𝑠(𝒙,𝒙′;𝜽) =
𝑠∑

𝑗=0

𝛼2𝑑𝑗 (𝛼2𝑗 𝒙
T𝒙′ + 1)

𝑠 + 1
E(cos(𝜽T1𝛼𝑗𝒙 + 𝑏1) cos(𝜽T1𝛼𝑗𝒙

′ + 𝑏1))

=
𝑠∑

𝑗=0

𝛼2𝑑𝑗 (𝛼2𝑗 𝒙
T𝒙′ + 1)

2(𝑠 + 1)

[
𝑒−2𝑒−

𝛼2
𝑗
|𝒙+𝒙′ |2
2 + 𝑒−

𝛼2
𝑗
|𝒙−𝒙′ |2
2

]
.

(14)

Apparently, {𝜽1, 𝑏1} can replaced by the parameters of any neuron

in the hidden layer. According to the analysis in Jacot et al. (2018),

the NTK will be static during the training assuming the width of the

neural network tends to infinity, which results in the weights near

their initializations. It should be noted that in the extreme learning ma-

chine (Huang, Zhu, & Siew, 2006), random feature method (Rahimi &
Recht, 2007), or random neural network (Suganthan & Katuwal, 2021)

setting, the weights of inner layers are static and only weights in the

output layer are tunable, obtained by solving a least-square problem.

All these methods with fixed parameters in the inner layers have shown

some success in solving PDEs (Chen, Chi, W.E, & Yang, 2022; Shang,

Wang, & Sun, 2023) and operator learning problems (Nelsen & Stuart,

2024). However, the main issue with these methods is the initialization

of the fixed parameters, which is subtle especially for highly oscillatory

problems. The MscaleDNN differs from those frameworks in the sense

that MscaleDNN’s weights (for both inside and outside layers) can

change, but tend to stay near their initialization value when the width

of the network is large. The tunability of the weights significantly con-

tributes to the performance improvement of general neural networks

including the MscaleDNN.

In addition, the limit NTK is also a convolution kernel as presented

in Cho and Saul (2009), Ronen et al. (2019). Suppose 𝒙 and 𝒙′ are

located on the unit sphere, i.e., |𝒙| = |𝒙′| = 1, then the limit NTK is
a function of the angle 𝛽 between 𝒙 and 𝒙′. The NTKs of some multi-

scale neural networks with finite width are compared with their infinite

width limit in Fig. 2. We can see that the NTK (13) converge to a limit

given above as 𝑞 → ∞. In order to validate the static property of the

limit NTK, we train a multi-scale neural network with 𝑠 = 3, 𝑁 = 12000
to fit a 3-dimensional function in the domain [−1, 1]3. The scaling

parameters 𝛼𝑝 are set to be 2𝑝. The NTKs of the multi-scale neural

network after training 1000, 2000, 5000 epochs are compared with the

limit NTK in Fig. 3. The results clearly show that the NTK is static

during training.

Consequently, as the width of the network goes to infinity, the

dynamics of the gradient descent learning (10) tends to

𝜕𝑡(𝑠(𝒙,𝜽) − 𝑓 (𝒙))

= −
𝑠∑

𝑗=0

𝛼
2(𝑑+1)
𝑗 𝒙T

2(𝑠 + 1) ∫𝛺
[
𝑒−2𝑗 (𝒙 + 𝒙′) + 𝑗 (𝒙 − 𝒙′)

]
𝒙′(𝑠(𝒙′,𝜽) − 𝑓 (𝒙′))d𝒙′

−
𝑠∑

𝑗=0

𝛼2𝑑𝑗

2(𝑠 + 1) ∫𝛺
[
𝑒−2𝑗 (𝒙 + 𝒙′) + 𝑗 (𝒙 − 𝒙′)

]
(𝑠(𝒙′,𝜽) − 𝑓 (𝒙′))d𝒙′,

(15)

where

𝑗 (𝒙) ∶= 𝑒
−𝛼2

𝑗
|𝒙|2∕2

, 𝒙 ∈ R
𝑑 , (16)

is the scaled Gaussian function.

Next, we define a zero extension of the error function by

𝜂(𝒙,𝜽) =

{
0, 𝒙 ∉ 𝛺 ,

𝑠(𝒙,𝜽) − 𝑓 (𝒙), 𝒙 ∈ 𝛺 ,

then, the dynamic system (15) can be rewritten as

𝜕𝑡𝜂(𝒙,𝜽)𝐼𝛺(𝒙)

= −
𝑠∑

𝑗=0

𝐼𝛺(𝒙)𝛼
2(𝑑+1)
𝑗 𝒙T

2(𝑠 + 1) ∫
R𝑑

[
𝑒−2𝑗 (𝒙 + 𝒙′) + 𝑗 (𝒙 − 𝒙′)

]
𝒙′𝜂(𝒙′,𝜽)d𝒙′

−
𝑠∑

𝑗=0

𝐼𝛺(𝒙)𝛼2𝑑𝑗
2(𝑠 + 1) ∫

R𝑑

[
𝑒−2𝑗 (𝒙 + 𝒙′) + 𝑗 (𝒙 − 𝒙′)

]
𝜂(𝒙′,𝜽)d𝒙′,

(17)

where an indicator function 𝐼𝛺(𝒙) is used to extend the equation to the

whole space.

Existing works on DNN convergence analysis employ a discrete

version of (17) in the physical space by analyzing the eigenvalues of

the Gram matrix (Lee et al., 2019; Luo et al., 2022; Peng et al., 2023;

Ronen et al., 2019; Tancik et al., 2020). However, to get a precise

information on the spectral bias phenomena, it is more natural to study

the convergence behavior in the Fourier domain as follows.

Given any 𝑔(𝒙) ∈ 𝐿1(R𝑑 ), the Fourier transform defined in (1) has

the following identities

 [∇𝑔](𝝃) = 2𝜋i𝝃 [𝑔](𝝃), ∇𝑔̂(𝝃) = −2𝜋i [𝒙𝑔(𝒙)](𝝃),

∀𝒙𝑔(𝒙) ∈ (𝐿1(R𝑑 ))𝑑 ,
(18)

and

 [𝑒−|𝒙|2 ](𝜉) = 𝜋
𝑑
2 𝑒−𝜋

2|𝝃|2 ,  [𝑔(𝑎𝒙)](𝝃) =
( 1|𝑎| )𝑑 [𝑔]

( 𝝃
𝑎

)
. (19)

In addition, given two functions ℎ(𝒙), 𝑔(𝒙), their cross-correlation and

convolution are defined as

ℎ ⋆ 𝑔 ∶= ∫
R𝑑

ℎ(𝒙′)𝑔(𝒙 + 𝒙′)d𝒙′, ℎ ∗ 𝑔 ∶= ∫
R𝑑

ℎ(𝒙′)𝑔(𝒙 − 𝒙′)d𝒙′,

and we have the following identities,

ℎ̂ ⋆ 𝑔(𝝃) = ℎ̂(𝝃)𝑔̂(𝝃), ℎ̂ ∗ 𝑔(𝝃) = ℎ̂(𝝃)𝑔̂(𝝃), 𝑓 𝑔(𝝃) = 𝑓 ∗ 𝑔(𝝃). (20)



B. Wang et al.

Fig. 3. The NTKs in (13) with 𝑑 = 3, 𝑠 = 3, 𝑁 = 12000 during training.

Taking Fourier transform (1) on both sides of (17) with respect to 𝒙

and then applying (18)–(20) to rearrange the terms gives a integral–

differential equation

𝜕 ̂𝜂(𝝃,𝜽(𝑡)) ∗ 𝐼𝛺(𝝃)
𝜕 𝑡

=

⎡⎢⎢⎣∇𝝃 ⋅
[ 𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗 ̂𝑗 (𝝃)
8𝜋2(𝑠 + 1)

(
∇𝝃 𝜂̂(𝝃,𝜽(𝑡)) − 𝑒−2∇𝝃 𝜂̂(𝝃,𝜽(𝑡))

)]

−
𝑠∑

𝑗=0

𝛼2𝑑𝑗 ̂𝑗 (𝝃)
2(𝑠 + 1)

[𝑒−2 ̄̂𝜂(𝝃,𝜽(𝑡)) + 𝜂̂(𝝃,𝜽(𝑡))]
⎤⎥⎥⎦ ∗ 𝐼𝛺(𝝃),

(21)

where

̂𝑗 (𝝃) = (2𝜋)
𝑑
2 𝛼−𝑑𝑗 𝑒

− 2𝜋2 |𝝃|2
𝛼2
𝑗 . (22)

The convolution with 𝐼𝛺(𝝃) makes the model too complicate to

analyze. Nevertheless, if we consider the limit of infinite large domain,

i.e., 𝛺 → R
𝑑 , the limit of 𝐼𝛺(𝝃) is the Dirac delta function 𝛿(𝜉) and then

(21) simplifies to

𝜕 ̂𝜂(𝝃,𝜽(𝑡))
𝜕 𝑡

=∇𝝃 ⋅
[ 𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗 ̂𝑗 (𝝃)
8𝜋2(𝑠 + 1)

(
∇𝝃 𝜂̂(𝝃,𝜽(𝑡)) − 𝑒−2∇𝝃 𝜂̂(𝝃,𝜽(𝑡))

)]
−

𝑠∑
𝑗=0

𝛼2𝑑𝑗 ̂𝑗 (𝝃)
2(𝑠 + 1)

[𝑒−2 ̄̂𝜂(𝝃,𝜽(𝑡)) + 𝜂̂(𝝃,𝜽(𝑡))].

(23)

Define

𝐴±
𝑠 (𝝃) =

1 ± 𝑒−2

8𝜋2(𝑠 + 1)

𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗 ̂𝑗 (𝝃), 𝐵±

𝑠 (𝝃) =
1 ± 𝑒−2

2(𝑠 + 1)

𝑠∑
𝑗=0

𝛼2𝑑𝑗 ̂𝑗 (𝝃),
(24)

and denote by 𝜂̂±(𝝃,𝜽(𝑡)) the real and imaginary parts of 𝜂̂(𝝃,𝜽(𝑡)), i.e.,

𝜂̂(𝝃,𝜽(𝑡)) = 𝜂̂+(𝝃,𝜽(𝑡)) + i𝜂̂−(𝝃,𝜽(𝑡)).

(Diffusion Model) As the coefficients in (23) are real valued func-

tions, we can rewrite (23) into two independent equations

𝜕𝑡𝜂̂
±(𝝃, 𝑡) = ∇𝝃 ⋅

[
𝐴∓
𝑠 (𝝃)∇𝝃 𝜂̂

±(𝝃, 𝑡)
]
− 𝐵±

𝑠 (𝝃)𝜂̂
±(𝝃, 𝑡), 𝝃 ∈ R

𝑑 , (25)

with respect to the real and imaginary parts of 𝜂̂(𝝃,𝜽(𝑡)), respectively.

A simpler diffusion equation can be derived if the bias are set to zero

in the network. In fact, a function represented by the network without

bias has the form

𝑠(𝒙,𝜽) =
1√
𝑁

𝑠∑
𝑗=0

𝛼𝑑𝑗

𝑞∑
𝑘=1

𝜎(𝜽T𝑗 𝑞+𝑘𝛼𝑗𝒙), 𝒙 ∈ 𝛺 ∶= [−1, 1]𝑑 , (26)

and the neural tangent kernel is given by

𝛩𝑠(𝒙,𝒙′;𝜽) =
𝒙T𝒙′

𝑁

𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗

𝑞∑
𝑘=1

𝜎′(𝜽T𝑗 𝑞+𝑘𝛼𝑗𝒙)𝜎
′(𝜽T𝑗 𝑞+𝑘𝛼𝑗𝒙

′).

Setting the activation function 𝜎(𝑥) = sin(𝑥) again, and assuming

all the parameters {𝜃𝑝} are independent random variables of normal

distribution, then, by law of large numbers, we have

lim
𝑞→∞

𝛩𝑠(𝒙,𝒙′;𝜽) = lim
𝑞→∞

𝒙T𝒙′

𝑁

𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗

𝑞∑
𝑘=1

cos(𝜽T𝑗 𝑞+𝑘𝛼𝑗𝒙) cos(𝜽
T
𝑗 𝑞+𝑘𝛼𝑗𝒙

′)

= 𝒙T𝒙′

2(𝑠 + 1)

𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗 E(cos(𝜽T1𝛼𝑗𝒙) cos(𝜽

T
1𝛼𝑗𝒙

′))

= 𝒙T𝒙′

2(𝑠 + 1)

𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗

[𝑗 (𝒙 + 𝒙′) + 𝑗 (𝒙 − 𝒙′)
]
.

As the width of the network goes to infinity, the dynamics of the

gradient descent learning tends to

𝜕𝑡𝜂(𝒙, 𝜃) = − 𝒙T

2(𝑠 + 1) ∫𝛺
𝑠∑

𝑗=0
𝛼
2(𝑑+1)
𝑗

[𝑗 (𝒙 + 𝒙′) + 𝑗 (𝒙 − 𝒙′)
]
𝒙′𝜂(𝒙′,𝜽)d𝒙′.

(27)

Mimicking the derivation for (23), we obtain from (27) that

𝜕 ̂𝜂(𝝃,𝜽(𝑡))
𝜕 𝑡

=∇𝝃 ⋅
[ 𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗 ̂𝑗 (𝝃)
8𝜋2(𝑠 + 1)

(
∇𝝃 𝜂̂(𝝃,𝜽(𝑡)) − ∇𝝃 𝜂̂(𝝃,𝜽(𝑡))

)]
=i∇𝝃 ⋅

[ 𝑠∑
𝑗=0

𝛼
2(𝑑+1)
𝑗

4𝜋2(𝑠 + 1)
̂𝑗 (𝝃)∇𝝃 𝜂̂

−(𝝃,𝜽(𝑡))
]
,

where 𝜂̂−(𝝃,𝜽(𝑡)) ∶= Im
{
𝜂̂(𝝃,𝜽(𝑡))

}
. The dynamic system (27) in the

Fourier frequency domain implies that only the imaginary part of the

error evolves during the gradient descent training if a two layer multi-

scale neural network with activation function 𝜎(𝑥) = sin(𝑥) and zero

bias is used. This conclusion is consistent with the fact that the network

function (26) can only be used to fit odd functions, where the initial

error 𝜂(𝒙, 0) is also an odd function and its Fourier transform has a zero

real part. Actually, the necessity of non-zero biases in a two layer neural

network has been emphasized in Lee et al. (2019), Ronen et al. (2019).

Note that 𝐴±
𝑠 (𝝃), 𝐵

∓
𝑠 (𝝃) defined in (24) are positive functions in R

𝑑 .

Therefore, the solution of (25) has an energy equality

d
d𝑡 ∫R𝑑

|𝜂̂±(𝝃, 𝑡)|2d𝝃 = −2∫
R𝑑

[
𝐴∓
𝑠 (𝝃)

|||∇𝝃 𝜂̂
±(𝝃, 𝑡)|||2 + 𝐵±

𝑠 (𝝃)|𝜂̂±(𝝃, 𝑡)|2]d𝝃,
(28)

which implies that the solution 𝜂̂±(𝝃, 𝑡) → 0 for any 𝝃 ∈ R
𝑑 as 𝑡 →

∞. That means the gradient descent learning for a fitting problem

with one hidden layer neural network is convergent assuming that

the learning rate is sufficiently small and the width of the neural

network is sufficiently large. It is clear that the diffusion and damping

coefficients {𝐴±
𝑠 (𝝃), 𝐵

∓
𝑠 (𝝃)} play a key role in the error decay rate.

Several plots of the coefficients {𝐴∓
𝑠 (𝜉), 𝐵

±
𝑠 (𝜉)} are given in Fig. 4 for

different scales. We can see that both 𝐴∓
𝑠 (𝜉) and 𝐵±

𝑠 (𝜉) have larger

support and maximum values with increasing scale 𝑠. As the spectral

bias of a neural network refers to the difference of error decay rates



B. Wang et al.

Fig. 4. Diffusion coefficients 𝐴∓
𝑠
(𝜉) (left) and 𝐵±

𝑠
(𝜉) (right) with 𝛼𝑗 = 2𝑗 , 0 ≤ 𝑗 ≤ 𝑠 for scales 𝑠 = 0, 1, 2, 3.

Fig. 5. Scaled diffusion coefficients 𝐴∓
𝑠
(𝜉)∕𝐴∓

𝑠
(0) (left) and 𝐵±

𝑠
(𝜉)∕𝐵±

𝑠
(0) (right) with 𝛼𝑗 = 2𝑗 , 0 ≤ 𝑗 ≤ 𝑠 for scales 𝑠 = 0, 1, 2, 3.

between low- and high-frequency components for a given network,

such a disparity is lessened over a wider frequency range when more

scales are used in the multi-scale neural network. This can be seen in
Fig. 5 of the normalized diffusion and damping coefficients with respect

to their values at zero frequency, which explains the effectiveness of

multiple scales in reducing the spectral bias of neural networks.

4. Spectral bias analysis of a two layer mscalednn using the
diffusion equation model

The analysis in previous section has shown that the error dynamics

of the gradient descent learning can be approximately described by the

diffusion Eqs. (25) in the Fourier spectral domain when the network

width and the domain size go to infinity and the learning rate to zero.

In this section, we will first propose a Hermite spectral method to

obtain highly accurate numerical solutions of the diffusion equation.

Some numerical results will be presented to show that the error dy-

namics predicted by the diffusion model matches well with that of the

MscaleDNN during realistic training. Moreover, the results also validate

the capability of spectral bias reduction of the MscaleDNNs for wider

range of frequencies. For simplicity, we only consider the 1-dimensional

case to illustrate the main results.

4.1. Hermite spectral method for the diffusion equation problem

In order to examine quantitatively the decay of the error in the

Fourier domain, we will solve numerically the equations in (25) with a
Hermite spectral method for the 𝜉-variable of the equations in (25) on

the unbounded computational domain. For this purpose, we introduce

the Hermite functions (cf. Shen, Tang, and Wang (2011)) defined by

𝐻̂𝑛(𝜉) =
1

𝜋1∕4
√
2𝑛𝑛!

𝑒−𝜉
2∕2𝐻𝑛(𝜉), 𝑛 ≥ 0, 𝜉 ∈ R, (29)

where 𝐻𝑛(𝜉) are Hermite polynomials. The Hermite functions 𝐻̂𝑛(𝜉) are

orthogonal

(𝐻̂𝑛(𝜉), 𝐻̂𝑚(𝜉)) = ∫
+∞

−∞
𝐻̂𝑛(𝜉)𝐻̂𝑚(𝜉)𝑑 𝑥 = 𝛿𝑚𝑛, (30)

where 𝛿𝑚𝑛 is Kronecker symbol.

We discretize the computational time interval [0, 𝑇 ] into equally-

spaced intervals 𝐼𝑘 ∶= [𝑘𝛥𝑡, (𝑘 + 1)𝛥𝑡] for 𝑘 = 0, 1,… , 𝑁 , where 𝛥𝑡 =
𝑇 ∕𝑁 . Then, the Hermite spectral method together with backward Euler

time discretization is to find approximation

𝜂̃±𝑚(𝜉) =
𝑝∑

𝑘=0
𝜂̃±
𝑚𝑘

𝐻̂𝑘(𝜆𝜉), (31)

for 𝜂̂±(𝜉 , 𝑡) at time 𝑡𝑚 = 𝑚𝛥𝑡 s.t.,( 𝜂̃±𝑚(𝜉) − 𝜂̃±
𝑚−1(𝜉)

𝛥𝑡
, 𝐻̂𝑛(𝜆𝜉)

)
= −𝑎(𝜂̃±𝑚(𝜉), 𝐻̂𝑛(𝜆𝜉)), (32)

for all 𝑛 = 0, 1,… , 𝑝. Here, 𝜆 is a scaling parameter to achieve resolution

near 𝜉 = 0, and the bilinear form 𝑎(⋅, ⋅) is defined as

𝑎(𝜙(𝜉), 𝜓(𝜉)) =
(
𝐴∓
𝑠 (𝜉)

𝑑 𝜙(𝜉)
𝑑 𝜉

,
𝑑 𝜓(𝜉)
𝑑 𝜉

)
− (𝐵±

𝑠 (𝜉)𝜙(𝜉).𝜓(𝜉)). (33)

Next, with the unknown vector denoted by 𝑼±
𝑚 = (𝜂̃±

𝑚0, ̃𝜂
±
𝑚1,… , ̃𝜂±𝑚𝑝)

T,

the numerical scheme (32) gives a linear system

D

𝑼±
𝑚 − 𝑼±

𝑚−1
𝛥𝑡

= (K∓ +M
±)𝑼±

𝑚, (34)

where D = (𝐷𝑛𝑘), K
± = (𝐾±

𝑛𝑘
), M = (𝑀±

𝑛𝑘
) are matrices with entries

given by

𝐷𝑛𝑘 = (𝐻̂𝑘(𝜆𝜉), 𝐻̂𝑛(𝜆𝜉)) =
1
𝜆
𝛿𝑛𝑘, 𝐾±

𝑛𝑘
= −𝜆2

(
𝐴±
𝑠 (𝜉)𝐻̂

′
𝑘(𝜆𝜉), 𝐻̂

′
𝑛(𝜆𝜉)

)
,

𝑀±
𝑛𝑘

= −(𝐵±
𝑠 (𝜉)𝐻̂𝑘(𝜆𝜉), 𝐻̂𝑛(𝜆𝜉)).

By using the recurrence formula of the Hermite functions, formula-

tions for the matrices K±, M± can be derived analytically (see Appendix).



B. Wang et al.

Fig. 6. Frequency domain error decay in time for a regression problem as predicted by the diffusion model (25) for three MscaleDNNs of scale (𝑠 = 0, 3, 5) with corresponding

diffusion coefficients 𝐴±
𝑠
(𝜉), 𝐵±

𝑠
(𝜉).

4.2. Spectral bias reduction of a two layer mscalednn

Some numerical examples will be presented to show the capability

of the diffusion model in predicting the error dynamics of a two layer

MscaleDNN. The predicted results will be compared with the training

error of the two-layer MscaleDNN with a large network width and

sine activation function. The spectral bias reduction phenomena of

MscaleDNNs is validated by the numerical solution of the diffusion

model.

Test 1 (Decaying behavior predicted by the diffusion model).
We first study the decay speed and range of the solution of the diffusion

model (25). Considering an initial condition for the error function in the

frequency domain

𝜂̂±(𝜉 , 0) =

{
1, |𝜉| ≤ 5,
0, |𝜉| > 5,

we will test the diffusion model (25) with three sets of coefficients

{𝐴∓
𝑠 (𝜉), 𝐵

±
𝑠 (𝜉)}, 𝑠 = 0, 3, 6. For the numerical discretization of the PDE,

we take 𝑝 = 100, 𝛥𝑡 = 1.0𝑒 − 3 in (31). The numerical solutions at

different time 𝑡 are plotted in Fig. 6. The numerical results clearly

show that the initial error function decays faster over wider frequency

ranges with an increasing of 𝑠. It is worthy to emphasize that diffusion

coefficients {𝐴∓
0 (𝜉), 𝐵

±
0 (𝜉)} only produce fast decay in only a small

neighborhood of the zero frequency, which corresponds to exactly the

spectral bias of a fully connected DNN (Rahaman et al., 2019; Xu

et al., 2020). These observations are consistent with the performance

of the MscaleDNN, which has faster convergence in the approximation

of highly oscillated functions.

Test 2 (Validation of error diffusion model with real
MscaleDNN training). In this test, we will show that the error dynam-

ics of a finite but wide enough 2-layered multi-scale neural network

can be predicted by the diffusion equation model quite well.

We consider a fitting problem with an objective function

𝑓 (𝑥) = sin 𝑎𝜋 𝑥 + cos 𝑏𝜋 𝑥,

on the interval [−𝛽 , 𝛽]. The Fourier transform of 𝑓 (𝑥) with zero exten-

sion outside [−𝛽 , 𝛽] is

𝑓 (𝜉) =
sin[(𝑏 + 2𝜉)𝛽 𝜋]

(𝑏 + 2𝜉)𝜋
+

sin[(𝑏 − 2𝜉)𝛽 𝜋]
(𝑏 − 2𝜉)𝜋

+ i
[
sin[(𝑎 + 2𝜉)𝛽 𝜋]

(𝑎 + 2𝜉)𝜋
−

sin[(𝑎 − 2𝜉)𝛽 𝜋]
(𝑎 − 2𝜉)𝜋

]
.

For the two layers multi-scale neural network, the Fourier transform of

𝑠(𝑥, 𝜃) with zero extension outside [−𝛽 , 𝛽] can be calculated as

̂𝑠(𝜉 , 𝜃) =
1√
𝑁

𝑠∑
𝑗=0

𝛼𝑗

𝑞∑
𝑘=1

𝑆𝑗 ,𝑘(𝜉 , 𝜃) +
1√
𝑁

𝑠∑
𝑗=0

𝛼𝑗

𝑞∑
𝑘=1

𝐶𝑗 ,𝑘(𝜉 , 𝜃),

where

𝑆𝑗 ,𝑘(𝜉 , 𝜃) =
−2𝜋i𝜉(𝑒2𝜋i𝛽 𝜉 sin(𝛼𝑗𝜃𝑗 𝑞+𝑘𝛽 − 𝑏𝑗 𝑞+𝑘) + 𝑒−2𝜋i𝛽 𝜉 sin(𝛼𝑗𝜃𝑗 𝑞+𝑘𝛽 + 𝑏𝑗 𝑞+𝑘))

𝛼2𝑗 𝜃
2
𝑗 𝑞+𝑘 − 4𝜋2𝜉2

,

and

𝐶𝑗 ,𝑘(𝜉 , 𝜃) =
𝛼𝑗𝜃𝑗 𝑞+𝑘(𝑒2𝜋i𝛽 𝜉 cos(𝛼𝑗𝜃𝑗 𝑞+𝑘𝛽 − 𝑏𝑗 𝑞+𝑘) − 𝑒−2𝜋i𝛽 𝜉 cos(𝛼𝑗𝜃𝑗 𝑞+𝑘𝛽 + 𝑏𝑗 𝑞+𝑘))

𝛼2𝑗 𝜃
2
𝑗 𝑞+𝑘 − 4𝜋2𝜉2

.

We will show that the error 𝜂̂𝑁 𝑁 (𝜉 , 𝜃) = ̂𝑠(𝜉 , 𝜃) − 𝑓 (𝜉) of the

MscaleDNN by the gradient descent learning agrees with that predicted

by the diffusion Eq. (25). We take 𝑎 = 4.2, 𝑏 = 5.8, 𝛽 = 1 and



B. Wang et al.

Fig. 7. Frequency domain error evolution (left — real part, right — imaginary part) in time of a 3-scale MscaleDNN with a network width 𝑁 = 12,000 (line) vs prediction by

diffusion model (25) (symbol).

the initial errors are given by 𝜂𝑁 𝑁 (𝑥, 𝜃0) = 𝑠(𝑥, 𝜃0) − 𝑓 (𝑥) with

parameters initialized by sampling from independent random variables

of normal distribution. In the gradient descent training for the 𝑠(𝑥, 𝜃),
the training data set consists of 2000 uniformly distributed points in
[−𝛽 , 𝛽] and learning rate 𝜏 = 1.0𝑒− 3 is adopted. In this example, a two

layers neural network with 𝑚 = 12,000, 𝛼𝑗 = 2𝑗 and scale 𝑠 = 3 is tested

and the training is performed in full batch.

Meanwhile, in the Fourier spectral domain, the diffusion Eq. (25)

with initial function 𝜂̂(𝜉 , 𝜃0) = ̂𝑠(𝜉 , 𝜃0) − 𝑓 (𝜉) will be solved with a 𝑝th

order the Hermite spectral method introduced above. We take 𝑝 = 300
and 𝛥𝑡 = 𝜏 in the discretization.

The Fourier transform of 𝜂𝑁 𝑁 (𝑥, 𝜃(𝑡)), denoted by

𝜂̂𝑁 𝑁 (𝑥, 𝜃(𝑡)) = 𝜂̂+
𝑁 𝑁 (𝜉 , 𝜃(𝑡)) + i𝜂−𝑁 𝑁 (𝜉 , 𝜃(𝑡))

are compared with 𝜂̃±𝑚(𝜉) at 𝑡 = 𝑚𝛥𝑡, see Fig. 7. Although many approx-

imations have been used in deriving the diffusion model, the results

show that the prediction produced by the diffusion model captured the

main features of the error over a long time training process.

On the other hand, we can also compare the training error with

the diffusion model prediction in the physical domain. Using the fact

that Gradshteyn and Ryzhik (2014), Li, Liu, and Wang (2022)

−1[𝐻̂𝑘(𝜉)](𝑥) = ∫
+∞

−∞
𝐻̂𝑘(𝜉)𝑒2i𝜋 𝜉 𝑥d𝜉 =

√
2𝜋i𝑘𝐻̂𝑘(2𝜋 𝜉),

the Hermite approximation of the error predicted by the diffusion

model, i.e.,

𝜂̃±𝑚(𝜉) =
𝑝∑

𝑘=0
𝜂̃𝑚𝑘𝐻̂𝑘(𝜆𝜉),

can be analytically transformed back to the physical domain as

𝜂±𝑚(𝑥) ∶= −1[𝜂̃±𝑚](𝑥)

=
𝑝∑

𝑘=0
𝜂̃𝑚𝑘 ∫

+∞

−∞
𝐻̂𝑘(𝜆𝜉)𝑒2i𝜋 𝑥𝜉d𝜉 =

√
2𝜋
𝜆

𝑝∑
𝑘=0

𝜂̃𝑚𝑘i𝑘𝐻̂𝑘

(2𝜋 𝑥
𝜆

)
.

Then, in the physical domain the errors 𝜂𝑁 𝑁 (𝑥, 𝜃(𝑡𝑚)) from the

MscaleDNN training and 𝜂𝑚(𝑥) = 𝜂+𝑚(𝑥) + i𝜂−𝑚(𝑥) predicted by the

diffusion equation can be compared in Fig. 8. Clearly, the evolution

of the errors matches quite well in physical domain. We also plot the

mean squared loss during the training of MscaleDNN and compare

it with the 𝑙2-norm of the error predicted by the diffusion model in
Fig. 9. The results demonstrate that, in this example, the diffusion

model accurately predicts the loss decay. It is worthy to point out that

the fitting domain 𝛺 = [−1, 1] is not large. However, the diffusion

model can still be a satisfactory predictor for the real error through

the training of the MScaleDNN with a large enough network width.

Test 3 (Reduction of spectral bias predicted by error diffusion
model). With the confirmation of predicting capability of the diffusion

equation model (25) for the error decay of the MscaleDNN with a

large enough network width, we will use the model to demonstrate the

spectral bias reduction of MscaleDNNs with increasing scales.



B. Wang et al.

Fig. 8. Physical domain error evolution in time of a 3-scale MscaleDNN with a network width 𝑁 = 12,000 (line) vs prediction by diffusion model (25) (symbol).

Fig. 9. Mean square loss (left-frequency domain, right-physical domain) during the training of a 3-scale MscaleDNN with a network width 𝑁 = 12,000 (line-*) vs prediction

(line-circle) by diffusion model (25).

Fig. 10. Frequency domain error decay in time predicted by (25) for a FCN corresponding to coefficients {𝐴±
0 (𝜉), 𝐵

∓
0 }.

Again, We set the network width at 𝑚 = 12000, and 𝑎 = 4.2, 𝑏 = 5.8
and the initial errors are given by 𝜂̂(𝜉 , 𝜃0) = ̂𝑠(𝜉 , 𝜃0) − 𝑓 (𝜉) with

parameters initialized by sampling from independent random variables

of normal distribution. In the Hermite spectral method approximation

of the diffusion Eq. (25), we take 𝑝 = 300 and 𝛥𝑡 = 1.0𝑒 − 3. The

numerical solution of the diffusion equations at different time 𝑡 for a
standard fully connected network (FCN) corresponding to coefficients

{𝐴±
0 (𝜉), 𝐵

∓
0 } and a 3-scales MscaleDNN corresponding to coefficients

{𝐴±
3 (𝜉), 𝐵

∓
3 } are plotted in Figs. 10 and 11. We can see clearly that FCN

with diffusion coefficients {𝐴±
0 (𝜉), 𝐵

∓
0 } only produce decay in a very

small neighborhood of the zero frequency while the 3-scale MscaleDNN

with coefficients {𝐴±
3 (𝜉), 𝐵

∓
3 } produce much faster decay in a larger

frequency interval. Although the initial errors at 𝑡 = 0 are different,

̂0(𝜉 , 𝜃0) −𝑓 (𝜉) for FCN and ̂3(𝜉 , 𝜃0) −𝑓 (𝜉) for 3-scale MscaleDNN, the

numerical results all verify that multi-scale neural networks has better

performance in spectral bias reduction compared with the FCN.

5. Conclusion and future work

In this paper, we investigated the convergence and spectral bias re-

duction properties of a two-layer multi-scale neural network for regres-

sion problems by deriving diffusion equation models in the frequency

domain for predicting its error evolution. With the sine activation func-

tion, the gradient descent learning of MscaleDNNs leads to the diffusion

equation models for the error assuming that the width of the neural

network goes to infinity, the learning rate to zero and the fitting domain

to the whole space. The diffusion coefficients of the diffusion equations

are shown to have wider support in the frequency domain with more

scales used in the MscaleDNNs, resulting in a reduction of spectral bias

for the MscaleDNNs. This is consistent with the performance of the

MscaleDNN with faster convergence in approximating highly oscillated

functions from various applications. Moreover, the derived diffusion

equation can predict the convergence of the MscaleDNNs learning

algorithm even with a finite and reasonably wide network in a finite

domain.

The analysis of the MScaleDNNs with more layers, and other pop-

ular activation functions, e.g., ReLU, Sigmoid, etc, as well as for solv-

ing boundary value problems of differential equations will be studied

following a similar approach of this paper.



B. Wang et al.

Fig. 11. Frequency domain error decay in time predicted by (25) for a 3-scale MscaleDNN corresponding to coefficients {𝐴±
3 (𝜉), 𝐵

∓
3 }.

CRediT authorship contribution statement

Bo Wang: Writing – review & editing, Writing – original draft,

Software, Methodology, Funding acquisition, Formal analysis, Con-

ceptualization. Heng Yuan: Validation, Software, Investigation. Lizuo

Liu: Validation, Software. Wenzhong Zhang: Investigation, Funding

acquisition, Formal analysis. Wei Cai: Writing – review & editing, Writ-

ing – original draft, Supervision, Project administration, Methodology,

Investigation, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgments

The first and second authors acknowledges the support provided by

NSFC, China (grant 12022104, 12371394) and the Major Program of

Xiangjiang Laboratory (No. 22XJ01013). W. Z. Zhang acknowledges the

support provided by NSFC, China (grant No. 92270205, No. 12201603).

The work of W. Cai is supported by the US National Science Foundation

grant DMS-2207449.

Appendix. Analytic formulas for the computation of matrices
K

±,M±

We first recall the recurrence formulas (cf. Shen et al. (2011))

𝐻̂0(𝑥) = 𝜋−1∕4𝑒−𝑥
2∕2, 𝐻̂1(𝑥) =

√
2𝜋−1∕4𝑥𝑒−𝑥

2∕2,

𝐻̂𝑛+1(𝑥) = 𝑥

√
2

𝑛 + 1
𝐻̂𝑛(𝑥) −

√
𝑛

𝑛 + 1
𝐻̂𝑛−1(𝑥) = 0, 𝑛 ≥ 1,

(A.1)

𝐻̂ ′
0(𝑥) = −𝜋−1∕4

2
𝑥𝑒−𝑥

2∕2 = −

√
2
2

𝐻̂1(𝑥),

𝐻̂ ′
𝑛(𝑥) =

√
𝑛

2
𝐻̂𝑛−1(𝑥) −

√
𝑛 + 1
2

𝐻̂𝑛+1(𝑥), 𝑛 ≥ 1,
(A.2)

of the Hermite functions 𝐻̂𝑛(𝑥).
Then, by the recurrence formula (A.2), we have

𝐻̂ ′
0(𝑥)𝐻̂

′
0(𝑥) =

1
2
𝐻̂1(𝑥)𝐻̂1(𝑥),

𝐻̂ ′
0(𝑥)𝐻̂

′
𝑛(𝑥) = −

√
𝑛

2
𝐻̂1(𝑥)𝐻̂𝑛−1(𝑥) +

√
𝑛 + 1
2

𝐻̂1(𝑥)𝐻̂𝑛+1(𝑥), 𝑛 ≥ 1.

and

𝐻̂ ′
𝑘(𝑥)𝐻̂

′
𝑛(𝑥)

=

[√
𝑘

2
𝐻̂𝑘−1(𝑥) −

√
𝑘 + 1
2

𝐻̂𝑘+1(𝑥)

] [√
𝑛

2
𝐻̂𝑛−1(𝑥) −

√
𝑛 + 1
2

𝐻̂𝑛+1(𝑥)

]

=

√
𝑛𝑘

2
𝐻̂𝑘−1(𝑥)𝐻̂𝑛−1(𝑥) −

√
(𝑛 + 1)𝑘
2

𝐻̂𝑘−1(𝑥)𝐻̂𝑛+1(𝑥)

−

√
𝑛(𝑘 + 1)
2

𝐻̂𝑘+1(𝑥)𝐻̂𝑛−1(𝑥) +

√
(𝑛 + 1)(𝑘 + 1)

2
𝐻̂𝑘+1(𝑥)𝐻̂𝑛+1(𝑥),

for all 𝑛, 𝑘 ≥ 1. Therefore,

𝐾±
00 =

1
2
𝐶±
11, 𝐾±

0𝑛 = 𝐾±
𝑛0 = −

√
𝑛

2
𝐶±
1,𝑛−1 +

√
𝑛 + 1
2

𝐶±
1,𝑛+1, 𝑛 ≥ 1, (A.3)

where 𝐶±
𝑛𝑘

= −𝜆2 ∫ +∞
−∞ 𝐴±

𝑠 (𝜉)𝐻̂𝑘(𝜆𝜉)𝐻̂𝑛(𝜆𝜉)𝑑 𝜉. Otherwise, for all 𝑛, 𝑘 ≥ 1,

𝐾±
𝑛𝑘

=

√
𝑛

2
(√

𝑘𝐶±
𝑛−1,𝑘−1 −

√
𝑘 + 1𝐶±

𝑛−1,𝑘+1
)

−

√
𝑛 + 1
2

(√
𝑘𝐶±

𝑛+1,𝑘−1 −
√
𝑘 + 1𝐶±

𝑛+1,𝑘+1
)
.

Noting that

𝑀±
𝑛𝑘

= −∫
+∞

−∞
𝐵±
𝑠 (𝜉)𝐻̂𝑘(𝜆𝜉)𝐻̂𝑛(𝜆𝜉)𝑑 𝜉 ,

and 𝐴±
𝑠 (𝜉), 𝐵

±
𝑠 (𝜉) are linear combination of Gaussian functions as pre-

sented in (24), the computation of 𝐶±
𝑛𝑘

and 𝑀±
𝑛𝑘

can be reduced to

compute the weighted inner products

𝐼𝑛𝑘(𝜏) = ∫
+∞

−∞
𝐻̂𝑛(𝑥)𝐻̂𝑘(𝑥)𝑒−𝜏 𝑥

2
𝑑 𝑥

= 1√
𝜏 + 1 ∫

+∞

−∞
𝐻̃𝑛

( 𝑦√
𝜏 + 1

)
𝐻̃𝑘

( 𝑦√
𝜏 + 1

)
𝑒−𝑦

2
𝑑 𝑦.

(A.4)

where 𝐻̃𝑛(𝑥) is the normalized Hermite polynomial defined by 𝐻̃𝑛(𝑥) =
𝑒𝑥

2∕2𝐻̂𝑛(𝑥). In fact, for 𝐴±
𝑠 (𝜉), 𝐵

±
𝑠 (𝜉) given in (24), we have

𝐶±
𝑛𝑘

= −
(1 ± 𝑒−2)𝜆

2(2𝜋)
3
2 (𝑠 + 1)

𝑠∑
𝑗=0

𝛼3𝑗 𝐼𝑛𝑘

( 2𝜋2

𝛼2𝑗 𝜆
2

)
,

𝑀±
𝑛𝑘

= −
√

𝜋

2
1 ± 𝑒−2

(𝑠 + 1)𝜆

𝑠∑
𝑗=0

𝛼𝑗𝐼𝑛𝑘

( 2𝜋2

𝛼2𝑗 𝜆
2

)
.

Next, we present formulas for the calculation of the integrals 𝐼𝑛𝑘(𝜏).
Given any scaling factor 𝜆, scaled Hermite polynomial 𝐻̃𝑛(𝜆𝑦) can be

represented by 𝐻̃𝑛(𝑦) as follows

𝐻̃𝑛(𝜆𝑦) =
𝑛∑

𝑘=0
ℎ𝑛,𝑘(𝜆)𝐻̃𝑘(𝑦), (A.5)

where {ℎ𝑛,𝑘(𝜆)} can be calculated via recurrence formulas (A.8). There-

fore,

𝐼𝑛𝑘(𝜏) =
1√
𝜏 + 1 ∫

∞

−∞
𝐻̃𝑛

( 𝑦√
𝜏 + 1

)
𝐻̃𝑘

( 𝑦√
𝜏 + 1

)
𝑒−𝑦

2
𝑑 𝑦

= 1√
𝜏 + 1

𝑛∑
𝑖=0

𝑘∑
𝑗=0

ℎ𝑛,𝑖

( 1√
𝜏 + 1

)
ℎ𝑘,𝑗

( 1√
𝜏 + 1

)
∫

∞

−∞
𝐻̃𝑖(𝑦)𝐻̃𝑗 (𝑦)𝑒−𝑦

2
𝑑 𝑦

= 1√
𝜏 + 1

min{𝑛,𝑘}∑
𝑖=0

ℎ𝑛,𝑖

( 1√
𝜏 + 1

)
ℎ𝑘,𝑖

( 1√
𝜏 + 1

)
.

Next, we derive recurrence formulas for the computation of the

coefficients {ℎ𝑛𝑘(𝜆)}. We drop the explicit dependence on 𝜆 without

confusion in the following derivation. By the definition of 𝐻̃𝑛(𝑦) and

the recurrence formula (A.1), we have√
2(𝑛 + 1)𝐻̃𝑛+1(𝜆𝑦) = 2𝜆𝑦𝐻̃𝑛(𝜆𝑦) −

√
2𝑛𝐻̃𝑛−1(𝜆𝑦), 𝑛 ≥ 1. (A.6)



B. Wang et al.

Substituting the expansion (A.5) into (A.6) gives for 𝑛 ≥ 1√
2(𝑛 + 1)

𝑛+1∑
𝑘=0

ℎ𝑛+1,𝑘𝐻̃𝑘(𝑦) = 2𝜆𝑦
𝑛∑

𝑘=0
ℎ𝑛,𝑘𝐻̃𝑘(𝑦) −

√
2𝑛

𝑛−1∑
𝑘=0

ℎ𝑛−1,𝑘𝐻̃𝑘(𝑦).

(A.7)

Noting that

𝐻̃1(𝑦) =
√
2𝑦𝐻̃0(𝑦), 2𝑦𝐻̃𝑘(𝑦) =

√
2(𝑘 + 1)𝐻̃𝑘+1(𝑦) +

√
2𝑘𝐻̃𝑘−1(𝑦) , 𝑘 ≥ 1,

direct calculation from (A.7) gives

2𝜆𝑦
𝑛∑

𝑘=0
ℎ𝑛,𝑘(𝜆)𝐻̃𝑘(𝑦)

=𝜆
𝑛∑

𝑘=1
ℎ𝑛,𝑘(𝜆)

[√
2(𝑘 + 1)𝐻̃𝑘+1(𝑦) +

√
2𝑘𝐻̃𝑘−1(𝑦)

]
+ 2𝑎𝑦ℎ𝑛,0(𝜆)𝐻̃0(𝑦)

=𝑎
𝑛∑

𝑘=0

√
2(𝑘 + 1)ℎ𝑛,𝑘(𝜆)𝐻̃𝑘+1(𝑦) + 𝑎

𝑛∑
𝑘=1

√
2𝑘ℎ𝑛,𝑘(𝜆)𝐻̃𝑘−1(𝑦)

=𝑎
𝑛+1∑
𝑘=1

√
2𝑘ℎ𝑛,𝑘−1(𝜆)𝐻̃𝑘(𝑦) + 𝑎

𝑛−1∑
𝑘=0

√
2(𝑘 + 1)ℎ𝑛,𝑘+1(𝜆)𝐻̃𝑘(𝑦).

Therefore, (A.7) can be rearranged into√
2(𝑛 + 1)

𝑛+1∑
𝑘=0

ℎ𝑛+1,𝑘𝐻̃𝑘(𝑦)

=𝜆
𝑛+1∑
𝑘=1

√
2𝑘ℎ𝑛,𝑘−1(𝜆)𝐻̃𝑘(𝑦) + 𝜆

𝑛−1∑
𝑘=0

√
2(𝑘 + 1)ℎ𝑛,𝑘+1(𝜆)𝐻̃𝑘(𝑦)

−
√
2𝑛

𝑛−1∑
𝑘=0

ℎ𝑛−1,𝑘(𝜆)𝐻̃𝑘(𝑦)

=[
√
2𝜆ℎ𝑛,1(𝜆) −

√
2𝑛ℎ𝑛−1,0(𝜆)]𝐻̃0(𝑦) + 𝜆

√
2𝑛ℎ𝑛,𝑛−1(𝜆)𝐻̃𝑛(𝑦)

+ 𝜆
√
2(𝑛 + 1)ℎ𝑛,𝑛(𝜆)𝐻̃𝑛+1(𝑦)

+
𝑛−1∑
𝑘=1

[𝜆
√
2𝑘ℎ𝑛,𝑘−1(𝜆) + 𝜆

√
2(𝑘 + 1)ℎ𝑛,𝑘+1(𝜆) −

√
2𝑛ℎ𝑛−1,𝑘(𝜆)]𝐻̃𝑘(𝑦).

Matching the coefficients on both sides of the above equation gives us

ℎ𝑛+1,0(𝜆) =
√

1
𝑛 + 1

𝜆ℎ𝑛,1(𝜆) −
√

𝑛

𝑛 + 1
ℎ𝑛−1,0(𝜆),

ℎ𝑛+1,𝑘(𝜆) = 𝜆

√
𝑘 + 1
𝑛 + 1

ℎ𝑛,𝑘+1(𝜆) −
√

𝑛

𝑛 + 1
ℎ𝑛−1,𝑘(𝜆)

+ 𝜆

√
𝑘

𝑛 + 1
ℎ𝑛,𝑘−1(𝜆), for 1 ≤ 𝑘 ≤ 𝑛 − 1,

ℎ𝑛+1,𝑘(𝜆) = 𝜆

√
𝑘

𝑛 + 1
ℎ𝑛,𝑘−1(𝜆), 𝑘 = 𝑛, 𝑛 + 1,

(A.8)

for all 𝑛 ≥ 1, while the initial values are given by

ℎ0,0(𝜆) = 1, ℎ1,0(𝜆) = 0, ℎ1,1(𝜆) = 𝜆. (A.9)

By induction, ℎ𝑛,𝑘(𝜆) has explicit formula for all 𝑘 = 0, 1,… , 𝑛

ℎ𝑛,𝑘(𝜆) =

⎧⎪⎨⎪⎩
0, 𝑛 − 𝑘 = 2𝑠 + 1,√

𝑛!
2𝑛−𝑘𝑘!

1
𝑠!
𝜆𝑘(𝜆2 − 1)𝑠, 𝑛 − 𝑘 = 2𝑠.

Data availability

Data will be made available on request.

References

Ainsworth, M., & Dong, J. (2021). Galerkin neural networks: A framework for

approximating variational equations with error control. SIAM Journal on Scientific
Computing, 43(4), A2474–A2501.

Anandkumar, A., Azizzadenesheli, K., Bhattacharya, K., Kovachki, N., Li, Z. Y., Liu, B.,

et al. (2020). Neural operator: Graph kernel network for partial differential

equations. In ICLR 2020 workshop on integration of deep neural models and differential
equations.

Arora, S., Du, S., Hu, W., Li, Z. Y., & Wang, R. (2019). Fine-grained analysis of

optimization and generalization for overparameterized two-layer neural networks.

In International conference on machine learning (pp. 322–332). PMLR.

Beck, C., W. E, & Jentzen, A. (2019). Machine learning approximation algorithms

for high-dimensional fully nonlinear partial differential equations and second-

order backward stochastic differential equations. Journal of Nonlinear Science, 29,

1563–1619.

Cai, W. (2023). DeepMartNet – A Martingale based deep neural network learning

algorithm for eigenvalue/BVP problems and optimal stochastic controls. arXiv

preprint arXiv:2307.11942v3.

Cai, W., Li, X. G., & Liu, L. Z. (2020). A phase shift deep neural network for high

frequency approximation and wave problems. SIAM Journal on Scientific Computing,
42(5), A3285–A3312.

Cai, W., & Xu, Z. Q. (2019). Multi-scale deep neural networks for solving high

dimensional PDEs. arXiv preprint arXiv:1910.11710.

Chen, J., Chi, X., W. E, & Yang, Z. (2022). Bridging traditional and machine learning-

based algorithms for solving PDEs: The random feature method. arXiv preprint

arXiv:2207.13380.

Chen, F., Huang, J., Wang, C., & Yang, H. (2023). Friedrichs learning: Weak solutions of

partial differential equations via deep learning. SIAM Journal on Scientific Computing,
45(3), A1271–99.

Cho, Y., & Saul, L. (2009). Kernel methods for deep learning. In NeurIPS: vol. 22, (pp.

295–301).

Dissanayake, M., & Phan-Thien, N. (1994). Neural-network-based approximations for

solving partial differential equations. Communications in Numerical Methods in
Engineering, 10(3), 195–201.

Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. Academic

Press.

Greenfeld, D., Galun, M., Basri, R., Yavneh, I., & Kimmel, R. (2019). Learning to

optimize multigrid pde solvers. In International conference on machine learning (pp.

2415–2423). PMLR.

Han, J., Jentzen, A., & W. E (2018). Solving high-dimensional partial differential

equations using deep learning. Proceedings of the National Academy of Sciences,
115(34), 8505–8510.

Han, J., & Long, J. H. (2020). Convergence of the deep bsde method for coupled fbsdes.

Probability Uncertainty and Quantitative Risk, 5, 1–33.

Hsieh, J. T., Zhao, S. J., Eismann, S., Mirabella, L., & Ermon, S. (2018). Learning neural

PDE solvers with convergence guarantees. In International conference on learning
representations.

Hu, T. H., Jin, B. T., & Zhou, Z. (2022). Solving elliptic problems with singular sources

using singularity splitting deep ritz method. arXiv preprint arXiv:2209.02931.

Huang, G., Zhu, Q., & Siew, C. (2006). Extreme learning machine: Theory and

applications. Neurocomputing, 70(1), 489–501.

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and

generalization in neural networks. In Proc. adv. neural inf. process. syst., vol. 31.

Jagtap, A. D., Shin, Y., Kawaguchi, K., & Karniadakis, G. E. (2022). Deep kronecker

neural networks: A general framework for neural networks with adaptive activation

functions. Neurocomputing, 468, 165–180.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems
25 (pp. 1097–1105).

Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving

ordinary and partial differential equations. IEEE Transactions on Neural Networks,
9(5), 987–1000.

Lauriola, I., Lavelli, A., & Aiolli, F. (2022). An introduction to deep learning in natural

language processing: Models, techniques, and tools. Neurocomputing, 470, 443–456.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., et al. (2019).

Wide neural networks of any depth evolve as linear models under gradient descent.

In NeurIPS: vol. 32.

Li, X. A., John Xu, Z. Q., & Zhang, L. (2020). A multi-scale dnn algorithm for nonlinear

elliptic equations with multiple scales. Communications in Computational Physics, 28,

1886–1906.

Li, Z. Y., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., et

al. (2021). Fourier neural operator for parametric partial differential equations. In
International conference on learning representations.

Li, Z. Y., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart, A., Bhattacharya, K.,

et al. (2020). Multipole graph neural operator for parametric partial differential

equations. In Advances in neural information processing systems: vol. 33, (pp.

6755–6766).

Li, H. Y., Liu, R. Q., & Wang, L. L. (2022). Efficient hermite spectral-Galerkin methods

for nonlocal diffusion equations in unbounded domains. Numerical Mathematics.
Theory, Methods.

Liao, Y., & Ming, P. (2019). Deep nitsche method: Deep ritz method with essential

boundary conditions. arXiv preprint arXiv:1912.01309.

Liu, Z. Q., Cai, W., & Xu, John Z. Q. (2020). Multi-scale deep neural net-

work (mscaleDNN) for solving Poisson-Boltzmann equation in complex domains.

Communications in Computational Physics, 28(5), 1970–2001.



B. Wang et al.

Liu, Y. J., & Yang, C. (2021). Vpvnet: a velocity-pressure-vorticity neural network

method for the stokes’ equations under reduced regularity. arXiv preprint arXiv:

2112.07131.

Lu, D. H., Popuri, K., Ding, Gavin W., Balachandar, R., & Beg, M. F. (2018). Multimodal

and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease

using structural mr and fdg-pet images. Scientific Reports, 8(1), 5697.

Luo, T., Ma, Z., John Xu, Z. Q., & Zhang, Y. (2022). On the exact computation of linear

frequency principle dynamics and its generalization. SIAM Journal on Mathematics
of Data Science, 4(4), 1272–1292.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R.

(2021). Nerf: Representing scenes as neural radiance fields for view synthesis.

Communications of the ACM, 65(1), 99–106.

Müller, J., & Zeinhofer, M. (2019). Deep ritz revisited. arXiv preprint arXiv:1912.03937.

Nelsen, N. H., & Stuart, A. M. (2024). Operator learning using random features: A tool

for scientific computing. SIAM Review, 66(3), 535–571.

Oommen V, V., Bora, A., Zhang, Z., & Karniadakis, G. E. (2024). Integrating neural

operators with diffusion models improves spectral representation in turbulence

modeling. arXiv preprint arXiv:2409.08477.

Oppenheim, A. V. (1999). Discrete-time signal processing. Pearson Education India.

Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep

learning for natural language processing. IEEE Transactions on Neural Networks and
Learning Systems, 32(2), 604–624.

Peng, Y., Hu, D., & John Xu, Z. Q. (2023). A non-gradient method for solving elliptic

partial differential equations with deep neural networks. Journal of Computational
Physics, 472, Article 111690.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., et al. (2019). On

the spectral bias of neural networks. In International conference on machine learning
(pp. 5301–5310). PMLR.

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines.

Advances in Neural Information Processing Systems, 20.

Raissi, M., & Karniadakis, G. E. (2018). Hidden physics models: Machine learning

of nonlinear partial differential equations. Journal of Computational Physics, 357,

125–141.

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations. Journal of Computational Physics,
378, 686–707.

Ronen, B., Jacobs, D., Kasten, Y., & Kritchman, S. (2019). The convergence rate of

neural networks for learned functions of different frequencies. In NeurIPS: vol. 32.

Shang, Y., Wang, F., & Sun, J. (2023). Randomized neural network with Petrov–

Galerkin methods for solving linear and nonlinear partial differential equations.

Communications in Nonlinear Science and Numerical Simulation, 127, Article 107518.

Shen, J., Tang, T., & Wang, L. L. (2011). Springer series in computational mathematics:
vol. 41, Spectral methods: algorithms, analysis and applications. Springer-Verlag.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale

image recognition. In Proceedings of the 2015 int. conf. on learning representations.
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit

neural representations with periodic activation functions. In NeurIPS: vol. 33, (pp.

7462–7473).

Suganthan, P. N., & Katuwal, R. (2021). On the origins of randomization-based

feedforward neural networks. Applied Soft Computing, 105, Article 107239.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U.,

et al. (2020). Fourier features let networks learn high frequency functions in low

dimensional domains. In Advances in neural information processing systems: vol. 33,

(pp. 7537–7547).

Traore, B. B., Kamsu-Foguem, B., & Tangara, F. (2018). Deep convolution neural

network for image recognition. Ecological Informatics, 48, 257–268.

Tsuchida, R., Roosta, F., & Gallagher, M. (2018). Invariance of weight distributions

in rectified mlps. In International conference on machine learning (pp. 4995–5004).

PMLR.

Um, K., Brand, R., Fei, Y. R., Holl, P., & Thuerey, N. (2020). Solver-in-the-loop: Learning

from differentiable physics to interact with iterative PDE-solvers. In Advances in
neural information processing systems: vol. 33, (pp. 6111–6122).

Wang, S., Wang, H., & Perdikaris, P. (2021). On the eigenvector bias of Fourier feature

networks: From regression to solving multi-scale PDEs with physics-informed neural

networks. Computer Methods in Applied Mechanics and Engineering, 384, Article

113938.

Wang, B., Zhang, W. Z., & Cai, W. (2020). Multi-scale deep neural net-

work (MscaleDNN) methods for oscillatory stokes flows in complex domains.

Communications in Computational Physics, 28(5), 2139–2157.

W. E, Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for

high-dimensional parabolic partial differential equations and backward stochastic

differential equations. Communications in Mathematics and Statistics, 5(4), 349–380.

W. E, Ma, C., & Wu, L. (2020). Machine learning from a continuous viewpoint, I.

Science China. Mathematics, 63(11), 2233–2266.

W. E, & Yu, B. (2018). The deep Ritz method: a deep learning-based numerical

algorithm for solving variational problems. Communications in Mathematics and
Statistics, 6(1), 1–12.

Williams, C. (1996). Computing with infinite networks. In NeurIPS: vol. 9, (pp.

295–301).

Xie, B., Liang, Y., & Song, L. (2017). Diverse neural network learns true target functions.

In Artificial intelligence and statistics (pp. 1216–1224). PMLR.

Xu, Z. Q. J., Zhang, Y., & Luo, T. (2024). Overview frequency principle/spectral bias

in deep learning. Communication on Applied Mathematics and Computation, 1–38.

Xu, Z. Q. J., Zhang, Y. Y., Luo, T., Xiao, Y. Y., & Ma, Z. (2020). Frequency

principle: Fourier analysis sheds light on deep neural networks. Communications

in Computational Physics, 28(5), 1746–1767.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning

based natural language processing. IEEE Computational Intelligence Magazine, 13(3),

55–75.

Zang, Y. H., Bao, G., Ye, X. J., & Zhou, H. M. (2020). Weak adversarial networks for

high-dimensional partial differential equations. Journal of Computational Physics,
411, Article 109409.

Zhang, W. Z., & Cai, W. (2022). FBSDE based neural network algorithms for high-

dimensional quasilinear parabolic pdes. Journal of Computational Physics, 470,

Article 111557.

Zhang, L., Cai, W., & John Xu, Z. Q. (2023). A correction and comments on ‘‘Multi-

scale deep neural network (mscalednn) for solving Poisson–Boltzmann equation in
complex domains. CICP, 28(5):1970–2001,2020’’. Communications in Computational
Physics, 33(5), 1509–1513.

Zhong, E. D., Bepler, T., Berger, B., & Davis, J. H. (2021). Cryodrgn: reconstruction

of heterogeneous cryo-em structures using neural networks. Nature Methods, 18(2),

176–185.


