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ARTICLE INFO ABSTRACT

MSC: In this paper, we derive diffusion equation models in the spectral domain to study the evolution of the training
35Q68 error of two-layer multiscale deep neural networks (MscaleDNN) (Cai and Xu, 2019; Liu et al., 2020), which
65N35 is designed to reduce the spectral bias of fully connected deep neural networks in approximating oscillatory
65T99 functions. The diffusion models are obtained from the spectral form of the error equation of the MscaleDNN,
65K10 derived with a neural tangent kernel approach and gradient descent training and a sine activation function,
Key“fordS: assuming a vanishing learning rate and infinite network width and domain size. The involved diffusion
I;Zti;iclaé;:eep neural network coefficients are shown to have larger supports if more scales are used in the MscaleDNN, and thus, the proposed

diffusion equation models in the frequency domain explain the MscaleDNN’s spectral bias reduction capability.
The diffusion model in the Fourier-spectral domain allows us to understand clearly the training error decay for
different Fourier-frequencies. The numerical results of the diffusion models for a two-layer MscaleDNN training
match the error evolution of the actual gradient descent training with a reasonably large network width, thus
validating the effectiveness of the diffusion models. Meanwhile, the numerical results for MscaleDNN show
error decay over a wide frequency range and confirm the advantage of using MscaleDNN to approximate

Diffusion equation
Gradient descent method

functions with a wide range of frequencies.

1. Introduction

Deep learning algorithms have achieved great success in computer
vision (Krizhevsky, Sutskever, & Hinton, 2012; Simonyan & Zisserman,
2015; Traore, Kamsu-Foguem, & Tangara, 2018), natural language
processing (Lauriola, Lavelli, & Aiolli, 2022; Otter, Medina, & Kalita,
2020; Young, Hazarika, Poria, & Cambria, 2018) and many other
areas. Their computational power with the help of graphics processing
units (GPUs) and capability of handling high-dimensional problems
have led the computational community to investigate their potentials
in applied mathematics research. As a result, a new research field
known as scientific machine learning has become active in the past few
years.

An important task in scientific machine learning is to use deep
neural networks (DNNs) to approximate functions or solutions of par-
tial differential equations (PDEs). The idea of using neural networks
to solve PDEs goes back to the 1990s (Dissanayake & Phan-Thien,
1994; Lagaris, Likas, & Fotiadis, 1998). In general, four categories of
deep PDE solvers have been investigated. The first category is the
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use of deep neural networks to improve classical numerical meth-
ods (Greenfeld, Galun, Basri, Yavneh, & Kimmel, 2019; Hsieh, Zhao,
Eismann, Mirabella, & Ermon, 2018; Um, Brand, Fei, Holl, & Thuerey,
2020). In the second category, the solution operators between infinite-
dimensional spaces are approximated by neural networks (Anandkumar
et al., 2020; Li et al., 2021; Li, Kovachki et al., 2020). In the third cate-
gory, deep neural networks are utilized to approximate the solutions of
PDEs directly, such as physics-informed neural networks (PINNs) (Cai,
Li, & Liu, 2020; Liu & Yang, 2021; Oommen V, Bora, Zhang, & Kar-
niadakis, 2024; Raissi & Karniadakis, 2018; Raissi, Perdikaris, & Kar-
niadakis, 2019), the deep Ritz method (Hu, Jin, & Zhou, 2022; Liao
& Ming, 2019; Miiller & Zeinhofer, 2019; W.E & Yu, 2018), and
Galerkin methods based on a variational form (Ainsworth & Dong,
2021; Chen, Huang, Wang, & Yang, 2023; Zang, Bao, Ye, & Zhou,
2020). Lastly, Feynman-Kac formula approaches utilize the connection
between linear and nonlinear PDEs and (backward) stochastic differen-
tial equations to construct loss functions for learning algorithms (Beck,
W.E, & Jentzen, 2019; Cai, 2023; Han, Jentzen, & W.E, 2018; Han &
Long, 2020; W.E, Han, & Jentzen, 2017; Zhang & Cai, 2022).
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Despite their many successes for a wide range of applications,
recent studies on the convergence of deep learning algorithms in the-
ories and practical computations show that standard fully connected
DNNs have difficulties in learning high-frequency functions, a phe-
nomenon referred to as “spectral bias” (Rahaman et al., 2019) or
“F-Principle” (Xu, Zhang, & Luo, 2024; Xu, Zhang, Luo, Xiao, & Ma,
2020) in the literature. To overcome this bias, several strategies have
been introduced to design neural networks with better frequency res-
olution, producing promising results. For solving PDEs, a multi-scale
DNN (MscaleDNN) (Cai & Xu, 2019; Li, John Xu, & Zhang, 2020; Liu,
Cai, & Xu, 2020; Lu, Popuri, Ding, Balachandar, & Beg, 2018; Wang,
Zhang, & Cai, 2020; Zhang, Cai, & John Xu, 2023), which consists
of a series of parallel fully connected sub-neural networks receiving
scaled inputs, has been proposed to learn highly oscillating solutions.
Each individual scaled subnetwork in the MscaleDNN is designed to
approximate a segment of frequency content of the target function, and
the effect of the scaling is to convert a specific range of high-frequency
content to a lower one so that the learning can be accomplished much
faster. It was also proposed in Cai and Xu (2019), Liu et al. (2020)
that the MscaleDNN should use activation functions with a localized
frequency profile, such as the sine function and compact supported
functions (hat functions and B-splines, etc.). In a related work for image
and 3D shape reconstruction, the Fourier feature networks, which
in fact can be obtained from the MscaleDNN with a sine activation
function in their first layer, use the sinusoidal mapping on their inputs
and dramatically improve the learning performance (Mildenhall, Srini-
vasan, Tancik, Barron, Ramamoorthi, & Ng, 2021; Tancik et al., 2020;
Zhong, Bepler, Berger, & Davis, 2021). Adaptive activation functions
including sine and other periodic functions have been shown to give
improved convergence and better approximation in many applica-
tions (Jagtap, Shin, Kawaguchi, & Karniadakis, 2022; Sitzmann, Martel,
Bergman, Lindell, & Wetzstein, 2020).

To analyze the convergence of deep learning algorithms, the neural
tangent kernel (NTK), introduced in Jacot, Gabriel, and Hongler (2018),
has been a very effective tool to study the evolution of DNNs in
function spaces during training (Arora, Du, Hu, Li, & Wang, 2019;
Lee et al., 2019; Luo, Ma, John Xu, & Zhang, 2022; Peng, Hu, &
John Xu, 2023; W.E, Ma, & Wu, 2020), and the eigenvector space of
the NTK determine the convergence of the DNNs. The convergence and
spectral bias of the standard fully connected models and the improved
performance of the afore-mentioned Fourier feature embedded neural
networks can be explained by using the NTK. In fact, the NTK theory
suggests that standard fully connected DNN have a kernel with a rapid
frequency falloff, which prevents them from being able to represent the
high-frequency contents of target functions effectively. Fourier feature
embedded neural networks have been designed to modify the Fourier
spectrum of the NTK so that a faster training convergence for high
frequency components can be achieved (Mildenhall et al., 2021; Tancik
et al., 2020; Wang, Wang, & Perdikaris, 2021; Zhong et al., 2021).

Most of the convergence analysis so far has been done in the
physical domain (Lee et al., 2019; Luo et al., 2022; Peng et al., 2023;
Ronen, Jacobs, Kasten, & Kritchman, 2019; Tancik et al., 2020). Some
explicit formulas of NTKs have been reported for two-layers neural
networks with the ReLU activation function (Arora et al., 2019; Cho
& Saul, 2009; Ronen et al., 2019; Tsuchida, Roosta, & Gallagher, 2018;
Williams, 1996; Xie, Liang, & Song, 2017). The behaviors of the NTK
are usually obtained by analyzing the eigenvalues of the corresponding
Gram matrix (Peng et al., 2023; Tancik et al., 2020). In this paper,
in order to illuminate the mechanism behind the observed reduced
spectral bias in the convergence of the MscaleDNN in approximating
highly oscillatory functions and PDE solutions (Cai & Xu, 2019; Liu
et al., 2020; Wang et al., 2020), we will derive an error diffusion
model, using the NTK approach, but in the Fourier spectral domain for
a two-layered MscaleDNN with a sine activation function for the case
of vanishing learning rate and infinite network width and domain size.
Our contribution is threefold: (i) we prove that the gradient descent
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training is equivalent to a diffusion problem in the Fourier spectral
domain; (ii) the diffusion coefficients can be determined by the Fourier
transform of the NTK; (iii) the MscaleDNNs with more scales result in
diffusion coefficients with larger value and support in the frequency
domain. Therefore, our theoretical results provide a clear mathemat-
ical explanation why the MscaleDNN can learn much faster over a
wider range of frequencies. Also, due to the connection between the
MscaleDNN and Fourier feature network (Tancik et al., 2020), the pre-
sented theory can be applied to the latter, as well. The diffusion model
in the Fourier-spectral domain allows us to understand clearly the
training error decay in terms of the Fourier-frequencies, as commonly
done in the filtering theory of Fourier signal processing (Oppenheim,
1999).

The rest of the paper is organized as follows. In Section 2, a brief
review of the MscaleDNN is given. Section 3 derives the diffusion equa-
tion models for the training error of high dimensional fitting problem.
Analysis of the spectral bias reduction of a two layer MscaleDNN will
be done by solving the error diffusion equation models using a Hermite
spectral method in Section 4. The numerical results show that the
MscaleDNN leads to faster convergence over wider range of frequencies
when the number of scales is increased. Finally, Section 5 gives a
conclusion and future work.

2. A review of the multi-scale DNN (mscalednn)

The frequency bias behavior of the deep learning algorithms (Rahaman
et al., 2019; Xu et al., 2020) has inspired the development and usage
of the MscaleDNN in various applications. The MscaleDNN is simply a
combination of several fully connected DNNs with different scales on
their inputs. It is very convenient to replace a fully connected DNN by
a MscaleDNN with equal number of total neurons in a deep learning
algorithm while much better results can be expected. The main idea of
the MscaleDNN is to do a radial scaling in the frequency domain such
that the learning is performed on functions of scaled-down frequency
ranges (Liu et al., 2020; Wang et al., 2020; Zhang et al., 2023).

To illustrate the idea, let us consider the DNN approximation of
a given band-limited target function f(x), x € R?, whose Fourier
transform

f©& =Flf16) = /IR , f(x)e 27 dx, )
has a compact support, i.e.,
suppf (&) € Bg(0) := {£ € RY, || < K}.

Note that the hyper-sphere By (0) in the frequency domain can be
partitioned into a union of s + 1 concentric annulus with uniform
or non-uniform radial dimension, e.g., for the case of uniform radial
dimension,

4. 4 =leert K g UHDK
Then, the target function in the frequency domain has a decomposition
N N
&= 14,&f© =Y, [, @)
j=0 Jj=0

where 1 4 (&) is the indicator function of the set A;. From its definition,
the component f/-(lj) has a suppfj(f) c A; forj = 01,....5. A
corresponding decomposition of (2) in the physical domain is given by

EEDIWEN (3)

Jj=0

with f;(x) being the inverse Fourier transform

£;0 = F 10 1= /]R F©e? e,

With the decomposition (2), an appropriate scaling can be used to
transform the component f,(g) from the high frequency region A; to a
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Full Connected DNN

Multi-scale DNN

Fig. 1. Sketches of a fully connected DNN and a Multi-scale DNN.

low frequency region A;/a;. The scaled version of fj({j) is defined as
f;scak)(f) — fj(aj;:)’ )

where «; > 1 is an appropriate scaling factor for A;. By the identity
Fle@oi = (=) Fia(£).
|al a
the scaling (4) in the frequency domain leads to
(scale) . 1 pA(scale) _ L ) i

£ =PI = ()

or equivalently

60 = & 15 @;%). ®)

By choosing an appropriate scale a;, we are able to make the Fourier
spectrum of f;“"‘le(«’,‘) into a lower frequency range, i.e.,

Fscale d JK (+DK
supp /@) < {¢ € "5+ Da; s+ Da, }

<|él <

As a result of the spectral bias of DNN, a fully connected DNN
f(x:6;) with parameters 6; can be trained to learn f;scale)(x) very fast
if G+ 1)K /((s +1)a;) is small enough. Therefore, the decomposition (3)
and scaling formula (5) implies that a deep learning algorithm using a
neural network in the form

N, (x:0) = Y o f(a;x:0)) (6
j=0

can be expected to have a more uniform convergence and less spec-
tral bias, i.e., frequency uniform approximation to any band-limited
function f(x). Deep neural networks defined by (6) are named as the
MscaleDNN and a schematic comparison between fully connected DNN
and MscaleDNN is shown in Fig. 1.

Previous work presented in Cai and Xu (2019), Liu et al. (2020),
Wang et al. (2020) have shown that the MscaleDNN can reduce spectral
bias significantly in learning highly oscillatory functions, however,
mathematical analysis on the mechanism has not been presented in
the literature. The following analysis will build a foundation for the
MscaleDNN and provide a strategy to manipulate the neural networks.

3. Error diffusion equation model of a two-layer mscalednn

In this section, the convergence of a machine learning algorithm for
d-dimensional regression problems with two layers multi-scale neural
networks is analyzed. We will show that the evolution of the error can
be modeled by a diffusion equation in the Fourier frequency domain as
the width of the network goes to infinity and learning rate approaches
to zero.

Consider a regression problem with an objective function y = f(x)
defined in a bounded domain 2 c R?. The machine learning algorithm

with a neural network denoted by N'(x, 0) and mean square loss
1
1©) =3 [ 15x.0)- f0Pax. @)
Q
will be discussed in the following analysis.
The gradient descent dynamics based on the loss functional (7) is

0%t = 0™ — rvL(OW), (8)
where 7 is the learning rate. By regarding 7 as the time step size, the

continuum limit dynamics at z — 0 is

o
5 =~ VLOW). ©)

With the mean square loss function (7) and the chain rule of differen-
tiation, we obtain

O,N(x,0) =[VoN(x, e)]T%’
=— /Q (VN (x, 0) Vo N &, )N (', 0) — f(x")dx (10)

=— / Ox, x' ;0N (x',0) — f(x'))dx',
Q

for the dynamics of the network function N'(x, #), where
O(x,x";0) = (Vo N (x,0) Vo N (x',0), (an

is the neural tangent kernel (NTK) proposed in Jacot et al. (2018).
For our analysis, we consider a two-layer multi-scale neural network
(see. Fig. 1 (right)) with a constant coefficient (1) in the output layer
as follows
1 v av
Ny, 0) = —= Y a! Y 0(0] a;x+bu), x€Q:=[-111 (12)
N j=0 = k=1
where s+ 1 is the number of scales, {a; };=0 are the scaling factors, ¢ is
the number of neurons for each scale, N = (s + 1)q is the total number
of neurons in the hidden layer. Apparently, the network includes the
standard fully connected neural network with one hidden layer as a
special case of s = 0. For this two-layer multi-scale neural network, a
direct calculation gives its NTK

0,(x,x';0) =
s o(@2xTx' +1) 4
i i 1T 1coT ’
Y 2 O x +by00 O] X + b,
j=0 k=1
13)

Setting the activation function
o(x) = sin(x)

and assuming all the parameters {6} in 6, = (01,0, ... ,Ojd)T, {b;}
are independent random variables of normal distribution, then, by the
law of large numbers and identity
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—— NTK for m=1200
—— limit NTK

2.0
2.0

0.5

0.0

—— NTK for m=12000
—— limit NTK

—— NTK for m = 120000
—— limit NTK

0.5

) N\

15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0

Fig. 2. The NTKs in (13) and the limit NTK in (14) (d = 3,5 = 3).

_xPa?
=e 2 N

_d+l T _lel
Qr)" 2 / O X+, vxeR?, yeR,
]Rd+l

we have

s a]?d(a]szx’ +1)

Jim 0,(x.x";0) = > E(cos(0] a;x + b;) cos(0] a;x" + b))

= s+1
i azd(aszx’ + 1)[ 5 _aflx;:r’\z .\ _wjz-\x;x’lz]
= e ’e e .
26+ 1D

(14)

Apparently, {6,,b,;} can replaced by the parameters of any neuron
in the hidden layer. According to the analysis in Jacot et al. (2018),
the NTK will be static during the training assuming the width of the
neural network tends to infinity, which results in the weights near
their initializations. It should be noted that in the extreme learning ma-
chine (Huang, Zhu, & Siew, 2006), random feature method (Rahimi &
Recht, 2007), or random neural network (Suganthan & Katuwal, 2021)
setting, the weights of inner layers are static and only weights in the
output layer are tunable, obtained by solving a least-square problem.
All these methods with fixed parameters in the inner layers have shown
some success in solving PDEs (Chen, Chi, W.E, & Yang, 2022; Shang,
Wang, & Sun, 2023) and operator learning problems (Nelsen & Stuart,
2024). However, the main issue with these methods is the initialization
of the fixed parameters, which is subtle especially for highly oscillatory
problems. The MscaleDNN differs from those frameworks in the sense
that MscaleDNN’s weights (for both inside and outside layers) can
change, but tend to stay near their initialization value when the width
of the network is large. The tunability of the weights significantly con-
tributes to the performance improvement of general neural networks
including the MscaleDNN.

In addition, the limit NTK is also a convolution kernel as presented
in Cho and Saul (2009), Ronen et al. (2019). Suppose x and x’ are
located on the unit sphere, i.e., |x| = |x’| = 1, then the limit NTK is
a function of the angle g between x and x’. The NTKs of some multi-
scale neural networks with finite width are compared with their infinite
width limit in Fig. 2. We can see that the NTK (13) converge to a limit
given above as ¢ — . In order to validate the static property of the
12000
to fit a 3-dimensional function in the domain [-1,1]?. The scaling
, are set to be 27. The NTKs of the multi-scale neural
network after training 1000, 2000, 5000 epochs are compared with the
limit NTK in Fig. 3. The results clearly show that the NTK is static
during training.

limit NTK, we train a multi-scale neural network with s =3, N =

parameters «

Consequently, as the width of the network goes to infinity, the
dynamics of the gradient descent learning (10) tends to

0, (Ni(x,0) = [ (x))

s 2(d+1) T

__2 2s+ 1)

. aj -2 ’ ’ ’ ’ ’
_Zf)z(wl)/g[e Qj(x+x)+Qj(x—x)](J\/s(x,e)—f(x))dx,

/[ -Zgj(x+x’)+gj(x—x’)]x’(M(x’,e)—f(x’))dx’

(15)
where
Gi(x) :=e
is the scaled Gaussian function.

Next, we define a zero extension of the error function by
X & 0,
x € Q,

—a|x|?/2
.

xeRY, (16)

0,
(x.6) =
" {N(x 0) - f(x).

then, the dynamic system (15) can be rewritten as

0,1n(x,0)1 o(x)

] (x)a2(d+l) T
=_ - J 2c. / (x — x|+ ’ ’
= JZ:‘) 61D /Rd[e Gi(x+x)+G;(x x)]xn(x,@)dx
S I_Q(x)a

2s+ 1)

a7)

[ 26,(x + %) + Gy (x — x)]n(x 0)dx’,
Jj=0

where an indicator function I, (x) is used to extend the equation to the
whole space.

Existing works on DNN convergence analysis employ a discrete
version of (17) in the physical space by analyzing the eigenvalues of
the Gram matrix (Lee et al., 2019; Luo et al., 2022; Peng et al., 2023;
Ronen et al., 2019; Tancik et al., 2020). However, to get a precise
information on the spectral bias phenomena, it is more natural to study
the convergence behavior in the Fourier domain as follows.

Given any g(x) € L'(RY), the Fourier transform defined in (1) has
the following identities
FIVel§) =2xilF[gl6). V&) =

Vxg(x) € (L' R,

—27iF [xg(x)1(£).
(18)

and

d
P16 = 22 KE Flgone = (1) 7ia(2), (a9

In addition, given two functions h(x), g(x), their cross-correlation and
convolution are defined as

h*g:= / h(xg(x +x)dx', hsxg:= / h(x)g(x — x')dx’,
R4 R4
and we have the following identities,

R x g(&) = h(©2E). 7+ g&) = hEEFE). Ta@) =1+ g (20)
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—— NTK at epochs=1000

20 —— limit NTK

2.0

0.5

0.0

NTK at epochs=2000
limit NTK

—— NTK at epochs=5000
—— limit NTK

Fig. 3. The NTKs in (13) with d =3,5=3,N =

Taking Fourier transform (1) on both sides of (17) with respect to x
and then applying (18)-(20) to rearrange the terms gives a integral-
differential equation

0i(§.00)) * To(8) _

ot
s a2(d+1)g .
v, - =OW(V§"(§ 00)) — €V € 00) )| 1
s 0 e o ]
_,;o STy e 0w + A€ 0] |+ To(@).
where
R ; _2”2|7¢\2
G®=@n2ale T (22)

The convolution with I (&) makes the model too complicate to
analyze. Nevertheless, if we consider the limit of infinite large domain,
i.e., 2 — R?, the limit of | (&) is the Dirac delta function §(¢) and then
(21) simplifies to
0n(&, 0(1))

s QDG

=V, [12 énTJ:n (Vente. 000 - 2V €00 )|

ot
5 a2Gi(®) 7 @
Zm A(E,0(1)) + A&, 01)].
Define
42O = %Z GG @, BHO) = 2‘(+j1)2 2,8,
(24)

and denote by 4*(&, 0(1)) the real and imaginary parts of A(&, (7)), i.e.,
A 6() = 7 (&,0(0) + 177 (£, 0(1)).

(Diffusion Model) As the coefficients in (23) are real valued func-
tions, we can rewrite (23) into two independent equations

0.1 = Ve - [AT@OVEEn)| - BEOFFED). £ e R,

with respect to the real and imaginary parts of #(&, 6(r)), respectively.

A simpler diffusion equation can be derived if the bias are set to zero
in the network. In fact, a function represented by the network without
bias has the form

(25)

N(x.0) = \/—_2 20'(9”+kajx) xeQ:=[-1,11 (26)

N j=0 = k=1

and the neural tangent kernel is given by

x x' 2(d+1)
0,(x,x';:0) = Z Z 0'(6],1 2 X)0" (O], ;X))

12000 during training.

Setting the activation function o(x) sin(x) again, and assuming
all the parameters {0,} are independent random variables of normal
distribution, then, by law of large numbers, we have

T, O g
. /. 1 X X 2(d+1) T
qurolc Oy(x,x';0)= ‘IIHBO - E a E cos(9j.q+kajx)cos(9 (X "

Z 2(d+1)IE(cos(9 a;x) cos(OTajx'))

= 2(s+1)

2(9+1) 2 GG+ x4 G- ).

As the width of the network goes to infinity, the dynamics of the
gradient descent learning tends to

___ X : 2(d+1) ) ’ (x — %! ’ ’ ’
on(x,0) = 2(s+1)/gg()a" [gj(x+x)+gj(x x)]x n(x’, 0)dx’.
(27)
Mimicking the derivation for (23), we obtain from (27) that
s PG
011(15 e(t)) @ G(8) —
[Z pep (Ve 00 - Ve &, 00 ) |
s 2d+D)
a

=iV, - [,Zo e AN o],
where 77(&,0(r)) = ﬁm{ﬁ(é, G(t))}. The dynamic system (27) in the
Fourier frequency domain implies that only the imaginary part of the
error evolves during the gradient descent training if a two layer multi-
scale neural network with activation function ¢(x) = sin(x) and zero
bias is used. This conclusion is consistent with the fact that the network
function (26) can only be used to fit odd functions, where the initial
error 7(x, 0) is also an odd function and its Fourier transform has a zero
real part. Actually, the necessity of non-zero biases in a two layer neural
network has been emphasized in Lee et al. (2019), Ronen et al. (2019).
Note that A%(&), BT (&) defined in (24) are positive functions in R¢.
Therefore, the solution of (25) has an energy equality

d At 2 F At 2 £V HE 2
4 / (&0 2dE = -2 / (a5 @|vere.o| + Bl o) az.
Rd RrRd
28)

which implies that the solution #%(&,1) — 0 for any € € R? as t —
oo. That means the gradient descent learning for a fitting problem
with one hidden layer neural network is convergent assuming that
the learning rate is sufficiently small and the width of the neural
network is sufficiently large. It is clear that the diffusion and damping
coefficients {A(£), BJ ()} play a key role in the error decay rate.
Several plots of the coefficients {AT(£), BX(£)} are given in Fig. 4 for
different scales. We can see that both AT () and BE($) have larger
support and maximum values with increasing scale s. As the spectral
bias of a neural network refers to the difference of error decay rates
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Fig. 5. Scaled diffusion coefficients A7(¢)/A7(0) (left) and B(¢)/B(0) (right) with a; =2/,0 < j < s for scales s =0,1,2,3.

between low- and high-frequency components for a given network,
such a disparity is lessened over a wider frequency range when more
scales are used in the multi-scale neural network. This can be seen in
Fig. 5 of the normalized diffusion and damping coefficients with respect
to their values at zero frequency, which explains the effectiveness of
multiple scales in reducing the spectral bias of neural networks.

4. Spectral bias analysis of a two layer mscalednn using the
diffusion equation model

The analysis in previous section has shown that the error dynamics
of the gradient descent learning can be approximately described by the
diffusion Egs. (25) in the Fourier spectral domain when the network
width and the domain size go to infinity and the learning rate to zero.
In this section, we will first propose a Hermite spectral method to
obtain highly accurate numerical solutions of the diffusion equation.
Some numerical results will be presented to show that the error dy-
namics predicted by the diffusion model matches well with that of the
MscaleDNN during realistic training. Moreover, the results also validate
the capability of spectral bias reduction of the MscaleDNNs for wider
range of frequencies. For simplicity, we only consider the 1-dimensional
case to illustrate the main results.

4.1. Hermite spectral method for the diffusion equation problem

In order to examine quantitatively the decay of the error in the
Fourier domain, we will solve numerically the equations in (25) with a
Hermite spectral method for the &-variable of the equations in (25) on
the unbounded computational domain. For this purpose, we introduce
the Hermite functions (cf. Shen, Tang, and Wang (2011)) defined by

6= —1

wl/44/2np)

e EPH (@), n20, £€R, (29)

where H,(£) are Hermite polynomials. The Hermite functions ﬁ,,(f) are
orthogonal

(H,), H,(©) =

—00

+oo

H,(&H, &dx = 35,,, (30)

where 6, is Kronecker symbol.

We discretize the computational time interval [0,7] into equally-
spaced intervals I, := [kdt,(k + 1)4r] for k = 0,1,..., N, where 4Ar =
T/N. Then, the Hermite spectral method together with backward Euler
time discretization is to find approximation

P
@) = ) it H (28), @31
k=0

for A4*(&, 1) at time 7,, = mAt s.t.,
(ﬁ,i;(é) —iE @) . )

ym CH,(08)) = —a(iE @), H, (), (32)

foralln=0,1,..., p. Here, 1 is a scaling parameter to achieve resolution
near & = 0, and the bilinear form a(-,-) is defined as

_d d
a(HE). y(®) = (A;'(«S)%, %) — (BEOHE) W (©). 33)

Next, with the unknown vector denoted by U% = (%, 7%, .. ,Vljp)T,
the numerical scheme (32) gives a linear system
+ _prt
D" ml _(KF £ MU, 34
i ( w (34)

where D = (D), K* = (K), M = (M},) are matrices with entries
given by

Dy = (H (38), H,(38)) = %ank,

ME = ~(BX()H,(28)., H,(38)).

K5 = -2 (AX@ G, 00) ).

By using the recurrence formula of the Hermite functions, formula-
tions for the matrices K*, M* can be derived analytically (see Appendix).
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Tinl8)

Fig. 6. Frequency domain error decay in time for a regression problem as predicted by the diffusion model (25) for three MscaleDNNs of scale (s = 0,3,5) with corresponding

diffusion coefficients A*(), B(&).

4.2. Spectral bias reduction of a two layer mscalednn

Some numerical examples will be presented to show the capability
of the diffusion model in predicting the error dynamics of a two layer
MscaleDNN. The predicted results will be compared with the training
error of the two-layer MscaleDNN with a large network width and
sine activation function. The spectral bias reduction phenomena of
MscaleDNNs is validated by the numerical solution of the diffusion
model.

Test 1 (Decaying behavior predicted by the diffusion model).
We first study the decay speed and range of the solution of the diffusion
model (25). Considering an initial condition for the error function in the
frequency domain

Llgl <5,
.0 =
7 (2.0) {07 s,

we will test the diffusion model (25) with three sets of coefficients
{AF (), BE(9)}, s = 0,3, 6. For the numerical discretization of the PDE,
we take p = 100, Ar = 1.0e — 3 in (31). The numerical solutions at
different time ¢ are plotted in Fig. 6. The numerical results clearly
show that the initial error function decays faster over wider frequency
ranges with an increasing of s. It is worthy to emphasize that diffusion
coefficients {A(f(f),Bg(.f)} only produce fast decay in only a small
neighborhood of the zero frequency, which corresponds to exactly the
spectral bias of a fully connected DNN (Rahaman et al., 2019; Xu
et al., 2020). These observations are consistent with the performance
of the MscaleDNN, which has faster convergence in the approximation
of highly oscillated functions.

Test 2 (Validation of error diffusion model with real
MscaleDNN training). In this test, we will show that the error dynam-
ics of a finite but wide enough 2-layered multi-scale neural network

can be predicted by the diffusion equation model quite well.
We consider a fitting problem with an objective function

f(x) = sinaznx + cos brx,

on the interval [—p, #]. The Fourier transform of f(x) with zero exten-
sion outside [—p, ] is
o sin[(b+28)px] | sin[(b—28)px]
re= (b+28)x (b-2&)x
; [sin[(a +28)px]  sinf(a - 2§)ﬁ7r]]
(a+28m (a—2&m '

For the two layers multi-scale neural network, the Fourier transform of
N, (x,0) with zero extension outside [—f, f] can be calculated as

= 1 v v I v 5
Ny =—= ) a; ) S; &0+ —= ) a; ) C;(£0),
where

Sjk(&.0) =
—27iE(e2P $in(a;0,441 B — bjgus) + €72 sin(@; 04448 + bjgii)

J
202 Ax282
ajﬁjq+k— &

5

and
Cix(,0)=
;0,411 (€2 cOS(@; 0,41 B — bjgps) — €25 cOS(@; 0,414 + bjgri))
202 _ A 282 :
a; 0jq+k 4rE

We will show that the error 7y (&, 0) = .X/i(:, 0) — f(&) of the
MscaleDNN by the gradient descent learning agrees with that predicted
by the diffusion Eq. (25). We take a = 42, b = 58, f = 1| and
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Fig. 7. Frequency domain error evolution (left — real part, right — imaginary part) in time of a 3-scale MscaleDNN with a network width N = 12,000 (line) vs prediction by

diffusion model (25) (symbol).

the initial errors are given by nyn(x,0)) = N (x,0)) — f(x) with
parameters initialized by sampling from independent random variables
of normal distribution. In the gradient descent training for the N(x, 6),
the training data set consists of 2000 uniformly distributed points in
[-B, f] and learning rate = = 1.0e — 3 is adopted. In this example, a two
layers neural network with m = 12,000, « ;= 2/ and scale s = 3 is tested
and the training is performed in full batch.

Meanwhile, in the Fourier /sPectral domain, the diffusion Eq. (25)
with initial function (&, 6,) = N (&, 0,) — (&) will be solved with a pth
order the Hermite spectral method introduced above. We take p = 300
and 47 = 7 in the discretization.

The Fourier transform of #y y(x, 6(1)), denoted by

ANN (X, 0(D) = g (&, 000) +iny N (€, 0(0)

are compared with 7£(£) at t = mAt, see Fig. 7. Although many approx-
imations have been used in deriving the diffusion model, the results
show that the prediction produced by the diffusion model captured the
main features of the error over a long time training process.

On the other hand, we can also compare the training error with
the diffusion model prediction in the physical domain. Using the fact
that Gradshteyn and Ryzhik (2014), Li, Liu, and Wang (2022)

“+00 . ~
FUH(O)I(x) = / Hy(&)eBxde = 27k H, 218),

the Hermite approximation of the error predicted by the diffusion
model, i.e.,

4
TEE) = Yy H (48),
k=0
can be analytically transformed back to the physical domain as

e 1= PR )
P +oo p
= Y | Ayt = Var > A (222,
k=0 % = A

Then, in the physical domain the errors #nyy(x,0(,)) from the
MscaleDNN training and #,(x) = #}(x) + in,(x) predicted by the
diffusion equation can be compared in Fig. 8. Clearly, the evolution
of the errors matches quite well in physical domain. We also plot the
mean squared loss during the training of MscaleDNN and compare
it with the />-norm of the error predicted by the diffusion model in
Fig. 9. The results demonstrate that, in this example, the diffusion
model accurately predicts the loss decay. It is worthy to point out that
the fitting domain 2 = [-1,1] is not large. However, the diffusion
model can still be a satisfactory predictor for the real error through
the training of the MScaleDNN with a large enough network width.

Test 3 (Reduction of spectral bias predicted by error diffusion
model). With the confirmation of predicting capability of the diffusion
equation model (25) for the error decay of the MscaleDNN with a
large enough network width, we will use the model to demonstrate the
spectral bias reduction of MscaleDNNs with increasing scales.
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Fig. 8. Physical domain error evolution in time of a 3-scale MscaleDNN with a network width N = 12,000 (line) vs prediction by diffusion model (25) (symbol).
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Fig. 10. Frequency domain error decay in time predicted by (25) for a FCN corresponding to coefficients { A7 (¢), Bf )}

Again, We set the network width at m = 12000, and a =4.2, =538
and the initial errors are given by #(&,60,) = N (& 0y — £ with
parameters initialized by sampling from independent random variables
of normal distribution. In the Hermite spectral method approximation
of the diffusion Eq. (25), we take p = 300 and 4r = 1.0e — 3. The
numerical solution of the diffusion equations at different time ¢ for a
standard fully connected network (FCN) corresponding to coefficients
{Aa'(i), Bg } and a 3-scales MscaleDNN corresponding to coefficients
{A3(&), B} are plotted in Figs. 10 and 11. We can see clearly that FCN
with diffusion coefficients {A{(¢), Bj} only produce decay in a very
small neighborhood of the zero frequency while the 3-scale MscaleDNN
with coefficients {A;ﬁ(é),B;’} produce much faster decay in a larger
frequency interval. Although the initial errors at + = 0 are different,
Ny(&,8)— f(&) for FCN and N5(&, 6,) — £ () for 3-scale MscaleDNN, the
numerical results all verify that multi-scale neural networks has better
performance in spectral bias reduction compared with the FCN.

5. Conclusion and future work
In this paper, we investigated the convergence and spectral bias re-

duction properties of a two-layer multi-scale neural network for regres-
sion problems by deriving diffusion equation models in the frequency

domain for predicting its error evolution. With the sine activation func-
tion, the gradient descent learning of MscaleDNNs leads to the diffusion
equation models for the error assuming that the width of the neural
network goes to infinity, the learning rate to zero and the fitting domain
to the whole space. The diffusion coefficients of the diffusion equations
are shown to have wider support in the frequency domain with more
scales used in the MscaleDNNs, resulting in a reduction of spectral bias
for the MscaleDNNs. This is consistent with the performance of the
MscaleDNN with faster convergence in approximating highly oscillated
functions from various applications. Moreover, the derived diffusion
equation can predict the convergence of the MscaleDNNs learning
algorithm even with a finite and reasonably wide network in a finite
domain.

The analysis of the MScaleDNNs with more layers, and other pop-
ular activation functions, e.g., ReLU, Sigmoid, etc, as well as for solv-
ing boundary value problems of differential equations will be studied
following a similar approach of this paper.
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Fig. 11. Frequency domain error decay in time predicted by (25) for a 3-scale MscaleDNN corresponding to coefficients { Af(é), B;}‘
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Appendix. Analytic formulas for the computation of matrices
K#, M*

We first recall the recurrence formulas (cf. Shen et al. (2011))

ﬁo(x) =z /4 _X2/2 ﬁl (x) = \/_7[—1/4 e—x2/2’
/ [ (A1)
n+|(x)_x H( )_ +1H,, 1(x) nZl,
H! () =— ”—xe_"z/zz——HI(x)
2 2 (A.2)
H(x)= \/7 L) - ";1 (0, n> 1,

of the Hermite functions ().
Then, by the recurrence formula (A.2), we have

H} (x)H x) = —Hl(x)Hl(x)
ﬁ(,)(x)ﬁ,,,(X) = —41% (X)ﬁn_l(x) + n2+ ! ﬁ] (X)ﬁ,ﬂ_](x), n> 1.
and

Hl () H!(x)

[P [k+1 4 . T~
= |:\/ng—]()‘)_ %Hk+l(x):| [\/an—](x)_ %Hrﬁl(x):l

_Vnk Vi + Dk -
=V, yer =

) Hy_ 1(X)Hn+1(x)
ket D) (n+ Dk +1)
2

2

i, i (x) -

Hk+1(x)Hn 1(x) + k+1(x)Hn+1(x)

10

for all n, k > 1. Therefore,
| + _ pt \/— + va+1 o
%= 2C11’ Kon =Ko = 2 S5 Gt ——5— B Chup nzL (A3)

where C% = -2 [*® AX(&)H, (A H,(A$)dé. Otherwise, for all n.k > 1,
Iy —
(\/_C —1,k— 1 k+1 n 1 k+1)
\/_
\/_ n+l k=1~ V k+1 n+l k+1

Noting that

+oo
+ _ _
Mnk - /
-0

and A (%), BE($) are linear combination of Gaussian functions as pre-
sented in (24), the computation of Cnik and M;—’k can be reduced to

compute the weighted inner products
+oo
H,(x)H, (x)e_”2 dx

B H, (A8 H,(A0)de,

Ink(r) =

(A.4)

1 +o0 - - o

= H,,(—y )Hk( L )eay.
Vr+1 Vr+1 Vr+1

where ﬁ,,(x) is the normalized Hermite polynomial defined by ﬁn(x) =

/2 (x). In fact, for A%(&), BX(¢) given in (24), we have

-2 S 2
U2 S, (22,
3 JIRN 2 52
2027)2 (s + 1) j=0 aj
272 )
a2/
J

2 S
Mt =_.|% l+e
nk —
2(s+ DA £
Next, we present formulas for the calculation of the integrals 7, ().

E——
an_

Zaj[nk(
j=0

Given any scaling factor 4, scaled Hermite polynomial ﬁ,,(ﬂy) can be
represented by E,,(y) as follows

H,(y) =Y h, (D H(), (A.5)

k=0

where {h, (1)} can be calculated via recurrence formulas (A.8). There-
fore,

Ink(f>=Vl—/_wﬁn(\/ryj)ﬁk<\/ry?)e—yzdy

T+ 1

)/ ﬁi(y)flj(y)e"yzdy

\/T—ZZ ’“( )h’”(\/m

+11—0j 0

min{n,k}

= X hn,f(wl?)hw(wl?)-

Next, we derive recurrence formulas for the computation of the
coefficients {A,,(4)}. We drop the explicit dependence on A without
confusion in the following derivation. By the definition of F]n(y) and
the recurrence formula (A.1), we have

2n+ DH,, (Ay) = 24yH (Ay) — V2nH,_(Ay), n> 1. (A.6)
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Substituting the expansion (A.5) into (A.6) gives for n > 1

n+1 n n—1
V20 A D) Y by o i) = 22y Y by H ) = Van Y by Hy ).
k=0 k=0 k=0
(A7)
Noting that
H,(») = VayHy ). 2vH, () = V20 + D,y 0)+V2kH, (). k21,

direct calculation from (A.7) gives
n

24y Y by DH ()
k=0

=1 Yl [ V2K F D1 0) + V2KF ()] + 209,00 o)
k=1

20k + Dl (DH 1 0) +a Y, V2kh, (DH ()

n

=a
k=0 k=1
n+l1 n—1

=a ) V2kh,; (DH) +a Y V20 + Dhy gy (D H ().
k=1 k=0

Therefore, (A.7) can be rearranged into
n+l

V20 + 1) Y by Hy ()
k=0

n+l

n—1
=2 Y V2kh,,  (WH )+ 2 Y, V2K + Dby g (DH()
k=1 k=0

n—1
- V2n Z By (D H, ()
k=0

=(V20hy, () = V20, (D Ho () + 2N 20k, (D)
+ A2+ Dhy (D H ey ()
n—1
+ Y IAV2Kkh, () + AV20k+ Dhy gy () = V2nh, (D).
k=1

Matching the coefficients on both sides of the above equation gives us

1 n
P10 =4/ m'{hn,l(}') —1/ mhn_l,o(ﬂ),
k+1 n
Py (D) = 44/ n—_l_lhn,kﬂ(/l) -4/ mhn—uc(ﬁ)
k

(A.8)
+ A\/;h,,’k_l(i), for 1<k<n-1,
Ry (D) = A\/Hzlhn,k_l(/l), k=nn+1,
for all n > 1, while the initial values are given by
hoo() =1, hig(H) =0, hy (D)= A (A.9)

By induction, 4, ,(4) has explicit formula for all k =0,1,...,n
0, n—k=2s+1,

hy , (A) = a1
’ - 2L oaky2 1S A
YRR AS(A 1), n—k=2s.
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