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DiT Memory: 22.7 GiB DiT Memory: 6.9 GiB (3.3x Less) DiT Memory: 6.3 GiB (3.6x Less) DiT Memory: 6.5 GiB (3.5 Less)

E2E Latency: 111.7 s E2E Latency: 38.6 s (2.9% Faster) E2E Latency: 12.5 s (8.9x Faster) E2E Latency: 12.9 s (8.7x Faster)
. ' - ) - - | . - —

-

‘ pe EAH l
L}

o4 SVDQuant

iS lite
and fast

PixArt-X FP16 ViDiT-Q (W4A8) Naive INT4 (W4A4) SVDQuant INT4 (W4A4)
(20 Steps) LPIPS: 0.573 LPIPS: 0.762 LPIPS: 0.323

Prompt: medium rare steak tenderloin super tasty photo.

Figure 1: SVDQuant is a post-training quantization technique for 4-bit weights and activations that well maintains
visual fidelity. On 12B FLUX.1-dev, it achieves 3.6x memory reduction compared to the BF16 model. By
eliminating CPU offloading, it offers 8.7x speedup over the 16-bit model when on a 16GB laptop 4090 GPU, 3x
faster than the NF4 W4A16 baseline. On PixArt-X, it demonstrates significantly superior visual quality over other
W4A4 or even W4AS baselines. “E2E” means the end-to-end latency including the text encoder and VAE decoder.

ABSTRACT

Diffusion models can effectively generate high-quality images. However, as they
scale, rising memory demands and higher latency pose substantial deployment
challenges. In this work, we aim to accelerate diffusion models by quantizing their
weights and activations to 4 bits. At such an aggressive level, both weights and
activations are highly sensitive, where existing post-training quantization methods
like smoothing become insufficient. To overcome this limitation, we propose
SVDQuant, a new 4-bit quantization paradigm. Different from smoothing, which
redistributes outliers between weights and activations, our approach absorbs these
outliers using a low-rank branch. We first consolidate the outliers by shifting them
from activations to weights. Then, we use a high-precision, low-rank branch to
take in the weight outliers with Singular Value Decomposition (SVD), while a
low-bit quantized branch handles the residuals. This process eases the quantization
on both sides. However, naively running the low-rank branch independently
incurs significant overhead due to extra data movement of activations, negating the
quantization speedup. To address this, we co-design an inference engine Nunchaku
that fuses the kernels of the low-rank branch into those of the low-bit branch to cut
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off redundant memory access. It can also seamlessly support off-the-shelf low-rank
adapters (LoRAs) without re-quantization. Extensive experiments on SDXL,
PixArt->, and FLUX.1 validate the effectiveness of SVDQuant in preserving
image quality. We reduce the memory usage for the 12B FLUX.1 models by 3.5x%,
achieving 3.0x speedup over the 4-bit weight-only quantization (W4A16) baseline
on the 16GB laptop 4090 GPU with INT4 precision. On the latest RTX 5090
desktop with Blackwell architecture, we achieve a 3.1x speedup compared to the
W4A16 model using NVFP4 precision. Our quantization library” and inference
engine’ are open-sourced.

1 INTRODUCTION

Diffusion models have shown remarkable capabilities in generating high-quality images (Ho et al.,
2020), with recent advances further enhancing user control over the generation process. Trained
on vast data, these models can create stunning images from simple text prompts, unlocking diverse
image editing and synthesis applications (Meng et al., 2022b; Ruiz et al., 2023; Zhang et al., 2023).
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To pursue higher image quality and more precise text-to-image ® Diffusion Model

alignment, researchers are scaling up diffusion models. As shown in b *
Figure 2, Stable Diffusion (SD) (Rombach et al., 2022) 1.4 only has
800M parameters, while SDXL (Podell et al., 2024) scales this up to
2.6B parameters. AuraFlow v0.1 (fal.ai, 2024) extends this further to
6B parameters, with the latest model, FLUX.1 (Black-Forest-Labs,
2024), pushing the boundary to 12B parameters. Compared to large
language models (LLMs), diffusion models are significantly more . % A
computationally intensive. Their computational costs® increase b a A
more rapidly with model size, posing a prohibitive memory and o 3 6 9 1S
latency barrier for real-world model deployment, particularly for Parameters (5)
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As Moore’s law slows down, hardware vendors are turning to €ls. LLMs’ computation is mea-
low-precision inference to sustain performance improvements. Sured with 512 context and 256
For instance, NVIDIA’s Blackwell Tensor Cores introduce a new Oil Ep ut tokertls,t_and Ad1fffus1on .mold i
4-bit floating point (FP4) precision, doubling the performance :th C]ggls%l;(?lliﬁgsfho% 3 esr:gf ¢
compared to FP8 (NVIDIA, 2024). Therefore, using 4-bit inference ' '
to accelerate diffusion models is appealing. In the realm of LLMs, researchers have leveraged
quantization to compress model sizes and boost inference speed (Dettmers et al., 2022; Xiao et al.,
2023). However, unlike LLMs—where latency is primarily constrained by loading model weights
on modern GPUs, especially with small batch sizes—diffusion models are heavily computationally
bounded, even with a single batch. As a result, weight-only quantization cannot accelerate diffusion
models. To achieve speedup on these devices, both weights and activations must be quantized to the
same bit width; otherwise, the lower-precision weight will be upcast during computation, negating
potential performance enhancements.
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In this work, we focus on quantizing both the weights and activations of diffusion models to 4
bits. This challenging and aggressive scheme is often prone to severe quality degradation. Existing
methods like smoothing (Xiao et al., 2023; Lin et al., 2024), which transfer the outliers between
the weights and activations, are less effective since both sides are highly vulnerable to outliers. To
address this issue, we propose a general-purpose quantization paradigm, SVDQuant. Our core idea is
to use a low-cost branch to absorb outliers on both sides. To achieve this, as illustrated in Figure 3,
we first aggregate the outliers by migrating them from activation X to weight W via smoothing.
Then we apply Singular Value Decomposition (SVD) to the updated weight, W, decomposing it
into a low-rank branch L, Lo and a residual W — L, L. The low-rank branch operates at 16 bits,
allowing us to quantize only the residual to 4 bits, significantly reducing outliers and magnitude.
However, naively running the low-rank branch separately incurs substantial memory access overhead,

*Quantization library: github.com/mit-han-lab/deepcompressor
"Inference Engine: github.com/mit-han-lab/nunchaku
“Measured by the number of Multiply-Accumulate operations (MACs). 1 MAC=2 FLOPs.
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Figure 3: Overview of SVDQuant. (a) Originally, both the activation X and weight W contain outliers, making
4-bit quantization challenging. (b) We migrate the outliers from the activation to weight, resulting in the updated
activation X and weight W. While X becomes easier to quantize, W now becomes more difficult. (c)
SVDQuant further decomposes W into a low-rank component Li Lo and a residual W — Ly L, with SVD.
Thus, the quantization difficulty is alleviated by the low-rank branch, which runs at 16-bit precision.

offsetting the speedup of 4-bit inference. To overcome this, we co-design a specialized inference
engine Nunchaku, which fuses the low-rank branch computation into the 4-bit quantization and
computation kernels. This design enables us to achieve measured inference speedup even with
additional branches.

SVDQuant can quantize various text-to-image diffusion architectures into 4 bits, including both
UNet (Ho et al., 2020; Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023) backbones, while
maintaining visual quality. It supports both INT4 and FP4 data types and integrates seamlessly with
pre-trained low-rank adapters (LoRA) (Hsu et al., 2022) without requiring re-quantization. To our
knowledge, we are the first to successfully apply 4-bit post-training quantization to both the weights
and activations of diffusion models, and achieve measured speedup on NVIDIA GPUs. On the latest
12B FLUX.1, our 4-bit models largely preserve the image quality and reduce the memory footprint
of the original BF16 model by 3.5x. Furthermore, our INT4 and FP4 model delivers a 3.0x and
3.1x speedup over the NF4 weight-only quantized baseline on the 16GB laptop-level RTX 4090 and
desktop-level RTX 5090 GPU, respectively. See Figure 1 for visual examples.

2 RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged as a powerful class
of generative models, known for generating high-quality samples by modeling the data distribution
through an iterative denoising process. Recent advancements in text-to-image diffusion models (Bal-
aji et al., 2022; Rombach et al., 2022; Podell et al., 2024) have already revolutionized content
generation. Researchers further shifted from convolution-based UNet architectures (Ronneberger
etal., 2015; Ho et al., 2020) to transformers (Peebles & Xie, 2023; Bao et al., 2023) and scaled up
the model size (Esser et al., 2024). However, diffusion models suffer from extremely slow inference
speed due to their long denoising sequences and intense computation. To address this, various
approaches have been proposed, including few-step samplers (Zhang & Chen, 2022; Zhang et al.,
2022; Lu et al., 2022) or distilling fewer-step models from pre-trained ones (Salimans & Ho, 2021;
Meng et al., 2022a; Song et al., 2023; Luo et al., 2023; Sauer et al., 2024; Yin et al., 2024b;a; kan,
2024). Another line of works choose to optimize or accelerate computation via efficient architecture
design (Li et al., 2023b; 2020; Cai et al., 2024; Liu et al., 2024a), quantization (Shang et al., 2023;
Li et al., 2023a), sparse inference (Li et al., 2022; Ma et al., 2024¢;b), and distributed inference (Li
et al., 2024b; Wang et al., 2024c; Chen et al., 2024b). This work focuses on quantizing the diffusion
models to 4 bits to reduce the computation complexity. Our method can also be applied to few-step
diffusion models to further reduce the latency (see Section 5.2).

Quantization has been recognized as an effective approach for LLMs to reduce the model size
and accelerate inference (Dettmers et al., 2022; Frantar et al., 2023; Xiao et al., 2023; Lin et al.,
2025; 2024; Kim et al., 2024; Zhao et al., 2024d). For diffusion models, Q-Diffusion (Li et al.,
2023a) and PTQ4DM (Shang et al., 2023) first achieved 8-bit quantization. Subsequent works refined
these techniques with approaches like sensitivity analysis (Yang et al., 2023) and timestep-aware
quantization (He et al., 2023; Huang et al., 2024; Liu et al., 2024b; Wang et al., 2024a). Some
recent works extended the setting to text-to-image models (Tang et al., 2024; Zhao et al., 2024¢), DiT
backbones (Wu et al., 2024), quantization-aware training (He et al., 2024; Zheng et al., 2024; Wang
et al., 2024b; Sui et al., 2024), video generation (Zhao et al., 2024b), and different data types (Liu
& Zhang, 2024). Among these works, only MixDQ (Zhao et al., 2024c) and ViDiT-Q (Zhao et al.,
2024b) implement low-bit inference engines and report measured 8-bit speedup on GPUs. In this
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work, we push the boundary further by quantizing ffusion models to 4 bits, supporting both the integer
or floating-point data types, compatible with the UNet backbone (Ho et al., 2020) and recent DiT
architecture (Peebles & Xie, 2023). Our co-designed inference engine, Nunchaku, further ensures
on-hardware speedup. Additionally, when applying LoRA to the model, existing methods require
fusing the LoRA branch to the main branch and re-quantizing the model to avoid tremendous memory-
access overhead in the LoRA branch. Nunchaku cuts off this overhead via kernel fusion, allowing the
low-rank branch to run efficiently as a separate branch, eliminating the need for re-quantization.

Low-rank decomposition has gained significant attention in deep learning for enhancing computa-
tional and memory efficiency (Hu et al., 2022; Zhao et al., 2024a; Jaiswal et al., 2024). While directly
applying this approach to model weights can reduce the compute and memory demands (Hsu et al.,
2022; Yuan et al., 2023; Li et al., 2023c¢), it often leads to performance degradation. Instead, Yao et al.
(2024) combined it with quantization for model compression, employing a low-rank branch to com-
pensate for the quantization error. Low-Rank Adaptation (LoRA) (Hu et al., 2022) introduces another
active line of research using low-rank matrices to adjust a subset of pre-trained weights for efficient
fine-tuning. This has sparked numerous advancements (Dettmers et al., 2023; Guo et al., 2024; Liet al.,
2024c; Xu et al., 2024b; Meng et al., 2024), which combines quantized models with low-rank adapters
to reduce memory usage during model fine-tuning. However, our work differs in two major aspects.
First, our goal is different, as we aim to accelerate model inference through quantization, while previ-
ous works focus on model compression or efficient fine-tuning. Thus, they primarily consider weight-
only quantization, resulting in no speedup. Second, as shown in our experiments (Figure 6 and ablation
study in Section 5.2), directly applying these methods not only degrades the image quality, but also in-
troduces significant overhead. In contrast, our method yields much better performance due to our joint
quantization of weights and activations and overhead reduction of our inference engine Nunchaku.

3  QUANTIZATION PRELIMINARY

Quantization is an effective approach to accelerate linear layers in networks. Given a tensor X, the
quantization process is defined as:

Q x = round <X>’SX:max(|X|). (1)

SX Gmax

Here, Q x is the low-bit representation of X, sx is the scaling factor, and gy,ax is the maximum
quantized value. For signed k-bit integer quantization, guax = 2! — 1. For 4-bit floating-point
quantization with 1-bit mantissa and 2-bit exponent, ¢;,.x = 6. Thus, the dequantized tensor can be
formulated as Q(X) = sx - Qx. For a linear layer with input X and weight W, its computation
can be approximated by

XW =~ Q(X)Q(W) =sxsw - QxQw- 2

The same approximation applies to convolutional layers. To speed up computation, modern commer-
cial GPUs require both @ x and Qv using the same bit width. Otherwise, the low-bit weights need
to be upcast to match the higher bit width of activations, or vice versa, negating the speed advantage.
Following the notation in QServe (Lin et al., 2025), we denote z-bit weight, y-bit activation as Wz Ay.
“INT” and “FP” refer to the integer and floating-point data types, respectively.

In this work, we focus on W4A4 quantization for acceleration, where outliers in both weights
and activations place substantial obstacles. Traditional methods to suppress these outliers include
quantization-aware training (QAT) (He et al., 2024) and rotation (Ashkboos et al., 2024; Liu et al.,
2024c; Lin et al., 2025). QAT requires massive computing resources, especially for tuning models
with more than 10B parameters such as FLUX.1. Rotation is inapplicable due to the usage of adaptive
normalization layers (Peebles & Xie, 2023) in diffusion models. The runtime-generated normalization
weights preclude the offline rotation with the weights of projection layers, while online rotation of
both activations and weights incurs significant runtime overhead.

4 METHOD

In this section, we first formulate our problem and discuss where the quantization error comes from.
Next, we present SVDQuant, a new W4 A4 quantization paradigm for diffusion models. Our key
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Figure 4: Example value distribution of inputs and weights in PixArt-3 (Chen et al., 2024a) A is the smooth
factor. Red indicates the outliers. Initially, both the input X and weight W contain significant outliers. After

smoothing, the range of X is reduced with much fewer outliers, while W shows more outliers. Once the SVD
low-rank branch L L» is subtracted, the residual R has a narrower range and is free from outliers.

idea is to introduce an additional low-rank branch that can absorb quantization difficulties in both
weights and activations. Finally, we provide a co-designed inference engine Nunchaku with kernel
fusion to minimize the overhead of the low-rank branches in the 4-bit model.

4.1 PROBLEM FORMULATION

Consider a linear layer with input X € R?*™ and weight W € R™*", where b represents the batch
size, and m and n denote the input and output channels, respectively. The quantization error can
be defined as

E(X, W) =[XW - Q(X)QW)llg, 3)
where || - || denotes Frobenius Norm.

Proposition 4.1 (Error decomposition). The quantization error can be decomposed as follows:

EX,W) <[ X|[p W - QW)|p+ IX - QX)p (Wlg+ W -QW)lr). &

See Appendix A.l for the proof. From the proposition, we can see that the error is bounded by
four elements — the magnitude of the weight and input, [|[W|| - and || X || 5, and their respective
quantization errors, ||[W — Q(W)|| and | X — Q(X)|| . To minimize the overall quantization
error, we aim to optimize these four terms.

4.2 SVDQUANT: ABSORBING OUTLIERS VIA LOW-RANK BRANCH

Migrate outliers from activation to weight. Smoothing (Xiao et al., 2023; Lin et al., 2024) is an
effective approach for reducing outliers. We can smooth outliers in activations by scaling down the
input X and adjusting the weight matrix W correspondingly using a per-channel smoothing factor
A € R™. As shown in Figure 4(a)(c), the smoothed input X=X diag()\)_1 exhibits reduced
magnitude and fewer outliers, resulting in lower input quantization error. However, in Figure 4(b)(d),
the transformed weight W=Ww. diag(\) has a significant increase in both magnitude and the
presence of outliers, which in turn raises the weight quantization error. Consequently, the overall
error reduction is limited.

Absorb magnified weight outliers with a low-rank branch. Our core insight is to introduce a 16-bit
low-rank branch to further migrate the weight quantization difficulty. Specifically, we decompose

the transformed weight as W = L,L,+ R, where Ly € R™*" and Ly € R"*"™ are two low-rank
factors of rank r, and R is the residual. Then X W can be approximated as

XW=XW =XLL+XR~ XIL +QX)Q(R). (5)
16-bit low-rank branch 4-bit residual

Compared to direct 4-bit quantization, i.e., Q(X' )Q (W), our method first computes the low-rank

branch X L, L, in 16-bit precision, and then approximates the residual X R with 4-bit quantization.
Empirically, » < min(m,n), and is typically set to 16 or 32. As a result, the additional parameters
and computation for the low-rank branch are negligible, contributing only %‘2’” to the overall costs.
However, it still requires careful system design to eliminate redundant memory access, which we will
discuss in Section 4.3.
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Figure 6: (a) Naively running low-rank branch with rank 32 will introduce 57% latency overhead due to extra
read of 16-bit inputs in Down Projection and extra write of 16-bit outputs in Up Projection. Our Nunchaku
engine optimizes this overhead with kernel fusion. (b) Down Projection and Quantize kernels use the same input,
while Up Projection and 4-Bit Compute kernels share the same output. To reduce data movement overhead, we
fuse the first two and the latter two kernels together.

From Equation 5, the quantization error can be expressed as
|XW — (XL + QR)QR))|| = || XR-QX)QB)| - EX.R).  ©

where R = W — L1 L. According to Proposition 4.1, since X is already free from outliers, we only
need to focus on optimizing the magnitude of R, || R|| and its quantization error, |R — Q(R)|| 5.

Proposition 4.2 (Quantization error bound). For any tensor R and quantization method described in
Equation 1 as Q(R) = sr - Qg. Assuming the elements of R follow a distribution that satisfies the
following regularity condition: There exists a constant c such that

E [max(|R|)] < c-E[[|R||p]. @)
Then, we have
cy/size(R)

max

EfIR-Q(R)||p] < E[IR| sl (8)

where size( R) denotes the number of elements in R. Especially if the elements of R follow a normal

log(size(R))™

distribution, Equation 7 holds for ¢ = (R 400

Extremely | -w
High i -W
Singular ~ - R
Values i

See Appendix A.2 for the proof. From this proposition, we obtain
the intuition that the quantization error || R — Q(R)|| » is bounded
by the magnitude of the residual || R|| . Thus, our goal is to find the

optimal L Lo that minimizes | R||, = HW — LLy HF, which can

be solved by Singular Value Decomposition (SVD) (Eckart & Young,

1936; Mirsky, 1960). Given the SVD of W = UXV, the optimal 10 i
solution is Ly = UX. ., and Ly, = V., .. Figure 5 illustrates the . ; .
singular value distribution of the original weight W, transformed 0 1.6 3 2. a8 64
weight W and residual R. The singular values of the original weight Figure 5: First 64 singular values
W are highly imbalanced. After smoothing, the singular value ©f W-. W, and R. The first 32

e 2 . singular values of W exhibit a
distribution of W becomes even sharper, with only the first several steep drop, while the remaining

values being significantly larger. By removing these dominant values,  yalues are much more gradual.
the magnitude of the residual R is dramatically reduced, as || R|| , =
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2, compared to the original magnitude H WH im1 2 where o; is the

i-th singular value of W . Furthermore, Figure 4(d)(e) show that R exhibits fewer outliers with a
substantially compressed value range compared to W.In practice, we further reduce quantization
errors by iteratively updating the low-rank branch through decomposing W — Q(R) and adjusting
R accordingly for several iterations, and then picking the result with the smallest error.

4.3 NUNCHAKU: FUSING LOW-RANK AND LOW-BIT BRANCH KERNELS

Although the low-rank branch introduces negligible computation in theory, running it as a separate
branch incurs large latency overhead—approximately 50% of the 4-bit branch latency, as shown in
Figure 6(a). This occurs because, for a small rank r, even though the computational cost decreases
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significantly, the input and output activation sizes remain unchanged, shifting the bottleneck from
computation to memory access. This issue worsens, especially when the activation cannot fit into the
GPU L2 cache. For example, in the diffusion transformer block, the up projection in the low-rank
branch for QKV projection is much slower since its output exceeds the available L2 cache, resulting
in the extra DRAM load and store operations. Fortunately, the down projection L; in the low-rank
branch shares the same input as the quantization kernel in the low-bit branch, while the up projection
L, shares the same output as the 4-bit computation kernel, as illustrated in Figure 6(b). By fusing the
down projection with the quantization kernel and the up projection with the 4-bit computation kernel,
the low-rank branch can share the activations with the low-bit branch, eliminating the extra memory
access and halving the number of kernel calls. As a result, our low-rank branch adds only 5~10%
latency, making it nearly cost-free.

5 EXPERIMENTS

5.1 SETUPS

Models. We benchmark our methods using FLUX.1 (Black-Forest-Labs, 2024), PixArt-X (Chen
et al., 2024a), SANA (Xie et al., 2025), Stable Diffusion XL (SDXL) (Podell et al., 2024) and
SDXL-Turbo (Sauer et al., 2024), including both the UNet (Ronneberger et al., 2015; Ho et al., 2020)
and DiT (Peebles & Xie, 2023) backbones. See Appendix B for more details.

Datasets. Following previous works (Li et al., 2023a; Zhao et al., 2024c;b), we randomly sample the
prompts in COCO Captions 2024 (Chen et al., 2015) for calibration. To evaluate the generalization
capability of our method, we sample 5K prompts from the MJHQ-30K (Li et al., 2024a) and the
summarized Densely Captioned Images (sDCI) (Urbanek et al., 2024) for benchmarking. See
Appendix C for more details.

Baselines. We compare SVDQuant against the following post-training quantization (PTQ) methods:

* 4-bit NormalFloat (NF4) is an information-theoretically optimal 4-bit data type for weight-only
quantization (Dettmers et al., 2023), which assumes that weights follow a normal distribution.
We use the community-quantized NF4 FLUX.1 models (Lllyasviel, 2024) as the baselines.

* ViDiT-Q (Zhao et al., 2024b) uses per-token quantization and smoothing (Xiao et al., 2023) to
alleviate the outliers across different batches and tokens and achieves lossless 8-bit quantization
on PixArt-X.

* MixDQ (Zhao et al., 2024c) identifies the outliers in the begin-of-sentence token of text embedding
and protects them with 16-bit pre-computation. This method enables up to W4A8 quantization
with negligible performance degradation on SDXL-Turbo.

» TensorRT contains an industry-level PTQ toolkit to quantize the diffusion models to 8 bits. It uses
smoothing and only calibrates activations over a selected timestep range with a percentile scheme.

Metrics. Following previous works (Li et al., 2022; 2024b), we evaluate image quality and image
similarity with respect to the 16-bit models’ results. For image quality assessment, we use Fréchet
Inception Distance (FID, lower is better) to measure the distribution distance between the generated
images and the ground-truth images (Heusel et al., 2017; Parmar et al., 2022). Besides, we employ
Image Reward (higher is better) to approximate the human rating of the generated images (Xu et al.,
2024a). We use LPIPS (lower is better) to measure the perceptual similarity (Zhang et al., 2018) and
Peak Signal Noise Ratio (PSNR, higher is better) to measure the numerical similarity of the images
from the 16-bit models. Please refer to our Appendix E.1 for more metrics (CLIP IQA (Wang et al.,
2023b), CLIP Score (Hessel et al., 2021) and SSIM®).

Implementation details. Please refer to Appendix D fore more details.

5.2 RESULTS

Visual quality results. We report the quantitative results in Table 1 across various models and
precision levels, and show some corresponding 4-bit qualitative comparisons in Figure 7. Among
all models, our 8-bit results can perfectly mirror the 16-bit results, achieving PSNR higher than 21,
beating all other 8-bit baselines. On FLUX.1-dev, our INT8 PSNR even reaches 27 on MJHQ.

§1’1ttps ://en.wikipedia.org/wiki/Structural_similarity_index_measure
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Table 1: Quantitative quality comparisons across different models. RTN stands for round-to-nearest. IR means
ImageReward. Our 8-bit results closely match the quality of the 16-bit models. Moreover, our 4-bit results
outperform other 4-bit baselines, effectively preserving the visual quality of 16-bit models.

MIHQ sDCI
Backbone ~ Model Precision Method Quality Similarity Quality Similarity
FID(}) IR(?) LPIPS(}) PSNR({1) FID () IR(1) LPIPS(l) PSNR (1)
BF16 - 203 0.953 - - 248  1.02 - -
FLUX.1 INT W8AS8 Ours 204 0948  0.089 27.0 247  1.02  0.106 24.9
-dev W4A16 NF4 206 0910 0272 19.5 249 098  0.292 182
(50 Steps)  INT W4A4 Ours 199 0935 0223 21.0 242 101 0.240 19.7
NVFP W4A4  Ours 204 0937  0.208 21.4 247  1.01 0.218 20.2
BF16 - 192 0938 - - 208 0932 - -
FLUx.1 INTWs8AS8 Ours 192 0966  0.120 22.9 207 0975  0.133 213
-schnell W4A16 NF4 189 0943 0257 182 207 0953  0.263 17.1
(4 Steps)  INT W4A4 Ours 183 0951 0.258 18.3 201 0979  0.260 17.2
NVFP W4A4  Ours 190 0968  0.227 19.0 205 0979  0.226 18.1
i FP16 - 166  0.944 - - 248  0.966
1
INTWSAS  VIiDIT-Q 157 0944  0.137 225 235 0974  0.163 20.4
pixarsy  INT W8AS Ours 163 0955  0.109 23.7 242 0969  0.129 21.8
(20 Steps)  INTW4A8  VIiDIT-Q  37.3 0573 0611 12.0 40.6  0.600  0.629 112
INT W4A4  ViDIT-Q 412 227  0.854 6.44 425 228 0838 6.70
INT W4A4 Ours 192 0878 0323 17.6 259 0918 0352 165
NVFP W4A4  Ours 16.6 0940  0.271 18.5 229 0971  0.298 17.2
BF16 - 206 0952 - - 299  0.847 - -
SANA  INT W4A4 RTN 205  0.894  0.339 153 286 0807 0371 13.8
-1.6B INT W4A4 Ours 193 0935  0.220 17.8 281 0.846 0242 16.2
(20 Steps) NVFP W4A4  RTN 197 0932 0237 173 290 0.829  0.265 156
NVEP W4A4  Ours 200 0955 0177 19.0 293 0.846  0.196 17.3
FP16 - 243 0.845 - - 247 0.705 - -
INT WSA8  MixDQ 241 0834  0.147 21.7 250  0.690  0.157 21.6
spxL  INTW8A8 Ours 243 0.845  0.100 24.0 248 0701  0.110 23.7
-Turbo  INTW4A8 MixDQ 277  0.708  0.402 15.7 259 0610 0415 15.7
(4Steps)  INT W4A4  MixDQ 353  -226  0.685 11.0 373 228 0.686 113
INT W4A4 Ours 246 0816 0262 18.1 260 0671 0272 18.0
UNet NVEP W4A4  Ours 244 0832  0.231 18.9 252 0.688  0.238 18.9
FP16 - 166  0.729 - - 225 0573 - -
sDxL  INTWSA8  TemsorRT 202 0591  0.247 22.0 254 0453 0.265 21.7
INT WSAS Ours 16.6 0718  0.119 26.4 224 0574 0129 25.9
(30 Steps)
INT W4A4 Ours 20.6  0.601  0.288 21.0 262 0477 0307 20.7
NVFP W4A4  Ours 183  0.640  0.250 21.8 239 0502 0.261 21.7

For 4-bit quantization, NVFP4 outperforms INT4, thanks to the native hardware support of smaller
microscaling group size on Blackwell. On FLUX.1, our SVDQuant consistently surpasses the
NF4 W4A16 baseline regarding all metrics. For the dev variant, our method even exceeds the
original BF16 model regarding Image Reward, suggesting stronger human preference. On PixArt-3,
while our INT4 method shows slight degradation, our NVFP4 model achieves a comparable
score to the FP16 model. This is likely due to PixArt-3’s highly compact model size (600M
parameters), which benefits from a smaller group size. Remarkably, our INT4 and NVFP4 models
significantly outperform ViDiT-Q’s W4AS8 results by a large margin across all metrics. Note that
our FP16 PixArt-X model differs slightly from ViDiT’s, though both offer the same quality. For
fair comparisons, ViDiT-Q’s similarity results are calculated using their FP16 results.

For UNet-based models, on SDXL-Turbo, our 4-bit models substantially outperform MixDQ W4AS,
and our FID scores are on par with the FP16 models, indicating no quality loss. On SDXL, our
INT4 and NVFP4 results achieve comparable quality to TensorRT’s W8AS8 performance, which
represents the 8-bit SOTA. As shown in Figure 14 in the Appendix, our visual quality only shows
minor degradation.

Memory save and speedup. In Figure 8, we report measured model size, memory savings, and
speedup for FLUX.1. Our INT4 and NVFP4 quantization reduce the original transformer size from
22.2 GiB to 6.1 GiB, including a 0.3 GiB overhead due to the low-rank branch, resulting in an
overall 3.6x reduction. Since both weights and activations are quantized, compared to the NF4
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FLUX.1-dev BF16 NF4 W4A16 Our INT W4A4 Our NVFP W4A4 FLUX.1-schnell BF16 NF4 W4A16 Our INT W4A4 Our NVFP W4A4
Image Reward: 0.953 Image Reward: 0.910 Image Reward: 0.935 Image Reward: 0.93 mage Reward: 0.968 Image Reward: 0.943 Image Reward: 0.951 Image Reward: 0.968

- ) NS

Prompt: bohemian maximalist interior design, outdoor patio with a
stunning view of the tropical beach, dappled lighting, rattan swinging chair,
wicker overhead, lush plants and a garden library filled with books.

e “ 3P 5

Prompt: Imagine the first crypto token created by Al called Al TOKEN.
Coin, Future, Neon Lighting, 3D rendered, Cool, Stvlish,

e | B -
Prompt: no gravity, ess, underwater in a dense thick kelp forest, surrealism with elements of Prompt: A smiling woman planting tomate "
with a cinematic background blur,

abstraction and Rococo whimsy full length photography , profile of beautiful young woman, long greenhouse in the background, retro moder
hair with a long flowing silk and organza dress, underwater surrounded by thick kelp ‘ocal point and angle evoking a filmic perspective, Photography, DSLR with a 35mm prime lens at £2.8
(a) FLUX.1-dev ' (b) FLUX.1-schnell

PixArt-X FP16 ViDiT-Q INT W4A8 Our INT W4A4 Our NVFP W4A4 i SDXL-Turbo FP16  MixDQ INT W4A8 Our INT W4A4 Our NVFP W4A4
Image Reward: 0.944 Image Reward: 0.573 Image Reward: 0.878 Image Reward: 0.940 : Image Reward: 0.845 Image Reward: 0.708 Image Reward: 0.816 Image Reward: 0.832
. B e 7

Prompt: a 12 year old orphan boy wizard with tattered clothes. South American ancient : Close up portrait deep underwater light, epic, green jungle [l
clothing. Night sky with falling stars. Hyper realistic, cinematic lighting fox red, detailed, pretty face, dark background, detailed, photo

Prompt: hummingbird flying near a flower. 4k ultra realistic ray tracing dynamic lighting Prompt: cyberpunk city sunset drone shot
(c) PixArt-X (d) SDXL-Turbo

Figure 7: Qualitative visual results on MJHQ. Image Reward is calculated over the entire dataset. On FLUX.1
models, our 4-bit models outperform the NF4 W4A16 baselines, demonstrating superior text alignment and
closer similarity to the 16-bit models. For instance, NF4 misses the swinging chair in the top right example.
On PixArt-3 and SDXL-Turbo, our 4-bit results demonstrate noticeably better visual quality than ViDiT-Q’s
and MixDQ’s W4AS results.

@ BFl16 [l NF4 (W4A16) M SVDQuant INT4/NVFP4 (W4A4)
24 28 700 2000
.......... 484 | 496
18 21 525 1500
12 14 350 1000
6 7 175 500 162

BFI6  NF4 INT4 BFI6 NF4 ,NT4 BFI6 NF4 INT4 0 BFI6 NF4 INT4 BFI6 NF4 NVFP4
INVEPS /NVERS (c) Single Step Latency (d) Single Step Latency (c) Single Step Latency
. . . N . ¢) Sing
(a) Model Size (GiB) (b) DiT Inference Memory (GiB) on Desktop 4090 (ms) on Laptop 4090 (ms) on Desktop 5090 (ms)

Figure 8: SVDQuant reduces the 12B FLUX.1 model size by 3.6x and cuts the 16-bit model’s memory usage
by 3.5x. With Nunchaku, our INT4 model runs 3.0x faster than the NF4 W4A16 baseline on both desktop and
laptop NVIDIA RTX 4090 GPUs. Notably, on the laptop 4090, it achieves a total 10.1x speedup by eliminating
CPU offloading. Our NVFP4 model is also 3.1x faster than both BF16 and NF4 on the RTX 5090 GPU.

weight-only-quantized variant, our inference engine Nunchaku even saves more memory footprint.
It offers a 3.0x speedup on both desktop- and laptop-level NVIDIA RTX 4090 GPUs with INT4
precision and a 3.1x speedup on the RTX 5090 GPU with NVFP4 precision, compared to both NF4
and the original 16-bit models. Notably, while the original BF16 model requires per-layer CPU
offloading on the 16GB laptop 4090, our INT4 model fits entirely in GPU memory, resulting in a
10.1x speedup by avoiding offloading.

Integrate with LoRA. Previous quantization methods require fusing the LoRA branches and
re-quantizing the model when integrating LoRAs. In contrast, our Nunchaku eliminates redundant
memory access, allowing adding a separate LoRA branch. In practice, we can fuse the LoRA branch
into our low-rank branch by slightly increasing the rank, further enhancing efficiency. In Figure 9,
we exhibit some visual examples of applying LoRAs of five different styles (Realism, Ghibsky
Illustration, Anime, Children Sketch, and Yarn Art) to our INT4 FLUX.1-dev model. Our INT4
model successfully adapts to each style while preserving the image quality of the 16-bit version.
For more visual examples, see Appendix E.2. For FLUX.1-schnell, we further support LoRAs from
one-step conditional model pix2pix-turbo (Parmar et al., 2024), enabling additional controls like
sketch. An interactive demo is available here.
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Realism LoRA Ghibsky Illustration LORA Anime LoRA Children Sketch LoORA Yarn Art LoORA

Our INT4

Figure 9: Our 4-bit model seamlessly integrates with off-the-shelf LoRAs without requiring requantization.
When applying LoRAs, it matches the image quality of the original 16-bit FLUX.1-dev. See Appendix F for
the text prompts.

PixArt-X: FP16 H SVD Only Naive Quantization Smoothing H LoRC Ours w/o Smoothing Ours
Image Reward: 0.931 Image Reward: -2.18 Image Reward: -1.12  Image Reward: 0.508 E Image Reward: -0.965  Image Reward: 0.690  Image Reward: 0.878

R

o < i 1

Prompt: recipe image, angry crab sallad, in salvador dali style photographed by david lachapelle, eerie,
rennaisance colors, award winning recipe on white background

Figure 10: Ablation study of SVDQuant on PixArt-3. The rank of the low-rank branch is 64. Image Reward is

measured over 1K samples from MJHQ. Our results significantly outperform the others, achieving the highest

image quality by a wide margin.

Ablation study. In Figure 10, we present several ablation studies of SVDQuant on PixArt-3. First,
both SVD-only and naive quantization perform poorly in the 4-bit setting, resulting in severe quality
degradation. While applying smoothing to the quantization slightly improves image quality compared
to naive quantization, the results remain unsatisfactory. LoRC (Yao et al., 2024) introduces a low-rank
branch to compensate for quantization errors, but this approach is suboptimal, as quantization errors
exhibit a well-spread distribution of singular values. Consequently, low-rank compensation fails
to effectively mitigate these errors, as discussed in Section 4.2. In contrast, we first decompose the
weights and quantize only the residual. As demonstrated in Figure 5, the first several singular values
are significantly larger than the rest, allowing us to shift them to the low-rank branch, effectively
reducing weight magnitude. Finally, smoothing consolidates the outliers, enabling the low-rank
branch to absorb outliers from the activations and substantially improving image quality.

Trade-off of increasing rank. Please refer to Appendix E.5 for more details.

6 CONCLUSION

In this work, we introduce a novel 4-bit post-training quantization paradigm, SVDQuant, for diffusion
models. It adopts a low-rank branch to absorb the outliers in both the weights and activations, easing
the process of quantization. Our inference engine Nunchaku further fuses the low-rank and low-bit
branch kernels, reducing memory usage and cutting off redundant data movement overhead. Exten-
sive experiments demonstrate that SVDQuant preserves image quality. Nunchaku further achieves a
3.5x reduction in memory usage over the original 16-bit model and 3.0x speedup over the W4A16 on
an NVIDIA RTX 4090 and 5090 GPUs. This advancement enables the efficient deployment of large-
scale diffusion models on edge devices, unlocking broader potential for interactive Al applications.
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A PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proposition 4.1. The quantization error E(X, W) = | XW — Q(X)Q(W)||  in Equation 3 can
be decomposed as follows:

EX,W) <[ X|[p W - QW)|p+ X - QX)p (Wl + W -QW)lr). ©)

Proof.

[XW —Q(X)Q(W)| x
=[[XW - XQ(W) + XQ(W) - Q(X)QW)||
< IXW - QW))ll + (X — QX)QW)I|
<X W = QW)[[p + 1 X = QX) [RIW)]
<X p W = QW)[p + X = QX)W = (W = Q(W))|
<X p W = QW)[p + X = QX)) 7 (IWlp + IW = QW) ).

A.2 PROOF OF PROPOSITION 4.2

Proposition 4.2. For any tensor R and quantization method described in Equation | as Q(R) =
SR - QRr. Assuming the elements of R follow a distribution that satisfies the following regularity
condition: There exists a constant c such that

E max(|R|)] < ¢ E[||R|z]. (10)
Then, we have
El|R-QR)|p] < eVl R) E[[|R| £] (11)

max

where size( R) denotes the number of elements in R. Especially if the elements of R follow a normal

distribution, Equation 10 holds for ¢ = / %.

Proof.
IR —Q(R)|
=[|R—sr-Qrlr
: ()
=|sr-— —sr-round | —
SR SR F
R R
:sR|H—r0und () .
SR SR F
So,

E[|R - QR),]
<E[|sg|] /size(R)

VI2eR) g fmax(|RY)

qm ax

<Vsize(B) g gy

max

Especially, if the elements of R follows a normal distribution, we have

E [max(|R|)] < o4/21og (size(R)) (12)
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where o is the std deviation of the normal distribution. Equation 12 comes from the maximal
inequality of Gaussian variables (Lemma 2.3 in Massart (2007)).

On the other hand,
E[| Rl ]
=K Z z2
zER
size(R)
., 2size(R) ’ (14)
T

where Equation 13 comes from Cauchy-Schwartz inequality and Equation 14 comes from the
expectation of half-normal distribution.

Together, we have that for a normal distribution,

E [max(|R|)]
<o+/2log (size(R))

log (size(R)) 7

() ElIRI.

In other words, Equation 10 holds for ¢ = log(size(R))m O

size(R)  °

B BENCHMARK MODELS

We benchmark our methods using the following six text-to-image models:

FLUX.1 (Black-Forest-Labs, 2024) is the SoTA open-sourced DiT-based diffusion model. It
consists of 19 joint attention blocks (Esser et al., 2024) and 38 parallel attention blocks (Dehghani
et al., 2023), totaling 12B parameters. We evaluate both the 50-step guidance-distilled (FLUX.1-
dev) and 4-step timestep-distilled (FLUX.1-schnell) variants.

PixArt-3 (Chen et al., 2024a) is another DiT-based model. Instead of using joint attention, it stacks
28 attention blocks composed of self-attention, cross-attention, and feed-forward layers, amounting
to 600M parameters. We evaluate it on the default 20-step setting.

SANA (Xie et al., 2025) is a 1.6B DiT model. It utilizes a 32x compression autoencoder (Chen
et al., 2025) and replaces Softmax attention with linear attention to accelerate image generation.

Stable Diffusion XL (SDXL) is a widely-used UNet-based model with 2.6B parameters (Podell
et al., 2024). It predicts noise with three resolution scales. The highest-resolution stage is processed
entirely by ResBlocks (He et al., 2016), while the other two stages jointly use ResBlocks and
attention layers. Like PixArt-3, SDXL uses cross-attention layers for text conditioning. We evaluate
it in the 30-step setting, along with its 4-step distilled variant, SDXL-Turbo (Sauer et al., 2024).

C BENCHMARK DATASETS

To assess the generalization capability of our method, we adopt two distinct prompt sets with varying
styles for benchmarking:

MJHQ-30K (Li et al., 2024a) consists of 30K samples from Midjourney with 10 common categories,
3K samples each. We randomly select SK prompts from this dataset to evaluate model performance
on artistic image generation.

Densely Captioned Images (DCI) (Urbanek et al., 2024) is a dataset containing ~8K images with
detailed human-annotated captions, averaging over 1,000 words. For our experiments, we use
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the summarized version (sDCI), where captions are condensed to 77 tokens using large language
models (LLMs) to accommodate diffusion models. Similarly, we randomly sample 5K prompts for
realistic image generation.

D IMPLEMENTATION DETAILS

For the 8-bit setting, we use per-token dynamic activation quantization and per-channel weight
quantization with a low-rank branch of rank 16. For the 4-bit setting, we adopt per-group symmetric
quantization for both activations and weights, along with a low-rank branch of rank 32. INT4
quantization uses a group size of 64 with 16-bit scales. We use NVFP4 for FP4 quantization, which
has native hardware support of group size of 16 with FP8 scales on Blackwell GPUs (NVIDIA
Corporation, 2025). We use GPTQ (Frantar et al., 2023) to quantize the residual weights. For FLUX.1
models, the inputs of linear layers in adaptive normalization are kept in 16 bits (i.e., W4A16). For
other models, key and value projections in the cross-attention are retained at 16 bits since their latency
only covers less than 5% of total runtime.

The smoothing factor A € R™ is a per-channel vector whose i-th element is computed as \; =
max (| X. ;|)*/ max(|W;_.|)}~ following SmoothQuant (Xiao et al., 2023) Here, X € R"*™ and
W € R™*" Tt is decided offline by searching for the best migration strength « for each layer to
minimize the layer output mean squared error (MSE) after SVD on the calibration dataset.
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E ADDITIONAL RESULTS

E.1 VISUAL QUALITY RESULTS

We report extra quantitative quality results with additional metrics in Table 2. Specifically, CLIP
IQA (Wang et al., 2023b) and CLIP Score (Hessel et al., 2021) assesses the image quality and
text-image alignment with CLIP (Radford et al., 2021), respectively. Structural Similarity Index
Measure (SSIM) is used to measure the luminance, contrast, and structure similarity of images
produced by our 4-bit model against the original 16-bit model. We also visualize more qualitative
comparsions in Figures 11, 12, 13, 14 and 15.

Table 2: Additional quantitative quality comparisons across different models. RTN stands for round-to-nearest.
C.IQA means CLIP IQA, and C.SCR means CLIP Score.

MIHQ sDCI
Backbone Model Precision Method Quality Similarity Quality Similarity
CIQA (1) C.SCR(1) SSIM(T) CIQA (1) C.SCR(1) SSIM (1)
BF16 - 0.952 26.0 - 0.955 254 -
FLUx.1  INTW8A8 Ours 0.953 26.0 0.748 0.955 254 0.697
-dev W4A16 NF4 0.947 25.8 0.748 0.951 25.4 0.697
(50 Steps)  INT W4A4 Ours 0.950 25.8 0.797 0.951 253 0.751
NVFP W4A4  Ours 0.952 25.8 0.808 0.955 25.4 0.768
BF16 - 0.938 26.6 - 0.932 26.2 -
FLUx.1  INT W8AS8 Ours 0.938 26.6 0.844 0.932 26.2 0.811
-schnell W4A16 NF4 0.941 26.6 0.713 0.933 26.2 0.674
(4Steps)  INT W4A4 Ours 0.937 26.5 0.720 0.932 26.2 0.681
NVFP W4A4  Ours 0.939 26.6 0.745 0.932 26.1 0.712
i FP16 - 0.944 26.8 - 0.966 26.1 -
1
INT W8A8  ViDiT-Q 0.948 26.7 0.815 0.966 26.1 0.756
PixArey,  INT W8A8 Ours 0.947 26.8 0.849 0.967 26.0 0.800
(20 Steps)  INT W4A8  ViDIiT-Q 0.912 25.7 0.356 0917 25.4 0.295
INT W4A4  ViDiT-Q 0.185 13.3 0.077 0.176 13.3 0.080
INT W4A4 Ours 0.926 26.6 0.655 0.948 26.1 0.577
NVFP W4A4  Ours 0.938 26.7 0.692 0.956 26.1 0.618
BF16 - 0.934 26.8 - 0.958 26.4 -
SANA INT W4A4 RTN 0.915 26.9 0.604 0.943 26.4 0.538
-1.6B INT W4A4 Ours 0.926 26.9 0.710 0.951 26.4 0.649
(20 Steps) NVFP W4A4  RTN 0.929 26.8 0.694 0.953 26.4 0.626
NVEP W4A4  Ours 0.932 26.9 0.755 0.955 26.4 0.701
FP16 - 0.926 26.5 - 0.913 26.5 -
INT W8A8  MixDQ 0.922 26.5 0.763 0.907 26.5 0.750
SDXL INT WS8AS Ours 0.925 26.5 0.821 0.912 26.5 0.808
-Turbo  INT W4A8  MixDQ 0.893 25.9 0.512 0.895 26.1 0.493
(4Steps)  INT W4A4  MixDQ 0.556 13.1 0.289 0.548 119 0.296
INT W4A4 Ours 0.915 26.5 0.631 0.894 26.8 0.614
UNet FP W4A4 Ours 0.919 26.5 0.663 0.902 26.6 0.649
FP16 - 0.907 272 - 0.911 26.5 -
SDXL INT W8A8  TensorRT  0.905 26.7 0.733 0.901 26.1 0.697
(30 Steps)  INT W8AS Ours 0.912 27.0 0.843 0.910 26.3 0.814
INT W4A4 Ours 0.878 26.7 0.717 0.862 26.2 0.672
NVFP W4A4  Ours 0.892 26.8 0.739 0.877 26.4 0.701
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FLUX.1-dev BF16 Our INT W8A8 NF4 W4A16 Our INT W4A4 Our NVFP W4A4
Image Reward: 0.953 Image Reward: 0.948 Image Reward: 0.910 Image Reward: 0.935 Image Reward: 0.937

Prompt: 4 scientist analyzing sequential data with a recurrent neural network A research laboratory with computer screens and graphs in the
background Fluorescent lighting 35mm, photorealistic, Canon EOS 5D Mark IV DSLR, 5.6 aperture, 1125 second shutter speed, ISO 100

Prompt: Eiffel tower, landed on the moon, from moon perspective, earth in background, no town
Figure 11: Qualitative visual results of FLUX.1-dev on MJHQ.

FLUX.1-schnell BF16 Our INT W8A8 NF4 W4A16 Our INT W4A4 Our NVFP W4A4
ge Reward: 0.951 Image Reward: 0.968

Prompt: Ludwig van Beethoven playing modern electronic mulikeyboard Yamaha set, 8k, Shot on DIGITAL CINEMA VRAPTOR XL 8K VV
Cinema Camera, f 11, Shutter Speed 1 800, Smm lens, raw, super resolution, tone mapping, ray tracing, Megapixels

Prompt: the word FLORIDA spelled out, with each letter having its own beach coastal theme

Figure 12: Qualitative visual results of FLUX.1-schnell on MJHQ.
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PixArt-X FP16 ViDIiT-Q INT W8AS8 Our INT W8AS ViDIiT-Q INT W4A8 Our INT W4A4 Our NVFP W4A4
Image Reward: 0.944 Image Reward: 0.944 Image Reward: 0.955 Image Reward: 0.573 Image Reward: 0.878 Image Reward: 0.940

Prompt: lake Powell at sunrise. Dramatic lighting with sun shining over the roc

Prompt: Beautiful nature photo showing the earth 350 million years ago, sunny day, modern, clean lines, high saturation, color grading, Canon EOS 6D
Mark II, 70mm lens, [ 1. 8, amazing and breathtaking amazing, super realistic, super detailed, accent lighting, global illumination, 32k, production quality,
depth of field, professional color grading, ultra detail, soft lighting, rtx lighting, studio lighting, ambient lighting, insane detail, extreme Fine Detail, Fine
Detail, Sharp Focus, Diffuse Backlighting, Realistic Photography by Ishi Hako, Ray Tracing Global Illumination, Optics, Glowing, Shadows, Rough,
Shimmering, Lumen Reflections, Screen Space Reflections, Grating, GB Displacement, ray tracing, 8k, anti aliasing SSAA, SSAO, MSAA, SMAA, CAA,
EQAA, FKAA, TXAA, RTX, CGI, VFX, SFX, shaders, tone mapping, chromatic aberration, incredibly detailed and complex, no pole, orange, pink, yellow

Figure 13: Qualitative visual results of PixArt-> on MJHQ.

SDXL TensorRT WSAS Our W8A8 Our INT W4A4 Our NVFP W4A4
Image Reward: 0.729 Image Reward: 0.591 Image Reward: 0.718 Image Reward: 0.601 Image Reward: 0.640
o - .

&

Prompt: a portrait of a young lady in the rain, by

Prompt: professional photo of a negroni cocktail. Italian atmosphere.

Prompt: morgan freeman headshot, hyperrealistic, 4k, colour graded, wearing old shashank redemption hat, looking at camera

Figure 14: Qualitative visual results of SDXL on MJHQ.
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SDXL-Turbo FP16 MixDQ INT W8AS8 Our INT W8AS8 MixDQ INT W4A8 Our INT W4A4 Our NVFP W4A4
Image Reward: 0.845 Image Reward: 0.834 Image Reward: 0.845 Image Reward: 0.708 Image Reward: 0.816 Image Reward: 0.832

Prompt: portrait of a miner after hard work in a coal mine, high contrast, a lot of details, good light, a mining shaft in the back
Canon EOS RS prime 5, the lighting is a mix of natural light and artificial lighting, creating a dramatic and intense e)

Prompt: A1, flaming lion with a human body, warrior, fighting pose, 8k, 10 PIC, a photorealistic
white tiger, emerging from the jungle, stalking its prey in the snow

Figure 15: Qualitative visual results of SDXL-Turbo on MJHQ.
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E.2 LORA RESULTS

In Figure 16, we showcase more visual results of applying the aforementioned five community-
contributed LoRAs of different styles (Realism, Ghibsky Illustration, Anime, Children Sketch, and
Yarn Art) to our INT4 quantized models.

FLUX.1-dev \ S v

BF16

FLUX.1-dev
BF16

Our INT4

FLUX.1-dev
BF16

Our INT4

FLUX. I-dev
BF16 |/

Our INT4

FLUX.1-dev |8
BF16

Our INT4

(e) Yarn Art LoRA

Figure 16: Additional LoRA results on FLUX.1-dev. When applying LoRAs, our INT4 model matches the
image quality of the original BF16 model. See Appendix F for the detailed used text prompts.
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E.3 ADDITIONAL ABLATION OF SVDQUANT

Table 3: Quantitative comparisons of different SVDQuant settings on MJHQ. NVFP4 outperforms INT4.
SVDQuant leverages a low-rank branch to ease quantization, significantly enhancing image quality. It can further
apply GPTQ to quantize the weight residual, further improving quality.

Model Precision Low-rank Branch GPTQ Image Reward (1) LPIPS (J) PSNR (1)
BFI6 - - 0.953 - -
P P 0.908 0322 18.5
X v 0.933 0.297 19.1
INT4 v X 0.926 0256 20.1
FLUX. 1-dev v v 0.935 0223 210
P P 0.928 0.244 203
P v 0.936 0.204 215
NVEP4 v X 0.935 0223 209
v v 0.937 0.208 214
BF16 - - 0.968 - -
P P 0.962 0.345 16.3
P v 0.962 0317 168
INT4 v X 0.957 0.289 17.6
FLUX.1-schnell v v 0.951 0.258 18.3
P P 0.957 0.280 175
X v 0.956 0.247 18.5
NVFP4 v X 0.968 0.247 184
v v 0.968 0.227 19.0
BFI6 _ - 0.944 - _
P P 1226 0.762 9.1
P v 20,902 0.763 9.9
INT4 v X 0.858 0356 17.0
PixAr-X v v 0.878 0323 17.6
X P 0.660 0.517 148
P v 0.696 0.480 15.6
NVFP4 v X 0.945 0.290 18.0
v v 0.940 0.271 185
BFI6 _ - 0.952 - -
P P 0.894 0339 153
P v 0.881 0.288 16.4
INT4 v X 0.922 0.234 17.4
SANA-1.6B v v 0.935 0.220 17.8
P P 0.932 0.237 17.3
P v 0.927 0.202 183
NVEP4 v X 0.957 0.188 18.7
v v 0.955 0177 19.0

In Table 3, we provide additional quantitative ablation results of SVDQuant on the MJHQ prompt
set (Li et al., 2024a). Across all models, NVFP4 outperforms INT4 due to its native support for smaller
microscaling group sizes on Blackwell. SVDQuant leverages a low-rank branch to absorb outliers,
significantly enhancing image quality in all settings. Additionally, it can incorporate GPTQ (Frantar
et al., 2023) instead of round-to-nearest for weight quantization, further improving quality in most
cases. Notably, combining SVDQuant with NVFP4 precision achieves the best results, reaching a
PSNR of 21.5 on FLUX.1-dev, closely matching the image quality of the original 16-bit model. In
Figure 17, we provide qualitative comparisons across different precision settings.
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INT4 INT4+SVDQuant
LPIPS: 0.322 LPIPS: 0.223

NVFP4 NVFP4+SVDQuant

FLUX.1-dev BF16 LPIPS: 0.244 LPIPS: 0.208

Prompt: Ilustration for a fairy tale, Fluff, the Astounding Flea Hairs Brom, Alan Lee,

: colorful hyperdetailed, hyper
beautiful, trippy, fantastical, whimsical, ephemeral, fairy tale influenced, breathiaking,

magical, filled with a sense of wonder

Prompt: Experience the magic of natures bounty as almonds, macadamia nuts, shea, and coffee beans combine with the power of ionization to bring you the ultimate benefits for
Picture a lush garden where these ingredients grow in abundance, their unique properties captured in every drop of our luxurious formula. Imagine the transformation as your skin is revitalized and restored to its natural radiance.
ou 0 a world where bea ide the ultimate I

INT4+SVDQuant NVFP4 NVFP4+SVDQuant

PixArt-2 BF16 LPIPS: 0.323 LPIPS: 0.517 LPIPS: 0.271

INT4 INT4+SVDQuant NVFP4 NVFP4+SVDQuant
LPIPS: 0.339 LPIPS: 0.220 LPIPS: 0.237 LPIPS: 0.177

)
of 2d game art, unreal engine 5, chuah thean teng, kevin hill, desertwave, penelope rosemont, chinese iconography

Prompt: artist portrait of beautiful young lady, in the si

Figure 17: Qualitative comparisons of different precisions on MJHQ. NVFP4+SVDQuant yields the highest
image fidelity.
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E.4 LATENCY RESULTS

In Table 4, we compare FLUX latency on a laptop-level 4090 GPU across different precisions.
Compared to INTS, 4-bit quantization delivers a 1.3x speedup. However, without optimization,
SVDQuant incurs an 18% overhead due to the low-rank branch. By eliminating redundant memory
access, Nunchaku achieves latency comparable to naive INT4.

Table 4: Single-step latency comparisons of FLUX on a desktop-level 4090 GPU.

Method BF16 INT8 Naive INT4 SVDQuant SVDQuant +Nunchaku
Latency (ms) 657 282 212 250 218

E.5 TRADE-OFF OF INCREASING RANK

Figure 18 presents the results of different rank » in SVDQuant on PixArt-X. Increasing the rank from
16 to 64 significantly enhances image quality but increases parameter and latency overhead. In our
experiments, we select a rank of 32, which offers a decent quality with minor overhead.

+ SVDQuant Rank=16 SVDQuant Rank=32 SVDQuant Rank=64 1
. Image Reward: 0.787 Image Reward: 0.829  Image Reward: 0.859 |

PixArt-X: FP16 [l Rank=16 [ Rank=32 [0 Rank=64
12% 10.0%

11.3%

8.8%)

=
n
B

~
[
=

Latency Overhead
2
s

2 i &S/ e | >
Prompt: award winning photography of a beautiful medic smiling

""" Model Size Overhead
s
2

Figure 18: Increasing the rank r of the low-rank branch in SVDQuant can enhance image quality, but it also
leads to higher parameter and latency overhead.

E.6 TRADE-OFF BETWEEN QUALITY AND BITWIDTH

We evaluate LPIPS across different bitwidths for various quantization methods on PixArt-X and
FLUX.1-schnell using the MJHQ dataset in Figure 19, with weights and activations sharing the same
bitwidth. Following the convention (Xiao et al., 2023; Lin et al., 2024; 2025; Li et al., 2023a; Zhao
et al., 2024d; Dettmers et al., 2022), for bitwidths above 4, we apply per-channel quantization; for 4
or below, we use per-group quantization (group size 64). SVDQuant consistently outperforms naive
quantization and SmoothQuant. Notably, on PixArt—X and FLUX.1-schnell, our 4-bit results match
7-bit and 6-bit naive quantization, respectively.

Our SVDQuant can still generate images in the 3-bit settings on both PixArt-3 and FLUX.1-schnell,
performing much better than SmoothQuant. Below this precision (e.g., W2A4 or W4A2), SVDQuant
cannot produce images either since 2-bit symmetric quantization is essentially a ternary quantization.
Prior work (Ma et al., 2024a; Wang et al., 2023a) has shown that ternary neural networks require
quantization-aware training even for weight-only quantization to adapt the weights and activations to
the low-bit distribution.

O Naive SmoothQuant £} SVDQuant
1.0 0.8

0.8 0.7

0.7 0.5

0.5 0.4

LPIPS (1)
LPIPS (1)

03 03

0.2 0.1

0.0 n\? 0.0
8

5 6 7 5 6 7
Bitwidth Bitwidth

(a) PixArt-X (b) FLUX.1-schnell

w
~
w
IS
%

Figure 19: LPIPS of different quantization methods on PixArt-3 and FLUX.1-schnell across different bitwidths.
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F TEXT PROMPTS

Below we provide the text prompts we use in Figure 9 (from left to right).

a man in armor with a beard and a sword

GHIBSKY style, a fisherman casting a line into a peaceful village lake
— surrounded by quaint cottages

girl, neck tuft, white hair, sheep horns, blue eyes, nm22 style

sketched style, A squirrel wearing glasses and reading a tiny book under
— an oak tree

a panda playing in the snow, yarn art style

The text prompts we use in Figure 16 are (in the rasterizing order):

A male secret agent in a tuxedo, holding a gun, standing in front of a

— burning building

A handsome man in a suit, 25 years old, cool, futuristic

A knight in shining armor, standing in front of a castle under siege

A knight fighting a fire-breathing dragon in front of a medieval castle,
— flames and smoke

A male wizard with a long white beard casting a lightning spell in the

— middle of a storm

A young woman with long flowing hair, standing on a mountain peak at dawn,
— overlooking a misty valley

GHIBSKY style, a cat on a windowsill gazing out at a starry night sky and
< distant city lights

GHIBSKY style, a quiet garden at twilight, with blooming flowers and the
— soft glow of lanterns lighting up the path

GHIBSKY style, a serene mountain lake with crystal-clear water,

— surrounded by towering pine trees and rocky cliffs

GHIBSKY style, an enchanted forest at night, with glowing mushrooms and
— fireflies lighting up the underbrush

GHIBSKY style, a peaceful beach town with colorful houses lining the

— shore and a calm ocean stretching out into the horizon

GHIBSKY style, a cozy living room with a view of a snow-covered forest,
— the fireplace crackling and a blanket draped over a comfy chair

dog wearing a wizard hat, nm22 anime style

girl looking at the stars, nm22 anime style
fish swimming in a pond, nm22 style

giraffe with a long scarf, nm22 style

bird sitting on a branch, nm22 minimalist style
girl wearing a flower crown, nm22 style
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sketched style, A garden full of colorful butterflies and blooming

— flowers with a gentle breeze blowing

sketched style, A beach scene with kids building sandcastles and seagulls
— flying overhead

sketched style, A hot air balloon drifting peacefully over a patchwork of
— fields and forests below

sketched style, A sunny meadow with a girl in a flowy dress chasing

— butterflies

sketched style, A little boy dressed as a pirate, steering a toy ship on
— a small stream

sketched style, A small boat floating on a peaceful lake, surrounded by
— trees and mountains

hot air balloon flying over mountains, yarn art style
cat chasing a butterfly, yarn art style

squirrel collecting acorns, yarn art style

wizard casting a spell, yarn art style

jellyfish floating in the ocean, yarn art style

sea turtle swimming through a coral reef, yarn art style
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