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Abstract— We propose a method for depth estimation under
different illumination conditions, i.e., day and night time. As
photometry is uninformative in regions under low-illumination,
we tackle the problem through a multi-sensor fusion approach,
where we take as input an additional synchronized sparse
point cloud (i.e., from a LiDAR) projected onto the image
plane as a sparse depth map, along with a camera image.
The crux of our method lies in the use of the abundantly
available synthetic data to first approximate the 3D scene
structure by learning a mapping from sparse to (coarse)
dense depth maps along with their predictive uncertainty –
we term this, SpaDe. In poorly illuminated regions where
photometric intensities do not afford the inference of local
shape, the coarse approximation of scene depth serves as
a prior; the uncertainty map is then used with the image
to guide refinement through an uncertainty-driven residual
learning (URL) scheme. The resulting depth completion network
leverages complementary strengths from both modalities – depth
is sparse but insensitive to illumination and in metric scale,
and image is dense but sensitive with scale ambiguity. SpaDe
can be used in a plug-and-play fashion, which allows for
24% improvement when augmented onto existing methods to
preprocess sparse depth. We demonstrate URL on the nuScenes
dataset where we improve over all baselines by an average
12.39% in all-day scenarios, 12.02% when tested specifically for
daytime, and 14.95% for nighttime scenes. Code available at :
https://github.com/ezhovv/all-day-depth

I. INTRODUCTION

Three-dimensional (3D) reconstruction, i.e., depth estima-

tion, facilitates spatial tasks such as virtual and augmented

reality, and autonomous navigation and manipulation. Existing

works, from monocular to multi-view depth estimation, are

largely trained and tested on well-illuminated environments.

But when transferred to low-illumination scenarios, i.e.

nighttime, the performance of these methods drops drastically

due to a domain gap – a covariate shift in the photometric

intensities induced by the change in lighting conditions – and

in the absence of light, depth cannot be estimated from solely

image-based methods. Efforts to reduce the performance

gap mainly focus on re-balancing the training dataset by

introducing additional images captured in the low-illumination

environments. As manual curation of datasets with ground

truth depth is expensive, existing training sets are augmented

with images synthesized through means including, but not
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limited to, synthetic rendering or image-to-image translation

using a generative model. However, rendering may introduce

a synthetic to real domain gap, and image-to-image translation

may introduce artifacts.

Counter to current trends, we instead investigate the use of

a sparse range sensor, i.e., LiDAR, in addition to a camera,

with the aim to robustly reconstruct the 3D scene structure

under different lighting conditions, i.e., well-lit daytime and

lowly-illuminated nighttime, for all-day depth estimation.

Specifically, our approach estimates ego-centric dense depth

maps from synchronized images and sparse point clouds

projected onto the image plane, e.g., sparse depth maps.

Nonetheless, the process of image-guided sparse point cloud

(depth) completion is still ill-posed for each pixel without a

measured point and susceptible to the photometric covariate

shift. But while the point cloud is sparse, we have strong

priors about the natural shapes of objects populating the 3D

scene based on the configuration of the sparse points. This

prior can serve as a form of inductive bias for depth estimation

in regions where photometry is uninformative, i.e., poorly lit.

Hence, we propose to approximate the 3D scene structure,

from the sparse points, as a dense depth map and additionally

estimate its predictive uncertainty to gauge the reliability of

the approximated dense depth map. To this end, we leverage

the abundance of publicly available synthetic data, where

high quality ground truth can be used as supervision.

Once learned, our sparse to dense (SpaDe) approximation

module can be used in a plug-and-play fashion by prepro-

cessing sparse depth maps for existing methods, pretrained

on daytime scenes, to extend them to all-day scenarios.

Using plug-and-play with improved versions of SpaDe also

improves overall performance. In another mode, existing

models can be augmented with SpaDe, where its outputs

(depth and uncertainty) can be adaptively fused with those

of the downstream model via an uncertainty-driven residual

learning (URL) scheme. We evaluate our approach on three

recent depth completion methods on the nuScenes [1] dataset

and improve by an average of 12.02% in day, 14.95% in

night and 12.39% overall.

Our contributions are (i) a light-weight plug-and-play

network (SpaDe) to approximate dense depth with predictive

uncertainty from sparse points, and (ii) an uncertainty-driven

residual learning scheme that alleviates existing models from

the need to learn depth from scratch by leveraging SpaDe as

an inductive bias. (iii) Plug-and-play with SpaDe is forward-

compatible; future (better) versions of SpaDe can further

improve results in a seamless integration manner. To the best

of our knowledge, this is the first approach to address all-day



depth estimation from image and sparse range fusion.

II. RELATED WORKS

Supervised depth completion learns a map from images

and sparse depth maps to dense depth maps using ground

truth. Earlier works undertook approaches of compressing

sensing [2] and approximating morphological operators [3].

A line of works catered to sparse data by altering network

operations [4], [5], [6], and extending architectures [7], [8].

Employing RGB guidance, [9] proposed early fusion after

initial convolution. [6] used encoder features of concatenated

modalities to upsample the sparse depth map. [10] extended

this approach by two-stage sequential fusion. [11] used multi-

scale cascade hourglass network. [12] implemented non-

local spatial propagation, improving over fixed-local methods

[13]. [14] incorporates cost volume while [15], [16] utilized

transformer blocks. Several works incorporated auxiliary data

in form of confidence maps [17] and uncertainty estimations

[5], [18], [19], [20] for lidar and [21] for radar.

Unsupervised depth completion [22], [23], [24], [25]

learn depth by minimizing: sparse depth reconstruction

and photometric error between the original image and its

reconstruction from other views of the same scene [26],

[27]. [28] used Perspective-n-Point [29] and RANSAC [30]

to obtain camera pose. [31] applied the losses to test-time

adaptation. [24] proposed a calibrated backprojection layer

and [32] monitored distillation. [33] expanded the set of

augmentations. [34] used line feature from visual SLAM.

[35] decouples structure and scale. [8], [36] also learned to

approximate dense depth from sparse depth maps, but does

not consider uncertainty, nor low illumination scenarios.

All of the above are designed for well-illuminated scenarios.

Specifically, unsupervised methods rely on the photometric

reconstruction loss, which requires temporal consistency with

minimal occlusions in consecutive frames without specular

reflections; current unsupervised methods cannot be trained

for nighttime scenes. Thus, we explore supervised learning

paradigm for all-day depth estimation.

All-day and nighttime depth estimation remain challeng-

ing due to a loss of photometric information (low signal to

noise) from low illumination and inconsistent exposure. [37]

used image enhancement and adaptive masking nighttime

scenes. [38] extended the approach to all-day estimation by

jointly learning enhancement module. Other works bridged

domain gap using image translation [39] and discriminative

learning [40] models. [41] instead proposed extracting view-

invariant and variant features with an encoder for each domain.

[42] demonstrated illumination-invariant photometric loss,

compensating for various exposure and motion by image

denoising and predicting per-pixel residual flow map. [43],

[44] also relied on alternative modality less affected by

illumination – thermal images. [44] estimated depth directly

from one thermal image while training with RGB images.

Unlike single-modality (monocular) depth estimation, we

fuse RGB camera images and synchronized sparse depth maps

from LiDAR, which is invariant to illumination changes. We

leverage the complementary strengths of these modalities

to perform all-day depth estimation without the need for

enhancement or image-to-image translation during training.

III. METHOD

Motivation. Daytime and nighttime images exhibit signifi-

cant difference in illumination, posing a challenge for depth

estimation. To address this we investigate the efficacy of multi-

sensor fusion: Image sensors (i.e. CMOS sensors in camera)

capture dense 2D projections of the 3D scene – photometry

is naturally sensitive to illumination. While daytime images

typically present distinct object appearances, which allows one

to infer object shapes, nighttime images are often presented

with low illumination and photometric disturbances (e.g. low

signal to noise). Conversely, range sensors (e.g. LiDAR,

radar) capture a sparse point cloud of the 3D scene. The

inherent robustness of range sensors under different lighting

conditions motivates us to exploit it as an additional modality

for depth estimation. While range sensors can resolve depth,

their measurements are often sparse – leading to trade-offs

between the image (dense, but sensitive to illumination) and

sparse range modalities. To this end, we present a method to

cohesively integrate different sensor modalities to estimate

depth under “all-day” (day and nighttime) scenarios.

Formulation. Given datasets Dday and Dnight comprised of

daytime and nighttime scenes, respectively, we aim to estimate

depth under all-day scenarios i.e. Dall-day = (Dday ∪ Dnight).

We assume data samples (I, z, d∗) ∈ Dall-day, where I ∈
R

3×H×W denotes an RGB image, z ∈ R
H×W
+ a synchronized

point cloud projected onto the image plane as a sparse depth

map, and d∗ ∈ R
H×W
+ the ground truth depth. Note: in all-

day depth estimation, aside from the variation in illumination

between daytime and nighttime images, which degrades

performance, there also exists an imbalance in the data for

each lighting condition to further exacerbate the errors.

We propose first to learn a deep neural network fSpaDe

from synthetic data to approximate the coarse 3D scene

structure as a dense depth map and its predictive uncertainty:

[ẑ, σ̂] = fSpaDe(z) where ẑ ∈ R
H×W
+ refers to the predicted

depth map and σ̂ ∈ R
H×W to the uncertainty. Once trained,

fSpaDe can be frozen (see Fig. 1-(a)) and augmented onto

existing pretrained depth completion networks fDC to enable

all-day depth estimation. We hypothesize that the dense

depth predicted by fSpaDe will serve as a strong prior to bias

predictions in image regions that are uninformative (Fig. 4).

In its “plug-and-play” mode, fSpaDe is used as a prepro-

cessing step to densify the input sparse depth map to a

pretrained depth completion network fDC. Sparse depth z
and predicted depth ẑ are combined into a single input depth

map z̃ ∈ R
H×W
+ ; any location in ẑ where there exists z is

substituted with its value: z̃ = 1z · z + (1 − 1z) · ẑ, where

1z ∈ {0, 1}H×W is an indicator for positions where positive

z exists. The output depth d ∈ R
H×W
+ is thus d = fDC(I, z̃)

when using SpaDe in plug-and-play.

In a more performant mode, one can train fDC while freez-

ing fSpaDe. Here, fSpaDe serves again as a preprocessing step,

where sparse and predicted depth are again combined into a

single input z̃ ∈ R
H×W
+ and concatenated with uncertainty.



Fig. 1: An Illustration of Uncertainty-driven Residual Learning.
(a) Our Sparse-to-Dense module (SpaDe) is trained on synthetic data
to approximate dense depth from sparse points. (b) SpaDe is used
as an inductive bias in Uncertainty-driven Residual Learning (URL),
and the depth estimation model is trained to adaptively refine the
approximated depth based on the estimated log uncertainty. SpaDe
can also be used in a plug-and-play manner to enable all-day depth
estimation for a pretrained depth estimator without training.

To indicate original sparse points, uncertainty is imputed with

low-uncertainty constant γ: σ̂ = 1z · γ + (1− 1z) · σ̂, where

γ was empirically set to −2. The input now reads z̄ = [z̃; σ̂].
To alleviate the burden of learning depth from scratch, one

may leverage fDC to correct more uncertain regions, allowing

one to dedicate model capacity to learning the residual d̂ by

minimizing typical supervised loss w.r.t. ground truth d∗ on

Dall-day. The final output is attained with uncertainty-weighted

scheme d = λ(σ̂)ẑ + (1 − λ(σ̂))d̂, where balancing factor

λ(σ̂) grants greater contribution to d̂ in higher uncertainty

regions. This lends to an uncertainty-driven residual learning

scheme (see Fig. 1-(b)) where fDC refines ẑ with d̂ based on

predictive uncertainty σ̂.

A. Learning to approximate dense depth from sparse range

Given a synthetic dataset with training samples (z, d∗syn) ∈
Dsyn, where d∗syn denotes the rendered ground truth, we

propose a light-weight convolutional encoder-decoder, Sparse-

to-Dense network (SpaDe), fSpaDe(z) = [ẑ, σ̂], which not only

approximates the dense depth ẑ, but also estimates its log

uncertainty σ̂, from sparse depth map z. To learn fSpaDe, we

leverage the high quality, dense ground truth that can be

readily obtained in synthetic datasets, sourced from depth

buffers in 3D rendering engines, and minimize an L2 loss:

LSpaDe-z(ẑ, d
∗
syn) = ||ẑ − d∗syn||22. (1)

While the range sensor is robust to illumination changes, the

approximated depth may contain erroneous regions, given

that it is solely predicted from sparse points. To quantify the

reliability of each predicted point, we additionally predict the

log-Gaussian uncertainty σ̂ as a dense map σ̂ ∈ R
H×W .

The log uncertainty loss function aims to learn the

predictive uncertainty σ̂ ∈ R
H×W of the approximated depth,

assuming the uncertainty of ẑ follows a Gaussian distribution,

LSpaDe−σ(ẑ, d
∗
syn) =

1

2

(
ẑ − d∗syn

eσ̂

)2

+ σ̂. (2)

In practice, we train for depth first, and then train the

uncertainty decoder while freezing encoder and depth decoder.

To show the efficacy of SpaDe as a inductive bias, we visualize

the prediction, uncertainty and error on Waymo (Fig. 2).

Fig. 2: Sparse-to-Dense module (SpaDe) on real dataset. The
boxes highlight the alignment between SpaDe’s predictive uncer-
tainty and depth discontinuity regions that often erroneous. The
uncertainty aligns well with error when compared to ground truth.

B. Uncertainty-driven residual learning (URL)

Given available datasets, one may also augment a depth

completion network fDC with SpaDe fSpaDe and train it to

learn the residual d̂ of the predicted depth map ẑ, which

re-purposes the downstream fDC as a refinement module for

ẑ. To leverage fSpaDe as an inductive bias, the refinement can

be conducted adaptively, where the weighting function λ(σ̂)
assigns residuals d̂ with larger weight for higher σ̂ (more

freedom to modify ẑ) and likewise lower weight for lower σ̂:

λ(σ̂) =
1

1 + eα(σ̂−β)
, (3)

where the α = 0.8 and β = 0 are hyperparameters to calibrate

the reliability of the respective models. Our uncertainty-

driven residual learning (URL) scheme manifests as a linear

combination balanced by λ(σ̂). The output depth reads

d = λ(σ̂)ẑ + (1− λ(σ̂))d̂, (4)

where λ(·) is the weighting function based on log uncertainty

value. Intuitively, λ(·) guides the downstream fDC to prioritize

the reduction of errors in regions exhibiting high uncertainty.

To learn fDC, we minimize a supervised loss on Dall-day.

While any depth completion base model can be seamlessly

integrated into our framework, we consider three models for

fDC in URL, where each model minimizes the loss function

specified in their respective paper, which follows the form:

Lsup = ||d− d∗||p, (5)

where p denotes the L-p norm for the loss, either L1 or L2.

Additionally, as ground truth in real datasets are at most

semi-dense, we also include a local smoothness regularizer

on d as part of the training objective. Specifically, local

smoothness loss is computed on gradients of depth prediction

in both horizontal and vertical directions, ∂X and ∂Y ,

respectively. We denote the smoothness loss Lsm as follows:

Lsm =
1

|Ω|
∑
x∈Ω

IX(x)|∂Xd(x)|+ IY (x)|∂Y d(x)|, (6)

where IX(x) = e−|∂XI(x)|, IY (x) = e−|∂Y I(x)| and Ω
denotes image domain. The total loss function for fDC reads:

Ltotal = wsmLsm + wsupLsup, (7)

where wsup and wsm are the weights for each loss term.

IV. EXPERIMENTS AND RESULTS

We consider three recent depth completion models: ENet

[10], MSG-CHN[11] and CostDCNet [14]. Each is evaluated

using KITTI [45] metrics (MAE, RMSE, iMAE, iRMSE)

under daytime, nighttime, and all-day scenarios.



Fig. 3: Representative results of all-day depth estimation on nuScenes day and night images. The region for detailed comparisons are
highlighted by boxes. URL performs better on (a) low-illumination conditions, (b) depth discontinuity regions and (c) missing sparse points.

A. Datasets

nuScenes [1] is an outdoor dataset comprised of 1000 scenes

from Boston and Singapore. The dataset contains around

40,000 annotated keyframes (around 40 samples per scene).

We use the original nuScenes train/val split (700 scenes for

train, 150 for val). Note: we use the 544x1600 bottom crop

to validate the models.

Waymo Open Dataset [46] consists of 1150 scenes from

different illuminations (day/night/dawn), Each scene includes

average 197 frames with high-quality synchronized LIDAR

and RGB image. We used Waymo to train a second set of

baselines to test the applicability of SpaDe and a “future”

update to SpaDe (trained with more data) for plug-and-play.

We show that SpaDe can even improve methods trained with

images captured under different illumination conditions.

Virtual KITTI (VKITTI) [47] consists of 35 synthetic

videos (5 cloned from the KITTI [4], each with 7 variations

in weather, lighting or camera angle) for a total of 1242×375
sized ≈17K frames. We only use the dense depth maps of

VKITTI to train SpaDe. To acquire the sparse points, we

imitate the sparse depth measurement of nuScenes.

SYNTHIA [48] is a synthetic collection of urban scenes,

rendered in a virtual city under all four seasons and dynamic

illumination conditions. We only utilize dense maps in

conjunction with VKITTI to train SpaDe-V2.

B. Implementation details

All models were trained using four NVIDIA RTX 3090

GPUs. MSG-CHN, ENet and CostDCNet used 1, 2, and 4

GPUs respectively. SpaDe was trained on two NVIDIA RTX

3080 Ti GPUs. MSG-CHN took 32hrs with a batch size

of 16. ENet and CostDCNet took 55 hours and 35 hours,

respectively, with corresponding batch sizes of 16 and 24.

Note: the sparse depth map z, was passed to the geometric

convolutional layer of ENet and to the 3-D encoder of

CostDCNet as required by their methods. All models take in

z̄ = [z̃, σ̂] as input to their respective 2-D depth encoder.

SpaDe was trained on VKITTI and later frozen for URL.

We trained it for 30 epochs with a learning rate of 2e-4 to

learn depth, and later froze the encoder and depth decoder

for training uncertainty decoder for a total of 55 epochs with

an initial learning rate of 2e-4, and reduce to 1e-4 and 5e-5

at epoch 25 and 40. Random translation, crop, flip, and patch

removal augmentations were used. For the baselines, MSG-

CHN was trained for 90 epochs with initial learning rate of

1e-3, reduced to 5e-4, 2e-4, 1e-4 at epoch 10, 20 and 25.

ENet was trained for 50 epochs under similar schedule, while

CostDCNet was trained for 85 epochs using 2e-4 learning

rate. We use color jitter, random resize and crop, horizontal

flip for augmentations and the crop size of 544x704.

Baselines. We consider KITTI [4] pretrained models of ENet

[10], MSG-CHN [11] and CostDCNet [14] as baselines i.e.

zero-shot generalization. Note that KITTI does not contain

nighttime scenes. We also train baselines on Waymo to show

that SpaDe can yield improvements even if a model was

pretrained with nighttime imagery. Additionally, we train each

method on the original nuScenes dataset, which contains an

imbalanced day and night time scenes. We further consider

two adaptations of the previously mentioned baselines with

image translation and image enhancement respectively.

Image-to-image translation. Following [40], [39], we

train depth completion models on the data with extra images

translated by day-to-night translation network (Table II,

marked with “+Translation”). Due to limited number of night-

time images in nuScenes [1], the translation network is first

pretrained on BDD [49], then finetuned on nuScenes.

Enhancement baseline. Following [38], we train our

baselines with the SCI image enhancement module [50].

SCI estimates the illumination stage by stage and generate a

corresponding calibrated residual map, with which the image

is enhanced. Although in [38] they jointly train the depth

estimation network and the image enhancement module, we

directly use the pretrained image enhancement module and

freeze it during our training of baselines.



TABLE I: Plug-and-play evaluation on nuScenes for daytime, nighttime, and all-day depth completion. SpaDe improves models with
plug-and-play and is also forward-compatible with SpaDe-V2. Best results are in bold, and second place results are underlined.

nuScenes-Daytime nuScenes-Nighttime nuScenes-All

Method MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

SpaDe VKITTI 1704.850 4280.270 4.321 8.765 1755.366 4335.351 4.457 10.391 1709.207 4282.599 4.453 8.951
SpaDe-V2 VKITTI+Synthia 1621.320 4060.945 4.230 8.582 1693.932 4198.802 4.507 10.244 1628.582 4074.733 4.258 8.748

MSG-CHN [11]

KITTI Pretrained 2995.773 5708.828 10.973 15.774 2786.535 5231.965 10.209 16.19 2974.845 5661.133 10.897 15.815
+SpaDe 1697.195 4268.740 4.380 8.811 1748.527 4324.559 4.568 10.343 1702.329 4274.323 4.399 8.964
+SpaDe-V2 1636.521 4069.945 4.415 8.751 1706.236 4193.282 4.634 10.294 1643.494 4082.281 4.437 8.906

Waymo Pretrained 1834.319 4241.108 7.279 14.610 1802.856 4195.771 7.425 16.218 1829.338 4232.333 7.286 14.756
+SpaDe 1674.598 4094.884 6.125 12.204 1766.666 4235.392 6.376 13.725 1683.807 4108.937 6.150 12.356
+SpaDe-V2 1628.546 3977.431 6.082 12.144 1740.155 4172.814 6.356 13.682 1639.709 3996.972 6.109 12.298

ENet [10]

KITTI Pretrained 7218.710 11207.972 35.189 43.661 8699.404 12980.821 37.604 47.89 7366.805 11385.288 35.431 44.084
+SpaDe 1765.993 4360.448 4.481 8.832 1884.250 4476.141 4.739 10.435 1777.820 4372.019 4.507 8.993
+SpaDe-V2 1748.441 4214.698 4.381 8.662 1875.675 4374.090 4.673 10.302 1761.166 4230.640 4.410 8.826

Waymo Pretrained 1909.895 4337.763 8.585 16.568 2073.584 4549.566 8.822 17.827 1924.354 4354.606 8.600 16.677
+SpaDe 1821.182 4216.877 7.683 14.775 1981.966 4423.804 7.925 16.004 1835.439 4233.353 7.700 14.883
+SpaDe-V2 1776.277 4102.502 7.649 14.715 1956.100 4364.737 7.900 15.955 1792.483 4124.623 7.666 14.824

CostDCNet [14]

KITTI Pretrained 2296.108 4962.61 7.342 13.074 2409.223 5249.862 7.235 13.533 2307.421 4991.34 7.331 13.12
+SpaDe 1796.846 4319.800 5.178 9.743 1870.850 4460.740 5.081 10.953 1804.248 4333.896 5.168 9.864
+SpaDe-V2 1745.836 4136.099 5.230 9.699 1838.623 4351.694 5.146 10.870 1755.116 4157.662 5.222 9.816

Waymo Pretrained 1955.058 4415.014 6.957 13.001 2061.947 4681.097 7.099 14.500 1963.792 4437.207 6.964 13.138
+SpaDe 1797.379 4211.605 6.345 12.129 1870.006 4379.434 6.490 13.597 1804.643 4228.390 6.360 12.275
+SpaDe-V2 1743.765 4092.958 6.300 12.060 1823.228 4284.455 6.461 13.557 1751.713 4112.110 6.316 12.209

TABLE II: Evaluation on nuScenes for daytime, nighttime, and all-day depth completion. Best results are in bold, and second best
are underlined. Despite not having extra training data or image enhancement, SpaDe and URL improve all three baselines by 12.39%.

nuScenes-Daytime nuScenes-Nighttime nuScenes-All

Architecture Method MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

MSG-CHN [11]

Baseline 1674.465 3926.396 5.749 10.842 2068.051 4470.071 6.801 13.079 1713.830 3980.773 5.854 11.066
+Translation 1612.436 3837.921 5.650 13.066 1993.668 4564.014 6.066 12.290 1650.566 3910.543 5.692 12.988
+Enhancement 1723.677 4345.944 4.519 8.747 2223.441 5118.473 6.049 12.37 1773.619 4423.110 4.672 9.110
+SpaDe 1370.595 3550.412 4.086 8.102 1650.553 3875.170 4.838 10.211 1387.848 3563.635 4.073 8.187
+URL 1334.965 3478.742 3.859 7.818 1522.108 3685.869 4.703 10.340 1353.683 3499.458 3.943 8.070

ENet [10]

Baseline 1338.449 3389.611 3.968 7.713 1611.057 3706.047 5.322 10.945 1358.298 3406.133 4.081 8.046
+Translation 1378.031 3449.752 4.582 8.740 1581.408 3644.441 5.773 11.716 1397.238 3473.109 4.711 9.052
+Enhancement 1314.127 3351.362 3.997 7.831 1771.770 3913.751 6.616 13.592 1359.865 3407.534 4.259 8.407
+SpaDe 1280.334 3297.927 3.932 7.656 1578.806 3634.643 5.176 10.579 1310.143 3331.935 4.057 7.951
+URL 1215.368 3337.389 3.558 7.407 1439.183 3576.976 4.507 9.994 1237.750 3361.348 3.653 7.666

CostDCNet [14]

Baseline 1221.396 3326.633 3.896 7.879 1451.260 3608.133 4.857 10.793 1243.161 3351.456 3.988 8.163
+Translation 1202.946 3334.581 3.666 7.608 1404.093 3623.874 4.239 9.671 1221.858 3360.176 3.72 7.807
+Enhancement 1202.613 3344.348 3.765 7.882 1413.974 3571.865 4.934 11.138 1222.546 3363.755 3.878 8.2
+SpaDe 1099.036 3312.056 3.272 7.289 1264.984 3554.725 3.946 9.696 1115.634 3336.327 3.339 7.530
+URL 1142.437 3324.694 3.320 7.309 1304.025 3538.857 4.036 9.746 1158.598 3346.114 3.392 7.553

Fig. 4: Ablation Study on nuScenes Predictions from SpaDe serve as strong inductive bias for downstream depth completion models.
Augmenting KITTI pretrained models with SpaDe improves estimates in regions where photometry is uninformative (highlighted).

C. Main results

Table I shows our study on the effect of illumination change

to existing depth completion methods. As expected, models

pretrained on KITTI are unable to generalize to nuScenes

because of the photometric domain gap; errors in night

time are generally higher than daytime. On its own, SpaDe

pretrained on VKITTI (row 1) improves over all KITTI
and Waymo pretrained models, despite not using the RGB

image. This shows the robustness of using sparse range as

an additional modality to enable transfer of model across

various lighting conditions. Augmenting pretrained models

with SpaDe (rows with “+SpaDe”) significantly improves



results across all metrics in both day and nighttime splits.

We additionally trained baselines with Waymo and show that

the results hold. This promising result illustrates the plug-

and-play capability of SpaDe, which can improve domain

generalization while being agnostic to model architecture.

Moreover, all models can easily be improved with future

iterations of SpaDe. To demonstrate this, we train SpaDe-V2

on VKITTI and Synthia. We observed consistent improvement

when augmented both KITTI and Waymo pretrained models

with SpaDe. With a better SpaDe model, downstream models

also improves to similar degree, implying seamless integration

with updates to SpaDe, i.e., forward-compatibility.

In Table II, we compare with the current trend of using

image-to-image translation to re-balance day and nighttime

distributions (and to increase the data volume). We observe

a positive influence from training the baselines on translated

images as compared to those on the original nuScenes with

consistent improvement in both day and night time results.

When compared to our method, the results were surprising.

Even without URL, if one were to train the downstream

model with SpaDe frozen and augmented to process the

sparse inputs, there are immediate benefits. This is thanks to

the inductive bias coming from the dense depth produced by

SpaDe. Additionally, as typical convolutions are not suited for

processing sparse inputs [23], providing the depth completion

model with dense, albeit an approximation, depth allows the

network to properly make use of convolution operations. This

is highlighted in MSG-CHN, where we improve the nuScenes

model from an MAE of 1713.83 to 1387.85. Moreover, when

evaluated on nighttime scenes, all networks augmented with

SpaDe received improvements. In fact, without even training

on the additional translated images, models augmented with

SpaDe are competitive and sometimes even improve over

those that were. We also note that image translation requires

a large computation overhead during training.

Finally, we compare URL against those trained with

image-to-image translation (expanding dataset) and nighttime

enhancement. URL improves pretrained baselines by 12.3%

in all-day scenarios, (12.17% day, 14.38% night) and 12.39%

across all models on all-day (12.02% day, 14.95% night). We

improve over enhancement by 10.9% (9.7% day, 17.2% night)

and translation by 13.93% (14.14% day, 11.85% night).

We attribute such performance to the proposed uncertainty-

driven residual learning (URL) scheme. While enhancement

module attempts to close the domain gap, the possibility of

introducing artifacts arises under dynamic illumination con-

ditions. On the contrary, SpaDe operates on the illumination-

robust modality, with potential erroneous regions in prediction

quantified by predictive uncertainty. URL, in turn, utilizes

adaptive weighting to preserve high confidence regions, re-

purposing model capacity to learn the residual. Leveraging

SpaDe as a strong depth prior or regularizer, URL acts as a

validator given the image, correcting more uncertain regions,

which improves over the use of translation or enhancement.

Our method improves over low-illumination region in

Fig. 3(a), depth discontinuity in Fig. 3(c), and missing sparse

depth regions in Fig. 3(b). This demonstrates the inductive

bias from SpaDE enables a robust estimation under low-

illuminated conditions and homogeneous regions.

V. DISCUSSION

We have proposed a multimodal fusion method for all-

day depth completion, which leverages the strength of com-

plementary sensor configuration under diverse illumination

conditions. SpaDe, trained on readily available synthetic

data, utilizes sparse range to approximate dense depth and

their predictive uncertainty. SpaDe can be used plug-and-play

without training, and forward compatibility allows seamless

integration of improved SpaDe models to boost performance.

Given the target dataset, URL offers improved performance

compared to existing methods that rely on image translation

techniques, which are prone to introducing artifacts in the

training images; training on them may backfire.

Nonetheless, our method does have several limitations.

Given the case of high uncertainty in approximated depth and

low-illumination in nighttime images, model estimates from

URL are not informative. This can be partially mitigated by

including predictive uncertainty in downstream models. Our

work focuses on ease of use for SpaDe and its applicability

in plug-and-play; we leave design of downstream models to

future works. Another avenue is to enhance image capture,

where computational imaging is relevant. This may bridge

the gap between daytime and nighttime images, lending to a

more sensor driven paradigm. As our approach is the first all-

day depth completion method, we will release code including

data setup and processing pipelines and models; we hope

our promising results will motivate innovations in enabling

robust estimation under diverse illumination settings.
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