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Abstract— We propose a method for depth estimation under
different illumination conditions, i.e., day and night time. As
photometry is uninformative in regions under low-illumination,
we tackle the problem through a multi-sensor fusion approach,
where we take as input an additional synchronized sparse
point cloud (i.e., from a LiDAR) projected onto the image
plane as a sparse depth map, along with a camera image.
The crux of our method lies in the use of the abundantly
available synthetic data to first approximate the 3D scene
structure by learning a mapping from sparse to (coarse)
dense depth maps along with their predictive uncertainty —
we term this, SpaDe. In poorly illuminated regions where
photometric intensities do not afford the inference of local
shape, the coarse approximation of scene depth serves as
a prior; the uncertainty map is then used with the image
to guide refinement through an uncertainty-driven residual
learning (URL) scheme. The resulting depth completion network
leverages complementary strengths from both modalities — depth
is sparse but insensitive to illumination and in metric scale,
and image is dense but sensitive with scale ambiguity. SpaDe
can be used in a plug-and-play fashion, which allows for
24% improvement when augmented onto existing methods to
preprocess sparse depth. We demonstrate URL on the nuScenes
dataset where we improve over all baselines by an average
12.39% in all-day scenarios, 12.02% when tested specifically for
daytime, and 14.95% for nighttime scenes. Code available at :
https://github.com/ezhovv/all-day—-depth

I. INTRODUCTION

Three-dimensional (3D) reconstruction, i.e., depth estima-
tion, facilitates spatial tasks such as virtual and augmented
reality, and autonomous navigation and manipulation. Existing
works, from monocular to multi-view depth estimation, are
largely trained and tested on well-illuminated environments.
But when transferred to low-illumination scenarios, i.e.
nighttime, the performance of these methods drops drastically
due to a domain gap — a covariate shift in the photometric
intensities induced by the change in lighting conditions — and
in the absence of light, depth cannot be estimated from solely
image-based methods. Efforts to reduce the performance
gap mainly focus on re-balancing the training dataset by
introducing additional images captured in the low-illumination
environments. As manual curation of datasets with ground
truth depth is expensive, existing training sets are augmented
with images synthesized through means including, but not
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limited to, synthetic rendering or image-to-image translation
using a generative model. However, rendering may introduce
a synthetic to real domain gap, and image-to-image translation
may introduce artifacts.

Counter to current trends, we instead investigate the use of
a sparse range sensor, i.e., LIDAR, in addition to a camera,
with the aim to robustly reconstruct the 3D scene structure
under different lighting conditions, i.e., well-lit daytime and
lowly-illuminated nighttime, for all-day depth estimation.
Specifically, our approach estimates ego-centric dense depth
maps from synchronized images and sparse point clouds
projected onto the image plane, e.g., sparse depth maps.
Nonetheless, the process of image-guided sparse point cloud
(depth) completion is still ill-posed for each pixel without a
measured point and susceptible to the photometric covariate
shift. But while the point cloud is sparse, we have strong
priors about the natural shapes of objects populating the 3D
scene based on the configuration of the sparse points. This
prior can serve as a form of inductive bias for depth estimation
in regions where photometry is uninformative, i.e., poorly lit.
Hence, we propose to approximate the 3D scene structure,
from the sparse points, as a dense depth map and additionally
estimate its predictive uncertainty to gauge the reliability of
the approximated dense depth map. To this end, we leverage
the abundance of publicly available synthetic data, where
high quality ground truth can be used as supervision.

Once learned, our sparse to dense (SpaDe) approximation
module can be used in a plug-and-play fashion by prepro-
cessing sparse depth maps for existing methods, pretrained
on daytime scenes, to extend them to all-day scenarios.
Using plug-and-play with improved versions of SpaDe also
improves overall performance. In another mode, existing
models can be augmented with SpaDe, where its outputs
(depth and uncertainty) can be adaptively fused with those
of the downstream model via an uncertainty-driven residual
learning (URL) scheme. We evaluate our approach on three
recent depth completion methods on the nuScenes [1] dataset
and improve by an average of 12.02% in day, 14.95% in
night and 12.39% overall.

Our contributions are (i) a light-weight plug-and-play
network (SpaDe) to approximate dense depth with predictive
uncertainty from sparse points, and (ii) an uncertainty-driven
residual learning scheme that alleviates existing models from
the need to learn depth from scratch by leveraging SpaDe as
an inductive bias. (iii) Plug-and-play with SpaDe is forward-
compatible; future (better) versions of SpaDe can further
improve results in a seamless integration manner. To the best
of our knowledge, this is the first approach to address all-day



depth estimation from image and sparse range fusion.
II. RELATED WORKS

Supervised depth completion learns a map from images
and sparse depth maps to dense depth maps using ground
truth. Earlier works undertook approaches of compressing
sensing [2] and approximating morphological operators [3].
A line of works catered to sparse data by altering network
operations [4], [5], [6], and extending architectures [7], [8].
Employing RGB guidance, [9] proposed early fusion after
initial convolution. [6] used encoder features of concatenated
modalities to upsample the sparse depth map. [10] extended
this approach by two-stage sequential fusion. [11] used multi-
scale cascade hourglass network. [12] implemented non-
local spatial propagation, improving over fixed-local methods
[13]. [14] incorporates cost volume while [15], [16] utilized
transformer blocks. Several works incorporated auxiliary data
in form of confidence maps [17] and uncertainty estimations
[5], [18], [19], [20] for lidar and [21] for radar.

Unsupervised depth completion [22], [23], [24], [25]
learn depth by minimizing: sparse depth reconstruction
and photometric error between the original image and its
reconstruction from other views of the same scene [26],
[27]. [28] used Perspective-n-Point [29] and RANSAC [30]
to obtain camera pose. [31] applied the losses to test-time
adaptation. [24] proposed a calibrated backprojection layer
and [32] monitored distillation. [33] expanded the set of
augmentations. [34] used line feature from visual SLAM.
[35] decouples structure and scale. [8], [36] also learned to
approximate dense depth from sparse depth maps, but does
not consider uncertainty, nor low illumination scenarios.

All of the above are designed for well-illuminated scenarios.
Specifically, unsupervised methods rely on the photometric
reconstruction loss, which requires temporal consistency with
minimal occlusions in consecutive frames without specular
reflections; current unsupervised methods cannot be trained
for nighttime scenes. Thus, we explore supervised learning
paradigm for all-day depth estimation.

All-day and nighttime depth estimation remain challeng-
ing due to a loss of photometric information (low signal to
noise) from low illumination and inconsistent exposure. [37]
used image enhancement and adaptive masking nighttime
scenes. [38] extended the approach to all-day estimation by
jointly learning enhancement module. Other works bridged
domain gap using image translation [39] and discriminative
learning [40] models. [41] instead proposed extracting view-
invariant and variant features with an encoder for each domain.
[42] demonstrated illumination-invariant photometric loss,
compensating for various exposure and motion by image
denoising and predicting per-pixel residual flow map. [43],
[44] also relied on alternative modality less affected by
illumination — thermal images. [44] estimated depth directly
from one thermal image while training with RGB images.

Unlike single-modality (monocular) depth estimation, we
fuse RGB camera images and synchronized sparse depth maps
from LiDAR, which is invariant to illumination changes. We
leverage the complementary strengths of these modalities

to perform all-day depth estimation without the need for
enhancement or image-to-image translation during training.

III. METHOD

Motivation. Daytime and nighttime images exhibit signifi-
cant difference in illumination, posing a challenge for depth
estimation. To address this we investigate the efficacy of multi-
sensor fusion: Image sensors (i.e. CMOS sensors in camera)
capture dense 2D projections of the 3D scene — photometry
is naturally sensitive to illumination. While daytime images
typically present distinct object appearances, which allows one
to infer object shapes, nighttime images are often presented
with low illumination and photometric disturbances (e.g. low
signal to noise). Conversely, range sensors (e.g. LiDAR,
radar) capture a sparse point cloud of the 3D scene. The
inherent robustness of range sensors under different lighting
conditions motivates us to exploit it as an additional modality
for depth estimation. While range sensors can resolve depth,
their measurements are often sparse — leading to trade-offs
between the image (dense, but sensitive to illumination) and
sparse range modalities. To this end, we present a method to
cohesively integrate different sensor modalities to estimate
depth under “all-day” (day and nighttime) scenarios.

Formulation. Given datasets D,y and Dyign comprised of
daytime and nighttime scenes, respectively, we aim to estimate
depth under all-day scenarios i.e. Dyi-day = (Dday U Dhight)-
We assume data samples ([, z,d*) € Diyjraay, Where I €
R3*H>W denotes an RGB image, z € Rf *W a synchronized
point cloud projected onto the image plane as a sparse depth
map, and d* € Rf *W the ground truth depth. Note: in all-
day depth estimation, aside from the variation in illumination
between daytime and nighttime images, which degrades
performance, there also exists an imbalance in the data for
each lighting condition to further exacerbate the errors.

We propose first to learn a deep neural network fspape
from synthetic data to approximate the coarse 3D scene
structure as a dense depth map and its predictive uncertainty:
2,6] = fspape(2) where 2 € RY*W refers to the predicted
depth map and 6 € R”*W to the uncertainty. Once trained,
fspape can be frozen (see Fig. 1-(a)) and augmented onto
existing pretrained depth completion networks fpc to enable
all-day depth estimation. We hypothesize that the dense
depth predicted by fspape Will serve as a strong prior to bias
predictions in image regions that are uninformative (Fig. 4).

In its “plug-and-play” mode, fspape is used as a prepro-
cessing step to densify the input sparse depth map to a
pretrained depth completion network fpc. Sparse depth z
and predicted depth Z are combined into a single input depth
map Z € Rf *W" . any location in Z where there exists z is
substituted with its value: Z =1, -2+ (1 —1,) - 2, where
1, € {0,1}#>W is an indicator for positions where positive
z exists. The output depth d € REXW is thus d = fpc(Z, 2)
when using SpaDe in plug-and-play.

In a more performant mode, one can train fpc while freez-
ing fspape. Here, fspape serves again as a preprocessing step,
where sparse and predicted depth are again combined into a
single input z € Rf *W-and concatenated with uncertainty.



(b) All-day real dataset
RGB Image

(a) Synthetic dataset

dense depth|
sparse depth
uncertainty

SpaDe

[ taining parameters
] roen e

- weight sharing

combined depth|
&

/ uncertainty output.

E: — : depth

I Depth completion model et —
depth

g sparse depth D E]i ' '

uncerinty Weighted - Uncertainty-driven
uneertainty Residual Learning

SpaDe

Fig. 1: An Illustration of Uncertainty-driven Residual Learning.
(a) Our Sparse-to-Dense module (SpaDe) is trained on synthetic data
to approximate dense depth from sparse points. (b) SpaDe is used
as an inductive bias in Uncertainty-driven Residual Learning (URL),
and the depth estimation model is trained to adaptively refine the
approximated depth based on the estimated log uncertainty. SpaDe
can also be used in a plug-and-play manner to enable all-day depth
estimation for a pretrained depth estimator without training.

To indicate original sparse points, uncertainty is imputed with
low-uncertainty constant y: 6 =1, -7+ (1 —1,) - &, where
~ was empirically set to —2. The input now reads z = [Z; 5].
To alleviate the burden of learning depth from scratch, one
may leverage fpc to correct more uncertain regions, allowing
one to dedicate model capacity to learning the residual d by
minimizing typical supervised loss w.r.t. ground truth d* on
Diji-gay- The final output is attained with uncertainty-weighted
scheme d = A(6)2 + (1 — A(6))d, where balancing factor
A(6) grants greater contribution to d in higher uncertainty
regions. This lends to an uncertainty-driven residual learning
scheme (see Fig. 1-(b)) where fpc refines Z with d based on
predictive uncertainty &.

A. Learning to approximate dense depth from sparse range

Given a synthetic dataset with training samples (z, dsyn)
Dyyn, where dg, denotes the rendered ground truth, we
propose a light-weight convolutional encoder-decoder, Sparse-
to-Dense network (SpaDe), fspape(2) = [2, 7], which not only
approximates the dense depth 2, but also estimates its log
uncertainty &, from sparse depth map z. To learn fspape, We
leverage the high quality, dense ground truth that can be
readily obtained in synthetic datasets, sourced from depth

buffers in 3D rendering engines, and minimize an L2 loss:

syn||2 (1)

While the range sensor is robust to illumination changes, the
approximated depth may contain erroneous regions, given
that it is solely predicted from sparse points. To quantify the
reliability of each predicted point, we additionally predict the
log-Gaussian uncertainty & as a dense map 6 € R7*W,
The log uncertainty loss function aims to learn the
predictive uncertainty 6 € R¥*W of the approximated depth,
assuming the uncertainty of 2 follows a Gaussian distribution,

»CSpaDe-z(éa d:yn) = ||2

diyn 3
£SpaDe—J(27 d:yn) = 5 <€‘A7y) +o0. (2)

In practice, we train for depth first, and then train the
uncertainty decoder while freezing encoder and depth decoder.
To show the efficacy of SpaDe as a inductive bias, we visualize
the prediction, uncertainty and error on Waymo (Fig. 2).

Fig. 2: Sparse-to-Dense module (SpaDe) on real dataset. The
boxes highlight the alignment between SpaDe’s predictive uncer-
tainty and depth discontinuity regions that often erroneous. The
uncertainty aligns well with error when compared to ground truth.

B. Uncertainty-driven residual learning (URL)

Given available datasets, one may also augment a depth
completion network fpc with SpaDe fspape and train it to
learn the residual d of the predicted depth map Z, which
re-purposes the downstream fpc as a refinement module for
%. To leverage fspape as an inductive bias, the refinement can
be conducted adaptively, where the weighting function (&)
assigns residuals d with larger weight for higher & (more
freedom to modify 2) and likewise lower weight for lower &:

1
1+ ex(6-8)’
where the o = 0.8 and § = 0 are hyperparameters to calibrate
the reliability of the respective models. Our uncertainty-
driven residual learning (URL) scheme manifests as a linear
combination balanced by A(¢). The output depth reads

d=\&)2+ (1 —X(5))d, ©)

where A\(-) is the weighting function based on log uncertainty
value. Intuitively, A(-) guides the downstream fpc to prioritize
the reduction of errors in regions exhibiting high uncertainty.
To learn fpc, we minimize a supervised 10ss on Dyj.day-
While any depth completion base model can be seamlessly
integrated into our framework, we consider three models for
fpoc in URL, where each model minimizes the loss function
specified in their respective paper, which follows the form:

Lup = ||d = d"|p, ®)

where p denotes the L-p norm for the loss, either L1 or L2.
Additionally, as ground truth in real datasets are at most
semi-dense, we also include a local smoothness regularizer
on d as part of the training objective. Specifically, local
smoothness loss is computed on gradients of depth prediction
in both horizontal and vertical directions, Jx and Oy,
respectively. We denote the smoothness loss Ly, as follows:

A(6) = 3)

Lan = 1 ZIX )|dxd(z)| + Iy (x)|dyd(z)], (6)
zEQ
where Ix(z) = e712xI@| Iy () = e~ 19v1@)] and Q

denotes image domain. The total loss function for fpc reads:
Etotal = wsm‘csm + wsup£sup7 (7)
where wg,, and wgy, are the weights for each loss term.

IV. EXPERIMENTS AND RESULTS

We consider three recent depth completion models: ENet
[10], MSG-CHN]J11] and CostDCNet [14]. Each is evaluated
using KITTI [45] metrics (MAE, RMSE, iMAE, iRMSE)
under daytime, nighttime, and all-day scenarios.
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Fig. 3: Representative results of all-day depth estimation on nuScenes day and night images. The region for detailed comparisons are
highlighted by boxes. URL performs better on (a) low-illumination conditions, (b) depth discontinuity regions and (c) missing sparse points.

A. Datasets

nuScenes [1] is an outdoor dataset comprised of 1000 scenes
from Boston and Singapore. The dataset contains around
40,000 annotated keyframes (around 40 samples per scene).
We use the original nuScenes train/val split (700 scenes for
train, 150 for val). Note: we use the 544x1600 bottom crop
to validate the models.

Waymo Open Dataset [46] consists of 1150 scenes from
different illuminations (day/night/dawn), Each scene includes
average 197 frames with high-quality synchronized LIDAR
and RGB image. We used Waymo to train a second set of
baselines to test the applicability of SpaDe and a “future”
update to SpaDe (trained with more data) for plug-and-play.
We show that SpaDe can even improve methods trained with
images captured under different illumination conditions.

Virtual KITTI (VKITTI) [47] consists of 35 synthetic
videos (5 cloned from the KITTI [4], each with 7 variations
in weather, lighting or camera angle) for a total of 1242 x 375
sized ~17K frames. We only use the dense depth maps of
VKITTI to train SpaDe. To acquire the sparse points, we
imitate the sparse depth measurement of nuScenes.

SYNTHIA [48] is a synthetic collection of urban scenes,
rendered in a virtual city under all four seasons and dynamic
illumination conditions. We only utilize dense maps in
conjunction with VKITTI to train SpaDe-V2.

B. Implementation details

All models were trained using four NVIDIA RTX 3090
GPUs. MSG-CHN, ENet and CostDCNet used 1, 2, and 4
GPUs respectively. SpaDe was trained on two NVIDIA RTX
3080 Ti GPUs. MSG-CHN took 32hrs with a batch size
of 16. ENet and CostDCNet took 55 hours and 35 hours,
respectively, with corresponding batch sizes of 16 and 24.

Note: the sparse depth map z, was passed to the geometric
convolutional layer of ENet and to the 3-D encoder of
CostDCNet as required by their methods. All models take in
zZ = [2, 6] as input to their respective 2-D depth encoder.

SpaDe was trained on VKITTI and later frozen for URL.
We trained it for 30 epochs with a learning rate of 2e-4 to
learn depth, and later froze the encoder and depth decoder
for training uncertainty decoder for a total of 55 epochs with
an initial learning rate of 2e-4, and reduce to le-4 and Se-5
at epoch 25 and 40. Random translation, crop, flip, and patch
removal augmentations were used. For the baselines, MSG-
CHN was trained for 90 epochs with initial learning rate of
le-3, reduced to 5e-4, 2e-4, le-4 at epoch 10, 20 and 25.
ENet was trained for 50 epochs under similar schedule, while
CostDCNet was trained for 85 epochs using 2e-4 learning
rate. We use color jitter, random resize and crop, horizontal
flip for augmentations and the crop size of 544x704.

Baselines. We consider KITTI [4] pretrained models of ENet
[10], MSG-CHN [11] and CostDCNet [14] as baselines i.e.
zero-shot generalization. Note that KITTI does not contain
nighttime scenes. We also train baselines on Waymo to show
that SpaDe can yield improvements even if a model was
pretrained with nighttime imagery. Additionally, we train each
method on the original nuScenes dataset, which contains an
imbalanced day and night time scenes. We further consider
two adaptations of the previously mentioned baselines with
image translation and image enhancement respectively.

Image-to-image translation. Following [40], [39], we
train depth completion models on the data with extra images
translated by day-to-night translation network (Table II,
marked with “+Translation”). Due to limited number of night-
time images in nuScenes [1], the translation network is first
pretrained on BDD [49], then finetuned on nuScenes.

Enhancement baseline. Following [38], we train our
baselines with the SCI image enhancement module [50].
SCI estimates the illumination stage by stage and generate a
corresponding calibrated residual map, with which the image
is enhanced. Although in [38] they jointly train the depth
estimation network and the image enhancement module, we
directly use the pretrained image enhancement module and
freeze it during our training of baselines.



TABLE I: Plug-and-play evaluation on nuScenes for daytime, nighttime, and all-day depth completion. SpaDe improves models with
plug-and-play and is also forward-compatible with SpaDe-V2. Best results are in bold, and second place results are underlined.

nuScenes-Daytime nuScenes-Nighttime nuScenes-All
Method MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE
SpaDe VKITTI 1704.850  4280.270  4.321 8765 1755.366 4335.351 4.457 10.391 1709.207 4282.599 4.453 8951
SpaDe-V2 VKITTI+Synthia ~ 1621.320 4060.945 4.230  8.582 1693.932 4198.802 4.507 10.244 1628.582 4074.733 4.258 8.748
KITTI Pretrained 2995773  5708.828 10.973 15.774 2786.535 5231.965 10.209 16.19 2974.845 5661.133 10.897 15.815
+SpaDe 1697.195 4268.740 4.380  8.811 1748.527 4324.559 4.568 10.343 1702.329 4274.323 4.399 8964
+SpaDe-V2 1636.521 4069.945 4415 8751 1706.236 4193.282 4.634 10.294 1643.494 4082.281 4.437  8.906
MSG-CHN [11]
Waymo Pretrained 1834.319 4241108  7.279 14.610 1802.856 4195771 7.425 16218 1829.338 4232333 7.286 14.756
+SpaDe 1674.598 4094.884  6.125 12.204 1766.666 4235.392 6.376 13.725 1683.807 4108.937 6.150 12.356
+SpaDe-V2 1628.546 3977.431 6.082 12.144 1740.155 4172.814 6.356 13.682 1639.709 3996972 6.109 12.298
KITTI Pretrained  7218.710 11207.972 35.189 43.661 8699.404 12980.821 37.604 47.89 7366.805 11385288 35.431 44.084
+SpaDe 1765.993 4360.448 4.481 8.832 1884.250 4476.141 4.739 10435 1777.820 4372.019 4.507 8.993
ENet [10] +SpaDe-V2 1748.441 4214.698 4.381 8.662 1875.675 4374.090 4.673 10.302 1761.166 4230.640 4.410 8.826
Waymo Pretrained 1909.895 4337.763  8.585 16.568 2073.584 4549.566 8.822 17.827 1924.354 4354.606 8.600 16.677
+SpaDe 1821.182 4216.877 7.683 14.775 1981.966 4423.804 7.925 16.004 1835.439 4233353 7.700 14.883
+SpaDe-V2 1776.277 4102502 7.649 14.715 1956.100 4364.737 7.900 15955 1792.483 4124.623 7.666 14.824
KITTI Pretrained ~ 2296.108  4962.61  7.342 13.074 2409.223 5249.862 7.235 13.533 2307.421 4991.34  7.331 13.12
+SpaDe 1796.846 4319.800 5.178 9.743 1870.850 4460.740 5.081 10.953 1804.248 4333.896 5.168  9.864
+SpaDe-V2 1745.836  4136.099 5230 9.699 1838.623 4351.694 5.146 10.870 1755.116 4157.662 5222 9.816
CostDCNet [14]
Waymo Pretrained 1955.058 4415.014  6.957 13.001 2061.947 4681.097 7.099 14.500 1963.792 4437207 6.964 13.138
+SpaDe 1797.379 4211.605 6.345 12.129 1870.006 4379.434 6490 13.597 1804.643 4228390 6.360 12.275
+SpaDe-V2 1743.765 4092958 6.300 12.060 1823.228 4284.455 6.461 13.557 1751.713 4112.110 6.316 12.209

TABLE II: Evaluation on nuScenes for daytime, nighttime, and all-day depth completion. Best results are in bold, and second best
are underlined. Despite not having extra training data or image enhancement, SpaDe and URL improve all three baselines by 12.39%.

nuScenes-Daytime

nuScenes-Nighttime nuScenes-All

Architecture  Method MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE
Baseline 1674.465 3926.396 5.749 10.842 2068.051 4470.071 6.801 13.079 1713.830 3980.773 5.854 11.066
+Translation  1612.436 3837.921 5.650 13.066 1993.668 4564.014 6.066 12.290 1650.566 3910.543 5.692 12.988
MSG-CHN [11] +Enhancement 1723.677 4345.944 4.519 8.747 2223.441 5118.473 6.049 12.37 1773.619 4423.110 4.672 9.110
+SpaDe 1370.595 3550.412 4.086 8.102 1650.553 3875.170 4.838 10.211 1387.848 3563.635 4.073 8.187
+URL 1334.965 3478.742 3.859 7.818 1522.108 3685.869 4.703 10.340 1353.683 3499.458 3.943 8.070
Baseline 1338.449 3389.611 3.968 7.713 1611.057 3706.047 5.322 10.945 1358.298 3406.133 4.081 8.046
+Translation ~ 1378.031 3449.752 4.582 8.740 1581.408 3644.441 5.773 11.716 1397.238 3473.109 4.711 9.052
ENet [10] +Enhancement 1314.127 3351.362 3.997 7.831 1771.770 3913.751 6.616 13.592 1359.865 3407.534 4.259 8.407
+SpaDe 1280.334 3297.927 3.932 7.656 1578.806 3634.643 5.176 10.579 1310.143 3331.935 4.057 7.951
+URL 1215.368 3337.389 3.558 7.407 1439.183 3576.976 4.507 9.994 1237.750 3361.348 3.653 7.666
Baseline 1221.396 3326.633 3.896 7.879 1451.260 3608.133 4.857 10.793 1243.161 3351.456 3.988 8.163
+Translation ~ 1202.946 3334.581 3.666 7.608 1404.093 3623.874 4.239 9.671 1221.858 3360.176 3.72 7.807
CostDCNet [14] +Enhancement 1202.613 3344.348 3.765 7.882 1413.974 3571.865 4.934 11.138 1222.546 3363.755 3.878 8.2
+SpaDe 1099.036 3312.056 3.272 7.289 1264.984 3554.725 3.946 9.696 1115.634 3336.327 3.339 7.530
+URL 1142.437 3324.694 3.320 7.309 1304.025 3538.857 4.036 9.746 1158.598 3346.114 3.392 7.553

KITTI Pretrained
RGB Image ¢ ; [ -

L 3

A

Sparse Depth

KITTI+SpaDe

Fig. 4: Ablation Study on nuScenes Predictions from SpaDe serve as strong inductive bias for downstream depth completion models.
Augmenting KITTI pretrained models with SpaDe improves estimates in regions where photometry is uninformative (highlighted).

C. Main results

Table I shows our study on the effect of illumination change
to existing depth completion methods. As expected, models
pretrained on KITTI are unable to generalize to nuScenes
because of the photometric domain gap; errors in night
time are generally higher than daytime. On its own, SpaDe

pretrained on VKITTI (row 1) improves over all KITTI
and Waymo pretrained models, despite not using the RGB
image. This shows the robustness of using sparse range as
an additional modality to enable transfer of model across
various lighting conditions. Augmenting pretrained models
with SpaDe (rows with “+SpaDe”) significantly improves



results across all metrics in both day and nighttime splits.
We additionally trained baselines with Waymo and show that
the results hold. This promising result illustrates the plug-
and-play capability of SpaDe, which can improve domain
generalization while being agnostic to model architecture.

Moreover, all models can easily be improved with future
iterations of SpaDe. To demonstrate this, we train SpaDe-V2
on VKITTT and Synthia. We observed consistent improvement
when augmented both KITTI and Waymo pretrained models
with SpaDe. With a better SpaDe model, downstream models
also improves to similar degree, implying seamless integration
with updates to SpaDe, i.e., forward-compatibility.

In Table II, we compare with the current trend of using
image-to-image translation to re-balance day and nighttime
distributions (and to increase the data volume). We observe
a positive influence from training the baselines on translated
images as compared to those on the original nuScenes with
consistent improvement in both day and night time results.
When compared to our method, the results were surprising.

Even without URL, if one were to train the downstream
model with SpaDe frozen and augmented to process the
sparse inputs, there are immediate benefits. This is thanks to
the inductive bias coming from the dense depth produced by
SpaDe. Additionally, as typical convolutions are not suited for
processing sparse inputs [23], providing the depth completion
model with dense, albeit an approximation, depth allows the
network to properly make use of convolution operations. This
is highlighted in MSG-CHN, where we improve the nuScenes
model from an MAE of 1713.83 to 1387.85. Moreover, when
evaluated on nighttime scenes, all networks augmented with
SpaDe received improvements. In fact, without even training
on the additional translated images, models augmented with
SpaDe are competitive and sometimes even improve over
those that were. We also note that image translation requires
a large computation overhead during training.

Finally, we compare URL against those trained with
image-to-image translation (expanding dataset) and nighttime
enhancement. URL improves pretrained baselines by 12.3%
in all-day scenarios, (12.17% day, 14.38% night) and 12.39%
across all models on all-day (12.02% day, 14.95% night). We
improve over enhancement by 10.9% (9.7% day, 17.2% night)
and translation by 13.93% (14.14% day, 11.85% night).

We attribute such performance to the proposed uncertainty-
driven residual learning (URL) scheme. While enhancement
module attempts to close the domain gap, the possibility of
introducing artifacts arises under dynamic illumination con-
ditions. On the contrary, SpaDe operates on the illumination-
robust modality, with potential erroneous regions in prediction
quantified by predictive uncertainty. URL, in turn, utilizes
adaptive weighting to preserve high confidence regions, re-
purposing model capacity to learn the residual. Leveraging
SpaDe as a strong depth prior or regularizer, URL acts as a
validator given the image, correcting more uncertain regions,
which improves over the use of translation or enhancement.

Our method improves over low-illumination region in
Fig. 3(a), depth discontinuity in Fig. 3(c), and missing sparse
depth regions in Fig. 3(b). This demonstrates the inductive

bias from SpaDE enables a robust estimation under low-
illuminated conditions and homogeneous regions.

V. DISCUSSION

We have proposed a multimodal fusion method for all-
day depth completion, which leverages the strength of com-
plementary sensor configuration under diverse illumination
conditions. SpaDe, trained on readily available synthetic
data, utilizes sparse range to approximate dense depth and
their predictive uncertainty. SpaDe can be used plug-and-play
without training, and forward compatibility allows seamless
integration of improved SpaDe models to boost performance.
Given the target dataset, URL offers improved performance
compared to existing methods that rely on image translation
techniques, which are prone to introducing artifacts in the
training images; training on them may backfire.

Nonetheless, our method does have several limitations.
Given the case of high uncertainty in approximated depth and
low-illumination in nighttime images, model estimates from
URL are not informative. This can be partially mitigated by
including predictive uncertainty in downstream models. Our
work focuses on ease of use for SpaDe and its applicability
in plug-and-play; we leave design of downstream models to
future works. Another avenue is to enhance image capture,
where computational imaging is relevant. This may bridge
the gap between daytime and nighttime images, lending to a
more sensor driven paradigm. As our approach is the first all-
day depth completion method, we will release code including
data setup and processing pipelines and models; we hope
our promising results will motivate innovations in enabling
robust estimation under diverse illumination settings.
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