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Abstract. Unsupervised depth completion and estimation methods are
trained by minimizing reconstruction error. Block artifacts from resam-
pling, intensity saturation, and occlusions are amongst the many unde-
sirable by-products of common data augmentation schemes that affect
image reconstruction quality, and thus the training signal. Hence, typ-
ical augmentations on images viewed as essential to training pipelines
in other vision tasks have seen limited use beyond small image intensity
changes and flipping. The sparse depth modality in depth completion
have seen even less use as intensity transformations alter the scale of the
3D scene, and geometric transformations may decimate the sparse points
during resampling. We propose a method that unlocks a wide range
of previously-infeasible geometric augmentations for unsupervised depth
completion and estimation. This is achieved by reversing, or “undo”-ing,
geometric transformations to the coordinates of the output depth, warp-
ing the depth map back to the original reference frame. This enables
computing the reconstruction losses using the original images and sparse
depth maps, eliminating the pitfalls of naive loss computation on the
augmented inputs and allowing us to scale up augmentations to boost
performance. We demonstrate our method on indoor (VOID) and out-
door (KITTI) datasets, where we consistently improve upon recent meth-
ods across both datasets as well as generalization to four other datasets.
Code available at: https://github.com/alexklwong/augundo.
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1 Introduction

Data augmentation is essential to training machine learning models; it plays
a role in performance and generalization [52, 64, 71]. One common axiom of
choosing augmentations is that the task output should remain invariant to the
augmentation. For example, image flipping is a viable augmentation for classi-
fying animals, since it does not alter the label. Conversely, flipping road signs
can alter their meanings; hence, such augmentation can be detrimental to tasks
involving road sign recognition. For geometric tasks, the range of augmentations
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is more restricted due to constraints of problem formulation: Stereo assumes
pairs of frontoparallel rectified images; hence, in-plane rotations are not viable.
Image-guided sparse depth completion relies on sparse points to ground esti-
mates to metric scale; therefore, intensity transformations on sparse depth maps
that alter the scale of the 3-dimensional (3D) scene are infeasible. Unsupervised
learning of depth completion and estimation further limit the use of augmen-
tations as the supervision signal comes from reconstructing the inputs, where
augmenting the input introduces artifacts that impact reconstruction quality
and therefore the supervision (see Sec. D, Fig. 1, Tab. 8, 9 in the Supp. Mat.
for examples of artifacts and extended discussion on their effect on learning).
Moreover, video-based unsupervised training assumes rigid motion, so augmen-
tations that introduce padding (e.g., translation, rotation) will yield constant
or edge extended borders across images (i.e., no motion), preventing the model
from properly learning depth and pose – leaving few augmentations viable. While
simulating nuisances is desirable, naively applying augmentations may do more
harm than good; thus, it is unsurprising that existing work in unsupervised depth
completion [45,48,63,82–84,87,94] and estimation [18,19,47,102,108] primarily
rely on a small range of photometric augmentations and flipping.

Nevertheless, photometric augmentations help model the diverse range of
illumination conditions and colors of objects that may populate the scene; ge-
ometric augmentations can simulate the various camera parameters, i.e., image
resizing (zooming) can model changes in focal length, and scene arrangements,
i.e., image flipping. However, block artifacts, loss during resampling, and inten-
sity saturation are just some of the many undesirable side-effects of traditional
augmentations to the image and sparse depth map for unsupervised learning of
geometric tasks. To avoid compromising the supervision signal, we compute the
typical reconstruction loss on the original input image and sparse depth map
instead of the augmented inputs, which bypasses negative effects of reconstruc-
tion artifacts due to photometric and geometric augmentations. However, there
exists a mis-alignment between the original input (e.g., image, sparse depth),
and the model depth estimate as geometric augmentations induce a change in
coordinates. Hence, we undo the geometric augmentations by inverting them in
the output space to align the model estimate with the training target.

Amongst the many geometric tasks, we focus on unsupervised depth comple-
tion, the task of inferring a dense depth map from an image and sparse depth
map, where augmentations have seen limited use. Here, a training sample in-
cludes the input sparse depth map, its associated image and additional images
of neighboring views of the same 3D scene. Our method is also applicable to un-
supervised monocular depth estimation, which omits the sparse depth modality.
Augmentations have traditionally been restricted to a limited range of photo-
metric transformations and flipping – due to the need to preserve photometric
consistency across a sequence of video frames used during training, and the
sparse set of 3D points projected onto the image frame as a 2.5D range map;
degradation to either modalities directly impacts the supervision signal as the
loss function is conventionally computed on the augmented inputs. By using our
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Fig. 1: Overview. We apply photometric augmentations to the input image, and the
same set of geometric augmentations to both the input image and sparse depth map.
We warp the output depth back to the original reference frame with the inverse geomet-
ric transformations. This enables image and sparse depth reconstruction losses to be
computed on the original inputs while unlocking previously-infeasible augmentations.

method, loss functions involving sparse depth and image reconstruction from
other views can be computed on the original inputs while applying augmenta-
tions that were previously not viable for the task. Our hypothesis: By “undo-
ing” the augmentations, one can expand the viable set and scale up their use in
training, leading to improved model performance and generalizability.

To this end, we introduce AugUndo, an augmentation framework that enables
one to apply a wide range of photometric and geometric transformations on the
inputs, and to “undo” them during loss computation. This allows computing the
unsupervised loss on the original images and sparse depth maps, free of artifacts,
through a warping of the output depth map – obtained from augmented input –
onto the input frame of reference based on the inverse geometric transformation.
In addition to group transformations that allow for output alignment, we com-
bine them with commonly employed photometric augmentations. To the best of
our knowledge, we are the first to propose a unified augmentation scheme for
photometric and geometric augmentations for unsupervised depth completion
and estimation. We demonstrate AugUndo on recent methods on indoor and
outdoor settings, where we consistently improve all methods across all datasets.

Our contributions are as follows: (1) We propose AugUndo, a simple-yet-
effective framework to scale up photometric and geometric augmentations for
unsupervised depth completion and estimation, without compromising the su-
pervision signal; AugUndo can be applied in a plug-and-play manner to existing
methods with negligible increase in computational costs during training. (2) We
enable previously-infeasible augmentations to be used for training unsupervised
methods and comprehensively ablate combinations of eleven types of augmenta-
tions to study the performance benefits of each. (3) We show that AugUndo can
consistently improve robustness to shifts in sparse point densities for completion,
model performance as well as zero-shot generalization for both depth completion
and estimation for indoor and outdoor scenarios; thus, validating our hypothesis.
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2 Related Work

Data augmentation for depth completion and estimation. While photometric
transformations such as color jitter are often applied for unsupervised depth com-
pletion [48,82–84], and estimation [13,18–20,37,38,53,59,86,100,101], geometric
augmentations other than simple flipping are less commonly adopted. Most su-
pervised depth completion methods [11,24,25,27,30,40,42,55–57,90,94,105,106]
similarly limit their augmentations to color jitter and horizontal flips due to
sparse depth maps being decimated by rotation and scaling, causing points to be
interpolated away. Nevertheless, for supervised training, it is straightforward to
directly apply the same transformation to the ground truth for training. Indeed,
some supervised depth completion methods [5, 6, 12, 50, 51, 66, 76, 99] adopted
random scaling, translation, in-plane rotation. Translation augmentations are
also commonly applied in supervised depth estimation methods [9,10,32,41,44,
58, 59, 75, 81, 88, 92, 97]. We posit that the reason that such transformations can
be applied to the ground truth in supervised settings is due to artifacts caused
by the transformation of a piece-wise smooth depth map being less severe than
those of an RGB image and its intensities. However, such assumptions do not
hold in unsupervised training. These artifacts would affect the training signal for
unsupervised methods, which rely on photometric correspondences and observed
sparse points. Our approach aims to resolve this to allow diverse geometric aug-
mentations to be applied in a plug-and-play fashion in unsupervised training.

Unsupervised depth completion methods [48, 63, 82–84, 91, 94] leverage im-
age and sparse depth reconstructions as training signals by minimizing errors
between the input image and its reconstruction from other views, and errors
between the input sparse depth map and the predicted depth along with a lo-
cal smoothness regularizer. [48] used Perspective-n-Point [39] and RANSAC [14]
to align consecutive video frames. [94] learns a depth prior conditioned on the
image. [82] uses synthetic data to learn a prior on the shapes populating a
scene, while [46] translates synthetic data to real domain to leverage rendered
depth. [83] proposed an adaptive scheme to reduce penalties incurred on oc-
cluded regions. [87] maps the image onto the 3D scene through calibrated back-
projection. [91] decouples structure and scale. [26] uses line features from visual
SLAM and [45] introduced monitored distillation for positive congruent train-
ing. Augmentations for these methods are limited to a small range of photo-
metric perturbations and image flipping. Operations such as rotation, resizing,
and translation require resampling, which creates artifacts and affects the re-
construction quality. This causes performance degradation since loss is typically
computed on the augmented images. Loss in sparse depth maps is further im-
pacted as resampling and interpolation may cause loss of sparse points. Contrary
to these limited augmentation schemes, we enable a large range of photometric
and geometric augmentations to be introduced during training.

Unsupervised monocular depth estimation, like depth completion, also mini-
mizes photometric reconstruction error. [15] frames depth estimation as a novel
view synthesis problem. [18] improves [15] by imposing a consistency loss on
the depth predicted from left and right images. [108] uses a pose network to
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enable unsupervised training on video sequences. [19] introduced auto-masking
and min reprojection loss. To improve the supervision signal, [7,73,79] leverage
noisy proxy labels and [54] uses a trinocular assumption. Additional loss terms
based on visual odometry [77], iterative closest point [49], surface normals [96],
and semantic segmentation [21,31] were also introduced; [53,93] further included
predictive uncertainty. To handle rigid and non-rigid motions in the scene, pre-
vious works explored multi-task learning to include optical flow and moving
object estimation [4, 60, 95, 98, 109], and used semantics to filter out outlier re-
gions [29]. [47] redesigned the skip connection and decoders to extract high-
resolution features, [107] combined global and local representations and [102]
introduced a lightweight architecture with dilated convolution and attention. In
addition to depth completion, our method also shows consistent improvements
on monocular depth estimation for [19,47,102].

3 Method Formulation

Let I : Ω ⊂ R
2 → R

3
+ be an RGB image captured by a calibrated camera,

z : Ωz ⊂ Ω → R+ the corresponding sparse point cloud projected onto the
image plane as a sparse depth map, and K ∈ R

3×3 the intrinsic calibration
matrix. Given an image and its sparse depth map, depth completion aims to
learn a function fθ(I, z) that recovers the distance between the camera to points
in the 3D scene as a dense depth map. In another mode, if sparse depth maps
are not given, then the problem reduces to monocular depth estimation which
learns a function fθ(I) to map a single image to a depth map Ω → R+. For the
ease of notation, we denote the output depth map for both depth completion
and estimation as d̂ ∈ R

H×W
+ where H and W are its height and width.

Unsupervised depth completion relies on photometric and sparse depth re-
construction errors as its primary supervision signal. Without loss of generality,
we assume an input of (It, zt) for an RGB image and associated sparse depth
map captured at time t and during training, an additional set of temporally
adjacent images Iτ for τ ∈ Υ

.
= {t− 1, t+ 1}. The reconstruction Îtτ of It from

image Iτ is given by the reprojection based on estimated depth d̂t := fθ(·)

Îtτ (x) = Iτ (πgτtK
−1x̄d̂t(x)) (1)

where x̄ = [x�, 1]� is the homogeneous coordinates of x ∈ Ω, gτt ∈ SE(3) the
relative pose of the camera from time t to τ , K the intrinsic calibration matrix,
and π the canonical perspective projection.

Using Eq. (1), a depth completion or estimation network fθ minimizes

argmin
θ

∑

τ∈Υ

∑

x∈Ω

αρ
(
Îtτ (x), It(x)

)
+

∑

x∈Ωz

βψ
(
d̂t(x), zt(x)

)
+ λR(d̂t) (2)

where ρ denotes the photometric reconstruction error, typically L1 difference in
pixel values and/or structural similarity (SSIM), ψ the sparse depth reconstruc-
tion error, typically L1 or L2, R the regularizer that biases the depth map to
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be piece-wise smooth with depth discontinuities aligned with edges in the image
(commonly used by previous works [19,48,84,87]), and α, β and λ their respective
weighting. Note: monocular depth omits sparse depth term, i.e., β = 0.

Inverse transformation. Let Apt be the set of possible photometric transfor-
mations, and Age be the set of all geometric transformations. Given Tge ∈ Age,
we wish to obtain an inverse transformation T−1

ge such that Tge ◦ T−1
ge ≈ Id the

identity function3. At each time step, we can sample a sequence of transforma-
tions {T 1

pt . . . T
k
pt} and {T 1

ge . . . T
m
ge} respectively from Apt and Age to construct

transformations Tpt = T 1
pt ◦ · · · ◦ T k

pt and Tge = T 1
ge ◦ · · · ◦ Tm

ge . We denote the
composition of a collection of augmentation transformations by T = Tge ◦ Tpt

where Tpt denotes photometric transformation, and Tge denotes geometric trans-
formation. Furthermore, we denote the inverse geometric transformations by
T−1
ge = (Tm

ge)
−1 ◦ (Tm−1

ge )−1 ◦ · · · ◦ (T 1
ge)

−1, which operates on the space of depth
maps to reverse the geometric transformation so that we can warp the output
depth map onto the reference frame of the original image. Through inverse warp-
ing, this process is differentiable. In practice, some transformations cause border
regions of the image to be warped out of frame, i.e., translated off the image
plane or cropped away. Hence, after warping our output depth map back to the
original frame of reference using the inverse geometric transformations, border
extensions (edge paddings) are introduced to handle out-of-frame regions.

AugUndo. We apply each geometric transformation over image coordinates
and resample (bilinear for image and nearest neighbor for sparse depth):

[
x′ 1

]�
= Tge

[
x 1

]� (3)
I ′(x′) = Tpt(I)(x); z′(x′) = z(x) (4)

where Tge is the geometric transformation, x ∈ Ω and x′ ∈ Ω are coordinates in
the image grid, and I ′ is the image after the transformation; for ease of notation,
we hereafter denote I ′ = T (I) = Tge ◦ Tpt(I) to include both augmentations
through composition. Note that x is in the original image reference frame and
x′ is in the transformed image reference frame. Naturally, this process can be
extended to multiple geometric transformations by composing them, i.e., Tge =
T 1
ge ◦ T 2

ge ◦ · · · ◦ Tm
ge . The reverse process is simply inverting the transformations

where T−1
ge = (Tm

ge)
−1 ◦ (Tm−1

ge )−1 ◦ · · · ◦ (T 1
ge)

−1:

[
x′′ 1

]�
= T−1

ge

[
x′ 1

]� (5)

d̂(x′′) = d̂′(x′) (6)

where d̂′ is the depth map inferred from augmented inputs (I ′, z′). Once reverted
back to the original reference frame, d̂ is used to reconstruct It from Iτ for τ ∈ Υ
as in Eq. (1). More details can be found in Alg. 1 in the Supp. Mat.

By modeling T−1
ge , Eq. (3)-Eq. (6) allow us to apply a wide range of augmenta-

tions, while still establishing the correspondence between It and Iτ . Specifically,
3 Note that in practice, not all transformations are bijective. For instance, image

rescaling with a fixed size image plane; hence strict equality is not always possible.
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for minimizing Eq. (2), one may simply augment the image and sparse depth
by T to yield (I ′t, z

′
t) as input, and reconstruct the original image and sparse

depth (It, zt) from other views Iτ and the aligned output depth d̂ (Eq. (6)).
We note that the inverse transformation is critical for enabling the sparse depth
reconstruction term to be computed properly in Eq. (2); if computed in the
transformed reference frame, i.e., on z′t, many of the sparse points would be
decimated by interpolation during rotation and resizing (downsampling) aug-
mentations – leaving a lack of supervision from the sparse depth term of the loss
function. We note that the original image sequence is fed to the pose estimator,
rather than the augmented images. This ensures the estimated relative pose used
during reprojection (Eq. (1)) also corresponds to the original images.

Modeling geometric augmentations. Depth completion differs from typical
image-based (e.g., monocular) depth estimation, where operations like resizing
are susceptible to scale ambiguity and can either correspond to changes in focal
length, or distance from the camera (i.e., due to changes in camera pose). In
depth completion, the sparse depth map grounds image pixels to specific depth
values. Hence, there is no ambiguity in distance of each sparse point from the
camera. Our goal is to synthesize new training data via geometric transforma-
tions that are consistent with the original 3D scene. Given that there is no scale
ambiguity, this can be achieved by either (1) changes in camera pose (extrinsics),
or (2) changes in camera parameters (intrinsics).

Augmentation via (1) would require warping the inputs for view synthesis.
Since we operate under the unsupervised setting, accurate warping (preserv-
ing 3D scene) without access to dense ground truth depth values is difficult to
achieve. An exception to this is rotation, which we address below. On the other
hand, (2) can be achieved via standard 2D image transformations while pre-
serving the 3D structure of the scene. This motivates our modeling of geometric
transformations, i.e., resizing, translation, as changes in camera parameters.

For example, augmenting focal length (i.e. zooming in/out) is akin to “resiz-
ing”. Similarly, translation can be used to model shifting of the optic center, i.e.
capturing the same 3D scene using cameras with different principal point offsets.
Note: image rotation can be seen as rotating a camera about its optical axis,
which does not change the distance of a point from the camera. Thus, the cam-
era position and the scene are kept constant across augmentations, eliminating
the need for adjusting depth values via warping during the process. Instead, we
only have to realign the output depth back to the original frame of reference
(Eqs. (5) and (6)), which makes our method computationally efficient.

Augmentations. Our choices are based on common nuisance variabilities,
i.e., changes in illumination, occlusions, and object color, scene layout (flip), and
camera parameters (resize, translation) and orientation (rotation).

Photometric. We include brightness, contrast, saturation, and hue, where all
follow standard augmentation pipeline in existing works [19,84,87,102]. Applying
the inverse of photometric augmentation can be viewed as recovering the original
image; hence, we directly use original image instead of applying transformations
to the intensities (which are not recoverable if saturated at the max value).
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Occlusion. We consider patch removal and sparse point removal. For the
former, we randomly select a percentage of pixels x ∈ Ω in the image and remove
(with zero-fill) an arbitrary-sized patch around it. For the latter, we randomly
sample a percentage of points x ∈ Ωz in the sparse depth map. The inverse
transformation of this is simply the original image and sparse depth map, both
used in loss computation before augmentation.

Flip. We consider horizontal and vertical flips. When applied, the same flip
operation is used for both input image and sparse depth maps. We record the
flip type during data augmentation. During loss computation, we reverse the flip
direction to align output depth with the original image and sparse depth map.

Resize. We define a new image plane of the input resolution and generate
a random scaling factor to be applied along both height and width directions.
The image is warped to the new image plane, where any point warped out of
the plane is excluded; borders of the warped image are extended to the bounds
of the image plane by edge replication. Sparse points occupying multiple pixels
are eroded to a single point for resizing with a factor greater than 1. During
loss computation, we warp the output depth map onto a new image plane of the
same dimensions by the inverse scaling matrix of the recorded scaling factors;
borders of the warped depth map are extended by edge replication if necessary.
We view resizing factors greater and less than 1 (zooming in and out) as two
separate forms of augmentations to distinguish their contributions.

Rotation. Naive rotation leads to the loss of large areas of the image, i.e.,
cropped away to retain the same-size image, discarding large portions of possible
co-visible regions and also supervisory signals. To preserve the entire image, we
first warp the image by a randomly generated angle to a new (larger) image
plane, so that the rotated image fits tightly within the new image. As image
sizes within a batch can vary depending on the rotation angle, we center-pad
(uniformly on each side) each image in the batch to the maximum width and
height of the augmented batch. To reverse the rotation on the output depth, we
warp the output depth map back by the inverse rotation matrix, then perform
a center crop on the depth map to align with the original input.

Translation. We define a new image plane of the same dimensions as the input
and generate random height and width translation factors. The coordinates of
the input are translated and its pixels are inverse warped onto the new image
plane. Any pixel warped out of the image plane is excluded. Borders of the
warped image are extended to the bounds of the image plane by edge replication.
During loss computation, we warp the output depth map onto a new image plane
of the same dimensions by the inverse translation matrix. Borders of the warped
depth map are extended to the bounds of the image plane by edge replication.

4 Experiments

We demonstrate AugUndo on recent unsupervised depth completion (VOICED
[84], FusionNet [82], KBNet [87]) and estimation (Monodepth2 [19], HRDepth
[47], LiteMono [102]) methods on two datasets (KITTI [17,74], VOID [84]) here.
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Due to space limitations, we defer the results of MonDi [45] and DesNet [91]
to Sec. K in the Supp. Mat. To evaluate zero-shot generalization, we test on
three additional datasets for each task: NYUv2 [65], ScanNet [8], Waymo [69],
and Make3d [62] – where we transfer models on VOID to NYUv2 (Tab. 3) and
ScanNet, and from KITTI to Waymo (Tab. 4 in Supp. Mat.) for completion and
Make3d [62] (Tab. 5 in Supp. Mat.) for estimation. We also test model sensitivity
to different sparse depth input densities in Tab. 1 (right) – see Sec. H of the Supp.
Mat for an extensive study. Additionally, we present an comprehensive ablation
study in Sec. G in the Supp. Mat. to test the effect of each augmentation.
We also provide results on modeling AugUndo as changes in camera motion or
parameters in Tab. 7 of the Supp. Mat.; interpreting geometric augmentations
as different camera parameters yields better performance. Tabs. 8, 9 in Supp.
Mat. show that unsupervised models cannot be trained with naive geometric
augmentations. See Sec. E of the Supp. Mat. for descriptions of datasets.

Experiment setup. We followed the original settings of the open-sourced code
for each work and modified the data handling and loss function to incorporate
AugUndo. We perform 4 independent trials for each experiment and report their
means and standard deviations. To ensure a fair comparison, we train all models
from scratch. Below, we report the best combination of augmentations found
empirically through extensive experiments on each dataset. See Secs. A and B
in Supp. Mat. for implementation details, and evaluation metrics, respectively.

Augmentations. Through a search over augmentation types and values, we
found a consistent set that tends to yield improvements across all methods with
small changes to degree of augmentation catered to each method. See Sec. C in
Supp. Mat. for details of augmentation parameters. Rows in Tabs. 1 to 6 marked
with "+ AugUndo" denote models trained with our method. We note that per-
formance gain can be obtained by typical set and ranges of augmentations and
does not require a meticulous selection of hyper-parameters (see Sec. J of Supp.
Mat. for a sensitivity study). Results reported here aims to study how far one
can push performance and generalization, purely from augmentations.

Results on VOID. We begin by presenting quantitative results for Au-
gUndo on unsupervised depth completion. Tab. 1 (left, VOID1500) shows our
main results on the VOID benchmark. By training the models with AugUndo,
we observe an average overall improvement of 18.3% across all methods and
metrics on VOID1500. Specifically, we improve VOICED by 26.4%, FusionNet
by 16.3%, and KBNet by 12.2%. These experiments validate our hypothesis
that by applying a wider range of augmentations, we are able to improve the
baseline model’s performance. They also illustrate the lack in use of augmenta-
tions in existing works: incorporating standard augmentations (albeit requiring
modification to augmentation and loss computation pipelines) can yield a large
performance boost. Fig. 2 shows a head-to-head comparison between KBNet
trained using standard procedure in [87] and KBNet trained using AugUndo.
We observe qualitative improvements from AugUndo where we improve KBNet
in homogeneous regions and image borders, i.e., pillar (left), cabinet (middle),
wall (right). Applying geometric augmentations yields models with fewer border
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Table 1: Depth completion on VOID. AugUndo improves performance by an aver-
age of 18.3% across all methods and metrics on VOID1500. When models trained on
VOID1500 are tested VOID500, AugUndo improves by 23.1%, as translation, resizing,
and occlusion augmentations vary sparsity by removing sparse points from the input.

VOID1500 VOID500

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓ MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
VOICED 74.78±2.69 139.75±4.57 39.20±1.46 71.98±2.54 137.01±4.23 235.80±7.82 71.36±1.86 130.63±5.66
+ AugUndo 52.73±0.41 111.09±0.92 26.93±0.54 54.46±0.38 92.99±1.11 176.94±1.38 46.43±0.85 91.10±1.64

FusionNet 52.11±0.44 113.30±1.18 28.53±0.52 58.79±2.01 97.73±0.73 194.32±1.36 58.65±1.31 122.95±3.04
+ AugUndo 41.16±0.18 99.21±0.39 22.23±0.35 53.07±1.30 74.97±0.69 162.71±2.39 40.44±1.39 92.11±5.79

KBNet 38.11±0.77 95.22±1.72 19.51±0.14 46.70±0.48 78.44±1.39 178.17±3.27 37.56±0.61 83.43±1.89
+ AugUndo 33.32±0.18 85.67±0.39 16.61±0.29 41.24±0.60 66.97±0.81 151.55±2.03 31.63±0.53 71.90±0.82

Fig. 2: Depth completion on VOID. We compare KBNet trained with standard aug-
mentations and with AugUndo. AugUndo consistently produces lower errors with re-
duced border artifacts and improves on homogeneous regions, i.e., pillar (left), cabinet
(middle), wall of staircase (right). Error maps are highlighted for comparison.

artifacts as we apply random translation, which warps part of the image out
of frame. This allows us to simulate border occlusion, where there lacks corre-
spondence in an adjacent frame. While training with standard protocol results
in failures to recover structures near the image border, training with AugUndo
can render models robust to them by computing the loss on the original frame
of reference (where we do have correspondence) through our inverse transforma-
tions of the depth map. Additionally, resizing allows the model to learn multiple
resolutions of the input, akin to zooming in and out, which can also impose
smoothness in homogeneous regions through the scale-space transition; whereas,
rotation can simulate diverse camera orientations. Fig. 2 shows that translation,
rotation, and resizing can model these effect in the input space to yield models
robust to these nuisance variability.

AugUndo also is applicable for monocular depth estimation. Tab. 2 shows
a comparison using the standard augmentation procedure of Monodepth2, HR-
Depth, and Lite-Mono and using AugUndo. Tab. 2 shows that AugUndo consis-
tently improves all models across all error and accuracy metrics. Thus, validating
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Table 2: Monocular depth estimation on VOID. AugUndo is applicable for monocular
depth estimation and consistently improves three monocular depth models.

Method MAE ↓ RMSE ↓ AbsRel ↓ SqRel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth2 283.861±3.732 395.947±5.728 0.183±0.002 0.100±0.003 0.717±0.005 0.922±0.004 0.975±0.002
+ AugUndo 277.696±4.861 388.088±5.768 0.178±0.003 0.095±0.004 0.724±0.007 0.925±0.004 0.978±0.002

HR-Depth 286.282±7.059 399.112±9.184 0.185±0.004 0.100±0.004 0.714±0.012 0.919±0.006 0.975±0.002
+ AugUndo 283.086±6.787 394.261±9.133 0.181±0.005 0.097±0.005 0.718±0.013 0.922±0.004 0.977±0.002

Lite-Mono 319.910±15.00 446.005±22.97 0.209±0.013 0.129±0.019 0.669±0.016 0.892±0.011 0.963±0.006
+ AugUndo 308.010±0.859 426.626±0.484 0.200±0.003 0.114±0.001 0.674±0.005 0.901±0.002 0.969±0.002

the hypothesis that AugUndo can be applied generically to improve monocular
depth estimation. Specifically, we observe a boost in the most difficult accuracy
metric (δ < 1.25), where Monodepth2 improves from 0.717 to 0.724, HR-Depth
from 0.714 to 0.718 and Lite-Mono from 0.669 to 0.674. At the same time, for
AbsRel metric, Monodepth2 improves from 0.183 to 0.178, HR-depth improves
from 0.185 to 0.181, and Lite-Mono improves from 0.209 to 0.200.

Sensitivity study. One limitation of existing depth completion training pipelines
is that there are little to no augmentations applied to sparse depth modality.
However, in real-world applications, sparse depth has, in fact, high variability,
i.e., features tracked in SLAM/VIO systems will vary depending on the scene
(points are dropped or added to the state), and point cloud densities returned
by a sensor will differ based on specifications. To further examine the effect of
AugUndo on sparse depth, we study the sensitivity to changes in sparse depth
density by testing models on VOID1500 (≈1500 points) on VOID500 (≈500).
For the 3× reduction in sparse points, AugUndo improves robustness by an
average of 23.1% across all methods. These improvements result from the geo-
metric and occlusion augmentations made possible via AugUndo, which greatly
increases sparse depth variations, i.e., decimating them through resizing, re-
orienting their configuration through rotation, translating them out of frame,
and randomly occluding them, to avoid overfitting particular sparse depth con-
figurations. We further push their limits in Sec. H of the Supp. Mat., where we
test them on VOID150 with a 10× reduction in sparse points from the training
set (VOID1500) and observe the same trend of improvements. This shows that
AugUndo significantly improves robustness of models to changes in sparse depth.

Zero-shot generalization. We test depth completion models trained on VOID
on NYUv2 and ScanNet. Tab. 3 shows an average of 23.2% improvement on
NYUv2 and 27.6% on ScanNet. Applying AugUndo to VOICED greatly im-
prove its generalizability to both NYUv2 and ScanNet. This is likely due to the
scaffolding densification employed by VOICED, where the network can overfit
to scaffoldings of particular sparse depth configurations and therefore, does not
generalize well when presented with sparse depth maps with different configu-
rations. Like our sensitivity study (Fig. 2, VOID500), occlusion and geometric
augmentations introduce variation into the sparse depth configurations and den-
sities, which alleviates overfitting to specific point clouds or 3D scenes; hence,
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Table 3: Zero-shot transfer from VOID to NYUv2 and ScanNet for depth completion.
AugUndo improves generalization of models trained on VOID to novel datasets by an
average of 25.4% for all evaluation metrics (in millimeters) across both datasets.

NYUv2 ScanNet

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓ MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
VOICED 2240±143.90 2427±143.49 211±9.60 238±10.89 1562±136.79 1764±146.39 270±17.25 311±17.36
+ AugUndo 990±82.48 1181±65.55 110±6.11 132±6.01 638±44.74 791±79.48 131±7.68 170±6.32
FusionNet 132.24±2.12 236.16±4.59 28.68±0.42 61.87±1.20 109.47±3.01 206.33±6.11 55.45±1.56 122.52±2.04
+ AugUndo 124.93±3.05 227.23±4.96 25.70±0.41 54.09±0.87 100.64±2.31 195.85±5.85 45.98±0.78 99.90±5.00
KBNet 138.31±5.74 257.99±10.36 25.48±0.63 51.77±0.99 103.05±4.99 217.12±13.35 36.23±1.12 76.55±2.90
+ AugUndo 118.60±3.44 231.13±8.85 22.06±0.31 47.07±0.70 82.53±4.33 175.30±11.13 29.87±1.06 63.78±1.30

Table 4: Zero-shot transfer from VOID to NYUv2 and ScanNet for depth estimation.
AugUndo consistently improves generalization (in meters) for monocular depth models.

Dataset Method MAE ↓ RMSE ↓ AbsRel ↓ SqRel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

NYUv2

Monodepth2 0.432±0.003 0.556±0.005 0.205±0.001 0.159±0.001 0.683±0.005 0.907±0.001 0.975±0.001
+ AugUndo 0.415±0.005 0.537±0.006 0.196±0.002 0.148±0.003 0.700±0.008 0.915±0.002 0.977±0.001
HR-Depth 0.424±0.003 0.549±0.003 0.201±0.002 0.154±0.002 0.692±0.003 0.910±0.002 0.976±0.001
+ AugUndo 0.421±0.009 0.542±0.011 0.199±0.005 0.152±0.006 0.696±0.009 0.913±0.004 0.976±0.001
Lite-Mono 0.480±0.012 0.616±0.018 0.231±0.008 0.199±0.015 0.637±0.009 0.879±0.009 0.964±0.004
+ AugUndo 0.468±0.003 0.595±0.003 0.225±0.004 0.187±0.005 0.646±0.002 0.889±0.003 0.968±0.001

ScanNet

Monodepth2 0.284±0.004 0.368±0.005 0.177±0.002 0.097±0.002 0.741±0.006 0.931±0.003 0.980±0.001
+ AugUndo 0.270±0.003 0.351±0.004 0.169±0.001 0.088±0.002 0.759±0.004 0.937±0.001 0.982±0.001
HR-Depth 0.282±0.004 0.366±0.005 0.175±0.002 0.095±0.002 0.743±0.005 0.929±0.003 0.979±0.002
+ AugUndo 0.274±0.007 0.357±0.009 0.172±0.005 0.092±0.005 0.754±0.009 0.935±0.003 0.981±0.001
Lite-Mono 0.296±0.002 0.388±0.007 0.185±0.003 0.109±0.006 0.731±0.002 0.921±0.002 0.976±0.001
+ AugUndo 0.296±0.001 0.382±0.001 0.185±0.001 0.105±0.002 0.728±0.002 0.924±0.001 0.977±0.001

improving VOICED from 49.9% and 52.6% on NYUv2 and ScanNet, respectively.
For FusionNet and KBNet, we still see nontrivial improvement: FusionNet im-
proves by 8% and 12.1% on NYUv2 and ScanNet, and KBNet by 11.7% and
18.3%. This further validates our hypothesis that by applying a more diverse set
of transformations, we are able to improve generalization to new datasets.

For depth estimation, we tested Monodepth2, HR-Depth, Lite-Mono (trained
on VOID) for zero-shot generalizability to NYUv2 and ScanNet. The results are
shown in Tab. 4, where training with AugUndo consistently improves generaliza-
tion errors across all evaluation metrics for both NYUv2 and ScanNet. Notably,
for RMSE metric, Monodepth2 improves from 0.556 to 0.537, HR-Depth from
0.549 to 0.542, Lite-Mono from 0.616 to 0.595. For ScanNet, similar improve-
ment on RMSE can also be observed, where Monodepth2 improves from 0.368
to 0.351, HR-Depth from 0.366 to 0.357, and Lite-Mono from 0.388 to 0.382.
The improvement in RMSE metric, which is sensitive to outliers, highlights
AugUndo’s ability to model different input data distributions, collected by a
different camera of different orientation with different object colors and layouts.

Results on KITTI. We begin with quantitative results for depth comple-
tion. While AugUndo consistently improves all methods (Tab. 5), we note that
the improvement is less, but respectable, in this case: ≈5.2% overall with the
largest gain in FusionNet of 6.41%. This is largely due to the small scene varia-
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Table 5: Depth completion on KITTI. AugUndo consistently improves all methods for
all metrics (in millimeters) by approximately 5.2% on average.

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
VOICED 318.59±7.74 1,213.60±17.49 1.30±0.05 3.72±0.04
+ AugUndo 295.41±0.30 1,159.27±5.44 1.20±0.02 3.49±0.03

FusionNet 285.55±2.16 1,174.47±10.67 1.20±0.03 3.45±0.08
+ AugUndo 267.69±1.85 1,157.07±4.61 1.08±0.02 3.19±0.03

KBNet 263.90±3.63 1,130.66±6.22 1.05±0.01 3.24±0.04
+ AugUndo 256.37±1.00 1,114.53±3.79 1.01±0.01 3.13±0.03

Fig. 3: Depth completion on KITTI. We compare KBNet and FusionNet trained with
standard augmentations and with AugUndo. AugUndo consistently produces lower er-
rors in highlighted regions where structures may have arbitrary orientation (vegetation)
and regions near image border that typically lacks correspondence during training.

tions in the outdoor driving scenarios, i.e., ground plane with vehicles, buildings
on the sides, horizontal lidar scans, and largely planar motion. The dataset bias
is strong enough to render vertical flip detrimental to performance. This is also
evident in existing works as none utilizes vertical flip as augmentation. Nonethe-
less, AugUndo still improves performance, where point removal models different
lidar returns patterns, and resizing simulates large variations in scales of objects
observed in road scenes. Similar to indoors, translations help model occlusions by
shifting the projection with different principal points. Fig. 3 compares FusionNet
and KBNet trained using conventional augmentations and AugUndo. AugUndo
improves over objects that may have diverse orientations (i.e., tree branches and
vegetation), thanks to rotation augmentations. Improvements are also observed
in “small” objects at far regions where resizing can simulate zooming in/out to
emulate objects of different sizes. Through translation and occlusion, AugUndo
also improves on occlusion boundaries during training (highlighted), making es-
timates near image borders and object boundaries more robust.

We additionally show results for monocular depth estimation on KITTI in
Tab. 6, where we compare the standard augmentation pipelines used by [19,47,
102] and AugUndo. We observe similar trends in performance gain as we did in
depth completion trained on KITTI: Applying our set of augmentations improves
most metrics for all methods. We observe notable improvements in δ < 1.25, the
most difficult accuracy metric, from 0.869 to 0.879 in Monodepth2, from 0.879
to 0.883 in HR-Depth, and 0.862 to 0.863 in Lite-Mono. For Monodepth2, we
also observe a large reduction in AbsRel error, improving it from 0.117 to 0.113.
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Table 6: Monocular depth estimation on KITTI. AugUndo consistently improve on
evaluation metrics (in meters) across different models.

Method MAE ↓ RMSE ↓ AbsRel ↓ SqRel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth2 2.315±0.005 4.794±0.035 0.117±0.001 0.845±0.030 0.869±0.004 0.959±0.001 0.982±0.001
+ AugUndo 2.237±0.014 4.739±0.032 0.113±0.000 0.862±0.030 0.879±0.002 0.960±0.001 0.982±0.001

HR-Depth 2.226±0.004 4.626±0.032 0.113±0.001 0.797±0.022 0.879±0.002 0.961±0.001 0.982±0.000
+AugUndo 2.185±0.013 4.610±0.029 0.111±0.001 0.794±0.021 0.883±0.001 0.962±0.001 0.983±0.001

Lite-Mono 2.338±0.005 4.821±0.027 0.121±0.001 0.875±0.007 0.862±0.002 0.955±0.001 0.980±0.000
+ AugUndo 2.314±0.030 4.780±0.055 0.120±0.001 0.849±0.019 0.863±0.004 0.955±0.001 0.981±0.001

Similarly, for Lite-Mono, we also boosted performance across all metrics, with a
particularly high reduction in SqRel from 0.875 to 0.849.

Remarks. As AugUndo only augments the inputs and modifies the loss com-
putations, which add negligible time to training, we note that the performance
improvements from it are obtained nearly for free. Yet, the percentage gain, how-
ever, is similar to improvements obtained by each successive state-of-the-art: For
example, the improvement of Lite-Mono over HR-Depth , and that of HR-Depth
over PackNet for monocular depth estimation; similarly, the improvement of
FusionNet over VOICED and KBNet over FusionNet for depth completion.

5 Discussion

Conventionally, data augmentation aims to seek visual invariance and create
a collection of equivalent classes, i.e., identifying an image and its augmented
variant as the same. For geometric tasks, the underlying equivalence is in the
3D scene structures under various illumination conditions, camera, viewpoints,
occlusion, etc. Assuming a rigid scene, the shapes populating it should persist
regardless of the nuisance variables. This motivates the use of geometric aug-
mentations, as it simulates the nuisances within the image. However, adoption
of geometric augmentations in unsupervised geometric tasks are obstructed by
artifacts introduced during transformations (see Sec. D of Supp. Mat.). AugUndo
lifts this obstacle by “undo-ing” the augmentations before computing the loss.

While AugUndo enables scaling up augmentations for unsupervised training,
i.e., depth completion, it may also be applicable for supervised methods; though,
we posit that the gain to be less as the artifacts induced from photometric and
geometric augmentations of an image tend to be larger than those of a piece-
wise smooth depth map. AugUndo is also limited to 2D augmentations; whereas,
nuisances modeled by it are projections of the 3D scene (see limitations in Sec.
M in Supp. Mat.). We leave extensions to 3D for future work. We also only
consider a single image and sparse depth map as input. Likewise, extensions can
be made towards multi-frame tasks such as stereo, optical flow, pose estimation,
etc., but one must account for their specifics and problem setups, i.e., stereo
assumes frontoparallel views. This is outside of our scope, so we leave them as
future directions. This work paves way for the empirical success in unsupervised
geometric tasks that we have observed in other visual recognition tasks.
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AugUndo: Scaling Up Augmentations for
Monocular Depth Completion and Estimation

Supplementary Material

Summary. In Sec. A, we provide implementation details and hyperparame-
ters, such as learning rate schedule and crop size, used to reproduce our results.
In B, we provide augmentation parameters used to train each method on each
dataset. Sec. C lists the evaluation metrics used in our quantitative results. To
illustrate the motivation behind AugUndo, we provide examples of image and
sparse depth degradation through typical augmentation routines and add an
extended discussion in Sec. D. We provide details on datasets used in our exper-
iments in Sec. E. In Sec. F, we provide a detail walk-through of the AugUndo
algorithm. To study the contribution of each of the proposed augmentation, we
present a comprehensive ablation study in Sec. G. We further extend the sensi-
tivity study to sparsity from the main paper conducted on VOID to VOID500
and VOID150 in Sec. H. We present our results on zero-shot generalization from
KITTI to Waymo (depth completion) and Make3d (monocular depth estimation)
in Sec. I. We also show a sensitivity study on the effect of different augmentations
in Sec. J. In Sec. K, we include additional results for depth completion, includ-
ing extensive quantitative results such as evaluations on MonDi and DesNet,
comparing modeling AugUndo as change in camera pose and parameters, and
the effects of naively applying geometric augmentations during unsupervised
training. In Sec. L, we show additional results on monocular depth estimation.
Finally, we discuss limitations in Sec. M.

A Implementation details

For unsupervised depth completion, we implemented our method in PyTorch
and incorporated our augmentation pipeline into the codebases of VOICED [84],
FusionNet [82], KBNet [87], MonDi [45], and DesNet [91]. For monocular depth
estimation, we implement our method in PyTorch according to [19]. Specifically,
we implemented our augmentation pipeline into the codebases of Monodepth2
[19], HR-Depth [47], and Lite-Mono [102]. Details of each task are described
below.

Unsupervised depth completion. The models are optimized using Adam [28]
with β1 = 0.9 and β2 = 0.999. For VOID: We used an input batch size of 12 with
random crop size of 416× 512 for KBNet and DesNet, a batch size of 8 without
cropping for FusionNet and VOICED, and a batch size of 8 with random crop
size of 448× 576 for MonDi. We trained each KBNet and DesNet for 40 epochs
with base learning rate of 1× 10−4 for 20 epochs and decreased to 5× 10−5 for
the last 20 epochs. We trained FusionNet and VOICED for 20 epochs with a
base learning rate of 1 × 10−4 for 10 epochs and decreased to 5 × 10−5 for the
last 10 epochs. For KITTI: We used a batch size of 8 and random crop size of
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320 by 768 for all models. We trained KBNet for 60 epochs, with 5 × 10−5 for
2 epochs, 1 × 10−4 until 8th epoch, 2 × 10−4 until 30th epoch, 1 × 10−4 until
the 45th epoch and 5× 10−5 until the 60th epoch. We trained FusionNet for 30
epochs 2× 10−4 for 16 epochs, 1× 10−4 until 24th epoch and 5× 10−5 until the
30th epoch. We trained VOICED for 30 epochs 2× 10−4 for 16 epochs, 6× 10−5

until 24th epoch and 3× 10−5 until the 30th epoch.
We ensure that all baseline methods can reproduce or exceed the numbers

originally reported by the authors. Since the authors of DesNet did not publish
their code implementation, we re-implemented their method to the best of our
ability. All reported results of AugUndo are based on those same settings with
the exception of the augmentation scheme.

Unsupervised monocular depth estimation. The models are optimized using
Adam [28] with β1 = 0.9 and β2 = 0.999. For VOID, we used a input batch size
of 12 and random crop size of 256 × 448 for all models. For Monodepth2, we
trained with learning rate 1×10−8 for 2 epochs, 1×10−5 for the next 23 epochs,
and 1× 10−6 for the next 25 epochs. For HR-Depth, we train with learning rate
1−4 for 15 epochs, and 1× 10−5 for the final 5 epochs. For Lite-Mono, we train
with learning rate 5× 10−4 for 35 epochs. For KITTI dataset, We used a input
batch size of 12 and a random crop size of 192× 640. We trained the models for
20 epochs with an initial learning rate of 1 × 10−4 and drop the learning rate
to 1 × 10−5 at the 15th epoch. The smoothness loss weight for KITTI is set to
0.001 as per [19] and 0.01 for VOID as VOID contains more indoor scenes with
homogeneous surfaces.

We ensure that all baseline methods can reproduce or exceed the numbers
originally reported by the authors. All reported results of AugUndo are based on
those same settings with the exception of the augmentation scheme. Note: For
Monodepth2 and HR-Depth, we initialize the ResNet encoder weight with the
Imagenet-pretrained weight downloaded from PyTorch website, as specified in
their Github repository. However, we cannot locate the pretrained weight used
for Lite-Mono throughout their repository, which left us no choice but to train
their model from scratch. Nonetheless, this does not affect the validity of the
study as the comparison is made between models initialized from scratch where
the difference is only in the augmentations schemes: standard convention used
in the original papers and repositories, and AugUndo.

B Augmentations

Through a search over augmentation types and values, we found a consistent
set of augmentations that tends to yield improvements across all methods with
small changes to degree of augmentation catered to each method. All augmen-
tations are applied with a 50% probability. We note that performance gain can
be obtained by typical set and ranges of augmentations and does not require a
meticulous selection of hyper-parameters (see Fig. 5).

VOID. For depth completion, we applied photometric transformations of
random brightness from 0.5 to 1.5, contrast from 0.5 to 1.5, saturation from 0.5
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to 1.5, and hue from -0.1 to 0.1. We applied image patch removal by selecting
between 0.1% to 0.5% of the pixels and removing 5 × 5 patches centered on
them – approximately removing between 2.5% to 12.5% of the image. We applied
random sparse depth point removal at a rate between 60% and 70% of all sparse
points. We applied geometric transformations of random horizontal and vertical
flips, up to 10% of translation and between -25 to 25 degrees of rotation. For
KBNet and FusionNet, we applied random resize factor between 0.6 to 1.1, while
for VOICED, we used 0.7 to 1.1 because the scaffolding step of VOICED requires
at least 3 points, but as discussed above, resampling causes loss and factors
smaller than 0.7 often cause all points to be dropped. For monocular depth
estimation, we applied photometric transformations of random brightness from
0.5 to 1.5, contrast from 0.5 to 1.5, saturation from 0.5 to 1.5, hue from -0.1 to
0.1. We applied geometric transformation of random rotation between -10 to 10
degrees and random horizontal flipping. We further applied random resize factor
between 0.8 to 1.

KITTI. For depth completion, we applied random brightness, contrast, satu-
ration from 0.5 to 1.5 and random hue from -0.1 to 0.1. We applied image patch
removal by selecting between 0.1% to 0.5% of the pixels and removing 5 × 5
patches centered on them. We applied random sparse depth point removal at
a rate between 60% and 70% of all sparse points. We further applied random
horizontal flips, up to 10% of translation, resizing factors between 0.8 to 1.2, and
between -20 to 20 degrees of rotation. We found that vertical flips are detrimental
to performance. For monocular depth estimation, we applied random brightness,
contrast, saturation from 0.5 to 1.5 and random hue from -0.1 to 0.1. We applied
a random rotation between -30 to 30 degrees and a random translation of up to
30% of the image. We further apply horizontal flip to the image.

Table 7: Error metrics for depth completion and monocular depth estimation. dgt
denotes ground truth depth and evaluated where values are available for a given image.

Metric Definition

MAE 1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|

RMSE
(

1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|2

)1/2

iMAE 1
|Ω|

∑
x∈Ω |1/d̂(x)− 1/dgt(x)|

iRMSE
(

1
|Ω|

∑
x∈Ω |1/d̂(x)− 1/dgt(x)|2

)1/2

AbsRel 1
|Ω|

∑
x∈Ω

|d̂(x)−dgt(x)|
dgt(x)

SqRel 1
|Ω|

∑
x∈Ω

|d̂(x)−dgt(x)|2
dgt(x)

Accuracy % of z(x) s.t. δ .
= max( z(x)

zgt(x)
,
zgt(x)

z(x)
) < threshold

C Evaluation metrics

The evaluation metrics used for depth completion and monocular depth estima-
tion are shown in Tab. 7. Depth completion models are evaluated with MAE,
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Fig. 4: Motivation. After augmenting the inputs with photometric and geometric trans-
formations, the previously exciting image textures (for establishing correspondence
across images) and sparse points in the original inputs, that would have served as su-
pervision, are now largely saturated in intensity and homogeneous, and lost due to
resampling, respectively (best viewed in 2×).

RMSE, iMAE, iRMSE. Monocular depth estimation models are evaluated with
MAE, RMSE, AbsRel, SqRel, and accuracy (δ < 1.25, δ < 1.252, δ < 1.253). We
note that as monocular depth is inferred, at most, up to an unknown scale, we
perform scale matching during evaluation by using median scaling with respect
to the ground truth before computing each error or accuracy metric.

D Extended Discussion of Motivation

In the main paper, we discussed the motivation behind the approach. Here, we
provide an extended discussion: Training unsupervised depth completion meth-
ods [82–84, 87, 94] relies on a photometric reconstruction term, sparse depth
reconstruction term, and a (generic) regularizer, such as local smoothness; a re-
lated problem, unsupervised monocular depth estimation [13,19,38, 81, 86, 100],
omits the sparse depth term. The photometric reconstruction term constraints
the solution in regions where there are sufficiently exciting textures and co-
visible between images such as those highlighted in Fig. 4. The sparse depth
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reconstruction term constraints the solution anywhere with a sparse point. Ev-
erywhere else in the image are inherently ambiguous, so we must rely on the
regularizer. Fig. 4 shows that after one has applied a number of photometric
and geometric transformations, the previously exciting textures that would have
served as our supervision are now largely saturated in intensity and homogenous.
The number of points in the sparse depth maps have also been greatly reduced.

In conventional augmentation scheme for other (semantic) vision tasks, i.e.
classification, detection, and segmentation, it is typical for one to introduce sat-
uration in image intensities, block artifacts from interpolation and loss during
resampling. These are some of the side-effects that are desirable in the afore-
mentioned tasks: introducing these nuisance variabilities enables the model to
learn to be invariant to them (i.e., to learn them away), which yields more
generalizable and robust representations. This is also true for supervised depth
completion [12,51,66,76] and estimation methods [9,58,59,75,97]. However, this
is not the case for learning unsupervised depth. Because the supervision signal
comes from reconstructing the input image and sparse depth map, the more we
augment the data (causing a loss of photometric correspondences across image
frames and a loss of points in the sparse depth map), the more we degrade the
supervision signal (see Tabs. 14 and 15 in Sec. K for empirical evidence of this
phenomenon). So, it is not too surprising that conventional augmentation pro-
cedures, both photometric and geometric, have seen limited use beyond small
changes in image intensities, and flipping.

Nevertheless, photometric augmentations help model the diverse range of
illumination conditions and colors of object that may populate the scene. Geo-
metric augmentations can simulate the various camera parameters and motion,
for example, image translation can simulate principle point offsets or it can ap-
proximate small baseline movements, image resizing with cropping can simulate
different focal lengths (zooming) or it can model camera movements, while in-
plane rotations can model camera orientation. These augmentations are often
viewed as essential to training pipelines for other vision tasks, but are detrimen-
tal for unsupervised depth completion; yet, without them, one may encounter
robustness and generalization issues. As the root of the problem lies in the su-
pervision signal, we investigate an approach to “undo” the augmentations during
(or right before) the loss computation step. Doing so enables one to feed forward
augmented inputs, but compute the loss on the original inputs with no loss in the
training signal. Extensive experiments show that our approach improves perfor-
mance and zero-shot generalization across a number of methods for both indoor
and outdoor scenarios.

E Datasets

We conduct experiments on six datasets (two for training and four for general-
ization) in total. Details of each dataset are provided below.

KITTI [16] contains 61 driving scenes with research in autonomous driving
and computer vision. It contains calibrated RGB images with sychronized point
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clouds from Velodyne lidar, inertial, GPS information, etc. For depth completion
[74], there are ≈80,000 raw image frames and associated sparse depth maps,
each with a density of ≈5%. Ground-truth depth is obtained by accumulating
11 neighbouring raw lidar scans. Semi-dense depth is available for the lower
30% of the image space. We test on the official validation set of 1,000 samples
because the online test server has submission restrictions to accomodate multiple
trials. For depth estimation, we used Eigen split [9], following [108] to preprocess
and remove static frames. The remaining training set contains 39,810 monocular
triplets and the validation set contains 4,424 triplets. The testing set contains 697
monocular images. We follow the evaluation protocol of [10, 74], where output
depth is evaluated where ground truth exists between 0 to 80.0 meters.

VOID [84] comprises indoor (laboratories, classrooms) and outdoor (gar-
dens) scenes with synchronized 640× 480 RGB images and sparse depth maps.
XIVO [13], a VIO system, is used to obtain the sparse depth maps that contain
approximately 1500 sparse depth points with a density of about 0.5%. Active
stereo is used to acquire the dense ground-truth depth maps. In contrast to the
typically planar motion in KITTI, VOID has 56 sequences with challenging 6
DoF motion captured on rolling shutter. 48 sequences (about 45,000 frames)
are assigned for training and 8 for testing (800 frames). We follow the evalua-
tion protocol of [84] where output depth is evaluated where ground truth exists
between 0.2 and 5.0 meters.

NYUv2 [65] consists of 372K synchronized 640×480 RGB images and depth
maps for 464 indoors scenes (household, offices, commercial), captured with a
Microsoft Kinect. The official split consisting in 249 training and 215 test scenes.
We use the official test set of 654 images. Because there are no sparse depth maps
provided, we sampled ≈ 1500 points from the depth map via Harris corner de-
tector [23] to mimic the sparse depth produced by SLAM/VIO. We test models
trained on VOID to evaluate their generalization to NYUv2. We follow the evalu-
ation protocol of [84] where output depth is evaluated where ground truth exists
between 0.2 and 5.0 meters.

ScanNet [8] consists of RGB-D data for 1,513 indoor scenes with 2.5 million
images and corresponding dense depth map. Because there are no sparse depth
maps provided, we sampled ≈ 1500 points from the depth map via Harris corner
detector [23] to mimic the sparse depth produced by SLAM/VIO. We followed [8]
and used 100 scenes (scene707-scene806), for zero-shot generalization for models
trained on VOID. The output depth is evaluated where ground truth exists
between 0.2 and 5.0 meters.

Waymo Open Dataset [69] contains 1920×1280 RGB images and lidar
scans from autonomous vehicles. The training set contains ≈158K images from
798 scenes and the validation set ≈40K images from 202 scenes, collected at
10Hz. Objects are annotated across the full 360◦ field. Sparse depth maps are
obtained by reprojecting the point cloud scan from the top lidar to the camera
frame. Ground truth is obtained by reprojecting both front facing lidars as well
as those collected 10 time steps forward and backwards (approximately 1 sec-
ond of capture) to a given camera frame at a specific time step to densify the
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Algorithm 1 AugUndo
Require: Depth completion network fθ, Images It, Iτ , Sparse depth zt,

Relative pose grt, Intrinsics K
1: Sample {T 1

pt,I . . . T
k
pt,I} from T i

pt,I ∈ Apt,I , and compose
Tpt,I = T 1

pt,I ◦ T 2
pt,I ◦ · · · ◦ T k

pt,I

2: Sample {T 1
pt,z . . . T

j
pt,z} from T i

pt,z ∈ Apt,z, and compose
Tpt,z = T 1

pt,z ◦ T 2
pt,z ◦ · · · ◦ T j

pt,z

3: Sample {T 1
ge . . . T

m
ge} from T i

ge ∈ Age, and compose
Tge = T 1

ge ◦ T 2
ge ◦ · · · ◦ Tm

ge

4: Compose the inverse geometric transform
T−1
ge = (Tm

ge)
−1 ◦ (Tm−1

ge )−1 ◦ · · · ◦ (T 1
ge)

−1

5: Compute the coordinates after geometric transform[
x′ 1

]�
= Tge

[
x 1

]� (Eqn. 3 from main paper)
6: Augment It with photometric and geometric transformations

I ′t(x
′) = Tpt,I(It)(x) (Eqn. 4 from main paper)

7: Augment zt with occlusion and geometric transformations
z′t(x

′) = Tpt,z(zt)(x) (Eqn. 4 from main paper)
8: Obtain depth prediction d̂′t = fθ(I

′
t, z

′
t)

9: Compute coordinates of the inverse geometric transformation[
x′′ 1

]�
= T−1

ge

[
x′ 1

]� (Eqn. 5 from main paper)
10: Apply inverse geometric transformation on output depth map:

d̂t(x
′′) = d̂′t(x

′) (Eqn. 6 from main paper)
11: Reconstruct It from Iτ using Eqn. 1 from main paper, i.e., Îtτ = Iτ (πgτtK

−1x̄d̂t)
12: Minimize reconstruction losses between Îtτ and It, and d̂t and zt, and the regular-

izer (Eqn. 2 from main paper)

sparse depth. We used the object annotations to remove all moving objects to
ensure that reprojected points respects the static scene assumption. We also per-
formed outlier removal to filter out errorenous (noisy) points. The output depth
is evaluated where ground truth exists between a 1.5 and 80.0 meters range.

Make3d [62] contains 134 test images with 2272× 1707 resolution. Ground-
truth depth maps are given at 305 × 55 resolution and must be rescaled and
interpolated. We use the central cropping proposed by [18] to get a 852 × 1707
center crop of the image. We use standard Make3d evaluation protocol and
metrics. We use Make3d to test the generalization of monocular depth estimation
models trained on KITTI.

F The AugUndo Algorithm

We assume that we are given (i) I : Ω ⊂ R
2 → R

3
+ an RGB image It, (ii), its

associated sparse point cloud projected onto as a depth map z : Ωz ⊂ Ω → R+,
zt, (iii) camera intrinsic calibration matrix K ∈ R

3×3, (iv) a sequence of images
Iτ for τ ∈ {t − 1, t + 1} during training, and (v) the relative pose gτt between
the image frame It and some temporally adjacent image Iτ . Given a image
and its associated sparse depth map, a depth completion network learns a map
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Table 8: Ablation study for KBNet on VOID dataset. BRI stands for brightness,
CON for contrast, SAT for saturation, FLP for horizontal and vertical flip, TRN for
translation, ROT for rotation, RZD for resize down, RZU for resize up, RMP for point
removal, RMI for image patch removal. Bold denotes AugUndo, italicized the standard
augmentation protocol. RMP, FLP, RZD, RZU have the highest influence; only when
BRI, CON, SAT, HUE (color jitter) are disabled do they have non-negligible effect.
Best results are achieved by using AugUndo.

Augmentation settings Evaluation metrics

BRI CON SAT HUE FLP TRN ROT RZD RZU RMP RMI MAE RMSE iMAE iRMSE

� � � � � � � � � � � 33.32±0.18 85.67±0.39 16.61±0.29 41.24±0.60
� � � � � 38.11±0.77 95.22±1.72 19.51±0.14 46.70±0.48

� � � � � � � � � � 33.46±0.27 86.02±0.69 16.84±0.22 41.78±0.63
� � � � � � � � � � 33.79±0.09 86.38±0.36 17.12±0.19 42.12±0.54
� � � � � � � � � � 33.73±0.30 85.84±0.22 17.05±0.16 41.73±0.47
� � � � � � � � � � 33.60±0.16 86.47±0.69 16.95±0.27 41.65±0.44

� � � � � � � 34.14±0.37 87.26±0.74 17.09±0.17 42.57±1.33
� � � � � � � � � � 44.38±0.89 106.87±0.89 22.91±0.68 52.55±0.57
� � � � � � � � � � 33.92±0.19 87.19±0.55 17.09±0.03 42.23±0.23
� � � � � � � � � � 33.68±0.19 85.86±0.51 16.92±0.03 41.47±0.18
� � � � � � � � � � 35.77±0.43 89.88±0.84 17.81±0.23 42.75±0.38
� � � � � � � � � � 35.69±0.25 90.40±0.71 17.75±0.12 42.82±0.20
� � � � � � � � � � 37.73±0.27 92.62±0.20 19.44±0.18 45.47±0.37
� � � � � � � � � � 33.64±0.22 86.26±0.23 16.80±0.13 41.60±0.64

the inputs to the output depth map d̂t := fθ(It, zt) ∈ R
H×W
+ . In the main

paper, we denoted photometric and occlusion augmentations as Apt for ease of
notation. Here, for specificity, we define Apt,I as the set of possible photometric
(including occlusion) transformations for the image, Apt,z as the possible set of
occlusion augmentations for sparse depth maps, and Age as the possible set of all
geometric transformations. We additionally assumes we have the set of geometric
transformations Tge used during augmentation and their inverse transformations
T−1
ge . Alg. 1 is the procedural algorithm of AugUndo and details the step by step

augmentation and loss computation pipelines, given our inputs.

G Ablation Study for Depth Completion

In the main paper, we demonstrated AugUndo for unsupervised depth comple-
tion methods on VOID1500 and VOID500 benchmarks using the most perfor-
mant set of augmentations we found. Here, we provide an ablation study for
each of the augmentations used to study their individual contributions.

Tab. 8 shows a comprehensive ablation study following augmentation set-
tings above. From our best reported settings on KBNet, we removed individual
augmentations to show their empirical contribution. Note: random brightness,
contrast, saturation, and hue (BRI, SAT, CON, HUE) together is the standard
color jitter employed by all current methods. We also test removing all color
jitter augmentations to further quantify its effect.

We found that random flips (FLP) has the largest impact of all of the augmen-
tations – increasing the error by an average of 30%; this is because it simulates
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Table 9: Sensitivity study of depth completion on VOID. Reported scores are mean and
standard deviation over four independent trials. We compare the sensitivity of models
trained on VOID1500, with standard augmentations and AugUndo, by testing them
on VOID500 and VOID150. Sparse depth maps within VOID1500 contains approxi-
mately 1500 points, and those within VOID500 and VOID150 contain approximately
3× and 10× less, respectively. AugUndo improves performance by an average of 19.66%
and 19.62% across all unsupervised methods and evaluation metrics on VOID500 and
VOID150, respectively. For distillation method (marked by *), MonDi, AugUndo im-
proves by an average of 9.02% and 10.25% on VOID500 and VOID150, respectively.
Despite MonDi is supervised by pseudo ground truth in addition to typical unsuper-
vised losses, AugUndo can still boost performance.

VOID500 VOID150

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓ MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
VOICED 137.01±4.23 235.80±7.82 71.36±1.86 130.63±5.66 209.59±5.18 329.71±10.01 130.45±5.63 229.79±14.09
+ AugUndo 92.99±1.11 176.94±1.38 46.43±0.85 91.10±1.64 151.77±1.99 262.61±2.19 88.65±0.76 169.29±2.71

FusionNet 97.73±0.73 194.32±1.36 58.65±1.31 122.95±3.04 158.03±1.97 284.23±3.05 113.67±2.03 223.41±0.93
+ AugUndo 74.97±1.15 162.71±1.86 40.44±1.09 92.11±1.01 126.16±1.44 246.16±2.46 86.13±4.46 181.08±8.00

KBNet 78.44±1.39 178.17±3.27 37.56±0.61 83.43±1.89 149.13±3.29 306.30±8.74 70.74±2.26 136.75±5.55
+ AugUndo 66.97±0.81 151.55±2.03 31.63±0.53 71.90±0.82 117.16±4.51 239.60±10.96 57.65±1.47 112.81±1.75

DesNet 74.89±0.67 170.32±2.03 35.62±0.72 78.30±1.31 139.54±4.46 287.95±12.69 65.00±1.24 123.81±2.17
+ AugUndo 67.78±1.10 153.46±2.64 32.09±0.48 71.96±1.05 117.93±3.77 239.49±8.44 58.13±1.14 112.78±2.33

MonDi* 73.90±0.61 191.69±2.64 31.78±1.52 72.67±2.17 146.33±5.57 343.25±13.70 60.43±3.54 114.18±2.21
+ AugUndo 69.90±3.05 157.02±7.46 29.61±0.12 68.48±0.57 127.08±4.51 299.42±10.96 54.47±1.47 108.23±1.75

different scene layouts. As there are no viable intensity augmentations for sparse
depth, RMP is the only one to explicitly increase variability in the data modality
hence it also has large influence. We note that other geometric augmentations
contribute as well, i.e., rotation, resizing, and translation, to discard points. By
computing the loss on the original inputs, we reconstruct the removed points,
which in fact serves as an additional training signal to map RGB to depth.

Photometric augmentations, individually, have small effect on performance.
To get a non-neglible effect, one must disable all color jitter (Tab. 8 , row 7),
which still yielded small increases in errors. This shows the limitations of existing
augmentations, which relies heavily on color jittering. We note that we use a
larger value range in color jitter than existing works, so the impact is expected
to be even smaller for existing works. Admittedly, the most important one (FLP)
is currently being used by all methods, but resize, image patch and point removal,
play a large role. The best results are obtained when using all of the proposed
augmentations, demonstrating the importance of scaling up both photometric
and geometric augmentations.

H Sensitivity Study for Depth Completion

Given that conventional augmentation pipelines are not applied towards sparse
depth modality, it is possible that a model will overfit to the sparse point cloud,
which describes the coarse 3D scene structure. Overfitting to scenes, hence, can
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limit generalization and increase sensitivity to the configuration of sparse points.
In the main paper, we presented results for depth completion on VOID1500
and VOID500. Here, we test the effect of AugUndo on various sparse depth
input densities. We presented results on VOID500 (repeated for side-by-side
comparison) and VOID150 in Tab. 9 (left and right, respectively). VOID500
contains approximately 500 sparse points per point cloud and VOID150 contains
approximately 150 points. All models tested are trained on VOID1500, which
contains 1500 sparse points.

For VOID500 (Tab. 9, left), which is a 3× reduction in density, AugUndo
improves the sensitivity to changes in the sparse points by an average of 19.66%
across all methods, and 30.57%, 23.92%, 14.79%, 9.35% for VOICED, Fusion-
Net, KBNet, and DesNet, respectively. For an even more challenging scenario,
also the closest setup to the density of sparse points tracked by a Simultane-
ous Localization and Mapping (SLAM) and Visual Inertial Odometry (VIO)
system, we consider VOID150 (Tab. 9, right). Here, AugUndo improves by an
average of 19.62% across all methods, and 26.57%, 19.18%, 19.80%, and 12.95%
for VOICED, FusionNet, KBNet, and DesNet, respectively. We attribute this to
geometric and occlusion augmentations: translation, resize, rotation and sparse
points removal. All of these augmentations not only affect photometry, but also
the sparse point cloud where points are dropped due to resampling or explicitly
removed, and additionally point cloud orientation is also altered.

We note that AugUndo is also helpful for distillation methods like MonDi
[45]. As mentioned in the main text, we conjecture that artifacts caused from
transformation of a piece-wise smooth depth map (in the case of supervised or
distillation methods) are less severe than those of image and sparse point clouds.
Hence, we were expecting the gains for supervised or distillation methods to be
small compared to unsupervised methods. However, as shown in the last row
of Tab. 9, we observe a surprisingly nontrivial gain when applying AugUndo to
MonDi (marked by *). For VOID500, we improve MonDi by 9.02% on average
across on metrics; for VOID150, we improve by 10.25%.

I Zero-shot Generalization from KITTI

In the main paper, we demonstrated AugUndo for three unsupervised depth
completion (VOICED [84], FusionNet [82], and KBNet [87]) and three unsuper-
vised monocular depth estimation (Monodepth2 [19], HR-Depth [47]), and Lite-
Mono [102]) methods on the KITTI dataset. Due to space constraints, here, we
provide additional results for zero-shot generalization from KITTI to Waymo
Open Dataset [69] for depth completion and to Make3d [62] for monocular
depth estimation. Similar to our generalization experiments on indoors (VOID
to NYUv2 and ScanNet), we will train on KITTI using the conventional augmen-
tation schemes employed by each respective method and compare the resulting
models with those trained using AugUndo.

We begin by presenting results on depth completion in Tab. 10. Here, we eval-
uate VOICED, FusionNet, and KBNet models (trained on KITTI using standard



AugUndo: Scaling Up Augmentations for Depth Completion & Estimation 33

Table 10: Zero-shot transfer from KITTI to Waymo for depth completion. AugUndo
improves generalization of models trained on KITTI to Waymo by an average of 13.3%
for all evaluation metrics. We note that the sparse depth maps provided in Waymo is
considerably denser than KITTI as they are merged from two front separate lidars;
hence, FusionNet, which employs a learned (frozen) densification network performs
similarly, i.e., the bias introduced by the same frozen densification network (ScaffNet) is
strong enough that FusionNet yields similar results for both conventional augmentation
scheme and AugUndo. Nonetheless, we still observe considerable improvements.

Dataset Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓

Waymo

VOICED 6781.27±317.21 7734.57±339.77 24.58±1.45 27.87±1.63
+ AugUndo 5965.07±367.47 7029.66±509.43 18.54±1.83 22.10±3.96
FusionNet 530.55±39.23 1734.23±114.97 1.27±0.12 2.82±0.29
+ AugUndo 512.29±8.43 1707.34±48.25 1.21±0.09 2.75±0.18
KBNet 625.00±12.47 2167.74±92.17 1.76± 0.13 5.46±0.93
+ AugUndo 541.29±15.16 2014.14±76.52 1.34±0.11 3.43±0.30

Table 11: Zero-shot transfer from KITTI to Make3d for monocular depth estimation.
All models are trained on KITTI. Note: for Monodepth2, we use the numbers reported
by [19] and the best trial on KITTI.

Dataset Method MAE ↓ RMSE ↓ Abs Rel ↓ Sq Rel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Make3d

Monodepth2 - 7.417 0.322 3.589 - - -
+ AugUndo 4.109 6.803 0.272 2.769 0.606 0.848 0.936
HR-Depth 4.136 6.505 0.281 2.484 0.562 0.839 0.938
+ AugUndo 4.023 6.428 0.272 2.393 0.584 0.848 0.94
Lite-Mono 5.116 8.061 0.358 4.676 0.511 0.793 0.91
+ AugUndo 4.728 7.518 0.321 3.887 0.529 0.817 0.926

augmentation pipelines and AugUndo) on the Waymo Open Dataset. Overall,
training with AugUndo improves existing methods by an average 13.3% across
all evaluation metrics. We note that AugUndo improves VOICED and KBNet
by larger amounts than FusionNet. For FusionNet, whether trained with conven-
tional augmentation scheme or AugUndo, both seem to perform similarly. This
is because FusionNet employs a learning-based densification network (ScaffNet),
which is pretrained on synthetic datasets and frozen, that is used in both models.
As the sparse depth maps in Waymo are much denser than KITTI, ScaffNet is
able to approximate the dense depth map with small amounts of errors. This
serves as an inductive bias for the downstream FusionNet, which learns the
residual over the approximated depth map. As the reconstruction from ScaffNet
exhibits high fidelity, the bias induced by ScaffNet on FusionNet causes Fusion-
Net to perform only minor modifications to approximated depth map, leading to
similar outputs whether trained with conventional augmentations or AugUndo.
Nonetheless, we still observe consistent (albeit smaller) improvements when Fu-
sionNet is trained with AugUndo.

For monocular depth estimation, we similarly evaluate Monodepth2, HR-
Depth, and Lite-Mono models (trained on KITTI using standard augmentation
pipelines and AugUndo) on Make3d. Tab. 11 shows that models trained on
KITTI with AugUndo generalizes well to Make3d, gaining an average of around



34 Y. Wu et al.

Fig. 5: Effect of different degree of augmentation on VOID1500.

8% improvement over all metrics and all models. Note: training Monodepth2
from their code repository reproduces their results on KITTI, but produces worse
generalization results on Make3d than the weights they released; hence, we take
the original weights released by the authors for evaluation. Nonetheless, we still
improve over their best result.

J Sensitivity to Choice of Hyperparameters

In the main paper and Sec. A above, we described in details of the set of aug-
mentations and degrees of each augmentation used in our experiments to achieve
the reported numbers. We note that the performance gains can be obtained by
typical set and ranges of augmentations and does not require a meticulous se-
lection of hyper-parameters. In the paper, we tried to push the limits and tested
increasing degrees of augmentation until performance saturated. Fig. 5 shows
the trends of improvement for resizing (down), translation, and points removal.
Choosing even small degrees of augmentations yields some performance gain.
We note that there are diminishing returns as we scale up augmentations to
large amounts, i.e. 50% or more in downsampling, which reduces the size of the
observed image and predictions will have little to no detail. When computing
the loss on these predictions on the original data, there is a considerable amount
of noise and lends little to learning. Hence, at extreme degrees, we observe that
performance eventually saturates. We also note that the choice of augmentation
would depends on the task and dataset (i.e. vertical flip not applicable for KITTI
since the camera is typical right-side-up for driving scenarios).

K Additional Results for Depth Completion

In the main paper, we demonstrated AugUndo for three unsupervised meth-
ods [82, 84, 87] on the VOID dataset. Due to space constraints, here, we show
additional results on VOID1500 and VOID500 for a recent unsupervised distil-
lation method, MonDi [45] as well as a recent unsupervised depth completion
method, DesNet [91], in Tab. 12. Additionally, we show MonDi and DesNet for
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VOID150 in Tab. 9. We applied photometric transformations of random bright-
ness from 0.5 to 1.5, contrast from 0.5 to 1.5, saturation from 0.5 to 1.5, and hue
from -0.1 to 0.1. We applied image patch removal by selecting between 0.1% to
0.5% of the pixels and removing 5 × 5 patches centered on them – approximately
removing between 2.5% to 12.5% of the image. We applied random sparse depth
point removal at a rate between 60% and 95% of all sparse points. We further
applied geometric transformations of random horizontal and vertical flips, up to
10% of translation, between -25 to 25 degrees of rotation, and random resize
factor between 0.6 to 1.1.

Table 12: Quantitative results of MonDi, a distillation-based unsupervised method, on
VOID. Reported scores are mean and standard deviation over four independent trials.
We evaluate MonDi trained on VOID1500, with standard augmentations and AugUndo,
by testing them on VOID1500 and VOID500. Sparse depth maps within VOID1500
contains approximately 1500 points, and those within VOID500 contain approximately
3× less, respectively. AugUndo improves performance by an average of 5.33% and 9.02%
across all methods and evaluation metrics on VOID1500 and VOID500, respectively.

VOID1500 VOID500

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓ MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
MonDi* 30.56±0.23 86.67±0.55 15.08±0.16 37.58±0.44 73.90±0.61 191.69±2.64 31.78±1.52 72.67±2.17
+ AugUndo 29.02±0.56 79.34±1.17 14.56±0.44 35.93±1.12 69.90±3.05 157.02±7.46 29.61±0.12 68.48±0.57

DesNet 37.41±0.28 93.31±0.76 19.17±0.24 45.57±0.62 74.89±0.67 170.32±2.03 35.62±0.72 78.30±1.31
+ AugUndo 33.86±0.60 86.05±0.43 16.92±0.29 41.25±0.31 67.78±1.10 153.46±2.64 32.09±0.48 71.96±1.05

Results on MonDi and DesNet. Overall, we improve MonDi by an aver-
age of 8.2% across all evaluation metrics across all sparsity levels (VOID1500,
VOID500, and VOID150). This is surprising as amongst all the tested methods,
MonDi is the most light-weight, with only 5.3M parameters. As we reduce model
capacity, one would expect that the network to saturate in the data variations
that can be modeled. However, despite the size of network is much smaller (23.2%
less than KBNet), there is still a considerable gain when using AugUndo instead
of their augmentation pipeline. This demonstrates efficacy and applicability of
AugUndo; it can be used to improve methods with a range of capacities from
tens of millions to several million. Also, we note that MonDi is an unsupervised
distillation method (where it distills from unsupervised methods), so it is more
closely related to supervised methods in supervision than unsupervised method.
Even so, we observe a non-trivial improvement, which validates our discussion
in Sec. 5 of the main paper regarding the applicability of AugUndo to supervised
methods. Meanhwhile, we improves DesNet by an average of 10.64% accross all
evaluation metrics, highlighting again AugUndo’s applicability to future unsu-
pervised depth completion methods.

Modeling AugUndo as change in camera pose versus camera parameters. In
the main text, we discussed two ways of modeling our augmentation scheme:
treating the augmented data as a result of changes in camera pose (i.e. motion) or
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Table 13: Quantitative results of KBNet with AugUndo as changes in camera pose or
intrinsics (i.e. with and without depth adjustment, respectively) on VOID1500. With
depth adjustments (change in camera pose), the performance of the model is slightly
worse (≈3.3% in terms of percent gain) than without depth adjustments (change in
camera intrinsics), yet still better than the baseline by a large margin.

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓ Gain (%)

KBNet 38.11±0.77 95.22±1.72 19.51±0.14 46.70±0.48 -
+ AugUndo (intrinsics) 33.32±0.18 85.67±0.39 16.61±0.29 41.24±0.60 +12.29
+ AugUndo (pose) 34.24±0.25 87.11±0.56 17.59±0.23 43.22±0.39 +8.99

in camera parameters (i.e. intrinsics). (1) Modeling the augmentation as camera
motion requires adjusting sparse depth maps; for example, resizing can be treated
as forward motion, so distance from camera to world surfaces need to be adjusted
in the sparse depth map. Naturally, if choosing (1), then one would need to
reproject the sparse depth points according to the camera motion. On the other
hand, (2) modeling the augmentation as changes in the camera parameters does
not require adjusting the sparse depth maps as the camera and 3D scene are both
static; for example, resizing can now be treated as “zooming in” or an increase
in focal length.

Tab. 13 compares the two approaches. We test the resizing operation by ad-
justing sparse depth, and likewise, dense output depth. Specifically, we assume
a pin-hole camera model. As perspective projection is a linear, we adjust the
depth value by scaling them using the random scale factor recorded during the
random resizing operation. We observe the following: Firstly, both methods of
modeling improves KBNet on VOID: modeling as (1) improves KBNet by 8.99%
and (2) by 12.29%, respectively. This verifies the efficacy of AugUndo under both
modeling choice. Secondly, modeling AugUndo as changes in (2) camera param-
eters improves over (1) camera motion. Particularly, (2) yields an additional
3.3% gain in the baseline and 3.6% relative improvement over KBNet trained
using (1). This justifies our choice of modeling AugUndo as changes in camera
parameters.

Naive geometric augmentations. In the main paper, we discussed that naively
applying geometric augmentations can be detrimental to model performance
and even prevent one from training them. As unsupervised depth completion
and unsupervised monocular depth estimation assume rigid motion within the
image triplet comprising of a training example, geometric augmentations that
introduce some form of border padding (e.g., translation, rotation) will yield
constant or edge extended borders across images (i.e., no motion in those re-
gions). The lack of motion will result in PoseNet predicting near identity pose.
Hence, naively incorporating geometric augmentations will prevent the model
from properly learning depth and pose. This is demonstrated in Tab. 14 and 15
for rows marked with “+ Naive Geo Aug”. Nonetheless, one can make modifi-
cations (no translation, center cropping on rotation, and resizing to the same
shape for a batch) to ensure no borders are introduced during augmentation.
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Table 14: Naive geometric augmentations for unsupervised depth completion on VOID.
It is infeasible to conduct unsupervised training with naive geometric augmentations.
Modifying geometric augmentations to ensure no borders are introduced allows the
model to train, but performance degrades. “+ Naive Geo Aug” denotes models trained
with naive geometric augmentations and “+ Modified Geo Aug” denotes mdoels trained
with modified geometric augmentations.

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
VOICED 74.78±2.69 139.75±4.57 39.20±1.46 71.98±2.54
+ Naive Geo Aug 554.65±91.10 642.13±69.40 639.42±113.11 980.81±78.01
+ Modified Geo Aug 109.40±13.01 205.14±18.22 106.21±13.27 286.71±31.79
+ AugUndo 52.73±0.41 111.09±0.92 26.93±0.54 54.46±0.38

FusionNet 52.11±0.44 113.30±1.18 28.53±0.52 58.79±2.01
+ Naive Geo Aug 82.73±6.96 190.71±9.90 73.61±33.32 224.62±156.04
+ Modified Geo Aug 57.72±6.67 138.52±15.87 31.91±5.19 74.41±14.64
+ AugUndo 41.16±0.18 99.21±0.39 22.23±0.35 53.07±1.30

KBNet 38.11±0.77 95.22±1.72 19.51±0.14 46.70±0.48
+ Naive Geo Aug 1,065.4 ± 81.7 1,216.4 ± 54.4 5,693.5 ± 401.3 7,032.7 ± 283.0
+ Modified Geo Aug 51.77 ± 4.13 118.95 ± 7.67 27.66 ± 3.04 60.92 ± 5.62
+ AugUndo 33.32±0.18 85.67±0.39 16.61±0.29 41.24±0.60

Table 15: Naive geometric augmentations for unsupervised monocular depth estima-
tion on KITTI. It is infeasible to conduct unsupervised training when naively applying
geometric augmentations. Modifying geometric augmentations to ensure no borders are
introduced allows the model to train, but performance degrades. “+ Naive Geo Aug”
denotes models trained with naive geometric augmentations and “+ Modified Geo Aug”
denotes mdoels trained with modified geometric augmentations.

Method RMSE ↓ Abs Rel ↓ Sq Rel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth2 4.794 ± 0.035 0.117±0.001 0.845± 0.030 0.869± 0.004 0.959± 0.001 0.982±0.001
+ Naive Geo Aug 6.612±0.18 0.174±0.009 2.057±0.32 0.794±0.02 0.932±0.004 0.971±0.002
+ Modified Geo Aug 4.911±0.046 0.119±0.002 0.926±0.023 0.870±0.004 0.958±0.001 0.981±0.001
+ AugUndo 4.739±0.032 0.113±0.000 0.862±0.030 0.879±0.002 0.960±0.001 0.982±0.001

HR-Depth 4.626 ± 0.032 0.113±0.001 0.797± 0.022 0.879±0.002 0.961± 0.001 0.982±0.000
+ Naive Geo Aug 6.06±0.022 0.159±0.003 1.40±0.016 0.795±0.010 0.939±0.003 0.979±0.002
+ Modified Geo Aug 4.718±0.018 0.116±0.001 0.844±0.005 0.875±0.001 0.960±0.001 0.982±0.001
+ AugUndo 4.610±0.029 0.111±0.001 0.794±0.021 0.883±0.001 0.962±0.001 0.983±0.001

Yet, we do not perform the proposed “undo-ing” process. While this will allow
the model to train, however, the effects of artifacts, loss during resampling, color
distortion, and intensity saturation will lead to performance degradations worse
than the baseline. This is shown in Tab. 14 and 15 for rows marked with “+
Modified Geo Aug”.

L Additional Results on Monocular Depth Estimation

Applying our methods yields qualitative improvements in the depth prediction.
In Fig. 6, we can see that our method better captures the building in the last
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Fig. 6: Qualitative result of MonoDepth2 on KITTI. Red bounding boxes highlight
areas where training with our augmentation scheme improves Monodepth2, i.e., wall
and vegetation on left, trees in middle and building on right.

column. Similarly, we observe similar improvements in the middle column for
the trees that are located at a distance. This is in part thanks to augmenta-
tions such as resizing so that we can simulate objects at far and close distances.
Additionally, training with AugUndo also improves over the baseline method
on ambiguous regions such as the wall and vegetation in the first column, de-
spite using the same hyper-parameter during training with the exception of data
augmentation.

M Limitations

While we have proposed an algorithm to scale up augmentations for depth com-
pletion, a multimodal 3D reconstruction problem, admittedly our augmentations
are limited to 2D. In the case of this inverse problem, the nuisance variability
simulated by AugUndo are, in fact, projections of those in the 3D scene, which
we do not model directly. Additionally, augmentations are used in other vision
tasks including multiview stereo, binocular stereo, optical flow, etc. While we
have shown that AugUndo can be applied to unsupervised and distillation (with
dense supervision from pseudo ground truth), we have limited the scope of our
method for depth completion, which considers a single image and sparse depth
map as input. We foresee that AugUndo can also incorporate other modalities,
such as tactile [92], be extended to other settings [50], and tasks, including deep
feature visualization [37], semantic segmentation [3,22,38,43,67,80], and object
detection [2, 33, 35, 61, 70]. Additionally, we hypothesize that AugUndo can also
be extended towards multi-frame geometric tasks such as stereo [1, 78, 85, 89],
optical flow [34,36,68,72,103,104], etc., but one must account for their specifics
and problem setups, i.e. stereo assumes frontoparallel views. Lastly, like all scal-
ing problems, AugUndo is eventually limited by diminishing returns. As certain
augmentation are pushed to extremes, i.e., maximum brightness such that the
image is “white”, large spatial reduction such that the image is small, there is
little to no information in the input to infer depth; even if the supervision sig-
nal exists, it would be mapping nonsensical inputs to depth maps, which does
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not improve performance (as illustrated by Fig. 5), and lending to saturation in
performance gain.


