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Abstract: We implement a cascaded learning framework leveraging three different EDFA and
fiber component models for OSNR and GSNR prediction, achieving MAEs of 0.20 and 0.14 dB
over a 5-span network under dynamic channel loading. © 2025 The Author(s)

1. Introduction

The rapid growth of Al, telecommunication, and cloud service relies on the high throughput and low latency
optical network, leveraging the dense wavelength division multiplexing (DWDM) technique. When DWDM sig-
nals transmit through the optical link, different channels will experience wavelength-dependent effects such as
erbium-doped fiber amplifiers (EDFAs) gain and fiber nonlinearities. Accurate estimation of the end-to-end opti-
cal channel performance such as optical signal-to-noise ratio (OSNR) for background traffic channels and general
signal-to-noise ratio (GSNR) for signal channels is important for guaranteed quality of transmission (QoT) to
facilitate selection of modulation formats and margin design.

There are two main approaches to model a multi-span optical link for end-to-end prediction. The first method
uses an end-to-end (E2E) model to characterize the entire multi-span link and the second method directly cas-
cades either machine learning (ML) or analytical component-level models. For the E2E model, although it shows
high accuracy, it will be time-consuming to collect sufficient training data for every new topology and link con-
figuration [1]. Although analytical models such as the Bigo equation and Gaussian Noise (GN) model show high
accuracy on Stimulated Raman Scattering (SRS) tilt and fiber nonlinearity [2, 3], EDFA gain and noise figure
(NF) modeling still requires ML, especially with dynamic channel loadings. To reduce the error accumulation
from component models, parameter refinement (PR) is used to adapt the analytical model to the link using the
end-to-end link measurements [4, 5]. However, there is no existing method to adapt ML-based models together
with analytical models, where the error accumulation has not been fully solved.

In this paper, we extend the cascaded learning (CL) framework introduced in [6] from the multi-span power
spectrum prediction to OSNR and GSNR prediction, to minimize the error accumulation from the cascading effect.
We combine separately characterized component-level models for the EDFA gain, NF, and fiber nonlinearity, with
fully connected (FC) layers, whose parameters are trained using end-to-end multi-span link measurements. We
verify the performance of the CL model under a 5-span link with a total fiber length of 396 km under three different
link settings with various channel loading conditions. We also compare the CL model with two common baselines:
the E2E model and component cascading with parameter refinement [1,4,5]. Experimental results show that the
CL model achieves a mean absolute error (MAE) of 0.20/0.14 dB OSNR/GSNR prediction, which is 0.06/0.15 dB
and 0.40/1.03 dB smaller compared to the E2E and component cascading model, using only 41 link measurements
for training. The CL model also shows adaptation capability over unseen component device settings.

2. Cascaded Learning (CL) for OSNR and GSNR Prediction

We consider a multi-span optical link with K spans and K + 1 EDFAs, as shown in Fig. 1(a). The input channels
include both transceiver (TRX) signal channels and background WDM channels emulated by ASE noise. Given
the input spectrum to the first EDFA, S} (1), the goal is to predict the GSNR(A;) for the transceiver channels
and OSNR(A;) for the background WDM channels at the output of a K-span optical link, with the actual GSNR
and OSNR verified by real-time BER and optical spectrum link measurements. Each EDFA in the link is asso-
ciated with pre-trained ML-based gain and NF models, with the same input features including EDFA gain and
tilt settings, photodiode (PD) power readings, input power spectrum, and channel loading conditions, and with
output of gain and NF for each channel. Similarly, each fiber is associated with an ML-based nonlinearity model,
with input features of fiber length, input power spectrum, and channel loading conditions, and with output of
nonlinearity SNR for each channel. We consider two approaches for the OSNR/GSNR prediction as baselines:
end-to-end (E2E) learning and component cascading. The E2E link model (E2E) trains a new model based on
link measurements including input power spectrum, channel loading settings, total input and output power at each
EDFA, and the EDFA gains and tilts. We implement the E2E model using the DNN architecture with three hidden
FC layers of 128/64/64 neurons and exponential linear unit (ELU) activation function, shown in Fig. 1(b). The
output of the last hidden layer connects to two separate 2 x40 neurons’ FC layers without activation function, to
predict the link OSNR and GSNR separately. For the component cascading only (CC-Only) model, the input
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Fig. 1: (a) Multi-span measurement pipeline for background ASE channels’ OSNR and 400 GbE channels’ GSNR. (b) E2E
link model diagram. (c) Component cascading model with the insert loss parameter refinement (CC-PR). (d) Cascaded learning
(CL) framework for multi-span OSNR and GSNR prediction.

power spectrum is first put into the EDFA gain and NF model, to predict the first span’s SNR4sr and power spec-
trum after EDFA. The spectrum is normalized and sent into GNPy-based fiber model to calculate the nonlinearity
SNRy;; and output spectrum after fiber, where the spectrum is normalized again and sent to the next span. For the
component cascading with parameter refinement (CC-PR) model, in addition to the CC-Only model, we use
the link measurement to refinement to adapt the GN-based analytical fiber models to the link, without adapting
the ML-based EDFA models. The refinement checks the averaged difference between OSNR or GSNR on loaded
channels, and refines the insert loss at the beginning of each fiber. The proposed cascaded learning (CL) frame-
work effectively adapts all the component models to the link, compared to the CC-PR. It has a similar diagram
as CC-PR (see Fig. 1(c) and 1(d)), but replaces the GNPy-based fiber model with a pre-trained fiber nonlinear
model, and a fiber loss model. The auxiliary GSNR and OSNR models at the end take predicted SNR4sg and
SNRy;; after each span, predicted spectrum at the last span, and channel loading as their input and predict the
link GSNR/OSNR. They have the same NN architecture, consisting of three FC layers of 40 neurons and an ELU
activation function at the first layer. Note that the fiber loss and auxiliary GSNR/OSNR models do not need to be
trained individually but will be trained as part of the CL model.

3. Experimental Setup and Results

ML-based Component Models. We train EDFA gain and NF models using separately characterized gain and
NF profiles from individual EDFAs with varying input power levels, gains, tilts, and channel loadings, using an
ASE source and an OSA. We use GNPy with the measured fiber parameters (e.g., loss coefficients, fiber length,
etc.) to generate synthetic data with various channel loadings and launch power levels, which is then used to train
the fiber nonlinearity ML model [7]. For transceiver characterizations, we measure the OSNR-BER curve under
Tx-Rx DCOs back-to-back connections. The MAEs averaged over six EDFAs and five fibers are 0.08 dB, 0.12 dB,
and 0.19 dB for EDFA gain, NF, and fiber nonlinearity models, respectively.

5-span Link Measurements. Fig. 1(a) shows the experimental setup of the 5-span optical link with 40x 100 GHz
channels and a starting frequency of 192.2 THz. The NEC Phoenix whitebox transponder consisting of four Lu-
mentum 400 GbE CFP2 digital coherent optics (DCO) pluggables, together with a broadband ASE source, con-
nects to a wavelength-selective switch (WSS) for multiplexing. The WSS flattens the spectrum and transmits the
400G dual-polarization 16QAM signals together with ASE-emulated background traffic signals through a 5-span
link with six EDFAs and a total fiber length of 396 km. After transmission, the background ASE and 400G chan-
nels are demultiplexed by the WSS and sent to the OSA and another whitebox transponder for OSNR and BER
measurements, respectively. The BER measurement is averaged 10 times and converted to link-only GSNR by
removing the back-to-back transceiver noise [8]. We record the channel loading, input power spectrum at the first
EDFA, PD power readings before and after each EDFA, GSNR for 400G channels, and OSNR for ASE channels.

We evaluate the proposed method under various channel loadings and link settings. We consider three types
of channel loading conditions: (i) full loadings, where all 40 channels are loaded with ASE noise with four con-
secutive channels substituted with 400G channels successively for 10 times to obtain GSNR measurements; (if)
fixed loadings, where the transceiver channel indexes are fixed at {5,20, 21,35} for the most different nonlinearity
effect, and 10 random configurations each for ASE channel number n € {5, 10, 15,20,25}; and (iii) Optical spec-
trum as a Service (OSaaS) loadings, where the spectrum is evenly divided into four groups with two transceiver
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Fig. 2: (a) Different link models’ mean absolute error (MAE) with various training data sizes for the 5-span link. (b) MAE
of OSNR prediction for different link models under various link settings. (c¢) MAE of GSNR prediction for different models
under various link settings.

channels assigned to two groups. Each group has a total number of loaded channels no € {3,5,7} with random
loading. Each group is turned on and off sequentially, with 9 different on/off operations including all groups on,
one group off, and selected two groups off. The total number of full/fix/OSaaS channel loading measurements is
10/100/162, respectively. We consider three different link settings: (7)) S1 sets the EDFA gain and tilt using the
value from the component EDFA measurement, with an average launching power +1.5 dBm per channel; (ii) S2
reduces the input power by 1 dB for all channels compared to S1; and (iii) S3 sets the gain and tilt differently from
component EDFA characterization, with a launch power of 4-3.5 dBm per channel for every span.

Multi-span Link Models Training and Refinement. The E2E model is trained using the link measurements by
an Adam optimizer with a learning rate of 5e-3 over 800 epochs. For CC-PR, we use PyCMA to optimize the
insert loss with 10 iterations. The CL model is trained using a two-step process: First, we freeze the weights of
all pre-trained component models and train the rest parts (fiber loss and auxiliary OSNR/GSNR models) using the
Adam optimizer with a learning rate of le-2 over 400 epochs. Then, all the weights are unfrozen and fine-tuned
using the same link measurements, with a learning rate of 1e-3 over 40 epochs.

Training Set Size Selection. Fig. 2(a) shows the model performance under different training set sizes. The
minimum training set size for the E2E and CL models is 10 link measurements under full channel loadings, which
guarantees each channel has at least one GSNR information. The E2E model suffers from a high MAE under
a small training set, but obtains stable OSNR and GSNR prediction performance when the training set is larger
than 88 samples. The CL model achieves an MAE of 0.29/0.46 dB for OSNR/GSNR prediction with only 10 link
measurements, and the accuracy is further improved with increased training set size. For CC-PR, the fiber insert
loss refinement improves the MAE of GSNR prediction from 1.2dB to 0.6dB, and has little improvement for
OSNR prediction, using 10 link measurements. We empirically select 10/41/88 training samples for CC-PR, CL,
and E2E models, and use the remaining 184 link measurements as test sets for all models (see Fig. 2(a)).

5-span Prediction Results. Figs. 2(b) and 2(c) show the MAE of OSNR and GSNR prediction achieved by
different models across three link settings. The CL model achieves an MAE of 0.20/0.14 dB for OSNR/GSNR
averaged on three link settings, with 0.06/0.15 dB lower MAE and only use half of the link measurement training
data compared to the E2E model. The parameter refinement improves GSNR but has little impact on the OSNR
prediction. Even though the CC-PR achieves respectable MAE of 0.57/0.52 dB under the S1 and S2 settings on
GSNR, its prediction gets significantly worse at 2.5 dB when the link is configured to the S3 setting, as the EDFA
gains/tilts are set differently from ones used during component device measurement. The CL model shows better
adaptation capability when the EDFA settings are unseen during the component model characterization.

4. Conclusion

We studied a cascaded learning framework for multi-span OSNR and GSNR prediction leveraging pre-trained fiber
nonlinearity, EDFA gain, and NF models with minimized link measurements. It achieves an MAE of 0.20/0.14 dB
for OSNR/GSNR prediction across a 5-span link with 6 EDFAs using 41 link measurements.
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