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RaGNNarok: A Light-Weight Graph Neural Network for Enhancing
Radar Point Clouds on Unmanned Ground Vehicles
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Tingjun Chen, and Miroslav Pajic

Abstract— Low-cost indoor mobile robots have gained pop-
ularity with the increasing adoption of automation in homes
and commercial spaces. However, existing lidar and camera-
based solutions have limitations such as poor performance in
visually obscured environments, high computational overhead
for data processing, and high costs for lidars. In contrast,
mmWave radar sensors offer a cost-effective and lightweight
alternative, providing accurate ranging regardless of visibility.
However, existing radar-based localization suffers from sparse
point cloud generation, noise, and false detections. Thus, in this
work, we introduce RaGNNarok, a real-time, lightweight, and
generalizable graph neural network (GNN)-based framework
to enhance radar point clouds, even in complex and dynamic
environments. With an inference time of just 7.3 ms on the low-
cost Raspberry Pi 5, RaGNNarok runs efficiently even on such
resource-constrained devices, requiring no additional computa-
tional resources. We evaluate its performance across key tasks,
including localization, SLAM, and autonomous navigation, in
three different environments. Our results demonstrate strong
reliability and generalizability, making RaGNNarok a robust
solution for low-cost indoor mobile robots.

I. INTRODUCTION

Indoor mobile robots, such as unmanned ground vehicles

(UGVs), are increasingly used in homes and commercial

spaces, requiring accurate sensing for GNSS-free mapping

and navigation in potentially complex environments. Tradi-

tionally, these robots rely on lidar and cameras, but both

technologies have limitations that hinder their wide adoption

on low-cost platforms.

Lidar offers high precision but is expensive (e.g., $800+

for the Livox MID-360), power-intensive, and struggles in

visually occluded environments (e.g., smoke, dust). Cameras,

while affordable, face challenges in low-light or visually

uniform environments and lack depth perception unless

combined with additional sensors. Both lidar and camera-

based systems require deep learning (DL) models for reliable

scene understanding, which may exceed the computational

capacity of low-cost robots and fail in tasks that have real-

time requirements.

In contrast, mmWave radar provides a low-cost,

lightweight alternative with accurate ranging, even in poor

visibility. Modern 77 GHz mmWave radars achieve 4 cm

*These authors contributed equally to this work.
This work is sponsored in part by the ONR under the agreement N00014-

23-1-2206, AFOSR FA9550-19-1-0169 Award, NSF CNS-1652544 and
CNS-2211944 awards, and the National AI Institute for Edge Computing
Leveraging Next Generation Wireless Networks, Grant CNS-2112562.

The authors are with the Department of Electrical and Computer Engi-
neering, Duke University, Durham, NC 27708 USA (e-mail: {david.hunt,
shaocheng.luo, spencer.hallyburton, shafii.nillongo, yi.li, tingjun.chen,
miroslav.pajic}@duke.edu).

range resolution in a compact, low-power form factor,

making them ideal for indoor mobile robots. Unlike lidar

and cameras, radar can also detect velocity, enabling real-

time differentiation between static and dynamic objects, and

enhancing situational awareness in complex environments.

While mmWave radar may offer a low-cost alternative for

UGV-based mapping, localization, and navigation, several

critical challenges have hindered its real-time adoption. First,

the angular resolution of typical mmWave radar sensors used

on UGVs is limited to 14.3° [1], significantly coarser than

lidar’s 0.1° resolution [2]. This results in 90% fewer points

than even 2D lidar slices, leading to sparse and incomplete

environmental representations. Second, radar point clouds

are prone to high false detection rates due to multipath

interference, where radio waves reflect off multiple objects

before returning to the sensor. In indoor environments, we

observed that up to 60% of detected points were false, fur-

ther complicating localization and mapping.

Existing approaches for mmWave radar-based sensing on

UGVs struggle with real-time feasibility and degrade in

dynamic environments. Some methods encode radar inputs

as images[3]–[5], while others rely on generative adversarial

networks (GANs) [6], but these approaches demand high-

compute, segmentation-based deep learning models that are

impractical for UGVs with limited computational resources.

Additionally, no prior work effectively utilizes radar velocity

measurements, making it challenging to distinguish static

from moving objects—a crucial limitation that hampers

mmWave radar-only mapping and reliable navigation.

To overcome these challenges, we introduce RaGNNarok,

a lightweight graph neural network (GNN)-based framework

that enhances 2D mmWave radar point clouds for real-

time UGV navigation. Unlike CNN-based approaches that

struggle with irregular, sparse radar data, RaGNNarok di-

rectly models point relationships as a graph, enabling spatial

feature aggregation while filtering multipath artifacts. By

incorporating velocity measurements, our method uniquely

discriminates between static and dynamic objects, improving

navigation robustness. Additionally, its efficient architecture

significantly boosts frame rate, achieving 7.3 ms inference

time on a Raspberry Pi 5, making RaGNNarok the first

practical GNN-based solution for real-time mmWave radar-

based UGV autonomy.

To demonstrate both performance and real-time feasibil-

ity, we integrate RaGNNarok into the navigation pipeline

on a resource-constrained UGV. Combined with industry—

standard ROS2 packages—Nav2 and slam-toolbox ([7]–



[9])—we show that our GNN-enhanced mmWave radar

framework enables accurate mapping, real-time localization,

and robust navigation in complex, dynamic environments.

Unlike prior methods that struggle with sparse, noisy radar

data, RaGNNarok enhances point clouds in real-time, ensur-

ing precise localization without reliance on high-resolution

lidar or vision-based sensors. To the best of our knowledge,

this is the first work to achieve real-time localization and

navigation on a UGV using enhanced mmWave radar point

clouds, demonstrating the practical viability of GNNs for

mmWave radar-based autonomy.

This paper is organized as follows. Section Sec. III in-

troduces the framework used to implement the RaGNNarok

model. Following, section Sec. IV describes the robust eval-

uations used to validate RaGNNarok, including real-world

case studies on a UGV and comparisons to existing tradi-

tional and learning-based methods. Finally, section Sec. V

presents the results of our evaluations where we demonstrate

the accuracy, computational efficiency, and feasibility of the

RaGNNarok model.

II. RELATED WORKS

Deep learning (DL) models for mmWave radar sensing.
Previous works [4]–[6], [10]–[12] have introduced methods

of converting low resolution mmWave radar data into high-

resolution 2D and/or 3D lidar-like point clouds through

various DL models. However, these models only focused

on static environments and either do not generalize well

in complex, previously unseen, environments and/or can-

not be executed in real-time on computationally-constrained

platforms. Furthermore, [13] generated high-resolution 3D

reconstructions on indoor environments by using a rotation

mmWave radar, but also only focused on static environments

and requires significant computational resources to run in real

time. By contrast, RaGNNarok allows for operating in com-

plex and dynamic environments while being generalizable

and executing in real-time on resource-constrained platforms.

Graph Neural Networks (GNNs). Previously, [14]–[16]

have each applied GNNs to mmWave radar point clouds; yet,

they focused only on detecting specific objects (e.g., vehicles

and people) in radar point clouds. By contrast, RaGNNarok

is designed to enhance the point cloud corresponding only to

the static environment by identifying and filtering out multi-

path detections.

Automotive radars. In the automotive domain, previous

works have implemented mmWaveradar-based localization

[17]–[25], using methods like the cross-correlation of oc-

cupancy grid maps [18] and the Fourier-Mellin Transform

method [22]. Further, [17], [23], [24] introduced simulta-

neous localization and mapping (SLAM) pipelines. Yet, all

focused on outdoor environments and used high-resolution
radars such as the CTS350-X [26] with angular resolutions

ranging from 1◦ to 4◦. These radars are expensive, large, rela-

tively heavy (6 kg), consume a high amount of power (24 W),

and require high data rates (1 Gbps ethernet), making them

infeasible for low-cost, resource-constrained UGVs [26].
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Fig. 1: RaGNNarok block diagram.

Radar odometry. Regarding UGV odometry and colli-

sion avoidance, [27]–[33] proposed techniques for mmWave

radar-based odometry that determines a UGV’s relative loca-

tion with regards to its starting point in an unknown environ-

ment; e.g., [27], [30]–[33] used a mmWave radar to estimate

the velocity and an IMU sensor to determine the yaw angle

and rate of the vehicle. Still, these methods are susceptible

to large odometry drifts over time making them infeasible

for localization over longer trajectories.

Collision avoidance. Recently, [34], [35] developed

mmWave radar-based collision avoidance for indoor UGVs.

Yet, both were restricted to static environments; [34] only

operates in simple small-scale rectangular spaces, and [35]

only plans continuous paths around an environment that

avoids collisions.

III. SYSTEM DESIGN

RaGNNarok utilizes a UGV’s estimated position and

velocity (e.g., obtained from wheel encoders) to efficiently

enhance noisy radar point clouds and differentiate between

static and dynamic detections (see Fig. 1). The enhanced

point clouds can then be used for downstream tracking,

mapping, localization, and navigation tasks in real-time. We

now introduce the three main RaGNNarok components.

A. Radar Point Cloud Pre-processing

To optimize performance of the RaGNNarok framework,

we perform the following pre-processing steps.

Step 1 : Multi-radar point cloud. First, we utilize a “front”

and “rear” 77 GHz TI-IWR1843 radar sensor [36], [37]

operating at 20 Hz to achieve a 360◦ field-of-view (FOV).

This provides greater situational awareness and significantly

improves down-stream mapping, localization, and navigation

performance when one radar is obscured (e.g., by objects

or people close to the vehicle). Here, each radar detection

(d = [dx; dy; dz; dv]) contains the 3D Cartesian coordinates

and relative velocity (i.e., velocity towards or away from the

radar) of an object.

While the TI-IWR1843 can perform 3D sensing, we opt to

use a 2D configuration (i.e., dz term is set to 0) as we found

the elevation estimates to be inaccurate for UGV scenarios.

Thus, both radars are configured to have a range resolution

(dres) of 7 cm, maximum sensing range (dmax) of 8.56 m,

azimuth angular resolution (θres) of 14.3◦, and velocity

resolutions (vres) 0.01 m/s. Here, we minimize the processing

load by using the TI mmWave SDK [38] to implement a

standard radar processing pipeline directly on the radars.
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Fig. 2: Overview of the RaGNNarok model architecture

Additionally, we filter ground detections by removing all

detections within a range of 1.5 m. The final combined point

cloud typically features ∼50 points.

Step 2 : Dynamic object detection. In dynamic environ-

ments, a significant number of radar detections can corre-

spond to moving objects (e.g., people). Thus, for each new

frame of radar data, we identify detections corresponding to

dynamic objects by utilizing the UGV’s translational velocity

(v) and the velocity component of each detection (dv). For

a detection with 2D coordinates q = [dx; dy], the relative

velocity measured by the radar for a static point can be

expressed as d̂v = 〈− q
‖q‖ , v〉 Thus, we define dynamic

detections as any detection where |d̂v − dv| > 0.05m/s.

Once separated, static detections are then used to generate a

probabilistic occupancy grid map while dynamic detections

can then be used by other downstream tasks (e.g.; tracking)

Step 3 : Probabilistic occupancy grid Given the sparsity

of the radar point clouds, we additionally employ a proba-

bilistic occupancy grid to provide recent temporal history to

the model. Empirically, we found that an occupancy grid

with a cell resolution of 20 cm, range of [-5 m,5 m], and

temporal history leveraging the previous 20 radar frames (i.e.

1 s of previous sensing) best balanced between increasing

point cloud accuracy while minimizing the required sensing

duration. Here, we utilize a UGV’s pose (i.e.; position and

orientation) estimate to continuously align the occupancy

grid with the most recently recorded radar frame.

B. RaGNNarok Model

Graph neural networks (GNNs) encode data as a set of

nodes and edges where each node is defined by a set of

properties and each edge defines how the nodes are con-

nected. Compared to other methods, graph neural networks

are particularly well suited for enhancing radar point clouds

because their graph structure allows them to work well with

sparse data and spatial representations while also being more

robust to noise and false detections [39]. RaGNNarok takes

in a radar point cloud and detection probability information

to classify each detection as valid or invalid (e.g.; a multipath

detection).

Input graph nodes and edges For each radar detection

captured by the probabilistic occupancy grid, we define a

node (n = [dx; dy; dz; pdet]) which contains the Cartesian

coordinates and current probability of the detection. For

the edges between nodes, we use the Pytorch Geometric

radius graph module to define the edges between all

nodes within a 10 m radius of each other. Here, each edge’s

value is the euclidean distance between the two correspond-

ing nodes. Compared to previous segmentation approaches,

we highlight how this input format significantly reduces the

size of the model input data while allowing it to dynamically

adapt to point clouds with varying numbers of points.

Model Output. For each radar node in the graph, RaGN-

Narok classifies each node as valid or invalid. When labeling

each node, we define a node as valid if its corresponding

radar detection was within 20 cm of a lidar ground-truth

detection.

Model Architecture. As shown in Fig. 2, we imple-

mented a light-weight GNN architecture by using a series

of three GraphSAGE convolution blocks using the Pytorch

SAGEConv modules [40]. Compared to other graphical

convolution methods, we selected GraphSAGE convolutions

because they learn a flexible aggregation function and gener-

alize particularly well beyond the training data [40]. In total,

our model only utilizes 705 parameters, compared to recent

state of the art (SOTA) works [5] and [3] which utilized

∼7.7 M and ∼17.5 M parameters, respectively. As we show

in the following sections, this simpler model significantly

reduces the computational time required for each inference.

Loss Function We utilize Binary Cross Entropy (BCE) loss

during training as this is a commonly applied loss function

in graph neural network training pipelines and is particularly

well suited for classification tasks.

Data Augmentations To further improve the robustness of

our model as well as to prevent over-fitting during training,

we additionally employed the following three data augmen-

tations during the training process. First, a random yaw (i.e.,

around the z axis) rotation in the range [0◦,360◦]. Secondly,

we applied a random perturbations to the occupancy prob-

ability (i.e., pdet) of each node by sampling from a normal

distribution with a standard deviation of 0.05. Finally, we

randomly perturbed (dx, dy) for each node by independently

sampling from a normal distribution with standard deviation

of 16 cm.
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C. Detection History

After enhancing the radar point clouds using the RaGN-

Narok model, we further increase the density of the final

output point cloud by maintaining a short history of detected

points. To achieve this, we keep a list of valid detections, and

each detection is maintained for a duration of 10 radar frames

(i.e., 0.5 s worth of radar frames). As with the probabilistic

occupancy grid, we utilize the UGVs pose information to

continuously align the point cloud history with the most

recently received radar frame.

IV. EVALUATION

We rigorously validated the performance of RaGNNarok

using a real-world ROS2 prototype UGV equipped compute-

limited single board computer. In addition to assessing the

quality of the generated point clouds, we also evaluated

the performance of downstream localization, navigation, and

mapping tasks through a series of offline and real-time

experiments. Furthermore, we benchmark our performance

against traditional and state of the art DL models. Notably,

evaluations were performed across a diverse set of complex

environments where people were regularly moving through-

out the scene.

A. Experimental Setup

Platform. We used an iRobot Create3 unmanned ground

vehicle (Fig. 3) equipped with a Raspberry Pi5 single board

computer, TI-IWR1843front and back radars, a Livox MID-

360 lidar (used only for collecting ground truth), and Xsens

MTi-10 IMU sensor. Radar and lidar data were sampled at

a rate of 20 Hz while IMU measurements were sampled

at 200 Hz. Also, we align the coordinate frames of the

sensors by applying coordinate transformations to the radar

data such that both radars have the same coordinate frame

as the lidar. The entire design is implemented in a real-

time ROS2 framework.

Test environments. We used the three complex envi-

ronments shown in Fig. 4 to evaluate the performance

of RaGNNarok. Each environment featured people moving

freely throughout the scene, objects of different shapes, sizes,

and materials, and a combination of enclosed and open

spaces. Finally, we also ensured that RaGNNarok is robust

to changing environments by moving various objects (e.g.,

Fig. 4: Indoor test environments 1, 2, and 3 (left to right).

chairs, tables, and whiteboards) in all environments between

trials.

B. Baseline Methods

RaGNNarok’s performance is compared against the fol-

lowing baseline methods.

Naive Radar: Utilizing the combined point cloud from the

radar sensors (i.e., no additional filtering or point cloud

stacking) to localize the UGV at each frame.

RadarHD [3]: A DL segmentation model that converts raw

data from a single radar into 2D lidar-like point clouds. Here,

we utilized a TI-DCA1000 to capture raw data from the front

radar and RadarHD’s pre-trained model to obtain a predicted

2D point cloud to localize the UGV at each frame.

RadCloud [5]: A more recent DL model, optimized for

resource-constrained platforms, that converts raw data from a

single radar into 2D lidar-like point clouds. Again, we used

the TI-DCA1000 to capture raw data from the front radar

and RadCloud’s pre-trained model to obtain a predicted 2D

point cloud for localizing the UGV in each frame.

C. Datasets

For model training, point cloud quality evaluation, and

localization accuracy experiments, we recorded the following

large-scale datasets.

RaGNNarok Training, Validation, and Test Datasets. For

training, validation, and testing of the RaGNNarok model,

we captured a total of 57,641 time-synchronized frames by

performing 33 independent trials across the three testing

environments, covering a total trajectory distance of 1.3

km. For each trial, the UGV was driven along a unique

trajectory consisting of irregular turns at varying speeds.

All trials contained people moving freely throughout the

scene and objects that changed position from trial to trial.

For model training and validation, we used 5,400 samples

for training and 1,801 samples for validation. Notably, only

environment 2 was used for training the model, allowing

environments 1 and 3 to be used for assessing performance

in new environments. The remaining 50, 440 samples were

then used for assessing the quality of the point cloud and for

offline localization accuracy experiments.

Baseline datasets As RadarHD and RadCloud both used

unique radar configurations, we recorded additional datasets



containing 10,360 (for RadarHD) and 11,244 (for RadCloud)

time-synchronized frames following similar trajectories and

featuring similar environmental factors as the RaGNNarok

dataset. For the Naive radar dataset, we used the existing

57,641 samples recorded for evaluating RaGNNarok’s per-

formance.

D. Offline Evaluations

Point cloud quality To evaluate the quality of the generated

point clouds versus ground truth lidar scans, we use the

commonly used Chamfer and Hausdorff metrics [41]–[43].

However, given that the point clouds generated by each

baseline method have varying resolutions and densities, we

use the one-way version of these metrics to see how close

the radar point cloud is to the ground truth lidar point cloud.

Thus, we define the Chamfer distance (CD) as

CD(Sradar, Slidar) =
1

2|Sradar| Σ
x∈Sradar

min
y∈Slidar

d(x, y) (1)

and Hausdorff distance (HD) as

HD(Sradar, Slidar) = max
x∈Sradar

min
y∈Slidar

d(x, y),

where d(x, y) denotes the Euclidean distance i.e., ||x− y||22.

Finally, we record the number of points generated by each

method to better understand the density of each point cloud.

Localization accuracy Next, we evaluated how well the

generated point clouds could be used for downstream local-

ization tasks. To accomplish this, we implemented a radar-

inertial localization stack which used an extended kalman

filter (EKF) to continuously estimate the global pose of the

UGV in a pre-mapped environment [44]. Here, we define the

pose estimate as P̂ = [p̂, Ψ̂], where p̂ = (x, y) and Ψ̂ = Ψ
denote the UGV’s global position and heading, respectively.

For the EKF ‘predict’ step, we employ a non-linear first-

order motion model to fuse vehicle velocity and IMU mea-

surements. Then we used the popular iterative closest point

(ICP) scan matching to “update“ the kalman filter with new

measurements. Additionally, erroneous measurements were

excluded using the χ2 anomaly detector (e.g., [45]), with an

empirically determined probability of valid data of 0.95.

To construct maps of each test environment, we utilized

the popular hector mapping [46] algorithm to generate a

2D map using the lidar sensor. Additionally, we measured

the ground truth pose P for each experiment using a lidar-

inertial localization stack which utilized an EKF to fuse

IMU, wheel encoders, and lidar ICP measurements. This

was benchmarked against a VICON motion capture system

showing that the lidar ground truth was always within 20 cm

of the VICON ground truth.

Finally, we use the standard absolute trajectory error

(ATE) and relative trajectory error (RTE) metrics [47] to

assess the localization performance of each method. Here,

for the i-th frame, the error metrics for translation (tr) and

heading (hd) trajectory errors are defined as

ATEtr(i) =||p̂i − pi||2
RTEtr(i) =||(p̂i − p̂i−1)− (pi − pi−1)||2,

(2)

TABLE I: Comparison of average inference time where

RaGNNarok achieves significant reductions compared to

existing works.

Platform RaGNNarok RadCloud [5] RadarHD [3]

Raspberry Pi 5 7.3 ms 178.5 ms 290.7 ms
Desktop (GPU) 1.3 ms 8.2 ms 33.3 ms

ATEhd(i) =|Ψ̂i −Ψi|
RTEhd(i) =|(Ψ̂i − Ψ̂i−1)− (Ψi −Ψi−1)|.

(3)

E. Real-time Full Stack Case Studies

To round out our evaluation, we demonstrated the real-

time feasibility of the RaGNNarok framework, by per-

forming real-time simultaneous localization and mapping

(SLAM) and navigation case studies. We highlight that the

RaGNNarok framework was run alongside industry standard

SLAM, localization, and navigation stacks in real-time on

the Raspberry Pi 5.

Simultaneous Localization and Mapping We used the

commonly used slam-toolbox ROS2 package to perform

SLAM using the point clouds generated by the RaGNNarok

model[9]. Due to the lower resolution nature of the radar

sensing, we set the map resolution to 10 cm.

Navigation Finally, we used the popular ROS2 Nav2 pack-

age to demonstrate real-time localization and navigation

through a mapped environment[7], [8]. Here, we adapted the

standard Nav2 adaptive monte carlo localization (AMCL)

and default navigation configuration to utilize the enhanced

point clouds generated from the RaGNNarok framework.

Noteably, we also used the maps generated in the previous

step to successfully demonstrate how our framework can be

used to successfully map and then autonomously navigation

through an environment.

V. RESULTS

We start with an analysis of the computational time re-

quired to run each model, followed by the offline evaluations

of point cloud quality and localization accuracy. Then, we

conclude with a discussion on our real-time full stack case

studies for SLAM and navigation.

A. Computational Time Analysis

To compare the computational time required to make each

inference on RaGNNarok versus the other baseline methods,

we conducted run-time timing tests on a Raspberry Pi 5 and

a Lenovo P360 equipped with a Nvidia T1000 GPU and an

Intel i9 CPU. As seen in Table I, RaGNNarok significantly

reduces the computational time required to enhance input

point clouds. Even on a GPU equipped machine, we achieve

an over 6× and 25× reduction in inference time compared

to RadCloud and RadarHD, respectively. Additionally, we

highlight that RaGNNarok still maintains low inference times

on the compute constrained Raspberry Pi 5, enabling real-

time operations for our UGV platform.
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Fig. 5: RaGNNarok generates more accurate point clouds

that remove false detections and generalize well to new

environments.

TABLE II: Comparison of point cloud quality (* and †
indicate results from previously seen and new environments,

respectively).

avg Chamfer (CD) Hausdorf (HD)
Method points mean tail (90%) mean tail (90%)

RadarHD [3] 5,651 0.71 m 1.17 m 3.61 m 6.31 m
RadCloud [5] 65 0.25 m 0.42 m 0.85 m 1.54 m
Naive radar 65 0.47 m 0.71 m 2.30 m 4.02 m

RaGNNarok* 109 0.28 m 0.41 m 1.41 m 2.13 m
RaGNNarok † 108 0.30 m 0.44 m 1.11 m 2.40 m

TABLE III: Comparison of average trajectory errors. (* and †
indicate results from previously seen and new environments,

respectively)
Absolute (ATE) Relative (RTE)

Localization Method Trans(m) Rot(deg) Trans(m) Rot(deg)

Naive Radar 2.45 m 4.22◦ 0.013 m 0.056◦
RadCloud [5] 0.32 m 2.71◦ 0.016 m 0.080◦
RadarHD [3] 1.31 m 6.21◦ 0.027 m 0.111◦

RaGNNarok* 0.16 m 1.43◦ 0.004 m 0.038◦
RaGNNarok† 0.20 m 2.07◦ 0.004 m 0.036◦

B. Offline analysis

Point cloud quality. Table II summarizes the point cloud

quality assessment, and Fig. 5 presents examples of point

clouds generated using each method. As seen in Fig. 5,

RaGNNarok produces accurate and dense point clouds that

feature minimal false detections. Compared to RadarHD and

the Naive radar methods, RaGNNarok significantly improved

the chamfer and hausdorf point cloud error metrics, indicat-

ing that its point clouds more accurately resembled the en-

vironment. Additionally, compared to the RadCloud model,

RaGNNarok produced 1.6× more points on average while

still generating sufficiently accurate point clouds. Finally, we

highlight that the RaGNNarok model generalized well as it

showed almost no performance drop when operating in new

environments.

Localization. Table III summarizes the average ATE and

RTE for each sensing method. Fig. 6 presents an example

X(m)

Y(m)

Fig. 6: Comparison of RaGNNarokand Naive Radar trajec-

tory estimates (top), RadCloud estimates (bottom left), and

RadarHD estimates (bottom right).

mean: 0.19m
stdev: 0.13m
90-th percentile: 0.35m

Fig. 7: Histogram of the RaGNNarok ATE errors illustrates

how RaGNNarok enables accurate localization performance

with minimal errors

of each method’s localization performance in environment 1.

As shown in Table III, RaGNNarok enables accurate location

estimates of the UGV’s location with an average ATE of

19 cm. Moreover, 90% of RaGNNarok errors are less than

35 cm (Fig. 7). These results indicate that RaGNNarok

maintains consistently accurate trajectory estimates, even in

dynamic and complex environments.

Compared to the baseline methods, when considering

the average ATE, RaGNNarok achieves 1.6× improvement

compared to RadCloud (i.e., the best performing SOTA DL-

based method), and 12.8× improvement compared to the

naive radar sensing method. Moreover, the naive radar base-

line enabled successful localization in most trials, but there

were several trials where a large number of false detections

led to a complete loss of localization; thus, resulting in

the very high average ATE error. Finally, the SOTA DL

models somewhat provided accurate localization (especially

RadCloud), but with sporadic large localization errors due to

inaccurate predictions from the models in more complicated

environments. Ultimately, RaGNNarok provided the most

accurate and consistent localization of all the considered

methods.

C. Real-time Full Stack Case Studies

We now present results from our real-time SLAM and

navigation case studies. Note video examples of the case

studies can be found in our accompanying video submission.

SLAM. Fig. 8 presents an example of a map generated

using the RaGNNarok framework. As seen in the figure,

the generated map accurately captures the key features of

the environment and largely resembles the map obtained



Lidar Map

RaGNNarok Map

Fig. 8: Comparison of map generated using RaGNNarok

point clouds versus lidar point clouds.

Buffer
Areas

RaGNNarok Map Navigation MapTest Site

Goal

Fig. 9: Navigation trials in test environment 2. The green dots

in the right figure denote RaGNNarok-generated radar point

clouds, while the red line denotes the planned trajectory.

using the lidar sensors. Additionally, the generated map

features relatively few false detections, demonstrating how

RaGNNarok enables real-time SLAM, even on compute

constrained UGVs.

Navigation. Finally, we demonstrate how the maps generated

using RaGNNarok’s enhanced point clouds can be used to

enable real-time radar navigation. Here, Fig. 9 presents an

example of a navigation case study, the map of the envi-

ronment, and the real-time planned trajectory of the UGV.

As seen in our corresponding video submission, the UGV is

successfully able to estimate its location and autonomously

navigate through a complex environment by utilizing the

enhanced point cloud from RaGNNarok.

VI. CONCLUSION

In this work, we introduced RaGNNarok, a lightweight

graph neural network designed to enhance radar point clouds

for real-time sensing, localization, and navigation. We eval-

uated its effectiveness in terms of computational efficiency

and point cloud quality, as well as its ability to enable

accurate localization, mapping, and collision-free navigation

in complex and dynamic environments. Furthermore, we val-

idated its real-world feasibility by deploying RaGNNarokon

a ROS2-based unmanned ground vehicle (UGV) running

on a Raspberry Pi 5, proving that high-performance radar-

based autonomy is achievable on resource-constrained plat-

forms.Looking ahead, we plan to extend RaGNNarok from

2D to 3D point cloud enhancement, further improving spatial

awareness and precision. Additionally, we aim to adapt our

framework for aerial vehicles, expanding its applicability to

a broader range of autonomous systems.
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