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Abstract—This paper addresses the challenge of transforming
complex sentences into sequences of logical, simplified sentences
while preserving semantic and logical integrity with the help of
Large Language Models. We propose a hybrid approach that
combines advanced prompting with multi-agent architectures to
enhance the sentence simplification process. Experimental results
show that our approach was able to successfully simplify 70% of
the complex sentences written for video game design application.
In comparison, a single-agent approach attained a 48% success
rate on the same task.

Index Terms—LLMs, Multi-Agent Systems, Advanced Prompt-
ing, Sentence Simplification, Natural Language Processing.

I. INTRODUCTION

Sentence simplification is a challenging task in computa-
tional linguistics, aiming to transform complex sentences into
simpler structures while preserving the original meaning.
Effective sentence simplification has significant applications
across numerous domains like education, content accessibility
for individuals with cognitive disabilities, automated content
creation, robotics, coding, legal documents, etc.

Traditional approaches to sentence simplification have relied
on rule-based systems, statistical methods, and more recently
neural network architectures [1]. However, these methods
often struggle with maintaining semantic equivalence while
achieving appropriate simplification levels.

Complex sentences present significant challenges in action-
oriented contexts, particularly when attempting to derive exe-
cutable/actionable functionalities such as robotics, legal docu-
ments, and video games. These sentences frequently combine
conditional logic (cause-effect constructs), nested dependen-
cies, and multifaceted instructions within intricate syntactic
structures. The crafting of unambiguous logic involves con-
verting complex instructions written in natural language into
precise, step-by-step actions. However, when sentences are
complicated and interdependent on one another, advanced sim-
plification and rewriting techniques are needed, which involve
strategically breaking down complex sentences into simple,
manageable steps while maintaining the underlying cause-and-
effect relationships and procedural flow. For example, consider
the following sentence:

When a yellow alien touches a wall, it has 5 seconds before
it explodes.
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While this sentence is comprehensible to human readers,
it contains a temporal constraint of 5 seconds that demands
the involvement of one or more intermediate states. This
intermediate state helps in arbitrating when the alien touches
the wall and when it explodes. Using the running example,
one possible sequence of simplified sentences is as follows.

When a yellow alien touches a wall, the alien becomes sad
for 5 seconds, and the alien becomes ready to explode for 6
seconds. When the alien is ready to explode and the alien is
not sad, it explodes.

The implicit delay (5 seconds) is transformed into ex-
plicit state changes with durations (sad for 5 seconds,
ready to explode for 6 seconds). The resulting action (ex-
plode) is tied to explicit state conditions instead of a timer.

While one might try to ask a Large Language Model
(LLM) to perform the re-writing task, the vast variation of
simplification strategies renders LLMs ineffective. Likewise,
fine-tuning can also result in overfitting due to the limited
training set. As a result, something new is needed.

Fig. 1. Multi-Agent promptig workflow for sentence simplification

This paper introduces a novel approach, whose flow-chart
is shown in Figure 1, that uses a multi-agent system with
advanced prompt engineering to produce simplified sentences.
We demonstrate how breaking down complex sentences into
clear, actionable sentences enhances both understanding and
execution. Our key contributions are: (1) a framework for op-
timizing prompts using multi-agent collaboration, (2) methods



for translating complex instructions into executable steps, and
(3) empirical evaluation of these techniques across a range of
scenarios for video game design applications.

While LLMs may be effective in generating simple games,
they often struggle with complex games with complex logic.
GameChangineer [2] is an educational platform designed to
help students develop fundamental logic and critical thinking
skills. The proposed simplification process can serve as a
learning tool to help students decompose complex scenarios
into logical steps, a necessary precursor to learning to code.
This platform is also used to evaluate the simplified sentences
against the corresponding generated games. The results show
that the proposed simplification method was able to success-
fully decompose and simplify 70% of the complex sentences
for gaming applications. In contrast, a single-agent approach
achieved a 48% success rate on the same task.

The rest of the paper is organized as follows. Section II
reviews the relevant background. Section III describes the
proposed hybrid multi-agent prompting framework. Section IV
analyzes the experimental results, comparing the performance
of LLM-generated games using both simplified and complex
sentences on the selected dataset. Section V concludes the
paper and discusses directions for future work.

II. BACKGROUND

Sentence Simplification

Sentence simplification methods have evolved from rule-based
approaches—using hand-crafted linguistic rules for tasks like
sentence splitting and lexical substitution—to data-driven tech-
niques that leverage parallel corpora for learning simplifi-
cation patterns [3]. More recently, neural models, particu-
larly sequence-to-sequence and transformer-based architec-
tures, have become prevalent, enabling complex operations
such as paraphrasing, sentence splitting, and controlled sim-
plification through syntactic and lexical constraints.Modern
approaches to sentence simplification are predominantly data-
driven, utilizing parallel corpora of aligned complex and
simplified sentences to learn effective simplification transfor-
mations, such as word substitution, sentence splitting, and
reordering [4]. Despite progress, today’s LLMs still struggle
with semantic and lexical challenges in text simplification [5].

LLMs for Sentence Simplification

LLMs have achieved remarkable capabilities in recent years
on natural language processing tasks like text generation and
summarization, sentiment analysis, information retrieval and
question answering, etc., presenting researchers with diverse
methodologies to fully leverage their potential. LLMs like
GPT-4o, GPT-4.1 [6], Gemini [7], Perplexity [8], etc. can
engage in fluent, contextual, and some reasonable conversa-
tions. As LLMs continue to evolve, researchers have developed
numerous approaches to fully harness their potential, including
prompt engineering, fine-tuning, and multi-agent systems [9].
Despite these advances, certain linguistic challenges remain

particularly difficult, especially those requiring nuanced un-
derstanding and transformation of language, including trans-
forming complex sentences found in technical or operational
domains—into actionable, logically coherent sentences [10].
Furthermore, large language models are prone to hallucination
and often struggle to accurately break down sentences for
precise game logic implementation [11].

Advanced Prompting Techniques
Prompt engineering refers to the systematic design of instruc-
tions to optimize an LLM’s output for specific tasks. Effec-
tive prompts typically exhibit key characteristics including
specificity, clarity, appropriate structure, and task decompo-
sition [12]. Recent studies demonstrate that LLMs achieve
superior performance when utilizing well-structured advanced
prompting techniques, leveraging their inherent contextual
reasoning capacities to produce more nuanced and reliable
outputs compared to static instruction-based approaches [13].
Notable strategies include:

• Chain-of-Thought (CoT) Prompting: CoT encourages
models to generate intermediate reasoning steps, improv-
ing their performance on tasks requiring multi-step infer-
ence and decomposition of complex instructions [14].

• In-Context Learning with Demonstrations: By provid-
ing carefully curated examples within the prompt, LLMs
can generalize to new domains and adapt to specific
simplification tasks [15] [16].

• Persona-Based Prompting: An advanced technique in
prompt engineering that involves assigning a detailed role
or persona to a LLM to guide its responses in terms of
tone, style, reasoning and domain expertise [17].

• Meta-Prompting and Dynamic Prompt Adaptation:
Recent work explores prompts that evolve dynamically
based on model feedback or input complexity, further
enhancing robustness in real-world scenarios [18].

As per the result from previous research, prompt design
strongly influences the result of large language generative
model [17]. These prompting methods can be used based
on the type and complexity of the tasks. There are various
settings involved in the behavior of LLM for text generation
like temperature and top-p. Temperature parameter controls
the randomness to the model’s output whereas top-p controls
the nucleus sampling which adds randomness to the model’s
output [19]. The design of the prompt and model’s setting
plays a crucial role in the effectiveness of generated text.

Multi-Agent Architectures
While single-agent LLM offers remarkable fluency, they often
struggle with both maintaining operational coherence and
handling the hierarchical structure inherent in decomposi-
tion and simplification tasks [20]. Multi-agent architectures
address these limitations by distributing the simplification
process across specialized agents, each responsible for distinct
subtasks such as parsing, content extraction, logical valida-
tion, and refinement. Multi-agent architectures are categorized
based on three key dimensions: the roles of LLMs as actors,



the interaction strategies they employ, and the structural types
of the systems [21].

• Role-Based: Agents are assigned focused roles (e.g.,
decomposition, evaluations, validation), mirroring human
collaborative workflows and reducing cognitive overload
on any single model component [21].

• Hierarchical and Decentralized Coordination: Archi-
tectures range from centralized controllers orchestrating
agent interactions to decentralized, self-organizing agent
networks that adapt to task complexity [22].

• Iterative Cross-Agent Validation: Agents iteratively
review and refine each other’s outputs, leveraging con-
trastive prompting and feedback mechanisms to enhance
output quality [23].

III. METHODOLOGY

We propose a hybrid approach that uses multiple LLMs to
break down complex sentences written in natural language into
simple, logical, and coherent sentences. We specifically target
complex sentences written for video game design application
and ensure that the simplified sentences are acceptable by the
GameChangineer engine [2]. However, the proposed flow is
applicable to other application domains as well.

Algorithm 1 Hybrid Multi-Agent Sentence Simplification
Workflow

1: Agent 1: Sentence Simplifier
2: S ← LLM_Breakdown(Q) {LLM generates break-down

sentences}
3: Agent 2: Semantic and Lexical score Evaluator
4: semantic_score ← Semantic_Evaluator(S)
5: lexical_score ← Lexical_Evaluator(S)
{Returns the semantic and lexical scores between input
and output sentences}
//Comparator block starts

6: if semantic score > 95 and lexical score <= 40 then
7: return S
8: end if
9: if semantic score > 95 and lexical score > 95 then

10: return cannot convert
11: end if
12: if semantic score < 95 then
13: Agent 3: Alternative sentence Simplifier
14: S′ ← LLM_RevisedBreakdown(Q)
15: Call Agent 2
16: Go to step 6
17: end if //Comparator block ends

Our algorithm is based on advanced multi-agent prompting
techniques. This framework coordinates with three specialized
agents for the following tasks: (1) the decomposition of
sentences, (2) the semantic and lexical evaluation, and (3) the
iterative revision, to ensure both contextual equivalence and
linguistic quality of the resultant sentences with input sentence.
The workflow is illustrated in Algorithm 1.

Agent Descriptions
Agent 1: Sentence Simplifier
The sentence simplification agent receives the user query,
which typically consists of complex sentences that encompass
multiple steps, interdependent causes, and corresponding ac-
tions. The input query is incorporated into advanced, carefully
designed prompts for GPT-4o, which then decomposes the
complex sentence into a sequence of simpler, logically ordered
instructions. The meta-instruction-based prompt [13] handles
generalized form of complex sentences to decompose into
simple, logical cause-action sentences. The output sentences
are evaluated based on semantic and syntactic similarity with
the input sentence. For example, consider the example shown
below in Example: Reasoning in Prompt1.

Example 1: Reasoning in Prompt1

Query: When the rabbit is yellow, the fox that is
touched by the rabbit will die. Let’s think step by

step:
• Rabbit is yellow. (cause)
• Rabbit touches the fox. (cause)
• Fox dies. (action)

Answer: When the rabbit is yellow and the rabbit
touches the fox, the fox dies.

In this example, we illustrate how a step-by-step reasoning
process facilitates the logical and sequential decomposition of
a complex sentence based on our Agent 1. The prompt is
crafted such that the input query is examined to answer the
separate causes and actions. The specifics of the prompt are
provided in the provided page1. Such an approach is crucial
for translating natural language game specifications into un-
ambiguous, sequential rules that can be reliably interpreted
and executed by a game engine. Consider another example,

Example 2: Temporal / Referential Sentence Simp
Original Query:
When a fox sees the rabbit touch a carrot, it chases it
until the rabbit moves.
Transformation Steps:

• Resolve pronouns (it → fox or rabbit).
• Separate embedded actions: “sees the rabbit

touch” → two actions:
• The fox sees the rabbit
• The rabbit touches a carrot
• Make temporal dependency explicit by splitting

into distinct conditions.
Simplified Output (Sentence Simplifier Agent):

• When a fox sees the rabbit and the rabbit touches
a carrot, the fox chases the rabbit.

• When the rabbit moves, the fox stops chasing.

1https://github.com/pratibhazunj/CS Simplification



The example 2 shows that pronouns are resolved and temporal
dependencies are made explicit by dividing the sentence into
two: one describing the chase and the other describing when
it stops.

To promote clarity and logical coherence, we systematically
examine each sentence to identify primary causal factors,
actions, and dependencies. Complex statements are
subsequently decomposed into single-action steps articulated
in straightforward language, deliberately minimizing the
use of technical terminology and modifiers. Conditional
relationships are made explicit, and terms like “increase”
or “decrease” are standardized. The output follows a strict
format, presenting both the original query and the simplified
answer. As per our dataset, this agent handles most of various
conditional sentences based on cause-effect sentence structure.

Agent 2: Semantic and Lexical Similarity Evaluator
Semantic similarity evaluator checks how closely the mean-
ings of input complex sentence and the generated simplified
sentences align, regardless of their structure. It gives a score of
100 if the meaning of the input (complex) and output (simpli-
fied) sentences are equivalent; lower score shows divergence
in the context.

Lexical similarity score is calculated based on the structure
of sentences by ignoring the similar words. Lower lexical
scores are preferred because they represent the different struc-
tures between the simplified sentences and the input sentence.
We provide 3 examples below.

Agent 2 Example 1

Query: When a fox sees the rabbit touch a carrot, it
chases it until the rabbit moves.
Answer:

• When the fox sees the rabbit and rabbit touches
a carrot, the fox turns silver for 0.1 second.

• When the fox is silver and a rabbit touches a
carrot, the fox chases the rabbit.

• When rabbit moves, the fox stops.
Semantic Similarity: 100
Lexical Similarity: 40

Agent 2 Example 2

Query: When the rabbit is red, the fox cannot eat the
rabbit.
Answer: When the rabbit is red, the fox cannot eat
the rabbit.
Semantic Similarity: 100
Lexical Similarity: 100
This pair is considered a CannotConvert sentence as
both sentences are identical.

These three examples above illustrate that while semantic
similarity remains high (the meaning is preserved), lexical

similarity can vary significantly depending on the structural
changes introduced during simplification.

Agent 2 Example 3

Query: When a rabbit is touched, score adds 1.
Answer: When a rabbit is touched, the score increases
by 1.
Semantic Similarity: 90
Lexical Similarity: 70

The Semantic (95%) and Lexical (95% and 40%) score
thresholds were empirically determined based on experiments
to achieve optimal accuracy and responsiveness for a
downstream gaming application(GameChangineer). These
values balance precision and flexibility to ensure reliable
intent matching while accommodating varied user input.

Agent 3: Alternative Sentence Simplifier
The Alternative Sentence Simplifier is a context-aware lan-
guage model agent designed to address specialized sentence
simplification scenarios involving temporal dynamics and
mathematical conditional logic. This approach integrates hy-
brid prompting by combining directional stimulus prompting,
meta-prompting [19], and chain-of-thought (CoT) [14] tech-
niques. Unlike generic simplification approaches, rule-guided
transformations are used to resolve ambiguities in sentences
where outcomes depend on time-sensitive parameters or arith-
metic constraints.
For instance, in interactive gaming narratives, the system ac-
curately simplifies statements like “The character’s movement
speed increases if 3 minutes pass without taking damage”
by applying domain-specific rules that map temporal triggers
(e.g., elapsed time thresholds) and mathematical conditions
(e.g., damage counters) to unambiguous causal relationships.
This targeted approach ensures faithful preservation of op-
erational logic while reducing syntactic complexity, which
is critical for applications requiring precision in dynamic
environments.

The Agent 3 is invoked only if the Agent 2 reports a
semantic similarity less than 95%, as shown in Algorithm 1.

The specific prompts for Agents 1 and 3 were designed
through an iterative process, during which each prompt was
refined and assessed to ensure the generation of intended sim-
plified sentences are suitable for downstream code generation
in game development contexts.

This agent specializes in analyzing complex sentences that
involve dynamic mathematical relationships, such as time
sensitive speed adjustments (e.g., “increase the speed by 20%
every 5 seconds”) or logic combinations requiring precise
numerical reasoning (e.g., “reduce the size by 15% if the
rabbit collects three carrot within 10 seconds”). These struc-
tures demand explicit handling of temporal dependencies, rate
calculations, and conditional arithmetic operations inherent in
game mechanics.



Multi-Agent vs. Single-Agent Approach
While one might think that Agents 1 and 3 could be combined
into a single agent, this might not work well because single
agent models are constrained by the monolithic nature of
single-prompt instruction handling. Thus, they often struggle
to reconcile multiple objectives within a unified representation.
As the complexity of simplification increases, these models
tend to exhibit degraded performance and diminished inter-
pretability [23]. The limitations of the single-agent formulation
underscore the efficacy and practical benefits of adopting a
multi-agent approach for complex sentence simplification.

In contrast, multi-agent approaches offer methodological
advantages over single-agent systems, particularly in terms
of modularity, adaptability, and scalability. By partitioning
responsibilities across multiple specialized agents, the archi-
tecture supports fine-grained control over distinct subtasks,
enabling more interpretable, maintainable, and extensible sys-
tems [22]. This structural decomposition not only improves
the performance but also enhances the system’s capacity to
generalize across a broader spectrum of sentence types.

IV. EXPERIMENTAL RESULTS

Dataset
The dataset for sentence simplification in video gaming was
meticulously curated by human annotators. A set of 100
complex sentences containing a range of linguistic and se-
mantic features relevant to game logic and player interaction
is used. Each sentence was evaluated for degree of complexity,
presence of cause-effect relationships, descriptions of speed or
size changes, and the occurrence of multiple actions within a
single sentence. The dataset comprises a diverse distribution of
sentence types, with conditional sentences forming the major-
ity (50%), followed by sequential (25%), miscellaneous (15%),
and a notable subset labeled as ‘Cannot Convert’ (10%).
Each category was defined: (1) conditional sentences specify
actions contingent on in-game conditions (e.g., “When the
rabbit touches a gem, it gets more speed.”); (2) sequential sen-
tences mandate ordered execution of actions; (3) miscellaneous
sentences encompass uncategorized patterns not fitting other
classes. The ‘Cannot Convert’ subset represents sentences
where simplification risks critical information loss or logical
incoherence, reflecting inherent limitations in preserving game
logic during rephrasing. The curation process prioritized the
identification and annotation of cause-and-action structures,
as these are pivotal for downstream code generation tasks in
gaming environments. For all of the experiments, GPT-4o was
used.

Results on dataset
The proposed multi-agent system achieved a successful simpli-
fication rate of 70%, with these sentences exhibiting a semantic
similarity greater than 95% and a lexical similarity less than or
equal to 40%, indicating that the simplified sentences retained
the original meaning while employing substantially different
wording. Additionally, 10% of the dataset was classified as

Cannot Convert, reflecting cases where simplification would
compromise essential information or logical structure. The
70% of sentences successfully simplified by the system under-
went further human evaluation, confirming their acceptability
for integration into the GameChangineer platform and ensur-
ing alignment with the requirements of executable game logic.

Model Acceptance Rate
Baseline LLM 10%
Single Agent Prompt Engineering 48%
Multi-Agent Workflow 70%

Table1: GameChangineer Acceptance Rates

The multi-agent prompting system fails to simplify 30% of
the sentences, particularly when handling abstract actions or
ambiguous roles. For example, with “The cobras try to make
sure the fox does not touch the bunny” the system struggles
to interpret “try” and translate it into a concrete game action.
Similarly, sentences like “It is not possible to win without
eating all the carrots” lack a clearly defined main player,
leading to further simplification failures.

We further evaluated system performance by disabling
Agent 3 and relying solely on Agent 1 for simplification tasks.
A single-agent approach achieved only a 48% success rate
on the same task. Agent 1 struggled with sentences requiring
analytical computations, such as “when the rabbit touches
a diamond, its speed increases by 20% every 10 seconds.”
and was similarly unable to effectively simplify sentences
involving positional and temporal reasoning, such as, “The
rabbit starts at the bottom and moves up four times and
drops a carrot every time it moves.” In contrast, Agent 3
effectively managed sentences with mathematical, spatial, and
temporal complexities, underscoring the benefits of a multi-
agent approach for simplifying intricate instructions.

Game A: With Complex Sentences

Game A (Complex Sentences)

• A fox and a rabbit wander in a field where 10 carrots
and a diamond are scattered.

• Arrow keys control the rabbit.
• When a fox sees a rabbit but not a diamond, it chases

the rabbit.
• When a fox is near, the speed of the rabbit increases

by 0.1.
• When a fox sees the rabbit move, it chases it until

the rabbit touches a diamond.
• When the rabbit touches a diamond, it becomes

yellow.
• When the rabbit is yellow, it can eat the fox it

touches and you win.
• When a fox touches a diamond, it has 5 seconds

before it explodes.
• When the fox explodes, the game is over.

The game below consists of complex sentences, such as those
explained earlier in the paper. For generating code for the



given game description, logical clarity is essential to derive
the correct behavior of all the characters.

Game B: Simplified Version of Game A
The following version is derived using our multi-agent sen-
tence simplification system. Sentences are made lexically
simpler and structured for unambiguous logic.

Game B (Simplified Sentences)

• There are 10 carrots, a diamond, a fox, and a rabbit.
• Carrots are scattered randomly.
• Fox and rabbit wander.
• When the left arrow is pressed, the rabbit moves left.
• When the right arrow is pressed, the rabbit moves

right.
• When the up arrow is pressed, the rabbit moves up.
• When the down arrow is pressed, the rabbit moves

down.
• When a fox sees a rabbit and does not see a

diamond, the fox chases the rabbit.
• When a fox is near, the rabbit’s speed increases by

0.1.
• When a fox sees the rabbit and the rabbit moves,

the fox chases the rabbit.
• When the rabbit touches a diamond, the fox stops

chasing.
• When the rabbit is yellow and touches the fox, the

rabbit eats the fox.
• When the rabbit eats the fox, you win.
• When a fox touches a diamond, it becomes sad for

5 seconds and ready to explode for 6 seconds.
• When the fox is ready to explode and not sad, it

explodes.
• When the fox explodes, the game is over.

Game B statements are simplified for code generation with
explicit state transitions and unambiguous lexical structure.
The revised rules introduce phased behavioral states (e.g.,
sad, ready to explode) with temporally bounded conditions,
creating a finite state machine structure that directly maps to
programmable logic.

Unlike Game A’s ambiguous temporal chain (e.g., “5 sec-
onds before explosion”), Game B uses clear state labels and
logical triggers (e.g., ready to explode AND not sad) to avoid
race conditions. Explicit key mappings (left/right/up/down)
also resolve vagueness, enabling direct keycode-to-method
binding in implementation.

Human Evaluation on Code generated for Game Description
Finally, we manually crafted more than ten game descriptions,
each containing a subset of complex sentences from the data
set alongside their simplified counterparts, to assess the impact
of sentence complexity on the generation of code using LLMs.
When generating game code from complex sentences, LLMs
frequently missed constraints and misinterpreted instructions,

resulting in games that ran longer but were inaccurate. Simpli-
fied sentences more effectively conveyed constraints, reducing
ambiguity and improving code accuracy, yet LLMs can still
struggle to consistently fulfill user intentions in both scenar-
ios. Our evaluation indicates that while complex sentences
increases ambiguity and reduces accuracy, the simplified sen-
tences increases the number of constraints. Both complex
sentences and increased number of constraints pose challenges
to general-purpose LLMs.

More specifically, we find that LLMs struggle to gener-
ate precise code from games described in natural language
that contain complex sentences as the LLMs need to rely
on implicit assumptions in complex sentences and may not
fully capture the intended logic. Conversely, when a game is
rewritten with simplified sentences that offer greater number
of constraints that capture both precision and explicit state
conditions, the LLMs can overlook these critical conditions if
the description contains too many constraints.

Although general-purpose LLMs struggle generating these
complex games, domain-specific engines such as the
GameChangineer [24] platform not only generated more ac-
curate games from simplified sentences, but also provided
detailed debug messages and guidelines when it failed to
understand a sentence. Such a feature can enable users to
revise and correct errors in the game description. In contrast,
general LLMs did not offer any error messages or feedback
when encountering problematic sentences, making it difficult
for users to identify and resolve issues in the generated code.

V. CONCLUSIONS AND FUTURE WORK

Our approach leverages a hybrid multi-agent framework,
wherein distinct LLM-based agents are assigned specialized
roles such as sentence simplifier, lexical and semantic similar-
ity evaluator, and alternative sentence simplifier. Two different
sentence simplifying agents enable the system to address a
wide variety of sentence types and linguistic phenomena,
which are often challenging for single-agent models. By al-
lowing agents to operate in parallel to enhance scalability and
efficiency, as well as the overall quality of the simplification
output. Empirical results show that our hybrid multi-agent
model achieves consistently stronger performance than single-
agent baselines in both automatic and human evaluations for
sentence simplification.

A key challenge of sentence simplification is in simplifying
sentences with abstract actions or ambiguous roles, which
can often lead to failures in accurately conveying the game
logic. Additionally, our current prompt design is closely tied
to the dataset, which can lead to overfitting. Future work could
address these by incorporating multiple agents to better handle
more diverse sentence structures.
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