
IntentGuide: Neuro-Symbolic Integration for
Clarifying Human Intents by Rewriting Free-Form

Sentences
Nikita Kiran Yeole
Computer Science

Virginia Tech, Blacksburg, USA
nikitay@vt.edu

Michael S. Hsiao
Electrical and Computer Engineering

Virginia Tech, Blacksburg, USA
hsiao@vt.edu

Abstract—This paper presents ”IntentGuide,” a neuro-
symbolic integration framework to enhance the clarity and exe-
cutability of human intentions expressed in free-form sentences.
IntentGuide effectively integrates the rule-based error detection
capabilities of symbolic AI with the powerful adaptive learning
abilities of Large Language Model (LLM) to convert ambiguous
and/or complex sentences into clear, machine-understandable
English instructions. The empirical evaluation of IntentGuide,
performed on natural language sentences written by middle
school students for designing video games, reveals a significant
improvement in error correction and code generation abilities
compared to previous approaches, attaining an accuracy rate of
90%.

Index Terms—Natural language processing, Natural language
programming, neuro-symbolic

I. INTRODUCTION

Fundamentally, Natural Language Processing (NLP) aims
to parse, process, and understand human language, complete
with all of its nuances, for applications ranging from question
answering to code generation. The primary challenge still
stands, though: how can we enable computers to process
poorly written or difficult sentences in a meaningful way? In
addition, can the system provide feedback on why it chose to
interpret the sentence in a particular manner? Such feedback
can also serve to help the user adjust their original sentence if
the original sentence was in fact misinterpreted. Transforming
vague, ambiguous, and possibly illogical free-form phrases and
sentences into precise, machine-understandable statements is
a crucial component of this problem [1].

The core issue lies in the inherent properties of natural lan-
guage (NL): ambiguity, incompleteness, and verbosity of the
NL text. For example, in terms of ambiguity, a single phrase
can have multiple meanings depending on the context, the
user’s intent, etc [2]. As a result, potential errors in conveying
that intent or omissions in the detailed instructions needed
by a compiler may render the generated code inaccurate or
incomplete. This does not fit well with the unambiguous nature
required by traditional compilers.

To overcome these challenges, NL instructions must often
be decomposed into a sequence of simpler, unambiguous

supported in part by NSF grant 2101021

statements that a machine can understand and process. This
raises the question: is it possible to rewrite free-form sentences
such that the machine adapts more efficiently to them?

In this paper, we introduce IntentGuide, a novel approach
designed to refine and clarify user prompts before they are con-
verted to code. IntentGuide utilizes a neuro-symbolic frame-
work. This framework processes free-form NL inputs, system-
atically transforming them into a sequence of unambiguous,
clear NL sentences. This transformation not only clarifies the
user’s original intentions but also enhances the fidelity of
the resulting code generation. Nevertheless, simply asking the
AI to rewrite a sentence into a complete, unambiguous and
concise sentence is quite a challenge [3] [4].

In order to correctly rewrite the original sentence, it is
essential to know what phrases are problematic. This is where
we combine the salient features of the two AI engines. The
first symbolic engine checks for any violation to the constraints
required for clear, precise and unambiguous sentences. The
result of this step are messages that detail distinct information
that will direct the rewriting of free-form sentences into
unambiguous ones in the second step with the LLM. Through
this integration, our system enhances its capacity to identify
NL ambiguities, errors, and conflicting concepts. In addition, it
offers a way to re-write the original sentences into a sequence
of one or more unambiguous sentences [5] [6].

We applied IntentGuide to create games on an educational
platform called GameChangineer. Users can design games
on this platform, which uses simple English sentences as its
operating language [7] [8] [9]. The results of IntentGuide, per-
formed on NL description written by middle school students
for video games, reveals a significant improvement in error
correction and code generation abilities compared to previous
approaches, attaining an accuracy rate of 90%.

II. METHODOLOGY

The symbolic AI is embedded within GameChangineer
to check for adherence to rules and violation against any
constraints. Next, error correction is conducted via an LLM.
These two separate phases of the proposed system’s operation



Fig. 1. Process flow of the Methodology

form the end-to-end rewriting of problematic sentences. Figure
1 shows the flow of our approach.

The first phase of IntentGuide manages the identification
and classification of errors in the students’ NL inputs. This
phase employs symbolic AI techniques that are designed to
work with the predefined grammatical, semantic, and logical
rules to thoroughly analyze user inputs. The errors are catego-
rized into several types, similar to the errors identified in the
research [10]. The 4 types of errors are:

1) Syntax Errors: grammatical and structural errors.
2) Semantic Errors: ambiguous or improperly used words,

leading to confusion about the intended meaning.
3) Logical Errors: inconsistencies or contradictions within

the logic presented in the user input.
4) Lexical Errors: use of unknown, incorrect, or misspelled

words.

Phase 2: Error Correction and Instruction Using LLM
(GPT-4)

The feedback generated from the symbolic AI system are
given to the second phase using OpenAI’s GPT-4. We use
OpenAI’s GPT-4 API with a fixed temperature setting of 0 for
consistent output. The API interactions are managed through
Python scripts that format the input sentences and parse the
output for further processing. This stage not only fixes the
errors found by the Symbolic AI but also instructs users
by providing step-by-step guidance on how to improve their
inputs. This is how this phase goes:

1) Integration with GPT-4: The original sentences are sent
into GPT-4 via the OpenAI’s API and the Python pro-
gramming language. The temperature parameter of the
model is set to 0, which encourages deterministic and
consistent output. This setting is crucial for generating
precise and unambiguous corrections without variability
in the responses, ensuring the integrity of the instruction.

2) Sentence Rewriting: This step does not involve the direct
use of feedback from the symbolic AI in the initial
rewriting process. Instead, GPT-4 focuses on rewriting
the sentences using a series of predefined prompts.
This step makes sure the model improves the sentences
according to linguistic best practices instead of concen-

trating only on the errors that the symbolic AI logs.
This step is essential because, despite its effectiveness,
symbolic AI has limitations and may not capture all
nuances or contextual meanings, potentially missing
subtle yet significant aspects of language usage.

3) Feedback Integration and Further Rewriting: Following
the first round of rewriting, the procedure entails a cru-
cial integration of the GPT-4-rewritten phrases with the
feedback from the symbolic AI. The feedback (including
syntactic, semantic and logical errors), along with the
original and initially rewritten sentences, are passed into
GPT-4. This comprehensive input allows the LLM to
understand both the initial sentence and prior attempts
to correct it. After that, the LLM carefully examines
the rewritten sentence in light of the particular errors
identified. This focused strategy makes sure that the
LLM’s output corrects any error that the symbolic AI
found. The LLM rewrites the sentence if it finds that
the rewritten version does not sufficiently address the
identified errors or if it introduces new ambiguities. This
iteration specifically aims to resolve the errors, refining
the sentence into a clearer and more precise version.

4) Educational Feedback and Lesson Generation: The final
step of the process focuses on educational enhancement
and user learning, where IntentGuide generates a step by
step lesson based on the transformations from original
user input to a sequence of unambiguous and clear
sentences. The lesson focuses on every particular modifi-
cation made to fix the errors that the symbolic AI found.
These lessons are designed to educate the users about
the principles of clear and effective communication in
programming. By understanding the corrections made,
students learn how to avoid common mistakes and
improve their natural language programming skills.

For further details on the prompts and dataset used in this
phase, please refer to our GitHub repository.

Let us look at the following free-form sentence: ”If rabbit
collides with the edge they move to the center.”

By its nature, the strength of symbolic AI is in uncovering
violations to a set of rules or constraints. The symbolic AI in

https://github.com/NikYeole/Intentguide


Phase 1, thus, generates the following feedback:
• the phrase ’to the center’ is unclear for action sentences.

Do you mean to place an object near the center? And
then have the character move to the object at the middle
of the canvas?

• Cannot move in an unspecified direction based on reach-
ing any border. Reversing direction is interpreted.

• Do you mean ’When [obj1] sees [obj2], [obj1] chases
[obj2].’, in which [obj2] is placed in the middle of the
canvas?

By giving the above feedback and the originial sentence to
the LLM in Phase 2, we obtain the resulting final sequence of
sentences:

Rewritten Sentence: ”There is an invisible diamond in the
center. When the rabbit collides with the border, it becomes
alert. When the rabbit is alert, it moves towards the diamond.”

The original sentence contains ambiguity by using the
phrase ”move to the center”. Diverse interpretations of the term
”center” and varied implementations of the process of ”moving
towards it” could result in misunderstanding or inaccuracies in
execution. The introduction of an ”invisible diamond” at the
center of the canvas provides a concrete target for the rabbit’s
movement. This aligns with the suggestion to clearly define a
destination or object to interact with. Introducing the state of
being ”alert” after colliding with the border breaks down the
rabbit’s response into two stages. First, the rabbit becomes
alert due to the collision, and second, this state triggers the
movement towards the center Which is now defined by the
invisible diamond. ”alert” acts as an intermediate attribute
here. This decomposition helps in programming by providing
clear conditions and states that can be easily monitored and
triggered. The original sentence was vague about how the
rabbit should move towards the center after colliding with any
edge. By specifying that the rabbit moves towards a predefined
point, the revised sentence eliminates ambiguity about the
direction and endpoint of the movement. This transformation
is beneficial for programming where precise and unambiguous
instructions are crucial for consistent and error-free execution.

IntentGuide not only resolves immediate issues but also
provides focused educational feedback that helps users en-
hance their natural language input. As GPT-4 processes the
original sentences and the subsequent iterations, it inherently
considers the specific context and nuances of each user’s
input. This means that the system’s responses are naturally
tailored to address the unique needs and errors present in each
case. Students are more likely to be engaged in personalized
interactions as they see direct improvements and relevance to
their own work.This can inspire them to focus more intently
and exert more effort.

III. EVALUATION AND DISCUSSION

In this section, we evaluate the performance of the proposed
IntentGuide with a dataset of 1,000 sentences, similar to the
dataset in previous research, utilizing identical metrics for
evaluation [10]. In contrast to the earlier approach, Intentguide
uses a neuro-symbolic approach improving both the correction

of errors and the instructive feedback provided to users. This
dataset includes sentences that fit into five categories that are
comparable to those found in earlier research:

1) Grammar/Typos: Phrases that contain faults in grammar
or spelling that could cause misunderstandings or incor-
rect code translations.

2) Ambiguous sentences: phrases with ambiguous refer-
ences or meanings, including pronoun references.

3) Unrealizable actions: Sentences describing actions that
are impractical to translate into computer logic.

4) Excessively Complex/Descriptive: Phrases that are diffi-
cult to convert into executable code because they contain
too many details or complicated structures.

5) Non-problematic Sentences: Sentences that are already
clear and straightforward, serving to check whether the
system introduces errors into already correct sentences.
These sentences are successfully translated into a func-
tional game by GameChangineer platform.

The fifth category, ”Non-problematic Sentences,” was added
primarily as a benchmark, giving a standard by which to
evaluate how effectively the AI system handles well-formed
inputs and whether the AI intervention may unintentionally
produce errors. The evaluation involved processing these
sentences through our IntentGuide system, which integrates
error detection using symbolic AI and error correction and
instruction using a LLM. The rewritten sentences were tested
on the GameChangineer platform, which offered an automated
compatibility score for each sentence based on its adherence
to expected input forms [7] [8]. Using the same dataset, the
efficacy of IntentGuide was analyzed. The primary metrics for
evaluation were:

1) Success Rate: The percentage of sentences within each
category that were correctly rewritten to meet the plat-
form’s standards for executable code. A sentence was
considered successfully transformed if it achieved an
accuracy rate of 90% or higher on GameChangineer.

2) Semantic Integrity: This was assessed manually to en-
sure that the rewritten sentences maintained the original
context and intended meaning of the inputs.

Our results, which are compiled in Table I, are compared
with those of the earlier research, in which no error messages
from the Symbolic engine were provided to the LLM. The
success rates in each of the category of previous study serve
as a benchmark for evaluating IntentGuide’s effectiveness.
According to the comparative evaluation, IntentGuide has
significantly outperformed the prior methodology in every
category. The ”Grammar/Typos” and ”Ambiguous” categories
have significantly higher success rates, which is indicative
of improved error detection and correction abilities. Intent-
Guide’s sophisticated ability to reframe and simplify complex
instructions into executable game logic is demonstrated by
the rise in the ”Overly Complex/Descriptive” category. The
higher success rate in the ”Non-problematic” category (100%
vs. 94%) is particularly significant since it highlights how
precisely IntentGuide handles inputs that are already accurate



TABLE I
SENTENCE CATEGORIZATION RESULTS

Category Sentence Previous work IntentGuide
proportion Success Rate Success Rate

Grammar/Typing mistakes 22% 75.6% 98%
Ambiguous Sentences 18% 57.7% 84%
Unrealizable Actions 11.6% 50% 69.52%
Overly Complex/Descriptive 28.4% 59% 89%
Non-problematic sentences 20% 94% 100%
Total Success Rate 100% 68.4% 90.02%

without introducing additional errors—a crucial component for
user confidence and system dependability. The contribution
of symbolic AI was significant in identifying grammatical
and logical errors, while GPT-4 excelled in refining semantic
content and enhancing sentence clarity.

To provide a detailed illustration of how IntentGuide trans-
forms user input, consider the following example. The original
sentence highlights the complexities of translating free-form
natural language into executable code. Below, we outline the
system’s error detection and rewriting process, illustrating how
IntentGuide enhances user prompts for clarity and precision.
Original Input Sentence: ”The cheese reappears in 3 seconds
when the cheese is silver”
Phase 1: Error Messages Generated by the Symbolic AI:

• Standard Form: The sentence is not written in stan-
dard form (antecedent precede the consequent). Example:
”When the rabbit touches a diamond, it inserts a carrot.”

• Action Context: The word ”reappears” is interpreted as
”insert,” meaning a character is needed to insert another.

• Unexplained State Change: The condition ”cheese is
silver” isn’t defined by any prior description in the game.

• Time Association: Time should not be associated with
insertion directly. Instead, it should be linked to states or
attributes.

• Multiple Objects Issue: The number ”3” is out of place,
as it implies multiple insertions over time.

• Redundant Action: A cheese shouldn’t insert another
cheese since they’re the same type.

Phase 2: The first iteration of rewriting led to the following
output: ”There is a cheese. If the cheese is silver, it reappears
in 3 seconds.”
However, this version still contained the same errors as the
original sentence. The problems with associating time and ac-
tion remain, and the mechanism for the cheese becoming silver
is unexplained. IntentGuide proceeds with further analysis to
rectify these errors:
Introducing an Intermediate Attribute: This step ensures that
the cheese goes through an intermediate state, adding precision
to the timing mechanism.
Defining Duration and Action: By specifying the state and
duration of the cheese’s intermediate attribute, the rewritten
sentences become clearer.

Final transformed sequence of sentences: ”When the cheese
touches the alien, the cheese becomes silver. When the cheese
is silver, the alien becomes happy for 3 seconds. When the

alien is happy, the alien inserts a cheese.”
The errors identified in the original sentence have been used

to help rewrite the sentence. This example also demonstrates
how IntentGuide refines complex ambiguous inputs into a
sequence of simpler, executable statements. The error analysis
and transformation strategies ensure that the rewritten sen-
tences are clearer, logically consistent, and properly formatted,
aligning with the intended game logic.

IV. CONCLUSION

The neuro-symbolic methodology of IntentGuide facilitates
a rewriting system that detects errors while simultaneously
providing extensive feedback. IntentGuide demonstrates a
novel integration of neuro-symbolic framework for natural
language processing, specifically designed for programming
and educational technology. This system converts ambiguous,
free-form natural language instructions into unambiguous,
executable commands appropriate for code generation with
more than 90% accuracy.

REFERENCES

[1] S. Harnad, “The symbol grounding problem,” Physica D: Nonlinear
Phenomena, vol. 42, no. 1, pp. 335–346, 1990. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0167278990900876

[2] D. Jurafsky and J. H. Martin, Speech and Language Processing, 2nd ed.
Prentice Hall, 2009.

[3] T. R. Besold et al., “Neural-symbolic learning and reasoning: A
survey and interpretation,” ArXiv, vol. abs/1711.03902, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:1755720

[4] A. S. d. Garcez, M. Gori, L. Lamb, L. Serafini, M. Spranger,
and S. Tran, “Neural-symbolic computing: An effective methodology
for principled integration of machine learning and reasoning,”
FLAP, vol. 6, pp. 611–632, 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:155092677

[5] G. Marcus, “The Next Decade in AI: Four Steps Towards Robust
Artificial Intelligence,” arXiv e-prints, p. arXiv:2002.06177, 02 2020.

[6] E. Davis and G. Marcus, “Commonsense reasoning and commonsense
knowledge in artificial intelligence,” Commun. ACM, vol. 58, no. 9, p.
92–103, 08 2015. [Online]. Available: https://doi.org/10.1145/2701413

[7] M. S. Hsiao, “Automated program synthesis from object-oriented natural
language for computer games,” in Proceedings of the Controlled Natural
Language Conference, August 2018.

[8] ——, “Multi-phase context vectors for generating feedback for natural-
language based programming,” in Controlled Natural Language,
September 2021.

[9] ——, “Automated program synthesis from natural language for domain
specific computing applications,” Patent 10 843 080, November, 2020.

[10] N. K. Yeole and M. S. Hsiao, “Bridging natural language and code
by transforming free-form sentences into sequence of unambiguous
sentences with large language model,” in conference. IARIA, 2024,
pp. 4–10, retrieved: September, 2024.

https://www.sciencedirect.com/science/article/pii/0167278990900876
https://api.semanticscholar.org/CorpusID:1755720
https://api.semanticscholar.org/CorpusID:155092677
https://api.semanticscholar.org/CorpusID:155092677
https://doi.org/10.1145/2701413

	Introduction
	Methodology
	Evaluation and Discussion
	Conclusion
	References

