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Abstract—In the realm of natural language programming,
translating free-form sentences in natural language into a func-
tional, machine-executable program remains difficult due to the
following 4 challenges. First, the inherent ambiguity of natural
languages. Second, the high-level verbose nature in user descrip-
tions. Third, the complexity in the sentences and fourth, the
invalid or semantically unclear sentences. Our proposed solution
is a large language model (LLM)-based artificial intelligence
driven assistant to process free-form sentences and decompose
them into sequences of simplified, unambiguous sentences that
abide by a set of rules, thereby stripping away the complexities
embedded within the original sentences. The resulting sentences
are then used to generate the code. For the sentences which
still contain ambiguity and complexity, they are passed through
another 2 step process. This includes transforming the free-
form sentences written by users into JavaScript code and then
reframing the original sentence using the generated JavaScript
code. Although the JavaScript code generated by LLM might
not be correct, this step is simply to use the code to help
break down sentences into more precise sequence of actions.
This effectively addresses various linguistic challenges that arise
in natural language programming. We applied the proposed
approach to a set of free-form sentences written by middle-
school students for describing the logic behind video games. More
than 76% of the free-form sentences containing these problems
were successfully converted to sequences of simple unambiguous
object-oriented sentences by our approach.
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I. INTRODUCTION

Natural Language Programming (NLPg) is a concept that
attempts to convert instructions/specifications written in free-
form natural language (NL) into functional program code.
NLPg envisions a world in which everyone can program
machines without understanding the intricacies of conventional
programming languages. While generative Artificial Intelli-
gence (AI) has shown some success in producing code snippets
from natural language text, the code that is produced may not
adhere to the intent of the input text. When the code does not
meet the intent, the user can do one of two things: (1) manually
modify the generated code, or (2) rewrite the natural language
text and try to generate new code [l]. For users who are
not experienced programmers, option 1 may not be feasible,
since the generated code may contain data structures and/or
algorithms that the user is unfamiliar with. Hence, the user is
left with the second option. In order to generate functionally
correct code, the input must be in a format that the system
can process so that common problems with general natural
languages are removed. In other words, if the input text is
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semantically unambiguous, the generated code will more likely
adhere to the intent of the input text [2].

An additional benefit is that this helps the user to learn
to write unambiguous input text, a necessary skill behind
the thought processes in coding. In recent years, NL is
increasingly applied in education for personalized Al tutoring
and interactive learning, aiding educators in various ways [3]
[4] [5]. The ability to instruct a machine in NL bridges the
gap between human thought processes and the digital world,
making technology more accessible and intuitive for students.

There are many factors associated with NL instructions,
which makes NLPg extremely challenging [6]. First, NL sen-
tences often contain ambiguity. Second, descriptions provided
by humans tend to be verbose and high-level. Third, the
structure of sentences can be complex and compound. Fourth,
humans may write invalid or erroneous sentences. We will
briefly highlight each of these four challenges in the following
discussion.

NL sentences can include ambiguities wherein a single
word or phrase may have several interpretations. Consider, for
instance, the following English sentence employed in game
design:

”"When the rabbit touches a rock, it explodes.”

Here, the phrase containing the pronoun ’it’ creates un-
certainty in this sentence. According to one view, the rabbit
explodes after touching the rock, whereas the other contends
that the rock explodes.

Secondly, the NL instructions can be excessively verbose,
especially written by the people who may not know how to
program. Consider, for instance, the English sentence em-
ployed in game design:

”In a mysterious realm, a lone pointer and some aliens
engage in a cosmic dance. When the pointer touches an alien,
it changes colors: original to purple, purple to pink. Pink
aliens explode.”

Here, the sentences provided are verbose with extraneous
descriptive words and phrases. Although they adhere to proper
English grammar, they deviate from a concise format. For
instance, phrases such as ’mysterious realm’ and ’cosmic
dance’ may be problematic to implement in code.

Thirdly, machines typically demand sentences with a clear
structure containing a subject, verb, and object. However,
complex sentences that sequentially combine multiple events
may complicate the parsing of the sentence and prevent a full
understanding of the intent of the user. The following sentence
illustrates one such example:



”"When the carrot turns into a diamond before the carrot
touches a fox, the score increases.”

In this above example, sequencing of events is necessary in
order to determine when to increase the score.

Fourthly, when humans provide instructions, there is a
chance that they might offer sentences that are invalid, il-
logical, incomplete or erroneous. In such cases, it becomes
difficult for the machine to extract the exact task that needs
to be executed. The following is one self-explanatory example
containing incomplete and/or erroneous sentences:

”Brick spawns at the bottom. 14 cheese at the top in rows.
Ball in the middle. w is up. s is down. brick touches border
bounce. ball touches cheese bounces back.”

To overcome these challenges, we propose an Artificial
Intelligence driven assistant using Large Language Models
(LLMs), which will attempt to convert the free-form sentences
into sequences of simple sentences, each with a clear subject,
verb, and object structure. It promotes a paradigm where
instead of the user conforming to the machine, the machine
adapts to grasp the user’s intent. This assistant streamlines,
simplifies, and transforms the NL phrases into directives that
machines can easily interpret. The design of the assistant
prioritizes rule-driven simplification, methodically translating
sentences that eliminate unnecessary elements while retaining
the core meaning.

Motivating Example: Consider the following free-form de-
scription of a game:

"The rabbit wanders, reversing at borders. The fox wanders,
chasing the rabbit when spotting the rabbit. When the rabbit
touches the fox, the fox turns into a carrot.”

Our goal is to convert the above paragraph to the following

simplified, precise sentences.
"There is a rabbit. There is a fox. The rabbit wanders. The fox
wanders. If the rabbit reaches a border, it reverses. If the fox
sees the rabbit, it chases the rabbit. When the rabbit touches
the fox, the fox becomes mutated. When the fox is mutated, it
turns into a carrot.”

The deconstruction of complex sentences and then re-
writing them in basic, simple sentences is the most novel
aspect of our strategy. The NL expression frequently combines
various thoughts or directives in a single, complex sentence
[7]. So, these sentences are decomposed and rewritten in a
format that abides by imposed rules. In our approach, the input
sentences are parsed, during which the engine identifies key
components and breaks them down into their basic elements.
By analyzing the relationships between these elements, the
system deciphers the user’s intention. With this insight, it
reconstructs the information into simple sentences that are
structured and guided by rules.

The novelty of this paper lies in its specific methodology for
simplifying natural language sentences into structured direc-
tives through a rule-based system, a departure from traditional
semantic parsing and tree-based neural network models, which
often struggle with the ambiguity and complexity of natu-
ral language [6]. We also integrate an educational platform,
GameChangineer, to demonstrate the practical application of

this approach, showcasing how it facilitates the learning of
object-oriented programming concepts by converting these
simplified sentences into functional game code.

We applied our approach to process 1000 free-write sen-
tences, out of which 800 sentences contained at least one
of the four aforementioned problems, and 200 sentences are
non-problematic sentences. The rewritten sentences are then
given to an educational platform called GameChangineer [§]
[9] that can convert the object oriented English sentences
to a functional game [10]. An object-oriented English sen-
tence structures natural language to reflect object-oriented
programming concepts. It clearly defines objects (nouns), their
attributes, and their methods (actions). GameChangineer is
an Al-Enabled Design and Education Platform, which helps
students to discover and practice logical reasoning, problem-
solving, algorithmic design, critical and computational think-
ing [8]. Beginners may find Object-Oriented Programming
(OOP) to be abstract and challenging to understand due to
its emphasis on classes, objects, inheritance, polymorphism,
encapsulation, and abstraction. Students can express their
thoughts and queries in a way that comes naturally to them
when they are able to interact with an educational software
through natural language. This reduces the cognitive load
associated with learning new, technical syntax and concepts,
allowing them to focus more on the underlying principles
of OOP. The results showed that more than 60% of the
problematic sentences were successfully converted by our
approach. The sentences, which were successfully converted
led to a correct functional game, which adheres to the intent of
the user. Nevertheless, this method had limitations, particularly
when dealing with sentence constructs that are ambiguous and
complex. If user input sentences still contain ambiguity or
complexity after this process, they are passed through a two-
step process. We address these limitations by concentrating on
directly generating JavaScript code from user-provided free-
form sentences. We note that the JavaScript code generated
by the LLM from the original sentences might not be correct.
Nevertheless, this step is simply to use the generated code to
help break down the sentences into more precise, unambiguous
sequence of instructions. There are two main steps to this
process:

1) Code Generation: To translate the user’s natural lan-
guage instructions into JavaScript code, we make use of
a LLM, which is GPT 4. The generated code may not be
correct; but this is fine since we simply want to use the
code structure to inference the sentence transformation
in the next step [11].

2) Sentence Transformation: The original sentence is bro-
ken down and reframed into a set of clear and concise
sentences using the JavaScript code that was generated.

The rest of the paper is organized as follows. Section II de-
scribes the related work. Section III lays out the methodology
I in our work, Section IV lays out the methodology II and
Section V presents the evaluation of our Methodology I and
discusses its implications. Section VI presents the evaluation



of our Methodology II. Finally, Section VII concludes the
paper.

II. RELATED WORK

A curated list of groundbreaking studies that has had an
impact in this field is included in this section.

One approach to addressing these NL challenges is through
semantic parsing, where natural language utterances are en-
coded and translated into syntactically correct target code
snippets using tree-based neural network models [6]. This
technique shows promise in generating accurate code snip-
pets from natural language descriptions by focusing on the
structural aspects of language to reduce ambiguity and manage
complexity. Even sophisticated semantic parsing models, while
capable of generating syntactically correct code from natural
language inputs, often face difficulties in capturing the user’s
intent accurately. This is because a single phrase can be
interpreted in multiple ways, leading to code that, while
technically correct, does not fulfill the intended function [6].

Another sophisticated method involves using execution-
based selection processes and Minimum Bayes Risk (MBR)
decoding to minimize expected errors in the generated code
[12]. This approach selects the most accurate output by con-
sidering the execution results of the generated code samples,
helping to ensure that the generated code aligns with the
intended functionality described in natural language. This
approach has its limitations. It requires executing several
generated code snippets to determine the best candidate, which
can be computationally expensive and inefficient. Furthermore,
if the initial pool of generated code contains errors or fails to
capture the user’s intent accurately, the selection process may
still result in sub-optimal code [12].

Deep learning techniques offer significant advancements in
understanding and generating code from natural language. By
leveraging the encoder-decoder framework, these models can
learn from vast datasets of code to improve the accuracy and
relevance of generated code snippets, addressing issues of
verbosity and complex sentence structures by focusing on the
semantic content of the instructions [13]. Although deep learn-
ing has shown promise in understanding and generating code,
the models still struggle with sentences that contain multiple
actions or intertwined concepts, reflecting a gap in handling
real-world complexity [13]. These limitations underline the
necessity for a proposed solution that addresses these core
issues.

The Transformer model was first presented by Vaswani et al.
in their landmark study, ”Attention Is All You Need” [14]. In
order to deal with ambiguity, the architecture’s self-attention
mechanism, which is skilled at capturing context, is essential.

Generative pre-trained transformer (GPT)-3 showed its skill
in deciphering a wide range of human expressions and offered
a solution to unclear or lacking instructions [15]. Despite
its outstanding powers, GPT-3 occasionally produces overly
detailed or irrelevant answers [15]. GPT-3 also frequently
requires particular fine-tuning for certain tasks [15]. BERT’s
(Bidirectional Encoder Representations from Transformers)

pre-training procedure was improved by Liu et al., who pub-
lished "RoBERTa: A Robustly Optimized BERT Pretraining
Approach” [16] [17].

Wei et al.’s study on ”Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models” forms a crucial basis
for understanding how Chain of Thought (CoT) in LLMs can
decompose complex reasoning tasks into a series of simpler,
logical steps [18]. The authors demonstrate that CoT prompt-
ing significantly improves the ability of LLMs to perform
complex reasoning tasks across various domains. We employ
CoT not for general reasoning enhancement, but specifically
for tackling linguistic challenges in programming, such as
verbosity, ambiguities, and complex phrase structures.

We focus on preserving the fundamental semantic meaning
of the given instructions while simultaneously addressing
the inherent difficulties and limitations of human language.
The subtleties of freely written phrases can have a profound
impact on the semantic meaning, which is the fundamental
core of a communication [19]. Therefore, a major goal in
this area should be to transform these statements into more
straightforward forms without distorting or losing the original
meaning that the user intended. This balance makes sure that,
despite the language being more structured or standardized for
computational processing, the converted sentences remain true
to the message the user intended to convey.

III. METHODOLOGY I

The foundation of our research is a representative dataset,
which was used as the LLM’s main input. The data included
1000 student-written free-form sentences as game descriptions.
800 of these sentences have been identified as potentially
problematic and 200 sentences have been identified as non-
problematic. These descriptions offered a variety of linguistic
patterns and semantic complexities. The game descriptions
were diverse, varied in their lengths, and offered a number of
difficulties. These sentences showed some ambiguity because
they frequently contained intricate structures and relationships
that were not always clear. This dataset was also chosen to
evaluate the LLM’s capacity to comprehend and translate the
ambiguous and complex texts into more rule-based, simplified
formats.

We used the GPT-3.5 Turbo, a powerful language model
created by OpenAl, for the purposes of this study. We made
this choice after carefully comparing the performance of GPT-
3.5 Turbo and GPT-4, two recent revisions of OpenAl’s
generative models. Although GPT-4 is a more recent model
and is anticipated to offer higher capabilities in many contexts
[20], GPT-3.5 Turbo showed improved sentence construction
in the most basic form and coherence for the particular prompt
utilized in this research. This underscored the need of selecting
a model that is tailored to the precise specifications of the work
at hand as opposed to just selecting the most recent version.
This model was deployed by means of direct integration with
the OpenAl API, which allowed us to operate the model
locally in our computational environment. Python was selected
as our primary programming language because of its extensive



libraries for data manipulation and its seamless integration
with the OpenAl APL

The model’s temperature was set to zero. The choice was
made to guarantee deterministic performance from the model.

The top_p parameter was set to 1. This implies that at each
stage of the generation process, the model will only take into
account the tokens that are the most likely.

It should be emphasized that these combinations signify
that we used the model outside of its intended parameters.
We purposefully restricted the model to create consistent
and repeatable results customized to our needs rather than
utilizing its potential for creative and varied outputs. These
settings came in helpful in situations where consistency and
predictability were crucial.

Our method employed a split strategy that made use of
both user prompts and system prompts. The user prompt
constitutes the primary interaction point with the user. It is
necessary to convert these user-provided free-form sentences
into a (sequence of) more simplified structure. The model
must understand these inputs robustly due to the inherent
variation in how users phrase their queries or utterances.
Free-form phrases can be anything from simple sentences to
more complex thoughts or assertions, and the challenge lies in
distilling the essence of what the user wants to communicate
and converting it into a form that the model can process
efficiently.

The system prompt serves primarily as a tool to direct the
model towards a specific context or mode of operation. We
directed the model’s potential and ensured that we receive
the desired output by creating a structured system prompt.
It encompasses a chain-of-thought reasoning via (1) Question
Answering, (2) Sentence Reframing, (3) Sentence Decomposi-
tion. Figure 1 shows the process flow with an example prompt
for each step.

A series of iterative tests and comparisons with additional
approaches, such as few-shot learning [21] and model fine-
tuning [22], revealed that the suggested strategy performed
better overall, especially with unrestricted sentence structures.

Let us consider an input text:

The apricot slows down at border. The rabbit turns into a
diamond when hitting a carrot.

Here is a step-by-step trace through the outlined process
using the provided input sentence.

1) Question Answering (QA): The QA component extracts
crucial information from the input sentence by asking
questions and taking the output in a specific format.
It identifies the objects (apricots, rabbits, borders, dia-
monds), the default actions (apricots and rabbits move),
and the conditional actions (speed decrease for apricots,
transformation for rabbits).

2) Sentence Re-framing: Using the information from the
above QA, the sentences are then re-framed according
to a set of predefined rules that reflect the original free-
form sentences. The main goal here is to use a specified
set of rules to reconstruct the sentences in a paragraph,
which are in their basic form in the format subject-

verb-object. For example, stating the conditional actions
of various objects: when apricots touch a border, their
speed decreases, and when rabbits touch a carrot, they
turn into diamonds.

Re-framed sentence: If the apricot touches a border, the
speed of the apricot decreases. If the rabbit touches a
carrot, the rabbit turns into a diamond.

3) Sentence Decomposition: Next, the Sentence Decompo-

sition step would break down complex sentences into
simpler, object-oriented structures. The input would be
analyzed to discern patterns of object interactions, such
as the apricot’s speed change upon touching a border,
and the rabbit’s transformation upon touching a carrot.
An intermediate attribute “mutated” is added while
decomposing the sentence resulting in the following
sequence of unambiguous sentences [23].
Decomposed sentence (Final Output): If the apricot
touches a border, the speed of the apricot decreases.
When the rabbit touches a carrot, the rabbit becomes
mutated. When the rabbit is mutated, it turns into a
diamond.

To sum up our methodology, it offers a comprehensive,
structured, and systematic approach to interpret and process
natural language text with a high degree of precision and
consistency, enabling the user to more accurately describe
their intent. Our innovation lies in the strategic application of
existing LLM capabilities through a series of system prompts
that guide the model to produce outputs in line with specific,
predefined rules. This ensures that the transformations main-
tain the core meaning of the original sentences while stripping
away unnecessary complexities, making the text more suitable
for generating executable code.

Few-shot learning was initially considered due to its
prowess in addressing edge cases with limited data. However,
given the vast array of edge cases, rules, and potential issues to
address in this domain, few-shot learning proved insufficient.
The model would occasionally produce out-of-bound prompts
leading to sub-optimal performance. In contrast, our pro-
posed approach, which integrates QA, reframing, and sentence
decomposition exhibits robustness against diverse sentence
structures, making it an ideal choice for our purpose.

IV. METHODOLOGY II

In order to improve the model’s capacity to handle the
NL ambiguity and complexity, this next method implements
a transformation to turn Free-form NL descriptions into
JavaScript code. Even though the produced code may not be
correct or instantly executable, this approach uses the formal
structures of programming languages to clarify, disambiguate,
and decompose the original NL input. The main goal of code
generation is to act as an intermediate step that helps in the
NL descriptions’ rewriting to eliminate any inherent ambiguity
and complexity.

Even though NL is intricate yet adaptable for human com-
munication, it frequently has ambiguities and complexities that
cause issues for computational tasks that demand accuracy and
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Example Template
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Sentence decomposition

Figure 1. Process flow with example prompt for each step.

precision, frequently found in many of engineering tasks [6].
Due to these ambiguities and complexities, translating NL di-
rectly into executable code without taking any additional steps
may result in incorrect implementations or misinterpretations.

In order to address this, we first transform the NL de-
scriptions into a structured code format as part of our strat-
egy. This structured code refines the NL input by providing
an unambiguous description of the game logic because of
the strict syntactic rules of programming languages, even
though the code may not be correct or executable. JavaScript
was chosen for its alignment with event-driven game logic,
though Prolog’s declarative nature could aid in reasoning about
constraints but may struggle with sequential operations. The
process flow of the methodology is shown in Figure 2.

This approach uses a transformative process to translate
game mechanic descriptions from natural language into struc-
tured JavaScript code and back again into refined, unambigu-
ous natural language. This method accomplishes two goals: it
first serves as a proof of concept for producing syntactically
sound (but may be programmatically unsound) logic presented
in the input text; second, it improves the original natural
language description’s understanding by using the explicitness
of programming constructs to remove ambiguities.

Let us look at an example to understand the process flow.
Below is the example user input written by middle school
student on the GameChangineer platform:

”If the ball hits the sides, then it moves in the other direction.”

1) Transformation into JavaScript Code: LLM converts
the user input sentence into JavaScript using a system
prompt. This transformation is enabled by a system
prompt that explicitly incorporates a predefined vocabu-
lary list. The incorporation of this vocabulary provides a

structural foundation for the LLM, guaranteeing that the
produced code accurately reflects the logic and seman-
tics articulated in the students’ natural language inputs.
By restricting the LLM to utilize only the permitted
vocabulary, we improve the accuracy of code generation
and ensure uniformity across many implementations.
The vocabulary is explicitly provided with the prompt
during the code generating process. It consists of a
curated compilation of nouns, verbs, adjectives, and
other pertinent terminology related to game development
and computational thinking. The generated code must
accurately reflect the logic described in the natural
language. This code serves as an intermediary to validate
and refine the logical structure implied by the natural
language description. The system prompt, intended to
guide the transformation of natural language game de-
scriptions into JavaScript, was carefully constructed to
guarantee that the transformation adheres to a structured
programming interpretation. The prompt provided to the
LLM is articulated as follows:

"Write the following game idea described in free-form
natural language into a javascript code using the al-
lowed vocabulary given.”

Embedded Contextual Guidance:: “In the context of
a game description where objects and characters rep-
resent elements and entities in a programming lan-
guage, actions and interactions symbolize functions,
and conditions are akin to if statements. Consider the
sentence strictly within this gaming and programming
framework.”

This context was directly incorporated into the system
prompt utilized for code development, serving as a
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guiding framework for the LLM. This guarantees that
the LLM interprets the input description not simply as
a narrative but as a structured set of instructions that
can be directly converted into executable code. The pre-
defined vocabulary includes game-specific entities (e.g.,
“rabbit,” “diamond”), actions (e.g., “move,” “touch”),
and conditions (e.g., ”if,” “when”), which constrain
the model to operate within a defined semantic space,
reducing ambiguity. By framing the game elements
within this context, the LLM is primed to generate
code that is logically consistent with game programming
paradigms, hence improving the accuracy and relevance
of the output regarding its intended application in game
development.

Below is an example of JavaScript code generated by
the LLM given a student’s Game idea ”If the ball hits
the sides, then it moves in the other direction.” and the
system prompt with the allowed vocabulary:

// Initialize variables
let ballX = 200;

let ballYy = 200;

let ballSpeedX = 5;

let ballSpeedY 5;

// Function to move the ball
function moveBall () {
ballX += ballSpeedX;
ballY += ballSpeedY;

// Check if the ball hits the sides

if (ballX >= 400 || ballX <= 0) {
ballSpeedX = -ballSpeedX;

}

if (ballY >= 400 || ballY <= 0) {
ballSpeedY = -ballSpeedY;

}
}

//Call the moveBall function in
setInterval (moveBall, 1000/60);

a loop

Retranslation into Structured Natural Language: The
structured code is then retranslated into a refined NL
description using the rules and the allowed Vocabulary
using GPT 4. The generated javascript code is then
passed with the system prompt and the context to the
LLM to generate the final transformed Sentences. The
example system prompt used for this step is:

”Write the game plan from the the code by using the
allowed vocabulary below in subject-verb-object format
using the rules.”

This step aims to articulate the logic captured in the
code back into natural language, ensuring it is devoid of
any ambiguities present in the original description. The
rules used for this step is same as the rules used for the
reframing step of Methodology I.

An Example rule for win/lose condition is:

”"Win/Lose condition: write using ’if’ statement only.
Write using the format ” Player win/lose when objec-

taction”

The final transformed game description is:

"There is a ball. The ball moves. When the ball hits the
sides, it reverses direction.”

We utilized GPT-4 using the OpenAl API to convert NL
descriptions into JavaScript code. The user prompt comprised
the student’s natural language input, and the system prompt
had a predetermined vocabulary list that directed the LLM in
code development. To ensure deterministic performance from
the model and reduce variability in the outputs, we configured
the model’s temperature parameter to zero. Selecting a zero
temperature guarantees that the model yields same outputs
for identical inputs, which is essential for repeatability in
a research setting. The top_p parameter was configured to
1, enabling the model to evaluate the complete probability
distribution of all potential tokens during generation. This
setup guarantees that the generated code is consistent and
closely aligned with the input prompts, hence improving
the dependability of the intermediate code representation in
refining natural language descriptions.

We have incorporated our proposed technique into an
educational platform named GameChangineer. This platform
aims at developing computational thinking skills in stu-
dents by encouraging them to think like computer scientists.
GameChangineer converts English sentences written by stu-
dents into functional games, therefore successfully connecting
natural language with computational logic. In this work, we
employed a dataset of such 1000 sentences written by middle
school students, which were processed by GameChangineer to
produce corresponding game implementations.

V. EVALUATION I

This section evaluates the performance of the proposed Al-
driven assistant in processing 1000 free-form sentences catego-
rized into five types: (1) Grammar/typos, (2) Ambiguous, (3)
Unrealizable actions, (4) Overly complex/descriptive, and (5)
Non-problematic sentences. Sentences containing grammatical
or typographical errors fall under the first category, ”Grammar
or Typos” that could cause misinterpretations or inaccurate
code translations. The second category, ”Ambiguity” refers
to statements that have ambiguous references or meanings.
Examples of this type of sentence include "It chases it”, where
pronouns make it difficult to determine exact entities and
actions. The third category, “Unrealizable Actions”, consists
of sentences that describe actions not feasibly translatable into
programming logic, exemplified by phrases like It jumps
to heaven”. Sentences falling into the “Overly Complex or
Descriptive” category are weighed down with too many in-
formation or complex structures, which makes it difficult to
translate them into concise, executable computer commands.
Each of these categories represents a unique facet of the com-
plexity inherent in translating natural language into machine-
executable code. The final "Non-problematic sentences” cate-
gory refers to the sentences, which are successfully translatable
by the GameChangineer platform into executable code [8] [9]
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Figure 2. Process flow of Methodology 11

[10]. These sentences are unambiguous and in object oriented
structure.

There are several reasons why the final category of "Non-
problematic sentences” is included. It serves primarily as a
benchmark, providing a point of comparison to assess the
efficiency and precision of the Al-powered assistant while
processing and interpreting texts that do not present inherent
challenges. Furthermore, this category aids in determining
whether and how Language Models (LMs) intervention may
unintentionally add errors into previously error-free sentences.
This will help in evaluating the preservation of sentence
integrity after processing and is essential for preserving the
overall quality and validity of the research.

The above categorization is based on the platform’s al-
gorithms that use symbolic Al to detect grammatical errors,
ambiguity, complexity, and unrealizable actions in sentences,
indicating potential issues for translating these into executable
code. The platform automatically logs the problematic sen-
tences. All logged erroneous sentences are analyzed in this
paper.

We discuss the effectiveness of the assistant in identifying
and rectifying these issues, thereby enabling accurate trans-
lation into executable code. These sentences were written by
middle school students with different degrees of experience in
both natural language expression and game design when they
were first created as parts of game descriptions. This diversity
guarantees a wide range of linguistic difficulties, reflective of
the intricacies typically seen in natural language programming.

These middle school students received a basic introduction
to writing a few simple games with the GameChangineer
platform. A small percentage of the students have prior pro-
gramming experience. However, a vast majority of the students

have never programmed before. Participants were given the
following instructions to create their game plan: "Write a game
plan for creating a game utilizing the available characters.”

To ensure the accuracy and feasibility of the translated
sentences produced by the LLM, they were given as an input
into the GameChangineer platform [8]. This platform provides
a score for each sentence that measures the compatibility with
the platform’s expected input format [8] [9] [10]. Although
some complex sentences can already be decomposed into a
sequence of sentences by the GameChangineer platform, it
cannot process all the nuances in natural language. We note
that all the original problematic sentences were not accepted
by the GameChangineer platform.

After the original input sentences were re-written by the
LLM using our proposed approach, these new sentences
underwent the validation process. Whenever the rewritten sen-
tence(s) are understood with more than 90% certainty by the
GameChangineer platform, the conversion will be regarded to
have been translated correctly; on the other hand, when it falls
below this mark, the output program generated may contain er-
rors. The output program is generated by the GameChangineer
Platform. The accuracy and relevance of the LLM-generated
results were also assessed manually to ensure the translations
effectively communicated the intended meaning. This dual
evaluation provides a comprehensive measure called success
rate of the Al assistant’s efficacy in translating complex natural
language into machine-executable code by combining auto-
mated accuracy assessment with manual semantic verification.

Table I presents the results of the sentence categorization
from the data-set, highlighting the success rate for each cate-
gory. The table is divided into three main columns: Sentence
Category, Number of Sentences, and Success Rate. These



categories include Grammar/Typos, Ambiguous, Unrealizable
Actions, Overly Complex/Descriptive, and Non-problematic.
Note that when all 5 categories are considered, the success
rate was more than 68%. However, if we consider only those
first 4 categories (excluding the Non-Problematic category),
the success rate by our approach is more than 60%.

The category of Unrealizable Actions encompasses game
descriptions featuring actions that are either illogical or in-
feasible within the game context. This category was the least
represented in student written game descriptions, accounting
for its minimal proportion. All erroneous sentences are logged
by the platform and the distribution of categories reflect
the distribution of error types. The presence of actions that
cannot be executed within the game complicates the task of
rewriting such sentences, contributing to the lowest success
rate observed for this category.

A sample of successful and unsuccessful transformations
are listed in Table II. In the following, we will explain a few
specific cases.

Let us first examine a successful transformation:

Input Sentence: ”Each carrot you eat it gives you lo speed of
the rabbit.”

Transformed Sentence: "When the player eats a carrot, the
speed of the rabbit increases by 10.”

The rewritten sentence establishes a clear subject “the
player” and action “eats a carrot” by explicitly stating ”When
the player eats a carrot” as the condition. The usage of ”it” in
the original sentence lacks a clear antecedent, which could
cause parsing issues. This ambiguity is eliminated in the
rewritten sentence by defining the action and its result clearly
without the use of potentially confusing pronouns. The phrase
“the speed of the rabbit increases by 10 explicitly describes
the effect of the action in a structured way that is easy for a
machine to parse. This approach makes it easy to transform
into a computational operation because it explicitly states the
change (increases by 10”) and the attribute being impacted
("the speed of the rabbit”).

Let us look at a few examples that show how the Al-
driven assistant can recognize and fix typos and grammatical
problems in sentences.

User Input: "When Dis pressed the bird moves right.”
Transformed Sentence: ”"When the D key is pressed, the bird
moves right.”

The original sentence contained a typo (”Dis” instead of
”D”) and lacked a verb, making it unclear. The AI model

TABLE 1. SENTENCE CATEGORIZATION RESULTS

Category Sentence proportion | Success Rate
Grammar/Typing mistakes 22% 75.6%
Ambiguous Sentences 18% 57.7%
Unrealizable Actions 11.6% 50%
Overly Complex/Descriptive 28.4% 59%
Non-problematic sentences 20% 94%
Total Success Rate 100% 68.4%

successfully recognized the typo, corrected it to ”D”, and
inserted the necessary word key” to complete the sentence.
User Input: ”When the rabbit is silver, the speed of the rabbit.”
Transformed Sentence: "If the rabbit is silver, the speed of the
rabbit increases.”

The user input was incomplete, with no clear action de-
scribed for the rabbit. The AI assistant inferred the most
logical action “speed increase” based on the context, making
the instruction actionable for programming.

Consider one unsuccessful transformation, which could not
adhere to the intent of the user.
User Input: ”When the rabbit is yellow, the rabbit touches the
fox, the fox explodes.”
Transformed Sentences: ’If the rabbit is yellow, the rabbit
touches the fox. If the rabbit touches the fox, the fox explodes.”
Intended Output: 7 If the rabbit is yellow and the rabbit
touches the fox, the fox explodes.”

The input is incorrectly divided into two conditional state-
ments by the original transformation. This method falsely
implies that the fox’s explosion is a two-step process that
depends on the requirements being satisfied sequentially as
opposed to simultaneously. The intended output, on the other
hand, combines the two conditions into a single compound
condition meaning that the fox will explode if both conditions
are met simultaneously and directly. This showed that the
input sentence is ambiguous and the Al-assistant could not
successfully transform the sentence.

Let us look at an unsuccessful example in the fifth category,
Non-problematic sentences.
User Input: "When a ball sees the rock, the ball flees from
the rock.”
Transformed sentences: ”When the ball sees the rock, the ball
becomes scared and flees from the rock.”

The transformed sentence is considered unsuccessful here,
primarily due to the addition of an unwanted attribute scared”
to the output sentence. This is an example where the LLM
hallucinated leading to add an extra and unnecessary attribute
[24]. Such hallucinations can significantly impact the utility
and accuracy of LLMs, especially in applications requiring
strict adherence to input data without the addition of inter-
pretative or speculative elements. LLMs occasionally hallu-
cinate,” or provide missing information [24]. We found that
unsuccessful conversions due to hallucination account for 6%
of Non-problematic sentences. For the problematic sentences
in the other four categories, hallucination is responsible for
about 12% of the unsuccessful transformations.

We did not compare our results with LLM based code
generation platforms such as Copilot [25] because our goal
is to rewrite erroneous sentences so that they become clear
and unambiguous. On the other hand, while Copilot may be
able to generate code on an erroneous sentence, it generates
the code by its own interpretation arbitrarily. In addition,
GameChangineer can process hundreds of sentences at a time,
but the user must interface Copilot differently by feeding a few
sentences at a time.



TABLE II. INPUT AND OUTPUT SENTENCES

Input Sentence (Free-form) Output Sentence Successful?
fox explodes rabbit when it is the rabbit is touched by it. If the rabbit is touched by the fox, the fox explodes. Successful
When the fox touches the carrot before the rabbit, the fox dies. | When a fox touches a carrot, the fox becomes happy. When a Successful
rabbit touch the carrot, the rabbit becomes happy. When the fox
is happy and the rabbit is not happy, the fox dies
if the fox sees the rabbit and the fox chases it and catches it the | When the fox sees the rabbit, it chases the rabbit. When the fox Successful
rabbit explodes. catches the rabbit, the rabbit explodes.
Rabbit move with wsad. When the W key is pressed, the rabbit moves up. When the S key Successful
is pressed, the rabbit moves down. When the A key is pressed, the
rabbit moves left. When the D key is pressed, the rabbit moves
right.
The kitten must touches all the cakes to win without having the | When the kitten touches all the cakes, the player wins the game. Successful
fox touch the kitten. If the fox touches the kitten, the player loses the game.
When cake is touched by rabbit the speed of the rabbit is 0.5 for | When the rabbit touches the cake, the rabbit’s speed becomes Successful
3 seconds and cake disappears. 0.5 for 3 seconds. When the rabbit touches the cake, the cake
disappears.
When the ball touches the bottom border it gains 1 point. When the ball touches the bottom border, the score adds 1. Successful
the pointer shoot the ball with the spacebar. The pointer shoots the ball when the spacebar is pressed. Successful
The rabbit dies when it touches the diamond for 5 seconds. When the rabbit touches the diamond for 5 seconds, the rabbit Successful
becomes dead. When the rabbit is dead, it dies.
The rabbit must flee from the fox. If the rabbit sees the fox, the rabbit flees. Successful
the sheep is trying to eat all the broccoli. If the sheep sees broccoli, the sheep eats broccoli. Successful
When a tiger is shot for the 2 times, it disappears. If a tiger is shot twice, it becomes mutated. When a tiger is Successful
mutated, it disappears.
if you do not touch the apricot within 3 minutes game is over. If the apricot is not touched within 3 minutes, the game is over. | Unsuccessful
If the donut is blue and W is pressed, the donut moves up There is a donut. When the W key is pressed, the donut moves | Unsuccessful
up 10. If the donut is blue, then the color of the donut changes.
fox explode 20 seconds after start. There is a fox. If the start is 20 seconds, the fox explodes. Unsuccessful
The panda kills foxes when it reaches a score of greater than or | If the score is greater than or equal to 14, the score adds 1. Unsuccessful
equal to 14.
There are 3 snakes going side to side at 3 pixels per frame. The snakes move side to side at 3 pixels per frame. Unsuccessful

VI. EVALUATION II

The evaluation for methodology II examines the functional-
ity of a novel artificial intelligence (Al) assistant that converts
sentences written in free-form natural language into unam-
biguous JavaScript code and back again into structured natural
language. By stripping away the inherent ambiguities in human
language, this approach seeks to increase the reliability of
the generated code. The dataset used to evaluate the Al
assistant’s effectiveness consists of 1000 game descriptions
written by middle school students with different degrees of
programming and language proficiency. These descriptions
were divided into categories according to the kind of linguistic
difficulty they posed, such as ambiguity, complex syntax, or
unrealistic scenarios. The dataset used is same as the one used
for Evaluation I. The sentences were classified into similar
categories as in the previous work as shown in Figure 3:

28.4%

O Grammar or Typos

O Ambiguity

[0 Unrealizable Actions

O Overly Complex

[0 Non-problematic sentences

Figure 3. Distribution of Sentence into four Categories

o Ambiguous: Sentences with unclear references or multi-
ple interpretations.

o Complex/Over-descriptive: Sentences that are verbose or
syntactically complex.

o Unrealistic Actions: Sentences describing actions not
feasible in the code or game environment.

« Non-problematic: Sentences that are straightforward and
require minimal transformation.

Key metrics used for evaluation include:

e Success Rate: More than 76% of sentences were ef-
fectively converted using both methodologies I and II,
representing a substantial enhancement compared to 68%
of using methodology I alone. The success rate was de-
termined by assessing the converted sentence’s adherence
to both grammatical accuracy and semantic intent, as
required by the GameChangineer platform.

o Semantic integrity: It was verified through manual eval-
uation, which demonstrated that the modified phrases
preserved the original intent and meaning. The results
indicated that over 76% of the transformed sentences
retained their original meaning and intent, marking a
significant improvement over previous iterations.

o Handling Complex Sentences: An important aspect that
showed progress was the model’s capacity to process
sentences with intricate structures, such as conditional
clauses and multi-part instructions. The fine-tuned model
decreased the failure rate for these specific sentences by
21%, effectively resolving a significant drawback of the
previous method.



The evaluation results of Methodology II in Table III,
demonstrate a significant enhancement in handling the am-
biguous and complex sentences compared to Methodology 1.
The results from Methodology II, shows a higher total success
rate of 76.5%. The success rate for sentences classified as
Ambiguous and Overly Complex/Descriptive experienced saw
significant improvements. The introduction of an intermediate
JavaScript code transformation step in Methodology II appears
to have enhanced the AI’s ability to clarify and structure the
sentences, reducing the ambiguity and simplifying complex
descriptions effectively. This is reflected in the higher success
rates reported in these categories. This improvement suggests
that the structured nature of JavaScript code helps in clearly
defining the game mechanics, which can then be more easily
translated back into natural language, reducing ambiguities and
simplifying complex sentence structures.

Let us look at a successful transformation example. This
example depicts a game scenario in which several foxes chase
a rabbit attempting to acquire a diamond. The fundamental
mechanics of the game consist of unpredictable movement for
the rabbit and calculated movement for the foxes as they chase
the rabbit. If the rabbit reaches the diamond first, the player
wins. If any fox catches the rabbit, the game ends.

Original Game Idea: "The foxes will chase the rabbit, and the
foxes try not to let the rabbit get the diamond.”

Once the LLM has identified the key components and in-
teractions, it begins by transforming the natural language
description into code. This process involves breaking down
the game mechanics into discrete functions and variables. For
example:

o Defining Variables: The rabbit, foxes, and diamond are
defined as objects with specific properties like position
(X, y coordinates) and status (whether the rabbit has the

diamond).
let rabbit = { name: "rabbit",
position: { x: 0, y: O },
hasDiamond: false };

let diamond = {

}obs
let foxes = |

position: { x: 5, y: 5

4 { name: "foxl1l", position: { x: 0, y: O
P,

{ name: "fox2", position: { x: 0, y: O
Py,

6 { name: "fox3", position: { x: 0, y: O

bl

1;

TABLE III. SENTENCE CATEGORIZATION RESULTS

Category Sentence proportion | Success Rate
Grammar/Typing mistakes 22% 75.6%
Ambiguous Sentences 18% 70%
Unrealizable Actions 11.6% 50%
Overly Complex/Descriptive 28.4% 80%
Non-problematic sentences 20% 94%
Total Success Rate 100% 76.5%

o Creating Functions for Movement: The LLM generates

functions to move the rabbit randomly and to move the
foxes towards the rabbit.

Game Logic and Conditions:The LLM generates the
necessary logic to check if the rabbit has reached the
diamond or if a fox has caught the rabbit. This includes
conditions to end the game upon success or failure. The
resultant JavaScript code executes these mechanisms.

A part of the generated JavaScript code is mentioned
below:

// Function to check if a fox caught the
rabbit
function checkFoxesCaughtRabbit () {
foxes.forEach (fox => {
if (fox.position.x ===
rabbit.position.x
&& fox.position.y ===
rabbit.position.y)
{
console.log("fox caught the
rabbit!");
// Game over logic here

1)
}

// Function to check if the rabbit got
the diamond
function checkRabbitGotDiamond () {
if (rabbit.position.x ===
diamond.position.x
&& rabbit.position.y ===
diamond.position.y)
{
rabbit.hasDiamond = true;
console.log("Rabbit collected the
diamond!") ;
// Win logic here

}

Subsequent to code generation, the following phase in-
volves transforming it into a series of straightforward
subject-verb-object phrases, adhering to the allowed vo-
cabulary and established rules. These rules break the ac-
tions into default behaviors and interactions using if/when
statements.

The JavaScript code implements the game logic for the
interaction between the rabbit and the foxes through func-
tions including moveRabbit(), moveFoxes(), checkFox-
esCaughtRabbit(), and checkRabbitGotDiamond(). These
functions define the actions and conditions inside the
game, including the rabbit’s random movement, the
foxes” pursuing the rabbit, and the win/loss conditions
dependent upon the rabbit acquiring the diamond or being
captured by a fox.

To convert this into NL, the fundamental actions and
interactions have been simplified into straightforward
subject-verb-object phrases and presented as conditional
interactions. The movement Conditions for the rabbit
and foxes are articulated as follows: “The rabbit moves




randomly” and “The foxes move towards the rabbit.”
The winning and defeat criteria—determined by whether
the foxes catch the rabbit or the rabbit obtains the
diamond—are articulated as follows: "When the rabbit
touches the diamond, the player wins.” and "When a
fox catches the rabbit, the game is over” By following
this two-step process, we achieve the final output. ”Final
Output: There is a rabbit. There are 3 foxes. There are
2 diamonds. The rabbit moves randomly. The foxes move
towards the rabbit. When a fox catches the rabbit, the
game is over. When the rabbit touches the diamond, the
player wins.”

o A high success rate in effectively transforming intricate
descriptions into JavaScript code, demonstrating the Al’s
aptitude for logic-based programming.

« enhanced readability and clarity in the retranslated sen-
tences, with decreased ambiguity.

The transformation of ambiguous and complex natural lan-
guage into code and then back into refined language proved ef-
fective in clarifying the original intent and reducing linguistic
ambiguities. This dual transformation approach leverages the
structured nature of programming languages to impose clarity
and precision that natural language typically lacks. Despite
the improvements made, some challenges remain: The Al
sometimes struggled with sentences that contained parts of the
sentences, which could not be directly translated into code.

VII. CONCLUSION AND FUTURE WORK

This paper presents a method for converting free-form
natural language sentences into a sequence of unambiguous,
simplified sentences that can subsequently be translated into
machine-executable code. The utilization of LLMs has shown
promise in addressing the inherent difficulties brought about
by verbosity, ambiguities, complexity, and possible errors.
Our approach in methodology I, which combines aspects
of Question Answering, Sentence Reframing, and Sentence
Decomposition has demonstrated a notable capacity to handle
a wide variety of linguistic patterns and semantic complexities.
More than 68% of the 1000 problematic and non-problematic
sentences were correctly converted by the proposed method.

In our Methodology II, we convert complex and ambiguous
natural language input into JavaScript code. This code then re-
structures the original input into a series of clear, unambiguous
sentences. This approach has demonstrated an improvement
in the success rate. 76% of the user input sentences were
accurately transformed into a series of unambiguous sentences
using methodology I and methodology II.

There are areas for improvement, particularly in understand-
ing complex conditional relationships and refining the LLM
methodologies, aiming to reduce the incidence of halluci-
nations. Future work includes reducing LLM hallucinations,
adapting transformation rules dynamically, expanding to other
platforms, incorporating user feedback, testing scalability on
diverse datasets, and developing interactive educational tools
to foster computational thinking. Additionally, they draw atten-
tion to how Al-powered systems have the potential to greatly

enhance our comprehension and interpretation of words with
unclear structures, which is an important area of study in the
field of natural language programming.
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