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Abstract

We consider the problem of estimating the spectrum of a symmetric bounded entry (not necessarily PSD)
matrix via entrywise sampling. This problem was introduced by [Bhattacharjee, Dexter, Drineas, Musco, Ray
’22], where it was shown that one can obtain an en additive approximation to all eigenvalues of A by sampling

a principal submatrix of dimension w. We improve their analysis by showing that it suffices to sample
a principal submatrix of dimension 0(%2) (with no dependence on n). This matches known lower bounds and
therefore resolves the sample complexity of this problem up to log % factors. Using similar techniques, we give a
tight O(?lz) bound for obtaining an additive €||A||r approximation to the spectrum of A via squared row-norm
sampling, improving on the previous best O(e%) bound. We also address the problem of approximating the
top eigenvector for a bounded entry, PSD matrix A. In particular, we show that sampling O(%) columns of

A suffices to produce a unit vector u with u” Au > \1(A) — en. This matches what one could achieve via the
sampling bound of [Musco, Musco’17] for the special case of approximating the top eigenvector, but does not
require adaptivity.

As additional applications, we observe that our sampling results can be used to design a faster eigenvalue
estimation sketch for dense matrices resolving a question of [Swartworth, Woodruff’23], and can also be

combined with [Musco, Musco’17] to achieve O(1/€®) (adaptive) sample complexity for approximating the
spectrum of a bounded entry PSD matrix to en additive error.

1 Introduction

Computing the spectrum of a matrix is a fundamental problem with many applications. There are well-known
high-precision algorithms that run in polynomial time [Fra62; GV00], although any such algorithm is necessarily
at least linear time in the input size. As data grows larger, even linear algorithms can be prohibitive. This has
motivated a flurry of activity studying sublinear time estimation of problems in numerical linear algebra, for
instance for low-rank approximation [MM17; MW17; BW18; BCW20], kernel density estimation [CS17; Sim+19;
Cha+20], testing positive-semidefiniteness [BCJ20], and matrix sparsification [Bha+23; DZ11].

For eigenvalue estimation, variants of the power method have long been known to give good approximations
to the top eigenvalues and eigenvectors of A € R™*™ while revealing sublinear information about A, i.e., using o(n)
matrix-vector queries [RST10; MM15]. However it was only recently asked in [Bha+24] whether there are spectral
approximation algorithms for symmetric, but non-PSD matrices that run in sublinear time in the entry query
model. This is perhaps the most natural model if one imagines having an extremely large matrix saved on disk
for example. This may be in the form of a graph for instance, where one could be interested in obtaining spectral
information about its Laplacian or adjacency matrix. One could also imagine having a large collection of data
points with some kernel function that can be computed for pairs of points. Obtaining a rough spectral summary
of the associated kernel matrix is a natural step for data analysis, for instance, to spot low-rank structure in the
data. If data points are large or expensive to collect, or if kernel evaluation is expensive, it is natural to aim for
minimizing entry queries to the kernel matrix.

Of course, it is not reasonable to ask for sublinear time spectral approximation algorithms, without some
additional assumptions. For instance, our matrix A could contain all zeros but with a single large entry at indices
(,7) and (j,). Given only the ability to query entries, and no additional information, even distinguishing A from
the all zeros matrix would take Q(n?) queries.

We consider two assumptions that allow for improved guarantees. The first is an assumption on the structure
of A called the bounded entry model, which assumes that A has entries bounded by 1 in magnitude. This condition
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was introduced in [Bal+19] and studied further by [BCJ20] who showed that it was sufficient in order to test
for positive semi-definiteness with sublinear entry queries. Motivated by this result, [Bha+24] showed that all
eigenvalues of a symmetric bounded-entry matrix can be approximated using a sublinear number of queries,
simply by sampling a poly(l°§") sized submatrix.

Another way of getting sublinear sample complexity is to give the sampler additional power. In our case, as
in [Bha+24], we consider having access to a sampler that can produce a row index with probability proportional
to its squared row norm. Such samplers have been increasingly studied under the guise of “quantum-inspired”
machine-learning algorithms [Tan19; Che+22; GLT18; GST22|. Such samplers are practical to maintain when A
is stored entrywise. For example by using an appropriate data structure, they can be built in nnz(A) time, admit
O(logn) time sampling, and can handle entry updates in O(logn) time.

[Bha+24] showed that given a real symmetric matrix A with entries bounded by 1, one can sample a principal
submatrix of A of dimensions O(I’OI’;#) X O(I"’IYE#) and then output an additive en approximation to the
entire spectrum, i.e., to all eigenvalues of A. On the other hand, the best lower bound states that a principal-
submatrix algorithm must sample at least O(Z) entries of A.

There are two ways that one could hope to improve the sampling bound of [Bha+24]. First one could hope
to improve the e dependence in the dimension from O(1/€®) to O(1/€2). Several prior results suggested that this
might be possible. For example [Bha+24] showed that their ¢ dependence could be improved both when A is
PSD, and when the spectrum of A is flat. Concurrently [SW23] showed that one can obtain an € ||Al| additive
approximation to the spectrum of A by using a so-called bilinear sketch of A of dimensions O(1/€2) x O(1/€2). Such
a sketch would give en additive error for approximating all eigenvalues when A has bounded entries. Unfortunately
this sketch is Gaussian, and it seems difficult to directly adapt its analysis to obtain a sampling bound instead.

In this paper we close the gap between sketching and sampling for bounded entry matrices by showing that
uniformly sampling an O(1/€2) x O(1/€®) principal submatrix of A suffices to approximate all eigenvalues of A
up to en additive error, even when A is not necessarily PSD. In addition to obtaining an optimal e-dependence,
we note that our uniform sampling bound contains no dependence on n.

We also address the squared-row norm sampling model. Here we improve the analysis of [Bha+24] to show
that it suffices to query a principal submatrix of size O(%ﬁﬂ), compared to the O(R2L2E™ poly PE") dimensional
principal submatrix required by [Bha+24].

Our approximation model. We note that all of the guarantees considered in our work and prior work
focus on additive approximations to the spectrum. Ideally, one might like to aim for a relative error guarantee.
However as pointed out, by [Bha+24] for example, this is not possible for entry queries. Such an algorithm would
be able to distinguish the 0 matrix from a matrix with a single off-diagonal pair of nonzero entries, which clearly
requires (2(n?) samples. Indeed even with squared row-norm sampling, relative error is still too much to hope for.
In fact, even for sketches, approximating the top eigenvalue to within a constant factor requires Q(n?) sketching
dimension in general [LW16; Woo+14]. One can always turn such a sketching lower bound into a sampling bound,
even allowing for row-norm sampling - simply conjugate by a random orthogonal matrix to flatten all rows. Then
squared row sampling is effectively uniform, and so a sampling algorithm could be used to construct a sketch
of the same dimensions. These existing lower bounds are why we (as well as prior work) choose to focus on an
additive approximation guarantee.

2 Our Results
As discussed above, we are interested in the same type of guarantee as considered in [Bha+24] and [SW23].

DEFINITION 2.1. Let A € R™ ™ be a symmetric matriz. We say that a sequence M > o> .. > N, ds an additive
a-approzimation to the spectrum of A if |M(A) — Mi(A)| < « for all i € [n].

We consider the sampling algorithms introduced by [Bha+24], with some technical modifications. Our novelty

is an improved analysis which yields optimal bounds up to logarithmic factors. Our techniques apply both to

uniform sampling for bounded entry matrices, as well as to squared row norm sampling for arbitrary matrices.
Uniform sampling. For uniform sampling, we show the following result.

THEOREM 2.1. Let A be a symmetric matriz with all entries bounded by 1. Then Algorithm 1 with s > ce% log® %
(where ¢ is an absolute constant) outputs an additive en approzimation to the spectrum of A, with at least 2/3
probability.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

490



Downloaded 11/14/25 to 104.135.181.18 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

Eigenvalue Estimation

Model/Error guarantee Entry samples Authors
Bounded entries/ poly log n
Additive en O(==5) [Bha24]
O(Rolosry [Bha+-24]
O(%) Ours
Row-norm sampling/ poly log n
Additive € || A ; O(F ™) [Bhat24]
O( pOIYE}f’g ) Ours

Table 1: Comparison of our eigenvalue sampling results to prior work. The * indicates that the algorithm does
not query a principal submatrix. All algorithms here are non-adaptive.

Algorithm 1 Uniform Sampling

1. Input: Symmetric matrix A € R"*" with || 4[|, < 1, expected sample size s
2. If s>n,let S=1,

3. Otherwise, let S € R¥*™ be a (rescaled) sampling matrix which samples each row of A independently with

probability p = s/n and rescales each sampled row by \/% .

4. Return the k eigenvalues of ST AS, along with n — k additional 0’s.

The sampling algorithm used here is perhaps as natural as possible. We simply sample a random principal
submatrix of expected size s X s and appropriately rescale. We then output the eigenvalues of the sampled
submatrix, along with roughly n — s additional 0’s to account for the remaining spectrum of A. Our sampling
bound is an improvement over [Bha+-24] which requires sampling a principal submatrix of dimension % log % log®n
to obtain the same guarantee. We note that [Bha+24] was able to push their entry sample complexity down to
O(1/€%) by using a matrix sparsification result to subsample their principal submatrix. However the resulting
sample is not a principal submatrix, and it is unclear how to decrease the sample complexity further.

[Bha+24] also asked whether one can obtain an additive en guarantee to the spectrum of A with sample size
independent of A. Our result shows that this is indeed possible. This may seem surprising since [Bha+24] uses
a bound due to Tropp [RV07; Tro08], to control the contribution from the small-magnitude eigenvalues. This
bound contains a logn term that appears difficult to remove, and we use the same bound on the small-magnitude
eigenvalues. Nonetheless, we give a very simple bootstrapping argument to show that this logn dependence is
non-essential. Specifically, we show that it is possible to replace the logn with a log %, thus removing the n
dependence, at the cost of only additional log % factors.

Squared row-norm sampling. For squared row-norm sampling, we use our analysis to again give nearly
tight bounds.

THEOREM 2.2. Let A be an arbitrary symmetric matriz. Algorithm 2 with s > 6% poly log(n/€) outputs an additive
€||A|lp additive approzimation to the spectrum of A with at least 2/3 probability.

This is a substantial improvement over the sampling bound in [Bha+24], which requires sampling a principal
submatrix of dimension w to match our bound.

Again the most challenging part of our analysis is in controlling the outlying eigenvalues. Here [Bha+24]
again requires roughly 1/€3 samples, whereas we require 1/¢> samples by essentially the same argument as for
the case of uniform sampling. However on its own, this is enough to give improved bounds as the bottleneck in
their argument is in controlling the middle eigenvalues. The authors do not attempt to give tight ¢ bounds for
this part of their analysis, and note that their bound is likely not tight. However we observe that their analysis

here is surprisingly close to optimal. By optimizing their variance argument, we observe that their approach is

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

491



Downloaded 11/14/25 to 104.135.181.18 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 2 Row-norm Sampling

1. Input: Symmetric matrix A € R™*" along with its row norms, expected sample size s

2
2. Let S € RF¥*™ be a (rescaled) sampling matrix which for all i € [n] samples Binomial(s, %) copies of row
F

. s||As]|2
1 and rescales those rows by —\/117 where p; 1= ||||A|’|L|2.
T
F

3. Implicitly form the matrix A’ € R"*" defined by

0 1=]
(A)i; =130 i#jand A3 [4]2 <
A;; otherwise

A% A2
clog*n

4. Return the k eigenvalues of ST A’S, along with n — k additional 0’s.

sufficient to control the middle eigenvalues with optimal ¢ dependence.

We note that one cannot hope to do better than O(1/€*) queries for non-adaptive entry sampling algorithms.
Indeed a lower bound of [LW16] implies that learning the top singular value of a (non-symmetric) matrix G € R™*™
to € |G| additive error requires 2(1/€*) sketching dimension. One can symmetrize to G’ = [0, G; GT, 0] to show
that learning the top eigenvalue of G’ to €||G’||» additive error requires (2(1/€*) sketching dimension in general.

The hard instance G is Gaussian, so its entries are bounded by €2 |G ||?J up to log factors implying an Q(1/€*)
lower bound in the bounded entry model, even for sketches. The rows of G have equal norms up to constant
factors say, and so this implies that Q(l /€*) queries are needed even given access to a row-norm sampling oracle
that is accurate up to constant factors (which is all that our sampling algorithm requires).

Finally, note that while our results are not stated as a high-probability guarantee, it is easy to improve them.
Simply run the algorithm O(log %) times and take the median estimate for each eigenvalue ;.

Top eigenvector estimation. While our main results focus on eigenvalue estimation, in many situations,
one is interested not only in the top eigenvalues but also the associated top eigenvectors. As a step in this direction,
we show that for bounded entry PSD matrices, one can obtain an en-approximate top eigenvector by sampling
just O(1/€) columns of A.

The same guarantee could be achieved by [MM17], by using O(n/e) adaptive entry samples to obtain an
additive spectral approximation to A. Interestingly, in the bounded entry case, we show that no adaptivity is
needed.

Algorithm 3 Top Eigenvector Estimation

1. Input: Symmetric PSD matrix A € R"*" with ||A|, <1, column sampling probability p
2. Output: An approximate top eigenvector u € R™

3. Sample S € R"*™_ a column sampling matrix that independently samples each column of A with probability
p

4. Given S, compute AS by sampling the requisite columns of A
5. Use AS and S to compute the matrices ST AS and ST A2S.

zT ST A8z

6. Find z € R" that maximizes Zrcr 2"

ASz
. m 2t
7. Retu TASal,
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THEOREM 2.3. Let A € R™*" be a symmetric PSD with ||A|, < 1. Forp = =, with 3/4 probability, Algorithm 3
returns a unit vector u € R™ satisfying

uTAu> A\ —en,

where A1 is the top eigenvalue of A.

Faster sketching. [SW23] studied the problem of sketching the eigenvalues of A to €||Al| additive error,
and showed that this can be accomplished with a Gaussian sketch of dimension O(1/e*). Their sketch takes
roughly 6%712 time to apply, so if € were say n~ /%, this would be substantially slower than linear in the size of
A. Tt was left open whether faster sketching is possible here when A is dense. We observe that our row-norm
sampling analysis implies the existence of a sketch that runs in O(n?) time with sketching dimension O(1/€*).

2.1 Owur Techniques

Bounded Entry Matrices. We use the same algorithm that was introduced in [Bha+24], however we show
how to reduce the sample size without sacrificing in terms of the approximation guarantee. At a high level we
follow a similar approach of splitting the matrix A as A, + A,, into its “outer” and “middle” eigenvalues. The
matrix A, will zero out all eigenvalues of A with magnitude smaller than en. We will think of A, as containing
all the eigenvalues that we need to approximate, and A,, as adding some additional noise whose contribution we
must bound. For a bounded entry matrix A, note that ||A]|% < n2, so that there can be at most 1/e> nonzero
eigenvalues in A,. Thus it is at least reasonable to hope that an O(1/€?) sized principal submatrix is sufficient.

If S is the (appropriately rescaled) sampling matrix, then we can write SAST = SA,ST + SA,,ST. Note that
SAST is simply our principal submatrix sample of A.

Given this decomposition, the analysis naturally decomposes into two parts: showing that the eigenvalues of
SA,ST concentrate appropriately around the large eigenvalues, and showing that the perturbation from SA,,S7 is
small. Prior work [Bha+24] handles the middle eigenvalues nearly optimally (although we give a small improvement
here that we describe later). So our main technical innovation is to show that the eigenvalues of SA,ST concentrate
to within en of the eigenvalues of A, when S samples only O(1/€?) rows.

To see the main ideas, write the spectral decomposition of A, as A, = V,A,V.T, where V, contains the top
eigenvectors of A, (where “top” eigenvectors have eigenvalues at least en in magnitude). Consider the extreme
case where A, has a flat spectrum — say k copies of the eigenvalue A so that A, is the scaled projection AV, VL.
After applying S, we are left with the matrix ASV,V.J ST whose spectrum coincides with \V,Z ST SV,,.

This suggests showing that S is a subspace embedding for V,. Indeed, if S distorts by at most (1 + «) on V,,
then for all x we would have

cT(WVESTSV, e = A||SVez|2 = (1 £ ),

so that the quadratic form for SV,S7 is always at most A + o\ on unit vectors x, and is at least A — o\ on a
k-dimensional subspace. By Courant-Fischer this would be sufficient to show concentration of the k eigenvalues
of SV,ST to within en of those of V, as long as o < <.

In the worst case, A could be as large as n if A were the all-ones matrix for example. Also since we allow
negative eigenvalues it is possible to have up to 1/€* eigenvalues of magnitude en. This suggests that we choose S
so that it yields a (14 €)-distortion subspace embedding over a 1/e? dimensional space. Unfortunately, this would
require S to have at least 1/€> rows, which would only allow us to match the sampling bound of [Bha+24]. In order
to do better we observe similarly to [SW23], that large eigenvalues cannot occur many times in the spectrum. Since
A has bounded entries, its Frobenius norm is at most n, which means that there are at most n?/\? eigenvalues of
magnitude at least A. So we could hope to only require a 1+ (en/)\) distortion subspace embedding over a space
of dimension n?/\%, which can plausibly be achieved by an S with roughly (n%/A?) - (A\/(en))? = 1/€? rows.

Indeed, by using the “incoherence bound” of [Bha+24], we observe that the leverage scores of V, are sufficiently
small so that uniform sampling approximates leverage score sampling. This allows to argue that sampling roughly
1/€? rows is sufficient to obtain a 1 + (en/)) distortion subspace embedding on V), the eigenvectors with
associated eigenvalue at least A in magnitude. It is possible however that the spectrum of A is not completely
flat, and contains a range of outlying eigenvalues between en and n. To handle this, we ask for S to satisfy the
following deterministic condition:

S is a 1+ (en/)) distortion subspace embedding on Vs for all A > en.
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Perhaps surprisingly, we show that this simple condition is enough to approximate all eigenvalues of A, to
within en additive error.

While the above paragraphs motivate this condition, there are a few technical challenges. The first is handling
negative eigenvalues. If A were PSD, then the subspace embedding argument given above would essentially be
sufficient to show that SAST is at least Ay, — en on a subspace of dimension k, which would yield the right lower
bound on the kth eigenvalue of SAST. However we have to worry that the negative eigenvalues of A could bring
down this eigenvalue estimate. We indeed find a k-dimensional subspace on which SAST is at least Ay — en which
is mostly aligned with the top k eigenvectors of A. However we choose it carefully so as to avoid the large negative
eigenvectors of A. This is similar to the approach suggested in [SW23], however their argument crucially relied
on S being Gaussian so that the positive and negative eigen-spans of SAST are nearly orthogonal. Our argument
shows that this is not necessary; the simple deterministic guarantee stated above suffices.

The other main challenge is upper bounding the top eigenvalue of SAST (which turns out to be sufficient for
upper bounding all eigenvalues). [SW23] gave a bound on the top eigenvalue of a Gaussian matrix with non-identity
covariance. Unfortunately in the sampling setting, we cannot rely on Gaussianity. Instead, we show that that the
same deterministic subspace embedding condition given above that was natural for lower-bounding eigenvalues
also suffices for obtaining the necessary upper bounds on the eigenvalues. The proof works by first partitioning
eigenvalues into level sets. It is simple to prove the desired upper bound on the top eigenvalue of SAST if A were
restricted to be just the top level set. Then by carefully keeping track of the interaction between each pair of level
sets, we are able to show that the additional level sets do not add much mass to the top eigenvalue.

Finally we remove the extra logn arising from the bound on the middle eigenvalues [Bha+24]. The idea is
simply to observe that after applying the uniform sampling algorithm once, we are again left with a roughly
$ X s matrix, whose spectrum we would like to approximate to additive O(en) error. After rescaling, the entries
of this matrix are bounded by n/s, and so we can now apply the uniform sampling algorithm again to obtain an
O(e-%-s) = O(en) additive approximation to the spectrum of the submatrix, this time by sampling O(El2 poly log s)
rows. Note that logn is now replaced with log s which is potentially much smaller. If needed, this procedure can
be repeated until the dependence on logn is removed.

Squared row-norm sampling. As with uniform sampling, our algorithm is based off the algorithm of
[Bha+24], although with a tighter analysis. Their result requires that one samples a principal submatrix of
dimension roughly s x s with s = O(% polylogn) in order to obtain an additive € || Al approximation to the
spectrum of A. Notably, their algorithm does not simply return the spectrum of the sampled submatrix but instead
judiciously zeros out certain entries in order to reduce variance. To see why this is necessary, it is instructive to
consider the case where A is the identity matrix. If one samples a 1/¢? sized principal submatrix and rescales it
by ne?, then the resulting matrix will have eigenvalues of size e2n. This would be fine if one wanted to achieve
en additive error. However, for €||A|| » = €y/n additive error, this is unacceptable. Fortunately, [Bha+-24] gives an
entry zeroing procedure which zeros out most diagonal entries as well as entries in particularly sparse rows and
columns. We are able to employ their zeroing procedure essentially as a black-box.

We do not modify their zeroing procedure, but instead improve their bounds for both the outer and middle
eigenvalues of the sampled submatrix. We use the same decomposition SAST = SA,ST + SA,,ST as for the
uniform sampling analysis discussed above, where S now samples each row i with probability p; proportional to
its squared row norm, and rescales by 1/,/p;. Our task is two-fold. We first show that the eigenvalues of SA,ST
concentrate within €||A|| » to the eigenvalues of A,. Then we bound the operator norm of SA4,,S” by €|/ Az, and
so Weyl’s inequality shows that the eigenvalues of SAST are within O(en) of the eigenvalues of A.

Bounding the eigenvalues of SA,ST is similar to the uniform sampling case. Squared row-norm sampling
provides an approximation to leverage score sampling, which is sufficient to obtain the subspace embedding
guarantees that we require.

Bounding the operator norm of SA,,ST is what required [Bha+24] to have a 1/¢® dependence. It turns out

that a fairly simple technical improvement to their argument improves this to the optimal 1/e? dependence, at

2
least when p; := % < 1, so that the sampling probabilities for each row are all at most 1. Their argument
F

contains a technical fix for the situation where p; > 1, however we do not need this. Instead we can duplicate
the rows with large norm, say N times, while scaling them down by a factor of 1/ V/N. This does not change the
spectrum, but reduces to the situation where all p;’s are at most 1. The advantage of this is that rows of A with
large norm can now be sampled multiple times if the value of p; dictates that this should occur. We note that one
could likely also sample s rows i.i.d. from the squared-row-norm distribution to achieve a similar result.
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Top eigenvector estimation. For PSD A € R™"*™ with entries bounded by 1, we are interested in producing

a vector u that nearly maximizes the Rayleigh quotient “uTT"L“. In the same spirit as our eigenvalue estimation

results, we are willing to tolerate en additive error, so we would like to find u that satisfies “uTTfL“ > A —en.

Perhaps the simplest attempt would be to choose a column sampling matrix S and form ST AS. We now
have access to the Rayleigh quotient on the image of S, and so we could choose u € Im(S) to maximize “;T“L“.
Unfortunately it is clear that this doesn not work. For example consider the situation where A is the all ones
matrix and S samples k columns. Then A\; = n, but u is supported on k coordinates which means that the
Rayleigh quotient is at most k. Even to obtain n/2 additive error, we would need to set ¥ = Q(n), meaning that
we would sample a constant fraction of A’s entries.

Searching for u € Im(S) is not good enough. A better approach would be to optimize the Rayleigh quotient
over Im(AS). Indeed if we could implement this approach it would work. The issue is that computing the Rayleigh
quotient for such U would require us to calculate expressions of the form

(ASz)TA(ASz) 2TSTA3Sx

(ASz)T(ASz)  xTSTA2Sz’

Unfortunately AS does not give us enough information to calculate the numerator. However it does give us enough
information to calculate the denominator. This suggests that we should instead optimize u over Im(Al/ 29). Indeed
this only requires us to compute quantities of the form

zTSTA%Sx

2T STASz’
which we can do if we have AS. We show that this works. That is, for some z, the generalized Rayleigh quotient
above is at least \; — en. Thus if z is optimal, then we can take A'/2Sz as our approximate eigenvector. Given
x, we do not have a direct way to compute A'/2Sz. However we can compute ASz. This can be thought of as
applying an additional half iteration of power method to A'/2Sz, and so as we observe, the Rayleigh quotation
for ASxz will be at least as large as for A/2Sz. Thus our algorithm will ultimately return ASz.

Fast eigenvalue sketching. Previous work, [SW23] considered the problem of sketching the eigenvalues of

a matrix A up to €||A|» additive error. While this sketch achieved the optimal O(Z) sketching dimension, it

requires roughly 2—22 time to apply when A is a dense n X n matrix. We can use our sampling analysis to obtain a
faster sketch.

The idea is to rotate by a random orthogonal matrix that supports fast matrix multiplication. Specifically we
take a matrix U which is a Hadamard matrix composed with random sign flips and compute U” AU. This flattens
the row-norms of A so that one can simply take the sketch to be a random principle submatrix of UT AU. Then
applying our analysis for squared row-norm sampling shows that the sketch can be used to obtain an additive
€||A|| approximation to the spectrum of A.

2.2 Additional Related Work

Spectral density estimation. Recently, spectral density estimation was studied by [BKM22], for normal-
ized graph Laplacians and adjacency matrices. This result measures error with respect to Wasserstein distance
for the (normalized) spectral histogram, and queries Q(n/ poly(€)) entries of A, so is not directly comparable to
our setting. A related work [Coh+18], achieves the same type of Wasserstein guarantee but with exp(1/€) queries
and access to a random walk on the underlying graph. Since we aim for poly(1/¢€) queries this is again not directly
comparable to our setting,.

Matrix sparsification. [Bha+23| studies the problem of deterministically constructing a sparsifier of
bounded entry matrix A by using a sublinear number of queries. Their approximation result would yield an
additive en approximation to all eigenvalues but requires Q(n/e?) entry queries. Similarly, for bounded entry PSD
matrices they could achieve the same Q(n/e?) bound for approximating the top eigenvector of a PSD matrix, but
this is worse than what we require for sampling by a factor of 1/e.

Low rank approximation. A line of work [MW17; BW18; BCW20] considered the problem of constructing
low-rank approximations to PSD matrices A using a sublinear number of queries. Notably [BCW20| gave an
algorithm with optimal O(kn/€) query complexity for obtaining a PSD rank k approximation A to A satisfying

||A — A”F <(1+¢[|A-Awllp
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where Ay is the optimal rank k approximation of A. For the case k = 1, this is related to the top eigenvector
approximation problem that we consider. In a similar spirit, [MM17] gives an additive spectral approximation to
A which also implies our top eigenvector bound. However notably these algorithms are all adaptive, whereas we
are interested in algorithms that sample non-adaptively. Thus the techniques involved are quite different from
what we consider. Additionally these algorithms all require at least an extra O(log %) overhead compared to our
result.

Sketching. In a somewhat different setting to sampling, eigenvalue sketching was previously studied by
[SW23] where an optimal O(1/€*) sketching dimension was given for obtaining € || A||  additive error. Previously
[AN13] gave a sketch for the top eigenvalues. By rearranging their bounds, this implies an O(1/€%) for sketching all
eigenvalues to €||A| » additive error; however this only applies to PSD matrices. Finally, we note the question of
sketching the operator norm was considered in [LW16]. These results imply an Q(n?) lower bound for sketching the
top eigenvalue to relative error, which justifies the focus on additive error for sketching and sampling algorithms.

3 Preliminaries

3.1 Notation Throughout, we use ¢ to denote an absolute constant, which may change between uses. The
notation O(f) means O(f log® f) for some absolute constant c.

Unless otherwise stated, the matrix A always refers to a symmetric (not necessarily PSD) matrix. We use
the notation Ay to denote optimal rank k approximation to A. That is, A ) minimizes ||A — Ay || p over rank
k matrices, where || Az is the Frobenius norm. In other words, Ay is A with all but its k largest magnitude
eigenvalues zeroed out. The notation A_;) means A — A,. For a matrix A, the notation A; denotes the ith
row of A. A norm without subscripts is always the ¢; norm for vectors and the operator norm for matrices. We
sometimes denote the eigenvalues of a matrix A € R™*™ as A1(A) > A2(A) > A,(A). The notation Apax(A) is
equivalent to A\;(A). We use ||A||., to denote the largest magnitude of an entry in A. When we say that A has
“bounded entries” we will always mean that || A| < 1.

3.2 Basic Definitions We recall the definition of a subspace embedding embedding in the form that we will
use it here. This definition is standard in sketching literature (see [Woo+14] for example).

DEFINITION 3.1. We say that S € R*¥*™ is an 1 + € distortion subspace embedding for X € R™ ™ if for all
v € R™,
(1 - o) 1 X0|* < ISX0v]* < (1 +¢€) | Xo]*.

‘We will also use the notion of leverage scores early on in order to show that the subspace embedding guarantee
that we require is satisfied. We recall the basic definition here.

DEFINITION 3.2. Let X € R"*? be a matriz. The leverage score for row i of X is defined by
7 =el X(XTX) XTe;,
where (XTX)' denotes the Moore-Penrose pseudo-inverse of XTX and e; € R™ is the ith standard basis vector.

3.3 Incoherence Bound We use an incoherence bound from [Bha+24] in order to control the leverage scores
associated to the top eigenvectors. Roughly these bounds say that eigenvectors corresponding to large eigenvalues
must be spread out, and moreover that the supports of such eigenvectors cannot overlap much with one another.
For completeness, we supply a short proof here.

LEMMA 3.1. Let A be a matriz and let A, denote the projection of A onto the eigenvectors with eigenvalue at
least o. Write A, = V,A,V.I where V, has the eigenvectors of A with eigenvalue at least  as its columns, and
A, is diagonal matriz containing the associated eigenvalues. Then

14:]1”

2
IVa)ll? < 225

Proof. We have AV, = V,A,. Therefore
IAVL)ll? = |(Voho)ill® > o [|(Va)ill?,

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

496



Downloaded 11/14/25 to 104.135.181.18 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

since the diagonal entries of A, are all at least & in magnitude. On the other hand,
I(AVL)ill* = | AVo||* < (| 4ill*,
since V,, has orthonormal columns. The lemma follows from combining these two bounds. O

3.4 Leverage Score Sampling We use the following leverage score sampling bound, which is a consequence
of a matrix Chernoff bound [Kyn18; Trol2].

THEOREM 3.1. Let V € R™*?, and form a sampling matriz S by including each index i with probability p; and
rescaling by \/LPT'

Let T; denote the leverage score for row i of V. If p; > min(e%n log %, 1), then with probability at least 1 — ¢
we have (1 —e)VTV < (SV)T(SV) X (1 +€e)VTV.

3.5 Approximate matrix product The following observation was Lemma 1 of [CNW15]. We supply a short
proof here for completeness.

LEMMA 3.2. Let A and B be real matrices and let [A|B] be the concatenation of A and B. Let S be an e-distortion
subspace embedding for [A|B]. Then

|ATSTSB — ATB|| < €|l Al ||B]|-
Proof. Let x and y be unit vectors of appropriate dimension such that
|ATSTSB — ATB|| = z"(A"STSB — A" B)y = (SAwz, SBy) — (Az, By) .
Since S is a subspace embedding for [A|B], it preserves the inner product (Az, By) up to additive error:
|(SAz, SBy) — (Az, By)| < €| Az|| ||Byl| < e[ A]l |B] -
The lemma follows. |

Combining with Theorem 3.1 above immediately gives a generalization of Theorem 3.1 for constructing
approximating matrix products. This will account for most of our use cases for leverage score sampling guarantees,
so we record this fact here for easy reference.

3.6 Additional facts

PROPOSITION 3.1. Let A be a symmetric matriz. Let P be a projection onto the span of a subset of A’s
eigenvectors. Then ||(PAPT),|| < || Akl where Ay is the kth row of A.

Proof. Using the spectral decomposition of A, we can write A =Y, u;ul and PAPT =} ; vj'ujT where the u;’s
are mutually orthogonal, and where the v;’s are a subset of the u;’s. Then

14&]1* = || Aex|I®

> (uiyex) s

%

= llwill® [, ex)?
A
2
>3 llosl* 1w, ex) P
i

2

= ||[(PAPT)||.
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4 Our subspace embedding condition

In the next section we obtain both upper and lower bounds on the outlying eigenvalues. Importantly, we show
how to obtain these bounds using only subspace embedding guarantees. The leverage score estimates will show
that we can use a sampling procedure to construct the desired subspace embeddings.

We will let S be our sampling matrix throughout. The key subspace embedding property that we require is
as follows.

ASSUMPTION 4.1. ForallA > L, S is a min(L/\,1/10) distortion subspace embedding on the span of eigenvectors
of A with associated eigenvalue at least \ in magnitude

To streamline our analysis, we use this assumption in full generality. One should think of L as representing
the threshold defining the outlying eigenvalues. We will later specialize to L = en and L = € ||A|| . Our first step
is to show that Assumption 4.1 is realized by our sampling schemes. Then we treat this property as a black-box
for the remainder of the argument, and show that it implies an additive O(L) spectral approximation guarantee.

4.1 Realizing Assumption 4.1 As a consequence of the incoherence bound, and leverage score sampling
guarantee, we show that a version of Assumption 4.1 is achieved both for uniform sampling and row sampling.
For uniform sampling we will assume that A has bounded entries and set L = en. For row-norm sampling, we will
make no assumptions on A and set L = €||A| . In both cases, we will need our sample to have size roughly 6%

LEMMA 4.1. Let A € R™*™ have all entries bounded in magnitude by 1. Let S be a sampling matriz which samples
each row of A with probability s/n. Then for s > 5 (log log% + log %), S satisfies Assumption 4.1 with L = en.

Proof. Consider a fixed value of )\, and let V5, € R"*¢ be an orthonormal matrix whose columns are the
eigenvectors of A with associated eigenvalue at least .
By Lemma 3.1,

IWorl? < 55 14l < 35,

since A has bounded entries. Since V> ; has orthonormal columns, this says that all leverage scores of V> are
at least n/\2.
Let p = s/n, and set € = $(L/A) in Theorem 3.1. This shows that if

A2 n d n d 8 d
p> 875 (55) g =8 galoe s = e
then Sisaa 1(L/ )\) distortion subspace embedding for V>, with probablhty at least 1— 4. Note that ||A|| »<n?
so A has at most 1/¢2 elgenvalues that are at least en. This implies that d < Z so it suffices to have p > - log 21 5
and hence to choose s > 5 log
In order for Assumptlon 41 to hold, it suffices to have S be a 1/10 dlstortlon embedding for V, a 5 L distortion
embedding for V>m, a 4 distortion embedding for V>g¢,, and in general a 2r+1 distortion embedding for V>aren
for r =0,...,|log, J By the same calculations as above, we can achieve the 1/10 distortion embedding for V'
using a samphng probablhty of p > —£log ;. Then replacing & by §/|log, 1| and taking a union bound over all
r yields the lemma.
0

The following lemma gives the analogous result for squared row-norm sampling. For technical reasons, we
give a version that will allow some entries of A to be zeroed out prior to sampling, although this does not change
much.

LEMMA 4.2. Let A € R™*™ be arbitrary. Let S be a sampling matriz which samples each row index i with

probability p; = min (s“’%lny, ) Let A’ be the matriz A, but possibly with some of its entries replaced with 0.

Then for s > 5 (loglog  + log %), S satisfies Assumption 4.1 for A" with L =€ ||A|| .

Proof. Consider a fixed value of A\, and let VI, € R™*4 be an orthonormal matrix whose columns are the
eigenvectors of A’ with associated eigenvalue at least A.
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By Lemma 3.1, . .
2 2 2
IVErall™ < 5z 14007 < 55 14l

Set e=1(L/X) = %w in Theorem 3.1. This shows that if

. || A:1? i (B4 d
; > min | 83— log — 1 min | ———-log -,1 ],
g ( ( o) Es 2lalt s

then S is a a 3(L/)) distortion subspace embedding for VL, with probability at least 1 — d. Note that A’ has at
most 1/€? eigenvalues that are at least €||A|| . This implies that d < % so it suffices to have

2
p; > min 814l logL 1
T \ean e )
and hence to choose s > 5 log

In order for Assumptlon 41 to hold, it suffices to have S be a 1/10 dlstortlon embedding for V', a 5 L distortion
embedding for V>ep, a 3 L distortion embedding for V> , and in general a 2r+1 distortion embedding for V>2r

2en
forr =0,..., |log, 1]. By the same calculatlons as above, we can achieve the 1/10 distortion embedding for V'
using a samphng probability of p > - log 5. Then replacing by J/|log, 1J and taking a union bound over all
r yields the lemma. |

5 Outlying Eigenvalue Bounds
Using Assumption 4.1 we show how to obtain both upper and lower bound on the outlying eigenvalues of A.

5.1 Lower Bounds

PROPOSITION 5.1. Let W1 and Ws be subspaces of R™, and let P be the orthogonal projection onto Wy. Let = be

a nonzero vector in Wy. Then
| P|| < (wy, wa)

[z~ wiewr,waeWe [|wi]| [Jwel”
Proof. For wi; € Wy and wy € Wy we have

e (010) (g Puy) (@, Po) _ |Pa]
5% Tl Tall = 5% Torll TPunl = Tall TPl ~ o]

|

PROPOSITION 5.2. Let A be symmetric and x and h be vectors. Suppose that ||z|| > 1 — a and ||h|| < o with
a <1/4. Then
(z + h)TA(z + h) B 2T Az

2 2
[l + Rl [l

<8l4] e

Proof. Let F(z) = ”;TT“;”” be the Rayleigh quotient. Recall that its gradient is given by

T
VF(v) = 22<A—UA2UI>U
o] [[o]
2 vAv, oT Av 4]
5|4 I\ vl < Al + |—51I|| | <47
vl Toll® [lofl || o[> [[o]]

This together with the hypotheses implies that F' is (8| A||)-Lipschitz on a ||h||-neighborhood of z, and the claim
follows. a0

Then
IVE()| <
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LEMMA 5.1. Let IT have orthonormal columns and suppose that S is an a-distortion subspace embedding for I1.
Then for all nonzero v,
(STIv) T STITIT ST (STIw) S

5 >1—oa.
|| STIv||

Proof. The numerator above is equal to ”HTSTSH’U”2. By Cauchy-Schwarz,

(v,I7STSMv)* _ || STIo|*

7 s sm10]” > LB
[[v]] [[v]l

2
So the fraction in the lemma is at least % Since S is an « distortion subspace embedding for II, we have

ISTIo||* > (1 = o) |To]|* = (1 — o) |Jo]|*,

and the lemma follows.
1]

LEMMA 5.2. Let U and II have mutually orthonormal columns and let M be symmetric. Suppose that S is an
a-distortion embedding for [U|I1], where o < 1/7. Let P be the orthogonal projection onto the column space of SU
and let P+ = I — P. Then for all vectors x, P STz is nonzero and

(P+STz)" M(P+STlx)  (STx)” M(STlx)
| PL-STIz|? 15Tz |”

< 10a||M]) .

Proof. We first show that P+STIz is close to SIIz. By Proposition 5.1 we have

| PSTIa| (STly, SU2) yTITSTSU Iyl I 117 S7 s |

———— <maxX —— 7~ = MaX ———————— < max
ISz — w= ISy [[SUz||  w= ||SIy|| |SUz|| = vz ||SHy| [|SUZ]|

By our hypothesis that S is a subspace embedding, along with Lemma 3.2,we bound the operator norm in the
numerator by
|O7sTsU|| = |n"STSU - nTU|| < ||| |U]| = o

For the denominator, the subspace embedding property implies that
(1—a)2 |yl < [ISTy|| < (1+ )2 |ly||

and similarly for ||SUz|| and || SIIz|| . Plugging into the bound above gives that for all unit vectors z,

(67

PSTIx|| <
|| S CE” — (1-&)1/2(1—(1)1/2

|STz|| < %(1 +a)/? < 1.25q,

for @ < 1/7. By the triangle inequality,
0 = || PSTlz + P+ STz — SMz|| > || P+ STz — SIz|| — || PSTz|

and so ||PlSHx — SHwH < 1.25a for all unit vectors x.

Note that ||STIz|| > (1 — a)'/?||z|| > (1 — ). To apply Proposition 5.2 we need 1.25a < 1/4, which is true
by hypothesis.

So by Proposition 5.2 we have

(P+STz)T M(P+STiz) B (STiz)T M (STiz)

< (8-1.25)a | M| = 10 || M|,
| PLSTLP STzl ( e[| M| M|

as desired. |
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LEMMA 5.3. Let A € R™*"™ be symmetric, not necessarily PSD. Assume that all nonzero eigenvalues of A are
at least L in magnitude. Suppose that S satisfies Assumption 4.1. Then for all k with A\(A) > 0 we have
Ae(SAST) > Ap(A) — 51L.

Proof. Suppose that the kth largest eigenvalue of A is A > 0. We will show that SAST is at least A — O(L) on a
k-dimensional subspace W, which will imply that A\x(SAST) > X — O(L).

Towards this end, decompose A = A, — A_ into its positive and negative parts. Since A, has k eigenvalues
that are at least A\, we can write A = AIIIIT where the columns of II are the k largest eigenvectors of A, (chosen
to be orthonormal when there are duplicate eigenvalues). Let U>, have as its columns the eigenvectors of A_
with associated eigenvalue at least A\, and similarly for U . Let P be the orthogonal projection onto the column
span of SU>» and set PL =T — P. As suggested by the previous lemma, we choose our subspace W to be the
column span of P+STI.

Write f(A) := min(1/7, L/)) and recall that S is an f(A)-distortion subspace on the span of the eigenvectors
of A with associated eigenvalue at least \ in magnitude, in other words on [II|U>,]. Lemma 5.2 applies and gives
that for all z,

PLSTz)T(SOnr sT)(pLSII STIz)T (ST ST)(SII
( 2 ||(PlSHa;||2)( 2) 5 Bl) (”SHwHQ JOTD) _105(x) | smTs7 |
> (11— f(N) —10£(x) ||STIT" ST ||

where we used Lemma 5.1 as well as as the observation that
|sTm” ST = |[mTSTSH|| < 1+ fF(N)Y2 < A +1/7)2 < 107,
by the subspace embedding property. Also note that the dimension of W is k since Lemma 5.2 also states that
P~ STI has trivial kernel. Now for w € W, with ||w|| = 1 we have
wl'SA, 8w > M ST STw = A |I7STw|* > A1 - £(N).

Next we study w” A_w where w € W is a unit vector. We first split the spectral decomposition of A_ into
two pieces as follows:
A_ = UsxAs\UZ, + UaxA\US,.

Then we have
(5.1) wl(SA_ST)w = wT SU> \A5 UL, STw + wT SUNA UL, STw
(5.2) = W SUAAAUT, S w,
where the second inequality is because w is orthogonal to the image of SU>, which comes from the definition of
w.

‘We now partition the eigenvalues into approximate level sets. Let Vi have as its columns the columns of U,y
with associated eigenvalue in [2~1L,2*L). Then we have the spectral bound

UaAanUZ, < LV + AD)WVy +...+ (2" L)V, V,],

where r is [logy(A/L)].
We would like to bound w? SV, V,I'STw. Write w = P+STIz for some z. Then similar to our application of
Lemma, 5.2 above,

(P-STa)T (SR VT ST)(P+STa) _ (STa)T (SVAVT'ST)(STIa)
| P+ STIz||? a | STz |

+10f(N) ||SVaVi S| -

Since S a 1/7 distortion embedding for A and in particular Vi, we have

|SViviEs™| = |V'S" V]| = max, |15Vial® <

3| oo
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For the first term above,

(STz)T(SVi VI ST)(STx) ||V,;-FSTSHz|| ||VTSTSII|| |z
| STz || IStz ~ | STz ||

Since S is an f(2*¥~!L)-distortion subspace embedding for [V} |II], we have
Vil sTst|| < f(257'L).
Also ||STIz||® > g ||z||* again since S is a subspace embedding for II, and so

(PLSTLz)T (SV,, VT ST) (P STiz)
| PL STz ||?

< TrEFIL? 11250,
In particular, for w € W a unit vector,
W (SViVT ST)w < g FEFLY? + 12 ().

Plugging into (5.1) above gives

wT(SA_ST)w = w SUNANUZ, S w
< TS (QLVE +@LBVS + ...+ (@' L)V, V) $Tw

= i(ZkL)wTSVkaT STw

< Z(sz ( f(2*L)* +12 f()\)) :
< 2(2’c (6 sz) + 12?)

= L; (62_k + 2’“%)
<_-L+12L Z 2L

< —L+48L,

DN DN
=

since 2"L < 2.
Putting the pieces together,

wTSASTw = wTSALSTw —wT SA_STw
2 M1 — (X)) —50L

L
>A({1-—=)—-50L
> < )\) 50
= A—51L,
for all unit vectors w € W. Since the dimension of W is k, this implies that A\z(SAST) > A —51L as desired. ]

5.2 Upper Bounds

LEMMA 5.4. Suppose that the nonzero eigenvalues of A are all at least L and let \y = Anax(A). Suppose that S
satisfies Assumption 4.1. Then Amax(SAST) < A1 + cLlog %
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Proof. Let A= UAUT be the spectral decomposition of A.

We partition the columns of U based on the eigenvalues. For i = 1,...,r with r = [log, %1, let U®) consist of
the columns of U corresponding to eigenvalues in (A\;27%, A;27*!]. Define A(®) to be the diagonal matrix consisting
of the associated eigenvalues.

Let j < 4 be an arbitrary index. Note that if S is a subspace embedding for U®) then S is also a subspace
embedding for UYA® with the same parameters.

By Assumption 4.1, S is a L/(A\27%) = 2°L/\; distortion subspace for [U®|U)]. Therefore we have

H (SUu)(A(i))m)T (SU(j)(A(j>)1/2) _ (U(n(A(i))l/z)T (U(n(Au))l/z) < 2/\_L HU(D(A@))l/zH HUU)(AU))U?H
1

20L . ;
< A, 2L 1/2 A2 I+ 1/2
< 2L oua )

—2Lv2 .
For i > j, U™ and UY) are orthognal to one another, so

“(SU(i)(A(i))l/z)T (SU(j)(A(j))l/Q) < 2L\/§¢_J~‘

Therefore for all 7 # 7,
<2rv2"

’ (SU(i) (A(i))1/2)T (SU(j)(A(j))1/2)

Similarly for the ¢ = j case, we have

H (5T A(z'))l/z»)T (SUO@D)2) - (U6 A(z’))l/z)T (o) <o,

which by the triangle inequality implies that

H(SU(")(A("))”Q)T (500 2) [ < 227+ 4oL

Now let = be a unit vector, and partition the coordinates of z into pieces () corresponding to the
decomposition of U into U(*’s. Then

2
=3 H ST (A©)1/24,00)

“5'UA1/2a,H2 - “Z SUO (AD)/250)

? 1o 3 < SUD(ADYL/240) gy A(j))l/zw(j>>
1<j

By the bounds above, the cross terms are all bounded by L\/ili_j ! H z® || ||,7;(J') H and the diagonal terms are

bounded by (A2~ + L) |z ||”.
Thus

o] < 35 [t o [0 =]

r
i=1

2] 23 0y a0

r . 112 i—7 . .
=L+ E A 270! Hx(’) + 2L 5 \/§| 7l Hx(’) H:E(J)H .
i=1 i<j

Let M be an r x r matrix defined by My 3 = Ay, M;; = A\ /2 fori > 1,and for i # j M; j = M;; = Lv/2 := a.

Comparing the entries of M with the coefficients above gives

HSUA1/2x||2 < L+]|M|.
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To calculate ||M]||, note from the symmetry of the last » — 1 coordinates that vT Mv is maximized for a v of the
form [a,b/v/r — 1,b/\/r —1,...b/+/r — 1], where a? + b% = 1. For this choice of v, we have

vT My = M\a? + 200/ — lab+ (M1 /2 + (r — 2)a)b?.

So the operator norm of M is the same as the operator norm of

T avr—1 A1/2+a(r—2)|°
Now suppose that A; + T is an eigenvalue of M’. From the characteristic equation,
T(T + X\ /2 —a(r —2)) = a®(r —1).

We claim that A\1/2 — a(r — 2) > A;/4 when A\ > CL for an absolute constant C. To see this, note that
the desired bound is implied by A1/4 > ar. Note that o = LV2r < \/5\/L_)\1 , so it suffices to check that
A1/4 > v/2v/IXi(logy(Ai/L) + 1), or equivalently \/A;/L > 4v/2(logy(M\1/L + 1). The latter is true for large
enough C, since we have the real inequality /z > 4v/2(log,(z) + 1) for large enough z.

Then for A\; > CL we have

T(T+M/2—-a(r—2) 2T(T+ M /4) 2 Thi/4,
while on the other hand o2 (r — 1) < 2L)\;7. So we conclude that
T)\1/4 < 2L)\17‘,

which implies that T' < 8Lr = 8L[log,(4*)]. This in turn gives the bound
HSUA1/2xH2 <+ 8L[10g2(%ﬂ.
But  was arbitrary so
|SAST|| = “A1/2UTSTSUA1/2H - HSUA1/2“2 <+ 8L[log2(%)]

whenever A\; > CL. The lemma follows after adjusting constants.
O

LEMMA 5.5. Let A € R™™ with \;(A) > 0. Suppose that S satisfies Assumption 4.1 for A. Then \;(SAST) <
Xi(A) + Llog 24,

Proof. First note that we may as well prove this result for PSD A, since \;(SAST) < \;(SA,ST), where A, is
the PSD part of A. So we assume from now on that A is PSD. Let A(_; denote A with the top i eigenvalues
zeroed out, and let S; denote the orthogonal complement of the span of the top ¢ — 1 eigenvectors of A. Note that
S; has dimension n — i + 1. By the min-max theorem,
Ai(SAST) = X\ (AY28T S AY/?)
= min max z7 AV28TSAY ¢
TCR"™ €T
dim(T)=n—i+1 [lz]=1

< max a2TAY28TSAY 2y
€8, [|z||=1

= max 27AY?STSAY? 1
z€S;,|lz]=1 ’ (=4

< max xTA}f)sTSAl_/?x
z||=1 ¢ v

= Amax (4,5, STSAYE)
= Amax(SA(—5ST).
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It is clear that if Assumption 4.1 is satisfied for A then it is satisfied for A._;) as well. Thus the previous
lemma applies and gives

Ai(SAST) < \i(A) + Llog #

as desired.
O

5.3 Two-sided eigenvalue bound. By simply combining our upper and lower eigenvalue bounds, we obtain
a two-sided bound that we will use throughout.

THEOREM 5.1. Suppose that S is such that Assumption 4.1 holds for A where all nonzero eigenvalues of A are
at least L in magnitude. Then for all i with A\;(A) # 0 we have

A
|\ (SAST) — X\;(A)| < Llog ¥

Proof. Lemma 5.5 and Lemma 5.3 yield the desired bound for all ¢ with A\;(4) > 0. To obtain the analogous
bound for the negative eigenvalues, simply apply these Lemmas to —A. 0

6 Bounded Entry Matrices
As in [Bha+24], we decompose A corresponding to its “middle” and “outlying” eigenvalues.

DEFINITION 6.1. Let A be a symmetric matriz with spectral decomposition A = UAUT. Let L be the parameter

in Assumption 4.1. Set A, to be A with all entries smaller than L zeroed out, and set A,, = A — A,. Then we
define A, = UAUT and A,, = UA,,UT.

Throughout we will slightly abuse notation by writing A, ; to refer to row 4 of the matrix A,, and similarly
Ao, j to refer to the 4, j entry of A,. We use the following bound on the middle eigenvalues from [Bha+24].

LEMMA 6.1. Let A € R™ ™ be symmetric with entries bounded by 1, and let A,, be A restricted to its middle
eigenvalues as defined in Definition 6.1. Let S be a uniform sampling matriz with sampling probability at least
Clﬁ%#. Then with probability at least 1 — 4, HSAmSTH2 < en.

Proof. This is a rephrasing of Lemma 4 of [Bha+24]. Note that our sampling matrix S already rescales by n/s,
whereas the matrix in their theorem statement is prior to rescaling. 0

THEOREM 6.1. Let A € R™*™ be symmetric, not necessarily PSD with all entries bounded by 1. Then when
s> e%IOE"), observing SAST allows recovery of all eigenvalues of A to within en additive error with probability
at least 1 — 4.

Proof. Following [Bha+24], write A = A, + A,, where A, has the eigenvalues of A that are at least en in
magnitude. For our sampling matrix S, Theorem 5.1 implies that the positive eigenvalues of SA,ST are en
additive approximations to the eigenvalues of A,. Also Lemma 6.1 shows that ||SAmSTH < O(en) with 0.9
probability. So the result follows from Weyl’s inequality. ]

6.1 Removing logn factors. We show via a surprisingly simple trick that the log n dependence can be replaced
with a log % dependence, resolving a question left open by [Bha+24]. The idea is that we can directl}: apply our
sampling result to get good eigenvalue approximations by sampling a principal submatrix of dimension O(logn/€?).
The new matrix still has a dimension depending on n, but is dramatically smaller. Thus we may apply our sampling
procedure again to reduce the dimensions even further. It turns out that we can repeat this enough times to remove
the n dependence entirely. Since the sampling procedure at each stage is uniform, the final sample is uniform as
well. So this argument does not yield a new algorithm, but rather shows that the O(logn/e) guarantee can be
boostrapped to achieve a tighter sampling bound.

THEOREM 6.2. Algorithm 1 approzimates all eigenvalues of A to within en additive error, with probability at least
1 — 6 when s = §; log X.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

505



Downloaded 11/14/25 to 104.135.181.18 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof. Say that a sampling algorithm has a (e, d) recovery guarantee, if it approximates all eigenvalues of A to
within en additive error with failure probability at most §. Fix n, and let N > 1 be minimal such that for all
€,6 bounded by a sufficiently small constant, setting s = N/(e24) in Algorithm 1 suffices for obtaining an (e, §)
approximation guarantee. (We already know N can be taken to be clogn by Theorem 6.1.)

By our definition of N, taking s = 12N/(e2d) suffices to obtain an (€/2,5/3) guarantee. Let S be the
corresponding sampling matrix. Note that S takes s samples of expectation, and is unlikely to take many more.
By a Chernoff bound, the probability that S takes at most 2s samples is at least 1 —exp(—s/3). Note that s > 1/4,
so exp(—s/3) < &, when § < 1/2. Also, note that SAST has entries bounded by n/s since the entries of A are
assumed to be bounded by 1.

Now we consider sub-sampling again by a new sampling matrix S3. By Theorem 6.1, if S5 is a uniform
sampling matrix that takes ;% log(s/e) samples in expectation, then with failure probability at most J/3, the
matrix S2SASTST yields an additive

(e/4)(2s) ||SAST||oo = (¢/2)s(n/s) = en/2

approximation to the spectrum of SAST. Combining the bounds, we see that S2SAST ST gives an additive en
spectral approximation to A with failure probability at most é.

Now, note that S5 is itself a sampling matrix that takes % log(s/€) samples in expectation and yields an
(e,0) guarantee. By minimality of N, this means that

N < clog s
€

But s = —612\/6, so in fact
1

which implies that N < clog %. Thus we conclude that a sampling matrix with s = 5 log Z5 is sufficient to
obtain an (e, §) guarantee. g

7 Squared row-norm Sampling

In this section we show how to modify the anlaysis of [Bha+24] to obtain improved bounds given access to a
squared row-norm sampler.

We use the entry zeroing procedure of [Bha+24] (the same procedure used in Algorithm 2), which we now
recall.

DEFINITION 7.1. Given a symmetric matriz A € R™*™ let A’ be the matriz formed by zeroing out all entries A;;
satisfying one of the following conditions.

. . 2 2 2
1. i=j and A" < T || Allg

N AI%1A51?
clog?n

2. i#j and | 4| |4;] <

for an absolute constant c.
We also use a lemma from [Bha+24] arguing that the spectrum of A’ is close to the spectrum of A.
LEMMA 7.1. For all i, |\;(A") — Mi(A)| < €| A] -

We apply the following bound on the operator norm of the sampled matrix, which is given in the proof of
Lemma 14 in [Bha+24].

logn

LEMMA 7.2. For s > S, we have the bound

E, ||SAL S|, < 101/log nEs HSHmS'Hl 15 |4l
—

where H,, consists of the off-diagonal entries of A!,, Eo(X) = E(X?)'/2 and where ||-||,_,, denotes the mazimum
£y norm of any column.
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Our main task is to improve the bound on E, HSHmS’ “1 . To do this, we continue following the proof of
—

[Bha+24], but improve on their variance calculation.

LEMMA 7.3. (From [Bha+24]) Assume that p; < 1 for all i. For a fized i, define the random variable z; to be
L | |2 with probability p;, and 0 otherwise. Then

m,i,J

< N w = R2IAIE
ar Dz | <Y MLt YD (AL 14 1Y)
j=1 j=1 =1 s || 4;ll5

log n

LEMMA 7.4. Suppose that s > ¢
lemma. We have

for some absolute constant c. Fizx i with p; <1 and let z; be as in the above
Var <Z zj> < 2|45
=1
Proof. From Lemma, 7.3,

- 12 4]
Var(sz)SZ mml4+2 |A Sl lt o Mot
2

|All7 = JlAl7
= il + 122 A+ 22 Al

2 2
=1 14511 s 145l

Also from the argument of [Bha+24], we have the bound

3

A [[4ill 11451l
2T ellAllg

(Note that we take their § to be 1.)
Compared to their argument, our main improvement is that we use the bound

1413 114 ||2|

| oij|4 oz]lz
" e[| All% ’

This gives

IN

S“A ||2 071,]

1A% <||A i3 14, ||2| |)
= s|4;02 \ elan
||Ai||2

s€2

Al g 2

862
< 14 ||2

T se2

M: ||M:

| o,i,jl2

—_— .
Il
=

)

il
Again following the proof of [Bha+24], we have

2
where in the last line, we used that HA;’ , <142 < ||AZ||§

n

S 1AL 1 < ALl < 1AL < 1Al -

j=1
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Continuing their proof, the thresholding procedure for A’ implies that if ¢ # j and Aj; # 0, then

2 2
14505 o e lIAI
1455 = clog*n |43

Therefore,

2 2 2 4
SO e s AR e g eloBtnl A clog’n A
2Y) 1,J = >~ .

2 2 2 ij 2
j=19% 145115 JiAL#0 s || A;ll3 j=1 s€ s€

Combining the various bounds gives
n 4 4
4, clog”n Al
Var (} :1 ) < iy + SE
i=

4

Thus for s > cl°§2 ™ we have

n
Var( ) <2 A5,
j=1

as desired.
1]

With this improved variance bound, we obtain our improved middle eigenvalue bound by continuing the proof
of Lemma 14 from [Bha+24].

LEMMA 7.5. We have the operator norm bound ||SA£nST|| < €||A||p with 2/3 probability provided that s > ck’f: =

s|lAqll .
|A||p2 <1 for all .

and p; :=

Proof. In their Lemma 14, [Bha+24] shows that |z;| < 2 ||AZ||§ for s > clof# if p; < 1. Using our improved
variance bound above, and applying Bernstein’s inequality as in [Bha+24] gives

n —t2
Pr([[(SAL,).ill2 > E[(SAL,).ill2 +1) < ( 2 > ||Az-||2+t> < exp (—)
2 2 2 14315+t [l Asll3

j=1
Then setting ¢ = clogn || A;||5 gives
2 2 2
Pr(||(SAL): ill; 2 E[(SAL,).ill; + clogn [|All3) < 1/n%,
for appropriate constants. It then follows that
2
e | Allx

1 2 1 ' 2 1 2
— LT < = Sl < = ; <
- [[(SHm).ill ™ < P [(SA):ll” < P (clogn [|A4il)3) g

— )
(2

for s > clof;1 " with failure probability at most 1/n*. Thus with failure probability at most 1/n3 this bound holds
for all 4 simultaneously.

In order to apply this, we would instead like a second moment bound. Let E be the event that all p;
corresponding to sampled rows are bounded by 1/n%. Note that E occurs with probability at least 1 — 1/n.
From now on we condition on E with only a 1/n loss in probability. Then we have

1
\/E”( )oill S nllAllg

deterministically, and our bound above then implies that Eq HSHmS’ Hl , is bounded by €||Al 7 .
—

Finally plugging into Lemma 7.2 we have
By |SAL Sy < cellAllp,

and the desired bound follows from Markov’s inequality. 0
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Algorithm 4 Restricted Row-norm Sampling Algorithm

1. Input: Symmetric matrix A € R™*™ along with its row norms, sample size s. The inputs are restricted so

2
that A and s must satisfy % < 1 for all 4.

2. Let S € R¥*™ be a (rescaled) sampling matrix which samples each row i of A independently with probability
sllAq|?
Al

3. Implicitly form the matrix A’ € R™*" defined by

) y 2 &2 2
0 i=jand |Alb< Al
; ; e“||A Ajj
(A)i; =40  i#jand [|A]?]4;]% < Al Al

clog*n
A;; otherwise

4. Return the k eigenvalues of ST A’S, along with n — k additional 0’s.

This is sufficient to show correctness of the “restricted” sampling algorithm, Algorithm 4.

LEMMA 7.6. Suppose that s > clof# logzé and that A and s satisfy the condition of Algorithm 4 that the row
sampling probabilities p; are bounded by 1. Then with 2/3 probability, Algorithm 4 returns an additive €| A .
approzimation the spectrum of A.

Proof. As discussed above, write
SA'ST = SA!ST + SA. ST
By Lemma 4.2, Assumption 4.1 holds for A} and S with L = e T |All 7. As a result, by Theorem 5.1, the

eigenvalues of SA, ST are an additive ce ||A|| » approximation to the eigenvalues of A, which are in turn additive
€ ||Al| » approximations to the eigenvalues of A, by Lemma 7.1.

Also by Lemma 7.5 we have ||SA},ST|| < ce||All, so correctness follows from Weyl’s inequality [Wey12].
]

Finally it remains to deal with the situation where the restricted condition of Algorithm 4 is not met. The
idea is simple — for each row with p; larger than 1, we simple split that row into several scaled-down rows. This
will not affect the spectrum, but will allow the condition of Algorithm 4 to be met. In fact, for simplicity we split
all rows in this way although this is not strictly necessary.

THEOREM 7.1. Algorithm 2 yields an €||A||p additive approzimation to the spectrum of A with 2/3 probability
when s > doﬁﬁ log? %

12
SHA'L|2. Note that p; < s for
l1AlI%

all 4, so it will suffice to “split” each row into roughly s smaller rows. More formally, let U be a vertical stack
of consisting of s copies of \%In. Note that U has orthonormal columns and that the image of UT is R™. This

Proof. We consider an algorithm which will be equivalent to Algorithm 2. Set p; =

means that the nonzero spectrum of UAUT coincides with the nonzero spectrum of A. In particular we also have
Al = HUAUTHF . Note that the norm of row i of UAUT is 1/v/s? times the norm of a corresponding row i’ of
A.

Thus for all i,
2 2 2
s||(UAUT);i| < LslAvlly _ 1Ax]lz _

IUAUT|%  ~ s AR Al ~

Thus Lemma 7.6 establishes correctness of the sampling procedure for UAU?T (which has the same nonzero
clog*(ns?)
€

spectrum of A). In order to achieve ¢ ||[UAUT H » = €||A]| additive error, we need s > >, which is achieved

for s > dc’éﬁ (possibly after adjusting the constant c).
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[l A:l]
All%

N N

Now to simulate Algorithm 4 on UAU7T, note that we can simply sample Binomial(s, ) copies of each

index 4, as is done in Algorithm 2.

We finally note that for s > c/e* that the diagonal zeroing condition for UAUT in Algorithm 2 is always
satisfied. Moreover the condition for zeroing out off-diagonal entries is unchanged since applying U to A scales
row norms by 1/4/s but entries by 1/s. O

8 Additional Applications

8.1 Application to Sketching [SW23] showed that a sketching dimension of }2 is sufficient to approximate
all eigenvalues of A to within €| Al additive error. Unfortunately, the sketch consisted of a dense Gaussian
matrix, which means that it requires roughly n?/e? time to apply to a dense matrix A'. As a consequence of our
sampling results, we show that it is possible to match the optimal sketching dimension with a sketch that can
be applied in time linear in the number of entries of A. We observe that conjugating by a Hadamard matrix is
sufficient to flatten the row norms, so that our row-norm sampling procedure reduces to uniform sampling. The
idea of applying Hadamard matrices to improve the runtimes of sketches is well-known in the literature (see for
example [Woo+14; Troll]). Importantly, if H is Hadamard, then a matrix-vector product Hv can be carried out
in O(nlogn) time. Similarly if A € R®*" is a matrix, then HA can be carried out in O(n?logn) by applying H
columnwise.

THEOREM 8.1. There is a bilinear sketch R"*™ — R¥** with k = O(1/€?) that can be applied in O(n?) time, and
allows all eigenvalues of A to be recovered to within €| Al additive error.

Proof. Let U = HD € R™*"™ where D has i.i.d. random signs on its diagonal and H is a Hadamard matrix scaled
by 1/+4/n. Note that U is an orthogonal matrix, and so

[(TAUT)||” = |[UAU & = (U )T A% (U ey).

Also note that UTe; = DHe; which is distributed as a Rademacher random vector scaled by 1/y/n. Recalling
that E(zT A%z) = tr(A2) = ||A||%, when z is a random sign vector, by Hanson-Wright we have the bound

T 1 2 . nt nt o
- > 1) < —eo) < - _ (—— )
Pr(|(UAU"); - |A||=| > t) < 2exp(—c) < 2exp [ —cmin ”A2”F,(“A2”F)

2
Setting ¢ > c% log % makes the the right hand side bounded by 2, since | 42| P < tr(4?) = ||A||2F . By a union

bound we have |[(UAUT);|? < c% log % for all 4, with probability at least 1 — 4.

It follows from Theorem 7.1 that it suffices to run Algorithm 2 by uniformly sampling each row with probability
O(# poly log %), resulting in a submatrix of dimension k& x k, where k = O(}2 poly log 2) with high probability.
To implement this as a sketch, we can choose a uniformly random permutation matrix P, (implicitly) form
(PHD)A(PHD)T and then sample a leading principal minor of dimension O(Z polylog ).

Finally, in parallel we can sketch the norms of the first 1/€? columns of (PHD)A(PHD)T to within a constant
factor using a Johnson-Lindenstrauss sketch (see [Woo+14] for example). This only takes an additional % log X
space to succeed with 1—§ probability on all of the first 1/€® rows, and can applied in O(% poly log 2) time. This
allows us to run Algorithm 2 on the resulting matrix. ]

8.2 Improvements by combining with adaptive results By combining with known adaptive sampling
bounds of [MM17], we point out that one can approximate the eigenvalues of a bounded entry PSD A to within
en additive error using just O(1/€®) entry queries. We note that the PSD sampling result that we use was already
present in [Bha+24], although this improvement using adaptivity was not pointed out.

We borrow a result from [MM17], slightly restated for our setting.

1Some speedup is possible by using fast matrix multiplication, although these algorithms are impractical for reasonably sized
inputs.
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THEOREM 8.2. ([MM17] Theorem 3.) Let A € R™*™ be PSD and A > 0. There is an algorithm that adaptively
queries O(ndy logdy) entries of A and with 2/3 probability produces a spectral approzimation A of A satisfying

o] <

Here dy := tr(A(A+ M\I)™1) is the A-effective dimension of A.
‘We observe that this result improves sampling guarantees using adaptivity.

THEOREM 8.3. Let A be PSD with | A||, < 1. Then there is an algorithm that adaptively queries O(1/€®) entries
of A and with 2/3 probability produces an additive en approxzimation to the spectrum of A.

Proof. For the first step we apply our Theorem 6.1 (or [Bha+24] since A is PSD), to (implicitly) produce a rescaled
submatrix ST AS of dimension O(1 /€?) whose eigenvalues contain additive en approximations to all eigenvalues
of A that are at least en. Note that we do not actually form the matrix yet, however we have query access to
its entries simply by querying entries of A. By our Theorem 7.1, outputting the spectrum of ST AS along with
additional zeros would suffice.

To achieve an O(en) additive error overall, it suffices to approximate the eigenvalues of ST AS to within O(en)

additive error. For this we apply Theorem 8.3 to obtain A with HA — AH < en. Note that we have

_ N\ tr(4) 1
dy = tr(A(A+end)™) < ; e
Therefore only O(1/€3) queries are needed to produce A. Finally, by Weyl’s inequality [Wey12], |A;(4)—A:(A)| < en
for all i. The result follows by replacing € with €/c for an appropriate constant. 0

9 Top Eigenvector Estimation

In this section, we analyze Algorithm 3 for producing an approximate top eigenvector for PSD A with ||A||, < 1.
To prove correctness, we begin with a few simple facts that we will need below.

LEMMA 9.1. Suppose that A € R™*™ is PSD with entries bounded by 1, and let v be an eigenvector of A with
associated eigenvalue X. Then ||v||,, < %

Proof. Write the spectral decomposition of A as

n
A= E /\ﬂ)i’l);r,
i=1

where each v; is an eigenvector of A with associated eigenvalue )\;. For arbitrary j, we then have

n
_ § 2
AJ] — Alvij.
i=1

By the bounded entry hypothesis, this is bounded by 1, so in particular Alv%j < 1 since A is PSD. Since j was
arbitrary, the claim follows. ]

A related fact is that zeroing out eigenvalues of A only decreases the diagonal entries. We only need this fact
for the top eigenvalue, but it is true more generally.

LEMMA 9.2. Let A_; denote A with its top eigenvalue zeroed out. Then (A_1)kk < Agk for all k

Proof. Write the spectral decomposition of A as

n
§ : T

A= )\ivivi .
=1

Now simply note that
Al(vlv{)kk = /\ﬂ)%k > 0.

|
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The following fact states that applying a half iteration of power method only increases the Rayleigh quotient.
(This statement is true more general, but we only need the 1/2 version.)

LEMMA 9.3. Let A € R"*™ be PSD. Then for all nonzero x € R™,

2T A2z 2T Az

zTAz = 2Tz’
Proof. The desired inequality is equivalent to
2 2, 112
(Az,z)” < || Az|3 [|[l3

which is true by Cauchy-Schwarz.
O

The following is our main lemma for top eigenvector approximation.

LEMMA 9.4. Let S be a column-sampling matriz that samples each column of A independently with probability
p= % for an absolute constant c. Then with probability at least 2/3, there is some x in the image of S, such that
zT A%z
zT Az

> A\ —en.

Proof. If A1 < en then the result is trivial. So we assume from now on that A\; > en.

First, for an arbitrary fixed z € R"™, consider the generalized Rayleigh quotient ”;TT‘?: . Let v, ... v™ be

an orthonormal basis of eigenvector of A with associated eigenvalues Ay > Az > ... > \,,. Then we have

2TA Az, oMY 22 (2,0®)? .. 4+ X2 (z,0™)’
aTAz ) <x,'v(1)>2 + X2 (z, v(2)>2 + .o+ A (g, v(”)>2
S A2 <a:,v(1)>2
A <x,v(1)>2 + A2 (=, v(2)>2 + .t A (, v(”)>2
_ A
- AL+ W(Az <a:,v(2)>2 N ¥ <x,v(")>2)

~ e (Ee®) e e,
x,v

>\
where the last inequality follows from the difference-of-squares factorization. Now write A_; to denote A with its
top eigenvalue zeroed out. The term in parentheses above is 7 A_;x, so we have

xT A%y 2TA_ 1z
Ay M T T
X A:L’ (x,v>

T
It therefore suffices to show that Z xAv‘ 1% < en for some z in the image of S. We will take 2 = IIgv where v = @

is the top eigenvector of A and where II is the orthogonal projection onto the image of S. We assume that v is
normalized to have unit norm. For this choice of x we will bound the numerator and denominator separately.
Denominator bound. First note that

(@,v)* = (v, v)” = (Ilv, Tv)* = || T3,

so we simply need to bound ||Hv||§ . We will prove the denominator bound under the assumption that p = 19.

Clearly this is sufficient as the denominator for larger p majorizes the denominator for smaller p. By Lemma 9.1,
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recall that |v;|? < /\% < L for all i. Let 0; be ii.d. Bernoulli(p) random variables. We wish to obtain a lower
bound on X := Y, o;v?. Since v is a unit vector, by linearity of expectation EX = p. For the second moment,

EX? =p(vi +... +v}) + 2p? vafu?
i<j

=pi+...+ o) +p2(WE .. +02)2 —pP(vi 4 ...+ o)
<pl+... +vd)+p?
Y ) 2 2
< =
—= €’I’L(U1+ +U'n)+p
=£+p2.
en

Therefore Var(X) < 2, and so by Chebyshev’s inequality,

1 9 Var(X) enp 10
Pr( X< ) <Pr(| X —p|> )< ——L < 2 =,
X < en) < Pr( Pl 2 en) ~ (9/(en))? — 81 81
Thus we have (z,v)? > ﬁ with probability at least 7/8.

Numerator bound. Since A_; is PSD, we can write A_; = UTU for some U € R"*". By Lemma 9.2, the
diagonal entries of A_; are all bounded by 1, which means that the columns of U each have £3 norm at most 1.
Also, since v is the top eigenvector of A, we have vT A_;v = 0, which implies that Uv = 0.

Let w® = v;U; where v; is the ith entry of v and U; is the ith column of U. Also set p = i

Note that we have .

i=1

and

2
<1
2

i ku)
=1

We wish to bound
2

n .
5= o
=1

where the o; are i.i.d. Bernoulli(p). Since the quantity we wish to bound is non-negative, it suffices to bound its
expectation:

2 n
E =Y @2 +2p2 Y (0, w®)
2 =1

1<j

< p+2p? Z <w<i),wu>> -

i<j

- (e

ZO’i’w(i)

This last sum can be rewritten as
23" <w<i>’w<j>> — me IR CO)
i<j

since w® + ... + w™ =0.
It follows that

2 2
-
2 2

E

2
<p,
2

S o

so by Markov’s inequality

2
< 10p,
2

Zalw(l)
i
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with probability at least 9/10.
zTA_ 1z

Combining the bound on the numerator and the denominator shows that —z7= > A; — 100en. The result
follows by replacing € with €/100.
O

Finally we prove correctness of Algorithm 3.

THEOREM 9.1. Let A € R™*" be symmetric PSD with ||A|, < 1. For p = %, with 3/4 probability, Algorithm 3
returns a unit vector u € R™ satisfying
uTAu> A\ —en,

where A1 is the top eigenvalue of A.

Proof. Consider the x € R™ produced in Algorithm 3 which maximizes %. By Lemma 9.4, with 3/4
probability we have that

tTSTA%Sz  (AY/2Sz)T A(AY/2Sz) -

oTSTASz — (AV2Sz)T(A28z) = '~ "

Now from Lemma 9.3, an additional half-iteration of power method only helps. In other words,

(ASz)TA(ASz) _ (AY/2S8x)T A(AY/?Sx)
2 Z )\1 — €n,
(ASz)T(ASz) (AY/282)T(Al/28x)
and the main result follows. O

References

[AN13] Alexandr Andoni and Huy L Nguyen. “Eigenvalues of a matrix in the streaming model”. In:
Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms. STAM. 2013,
pp. 1729-1737.

[Bal+19] Maria-Florina Balcan et al. “Testing matrix rank, optimally”. In: Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms. STAM. 2019, pp. 727-746.

[BCJ20] Ainesh Bakshi, Nadiia Chepurko, and Rajesh Jayaram. “Testing positive semi-definiteness via random
submatrices”. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2020, pp. 1191-1202.

[BCW20] Ainesh Bakshi, Nadiia Chepurko, and David P Woodruff. “Robust and sample optimal algorithms for
PSD low rank approximation”. In: 2020 IEEFE 61st Annual Symposium on Foundations of Computer
Science (FOCS). IEEE. 2020, pp. 506-516.

[Bha+23] Rajarshi Bhattacharjee et al. “Universal matrix sparsifiers and fast deterministic algorithms for linear
algebra”. In: arXiv preprint arXiv:2305.05826 (2023).

[Bha+24] Rajarshi Bhattacharjee et al. “Sublinear time eigenvalue approximation via random sampling”. In:
Algorithmica (2024), pp. 1-66.

[BKM22] Vladimir Braverman, Aditya Krishnan, and Christopher Musco. “Linear and sublinear time spectral
density estimation”. In: Proceedings of the 54th Annual ACM Symposium on Theory of Computing
(STOC). 2022.

[BW18] Ainesh Bakshi and David Woodruff. “Sublinear time low-rank approximation of distance matrices”.
In: Advances in Neural Information Processing Systems 31 (2018).

[Cha+20] Moses Charikar et al. “Kernel density estimation through density constrained near neighbor search”.
In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2020,
pp- 172-183.

[Che+22] Nadiia Chepurko et al. “Quantum-inspired algorithms from randomized numerical linear algebra”.
In: International Conference on Machine Learning. PMLR. 2022, pp. 3879-3900.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

514



Downloaded 11/14/25 to 104.135.181.18 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

[CNW15]
[Coh+18]

[CS17]

[DZ11]
[Fra62]
[GLT18]
[GST22]
[GVO0]

[Kyn18§]
[LW16]

[MM15]

[MM17]

[MW17]

[RST10]
[RV07]
[Sim-+19]
[SW23]
[Tan19]
[Tro08]
[Trol1]

[Tro12]

Michael B Cohen, Jelani Nelson, and David P Woodruff. “Optimal approximate matrix product in
terms of stable rank”. In: arXiv preprint arXiv:1507.02268 (2015).

David Cohen-Steiner et al. “Approximating the spectrum of a graph”. In: Proceedings of the 24th acm
sigkdd international conference on knowledge discovery & data mining. 2018, pp. 1263-1271.

Moses Charikar and Paris Siminelakis. “Hashing-based-estimators for kernel density in high dimen-
sions”. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). IEEE.
2017, pp. 1032-1043.

Petros Drineas and Anastasios Zouzias. “A note on element-wise matrix sparsification via a matrix-
valued Bernstein inequality”. In: Information Processing Letters 111.8 (2011), pp. 385-389.

John GF Francis. “The QR transformation—part 2”. In: The Computer Journal 4.4 (1962), pp. 332—
345.

Andrés Gilyén, Seth Lloyd, and Ewin Tang. “Quantum-inspired low-rank stochastic regression with
logarithmic dependence on the dimension”. In: arXiv preprint arXiv:1811.04909 (2018).

Andrés Gilyén, Zhao Song, and Ewin Tang. “An improved quantum-inspired algorithm for linear
regression”. In: Quantum 6 (2022), p. 754.

Gene H Golub and Henk A Van der Vorst. “Eigenvalue computation in the 20th century”. In: Journal
of Computational and Applied Mathematics 123.1-2 (2000), pp. 35-65.

Rasmus Kyng. “A tutorial on matrix approximation by row sampling”. In: (2018).

Yi Li and David P Woodruff. “Tight bounds for sketching the operator norm, schatten norms, and
subspace embeddings”. In: International Conference on Approximation Algorithms for Combinatorial
Optimization Problems and International Conference on Randomization and Computation. Schloss
Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2016.

Cameron Musco and Christopher Musco. “Randomized block krylov methods for stronger and faster
approximate singular value decomposition”. In: Advances in neural information processing systems
28 (2015).

Cameron Musco and Christopher Musco. “Recursive sampling for the nystrom method”. In: Advances
in neural information processing systems 30 (2017).

Cameron Musco and David P Woodruff. “Sublinear time low-rank approximation of positive
semidefinite matrices”. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2017, pp. 672-683.

Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. “A randomized algorithm for principal component
analysis”. In: STAM Journal on Matriz Analysis and Applications 31.3 (2010), pp. 1100-1124.

Mark Rudelson and Roman Vershynin. “Sampling from large matrices: An approach through
geometric functional analysis”. In: Journal of the ACM (JACM) 54.4 (2007), 21—es.

Paris Siminelakis et al. “Rehashing kernel evaluation in high dimensions”. In: International Conference
on Machine Learning. PMLR. 2019, pp. 5789-5798.

William Swartworth and David P Woodruff. “Optimal Eigenvalue Approximation via Sketching”. In:
arXiv preprint arXiv:2304.09281 (2023).

Ewin Tang. “A quantum-inspired classical algorithm for recommendation systems”. In: Proceedings
of the 51st annual ACM SIGACT symposium on theory of computing. 2019, pp. 217-228.

Joel A Tropp. “Norms of random submatrices and sparse approximation”. In: Comptes Rendus.
Mathématique 346.23-24 (2008), pp. 1271-1274.

Joel A Tropp. “Improved analysis of the subsampled randomized Hadamard transform”. In: Advances
in Adaptive Data Analysis 3.01n02 (2011), pp. 115-126.

Joel A Tropp. “User-friendly tail bounds for sums of random matrices”. In: Foundations of
computational mathematics 12 (2012), pp. 389-434.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

515



Downloaded 11/14/25 to 104.135.181.18 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

[Wey12]

[Woo+14]

Hermann Weyl. “The asymptotic distribution law for the eigenvalues of linear partial differential
equations (with applications to the theory of black body radiation)”. In: Math. Ann T71.1 (1912),
pp- 441-479.

David P Woodruff et al. “Sketching as a tool for numerical linear algebra”. In: Foundations and
Trends® in Theoretical Computer Science 10.1-2 (2014), pp. 1-157.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

516



	Introduction
	Our Results
	Our Techniques
	Additional Related Work

	Preliminaries
	Notation
	Basic Definitions
	Incoherence Bound
	Leverage Score Sampling
	Approximate matrix product
	Additional facts

	Our subspace embedding condition
	Realizing Assumption 4.1

	Outlying Eigenvalue Bounds
	Lower Bounds
	Upper Bounds
	Two-sided eigenvalue bound.

	Bounded Entry Matrices
	Removing n factors.

	Squared row-norm Sampling
	Additional Applications
	Application to Sketching
	Improvements by combining with adaptive results

	Top Eigenvector Estimation

