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Abstract

We consider the problem of estimating the spectrum of a symmetric bounded entry (not necessarily PSD)
matrix via entrywise sampling. This problem was introduced by [Bhattacharjee, Dexter, Drineas, Musco, Ray
’22], where it was shown that one can obtain an ϵn additive approximation to all eigenvalues of A by sampling

a principal submatrix of dimension poly(logn)

ϵ3
. We improve their analysis by showing that it suffices to sample

a principal submatrix of dimension Õ( 1
ϵ2
) (with no dependence on n). This matches known lower bounds and

therefore resolves the sample complexity of this problem up to log 1
ϵ
factors. Using similar techniques, we give a

tight Õ( 1
ϵ2
) bound for obtaining an additive ϵ∥A∥F approximation to the spectrum of A via squared row-norm

sampling, improving on the previous best Õ( 1
ϵ8
) bound. We also address the problem of approximating the

top eigenvector for a bounded entry, PSD matrix A. In particular, we show that sampling O( 1
ϵ
) columns of

A suffices to produce a unit vector u with uTAu ≥ λ1(A)− ϵn. This matches what one could achieve via the
sampling bound of [Musco, Musco’17] for the special case of approximating the top eigenvector, but does not
require adaptivity.

As additional applications, we observe that our sampling results can be used to design a faster eigenvalue
estimation sketch for dense matrices resolving a question of [Swartworth, Woodruff’23], and can also be
combined with [Musco, Musco’17] to achieve O(1/ϵ3) (adaptive) sample complexity for approximating the
spectrum of a bounded entry PSD matrix to ϵn additive error.

1 Introduction

Computing the spectrum of a matrix is a fundamental problem with many applications. There are well-known
high-precision algorithms that run in polynomial time [Fra62; GV00], although any such algorithm is necessarily
at least linear time in the input size. As data grows larger, even linear algorithms can be prohibitive. This has
motivated a flurry of activity studying sublinear time estimation of problems in numerical linear algebra, for
instance for low-rank approximation [MM17; MW17; BW18; BCW20], kernel density estimation [CS17; Sim+19;
Cha+20], testing positive-semidefiniteness [BCJ20], and matrix sparsification [Bha+23; DZ11].

For eigenvalue estimation, variants of the power method have long been known to give good approximations
to the top eigenvalues and eigenvectors of A ∈ R

n×n while revealing sublinear information about A, i.e., using o(n)
matrix-vector queries [RST10; MM15]. However it was only recently asked in [Bha+24] whether there are spectral
approximation algorithms for symmetric, but non-PSD matrices that run in sublinear time in the entry query
model. This is perhaps the most natural model if one imagines having an extremely large matrix saved on disk
for example. This may be in the form of a graph for instance, where one could be interested in obtaining spectral
information about its Laplacian or adjacency matrix. One could also imagine having a large collection of data
points with some kernel function that can be computed for pairs of points. Obtaining a rough spectral summary
of the associated kernel matrix is a natural step for data analysis, for instance, to spot low-rank structure in the
data. If data points are large or expensive to collect, or if kernel evaluation is expensive, it is natural to aim for
minimizing entry queries to the kernel matrix.

Of course, it is not reasonable to ask for sublinear time spectral approximation algorithms, without some
additional assumptions. For instance, our matrix A could contain all zeros but with a single large entry at indices
(i, j) and (j, i). Given only the ability to query entries, and no additional information, even distinguishing A from
the all zeros matrix would take Ω(n2) queries.

We consider two assumptions that allow for improved guarantees. The first is an assumption on the structure
of A called the bounded entry model, which assumes that A has entries bounded by 1 in magnitude. This condition
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was introduced in [Bal+19] and studied further by [BCJ20] who showed that it was sufficient in order to test
for positive semi-definiteness with sublinear entry queries. Motivated by this result, [Bha+24] showed that all
eigenvalues of a symmetric bounded-entry matrix can be approximated using a sublinear number of queries,
simply by sampling a poly( logn

ϵ ) sized submatrix.
Another way of getting sublinear sample complexity is to give the sampler additional power. In our case, as

in [Bha+24], we consider having access to a sampler that can produce a row index with probability proportional
to its squared row norm. Such samplers have been increasingly studied under the guise of “quantum-inspired”
machine-learning algorithms [Tan19; Che+22; GLT18; GST22]. Such samplers are practical to maintain when A
is stored entrywise. For example by using an appropriate data structure, they can be built in nnz(A) time, admit
O(logn) time sampling, and can handle entry updates in O(logn) time.

[Bha+24] showed that given a real symmetric matrix A with entries bounded by 1, one can sample a principal
submatrix of A of dimensions O(poly logn

ϵ3 ) × O(poly logn
ϵ3 ) and then output an additive ϵn approximation to the

entire spectrum, i.e., to all eigenvalues of A. On the other hand, the best lower bound states that a principal-
submatrix algorithm must sample at least O( 1

ϵ4 ) entries of A.
There are two ways that one could hope to improve the sampling bound of [Bha+24]. First one could hope

to improve the ϵ dependence in the dimension from O(1/ϵ3) to O(1/ϵ2). Several prior results suggested that this
might be possible. For example [Bha+24] showed that their ϵ dependence could be improved both when A is
PSD, and when the spectrum of A is flat. Concurrently [SW23] showed that one can obtain an ϵ ∥A∥F additive
approximation to the spectrum of A by using a so-called bilinear sketch of A of dimensions O(1/ϵ2)×O(1/ϵ2). Such
a sketch would give ϵn additive error for approximating all eigenvalues when A has bounded entries. Unfortunately
this sketch is Gaussian, and it seems difficult to directly adapt its analysis to obtain a sampling bound instead.

In this paper we close the gap between sketching and sampling for bounded entry matrices by showing that
uniformly sampling an Õ(1/ϵ2) × Õ(1/ϵ2) principal submatrix of A suffices to approximate all eigenvalues of A
up to ϵn additive error, even when A is not necessarily PSD. In addition to obtaining an optimal ϵ-dependence,
we note that our uniform sampling bound contains no dependence on n.

We also address the squared-row norm sampling model. Here we improve the analysis of [Bha+24] to show
that it suffices to query a principal submatrix of size Õ(poly logn

ϵ2 ), compared to the Õ(poly logn
ϵ8 ) dimensional

principal submatrix required by [Bha+24].
Our approximation model. We note that all of the guarantees considered in our work and prior work

focus on additive approximations to the spectrum. Ideally, one might like to aim for a relative error guarantee.
However as pointed out, by [Bha+24] for example, this is not possible for entry queries. Such an algorithm would
be able to distinguish the 0 matrix from a matrix with a single off-diagonal pair of nonzero entries, which clearly
requires Ω(n2) samples. Indeed even with squared row-norm sampling, relative error is still too much to hope for.
In fact, even for sketches, approximating the top eigenvalue to within a constant factor requires Ω(n2) sketching
dimension in general [LW16; Woo+14]. One can always turn such a sketching lower bound into a sampling bound,
even allowing for row-norm sampling - simply conjugate by a random orthogonal matrix to flatten all rows. Then
squared row sampling is effectively uniform, and so a sampling algorithm could be used to construct a sketch
of the same dimensions. These existing lower bounds are why we (as well as prior work) choose to focus on an
additive approximation guarantee.

2 Our Results

As discussed above, we are interested in the same type of guarantee as considered in [Bha+24] and [SW23].

Definition 2.1. Let A ∈ R
n×n be a symmetric matrix. We say that a sequence λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n is an additive

α-approximation to the spectrum of A if |λ̂i(A)− λi(A)| ≤ α for all i ∈ [n].

We consider the sampling algorithms introduced by [Bha+24], with some technical modifications. Our novelty
is an improved analysis which yields optimal bounds up to logarithmic factors. Our techniques apply both to
uniform sampling for bounded entry matrices, as well as to squared row norm sampling for arbitrary matrices.

Uniform sampling. For uniform sampling, we show the following result.

Theorem 2.1. Let A be a symmetric matrix with all entries bounded by 1. Then Algorithm 1 with s ≥ c 1
ϵ2 log

2 1
ϵ

(where c is an absolute constant) outputs an additive ϵn approximation to the spectrum of A, with at least 2/3
probability.
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Eigenvalue Estimation

Model/Error guarantee Entry samples Authors
Bounded entries/

Additive ϵn
O(poly logn

ϵ6 ) [Bha+24]

O(poly logn
ϵ5 )∗ [Bha+24]

Õ( 1
ϵ4 ) Ours

Row-norm sampling/
Additive ϵ ∥A∥F

O(poly logn
ϵ16 ) [Bha+24]

Õ(poly logn
ϵ4 ) Ours

Table 1: Comparison of our eigenvalue sampling results to prior work. The * indicates that the algorithm does
not query a principal submatrix. All algorithms here are non-adaptive.

Algorithm 1 Uniform Sampling

1. Input: Symmetric matrix A ∈ R
n×n with ∥A∥∞ ≤ 1, expected sample size s

2. If s ≥ n, let S = In

3. Otherwise, let S ∈ R
k×n be a (rescaled) sampling matrix which samples each row of A independently with

probability p = s/n and rescales each sampled row by
√

1
p .

4. Return the k eigenvalues of STAS, along with n− k additional 0’s.

The sampling algorithm used here is perhaps as natural as possible. We simply sample a random principal
submatrix of expected size s × s and appropriately rescale. We then output the eigenvalues of the sampled
submatrix, along with roughly n − s additional 0’s to account for the remaining spectrum of A. Our sampling
bound is an improvement over [Bha+24] which requires sampling a principal submatrix of dimension c

ϵ3 log
1
ϵ log

3 n
to obtain the same guarantee. We note that [Bha+24] was able to push their entry sample complexity down to
O(1/ϵ5) by using a matrix sparsification result to subsample their principal submatrix. However the resulting
sample is not a principal submatrix, and it is unclear how to decrease the sample complexity further.

[Bha+24] also asked whether one can obtain an additive ϵn guarantee to the spectrum of A with sample size
independent of A. Our result shows that this is indeed possible. This may seem surprising since [Bha+24] uses
a bound due to Tropp [RV07; Tro08], to control the contribution from the small-magnitude eigenvalues. This
bound contains a logn term that appears difficult to remove, and we use the same bound on the small-magnitude
eigenvalues. Nonetheless, we give a very simple bootstrapping argument to show that this logn dependence is
non-essential. Specifically, we show that it is possible to replace the logn with a log 1

ϵ , thus removing the n
dependence, at the cost of only additional log 1

ϵ factors.
Squared row-norm sampling. For squared row-norm sampling, we use our analysis to again give nearly

tight bounds.

Theorem 2.2. Let A be an arbitrary symmetric matrix. Algorithm 2 with s ≥ 1
ϵ2 poly log(n/ϵ) outputs an additive

ϵ ∥A∥F additive approximation to the spectrum of A with at least 2/3 probability.

This is a substantial improvement over the sampling bound in [Bha+24], which requires sampling a principal

submatrix of dimension c log10 n
ϵ8 to match our bound.

Again the most challenging part of our analysis is in controlling the outlying eigenvalues. Here [Bha+24]
again requires roughly 1/ϵ3 samples, whereas we require 1/ϵ2 samples by essentially the same argument as for
the case of uniform sampling. However on its own, this is enough to give improved bounds as the bottleneck in
their argument is in controlling the middle eigenvalues. The authors do not attempt to give tight ϵ bounds for
this part of their analysis, and note that their bound is likely not tight. However we observe that their analysis
here is surprisingly close to optimal. By optimizing their variance argument, we observe that their approach is
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Algorithm 2 Row-norm Sampling

1. Input: Symmetric matrix A ∈ R
n×n along with its row norms, expected sample size s

2. Let S ∈ R
k×n be a (rescaled) sampling matrix which for all i ∈ [n] samples Binomial(s,

∥Ai∥2
2

∥A∥2
F

) copies of row

i and rescales those rows by 1√
pi

where pi :=
s∥Ai∥2

2

∥A∥2
F

.

3. Implicitly form the matrix A′ ∈ R
n×n defined by

(A′)ij =











0 i = j

0 i ̸= j and ∥Ai∥22 ∥Aj∥22 ≤ ϵ2∥A∥2
F
|Aij |2

c log4 n

Aij otherwise

4. Return the k eigenvalues of STA′S, along with n− k additional 0’s.

sufficient to control the middle eigenvalues with optimal ϵ dependence.
We note that one cannot hope to do better than O(1/ϵ4) queries for non-adaptive entry sampling algorithms.

Indeed a lower bound of [LW16] implies that learning the top singular value of a (non-symmetric) matrix G ∈ R
n×n

to ϵ ∥G∥F additive error requires Ω(1/ϵ4) sketching dimension. One can symmetrize to G′ = [0, G;GT , 0] to show
that learning the top eigenvalue of G′ to ϵ ∥G′∥F additive error requires Ω(1/ϵ4) sketching dimension in general.

The hard instance G is Gaussian, so its entries are bounded by ϵ2 ∥G∥2F up to log factors implying an Ω̃(1/ϵ4)
lower bound in the bounded entry model, even for sketches. The rows of G have equal norms up to constant
factors say, and so this implies that Ω̃(1/ϵ4) queries are needed even given access to a row-norm sampling oracle
that is accurate up to constant factors (which is all that our sampling algorithm requires).

Finally, note that while our results are not stated as a high-probability guarantee, it is easy to improve them.
Simply run the algorithm O(log 1

δ ) times and take the median estimate for each eigenvalue λi.
Top eigenvector estimation. While our main results focus on eigenvalue estimation, in many situations,

one is interested not only in the top eigenvalues but also the associated top eigenvectors. As a step in this direction,
we show that for bounded entry PSD matrices, one can obtain an ϵn-approximate top eigenvector by sampling
just O(1/ϵ) columns of A.

The same guarantee could be achieved by [MM17], by using Õ(n/ϵ) adaptive entry samples to obtain an
additive spectral approximation to A. Interestingly, in the bounded entry case, we show that no adaptivity is
needed.

Algorithm 3 Top Eigenvector Estimation

1. Input: Symmetric PSD matrix A ∈ R
n×n with ∥A∥∞ ≤ 1, column sampling probability p

2. Output: An approximate top eigenvector u ∈ R
n

3. Sample S ∈ R
n×m, a column sampling matrix that independently samples each column of A with probability

p

4. Given S, compute AS by sampling the requisite columns of A

5. Use AS and S to compute the matrices STAS and STA2S.

6. Find x ∈ R
n that maximizes xTSTA2Sx

xTSTASx

7. Return ASx
∥ASx∥2
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Theorem 2.3. Let A ∈ R
n×n be a symmetric PSD with ∥A∥∞ ≤ 1. For p = c

ϵn , with 3/4 probability, Algorithm 3
returns a unit vector u ∈ R

n satisfying

uTAu ≥ λ1 − ϵn,

where λ1 is the top eigenvalue of A.

Faster sketching. [SW23] studied the problem of sketching the eigenvalues of A to ϵ ∥A∥F additive error,
and showed that this can be accomplished with a Gaussian sketch of dimension O(1/ϵ4). Their sketch takes
roughly 1

ϵ2n
2 time to apply, so if ϵ were say n−1/4, this would be substantially slower than linear in the size of

A. It was left open whether faster sketching is possible here when A is dense. We observe that our row-norm
sampling analysis implies the existence of a sketch that runs in Õ(n2) time with sketching dimension Õ(1/ϵ4).

2.1 Our Techniques

Bounded Entry Matrices. We use the same algorithm that was introduced in [Bha+24], however we show
how to reduce the sample size without sacrificing in terms of the approximation guarantee. At a high level we
follow a similar approach of splitting the matrix A as Ao + Am into its “outer” and “middle” eigenvalues. The
matrix Ao will zero out all eigenvalues of A with magnitude smaller than ϵn. We will think of Ao as containing
all the eigenvalues that we need to approximate, and Am as adding some additional noise whose contribution we
must bound. For a bounded entry matrix A, note that ∥A∥2F ≤ n2, so that there can be at most 1/ϵ2 nonzero
eigenvalues in Ao. Thus it is at least reasonable to hope that an O(1/ϵ2) sized principal submatrix is sufficient.

If S is the (appropriately rescaled) sampling matrix, then we can write SAST = SAoS
T +SAmST . Note that

SAST is simply our principal submatrix sample of A.
Given this decomposition, the analysis naturally decomposes into two parts: showing that the eigenvalues of

SAoS
T concentrate appropriately around the large eigenvalues, and showing that the perturbation from SAmST is

small. Prior work [Bha+24] handles the middle eigenvalues nearly optimally (although we give a small improvement
here that we describe later). So our main technical innovation is to show that the eigenvalues of SAoS

T concentrate
to within ϵn of the eigenvalues of Ao when S samples only Õ(1/ϵ2) rows.

To see the main ideas, write the spectral decomposition of Ao as Ao = VoΛoV
T
o , where Vo contains the top

eigenvectors of Ao (where “top” eigenvectors have eigenvalues at least ϵn in magnitude). Consider the extreme
case where Ao has a flat spectrum – say k copies of the eigenvalue λ so that Ao is the scaled projection λVoV

T
o .

After applying S, we are left with the matrix λSVoV
T
o ST whose spectrum coincides with λV T

o STSVo.
This suggests showing that S is a subspace embedding for Vo. Indeed, if S distorts by at most (1± α) on Vo,

then for all x we would have

xT (λV T
o STSVo)x = λ ∥SVox∥22 = (1± α)λ,

so that the quadratic form for SVoS
T is always at most λ + αλ on unit vectors x, and is at least λ − αλ on a

k-dimensional subspace. By Courant-Fischer this would be sufficient to show concentration of the k eigenvalues
of SVoS

T to within ϵn of those of Vo as long as α ≤ ϵn
λ .

In the worst case, λ could be as large as n if A were the all-ones matrix for example. Also since we allow
negative eigenvalues it is possible to have up to 1/ϵ2 eigenvalues of magnitude ϵn. This suggests that we choose S
so that it yields a (1± ϵ)-distortion subspace embedding over a 1/ϵ2 dimensional space. Unfortunately, this would
require S to have at least 1/ϵ3 rows, which would only allow us to match the sampling bound of [Bha+24]. In order
to do better we observe similarly to [SW23], that large eigenvalues cannot occur many times in the spectrum. Since
A has bounded entries, its Frobenius norm is at most n, which means that there are at most n2/λ2 eigenvalues of
magnitude at least λ. So we could hope to only require a 1± (ϵn/λ) distortion subspace embedding over a space
of dimension n2/λ2, which can plausibly be achieved by an S with roughly (n2/λ2) · (λ/(ϵn))2 = 1/ϵ2 rows.

Indeed, by using the “incoherence bound” of [Bha+24], we observe that the leverage scores of Vo are sufficiently
small so that uniform sampling approximates leverage score sampling. This allows to argue that sampling roughly
1/ϵ2 rows is sufficient to obtain a 1 ± (ϵn/λ) distortion subspace embedding on V≥λ, the eigenvectors with
associated eigenvalue at least λ in magnitude. It is possible however that the spectrum of A is not completely
flat, and contains a range of outlying eigenvalues between ϵn and n. To handle this, we ask for S to satisfy the
following deterministic condition:

S is a 1± (ϵn/λ) distortion subspace embedding on V≥λ for all λ ≥ ϵn.
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Perhaps surprisingly, we show that this simple condition is enough to approximate all eigenvalues of Ao to
within ϵn additive error.

While the above paragraphs motivate this condition, there are a few technical challenges. The first is handling
negative eigenvalues. If A were PSD, then the subspace embedding argument given above would essentially be
sufficient to show that SAST is at least λk − ϵn on a subspace of dimension k, which would yield the right lower
bound on the kth eigenvalue of SAST . However we have to worry that the negative eigenvalues of A could bring
down this eigenvalue estimate. We indeed find a k-dimensional subspace on which SAST is at least λk − ϵn which
is mostly aligned with the top k eigenvectors of A. However we choose it carefully so as to avoid the large negative
eigenvectors of A. This is similar to the approach suggested in [SW23], however their argument crucially relied
on S being Gaussian so that the positive and negative eigen-spans of SAST are nearly orthogonal. Our argument
shows that this is not necessary; the simple deterministic guarantee stated above suffices.

The other main challenge is upper bounding the top eigenvalue of SAST (which turns out to be sufficient for
upper bounding all eigenvalues). [SW23] gave a bound on the top eigenvalue of a Gaussian matrix with non-identity
covariance. Unfortunately in the sampling setting, we cannot rely on Gaussianity. Instead, we show that that the
same deterministic subspace embedding condition given above that was natural for lower-bounding eigenvalues
also suffices for obtaining the necessary upper bounds on the eigenvalues. The proof works by first partitioning
eigenvalues into level sets. It is simple to prove the desired upper bound on the top eigenvalue of SAST if A were
restricted to be just the top level set. Then by carefully keeping track of the interaction between each pair of level
sets, we are able to show that the additional level sets do not add much mass to the top eigenvalue.

Finally we remove the extra logn arising from the bound on the middle eigenvalues [Bha+24]. The idea is
simply to observe that after applying the uniform sampling algorithm once, we are again left with a roughly
s × s matrix, whose spectrum we would like to approximate to additive O(ϵn) error. After rescaling, the entries
of this matrix are bounded by n/s, and so we can now apply the uniform sampling algorithm again to obtain an
O(ϵ· ns ·s) = O(ϵn) additive approximation to the spectrum of the submatrix, this time by sampling O( 1

ϵ2 poly log s)
rows. Note that logn is now replaced with log s which is potentially much smaller. If needed, this procedure can
be repeated until the dependence on logn is removed.

Squared row-norm sampling. As with uniform sampling, our algorithm is based off the algorithm of
[Bha+24], although with a tighter analysis. Their result requires that one samples a principal submatrix of
dimension roughly s × s with s = O( 1

ϵ8 poly logn) in order to obtain an additive ϵ ∥A∥F approximation to the
spectrum of A. Notably, their algorithm does not simply return the spectrum of the sampled submatrix but instead
judiciously zeros out certain entries in order to reduce variance. To see why this is necessary, it is instructive to
consider the case where A is the identity matrix. If one samples a 1/ϵ2 sized principal submatrix and rescales it
by nϵ2, then the resulting matrix will have eigenvalues of size ϵ2n. This would be fine if one wanted to achieve
ϵn additive error. However, for ϵ ∥A∥F = ϵ

√
n additive error, this is unacceptable. Fortunately, [Bha+24] gives an

entry zeroing procedure which zeros out most diagonal entries as well as entries in particularly sparse rows and
columns. We are able to employ their zeroing procedure essentially as a black-box.

We do not modify their zeroing procedure, but instead improve their bounds for both the outer and middle
eigenvalues of the sampled submatrix. We use the same decomposition SAST = SAoS

T + SAmST as for the
uniform sampling analysis discussed above, where S now samples each row i with probability pi proportional to
its squared row norm, and rescales by 1/

√
pi. Our task is two-fold. We first show that the eigenvalues of SAoS

T

concentrate within ϵ ∥A∥F to the eigenvalues of Ao. Then we bound the operator norm of SAmST by ϵ ∥A∥F , and
so Weyl’s inequality shows that the eigenvalues of SAST are within O(ϵn) of the eigenvalues of A.

Bounding the eigenvalues of SAoS
T is similar to the uniform sampling case. Squared row-norm sampling

provides an approximation to leverage score sampling, which is sufficient to obtain the subspace embedding
guarantees that we require.

Bounding the operator norm of SAmST is what required [Bha+24] to have a 1/ϵ8 dependence. It turns out
that a fairly simple technical improvement to their argument improves this to the optimal 1/ϵ2 dependence, at

least when pi :=
s∥Ai∥2

2

∥A∥2
F

≤ 1, so that the sampling probabilities for each row are all at most 1. Their argument

contains a technical fix for the situation where pi > 1, however we do not need this. Instead we can duplicate
the rows with large norm, say N times, while scaling them down by a factor of 1/

√
N. This does not change the

spectrum, but reduces to the situation where all pi’s are at most 1. The advantage of this is that rows of A with
large norm can now be sampled multiple times if the value of pi dictates that this should occur. We note that one
could likely also sample s rows i.i.d. from the squared-row-norm distribution to achieve a similar result.
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Top eigenvector estimation. For PSD A ∈ R
n×n with entries bounded by 1, we are interested in producing

a vector u that nearly maximizes the Rayleigh quotient uTAu
uTu

. In the same spirit as our eigenvalue estimation

results, we are willing to tolerate ϵn additive error, so we would like to find u that satisfies uTAu
uTu

≥ λ1 − ϵn.

Perhaps the simplest attempt would be to choose a column sampling matrix S and form STAS. We now

have access to the Rayleigh quotient on the image of S, and so we could choose u ∈ Im(S) to maximize uTAu
uTu

.
Unfortunately it is clear that this doesn not work. For example consider the situation where A is the all ones
matrix and S samples k columns. Then λ1 = n, but u is supported on k coordinates which means that the
Rayleigh quotient is at most k. Even to obtain n/2 additive error, we would need to set k = Ω(n), meaning that
we would sample a constant fraction of A’s entries.

Searching for u ∈ Im(S) is not good enough. A better approach would be to optimize the Rayleigh quotient
over Im(AS). Indeed if we could implement this approach it would work. The issue is that computing the Rayleigh
quotient for such U would require us to calculate expressions of the form

(ASx)TA(ASx)

(ASx)T (ASx)
=

xTSTA3Sx

xTSTA2Sx
.

Unfortunately AS does not give us enough information to calculate the numerator. However it does give us enough
information to calculate the denominator. This suggests that we should instead optimize u over Im(A1/2S). Indeed
this only requires us to compute quantities of the form

xTSTA2Sx

xTSTASx
,

which we can do if we have AS. We show that this works. That is, for some x, the generalized Rayleigh quotient
above is at least λ1 − ϵn. Thus if x is optimal, then we can take A1/2Sx as our approximate eigenvector. Given
x, we do not have a direct way to compute A1/2Sx. However we can compute ASx. This can be thought of as
applying an additional half iteration of power method to A1/2Sx, and so as we observe, the Rayleigh quotation
for ASx will be at least as large as for A1/2Sx. Thus our algorithm will ultimately return ASx.

Fast eigenvalue sketching. Previous work, [SW23] considered the problem of sketching the eigenvalues of
a matrix A up to ϵ ∥A∥F additive error. While this sketch achieved the optimal O( 1

ϵ4 ) sketching dimension, it

requires roughly n2

ϵ2 time to apply when A is a dense n× n matrix. We can use our sampling analysis to obtain a
faster sketch.

The idea is to rotate by a random orthogonal matrix that supports fast matrix multiplication. Specifically we
take a matrix U which is a Hadamard matrix composed with random sign flips and compute UTAU. This flattens
the row-norms of A so that one can simply take the sketch to be a random principle submatrix of UTAU . Then
applying our analysis for squared row-norm sampling shows that the sketch can be used to obtain an additive
ϵ ∥A∥F approximation to the spectrum of A.

2.2 Additional Related Work

Spectral density estimation. Recently, spectral density estimation was studied by [BKM22], for normal-
ized graph Laplacians and adjacency matrices. This result measures error with respect to Wasserstein distance
for the (normalized) spectral histogram, and queries Ω(n/ poly(ϵ)) entries of A, so is not directly comparable to
our setting. A related work [Coh+18], achieves the same type of Wasserstein guarantee but with exp(1/ϵ) queries
and access to a random walk on the underlying graph. Since we aim for poly(1/ϵ) queries this is again not directly
comparable to our setting.

Matrix sparsification. [Bha+23] studies the problem of deterministically constructing a sparsifier of
bounded entry matrix A by using a sublinear number of queries. Their approximation result would yield an
additive ϵn approximation to all eigenvalues but requires Ω(n/ϵ2) entry queries. Similarly, for bounded entry PSD
matrices they could achieve the same Ω(n/ϵ2) bound for approximating the top eigenvector of a PSD matrix, but
this is worse than what we require for sampling by a factor of 1/ϵ.

Low rank approximation. A line of work [MW17; BW18; BCW20] considered the problem of constructing
low-rank approximations to PSD matrices A using a sublinear number of queries. Notably [BCW20] gave an
algorithm with optimal O(kn/ϵ) query complexity for obtaining a PSD rank k approximation Â to A satisfying

∥

∥

∥
A− Â

∥

∥

∥

F
≤ (1 + ϵ)

∥

∥A−A⟨k⟩
∥

∥

F
,
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where A⟨k⟩ is the optimal rank k approximation of A. For the case k = 1, this is related to the top eigenvector
approximation problem that we consider. In a similar spirit, [MM17] gives an additive spectral approximation to
A which also implies our top eigenvector bound. However notably these algorithms are all adaptive, whereas we
are interested in algorithms that sample non-adaptively. Thus the techniques involved are quite different from
what we consider. Additionally these algorithms all require at least an extra O(log 1

ϵ ) overhead compared to our
result.

Sketching. In a somewhat different setting to sampling, eigenvalue sketching was previously studied by
[SW23] where an optimal O(1/ϵ4) sketching dimension was given for obtaining ϵ ∥A∥F additive error. Previously
[AN13] gave a sketch for the top eigenvalues. By rearranging their bounds, this implies an O(1/ϵ6) for sketching all
eigenvalues to ϵ ∥A∥F additive error; however this only applies to PSD matrices. Finally, we note the question of
sketching the operator norm was considered in [LW16]. These results imply an Ω(n2) lower bound for sketching the
top eigenvalue to relative error, which justifies the focus on additive error for sketching and sampling algorithms.

3 Preliminaries

3.1 Notation Throughout, we use c to denote an absolute constant, which may change between uses. The
notation Õ(f) means O(f logc f) for some absolute constant c.

Unless otherwise stated, the matrix A always refers to a symmetric (not necessarily PSD) matrix. We use
the notation A⟨k⟩ to denote optimal rank k approximation to A. That is, A⟨k⟩ minimizes

∥

∥A−A⟨k⟩
∥

∥

F
over rank

k matrices, where ∥A∥F is the Frobenius norm. In other words, A⟨k⟩ is A with all but its k largest magnitude
eigenvalues zeroed out. The notation A⟨−k⟩ means A − A⟨k⟩. For a matrix A, the notation Ai denotes the ith
row of A. A norm without subscripts is always the ℓ2 norm for vectors and the operator norm for matrices. We
sometimes denote the eigenvalues of a matrix A ∈ R

n×n as λ1(A) ≥ λ2(A) ≥ λn(A). The notation λmax(A) is
equivalent to λ1(A). We use ∥A∥∞ to denote the largest magnitude of an entry in A. When we say that A has
“bounded entries” we will always mean that ∥A∥∞ ≤ 1.

3.2 Basic Definitions We recall the definition of a subspace embedding embedding in the form that we will
use it here. This definition is standard in sketching literature (see [Woo+14] for example).

Definition 3.1. We say that S ∈ R
k×n is an 1 ± ϵ distortion subspace embedding for X ∈ R

n×m if for all
v ∈ R

m,
(1− ϵ) ∥Xv∥2 ≤ ∥SXv∥2 ≤ (1 + ϵ) ∥Xv∥2 .

We will also use the notion of leverage scores early on in order to show that the subspace embedding guarantee
that we require is satisfied. We recall the basic definition here.

Definition 3.2. Let X ∈ R
n×d be a matrix. The leverage score for row i of X is defined by

τi = eTi X(XTX)†XT ei,

where (XTX)† denotes the Moore-Penrose pseudo-inverse of XTX and ei ∈ R
n is the ith standard basis vector.

3.3 Incoherence Bound We use an incoherence bound from [Bha+24] in order to control the leverage scores
associated to the top eigenvectors. Roughly these bounds say that eigenvectors corresponding to large eigenvalues
must be spread out, and moreover that the supports of such eigenvectors cannot overlap much with one another.
For completeness, we supply a short proof here.

Lemma 3.1. Let A be a matrix and let Ao denote the projection of A onto the eigenvectors with eigenvalue at
least α. Write Ao = VoΛoV

T
o where Vo has the eigenvectors of A with eigenvalue at least α as its columns, and

Λo is diagonal matrix containing the associated eigenvalues. Then

∥(Vo)i∥2 ≤ ∥Ai∥2

α2
.

Proof. We have AVo = VoΛo. Therefore

∥(AVo)i∥2 = ∥(VoΛo)i∥2 ≥ α2 ∥(Vo)i∥2 ,
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since the diagonal entries of Λo are all at least α in magnitude. On the other hand,

∥(AVo)i∥2 = ∥AiVo∥2 ≤ ∥Ai∥2 ,

since Vo has orthonormal columns. The lemma follows from combining these two bounds.

3.4 Leverage Score Sampling We use the following leverage score sampling bound, which is a consequence
of a matrix Chernoff bound [Kyn18; Tro12].

Theorem 3.1. Let V ∈ R
n×d, and form a sampling matrix S by including each index i with probability pi and

rescaling by 1√
pi
.

Let τi denote the leverage score for row i of V. If pi ≥ min( 2
ϵ2 τi log

d
δ , 1), then with probability at least 1 − δ

we have (1− ϵ)V TV ⪯ (SV )T (SV ) ⪯ (1 + ϵ)V TV.

3.5 Approximate matrix product The following observation was Lemma 1 of [CNW15]. We supply a short
proof here for completeness.

Lemma 3.2. Let A and B be real matrices and let [A|B] be the concatenation of A and B. Let S be an ϵ-distortion
subspace embedding for [A|B]. Then

∥

∥ATSTSB −ATB
∥

∥ ≤ ϵ ∥A∥ ∥B∥ .

Proof. Let x and y be unit vectors of appropriate dimension such that

∥

∥ATSTSB −ATB
∥

∥ = xT (ATSTSB −ATB)y = ⟨SAx, SBy⟩ − ⟨Ax,By⟩ .

Since S is a subspace embedding for [A|B], it preserves the inner product ⟨Ax,By⟩ up to additive error:

|⟨SAx, SBy⟩ − ⟨Ax,By⟩| ≤ ϵ ∥Ax∥ ∥By∥ ≤ ϵ ∥A∥ ∥B∥ .

The lemma follows.

Combining with Theorem 3.1 above immediately gives a generalization of Theorem 3.1 for constructing
approximating matrix products. This will account for most of our use cases for leverage score sampling guarantees,
so we record this fact here for easy reference.

3.6 Additional facts

Proposition 3.1. Let A be a symmetric matrix. Let P be a projection onto the span of a subset of A’s
eigenvectors. Then

∥

∥(PAPT )k
∥

∥ ≤ ∥Ak∥ where Ak is the kth row of A.

Proof. Using the spectral decomposition of A, we can write A =
∑

i uiu
T
i and PAPT =

∑

j vjv
T
j where the ui’s

are mutually orthogonal, and where the vj ’s are a subset of the ui’s. Then

∥Ak∥2 = ∥Aek∥2

=

∥

∥

∥

∥

∥

∑

i

⟨ui, ek⟩ui

∥

∥

∥

∥

∥

2

=
∑

i

∥ui∥2 |⟨ui, ek⟩|2

≥
∑

j

∥vj∥2 |⟨vj , ek⟩|2

=
∥

∥(PAPT )k
∥

∥

2
.
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4 Our subspace embedding condition

In the next section we obtain both upper and lower bounds on the outlying eigenvalues. Importantly, we show
how to obtain these bounds using only subspace embedding guarantees. The leverage score estimates will show
that we can use a sampling procedure to construct the desired subspace embeddings.

We will let S be our sampling matrix throughout. The key subspace embedding property that we require is
as follows.

Assumption 4.1. For all λ ≥ L, S is a min(L/λ, 1/10) distortion subspace embedding on the span of eigenvectors
of A with associated eigenvalue at least λ in magnitude

To streamline our analysis, we use this assumption in full generality. One should think of L as representing
the threshold defining the outlying eigenvalues. We will later specialize to L = ϵn and L = ϵ ∥A∥F . Our first step
is to show that Assumption 4.1 is realized by our sampling schemes. Then we treat this property as a black-box
for the remainder of the argument, and show that it implies an additive O(L) spectral approximation guarantee.

4.1 Realizing Assumption 4.1 As a consequence of the incoherence bound, and leverage score sampling
guarantee, we show that a version of Assumption 4.1 is achieved both for uniform sampling and row sampling.
For uniform sampling we will assume that A has bounded entries and set L = ϵn. For row-norm sampling, we will
make no assumptions on A and set L = ϵ ∥A∥F . In both cases, we will need our sample to have size roughly 1

ϵ2 .

Lemma 4.1. Let A ∈ R
n×n have all entries bounded in magnitude by 1. Let S be a sampling matrix which samples

each row of A with probability s/n. Then for s ≥ c
ϵ2

(

log log 1
ϵ + log 1

ϵ2δ

)

, S satisfies Assumption 4.1 with L = ϵn.

Proof. Consider a fixed value of λ, and let V≥λ ∈ R
n×d be an orthonormal matrix whose columns are the

eigenvectors of A with associated eigenvalue at least λ.
By Lemma 3.1,

∥V≥λ,i∥2 ≤ 1

λ2
∥Ai∥2 ≤ n

λ2
,

since A has bounded entries. Since V≥λ,i has orthonormal columns, this says that all leverage scores of V≥λ are
at least n/λ2.

Let p = s/n, and set ϵ = 1
2 (L/λ) in Theorem 3.1. This shows that if

p ≥ 8
λ2

L2

( n

λ2

)

log
d

δ
= 8

n

L2
log

d

δ
=

8

ϵ2n
log

d

δ
,

then S is a a 1
2 (L/λ) distortion subspace embedding for V≥λ, with probability at least 1−δ. Note that ∥A∥2F ≤ n2,

so A has at most 1/ϵ2 eigenvalues that are at least ϵn. This implies that d ≤ 1
ϵ2 so it suffices to have p ≥ 8

ϵ2n log 1
ϵ2δ ,

and hence to choose s ≥ 8
ϵ2 log

1
ϵ2δ .

In order for Assumption 4.1 to hold, it suffices to have S be a 1/10 distortion embedding for V , a 1
2 distortion

embedding for V≥ϵn, a
1
4 distortion embedding for V≥2ϵn, and in general a 1

2r+1 distortion embedding for V≥2rϵn

for r = 0, . . . , ⌊log2 1
ϵ ⌋. By the same calculations as above, we can achieve the 1/10 distortion embedding for V

using a sampling probability of p ≥ c
ϵ2n log 1

δ . Then replacing δ by δ/⌊log2 1
ϵ ⌋ and taking a union bound over all

r yields the lemma.

The following lemma gives the analogous result for squared row-norm sampling. For technical reasons, we
give a version that will allow some entries of A to be zeroed out prior to sampling, although this does not change
much.

Lemma 4.2. Let A ∈ R
n×n be arbitrary. Let S be a sampling matrix which samples each row index i with

probability pi = min
(

s
∥Ai∥2

∥A∥2
F

, 1
)

. Let A′ be the matrix A, but possibly with some of its entries replaced with 0.

Then for s ≥ c
ϵ2

(

log log 1
ϵ + log 1

ϵ2δ

)

, S satisfies Assumption 4.1 for A′ with L = ϵ ∥A∥F .

Proof. Consider a fixed value of λ, and let V ′
≥λ ∈ R

n×d be an orthonormal matrix whose columns are the

eigenvectors of A′ with associated eigenvalue at least λ.
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By Lemma 3.1,
∥

∥V ′
≥λ,i

∥

∥

2 ≤ 1

λ2
∥A′

i∥
2 ≤ 1

λ2
∥Ai∥2 .

Set ϵ = 1
2 (L/λ) =

1
2

ϵ∥A∥F

λ in Theorem 3.1. This shows that if

pi ≥ min

(

8
λ2

L2

(

∥Ai∥2

λ2

)

log
d

δ
, 1

)

= min

(

8 ∥Ai∥2

ϵ2 ∥A∥2F
log

d

δ
, 1

)

,

then S is a a 1
2 (L/λ) distortion subspace embedding for V ′

≥λ, with probability at least 1− δ. Note that A′ has at

most 1/ϵ2 eigenvalues that are at least ϵ ∥A∥F . This implies that d ≤ 1
ϵ2 so it suffices to have

pi ≥ min

(

8 ∥Ai∥2

ϵ2 ∥A∥2F
log

1

ϵ2δ
, 1

)

,

and hence to choose s ≥ 8
ϵ2 log

1
ϵ2δ .

In order for Assumption 4.1 to hold, it suffices to have S be a 1/10 distortion embedding for V ′, a 1
2 distortion

embedding for V≥ϵn, a
1
4 distortion embedding for V ′

≥2ϵn, and in general a 1
2r+1 distortion embedding for V ′

≥2rϵn

for r = 0, . . . , ⌊log2 1
ϵ ⌋. By the same calculations as above, we can achieve the 1/10 distortion embedding for V ′

using a sampling probability of p ≥ c
ϵ2n log 1

δ . Then replacing δ by δ/⌊log2 1
ϵ ⌋ and taking a union bound over all

r yields the lemma.

5 Outlying Eigenvalue Bounds

Using Assumption 4.1 we show how to obtain both upper and lower bound on the outlying eigenvalues of A.

5.1 Lower Bounds

Proposition 5.1. Let W1 and W2 be subspaces of Rn, and let P be the orthogonal projection onto W2. Let x be
a nonzero vector in W1. Then

∥Px∥
∥x∥ ≤ max

w1∈W1,w2∈W2

⟨w1, w2⟩
∥w1∥ ∥w2∥

.

Proof. For w1 ∈ W1 and w2 ∈ W2 we have

max
w1,w2

⟨w1, w2⟩
∥w1∥ ∥w2∥

= max
w1

⟨w1, Pw1⟩
∥w1∥ ∥Pw1∥

≥ ⟨x, Px⟩
∥x∥ ∥Px∥ =

∥Px∥
∥x∥ .

Proposition 5.2. Let A be symmetric and x and h be vectors. Suppose that ∥x∥ ≥ 1 − α and ∥h∥ ≤ α with
α ≤ 1/4. Then

∣

∣

∣

∣

(x+ h)TA(x+ h)

∥x+ h∥2
− xTAx

∥x∥2
∣

∣

∣

∣

≤ 8 ∥A∥ α.

Proof. Let F (x) = xTAx
xT x

be the Rayleigh quotient. Recall that its gradient is given by

∇F (v) =
2

∥v∥2

(

A− vTAv

∥v∥2
I

)

v.

Then

∥∇F (v)∥ ≤ 2

∥v∥2

∥

∥

∥

∥

∥

A− vTAv

∥v∥2
I

∥

∥

∥

∥

∥

∥v∥ ≤ 2

∥v∥

(

∥A∥ +

∥

∥

∥

∥

∥

vTAv

∥v∥2
I

∥

∥

∥

∥

∥

)

≤ 4
∥A∥
∥v∥ .

This together with the hypotheses implies that F is (8 ∥A∥)-Lipschitz on a ∥h∥-neighborhood of x, and the claim
follows.
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Lemma 5.1. Let Π have orthonormal columns and suppose that S is an α-distortion subspace embedding for Π.
Then for all nonzero v,

(SΠv)TSΠΠTST (SΠv)

∥SΠv∥2
≥ 1− α.

Proof. The numerator above is equal to
∥

∥ΠTSTSΠv
∥

∥

2
. By Cauchy-Schwarz,

∥

∥ΠTSTSΠv
∥

∥

2 ≥
〈

v,ΠTSTSΠv
〉2

∥v∥2
=

∥SΠv∥4

∥v∥2
.

So the fraction in the lemma is at least
∥SΠv∥2

∥v∥2 . Since S is an α distortion subspace embedding for Π, we have

∥SΠv∥2 ≥ (1− α) ∥Πv∥2 = (1− α) ∥v∥2 ,

and the lemma follows.

Lemma 5.2. Let U and Π have mutually orthonormal columns and let M be symmetric. Suppose that S is an
α-distortion embedding for [U |Π], where α ≤ 1/7. Let P be the orthogonal projection onto the column space of SU
and let P⊥ = I − P. Then for all vectors x, P⊥SΠx is nonzero and

∣

∣

∣

∣

(P⊥SΠx)TM(P⊥SΠx)

∥P⊥SΠx∥2
− (SΠx)TM(SΠx)

∥SΠx∥2
∣

∣

∣

∣

≤ 10α ∥M∥ .

Proof. We first show that P⊥SΠx is close to SΠx. By Proposition 5.1 we have

∥PSΠx∥
∥SΠx∥ ≤ max

y,z

⟨SΠy, SUz⟩
∥SΠy∥ ∥SUz∥ = max

y,z

yTΠTSTSUz

∥SΠy∥ ∥SUz∥ ≤ max
y,z

∥y∥ ∥z∥
∥

∥ΠTSTSU
∥

∥

∥SΠy∥ ∥SUz∥ .

By our hypothesis that S is a subspace embedding, along with Lemma 3.2,we bound the operator norm in the
numerator by

∥

∥ΠTSTSU
∥

∥ =
∥

∥ΠTSTSU −ΠTU
∥

∥ ≤ α ∥Π∥ ∥U∥ = α.

For the denominator, the subspace embedding property implies that

(1− α)1/2 ∥y∥ ≤ ∥SΠy∥ ≤ (1 + α)1/2 ∥y∥

and similarly for ∥SUz∥ and ∥SΠx∥ . Plugging into the bound above gives that for all unit vectors x,

∥PSΠx∥ ≤ α

(1− α)1/2(1− α)1/2
∥SΠx∥ ≤ α

1− α
(1 + α)1/2 < 1.25α,

for α ≤ 1/7. By the triangle inequality,

0 =
∥

∥PSΠx+ P⊥SΠx− SΠx
∥

∥ ≥
∥

∥P⊥SΠx− SΠx
∥

∥ − ∥PSΠx∥ ,

and so
∥

∥P⊥SΠx− SΠx
∥

∥ ≤ 1.25α for all unit vectors x.

Note that ∥SΠx∥ ≥ (1 − α)1/2 ∥x∥ ≥ (1 − α). To apply Proposition 5.2 we need 1.25α ≤ 1/4, which is true
by hypothesis.

So by Proposition 5.2 we have

∣

∣

∣

∣

(P⊥SΠx)TM(P⊥SΠx)

∥P⊥SΠx∥2
− (SΠx)TM(SΠx)

∥SΠx∥2
∣

∣

∣

∣

≤ (8 · 1.25)α ∥M∥ = 10α ∥M∥ ,

as desired.
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Lemma 5.3. Let A ∈ R
n×n be symmetric, not necessarily PSD. Assume that all nonzero eigenvalues of A are

at least L in magnitude. Suppose that S satisfies Assumption 4.1. Then for all k with λk(A) > 0 we have
λk(SAS

T ) ≥ λk(A)− 51L.

Proof. Suppose that the kth largest eigenvalue of A is λ > 0. We will show that SAST is at least λ−O(L) on a
k-dimensional subspace W , which will imply that λk(SAST ) ≥ λ−O(L).

Towards this end, decompose A = A+ − A− into its positive and negative parts. Since A+ has k eigenvalues
that are at least λ, we can write A+ ⪰ λΠΠT where the columns of Π are the k largest eigenvectors of A+ (chosen
to be orthonormal when there are duplicate eigenvalues). Let U≥λ have as its columns the eigenvectors of A−
with associated eigenvalue at least λ, and similarly for U<λ. Let P be the orthogonal projection onto the column
span of SU≥λ and set P⊥ = I − P. As suggested by the previous lemma, we choose our subspace W to be the
column span of P⊥SΠ.

Write f(λ) := min(1/7, L/λ) and recall that S is an f(λ)-distortion subspace on the span of the eigenvectors
of A with associated eigenvalue at least λ in magnitude, in other words on [Π|U≥λ]. Lemma 5.2 applies and gives
that for all x,

(P⊥SΠx)T (SΠΠTST )(P⊥SΠx)

∥P⊥SΠx∥2
≥ (SΠx)T (SΠΠTST )(SΠx)

∥SΠx∥2
− 10f(λ)

∥

∥SΠΠTST
∥

∥

≥ (1− f(λ))− 10f(λ)
∥

∥SΠΠTST
∥

∥

≥ 1− 12f(λ),

where we used Lemma 5.1 as well as as the observation that
∥

∥SΠΠTST
∥

∥ =
∥

∥ΠTSTSΠ
∥

∥ ≤ (1 + f(λ))1/2 ≤ (1 + 1/7)1/2 ≤ 1.07,

by the subspace embedding property. Also note that the dimension of W is k since Lemma 5.2 also states that
P⊥SΠ has trivial kernel. Now for w ∈ W , with ∥w∥ = 1 we have

wTSA+S
Tw ≥ λwTSΠΠTSTw = λ

∥

∥ΠTSTw
∥

∥

2 ≥ λ(1− f(λ)).

Next we study wTA−w where w ∈ W is a unit vector. We first split the spectral decomposition of A− into
two pieces as follows:

A− = U≥λΛ≥λU
T
≥λ + U<λΛ<λU

T
<λ.

Then we have

wT (SA−S
T )w = wTSU≥λΛ≥λU

T
≥λS

Tw + wTSU<λΛ<λU
T
<λS

Tw(5.1)

= wTSU<λΛ<λU
T
<λS

Tw,(5.2)

where the second inequality is because w is orthogonal to the image of SU≥λ, which comes from the definition of
W.

We now partition the eigenvalues into approximate level sets. Let Vk have as its columns the columns of U<λ

with associated eigenvalue in [2k−1L, 2kL). Then we have the spectral bound

U≤λΛ≤λU
T
≤λ ⪯ (2L)V1V

T
1 + (4L)V2V

T
2 + . . .+ (2rL)VrV

T
r ,

where r is ⌈log2(λ/L)⌉.
We would like to bound wTSVkV

T
k STw. Write w = P⊥SΠx for some x. Then similar to our application of

Lemma 5.2 above,

(P⊥SΠx)T (SVkV
T
k ST )(P⊥SΠx)

∥P⊥SΠx∥2
≤ (SΠx)T (SVkV

T
k ST )(SΠx)

∥SΠx∥2
+ 10f(λ)

∥

∥SVkV
T
k ST

∥

∥ .

Since S a 1/7 distortion embedding for A and in particular Vk, we have

∥

∥SVkV
T
k ST

∥

∥ =
∥

∥V T
k STSVk

∥

∥ = max
∥x∥=1

∥SVkx∥2 ≤ 8

7
.
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For the first term above,

(SΠx)T (SVkV
T
k ST )(SΠx)

∥SΠx∥2
=

∥

∥V T
k STSΠx

∥

∥

2

∥SΠx∥2
≤
∥

∥V T
k STSΠ

∥

∥

2 ∥x∥2

∥SΠx∥2
.

Since S is an f(2k−1L)-distortion subspace embedding for [Vk|Π], we have
∥

∥V T
k STSΠ

∥

∥ ≤ f(2k−1L).

Also ∥SΠx∥2 ≥ 6
7 ∥x∥

2 again since S is a subspace embedding for Π, and so

(P⊥SΠx)T (SVkV
T
k ST )(P⊥SΠx)

∥P⊥SΠx∥2
≤ 7

6
f(2k−1L)2 + 12f(λ).

In particular, for w ∈ W a unit vector,

wT (SVkV
T
k ST )w ≤ 7

6
f(2kL)2 + 12f(λ).

Plugging into (5.1) above gives

wT (SA−S
T )w = wTSU≤λΛ≤λU

T
≤λS

Tw

≤ wTS
(

(2L)V1V
T
1 + (4L)V2V

T
2 + . . .+ (2rL)VrV

T
r

)

STw

=
r
∑

k=1

(2kL)wTSVkV
T
k STw

≤
r
∑

k=1

(2kL)

(

7

6
f(2kL)2 + 12f(λ)

)

.

≤
r
∑

k=1

(2kL)

(

7

6
(

L

2kL
)2 + 12

L

λ

)

= L
r
∑

k=1

(

7

6
2−k + 2k

12L

λ

)

≤ 7

6
L+ 12L

r
∑

k=1

2kL

λ

≤ 7

6
L+ 48L,

since 2rL ≤ 2λ.
Putting the pieces together,

wTSASTw = wTSA+S
Tw − wTSA−S

Tw

≥ λ(1− f(λ))− 50L

≥ λ

(

1− L

λ

)

− 50L

= λ− 51L,

for all unit vectors w ∈ W. Since the dimension of W is k, this implies that λk(SAST ) ≥ λ−51L as desired.

5.2 Upper Bounds

Lemma 5.4. Suppose that the nonzero eigenvalues of A are all at least L and let λ1 = λmax(A). Suppose that S
satisfies Assumption 4.1. Then λmax(SAST ) ≤ λ1 + cL log λ1

L .
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Proof. Let A = UΛUT be the spectral decomposition of A.
We partition the columns of U based on the eigenvalues. For i = 1, . . . , r with r = ⌈log2 λ1

L ⌉, let U (i) consist of

the columns of U corresponding to eigenvalues in (λ12
−i, λ12

−i+1]. Define Λ(i) to be the diagonal matrix consisting
of the associated eigenvalues.

Let j ≤ i be an arbitrary index. Note that if S is a subspace embedding for U (i) then S is also a subspace
embedding for U (i)Λ(i) with the same parameters.

By Assumption 4.1, S is a L/(λ12
−i) = 2iL/λ1 distortion subspace for [U (i)|U (j)]. Therefore we have

∥

∥

∥

∥

(

SU (i)(Λ(i))1/2
)T (

SU (j)(Λ(j))1/2
)

−
(

U (i)(Λ(i))1/2
)T (

U (j)(Λ(j))1/2
)

∥

∥

∥

∥

≤ 2iL

λ1

∥

∥

∥
U (i)(Λ(i))1/2

∥

∥

∥

∥

∥

∥
U (j)(Λ(j))1/2

∥

∥

∥

≤ 2iL

λ1
(λ12

−i+1)1/2(λ12
−j+1)1/2

= 2L
√
2
i−j

.

For i > j, U (i) and U (j) are orthognal to one another, so
∥

∥

∥

∥

(

SU (i)(Λ(i))1/2
)T (

SU (j)(Λ(j))1/2
)

∥

∥

∥

∥

≤ 2L
√
2
i−j

.

Therefore for all i ̸= j,
∥

∥

∥

∥

(

SU (i)(Λ(i))1/2
)T (

SU (j)(Λ(j))1/2
)

∥

∥

∥

∥

≤ 2L
√
2
|i−j|

.

Similarly for the i = j case, we have
∥

∥

∥

∥

(

SU (i)(Λ(i))1/2
)T (

SU (i)(Λ(i))1/2
)

−
(

U (i)(Λ(i))1/2
)T (

U (i)(Λ(i))1/2
)

∥

∥

∥

∥

≤ 2L,

which by the triangle inequality implies that
∥

∥

∥

∥

(

SU (i)(Λ(i))1/2
)T (

SU (i)(Λ(i))1/2
)

∥

∥

∥

∥

≤ λ12
−i+1 + 2L.

Now let x be a unit vector, and partition the coordinates of x into pieces x(i) corresponding to the
decomposition of U into U (i)’s. Then

∥

∥

∥
SUΛ1/2x

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∑

i

SU (i)(Λ(i))1/2x(i)

∥

∥

∥

∥

∥

2

=
∑

i

∥

∥

∥
SU (i)(Λ(i))1/2x(i)

∥

∥

∥

2

+2
∑

i<j

〈

SU (i)(Λ(i))1/2x(i), SU (j)(Λ(j))1/2x(j)
〉

By the bounds above, the cross terms are all bounded by L
√
2
|i−j| ∥

∥x(i)
∥

∥

∥

∥x(j)
∥

∥ and the diagonal terms are

bounded by (λ12
−i+1 + L)

∥

∥x(i)
∥

∥

2
.

Thus

∥

∥

∥
SUΛ1/2x

∥

∥

∥

2

≤
r
∑

i=1

[

(λ12
−i+1 + L)

∥

∥

∥
x(i)
∥

∥

∥

2
]

+ 2
∑

i<j

L
√
2
|i−j| ∥

∥

∥
x(i)
∥

∥

∥

∥

∥

∥
x(j)

∥

∥

∥

= L+
r
∑

i=1

λ12
−i+1

∥

∥

∥
x(i)
∥

∥

∥

2

+ 2L
∑

i<j

√
2
|i−j| ∥

∥

∥
x(i)
∥

∥

∥

∥

∥

∥
x(j)

∥

∥

∥
.

Let M be an r×r matrix defined by M1,1 = λ1, Mi,i = λ1/2 for i > 1, and for i ̸= j Mi,j = Mj,i = L
√
2
r
:= α.

Comparing the entries of M with the coefficients above gives

∥

∥

∥
SUΛ1/2x

∥

∥

∥

2

≤ L+ ∥M∥ .
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To calculate ∥M∥, note from the symmetry of the last r − 1 coordinates that vTMv is maximized for a v of the
form [a, b/

√
r − 1, b/

√
r − 1, . . . b/

√
r − 1], where a2 + b2 = 1. For this choice of v, we have

vTMv = λ1a
2 + 2α

√
r − 1ab+ (λ1/2 + (r − 2)α)b2.

So the operator norm of M is the same as the operator norm of

M ′ :=

[

λ1 α
√
r − 1

α
√
r − 1 λ1/2 + α(r − 2)

]

.

Now suppose that λ1 + T is an eigenvalue of M ′. From the characteristic equation,

T (T + λ1/2− α(r − 2)) = α2(r − 1).

We claim that λ1/2 − α(r − 2) ≥ λ1/4 when λ1 ≥ CL for an absolute constant C. To see this, note that
the desired bound is implied by λ1/4 ≥ αr. Note that α = L

√
2r ≤

√
2
√
Lλ1, so it suffices to check that

λ1/4 ≥
√
2
√
Lλ1(log2(λ1/L) + 1), or equivalently

√

λ1/L ≥ 4
√
2(log2(λ1/L + 1). The latter is true for large

enough C, since we have the real inequality
√
x ≥ 4

√
2(log2(x) + 1) for large enough x.

Then for λ1 ≥ CL we have

T (T + λ1/2− α(r − 2)) ≥ T (T + λ1/4) ≥ Tλ1/4,

while on the other hand α2(r − 1) ≤ 2Lλ1r. So we conclude that

Tλ1/4 ≤ 2Lλ1r,

which implies that T ≤ 8Lr = 8L⌈log2(λ1

L )⌉. This in turn gives the bound

∥

∥

∥
SUΛ1/2x

∥

∥

∥

2

≤ λ1 + 8L⌈log2(
λ1

L
)⌉.

But x was arbitrary so

∥

∥SAST
∥

∥ =
∥

∥

∥
Λ1/2UTSTSUΛ1/2

∥

∥

∥
=
∥

∥

∥
SUΛ1/2

∥

∥

∥

2

≤ λ1 + 8L⌈log2(
λ1

L
)⌉

whenever λ1 ≥ CL. The lemma follows after adjusting constants.

Lemma 5.5. Let A ∈ R
n×n with λi(A) > 0. Suppose that S satisfies Assumption 4.1 for A. Then λi(SAS

T ) ≤
λi(A) + L log λi(A)

L .

Proof. First note that we may as well prove this result for PSD A, since λi(SAST ) ≤ λi(SA+S
T ), where A+ is

the PSD part of A. So we assume from now on that A is PSD. Let A⟨−i⟩ denote A with the top i eigenvalues
zeroed out, and let Si denote the orthogonal complement of the span of the top i− 1 eigenvectors of A. Note that
Si has dimension n− i+ 1. By the min-max theorem,

λi(SAST ) = λi(A
1/2STSA1/2)

= min
T⊆R

n

dim(T )=n−i+1

max
x∈T

∥x∥=1

xTA1/2STSA1/2x

≤ max
x∈Si,∥x∥=1

xTA1/2STSA1/2x

= max
x∈Si,∥x∥=1

xTA
1/2
−i S

TSA
1/2

⟨−i⟩x

≤ max
∥x∥=1

xTA
1/2

⟨−i⟩S
TSA

1/2
−i x

= λmax(A
1/2

⟨−i⟩S
TSA

1/2
−i )

= λmax(SA⟨−i⟩S
T ).
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It is clear that if Assumption 4.1 is satisfied for A then it is satisfied for A⟨−i⟩ as well. Thus the previous
lemma applies and gives

λi(SAST ) ≤ λi(A) + L log
λi(A)

L
,

as desired.

5.3 Two-sided eigenvalue bound. By simply combining our upper and lower eigenvalue bounds, we obtain
a two-sided bound that we will use throughout.

Theorem 5.1. Suppose that S is such that Assumption 4.1 holds for A where all nonzero eigenvalues of A are
at least L in magnitude. Then for all i with λi(A) ̸= 0 we have

|λi(SAST )− λi(A)| ≤ L log
∥A∥
L

.

Proof. Lemma 5.5 and Lemma 5.3 yield the desired bound for all i with λi(A) > 0. To obtain the analogous
bound for the negative eigenvalues, simply apply these Lemmas to −A.

6 Bounded Entry Matrices

As in [Bha+24], we decompose A corresponding to its “middle” and “outlying” eigenvalues.

Definition 6.1. Let A be a symmetric matrix with spectral decomposition A = UΛUT . Let L be the parameter
in Assumption 4.1. Set Λo to be Λ with all entries smaller than L zeroed out, and set Λm = Λ − Λo. Then we
define Ao = UΛoU

T and Am = UΛmUT .

Throughout we will slightly abuse notation by writing Ao,i to refer to row i of the matrix Ao, and similarly
Ao,i,j to refer to the i, j entry of Ao. We use the following bound on the middle eigenvalues from [Bha+24].

Lemma 6.1. Let A ∈ R
n×n be symmetric with entries bounded by 1, and let Am be A restricted to its middle

eigenvalues as defined in Definition 6.1. Let S be a uniform sampling matrix with sampling probability at least
c logn
ϵ2δ . Then with probability at least 1− δ,

∥

∥SAmST
∥

∥

2
≤ ϵn.

Proof. This is a rephrasing of Lemma 4 of [Bha+24]. Note that our sampling matrix S already rescales by n/s,
whereas the matrix in their theorem statement is prior to rescaling.

Theorem 6.1. Let A ∈ R
n×n be symmetric, not necessarily PSD with all entries bounded by 1. Then when

s ≥ c
ϵ2

logn
δ ), observing SAST allows recovery of all eigenvalues of A to within ϵn additive error with probability

at least 1− δ.

Proof. Following [Bha+24], write A = Ao + Am where Ao has the eigenvalues of A that are at least ϵn in
magnitude. For our sampling matrix S, Theorem 5.1 implies that the positive eigenvalues of SAoS

T are ϵn
additive approximations to the eigenvalues of Ao. Also Lemma 6.1 shows that

∥

∥SAmST
∥

∥ ≤ O(ϵn) with 0.9
probability. So the result follows from Weyl’s inequality.

6.1 Removing logn factors. We show via a surprisingly simple trick that the logn dependence can be replaced
with a log 1

ϵδ dependence, resolving a question left open by [Bha+24]. The idea is that we can directly apply our

sampling result to get good eigenvalue approximations by sampling a principal submatrix of dimension Õ(logn/ϵ2).
The new matrix still has a dimension depending on n, but is dramatically smaller. Thus we may apply our sampling
procedure again to reduce the dimensions even further. It turns out that we can repeat this enough times to remove
the n dependence entirely. Since the sampling procedure at each stage is uniform, the final sample is uniform as
well. So this argument does not yield a new algorithm, but rather shows that the O(logn/ϵ) guarantee can be
boostrapped to achieve a tighter sampling bound.

Theorem 6.2. Algorithm 1 approximates all eigenvalues of A to within ϵn additive error, with probability at least
1− δ when s = c

ϵ2δ log
1
ϵδ .
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Proof. Say that a sampling algorithm has a (ϵ, δ) recovery guarantee, if it approximates all eigenvalues of A to
within ϵn additive error with failure probability at most δ. Fix n, and let N ≥ 1 be minimal such that for all
ϵ, δ bounded by a sufficiently small constant, setting s = N/(ϵ2δ) in Algorithm 1 suffices for obtaining an (ϵ, δ)
approximation guarantee. (We already know N can be taken to be c logn by Theorem 6.1.)

By our definition of N , taking s = 12N/(ϵ2δ) suffices to obtain an (ϵ/2, δ/3) guarantee. Let S be the
corresponding sampling matrix. Note that S takes s samples of expectation, and is unlikely to take many more.
By a Chernoff bound, the probability that S takes at most 2s samples is at least 1−exp(−s/3). Note that s ≥ 1/δ,
so exp(−s/3) ≤ δ, when δ ≤ 1/2. Also, note that SAST has entries bounded by n/s since the entries of A are
assumed to be bounded by 1.

Now we consider sub-sampling again by a new sampling matrix S2. By Theorem 6.1, if S2 is a uniform
sampling matrix that takes c

δϵ2 log(s/ϵ) samples in expectation, then with failure probability at most δ/3, the
matrix S2SAS

TST
2 yields an additive

(ϵ/4)(2s)
∥

∥SAST
∥

∥

∞ = (ϵ/2)s(n/s) = ϵn/2

approximation to the spectrum of SAST . Combining the bounds, we see that S2SASTST
2 gives an additive ϵn

spectral approximation to A with failure probability at most δ.
Now, note that S2S is itself a sampling matrix that takes c

δϵ2 log(s/ϵ) samples in expectation and yields an
(ϵ, δ) guarantee. By minimality of N , this means that

N ≤ c log
s

ϵ
.

But s = N
ϵ2δ , so in fact

N ≤ c log
N

ϵ3δ
,

which implies that N ≤ c log 1
ϵδ . Thus we conclude that a sampling matrix with s = c

ϵ2δ log
1
ϵδ is sufficient to

obtain an (ϵ, δ) guarantee.

7 Squared row-norm Sampling

In this section we show how to modify the anlaysis of [Bha+24] to obtain improved bounds given access to a
squared row-norm sampler.

We use the entry zeroing procedure of [Bha+24] (the same procedure used in Algorithm 2), which we now
recall.

Definition 7.1. Given a symmetric matrix A ∈ R
n×n let A′ be the matrix formed by zeroing out all entries Aij

satisfying one of the following conditions.

1. i = j and ∥Ai∥2 < ϵ2

4 ∥A∥2F

2. i ̸= j and ∥Ai∥2 ∥Aj∥2 <
ϵ2∥A∥2

F
|Aij |2

c log4 n
for an absolute constant c.

We also use a lemma from [Bha+24] arguing that the spectrum of A′ is close to the spectrum of A.

Lemma 7.1. For all i, |λi(A
′)− λi(A)| ≤ ϵ ∥A∥F .

We apply the following bound on the operator norm of the sampled matrix, which is given in the proof of
Lemma 14 in [Bha+24].

Lemma 7.2. For s ≥ logn
ϵ2 , we have the bound

E2 ∥SA′
mS∥2 ≤ 10

√

lognE2

∥

∥

∥
SHmŜ

∥

∥

∥

1→2
+ 15ϵ ∥A∥F ,

where Hm consists of the off-diagonal entries of A′
m, E2(X) = E(X2)1/2 and where ∥·∥1→2 denotes the maximum

ℓ2 norm of any column.
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Our main task is to improve the bound on E2

∥

∥

∥
SHmŜ

∥

∥

∥

1→2
. To do this, we continue following the proof of

[Bha+24], but improve on their variance calculation.

Lemma 7.3. (From [Bha+24]) Assume that pi ≤ 1 for all i. For a fixed i, define the random variable zj to be
1
pj
|A′

m,i,j |2 with probability pj, and 0 otherwise. Then

Var

(

n
∑

j=1

zj

)

≤
n
∑

j=1

|A′
m,i,j |4 +

n
∑

j=1

12 ∥A∥2F
s ∥Aj∥22

(|A′
i,j |4 + |A′

o,i,j |4)

Lemma 7.4. Suppose that s ≥ c log
4 n

ϵ2 for some absolute constant c. Fix i with pi < 1 and let zj be as in the above
lemma. We have

Var

(

n
∑

j=1

zj

)

≤ 2 ∥Ai∥42 .

Proof. From Lemma 7.3,

Var

(

n
∑

j=1

zj

)

≤
n
∑

j=1

|A′
m,i,j |4 +

n
∑

j=1

12 ∥A∥2F
s ∥Aj∥22

(|A′
i,j |4 + |A′

o,i,j |4)

=
n
∑

j=1

|A′
m,i,j |4 + 12

n
∑

j=1

∥A∥2F
s ∥Aj∥22

|A′
i,j |4 + 12

n
∑

j=1

∥A∥2F
s ∥Aj∥22

|A′
o,i,j |4.

Also from the argument of [Bha+24], we have the bound

|A′
o,i,j | ≤

∥Ai∥2 ∥Aj∥2
ϵ ∥A∥F

.

(Note that we take their δ to be 1.)
Compared to their argument, our main improvement is that we use the bound

|A′
o,i,j |4 ≤ ∥Ai∥22 ∥Aj∥22

ϵ2 ∥A∥2F
|A′

o,i,j |2.

This gives

n
∑

j=1

∥A∥2F
s ∥Aj∥22

|A′
o,i,j |4 ≤

n
∑

j=1

∥A∥2F
s ∥Aj∥22

(

∥Ai∥22 ∥Aj∥22
ϵ2 ∥A∥2F

|A′
o,i,j |2

)

=
n
∑

j=1

∥Ai∥22
sϵ2

|A′
o,i,j |2

=
∥Ai∥22
sϵ2

∥

∥A′
o,i

∥

∥

2

2

≤ ∥Ai∥42
sϵ2

,

where in the last line, we used that
∥

∥

∥
A′

o,i

∥

∥

∥

2

2
≤ ∥A′

i∥
2
2 ≤ ∥Ai∥22 .

Again following the proof of [Bha+24], we have

n
∑

j=1

|A′
m,i,j |4 ≤

∥

∥A′
m,i

∥

∥

4

2
≤ ∥A′

i∥
4
2 ≤ ∥Ai∥42 .
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Continuing their proof, the thresholding procedure for A′ implies that if i ̸= j and A′
ij ̸= 0, then

∥Aj∥22
|A′

i,j |2
≥ ϵ2 ∥A∥2F

c log4 n ∥Ai∥22
.

Therefore,

n
∑

j=1

∥A∥2F
s ∥Aj∥22

|A′
i,j |4 =

∑

j:A′

ij
̸=0

∥A∥2F
s ∥Aj∥22

|A′
i,j |4 ≤

n
∑

j=1

c log4 n ∥Ai∥22
sϵ2

|A′
ij |2 ≤ c log4 n ∥Ai∥42

sϵ2
.

Combining the various bounds gives

Var

(

n
∑

j=1

zj

)

≤ ∥Ai∥42 +
c log4 n ∥Ai∥42

sϵ2
.

Thus for s ≥ c log
4 n

ϵ2 we have

Var

(

n
∑

j=1

zj

)

≤ 2 ∥Ai∥42 ,

as desired.

With this improved variance bound, we obtain our improved middle eigenvalue bound by continuing the proof
of Lemma 14 from [Bha+24].

Lemma 7.5. We have the operator norm bound
∥

∥SA′
mST

∥

∥ ≤ ϵ ∥A∥F with 2/3 probability provided that s ≥ c log
4 n

ϵ2

and pi :=
s∥Ai∥2

∥A∥F

≤ 1 for all i.

Proof. In their Lemma 14, [Bha+24] shows that |zj | ≤ 2 ∥Ai∥22 for s ≥ c log
4 n

ϵ2 if pi < 1. Using our improved
variance bound above, and applying Bernstein’s inequality as in [Bha+24] gives

Pr(∥(SA′
m):,i∥22 ≥ E ∥(SA′

m):,i∥22 + t) ≤
(

n
∑

j=1

zj ≥ ∥Ai∥2 + t

)

≤ exp

(

c
−t2

∥Ai∥42 + t ∥Ai∥22

)

.

Then setting t = c logn ∥Ai∥22 gives

Pr(∥(SA′
m):,i∥22 ≥ E ∥(SA′

m):,i∥22 + c logn ∥Ai∥22) ≤ 1/n4,

for appropriate constants. It then follows that

1

pi
∥(SHm):,i∥2 ≤ 1

pi
∥(SA′

m):,i∥2 ≤ 1

pi
(c logn ∥Ai∥22) ≤

ϵ2 ∥A∥2F
logn

,

for s ≥ c log
4 n

ϵ2 with failure probability at most 1/n4. Thus with failure probability at most 1/n3 this bound holds
for all i simultaneously.

In order to apply this, we would instead like a second moment bound. Let E be the event that all pi
corresponding to sampled rows are bounded by 1/n2. Note that E occurs with probability at least 1 − 1/n.
From now on we condition on E with only a 1/n loss in probability. Then we have

1√
pi

∥(SHm):,i∥ ≤ n ∥A∥F

deterministically, and our bound above then implies that E2

∥

∥

∥
SHmŜ

∥

∥

∥

1→2
is bounded by ϵ ∥A∥F .

Finally plugging into Lemma 7.2 we have

E2 ∥SA′
mS∥2 ≤ cϵ ∥A∥F ,

and the desired bound follows from Markov’s inequality.
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Algorithm 4 Restricted Row-norm Sampling Algorithm

1. Input: Symmetric matrix A ∈ R
n×n along with its row norms, sample size s. The inputs are restricted so

that A and s must satisfy
s∥Ai∥2

∥A∥2 ≤ 1 for all i.

2. Let S ∈ R
k×n be a (rescaled) sampling matrix which samples each row i of A independently with probability

s∥Ai∥2

∥A∥2 .

3. Implicitly form the matrix A′ ∈ R
n×n defined by

(A′)ij =











0 i = j and ∥Ai∥22 ≤ ϵ2

4 ∥A∥2F
0 i ̸= j and ∥Ai∥22 ∥Aj∥22 ≤ ϵ2∥A∥2

F
|Aij |2

c log4 n

Aij otherwise

4. Return the k eigenvalues of STA′S, along with n− k additional 0’s.

This is sufficient to show correctness of the “restricted” sampling algorithm, Algorithm 4.

Lemma 7.6. Suppose that s ≥ c log
4 n

ϵ2 log2 1
ϵ and that A and s satisfy the condition of Algorithm 4 that the row

sampling probabilities pi are bounded by 1. Then with 2/3 probability, Algorithm 4 returns an additive ϵ ∥A∥F
approximation the spectrum of A.

Proof. As discussed above, write
SA′ST = SA′

oS
T + SA′

mST .

By Lemma 4.2, Assumption 4.1 holds for A′
o and S with L = ϵ

log 1
ϵ

∥A∥F . As a result, by Theorem 5.1, the

eigenvalues of SA′
oS

T are an additive cϵ ∥A∥F approximation to the eigenvalues of A′
o, which are in turn additive

ϵ ∥A∥F approximations to the eigenvalues of Ao by Lemma 7.1.
Also by Lemma 7.5 we have

∥

∥SA′
mST

∥

∥ ≤ cϵ ∥A∥F , so correctness follows from Weyl’s inequality [Wey12].

Finally it remains to deal with the situation where the restricted condition of Algorithm 4 is not met. The
idea is simple – for each row with pi larger than 1, we simple split that row into several scaled-down rows. This
will not affect the spectrum, but will allow the condition of Algorithm 4 to be met. In fact, for simplicity we split
all rows in this way although this is not strictly necessary.

Theorem 7.1. Algorithm 2 yields an ϵ ∥A∥F additive approximation to the spectrum of A with 2/3 probability

when s ≥ c log4 n
ϵ2 log2 1

ϵ .

Proof. We consider an algorithm which will be equivalent to Algorithm 2. Set pi =
s∥Ai∥2

2

∥A∥2
F

. Note that pi ≤ s for

all i, so it will suffice to “split” each row into roughly s smaller rows. More formally, let U be a vertical stack
of consisting of s copies of 1√

s
In. Note that U has orthonormal columns and that the image of UT is R

n. This

means that the nonzero spectrum of UAUT coincides with the nonzero spectrum of A. In particular we also have
∥A∥F =

∥

∥UAUT
∥

∥

F
. Note that the norm of row i of UAUT is 1/

√
s2 times the norm of a corresponding row i′ of

A.
Thus for all i,

s
∥

∥(UAUT )i
∥

∥

2

2

∥UAUT ∥2F
≤ 1

s

s ∥Ai′∥22
∥A∥2F

=
∥Ai′∥22
∥A∥2F

≤ 1.

Thus Lemma 7.6 establishes correctness of the sampling procedure for UAUT (which has the same nonzero

spectrum of A). In order to achieve ϵ
∥

∥UAUT
∥

∥

F
= ϵ ∥A∥F additive error, we need s ≥ c log4(ns2)

ϵ2 , which is achieved

for s ≥ c log4 n
ϵ2 (possibly after adjusting the constant c).
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Now to simulate Algorithm 4 on UAUT , note that we can simply sample Binomial(s,
∥Ai∥2

2

∥A∥2
F

) copies of each

index i, as is done in Algorithm 2.
We finally note that for s ≥ c/ϵ4 that the diagonal zeroing condition for UAUT in Algorithm 2 is always

satisfied. Moreover the condition for zeroing out off-diagonal entries is unchanged since applying U to A scales
row norms by 1/

√
s but entries by 1/s.

8 Additional Applications

8.1 Application to Sketching [SW23] showed that a sketching dimension of 1
ϵ2 is sufficient to approximate

all eigenvalues of A to within ϵ ∥A∥F additive error. Unfortunately, the sketch consisted of a dense Gaussian
matrix, which means that it requires roughly n2/ϵ2 time to apply to a dense matrix A1. As a consequence of our
sampling results, we show that it is possible to match the optimal sketching dimension with a sketch that can
be applied in time linear in the number of entries of A. We observe that conjugating by a Hadamard matrix is
sufficient to flatten the row norms, so that our row-norm sampling procedure reduces to uniform sampling. The
idea of applying Hadamard matrices to improve the runtimes of sketches is well-known in the literature (see for
example [Woo+14; Tro11]). Importantly, if H is Hadamard, then a matrix-vector product Hv can be carried out
in O(n logn) time. Similarly if A ∈ R

n×n is a matrix, then HA can be carried out in O(n2 logn) by applying H
columnwise.

Theorem 8.1. There is a bilinear sketch R
n×n → R

k×k with k = O(1/ϵ2) that can be applied in O(n2) time, and
allows all eigenvalues of A to be recovered to within ϵ ∥A∥F additive error.

Proof. Let U = HD ∈ R
n×n where D has i.i.d. random signs on its diagonal and H is a Hadamard matrix scaled

by 1/
√
n. Note that U is an orthogonal matrix, and so

∥

∥(UAUT )i
∥

∥

2
=
∥

∥UAUT ei
∥

∥

2
= (UT ei)

TA2(UT ei).

Also note that UT ei = DHei which is distributed as a Rademacher random vector scaled by 1/
√
n. Recalling

that E(xTA2x) = tr(A2) = ∥A∥2F , when x is a random sign vector, by Hanson-Wright we have the bound

Pr(|(UAUT )i −
1

n
∥A∥2F | ≥ t) ≤ 2 exp(−c) ≤ 2 exp

(

−cmin

(

nt

∥A2∥F
, (

nt

∥A2∥F
)2
))

.

Setting t ≥ c
∥A∥2

F

n log n
δ makes the the right hand side bounded by δ

n , since
∥

∥A2
∥

∥

F
≤ tr(A2) = ∥A∥2F . By a union

bound we have |(UAUT )i|2 ≤ c
∥A∥2

F

n log n
δ for all i, with probability at least 1− δ.

It follows from Theorem 7.1 that it suffices to run Algorithm 2 by uniformly sampling each row with probability
O( 1

nϵ2 poly log
n
ϵ ), resulting in a submatrix of dimension k × k, where k = O( 1

ϵ2 poly log
n
ϵ ) with high probability.

To implement this as a sketch, we can choose a uniformly random permutation matrix P , (implicitly) form
(PHD)A(PHD)T and then sample a leading principal minor of dimension O( 1

ϵ2 poly log
n
ϵ ).

Finally, in parallel we can sketch the norms of the first 1/ϵ2 columns of (PHD)A(PHD)T to within a constant
factor using a Johnson-Lindenstrauss sketch (see [Woo+14] for example). This only takes an additional 1

ϵ2 log
1
ϵδ

space to succeed with 1− δ probability on all of the first 1/ϵ2 rows, and can applied in O( n
ϵ2 poly log

n
ϵ ) time. This

allows us to run Algorithm 2 on the resulting matrix.

8.2 Improvements by combining with adaptive results By combining with known adaptive sampling
bounds of [MM17], we point out that one can approximate the eigenvalues of a bounded entry PSD A to within
ϵn additive error using just Õ(1/ϵ3) entry queries. We note that the PSD sampling result that we use was already
present in [Bha+24], although this improvement using adaptivity was not pointed out.

We borrow a result from [MM17], slightly restated for our setting.

1Some speedup is possible by using fast matrix multiplication, although these algorithms are impractical for reasonably sized

inputs.
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Theorem 8.2. ([MM17] Theorem 3.) Let A ∈ R
n×n be PSD and λ > 0. There is an algorithm that adaptively

queries O(ndλ log dλ) entries of A and with 2/3 probability produces a spectral approximation Â of A satisfying
∥

∥

∥
A− Â

∥

∥

∥
≤ λ.

Here dλ := tr(A(A+ λI)−1) is the λ-effective dimension of A.

We observe that this result improves sampling guarantees using adaptivity.

Theorem 8.3. Let A be PSD with ∥A∥∞ ≤ 1. Then there is an algorithm that adaptively queries Õ(1/ϵ3) entries
of A and with 2/3 probability produces an additive ϵn approximation to the spectrum of A.

Proof. For the first step we apply our Theorem 6.1 (or [Bha+24] since A is PSD), to (implicitly) produce a rescaled
submatrix STAS of dimension Õ(1/ϵ2) whose eigenvalues contain additive ϵn approximations to all eigenvalues
of A that are at least ϵn. Note that we do not actually form the matrix yet, however we have query access to
its entries simply by querying entries of A. By our Theorem 7.1, outputting the spectrum of STAS along with
additional zeros would suffice.

To achieve an O(ϵn) additive error overall, it suffices to approximate the eigenvalues of STAS to within O(ϵn)

additive error. For this we apply Theorem 8.3 to obtain Â with
∥

∥

∥
A− Â

∥

∥

∥
≤ ϵn. Note that we have

dλ = tr(A(A+ ϵnI)−1) ≤
n
∑

i=1

λi

ϵn
=

tr(A)

ϵn
≤ 1

ϵ
.

Therefore only Õ(1/ϵ3) queries are needed to produce Â. Finally, byWeyl’s inequality [Wey12], |λi(A)−λi(Â)| ≤ ϵn
for all i. The result follows by replacing ϵ with ϵ/c for an appropriate constant.

9 Top Eigenvector Estimation

In this section, we analyze Algorithm 3 for producing an approximate top eigenvector for PSD A with ∥A∥∞ ≤ 1.
To prove correctness, we begin with a few simple facts that we will need below.

Lemma 9.1. Suppose that A ∈ R
n×n is PSD with entries bounded by 1, and let v be an eigenvector of A with

associated eigenvalue λ. Then ∥v∥∞ ≤ 1√
λ

Proof. Write the spectral decomposition of A as

A =
n
∑

i=1

λiviv
T
i ,

where each vi is an eigenvector of A with associated eigenvalue λi. For arbitrary j, we then have

Ajj =
n
∑

i=1

λiv
2
ij .

By the bounded entry hypothesis, this is bounded by 1, so in particular λ1v
2
1j ≤ 1 since A is PSD. Since j was

arbitrary, the claim follows.

A related fact is that zeroing out eigenvalues of A only decreases the diagonal entries. We only need this fact
for the top eigenvalue, but it is true more generally.

Lemma 9.2. Let A−1 denote A with its top eigenvalue zeroed out. Then (A−1)kk ≤ Akk for all k

Proof. Write the spectral decomposition of A as

A =
n
∑

i=1

λiviv
T
i .

Now simply note that
λ1(v1v

T
1 )kk = λ1v

2
1k ≥ 0.
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The following fact states that applying a half iteration of power method only increases the Rayleigh quotient.
(This statement is true more general, but we only need the 1/2 version.)

Lemma 9.3. Let A ∈ R
n×n be PSD. Then for all nonzero x ∈ R

n,

xTA2x

xTAx
≥ xTAx

xTx
.

Proof. The desired inequality is equivalent to

⟨Ax, x⟩2 ≤ ∥Ax∥22 ∥x∥
2
2 ,

which is true by Cauchy-Schwarz.

The following is our main lemma for top eigenvector approximation.

Lemma 9.4. Let S be a column-sampling matrix that samples each column of A independently with probability
p = c

ϵn for an absolute constant c. Then with probability at least 2/3, there is some x in the image of S, such that

xTA2x

xTAx
≥ λ1 − ϵn.

Proof. If λ1 < ϵn then the result is trivial. So we assume from now on that λ1 ≥ ϵn.

First, for an arbitrary fixed x ∈ R
n, consider the generalized Rayleigh quotient xTA2x

xTAx
. Let v(1), . . . , v(n) be

an orthonormal basis of eigenvector of A with associated eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Then we have

xTA2x

xTAx
=

λ2
1

〈

x, v(1)
〉2

+ λ2
2

〈

x, v(2)
〉2

+ . . .+ λ2
n

〈

x, v(n)
〉2

λ1

〈

x, v(1)
〉2

+ λ2

〈

x, v(2)
〉2

+ . . .+ λn

〈

x, v(n)
〉2

≥
λ2
1

〈

x, v(1)
〉2

λ1

〈

x, v(1)
〉2

+ λ2

〈

x, v(2)
〉2

+ . . .+ λn

〈

x, v(n)
〉2

=
λ2
1

λ1 +
1

⟨x,v(1)⟩2 (λ2

〈

x, v(2)
〉2

+ . . .+ λn

〈

x, v(n)
〉2
)

≥ λ1 −
1

〈

x, v(1)
〉2

(λ2

〈

x, v(2)
〉2

+ . . .+ λn

〈

x, v(n)
〉2

),

where the last inequality follows from the difference-of-squares factorization. Now write A−1 to denote A with its
top eigenvalue zeroed out. The term in parentheses above is xTA−1x, so we have

xTA2x

xTAx
≥ λ1 −

xTA−1x

⟨x, v⟩2
.

It therefore suffices to show that xTA−1x

⟨x,v⟩2 ≤ ϵn for some x in the image of S. We will take x = ΠSv where v = v(1)

is the top eigenvector of A and where Π is the orthogonal projection onto the image of S. We assume that v is
normalized to have unit norm. For this choice of x we will bound the numerator and denominator separately.

Denominator bound. First note that

⟨x, v⟩2 = ⟨Πv, v⟩2 = ⟨Πv,Πv⟩2 = ∥Πv∥42 ,

so we simply need to bound ∥Πv∥22 . We will prove the denominator bound under the assumption that p = 10
ϵn .

Clearly this is sufficient as the denominator for larger p majorizes the denominator for smaller p. By Lemma 9.1,
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recall that |vi|2 ≤ 1
λ1

≤ 1
ϵn for all i. Let σi be i.i.d. Bernoulli(p) random variables. We wish to obtain a lower

bound on X :=
∑

i σiv
2
i . Since v is a unit vector, by linearity of expectation EX = p. For the second moment,

EX2 = p(v41 + . . .+ v4n) + 2p2
∑

i<j

v2i v
2
j

= p(v41 + . . .+ v4n) + p2(v21 + . . .+ v2n)
2 − p2(v41 + . . .+ v4n)

≤ p(v41 + . . .+ v4n) + p2

≤ p

ϵn
(v21 + . . .+ v2n) + p2

=
p

ϵn
+ p2.

Therefore Var(X) ≤ p
ϵn , and so by Chebyshev’s inequality,

Pr(X ≤ 1

ϵn
) ≤ Pr(|X − p| ≥ 9

ϵn
) ≤ Var(X)

(9/(ϵn))2
≤ ϵnp

81
=

10

81
.

Thus we have ⟨x, v⟩2 ≥ 1
(ϵn)2 with probability at least 7/8.

Numerator bound. Since A−1 is PSD, we can write A−1 = UTU for some U ∈ R
n×n. By Lemma 9.2, the

diagonal entries of A−1 are all bounded by 1, which means that the columns of U each have ℓ2 norm at most 1.
Also, since v is the top eigenvector of A, we have vTA−1v = 0, which implies that Uv = 0.

Let w(i) = viUi where vi is the ith entry of v and Ui is the ith column of U . Also set p = 1
ϵn .

Note that we have
n
∑

i=1

w(i) = 0,

and
n
∑

i=1

∥

∥

∥
w(i)

∥

∥

∥

2

2
≤ 1.

We wish to bound
n
∑

i=1

∥

∥

∥
σiw

(i)
∥

∥

∥

2

,

where the σi are i.i.d. Bernoulli(p). Since the quantity we wish to bound is non-negative, it suffices to bound its
expectation:

E

∥

∥

∥

∥

∥

∑

i

σiw
(i)

∥

∥

∥

∥

∥

2

2

= p
n
∑

i=1

||w(i)||2 + 2p2
∑

i<j

〈

w(i), w(j)
〉

≤ p+ 2p2
∑

i<j

〈

w(i), w(j)
〉

.

This last sum can be rewritten as

2
∑

i<j

〈

w(i), w(j)
〉

=
∥

∥

∥
w(1) + . . .+ w(n)

∥

∥

∥

2

2
−
(

∥

∥

∥
w(i)

∥

∥

∥

2

2
+ . . .+

∥

∥

∥
w(n)

∥

∥

∥

2

2

)

≤ 0,

since w(1) + . . .+ w(n) = 0.
It follows that

E

∥

∥

∥

∥

∥

∑

i

σiw
(i)

∥

∥

∥

∥

∥

2

2

≤ p,

so by Markov’s inequality
∥

∥

∥

∥

∥

∑

i

σiw
(i)

∥

∥

∥

∥

∥

2

2

≤ 10p,
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with probability at least 9/10.

Combining the bound on the numerator and the denominator shows that xTA−1x
xTAx

≥ λ1 − 100ϵn. The result
follows by replacing ϵ with ϵ/100.

Finally we prove correctness of Algorithm 3.

Theorem 9.1. Let A ∈ R
n×n be symmetric PSD with ∥A∥∞ ≤ 1. For p = c

ϵn , with 3/4 probability, Algorithm 3
returns a unit vector u ∈ R

n satisfying
uTAu ≥ λ1 − ϵn,

where λ1 is the top eigenvalue of A.

Proof. Consider the x ∈ R
n produced in Algorithm 3 which maximizes xTSTA2Sx

xTSTASx
. By Lemma 9.4, with 3/4

probability we have that
xTSTA2Sx

xTSTASx
=

(A1/2Sx)TA(A1/2Sx)

(A1/2Sx)T (A1/2Sx)
≥ λ1 − ϵn.

Now from Lemma 9.3, an additional half-iteration of power method only helps. In other words,

(ASx)TA(ASx)

(ASx)T (ASx)
≥ (A1/2Sx)TA(A1/2Sx)

(A1/2Sx)T (A1/2Sx)
≥ λ1 − ϵn,

and the main result follows.
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Mathématique 346.23-24 (2008), pp. 1271–1274.

[Tro11] Joel A Tropp. “Improved analysis of the subsampled randomized Hadamard transform”. In: Advances
in Adaptive Data Analysis 3.01n02 (2011), pp. 115–126.

[Tro12] Joel A Tropp. “User-friendly tail bounds for sums of random matrices”. In: Foundations of
computational mathematics 12 (2012), pp. 389–434.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited515

D
o
w

n
lo

ad
ed

 1
1
/1

4
/2

5
 t

o
 1

0
4
.1

3
5
.1

8
1
.1

8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



[Wey12] Hermann Weyl. “The asymptotic distribution law for the eigenvalues of linear partial differential
equations (with applications to the theory of black body radiation)”. In: Math. Ann 71.1 (1912),
pp. 441–479.

[Woo+14] David P Woodruff et al. “Sketching as a tool for numerical linear algebra”. In: Foundations and
Trends® in Theoretical Computer Science 10.1–2 (2014), pp. 1–157.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited516

D
o
w

n
lo

ad
ed

 1
1
/1

4
/2

5
 t

o
 1

0
4
.1

3
5
.1

8
1
.1

8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y


	Introduction
	Our Results
	Our Techniques
	Additional Related Work

	Preliminaries
	Notation
	Basic Definitions
	Incoherence Bound
	Leverage Score Sampling
	Approximate matrix product
	Additional facts

	Our subspace embedding condition
	Realizing Assumption 4.1

	Outlying Eigenvalue Bounds
	Lower Bounds
	Upper Bounds
	Two-sided eigenvalue bound.

	Bounded Entry Matrices
	Removing n factors.

	Squared row-norm Sampling
	Additional Applications
	Application to Sketching
	Improvements by combining with adaptive results

	Top Eigenvector Estimation

