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Abstract—Federated learning (FL) is vulnerable to backdoor
attacks, where adversaries alter model behavior on target clas-
sification labels by embedding triggers into data samples. While
these attacks have received considerable attention in horizontal
FL, they are less understood for vertical FL (VFL), where devices
hold different features of the samples, and only the server holds
the labels. In this work, we propose a novel backdoor attack
on VFL which (i) does not rely on gradient information from
the server and (ii) considers potential collusion among multiple
adversaries for sample selection and trigger embedding. Our label
inference model augments variational autoencoders with metric
learning, which adversaries can train locally. A consensus process
over the adversary graph topology determines which datapoints to
poison. We further propose methods for trigger splitting across the
adversaries, with an intensity-based implantation scheme skewing
the server towards the trigger. Our convergence analysis reveals
the impact of backdoor perturbations on VFL indicated by a
stationarity gap for the trained model, which we verify empirically
as well. We conduct experiments comparing our attack with recent
backdoor VFL approaches, finding that ours obtains significantly
higher success rates for the same main task performance despite
not using server information. Additionally, our results verify the
impact of collusion on attack performance.

Index Terms—Vertical Federated Learning (VFL), Variational
Autoencoder (VAE), Metric Learning, Backdoor Attack, Privacy

I. INTRODUCTION

Federated Learning (FL) [1] has emerged as a popular
method for collaboratively training machine learning models
across edge devices. By eliminating the need for communica-
tion of raw data across the network, FL proves especially valu-
able in scenarios where data privacy is critical. However, the
decentralized nature of FL introduces new security challenges,
as individual devices may lack the robust security measures of
a centralized system, thereby increasing the risk of adversarial
attacks that can compromise the integrity of training.

The two prevalent frameworks of FL, Horizontal Federated
Learning (HFL) and Vertical Federated Learning (VFL), both
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face significant vulnerabilities to adversaries [2]. In HFL, the
training data is partitioned by sample data points, with each
device holding different subsets of the overall dataset. Most
of the existing literature on adversarial attacks in FL has
concentrated on HFL, with the goal to tackle vulnerabilities
such as data poisoning attacks [3], [4], model inversion attacks
[5], [6], and backdoor attacks [7]. Conversely, VFL [8], [9]
involves local devices that share the same samples but hold
different features of the samples. In this setup, one node,
referred to as the active party or server, holds the labels
and oversees the aggregation process, while the other devices
function as passive parties or clients, constructing local feature
embeddings and periodically passing them to the server. For
instance, in a wireless sensor network (WSN) [10], each sensor
may collect readings from its local environment (e.g., video
feeds) which collectively form a full sample for the fusion
center’s learning task (e.g., object detection) at a point in time.

Recent research has begun to study the impact of attacks
on VFL, including feature inference attacks [11], [12], label
inference attacks [13], and attribute inference attacks [14].
In this paper, we focus on backdoor attacks [7] for VFL. A
backdoor attack aims to alter the behavior of an FL model on
a particular label (called the farget) when the model encounters
data samples for the label that an adversary has implanted with
an imperceptible trigger pattern. Addressing backdoor attacks
is crucial in both HFL and VFL because these attacks can lead
to severe security breaches without easily detectable impacts
on overall model performance [15]. For example, in the WSN
object detection use-case, a backdoor adversary could implant
triggers in a sensor’s local sample view of a car to force the
system to misclassify the entire sample as a truck.

In this paper, we consider an underexplored scenario where
there are multiple adversaries, and these adversaries have the
capability of colluding over a graph topology to execute a
coordinated backdoor attack. In this setting, the adversaries
gain control of a set of client nodes and establish an ad-hoc
local network among themselves for cooperation. Prominent
examples can be found in defense settings. For instance, in a
contested region, attackers could take control of a few scattered
military assets responsible for e.g., communicating front-line
conditions, such as drones or tactical mobile devices [16].
Such control could be achieved through a variety of means, for
example, exploiting vulnerabilities over control links to hijack
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drones [17] or injecting malicious malware onto the devices
[18]. Taking advantage of this, the adversaries could begin
colluding to analyze and transmit data across a local adversary-
formed network topology. To form this graph, the adversaries
could employ device-to-device (D2D) communication proto-
cols, which have proliferated in 5G wireless and have shown
benefit in distributed learning, allowing devices to synchronize
model parameters and/or gain a better estimate of the overall
data distribution [19], [20], [21]. This decentralized topology
allows for the exchange of information between adversaries
that might not be readily available at an individual level,
i.e., a more complete view of each sample. By pooling their
individual observations, they can potentially infer sensitive in-
formation about the battlefield—such as troop numbers, logistics
capabilities, or defensive positions. Moreover, this making it
easier for them to mislead the central decision-making system
via a backdoor attack (e.g., inducing the command center to
misclassify an enemy fighter as a benign node).

Still, the adversaries might be unable to engage in maximal
information exchange (i.e., forming a full mesh graph) due to
e.g., resource constraints, geographical distances, and channel
conditions preventing formation of certain D2D links. We
thus need to understand how adversarial collusion impacts the
attack potency, and the role played by adversarial connectivity.
Moreover, following the common assumption in the literature
that the adversaries have full control over the compromised
node(s) [22], it is important to consider the full range of
adversarial capabilities. By doing so, we do not underestimate
the adversary’s capabilities and insights, which could otherwise
lead to overconfidence in the system’s security.

A. Related Work

Extensive research has been conducted on backdoor attacks
in HFL. In these cases, adversaries send malicious updates to
the server, causing the model to misclassify data when a trigger
is present without impacting the overall performance of the FL
task [23], [24], [25]. In this domain, [7] proposed a scale-and-
constrain methodology, in which the adversary’s local objective
function is modified to maximize attack potency without caus-
ing degradation of the overall FL task. [26] explored trigger
embeddings that take advantage of the distributed nature of
HFL, by dividing the trigger into multiple pieces. In addition
to the various attacks, defenses for these vulnerabilities in HFL
have also been studied, e.g., [27], [28]. Another significant
issue with the effectiveness of backdoor attacks in HFL is
the presence of non-i.i.d. data distributions across local clients,
resulting in slower convergence of the global model [29]. In this
regard, an HFL backdoor methodology [30] has been developed
to work with a popular HFL algorithm called SCAFFOLD [31]
by utilizing Generative Adversarial Networks (GANs) [32].

In our work, we focus on backdoor attacks for VFL, which
have not been as extensively studied. The VFL scenario intro-
duces unique challenges: devices do not have access to sample
labels or a local loss function, and must rely on gradients
received from the server to update their feature embedding

models. Thus, unlike in the HFL scenario, where attackers
can utilize a “dirty-label” backdoor by altering the labels on
local datapoints [33], an attack in VFL must be a “clean-label”
backdoor attack, since only the server holds the training labels.

In this context, a few recent techniques have been devel-
oped to carry out backdoor attacks in VFL through different
methods for inferring training sample labels. These include
using gradient similarity [34] and gradient magnitude [35]
comparisons with a small number of reserve datapoints the
adversary has labels for. In this domain, [13] created a local
adaptive optimizer that changes signs of gradients inferred
to be the target label. In a similar vein, other works have
exploited the fact that the indices of the target label in the
cross-entropy loss gradients will have a different sign, provided
that the model dimension matches the number of classes [36],
[37]. Other works have also considered gradient substitution
alignment to conduct the backdoor task with limited knowledge
about the target label [38]. Moreover, researchers have explored
the implications of backdoor attacks in different settings, such
as with graph neural networks (GNNs) [39]. Further, [40]
considered training an auxiliary classifier to infer sample labels
based on server gradients.

Despite these recent efforts, a major limitation of the existing
approaches is that they rely on information sent from the
server to conduct the backdoor attack, in addition to using
it for VFL participation. This dependency can enable the
server to implement defense mechanisms, particularly during
the label inference phase, which can significantly limit the
effectiveness of the attack [41]. While research on bypassing
the use of server-received information in backdooring VFL
exists, it is limited to only binary classification tasks [42].
Additionally, the aforementioned studies [34], [35], [36], [37],
[42] concentrate on the classic two-party VFL scenario with a
single adversary, which fits them into the cross-silo FL context
[9], leading to a limited understanding of VFL backdoors in
networks where multiple adversaries may collude to carry out
the attack. In particular, unlike cross-silo FL, which typically
involves a few participants such as large organizations, cross-
device FL often encompasses numerous distributed devices
collaborating to construct a global model, thereby significantly
increasing the potential for security malfunctions [1], [7].

B. Research Questions and Approach Overview

These limitations lead us to investigate the following two

research questions (RQs) in this work:

e RQ1: Can an adversary successfully implement a back-
door injection into the server’s VFL model using only
locally available information for label inference?

« RQ2: How can multiple adversaries collude with limited
sharing to construct a backdoor injection in cross-device
VFL, and what is the impact of their graph connectivity?

Overview of approach. We develop a novel backdoor VFL
strategy that addresses the above questions. To answer RQ1, we
introduce a methodology for an adversary to locally infer and
generate datapoints of the target label for attack. Our approach



leverages Variational Autoencoders (VAE) [43] and triplet loss
metric learning [44] to determine which samples should receive
trigger embeddings, avoiding leveraging server gradients. To
answer RQ2, we employ the graph topology of adversarial
devices to conduct cooperative consensus on which samples
should be implanted with triggers. In this regard, we show
both empirically (Fig. 5d & Fig. 6) and theoretically (Sec. V)
that the effectiveness of the attack and gradient perturbation
is dependent on this graph topology. We also develop an
intensity-based triggering scheme and two different methods
for partitioning these triggers among adversaries, leading to a
more powerful backdoor injection than existing attacks.

C. Outline and Summary of Contributions

« We propose a novel collaborative backdoor attack on VFL
which does not rely on information from the server. Our
attack employs a VAE loss structure augmented with metric
learning for each adversary to independently acquire its nec-
essary information for label inference. Following the local
label inference, the adversaries conduct majority consensus
over their graph topology to agree on which datapoints
should be poisoned (Sec. III-A&IV-A).

o For trigger embedding, we develop an intensity-based im-
plantation scheme which brings samples closer to the target
without compromising non-target tasks. Attackers employ
their trained VAEs to generate new datapoints to be poisoned
that are similar to the target label, forcing the server to
rely more on the embedded trigger. Adversary collusion is
facilitated via two proposed methods for trigger splitting,
either subdividing one large trigger or embedding multiple
smaller triggers (Sec. III-B&IV-B).

« We conduct convergence analysis of cross-device VFL under
backdoor attacks, revealing the degradation of main task per-
formance caused by adversaries. Specifically, we show that
the server model will have a stationarity gap proportional to
the level of adversarial gradient perturbation (Sec. V). We
provide an interpretation for this gradient perturbation as an
increasing function of the adversary graph’s algebraic con-
nectivity and average degree, which we further investigate
empirically (Sec. VI). We are unaware of prior works with
such convergence analysis on VFL under backdoor attacks.

« We conduct extensive experiments comparing the perfor-
mance of our attack against the state-of-the-art [34], [35]
on five image classification datasets. Our results show that
despite not using server information, we obtain a 30% higher
attack success rate for comparable main task performance.
We also show an added advantage of our decentralized attack
in terms of improved robustness to noising defenses at the
server. We also demonstrate that higher adversarial graph
connectivity yields improved attack success rate with our
method, thus corroborating our theoretical claims (Sec. VI).

II. SYSTEM MODEL

A. Vertical Federated Learning Setup

We consider a network of K nodes within the vertical
federated learning (VFL) setup collected in the set K =

TABLE I: Summary of main notations employed throughout the paper.

Notation Description
k Any client, excluding the server K
m An adversary client
K The set of all clients, including the server
A The set of all adversary clients
G The graph formed amongst adversary clients m € A
Am A subset of .4, the neighbors to adversary m in graph G

2 The feature S)artition belonging to local client k for sample
k datapoint z(

x@ The concatenated samples for adversary m received over edges
m in G

55}? Sample generated from adversary m’s VAE

Q) 55,? implanted with the trigger pattern subportion correspond-
m ing to adversary m

zgf,} Latent variable produced from VAE encoder
D The overall dataset without being partitioned amongst clients

D, A subset of D containing concatenated datapoints Xﬁé)

) A subset of D,,, concatenated samples of only those where
m H
the label is known

Parget A subset of D;,, concatenated datapoints belonging only to
m target label out of known datapoints
Dsﬁ) Locally inferred datapoints for adversary m
Dgp ) [ Collaborative inference set based off {Dgﬁ) |m € A}
57(5) m’s feature partition slice of Dép )
¥ The local model of client k, producing feature embeddings to
k be sent to server K
b The server model for server K
0 The parameters for local models fi. For server K, its server
k model is parameterized as 6 g
HIAE Adversary m local VAE

o The mean vector of an adversarial VAE
Auxiliary classifier for adversary m
The poisoning budget

Yt The target label

P The connectivity of the graph G

bmp

d(p) The gradient perturbation from adversaries for connectivity p
3 The margin value of the triplet loss
a Anchor datapoint for the triplet loss
p Positive datapoint for the triplet loss
n Negative datapoint for the triplet loss

{1,2,...,K},where k = 1,..., K—1 are the clients and k = K
is the server. We assume a black-box VFL scenario, where the
clients do not have any direct knowledge about the server and
global objective, e.g., the model architecture, loss function, etc.
We denote the overall dataset as D, and the total number of
datapoints is N = |D|. Each client contains a separate disjoint
subset of datapoint features. We represent the it" datapoint
of D as 2V = {x§1)7...,mgjll}, where =" belongs to the
local data of client £ = 1,2,..., K — 1. Note that only the
server K holds the labels Y = {y1,...,y,} associated with
the corresponding dataset.

Each client locally trains its feature encoder on its data
partition, and the server is responsible for coordinating the
aggregation process. In particular, we adopt a Split Neural
Network-based (SplitNN) VFL setup [9], where the clients send
their locally produced feature embeddings (sometimes called
the bottom model) to the server. The server then updates its
global model (the top model) and returns the gradients of the
loss with respect to the feature embeddings back to the clients.
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( Adversary nodes share their feature

Fig. 1: Client-server sharing of embeddings and gradients in VFL. An example
of a feature-partitioned datapoint undergoing a backdoor trigger implantation
is shown. The adversaries send up their poisoned embeddings, which are then
concatenated by the server and cause misclassification. Moreover, adversaries
form a graph amongst each other, sharing their feature partitions to enhance
insights on the samples they wish to poison.

Mathematically, the optimization objective of the VFL sys-
tem can be expressed as
N
. 1 i
min F(0) := N ;E (%‘7 P ({f1(:17§ ); 61),

01,0,

(1)
f2($g)7 92)7 LR fK—l('Tg?_l; 0K—1)}7 61{)) )

where fj, denotes the embedding mapping function of client
k € K\ {K} parameterized by 0, ¢, is the server model
parameterized by 6., 6 = {61,...,0k}, and £ denotes the
loss function of the learning task.

To solve (1), in each VFL training round ¢, the server selects
a set of mini-batch indices. Across clients, the full mini-batch
set is B = {2, ..., )2l € B} ¢ D. Each client
k needs to update its own local model 6; on its mini-batch
subset Bl(f). However, different from HFL, the gradients of
the clients’ loss function models depend on information from
the server, while the model update at the server also depends
on the mapping computed by the clients. Thus, during round
t, each client k first computes local low-dimensiqnal latent
feature embeddings H,Et) = {hg) = fk(xg); Olgt))kz:](;) € B,(:)}.
After the embeddings H ,gt) are obtained, as seen in Fig. 1,
they are sent to the server. The server computes the gradi-

ent 889—'6 to update the top model 6, via gradient descent:

9&:“) — F)g) fngf) %. In addition, the server computes oD
which is sent back to client k for the computation of gradie’ﬁts
of the loss function with respect to the local model 0,(:) as
oL — % DDING g iﬂ The client then updates its
1B h) €H, 8h§;) 00,

90,
model via gradient descent: QSH) — 9,(:) - nl(f)gTi.

B. Backdoor Attacks in VFL

In this work, we investigate backdoor attacks on VFL, where
each adversary is a client in the system (i.e., compromised
client). The goal of the adversaries is to modify the server

model’s behavior on data samples of a target label (i.e., the
label that adversaries want to induce misclassification on) via
an implanted backdoor trigger on these samples. Importantly,
however, the model should still perform well on clean data for
which the trigger is not present. While modifying the objective
function is a common method for backdoor attacks in the HFL
case [7], this is not feasible in VFL because only the server
can define the loss, and hence the adversaries must follow the
server’s loss function. Therefore, we consider attacks where an
adversary m implants a trigger o, into a selected datapoint ¢
inferred to be of the target label, i.e., producing ngL) + Om-
In addition, we assume that multiple adversarial clients
A C K can collude to plan the attack. In this vein, we
consider a connected, undirected graph G = (A, F) among the
adversaries, where E denotes the set of edges. For adversary
m € A, we denote A,,, = {m' : (m,m') € E} as its set of
neighbors. Adversaries will employ G to conduct collaborative
label inference, as will be described in Sec. III-A&IV-A.

III. ATTACK METHODOLOGY

To execute the backdoor attack in VFL, adversaries need to
(i) identify datapoints belonging to the target label (Sec. III-A)
and (ii) implant triggers on the corresponding datapoints to
induce misclassification (Sec. III-B). We present the methodol-
ogy for these processes in this section, and give more specific
algorithmic procedures in Sec. IV.

A. Label Inference

Our label inference methodology is summarized in Fig. 2:

1) Feature Sharing: As in existing work [35], [13], we
assume that the adversaries possess labels for a small (e.g.,
< 1%) set of the datapoints. Even so, when numerous clients
each hold a small feature partition of the samples (Feature
partition block of Fig. 2), extracting meaningful information
without employing gradients from the server (which we aim
to avoid, as discussed in Sec. I) becomes challenging. This
difficulty arises due to the presence of irrelevant features within
sample partitions, e.g., a blank background.

To address this issue, the adversaries utilize their collusion
graph G discussed in Sec. II-B, through which they exchange
feature partitions of their datapoints with their one-hop neigh-
bors (Feature Sharing phase of Fig. 2). Each adversary m
concatenates the partitions as x4 = Unrea,,um xf,?, We
denote this dataset as D,,, C D, a further subset ﬁm c D,, of
which is for known labels.

2) VAE and Metric-based Label Inference: Next, using
D, each adversary will conduct local label inference (VAE
and Metric-based Label Inference phase of Fig. 2). We propose
leveraging Variational Autoencoders (VAE) as a framework
for this, deploying one VAE model ¢YAE on each adversary
device. Unlike their AE counterparts [45], VAEs are simpler
to use for generative purposes, as a variable z sampled from
the VAE’s latent space can be fed through the decoder to
generate new datapoints [43]. To do this, we assume that each
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Fig. 2: Label inference methodology with modified VAE architecture. Initially, the adversaries share their feature partitions. At the p layer of the VAE, triplet
margin loss is employed to conduct metric learning via the known label datapoints. After training the VAE, the p vectors are used to perform a classification
task for inference of the target label, with the results of local inference being used in a majority voting scheme for a final collaborative inference of the indices.

datapoint X,(é) is generated from latent variables 27(,? following
a distribution p(z,(,?), which usually is a standard normal
distribution, N (0, I). Therefore, the goal of the VAE’s decoder
model is to learn its parameters to max1mize Pma(X D125,

However, p(Xf,) = [ pm,a( X§,§>|zm) ( Zm )dzfn) is compu-
tationally intractable, making it unrealistic to calculate the
term directly. Therefore, rather than maximizing p,, 4 directly,
the VAE employs its encoder ¢, . as an approximate model
which outputs a mean p and standard deviation o, reducing
the latent space to a univariate Gaussian A (1, 0%). The error
can be captured in a KL divergence-based objective [46] which
measures the difference between two probability distributions,

() (@) ()
Gm.e(zm’) and p(zp,), denoted as DKL(qme(Zm Mip(zm'))-
This term, when included in the loss function, can encourage
the latent space to be closer to a standard normal distribution,
allowing for random sampling from the latent space for data-
point generation.

Additionally, the VAE aims to optimize its reconstruc-
tion loss. We adopt the mean-squared error (MSE) metric
Lz, Zm (7)) = || — Zm(x)||3, where Z,,(z) is the output
reconstructed by the decoder for input x. Combining these
together, a typical VAE trains for any datapoint x on the
objective function

‘CXIi\E(‘% Ty (), Z) =\ Ly (2, i’m(‘r))

+(1 = A) - Dx(gm.e(2)]lp(2)),

where 0 < A < 1 captures the importance weight of each
individual term.

A key advantage of a VAE is its ability to utilize the latent
space to learn separable embeddings. Additionally, existing
work has hypothesized that applying metric learning to the
W vector can enhance embedding alignment within the latent
space [47]. We leverage this by training a joint triplet margin
loss [44] objective alongside the standard VAE, given by

2

LE (a,p,n) = max (d?ny“(a,p) — dfn 3)
where d, . (a,7) | fm,u(a) = frm,u(r)|l,. Here, a is the
anchor datapoint, p is a datapoint with the same label (called
the positive), n is a datapoint belonging to a different label

,p,(a’7 n) + /"%a O) )

(called the negative), % is the margin hyperparameter, and
fm,u(+) is the function induced by the 1 vector of the VAE. The
triplet margin loss creates embeddings that reduce the distance
between the anchor a and the positive p in the feature space
while ensuring the negative n is at least a distance % from p.

Now, using the labeled dataset Dm, the positives and anchors
are the set of datapoints belonging to the target label, and
negatives are from the other labels. However, as outlined in
[44], careful triplet selection is required for a good embedding
alignment. Therefore, we employ the “batch-hard” method
of online triplet selection [48], where the “hardest” positive
and negative are chosen. These include the farthest positive
and the closest negative to the anchor embedding, given by
ﬁm,u(a) = argmaxy ”f’m,u( ) fm,u( )”2 and 7y, u(a) =
arg miny, || frm,u(n) — fm,u(a )||2 respectively (Steps 2 and 3 of
Fig. 2). Now, combining these all together, we can formulate
the final loss each adversary VAE trains on as

)= £ (X0, X0, 20)

Xty (XD B (XD, T (X))

Eﬁndl(X(’L) X( )

m m 7

“

which is shown as Step 4 in Fig. 2. Our experiments in Sec. VI
will demonstrate the benefit of this hybrid VAE and metric
learning approach, i.e., training on £ versus £YAE,

After training the VAE, we introduce an auxiliary classifier
®m,u» Which is trained in a supervised manner using the
latent embeddings from the p vector (Step 5 of Fig. 2),
denoted by fp, .(-). We use the cross-entropy loss L(y,7) =
— D eec Yelog(ye) as the objective function, where y. is an
indicator for whether the data point is from class ¢, Yo is the
softmax probability for the ¢! class, and y, y are the corre-
sponding vectors. This is trained on { f,, u( m )|Xm € D,,L}.
In this way, the embeddings are trained to be separable, associ-
ating label positions in the latent space with their corresponding
labels [49]. We can then employ this to construct the set of
locally inferred target datapoints from adversary m, fof ) (Step
6 of Fig. 2), as will be described in Sec. IV-A.

3) Collaborative Inference: Upon completing the local
inference phase, the adversaries utilize their locally inferred
labels to reach a consensus over the local graph G on which



datapoints are from the target label (Collaborative Inference
phase of Fig. 2). This consensus can be reached in several
potential ways, e.g., through a leader adversary node perform-
ing a Breadth-First Search (BFS) [50] traversal on the graph,
followed by a majority voting scheme (Step 7 of Fig. 2). This
is the method we will employ in Sec. IV-A.

Each of these label inference processes, e.g., feature sharing,
VAE training/inference, and collaborative inference, take place
before the VFL training process begins. This emphasizes one
of our contributions: developing a backdoor attack where
gradients from the server are not utilized for label inference.
As, we will see in Sec. VI-B, this enhances robustness against
server-side gradient noise injection defenses. Further, by min-
imizing the degree to which adversary behavior will deviate
from the VFL training protocol, the possibility of the system
detecting the attack (through e.g., anomalous communication,
computation, or energy consumption) becomes small.

B. Trigger Embedding

In the next step, after the target data points have been
inferred, the VFL training process starts, during which ad-
versaries embed triggers into inferred data points. One of the
primary challenges for the adversaries conducting a backdoor
attack is to ensure that both the primary task and the backdoor
task perform effectively. To this end, adversaries poison a

specific subset of the inferred data points, defined as DPO,
according to a poisoning budget ( = “DD‘ |, A smaller budget

also helps prevent detection of the malicious operation.
Formally, during training iteration ¢, if any datapoint ¢ from

DPOis s present in the minibatch B®, adversary m will implant
a trigger o, into its local :c as xﬁ,ﬁ = + om. Here, :1:(’)
is the datapoint embedded with the trlgger, and the adversary
aims for the server to learn and associate this trigger pattern
with the target label. Unlike most existing works, our setup
considers more than one adversary. Therefore, in Sec. IV-B, we
will propose two different methods for generating o, across
adversaries m € A as a subpartition or smaller version of the
trigger o that would be embedded by a single adversary.

Our aim is to make the server rely on the trigger while still
learning features relevant to the target label, by leveraging the
VAE’s generative properties. This involves the following steps:
« Data Generation: Using adversary m’s VAE, we generate

datapoints 7', by sampling vector z&" ~ A/(0,I) from the

latent space and passing them through the decoder p,, 4.

o Data Substitution and Selective Poisoning: The adversary
swaps the original data 4oints m%), similar to [34], with the
newly generated ones 5%), and embeds them with the trigger.
This is performed on a subset of the inferred data points
during training, according to the poisoning budget (.

As a result, the server learns more variations of the target

label, which intuitively leads it to rely more on the trigger

for classification. Additionally, the generated samples will still
follow the general structure of the target label, to prevent
misclassification of labels not involved in the backdoor attack.

In designing the trigger, we aim for the poisoned datapoints
to produce embeddings that are as close as possible to em-
beddings of non-poisoned embeddings. This can be thought
of mathematically as looking for triggers that will minimize
|E[AS] — E[hime"]||2, where E[hb:"] is the expectation over
feature embeddings produced from datapoints ¢ implanted
with the trigger and E[hy %] is the expectation over feature
embeddings produced from clean datapoints ¢’ belonging to
the target label. If adversary m had access to the server’s loss
function, it may be possible to incorporate (an approximation
of) this norm difference directly into the adversary’s local VFL
update. However, we are considering a black-box scenario.
Hence, to emulate the desired trigger behavior, we complement
the data substitution and selective poisoning process with an
intensity-based triggering scheme. Detailed in Sec. IV-B, this
scheme enhances the background value of the trigger by an
adversary-defined intensity value -, so that the trigger becomes
more prominent within the datapoint. Thus, on the one hand,

( ) presents the server with more variations of the target label,
causing the server to rely more heavily on the consistent trigger
pattern. Then, combining these harder-to-identify background
features with the v-enhanced trigger induces heavier reliance
of the server on the trigger while minimizing main task
performance degradation (when the trigger is not present).

The VFL system relies on the bottom models’ outputted
latent embeddings for classification, with updates to these
local models aiming to optimize performance. By embedding
the target datapoints with an intensified trigger, we can pull
the embeddings hb," of the backdoored samples closer to
embeddings hie" of the target label, making it harder for the
server to distinguish between them.

IV. ALGORITHM DETAILS

We now provide specific algorithms for implementing the
label inference (Sec. IV-A) and trigger embedding (Sec. IV-B)
methodologies from Sec. III.

A. Label Inference

Alg. 1 summarizes our label inference approach. Recall the
goal is to find datapoints of the target label y;, i.e., to find
which datapoints are candidates to be poisoned. This trains the
VAE model ¢)2F and auxiliary classifier ¢, , for adversary m,
which is then capable of generating datapoints of y; based off
local inference datapoints D,(,f ). As input, the overall algorithm
will utilize the set of adversaries .4 and concatenated datapoints
D, for adversary m to infer datapoints of y;. We detail the
steps of Alg. 1 below:

1) Training VAE ¢YAE and Auxiliary Classifier ¢, e
As outlined in Sec. III-A, label inference is performed before
the standard VFL protocol. Firstly, ¢¥~E is trained via (4) and
utilizes the “batch-hard” strategy discussed in Sec. III-A (Line
1 of Alg. 1). The VAE’s reconstruction loss LY employs
Dt « D where DX is the set of known concatenated
datapoints belonging only to the target y;. For the triplet loss
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Fig. 3: Image generation and trigger-embedding process. The adversaries can
choose one of two methods: (1) constructing a collaborative trigger on some
position of the known adversary features, or (2) giving each adversary a smaller
trigger. Method 1 may result in some adversaries not possessing any portion
of the trigger pattern, i.e., only having the background.

decided, divided
amongst adversaries

LF,, positives are selected from the VAE'’s training batch and
the negatives are taken from D . Next, ¢, takes in the p
embeddings on labeled datapoints and trains via cross-entropy
loss (Line 2 of Alg. 1).

After training the VAE, ¢,, , takes in the u-embeddings of
the datapoints from D,,, with unknown labels as input (Line
3 of Alg. 1), and populate D,(ff), the set of locally inferred
target datapoints. D’ is initially the same as D in terms
of indices. The datapoints are added to the set if the maximum
prediction probability corresponds to the target label y, and
is greater than a confidence threshold f, i.e., max(gy) >
and y; = argmax.(§.) (Lines 5-7 of Alg. 1). In this way,
only datapoints ¢,, , is confident about will be considered as
targets.

Afterwards, adversary m’s VAE is retrained on Dgﬁ ) (Line 8
of Alg. 1). The retraining allows the target datapoint generation
to match the shape of the feature partition.

2) Consensus Amongst Adversaries: After local label in-
ference, collaborative inference begins (Line 9 of Alg. 1) with
the following steps:

¢ Choosing Leader Node and BFS-traversal: One adversary
in graph G, denoted m'®, is chosen by selecting the node
with the highest degree. m'®* will conduct BFS over G to
collect the local inference results from each adversary.

o Consensus Voting: Next, given a multiset of the local
inferred datasets D® = {D¥},,c., m'®d adopts a simple
majority based voting scheme similar to [40]. If an index

j appears for more than [%W times in D, it is added

to the collaborative inference set D). In other words,
D) = {j e D) | m(j,DP) > [@W , where m(j, D))
is the multiplicity of j in D®) for an index j.

o Sharing Final Results: Lastly, m'® will conduct BFS
again, propagating the final indices of D(?) to all adversaries,
with m’s feature partition slice of Dg(, 2 is defined as D,(n).

While we adopt the BFS traversal-based method, other graph

Algorithm 1: VAE and Metric-Based Label Inference

Input: VAE model ¢,+F, auxiliary model ¢, ., adversary
index m € A, target y¢, known concatenated
datapoints D,,, all concatenated datapoints D,

1 Train ¢y2E using £l from (4), which uses (2) and (3)

2 Train auxiliary classifier ¢m,u via {fm, . (XX e Dy}
3 for adversary index m € A do

4 for datapoint X ¢ Dy, and X% e D,, do
5

6

7

7= b (Fru (X))

if y+ = arg max.(y.) and max(y) >
L Insert xfﬁ) to Dfﬁ)

5 then

8 Adjust model architecture and retrain ¢Y*F on D’

9 Get indices DY) + CONSENSUS(A) from Sec. IV-A
10 for j € DY do _
11 L Insert datapoint 2 to DX

Output: VAE ¢,~F, inferred adversary dataset ’55,’;)

traversal methods (e.g., DFS, spanning tree) could also be used,
as long as all adversaries correctly receive the voting results.

B. Trigger Embedding

Alg. 2 summarizes our trigger embedding algorithm. Recall
that after label inference, our goal is to conduct trigger em-
bedding on the inferred datapoints. Overall, during the VAE
protocol, we implant a trigger on generated datapoints from
VAE ¢YAE. We detail the steps of Alg. 2 below:

1) Poisoning and Trigger Implantation: To maintain a high
accuracy in the main task along with the backdoor, a poisoning
budget ¢ outlined in Sec. III-B is utilized to limit the number
of poisoned datapoints. The selected indices to be poisoned
are chosen at random from Dép ), with the corresponding sub-
dataset for adversary m denoted Db, C DPOis,

Now, the trigger implantation follows a two step process,
depicted in Fig. 3. Firstly, a to-be-poisoned datapoint in a
minibatch is replaced with a datapoint 55,? generated from
the decoder of the VAE, p,, 4 (Line 6 of Alg. 2). Secondly,
an intensity-based trigger is formed and distributed among
adversaries. This can follow one of two methods, which we
consider in the context of image data, where each sample z is a
matrix of pixels (or a tensor in the multi-channel case). Starting
with Method 1, adversaries collaboratively insert a trigger into a
target datapoint at a location specified by centering parameter
¢ = (£y,4,). The trigger has a background of 1’s with area
W = h x w, divided among adversaries based on their feature
partitions’ proximity to £. The background’s value is enhanced
by multiplying pixel-wise with an intensity parameter ~, which
controls the trigger’s prominence. A cross pattern of 0’s is
added to complete the trigger (see Fig. 3). Overall, the general
trigger pattern is similar to the trigger adopted in [40]. Each
adversary m receives a portion of the trigger according to
their position relative to ¢. The final datapoint with backdoor
implantation is given by

20 =30 + (Wi x 7) + Mp). 5)



Algorithm 2: Distributed Trigger Embedding

Input: Server K, client k € K\ {K}, adversary set A,
adversary VAE ¢yoF, bottom-model parameters 0y,
to-be-poisoned data DI when m € A

for t =01t T—1 do

for clients k € K\ {K} do in parallel

1
2
3 Sample local minibatch B,(f)

4 for datapoint chf) € Bl(f) do

5 if 20" € D% and client k € A then

6 Adversary generates 'a?,(f> = pm,a(z5")
7 Add trigger pattern from (5)

8 Adversary replaces original data: ac](f) = ng)

9 Compute H,Et) :{hgf) =fr (:cgf); 02)|x,(;> € Bff)}

10 | Transmit H ,gt) to server K

1 Server computes {aiﬁ) h,(j) € H,gw}, ke K\{K},
k

sends them back to client k, computes %’ and
updates 0&;"'1) — Qg) — ng)%

12 for each client k € K\ {K} do in parallel

13 L Compute % and update 0,(:“) — 9,(:) - n,(f)%

Here, 5552) is created by implanting the trigger into 55,? (Line
7 of Alg. 2), where W, is the trigger background portion
falling within adversary m’s local partition, and M, is the
local cross pattern. The trigger pattern is limited by a maximum
area budget € to avoid server detection, i.e., h-w < e.

2) Alternative Trigger Embedding Method: Next, we de-
scribe an alternative method for adversaries to implant a trigger,
referred to as Method 2 in Fig. 3. In this case, instead of
one collaborative trigger, each adversary implants a smaller
subtrigger on their feature partition. The smaller subtriggers,
when combined, should still have the same total area as the
collaborative trigger; for example, all of their individual areas
can be W,, = "1;4“‘1. The subtriggers are placed randomly
within the datapoint, preventing the server from memorizing
the trigger pattern by location to enhance generalizability.

V. CONVERGENCE ANALYSIS

We now analyze the convergence of VFL in the presence of
backdoor attacks. We first make the following assumptions:

Assumption 1 (L-Smoothness). The loss function () in (1)
is L-smooth, meaning that for any = and y, we have

Fly) < Fa) + (VF(z),y — ) + 2y >

Assumption 2 (Variance). The mini-batch gradient Vg, L is
an unbiased estimate of Vy, F'(6), and

EHVGkﬁ - VGkF(6)||2 < F7Vk € ’Ca
where I is the variance of Vy, L.

Assumption 3 (Perturbation). There is an upper bound for
the gradient perturbation from adversaries, i.e.,

E||V§, £ — Vo, LII? < 3(p), Vk € K,

where Vi £ denotes the perturbed gradient and p is a measure
of connectivity for the graph G.

Assumptions 1 and 2 are common in literature [51], [52],
while Assumption 3 characterizes the perturbation induced
by the attack. We expect that §(p) is an increasing function
of p: a higher graph connectivity for collusion implies a
higher probability that more datapoints will be targeted, leading
to a larger perturbation. More specifically, as p increases,
adversary m’s concatenated sample X,(,’L) becomes closer to
the full feature set for each datapoint ¢. With more features,
m can infer more samples and achieve lower expected loss
L(y,4) in local label inference. Consequently, adversaries will
tend to perturb more samples from the target label, and the
expected perturbation in Assumption 3 increases. Here, we can
also consider a simple illustrative example: suppose there are
multiple compromised nodes in an image classification task,
aiming to perturb samples corresponding to the “truck” label.
Each adversary holds a small portion of the overall features
(blocks of pixels). When connectivity is low (e.g., as with
a line graph topology), each adversarial node receives only
a small share of features from neighbors. This may leave
the adversaries without enough information after exchange to
reliably identify samples containing a truck, such as when all
of the received features correspond to pixels offset from the
object (e.g., the surrounding sky). In contrast, with a higher p
(e.g., as with a fully connected graph topology), each adversary
gains a more complete view of the contents of sample 4 in
its concatenated Xfﬁ). This gives them a higher chance of
identifying presence of trucks, resulting in more samples to
poison after the collaborative inference process, and thus a
higher §. We will observe this relationship experimentally in
Sec. VI, where p is taken as the second smallest eigenvalue of
the Laplacian matrix of G (the algebraic connectivity or Fiedler
value) [53], which often increases with average node degree.

0 is thus the parameter that connects the attack performance
to the graph connectivity p. We demonstrate its impact on the
model convergence in the following theorem:

Theorem 1. Suppose that the above assumptions hold, and the

: ; @ _ @& _ O
learning rate is upper bounded as 7, " =15’ = =0 =
n(t) < ﬁ. Then, the iterates generated by the backdoored

SplitNN and vanilla SplitNN satisfy

F(0)

T-1
i N

min
te{0,...,T—
T—1
t=0 (n™)?
AT ¢
Do 1
Proof: The proof is contained in Appendix A.
When there is no attack, i.e., d(p) = 0, the bound in Theorem
1 recovers the result of VFL in [54]. Under a learning rate
n® that satisfies Zz:ol(n(t))? — 0 and ZtT;(Jl n® — oo
for T' — oo, the first and second terms in the right-hand
side of inequality (6) diminish to zero. The adversarial attack
induces a constant term 2K §(p) within the convergence bound,

1}{]EIIVF(W)IIz}S 4

(KLT + KLS(p)) +2K8(p).  (6)



TABLE II: Network architecture and hyperparameters for each dataset.

Parameters Dataset
MNIST | FMNIST
Margin K 0.4 0.25
Poisoning budget ¢ 1% 1%
Intensity factor ~y 20 30
Confidence threshold 5 | 0.999 0.999
# Auxiliary samples 360 360
% Auxiliary as Target 16% 16%
VAE Latent Dimension 32 64
Parameters Dataset
CIFAR-10 | SVHN [ CIFAR100-20
Margin & 0.2 0.2 0.2
Poisoning budget ¢ 1% 1% 0.5%
Intensity factor ~y 30 20 95
Confidence threshold 3 0.9985 0.99995 0.99999
# Auxiliary samples 350 560 487
% Auxiliary as Target 14% 12.5% 15.4%
VAE Latent Dimension 512 256 512

reflecting the convergence degradation due to the adversarial
perturbations. Since d(p) is an increasing function in terms of
the connectivity, we see that the gap from a stationary point
induced by the backdoor attack becomes progressively larger.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed
approach on various datasets. We compare our performance
with two state-of-the-art backdoor VFL attack methods dis-
cussed in Sec. I-A: BadVFL [34] and VILLAIN [35].

A. Simulation Setup

We perform experiments on the MNIST [55], Fashion-
MNIST (FMNIST) [56], CIFAR-10 [57], Street View House
Numbers (SVHN) [58], and CIFAR-100 (CIFAR100-20, coarse
label version) [57], [59], [60] datasets. We consider fully-
connected VAEs for MNIST and FMNIST, a Convolutional
VAE (CVAE) with 4 layers each for the decoder and encoder
for CIFAR-10 and CIFAR100-20, and a 4-layer encoder and 3-
layer decoder CVAE for SVHN. For the bottom model, MNIST
and FMNIST adopt a two layer Convolutional Neural Network
(CNN), with CIFAR-10 and CIFARI100-20 having the same
architecture as the encoder of the VAE. SVHN has the same
bottom model as CIFAR-10. For the top model, we adopt a two-
layer fully-connected network, which trains using the Adam
optimizer [61]. Further details are given in Table II.

In our experiments, unless stated otherwise, there are 10
clients with 5 adversaries, with the adversaries utilizing trigger
Method 1 from Sec. IV-B by default. Moreover, since the base-
lines do not consider adversary graphs in their methodology, we
by default consider a fully-connected graph for fair comparison.
In addition, note that both baselines assume only one adversary,
and we extend their method to multiple adversaries by adding
majority voting and trigger splitting to their label inference and
attack processes. All experiments were conducted on a server
with a 40GB NVIDIA A100-PCIE GPU and 128GB RAM,
using PyTorch [62] for neural network design and training.

B. Competitive Analysis with Baselines

Attack Success Rate (ASR) and Clean Data Acc. (CDA):
First, we assess the accuracy of the backdoor attack and the
main task and compare the performance of our approach to the
BadVFL and VILLAN baselines. We define the accuracy of
misclassifying a poisoned datapoint as the target label as Attack
Success Rate (ASR) and the accuracy of the regular main task
as Clean Data Accuracy (CDA), which is the same notation
utilized in [35]. We intend to show a high ASR, indicating
a successful backdoor, while keeping the CDA close to the
baselines, indicating the main task is not significantly affected.

To measure the accuracy of both the attack (ASR) and the
main task (CDA), we evaluate the main task on the test dataset,
and select 250 random datapoints from the test set in each
communication round that do not belong to the target label to
embed the trigger for evaluation of the ASR. While we use a
trigger dimension W = 5 x 7 for the proposed method, for
BadVFL [34], we follow their method of a white square, and
set the trigger size to 9 x 9. For VILLAIN [35], the trigger
embedding method involves poisoning the embedding vector
instead of the datapoint, and we poison 35% of the embedding.

Our results are given in Fig. 4. We note the superiority of our
approach compared to the baselines: our attack achieves higher
ASR across all settings, while the CDA stays relatively constant
with the CDAs of the baselines. There are three reasons for
this. First, due to better label inference performance (outlined
in following section), the adversaries are more accurately poi-
soning datapoints belonging to the target, making it more likely
for the server to draw an association between the target label
and the trigger. Secondly, the intensity-based triggers are more
easily captured by the bottom-models, making the server more
reliant on it for classification. Third, the samples generated
by the adversary VAEs follow the same general patterns and
features of the target label, meaning that it is still learning the
overall structure of the clean features properly when poisoned
datapoints are present, keeping both the ASR and CDA high.
Note that our findings are consistent on each of the datasets;
compared to MNIST, Fashion-MNIST, CIFAR-10, and SVHN,
the CIFAR100-20 experiments validate our results on a larger
and more complex dataset. This corroborates the efficacy of
our proposed method in implanting a successful backdoor on
a wide range of learning scenarios.

We also note that our method requires a smaller trigger area
compared to BadVFL [34] to successfully carry out the attack.
Additionally, BadVFL is sensitive to its initial known datapoint,
causing the backdoor to fail during some runs, accounting
for the high variation in the averages. As seen in Fig. 4,
the ASR average is low for CIFAR100-20 and SVHN due
to a poor initial known datapoint being used often. On the
other hand, VILLAIN [35] must wait for a period of time
before label inference and attacking can begin, since the method
requires a well-trained bottom and top model to carry out an
attack. Lastly, the baselines, particularly VILLAIN, slightly
suffer from catastrophic forgetting, where the backdoor task
is slowly forgotten over continuous iterations [63], whereas,
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converges to a higher ASR value than the baselines (BadVFL [34] and VILLAIN [35]) due to (1) having a higher label inference accuracy as seen in Fig. Sa
and (2) having an intensity based trigger that makes it easier for the server to draw the association between the target label and trigger.

Accuracy of Varying Adversary Amount

1

Method

Label Inference Module

100

80

60

Accuracy (%)

IS

0
Method

B Proposed 20 I Proposed
20 mmm BadVFL 10 B BadVFL

=3 VILLAIN 3 VILLAIN
o mmma — 0 — -

MNIST  FMNIST CIFAR-10 SVHN CIFAR100-20 MNIST-2 MNIST-4 MNIST-8 FMNIST-2 FMNIST-4 FMNIST-8

Dataset Amount of Adversaries

(a) (b)

Impact of Graph Connectivity

4

MNIST Fashion-MNIST CIFAR-10
Dataset

BN Avg.Deg. =16,0=038 WM Avg.Deg. =2.8,p =159

B Avg.Deg. =20,p=138 [ Avg.Deg. =32, p=3.00

BN Avg.Deg. =24,p=138 EEE Avg.Deg. = 3.6, p =3.00

Test Accuracy vs Intensity

ASR (%)

--f-- MNIST ASR

--f- Fashion-MNIST ASR
--}-- CIFAR-10 ASR

30 40 50 60 70

Y

(©)

10 20

(@)

Fig. 5: (a) The accuracy of label inference across all three scenarios. The proposed method reaches higher accuracy than the baselines (BadVFL [34] and
VILLAIN [35]) even without access to server information. (b) Impact of varying number of adversaries with Fashion-MNIST and MNIST. As the number of
adversaries increases, a general trend in the increase of the ASR is noticed. In addition, the proposed attack is consistently has a higher or comparable ASR value
to the baselines. (c¢) Varying trigger intensity parameter . We notice that an increase in -~y allows for a greater success of a backdoor attack. (d) Performance
of the ASR with different levels of graph connectivity. In general, the more connected the graph is, the better the performance of the backdoor attack.

TABLE III: Impact of adding Gaussian noise to the gradients as a server-side defense: our proposed method is much more resistant to the defense due to not

relying on the server for label information. The baselines, particularly VILLAIN, experience a significant drop in ASR when noise is introduced to the gradients.

Task MNIST FMNIST CIFAR-10
Proposed BadVFL [34] VILLAIN [35] Proposed BadVFL [34] | VILLAIN [35] Proposed BadVFL [34] | VILLAIN [35]
CDA 97.96 £ 0.18 | 97.91 £ 0.15 | 97.87 £ 0.07 | 88.54 £ 0.08 | 88.56 £ 0.18 | 88.86 £0.11 | 58.24 £ 0.5 | 58.62 £ 0.46 | 58.06 = 0.32
CDA w/ Noise | 97.97 £0.19 | 97.83£0.2 | 97.51 £0.15 | 88.25 +0.41 | 88.07 +0.43 | 85.98 3.0 | 47.84+3.63 | 37.12+ 14.18 | 33.25 £ 13.48
ASR 94.89 +3.76 | 36.53 +35.9 | 53.29 £12.78 | 88.23 £4.12 | 63.40 £ 15.73 | 41.57 £ 21.69 | 93.95 £ 6.86 | 36.45 £ 35.8 | 67.10 & 16.78
ASR w/ Noise | 86.88 4+ 4.03 | 25.88 + 16.97 | 0.66 + 0.38 | 81.47 + 7.26 | 38.64 + 16.07 | 1.33+1.33 |89.50+ 7.16 | 9.38 +£ 15.23 | 2.26 £+ 2.36

our proposed attack consistently performs well.

Label Inference: We compare the accuracy of our label
inference to the baselines [34], [35] in Fig. 5a. We see that the
proposed method of utilizing a combination of metric learning
and VAEs for label inference has the best performance in
terms of label inference accuracy across the datasets, while
not relying on the server information. Note that the proposed
attack can still be quite successful (Fig. 4) even when the label
inference accuracy is not very high (e.g., with the CIFAR-10
and SVHN datasets). This indicates that some margin of error
in label inference can be acceptable, provided that the target
data points significantly outnumber the combined total of other
labels. As in Fig. 4, the inclusion of these five datasets validates
the label inference accuracy module of our methodology across
a wide range of learning scenarios. Specifically, while our
proposed method achieves high label inference accuracy on
benchmark datasets such as CIFAR-10 and MNIST, the results
on the CIFAR100-20 dataset further demonstrate its robustness
and scalability on more complex and diverse settings.

Robustness against Defense: We evaluate the effectiveness
of our attack against traditional server-side defense mech-
anisms, specifically noising defenses [34], [64]. We insert
noise with variance 107!0 in the gradients sent back by the

server, and assess the corresponding ASR values averaged over
several runs in Table III. We note that the proposed method
maintains relatively small degradation in ASR performance
compared to those obtained without any defenses, indicating
the method’s robustness to such strategies. By contrast, the
ASR values drop significantly in presence of noise-injected
gradients for the competing baselines. The reason behind this
is that the baselines both rely on server gradients to construct
the attack: noise addition affects the similarity comparison of
the baselines, leading to poor label inference. Moreover, the
server can employ noising without significantly affecting the
CDA, suggesting that it can defend against baselines [34],
[35], but remains vulnerable to our method. Overall, these
results validate the robustness of our label inference based on
hybrid VAEs rather than server gradients, which is crucial to
maintaining a good ASR in the presence of such defenses.

C. Varying Adversaries and Attack Network

Impact of Varying Number of Adversaries: Now, we analyze
the impact of the number of adversaries on the ASR on the
server’s top model. For this experiment, we utilize the trigger
embedding method of splitting the trigger into smaller separate
local subtriggers (i.e., Method 2 from Fig. 3). We assume that



TABLE IV: Study on the effectiveness of the proposed VAE-based swapping method for trigger embedding: our proposed method is much more resistant
to forgetting the backdoor task due to the swapping of clean features with similar but harder-to-distinguish VAE-generated features. Moreover, the CDA still
remains high, even with the swapping, indicating that it is still learning the overall structure of the clean features properly. Lastly, comparing the accuracy of
the no attack scenario, we note that the accuracy does not significantly differ from the CDA, indicating the VAE-based swapping method successfully keeps

both the ASR and CDA high. (For the No Atk. column, no results are given for

the VAE-based swap row as no attack takes place.)

Task MNIST FMNIST CIFAR-10 SVHN

VAE-based Swap No Swap VAE-based Swap No Swap VAE-based Swap No Swap VAE-based Swap No Swap
ASR-1 93.35 + 6.91 32.97 + 18.48 82.44 + 4.01 46.46 + 11.51 97.65 + 2.49 12.13 £8.01 91.97 + 3.42 40.58 £ 9.00
CDA-1 97.94 + 0.12 97.82 + 0.12 88.39 + 0.58 88.23 +0.24 58.59 + 0.17 58.31 +0.21 70.23 £ 2.79 70.20 £ 1.78
ASR-2 73.67 £+ 33.50 0.33 £0.67 78.61 + 22.33 26.34 + 49.15 94.95 + 8.12 0.33 £0.43 81.53 +17.22 5.30 £ 9.67
CDA-2 98.01 + 0.19 97.86 + 0.10 88.51 +0.13 88.48 + 0.23 58.45 + 0.57 58.52 + 0.37 66.65 + 3.68 69.83 +9.13
No Atk. — 97.84 + 0.30 — 86.96 + 2.14 — 58.99 4+ 0.47 — 71.24 £9.07

TABLE V: Study on the effectiveness of the proposed attack in terms of ASR with and without the use of the consensus-voting system utilizing trigger
embedding Method 2 from Fig. 3. Note that many of the voting column results are the same as ASR-2 and CDA-2 with VAE-based swapping in Table IV due

to both being run on the same settings and hyperparameters.

Task MNIST FMNIST CIFAR-10 SVHN

Voting No Vote Voting No Vote Voting No Vote Voting No Vote
ASR  73.67 £ 33.50 0.22 + 0.45 78.61 + 22.33 25.0 + 50.0 98.79 + 1.48 34.45+38.86 74.00+48.72  24.00 + 45.40
CDA 98.01 + 0.19 97.84 £+ 0.30 88.51 £ 0.13 86.96 + 2.14  58.70 + 0.94 59.19 + 0.84 66.28 + 3.57 69.50 + 7.74

each adversary holds an 8 x 2 trigger when there are two
adversaries, 4 x 2 triggers when there are four, and 2 x 2 triggers
when there are eight, thus all have the same total area of 32.

The results are given in Fig. 5b. We see a general trend where
an increase in the number of adversaries leads to a higher ASR,
suggesting that more adversaries result in a stronger attack,
even when the area threshold parameter ¢ remains unchanged.
We also observed (not shown) that varying the number of
adversaries did not significantly affect the CDA, indicating that
the presence of multiple adversaries does not impact the main
task across different methods.

Impact of Trigger Intensity: We next analyze the impact
of the intensity value v on the ASR. The results across three
datasets are shown in 5c. The analysis reveals that a stronger
trigger produces a higher ASR, with the top-performing server
model showing a stronger association to the target as the trig-
ger’s intensity increases. Notably, while MNIST and CIFAR-10
achieve relatively good performance even at lower v values,
Fashion-MNIST requires a higher trigger intensity to attain
desirable ASR accuracy. This is likely due to a significant
portion of Fashion-MNIST datapoints (being covered in white),
matching the background of the trigger, thus necessitating a
stronger trigger to differentiate from the clean features.

Graph Connectivity: Next, we investigate how the alge-
braic connectivity p of the adversary graph affects the attack
performance. We simulate this by progressively increasing the
average degree of the graph, beginning from a line topology,
and consider Method 2 from Fig. 3 for trigger embedding. The
results are given in Fig. 5d. We see that the attack efficacy
tends to get enhanced (i.e., ASR increases) with the increase
of p, indicating that 6(p) from Theorem 1 is increasing in p.
This is because the adversaries receive a higher share of the
features for higher p. Note that due to the increased complexity
of features in CIFAR10, the server becomes more reliant on the
trigger, meaning a lower p is sufficient to achieve a high ASR.

TABLE VI: Study of the effectiveness of the attack in terms of ASR
with and without the use of triplet loss on the adversarial VAEs.

Architecture Dataset
MNIST FMNIST CIFAR-10
VAE Only 84.00 +9.78 | 89.10 +10.81 | 76.18 + 11.93
Hybrid VAE & Triplet | 89.23 +£6.09 | 91.74 £4.61 | 92.72 + 9.38

Ablation Studies: We conduct several ablation studies. First,
we explore the impact of incorporating the triplet loss into
the VAE for label inference in (4), i.e., whether it results in a
higher attack potency. The corresponding results are shown in
Table VI, which demonstrate significant improvement in ASR
values for all three datasets compared to the VAE-only loss.
Additionally, we note that the CIFAR-10 dataset experiences
a significantly larger enhancement compared to MNIST and
Fashion-MNIST datasets in terms of ASR: the datapoints in
CIFARI10 involve a more complex structure, where triplet loss
may play a crucial role in refining embedding quality, facilitat-
ing a more effective attack. Overall, our findings validate our
choice of hybrid VAE and metric learning for improving the
attack performance.

In addition, we investigate the addition of the VAE-generated
datapoint swapping mechanism in (5) to investigate whether it
results in better overall attack performance for both Methods
1 (ASR-1 and CDA-1) and 2 (ASR-2 and CDA-2) outlined
in Fig. 3. For Method 2, each adversary adopts a subtrigger
size of 4 x 2 for a total area of 40. Given the results in Table
IV, we show that the VAE-based swapping of original samples
with VAE-generated samples Eﬁfl) (VAE-based Swap in Table
IV) plays a crucial role in the success of the attack for both
Methods 1 and 2. When no swapping mechanism is utilized
(No Swap in Table IV), the ASR is significantly lower (=
85% and above with CIFAR-10) compared to when VAE-based
swapping takes place, resulting in a failed attack. We also note
that Method 1 of trigger embedding is more stable in its attack
performance, with less variation in the averages compared to
the attack utilized by Method 2. This is because the location



where each adversary places the subtrigger for Method 2 varies
instead being centered like Method 1, making it harder for
the top model to learn the pattern. This means that having
a denser adversary graph allows for better attack facilitation,
as having a complete graph allows for the usage of Method 1.
However, both methods still overall achieve high attack success
rates across all four datasets. Moreover, when comparing the
CDA of the proposed method to when no attack takes place,
the accuracies are similar, indicating that the VAE generated
samples still allow the top model to learn the general clean
features of the target label well in addition to the trigger.

Finally, we also investigate the importance of the addition
of majority voting in the label inference module by comparing
the proposed method to no voting taking place. When no vote
takes place, each adversary embeds its local trigger partition
based off its local label inference results. Looking at the results
presented in Table V, we notice a significant decrease in ASR
performance when only local voting is considered on each
adversary device, highlighting the importance of the majority
voting module in the overall effectiveness of the attack. This
is because no consensus has been reached on which final
datapoints to poison, and so often the trigger implanted for
each sample is incomplete, making it harder for the top model
to fully learn the trigger pattern. Moreover, this also means
that it is often the case that only a portion of the poisoned
adversary-owned features is swapped out with VAE-generated
sample E%), making it less likely for the server to rely on the
trigger for classification due to the presence of more unchanged
features, thereby resulting in a failed attack.

Effectiveness of Attack under Differing Latent Sizes: We
analyze whether the latent embedding size that the server
requires each local bottom model to send affects the overall
effectiveness of the proposed attack, as outlined in Table VII.
We note that no matter the size of the embedding required by
the server, the attack in terms of the ASR remains high. This
means that the proposed attack can accommodate and learn
the trigger with both small and large latent space dimensions.
Moreover, when an increase in the latent space dimension
improves the overall main learning task (CDA), as is the case
with SVHN, the ASR remains largely unchanged. Overall,
this indicates the robustness of the proposed attack to varying
embedding sizes required by the server.

Effectiveness of Attack under Differing Margins: Next,
we analyze whether the choice of the margin value X when
training the triplet-based VAE affects the overall performance
of the backdoor attack, as outlined in Table VIII. We note that
in all data sets, the choice of ¥ does not significantly impact
both the CDA and ASR. This could be attributed to the use
of an online batch-hard triplet mining strategy during training
(Sec. II-A), meaning difficult negatives are always used in the
training of the adversarial VAEs, no matter the margin value
chosen. However, some margin values, such as 0.3 vs 0.15 for
SVHN or 0.25 vs 0.40 for FMNIST, perform better than others.
In addition, with the case of SVHN, we note that arbitrarily
selecting too high a margin value results in a =~ 9% drop

TABLE VII: CDA and ASR evaluation metrics for differing latent space
dimensions of the embeddings produced by the bottom models on each
client. For both small and large latent embedding values, the trigger pattern
is successfully injected into the learning process of the server’s top model,
resulting in a successful backdoor attack.

Dimension | Datasets ASR CDA
MNIST 89.23 + 6.09 97.92 £0.15
39 FMNIST 96.34 + 2.32 88.33 £0.09
CIFAR-10 | 95.74 4+ 4.21 56.37 + 0.31
SVHN 94.07 + 5.98 45.02 £ 9.60
MNIST 87.07 & 9.65 98.09 £ 0.12
64 FMNIST 98.53 +£1.13 88.33 £0.28
CIFAR-10 | 97.55+2.43 57.55 + 0.10
SVHN 90.50 £ 10.36 | 52.29 £ 13.63
MNIST 86.49 + 7.28 98.15 £ 0.06
128 FMNIST 99.65 + 0.22 87.33 £ 2.66
CIFAR-10 | 96.03 £2.16 57.44 +0.72
SVHN 86.96 + 7.87 60.28 + 7.88
MNIST 86.93 £12.40 | 98.02 +0.16
256 FMNIST 97.70 + 3.15 88.45 +0.14
CIFAR-10 | 95.65 +5.14 58.24 +0.44
SVHN 87.33 £10.63 | 69.85 + 3.06
MNIST 95.02 + 2.69 98.18 £ 0.08
512 FMNIST 98.10 £ 0.53 87.72 £ 2.36
CIFAR-10 | 97.38 &1.44 59.50 + 0.71
SVHN 93.29 +4.37 71.57 +1.92

in CDA performance. This might happen if the latent space
is not well-separated, leading to many samples of differing
classes to be selected. This could possibly create a lack of
consistency in the type of data points that are trigger-embedded,
in addition to the types of samples the VAE generates, leading
to a degradation of the CDA. Overall, these findings indicate
that while the margin is not a highly sensitive parameter that
requires meticulous tuning, some consideration should be taken
when selecting an ideal value for maximal attack potency and
main task performance.

Function Analysis of 6(p): Finally, we examine the rela-
tionship between §(p) and p from our analysis in Sec. V. We
compute § as the L2 norm difference between the gradients
used to update the top model under attack and under benign
conditions. To enable broader analysis of connectivity over
a larger range of p, we resize the samples [65], [66], [67],
[68] to 64 x 64. This adjustment allows for accommodating
20 total clients, including 10 adversaries, thereby supporting
a denser adversary graph. Starting with a line topology, we
incrementally add edges until the network becomes fully con-
nected. Each adversary adopts a subtrigger size of 2 x 2 with
a total trigger area of 40. For CIFAR-10 and SVHN, the VAE
architecture is adjusted to a 2-layer encoder and decoder CVAE.

The results are shown for each dataset in Fig. 6. We see
that as the connectivity p increases, the gradient perturbation
introduced by the attack increases until it saturates once a
certain level of connectivity is reached. When connectivity is
lower, the number of poisoned datapoints is lower, resulting in
a smaller disturbance during the training process. In addition,
the poisoning budget ( set by the adversaries prevents excessive
poisoning, limiting the amount of perturbation presented to the
top model. Moreover, we note that the perturbation increases



TABLE VIII: CDA and ASR evaluation metrics on different ¥ margin values during triplet margin loss (3) for label inference with the adversarial VAEs.
Overall, the attack in terms of the ASR remains high across all datasets, but some margin values perform better than others and are more stable in their
performance. In addition, with the exception of SVHN, the CDA stays mostly the same and is unaffected by the margin value adopted by the adversaries.

L MNIST FMNIST CIFAR-10 SVHN
Margin (k)
ASR CDA ASR CDA ASR CDA ASR CDA

0.10 91.13 £ 5.78 97.94 + 0.10 94.67 + 1.96 88.34 £ 0.53  95.82 +2.73 58.13 4+ 0.32 91.97 + 2.66 65.83 + 14.49
0.15 91.36 + 2.58 97.93 + 0.10 88.12 + 3.11 88.41 +£0.42  92.37 +4.76 58.70 £ 0.18  81.44 £+ 10.97 69.50 &+ 3.64
0.2 87.30 + 9.62 97.91 + 0.17 91.59 4+ 2.27 88.23 +£0.50 97.76 & 1.09 57.98 + 0.61 89.28 + 7.76 68.48 + 1.16
0.25 86.17 +11.38  98.05+ 0.05  85.10 £ 16.31 88.63 +£0.17  87.87 £9.08 58.49 4+ 0.43 89.14 + 6.15 71.33 +£5.90
0.30 92.54 +1.17 97.89 + 0.12 87.99 + 7.12 88.85+0.17  91.16 £+ 3.83 58.67 + 0.17 92.15 + 3.56 73.81 £+ 3.06
0.35 90.38 + 6.52 98.02 + 0.22 95.46 4+ 4.89 86.23 +£3.35 91.97 + 7.88 58.89 4+ 0.96 83.15 + 7.27 72.97 £ 5.87
0.40 89.23 + 6.09 97.92 + 0.15 96.14 4+ 4.90 87.89 £ 0.35  94.90 £ 3.56 58.54 4+ 0.20 95.16 + 2.90 64.69 + 5.31
045 86.39 + 9.05 97.98 + 0.12 94.99 4+ 2.99 88.24 +0.28  97.00 £ 2.18 58.46 4+ 0.53 90.52 + 6.18 69.20 + 6.50

Function Analysis of Graph Connectivity
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Fig. 6: The gradient perturbation in the top model from the adversaries
for differing levels of connectivity p. This validates the hypothesis in
Sec. V that §(p) is a non-decreasing function of p. As p increases, the
perturbation saturates quickly. When no perturbation takes place, it is
marked with an “x”, as seen for some datasets when p € {0.1,0.6}.

more dramatically when the connectivity is lower, as individual
adversaries benefit more from receiving features from other
adversary devices when their shared knowledge is more limited.
The function saturates rather quickly, highlighting the potency
of the attack even for relatively sparsely connected graphs
(i.e., p = 1). Therefore, if the adversaries decide to utilize
Method 2 (Fig. 3) for their attack, a fully-connected graph is
not necessary. Finally, we remark that when dealing with low
connectivity values for MNIST and SVHN (.e., p = 0.1), no
datapoints are inferred via the consensus voting, leading to no
datapoints being poisoned, i.e., no perturbation.

VII. CONCLUSION

In this paper, we introduced a novel methodology for con-
ducting backdoor attacks in cross-device VFL environments.
Our method considers a hybrid VAE and metric learning
approach for label inference, and exploits the available graph
topology among adversaries for cooperative trigger implanta-
tion. We theoretically analyzed VFL convergence behavior un-
der backdooring, and showed that the server model would have
a stationarity gap proportional to the level of adversarial gra-
dient perturbation. Our numerical experiments showed that the

proposed method surpasses existing baselines in label inference
accuracy and attack performance across various datasets, while
also exhibiting increased resilience to server-side defenses.

APPENDIX
A. Proof of Theorem 1

First, we denote the mini-batch gradient of the loss function
as

Vo L = [(v9§t>£)T, (vgy>£)T, . (vggpc)T]T.

Due to the adversarial attacks, the gradients used for the
updates will be perturbed. We denote the perturbed gradient
as

VoL = [V L), (Vi L), (Ve O)TTT,
1 2 K
which is further used for model update in VFL, i.e.,
91(€t+1) _ 91(:) _ n(t)Vij)E'
Hence, the update of the whole model can be expressed as
P+ _ ) — _ n(t) Kvegt)ﬁ)T7 (Vggﬂﬁ)Tv o (vgg)ﬁ)T]T
L (T )T = (Ty )T T
k k

A

From Assumption 1 and the above iterative equation, we have
F(H(t“))
L
<F(6® F (oMY pt+1) _pgt)y 4 Zjjgt+1) _g(t)) 2
<F(0)+{VF(0"), )5l I
<F(OW) — (VF(OW), 1OV £ +nHAD)
L
+ 5 Vo £+ 7 AV, ©)

Next, from Assumption 2, we have E[Vy, L] = E[Vy, F(0)].
Therefore, taking expectation over (7) leads us to
E[F(§“*)]
<FOY) = VEOD)|* + () LE| AV
= WE(VE(0), AV) + ()2 LE| Vo L]
<F@OW) =W VEOD)]? + %nwllwp(@(t))ll2

1
+ S OEIA? + (70 LE| Voo £



+ (1O LE|AO)?
(0 — $n® — (O L) [VF(E)?
+ (1O LR Vg £ — VEEO)|?

+ S OOEIA? + () LE|AO|?

(1) ~ 30 — (7')?

1
+ () K LT + 50 Ké(p) + (n)? K Lo(p),

®)
<F(0") -

F(6")) ~ L)[IVE(6™)]*

)

HClH2 H62H2

where we utilize {c;, c) < + [52] to obtain (8) and
Assumptions 2 and 3 to obtam (9) Now letting n(*) < we
have n® —1n® — (n®)2L > 1 Ui
as

4L’
. Hence, (9) can be rewritten

t)
T |vEOW))?
F(6M) — B[F(60+D)] + (™)K LT
1
+ §n(t)K<5(p) + (2K LS(p).

(10)

Taking expectation of the above inequality over #(), we have
nVEIVE@®)]
<AE[F(0M)] — 4E[F(0"+D))] + 4(nV)2K LT
+4(n'")? LK (p) + 20V K6 (p).
Summing the above inequality from ¢ = 0 to 7'—1 and utilizing

the fact that the loss function is non-negative, i.e., E[F'(§7)] >
0, we have

T-1 T-1
> nWE[VEOD)|? < 4F(0°) + 40> (n")*)K LD
t=0 t=0

_ T-1
Z OY)LKS(p) +2(>_ 1) Kd(p). (11)
=0 t=0

Dividing the both sides by Zf o n®) leads us to

-1 )
> %EHVF(@“UH?
=0 2t—o 1
Z ))KLT
n(t)
T
Z MWLEKS(p) + 2K5(p). (12)
t=0

Furthermore, as ming—q . 7-1 2t < —=7=5— 2, we thus com-

t=0 Wt

plete the proof of Theorem 1.
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