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Abstract

Transformer models have achieved remarkable

empirical successes, largely due to their in-

context learning capabilities. Inspired by this,

we explore training an autoregressive transformer

for in-context reinforcement learning (ICRL). In

this setting, we initially train a transformer on

an offline dataset consisting of trajectories col-

lected from various RL tasks, and then fix and

use this transformer to create an action policy for

new RL tasks. Notably, we consider the setting

where the offline dataset contains trajectories sam-

pled from suboptimal behavioral policies. In this

case, standard autoregressive training corresponds

to imitation learning and results in suboptimal

performance. To address this, we propose the

Decision Importance Transformer (DIT) frame-

work, which emulates the actor-critic algorithm

in an in-context manner. In particular, we first

train a transformer-based value function that es-

timates the advantage functions of the behavior

policies that collected the suboptimal trajectories.

Then we train a transformer-based policy via a

weighted maximum likelihood estimation loss,

where the weights are constructed based on the

trained value function to steer the suboptimal poli-

cies to the optimal ones. We conduct extensive

experiments to test the performance of DIT on

both bandit and Markov Decision Process prob-

lems. Our results show that DIT achieves superior

performance, particularly when the offline dataset

contains suboptimal historical data.
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1. Introduction
Transformer models (TMs) have achieved remarkable em-

pirical successes (Radford et al., 2019; OpenAI, 2024). In

particular, TMs trained on vast amount of data have shown

remarkable in-context learning (ICL) capabilities, solving

new supervised learning tasks only with a few demonstra-

tions and without requiring any parameter updates (Brown

et al., 2020a; Akyürek et al., 2022). Meanwhile, substan-

tial evidence demonstrates that autoregressive TMs excel at

solving individual reinforcement learning (RL) tasks, where

a TM-based policy is trained and tested on the same RL

task (Li et al., 2023b). Inspired by these, recent research has

explored the use of TMs for in-context RL (ICRL). In this

setting, we pretrain TMs on an offline dataset consisting of

trajectories collected from a family of different RL tasks. Af-

ter pretraining, we deploy the pretrained TMs to solve new
and unseen RL tasks (Laskin et al., 2022; Lee et al., 2024).

See Figure 1 (a) and (c) for comparisons between standard

offline RL and ICRL. When presented with a context dataset
containing environment interactions collected by unknown

and often suboptimal policies, pretrained TMs predict the

optimal actions for current states from the environmental

information within the context dataset. See Figure 1 for

a visual illustration. Two recent works, Algorithm Distil-
lation (AD) (Laskin et al., 2022) and Decision Pretrained
Transformer (DPT) (Lee et al., 2024), have demonstrated

impressive ICRL abilities, inferring near-optimal policies

for new RL tasks.

Challenges. However, existing supervised pretraining ap-

proaches focus on training TMs to imitate the actions in

the pretraining datasets and thus have stringent require-
ments on the pretraining datasets. For example, AD requires

the pretraining dataset to capture the learning process of

RL algorithms—from episodes generated by randomly ini-

tialized policies to those collected by nearly optimal poli-

cies—across a wide range of RL tasks; DPT requires access

to optimal policies to generate a set of optimal action labels

for its supervised pretraining of TMs. To overcome these

limitations, this work considers pretraining TMs for ICRL

using only suboptimal historical data. While this presents

significant challenges, it also offers substantial potential

benefits by significantly improving the feasibility of ICRL,

as suboptimal trajectories are far easier to gather. For in-

stance, large companies often maintain extensive databases
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Figure 1: (a) and (c) Comparison between Offline RL and ICRL. Standard offline RL trains and tests a policy π in the

same task (Env 0); ICRL pretrains TMs on trajectories collected from a family of different RL tasks (Env 1, Env 2, . . . , Env
M), and deploys the pretrained TMs to unseen tasks (Env M+1). ICRL Deployment. The pretrained TMs generate actions

conditioned on the current states and context datasets consisting of offline trajectories collected by (suboptimal) behavioral

policies from the unseen tasks. (b) Supervised Pretraining. Presented with offline trajectories and optimal action labels,

TMs are pretrained to predict the optimal actions for query states across RL tasks. (c) ICRL from Suboptimal Historical
Data. This work addresses the challenging problem of ICRL without optimal action labels. (d) Schematic Overview of the
Proposed Framework DIT. Lack of the optimal action labels, the proposed framework employs in-trajectory state-action

pairs as query states and pseudo-optimal action labels, and a weighted pretraining objective, where the weights are based on

the optimality of actions, estimated by a TM-based in-context advantage function estimator.

of historical trajectories from non-expert users.

Contributions. In pursuit of this goal, we introduce Deci-
sion Importance Transformer (DIT), a supervised pretrain-

ing framework for ICRL using only historical trajectories

collected by suboptimal behavioral policies across distinct

RL tasks. When the pretraining datasets contain only sub-

optimal trajectories, existing approaches correspond to imi-

tation learning and thus result in suboptimal performance.

DIT overcomes this challenge through several techniques:

• DIT learns to infer near-optimal actions from sub-

optimal trajectories through an exponential reweight-

ing technique that assigns good actions in the offline

dataset with more weights during supervised pretrain-

ing. These assigned weights guide the suboptimal poli-

cies toward the optimal ones.

• In particular, the assigned weights are constructed from

the advantage functions of the behavior policies such

that actions with high advantage values receive more

weights during pretraining, leading to guaranteed pol-
icy improvements over the behavior policies.

• Notably, although advantage weighted regression has

been studied in standard RL (Wang et al., 2018; Peng

et al., 2019), it remains unclear how to generalize this

approach to ICRL. The primary challenge is that the

weighting function in ICRL must be task-dependent,
thus requiring the estimation of advantage functions

for all RL tasks in the pretraining dataset. To this end,

the most significant technical difficulty arises from

the unknown source tasks of pretraining trajectories,

preventing us from grouping trajectories from the same

RL tasks to improve estimation. As a result, we must

estimate the advantage functions individually for each

trajectory in the pretraining dataset.

• To address this formidable challenge, DIT trains a

TM-based advantage estimator that interpolates across
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trajectories from different tasks for an in-context es-
timation of the advantage functions to facilitate the

weighted supervised pretraining framework. See Fig-

ure 1(d) for a visualization.

Empirical Results. Through extensive experiments on vari-

ous bandit and Markov Decision Process (MDP) problems,

we demonstrate that pretrained DIT models generalize to

unseen decision-making problems. On bandit problems, the

performance of DIT models matches that of the theoretically

optimal bandit algorithms (e.g., Thompson Sampling (Russo

et al., 2018)). In four challenging MDP problems including

two navigating tasks with sparse rewards and two complex

continuous control tasks, DIT models achieve superior per-

formance, particularly when the pretraining dataset contains

suboptimal trajectories. Notably, in many scenarios, DIT

is comparable to DPT in both online and offline testings,

despite being pretrained without optimal action labels.

2. Related Work
Offline Reinforcement Learning. Since we consider

pretraining with historical data, our work falls within

the broader field of offline RL. While online RL algo-

rithms (Kaelbling et al., 1996; François-Lavet et al., 2018)

learn optimal policies by interacting with the environments

through trial and error, offline RL (Levine et al., 2020;

Matsushima et al., 2020; Prudencio et al., 2023) aims to

infer optimal policies from historical data collected by (sub-

optimal) behavioral policies. One of the most substantial

challenges for offline RL is the distribution shift caused

by the mismatch between behavioral policies and optimal

policies (Levine et al., 2020; Kostrikov et al., 2021). To

this end, offline RL algorithms learn pessimistically by ei-

ther policy regularization or underestimating the policy re-

turns (Wu et al., 2019; Kidambi et al., 2020; Kumar et al.,

2020; Rashidinejad et al., 2021; Yin & Wang, 2021; Jin et al.,

2021; Fujimoto & Gu, 2021; Dong et al., 2023). While the

goal of offline RL is to solve the same RL tasks from where

the offline datasets are collected, the goal of ICRL is to

efficiently generalize to unseen tasks after pretraining with

offline datasets from diverse RL tasks.

Transformer Models and Autoregressive Decision Mak-
ing. Large language models and autoregressive mod-

els (Radford et al., 2019; Brown et al., 2020b; Wu et al.,

2023b; Touvron et al., 2023; OpenAI, 2024) have achieved

astonishing empirical successes in a wide range of ap-

plication areas, including medicine (Singhal et al., 2023;

Thirunavukarasu et al., 2023), education (Kasneci et al.,

2023), finance (Wu et al., 2023a; Yang et al., 2023), etc.

As it is natural to use autoregressive models for sequential

decision-making, transformer models have demonstrated

superior performance in both bandit and MDP problems (Li

et al., 2023a; Yuan et al., 2023). In particular, Decision

Transformer (DT) (Chen et al., 2021; Zheng et al., 2022; Liu

et al., 2023; Yamagata et al., 2023) uses return-conditioned

supervised learning to tackle offline RL. Although salable

to multi-task settings (i.e., one model for multiple RL prob-

lems), DT is commonly criticised for its inability to improve

upon the offline datasets and provably sub-optimal in certain

scenarios, e.g., environment with high stochasticity (Brand-

fonbrener et al., 2022; Yang et al., 2022; Yamagata et al.,

2023). To this end, AD (Laskin et al., 2022) uses sequential

modeling to emulate the learning process of RL algorithms,

i.e., meta-learning (Vilalta & Drissi, 2002). The work most

closely related to ours is DPT, a supervised pretraining ap-

proach for in-context decision making (Lee et al., 2024).

DPT trains transformers to predict the optimal action given

a query state and a set of transitions. Both AD and DPT

have stringent assumptions on the pretraining datasets. Our

work overcomes those drawbacks and does not require query

to optimal policies nor the learning histories of RL algo-

rithms (Laskin et al., 2022; Lee et al., 2024).

3. Preliminary
Markov Decision Process. Sequential decision problems

can be formulated as Markov Decision Processes (MDPs).

An MDP τ is described by the tuple (S,A, Pτ , Rτ , γ, ρτ )
where S is the set of all possible states, A is the set of all

possible actions, Pτ : S × A → Δ(S) is the transition

function that describes the distribution of the next state,

Rτ : S × A → R is the reward function, γ ∈ (0, 1) is the

discounting factor for cumulative rewards, and ρτ ∈ Δ(S)
is the initial state distribution. An agent interacts with the

environment τ as follows. At the initial step h = 1, an

initial state s1 ∈ S is sampled according to ρτ . At each

time step h, the agent chooses action ah ∈ A and receives

reward rh = Rτ (sh, ah). Then the next state sh+1 is gener-

ated following Pτ (sh, ah). A policy π : S → Δ(A) maps

the current state to an action distribution. Let Gτ (π) =
E[
∑∞

h=1 γ
h−1rh|π, τ ] denote the expected cumulative re-

ward of π for task τ . The goal of an agent is to learn the

optimal policy π�
τ that maximizes Gτ (π).

Decision-Pretrained Transformer. Our proposed approach

builds upon the model architecture of DPT, which is a su-

pervised pretraining method for TMs to have ICRL capa-

bilities (see Figure 1(b) for its architecture). DPT assumes

a set of tasks {τ i}mi=1 sampled independently from a task

distribution pτ , with each τ i as an instance of MDP. For

each task τ i, a context dataset Di is sampled, consisting

of interactions between a behavioral policy and τ i. That

is, Di = {(sih, aih, sih+1, r
i
h)}h, where aih is chosen by a

behavioral policy. Additionally, for each task τ i, a query

state siquery ∈ S is sampled, and an associated optimal ac-

tion label a�i is sampled from π�
τ i(squery), where π�

τ i is the

optimal policy for τ i. The complete pretraining dataset is
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Dpre = {Di, siquery, a
�
i }mi=1. Let Tθ denote a causal trans-

former with parameters θ (Radford et al., 2019). The pre-

training objective of DPT is defined as

min
θ

1

m

m∑
i=1

− log Tθ

(
a�i |siquery, D

i
)
. (1)

ICRL Deployment. After pretraining, the pretrained au-

toregressive TM Tθ can be deployed as both an online and

offline agent. During deployment, an unseen testing task τ
is sampled from pτ . For offline deployment, a dataset Doff is

first sampled from τ , e.g., Doff contains trajectories gathered

from a behavioral policy in τ , then DPT follows the policy

Tθ(·|sh, Doff) after observing the state sh at time step h .

For online deployment, DPT initiates with an empty dataset

Don. In each episode, DPT follows the policy Tθ(·|sh, Don)
to collect a trajectory {s1, a1, r1, . . . , sH , aH , rH} which

will be appended into Don. This process repeats for a pre-

defined number of episodes. See Algorithm 2 in appendix

for the pseudocodes of both offline and online deployments.

4. Decision Importance Transformer
Here we introduce our proposed framework Decision Im-
portance Transformer (DIT).

Pretraining with Suboptimal Data. Similar to DPT, DIT

assumes a family of datasets D = {Di}mi=1 where Di con-

sists of H transitions {(sih, aih, sih+1, r
i
h)}Hh=1 collected by

the (suboptimal) behavioral policy πb
τ i in task τ i which it-

self is independently sampled from the task distribution pτ .

In contrast to DPT, however, DIT does not require the set of

paired query states and optimal action labels {siquery, a
�
i }mi=1,

which are often difficult to obtain in practice.

Notations. In the sequel, for any task τ , we assume that it

has an index (parameter) also denoted by τ such that the

task information τ can be an explicit input to a meta-policy

π(s|a; τ) which can generate distinct policies based on the

received task τ . For example, in robotic control tasks, τ
may represent the physical parameters of the robots such as

robot mass or the environmental parameters such as ground

friction. We use πb
τ (a|s) to denote the behavioral policy for

task τ . Denote

V b
τ (s) = E

[ ∞∑
h=1

γh−1rh
∣∣s1 = s, τ, πb

τ

]
,

Qb
τ (s, a) = E

[ ∞∑
h=1

γh−1rh
∣∣s1 = s, a1 = a, τ, πb

τ

]
as its value and action-value functions respectively, and let

Ab
τ (s, a) = Qb

τ (s, a)− V b
τ (s) be its advantage function.

For presentation clarity, in Section 4.1, we first consider

the scenarios where (i) Ab
τ (s, a) is known and (ii) the task

index τ is also known and can be provided as input to a

meta-policy. Then in Section 4.2, we introduce solutions for

scenarios where Ab
τ (s, a) and τ need to be estimated. All

proofs of the theoretical results in this section are deferred

to Appendix C.

4.1. Weighted Maximum Likelihood Estimation

Motivation. To motivate DIT, we first consider the set-

ting of imitation learning where the agent is trained and

tested on the same task. Given a dataset of transitions

D = {(sh, ah, sh+1, rh)} collected by a behavior pol-

icy πb(a|s) with advantage function Ab(s, a), Wang et al.

(2018) proposes to optimize a weighted objective:

argmax
π

∑
(sh,ah)∈D

exp(Ab(sh, ah)) · log π(ah|sh).

The rationale is that the good actions in the offline dataset,

that is, ah with high advantage value Ab(sh, ah), should

be given more weights during imitation learning. These

weights essentially work as importance sampling ratios so

that the action distribution is closer to the optimal one.

Weighted Pretraining for ICRL. In contrast to imitation

learning that focuses on individual RL tasks, the objective

of DIT is to learn a task-conditioned policy π(a|s; τ) with

the task index τ as input. In particular, π(a|s; τ) should

perform well for τ ∼ pτ .

Motivated by the aforementioned weighted imitation learn-

ing objective, DIT has the following weighted maximum
likelihood estimation (WMLE) loss for pretraining:

L(π) = −Eτ,s,a

[
exp

(
Ab

τ (s, a)

η

)
log π(a|s; τ)

]
. (2)

The expectation in Equation (2) is with respect to τ ∼ pτ ,

s ∼ dτ (s), and a ∼ πb
τ (a|s) where dτ (s) is the dis-

counted visiting frequencies of πb
τ (a|s) defined as dτ (s) =

(1− γ)E
[∑∞

h=1 γ
h−1

�{sh = s}|τ, πb
τ

]
. The effectiveness

of the objective in Equation (2) is demonstrated by the

following result which states that the optimizer to DIT’s

pretraining objective is also the solution to another policy

optimization problem that is easier to interpret.

Proposition 4.1. Consider the following optimization prob-
lem where Eτ,s,a is defined as in Equation (2) except that
a ∼ π(a|s; τ), i.e., the action is sampled from the task-
conditioned policy rather than the behavioral policies:

max
π

J(π) = Eτ,s,a

[
Ab

τ (s, a)︸ ︷︷ ︸
(I)

−η·DKL(π(·|s; τ)‖πb
τ (·|s))︸ ︷︷ ︸

(II)

]
,

(3)

where DKL is the Kullback–Leibler (KL) divergence, and
let π� ∈ argmaxπ J(π) be its optimizer. Then we have for
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any policy π(a|s; τ),
Eτ∼p(τ),s∼dτ (s) [DKL (π

�(·|s; τ)‖π(·|s; τ))]

= −Eτ,s,a

[
1

Zτ (s)
exp

(
Ab

τ (s, a)/η
) · log π(a|s; τ)]+ C,

(4)

where Eτ,s,a is defined as in (2), C is a constant independent
of π and Zτ (s) =

∑
a π

b
τ (a|s) exp(Ab

τ (s, a) /η).

In Equation (3), the objective is to find a policy π� that

improves over the behavior policy (by maximizing term

(I)) and does not stray too far from the behavior policy (by

minimizing term (II)). When the behavioral policy πb
τ (a|s)

is near-optimal, η should set to a large value so that we

can have safe improvements over the behavioral policy.

On the other hand, when the behavioral policy is highly

sub-optimal, η should set to a small value so that we have

more freedom for policy improvement to decrease the sub-

optimality. Note that the DKL constraint (term (II) in Equa-

tion (3)) is critical for pretraining large transformer models

to prevent policy collapse (Schulman, 2015).

Comparing Equation (4) with the pretraining objective

of DIT in Equation (2), we observe that DIT aims to identify

a policy that is closest to π� by setting Zτ (s) = 1 (we pro-

vide a brief discussion for why this is valid in Appendix C.3).

When Ab
τ (s, a) is known, the pretraining objective of DIT

can be estimated with the given pretraining dataset D by

minimizing the following loss function

Ln(π) := − 1

mH

m∑
i=1

H∑
h=1

wi
h log π

(
aih|sih; τ i

)
, (5)

where wi
h = exp

(
Ab

τ i(sih, a
i
h)/η

)
. Next we establish that

DIT can provably achieve policy improvement.

Proposition 4.2 (Policy Improvement). Let π� be the pol-
icy that optimizes (3). For any task τ and policy π, let
Gτ (π) = E[

∑∞
h=0 γ

hrh|π, τ ] represent the expected cumu-
lative reward of π for τ . Let π�

τ denote π�(a|s; τ). Then we
have

Eτ∼pτ
[Gτ (π

�
τ )−Gτ (π

b
τ )] ≥

η

1− γ
Eτ∼pτ

[CD
τ ]

− 2γ

(1− γ)2
Eτ∼pτ

[
CA

τ ·
√
CD

τ /2
]
,

(6)

where CD
τ = Es∼dτ (s)[DKL(π

�(·|s; τ)‖πb
τ (·|s))] and

CA
τ = maxs |Ea∼π�(a|s;τ)Ab

τ (s, a)|.
In particular, when the magnitude of the advantage func-

tion Ab
τ is small, the right-hand side of Equation (6) is

nonnegative. In this case, the policy π� obtained by solv-

ing Equation (3) is strictly better than the behavior policy.

Equivalently, adding the exponential weights in Equation (5)

is strictly better than vanilla imitation learning, when the

total number of pretraining tasks m is large.

4.2. In-context Task Identification and Advantage
Function Estimation

However, two key challenges remain: (i) During pretrain-
ing, the advantage function Ab

τ (s, a) is not accessible for

generating the weights required by the WMLE loss; (ii)
During deployment, the task index τ is not accessible as

only a context dataset Dτ is presented. In other words, the

true identity of the testing task τ is unknown.

In-context Task Identification. To address the second prob-

lem, we follow DPT to instantiate π(a|s; τ) with an autore-

gressive transformer Tθ parameterized by θ. Conditioned on

a given context dataset Dτ consisting of environment inter-

actions collected by a behavioral policy in τ , the TM-based

policy Tθ(a|s,Dτ ) first implicitly extracts task information

about τ from the context Dτ and chooses an action based on

the extracted task information (see Lee et al. (2024) for a de-

tailed discussion). During pretraining, Tθ learns to extract

useful task information for the pretraining tasks {τ i}mi=1

conditioned on the pretraining context datasets {Di}mi=1,

and generalizes to unseen tasks during testing.

In-context Advantage Function Estimation. The first

problem is more critical. Given that during pretraining the

context dataset Di may contain up to several trajectories for

each task τ i in the setting of ICRL, estimation of Ab
τ i(s, a)

based on Di alone can be unreliable. To this end, in the

same spirit of ICRL, we propose to use an in-context advan-
tage function estimator Âb(s

i
h, a

i
h|τ i) to estimate the advan-

tage value of any state-action pair (sih, a
i
h) in the pretraining

dataset D. Specifically, Âb(s
i
h, a

i
h|τ i) is implemented by

two TMs:

Âb(s
i
h, a

i
h|τ i) = Q̂ζ(s

i
h, a

i
h|Di,h

Q )− V̂φ(s
i
h|Di,h

V ), (7)

where V̂φ and Q̂ζ are two transformers, parameterized by

φ and ζ, acting as the in-context value and action value

estimators that interpolate across tasks to have an improved

estimation.

Model Architecture. Let Gi
h =

∑H
h′=h γ

h′−hrih be the

in-trajectory discounted cumulative reward starting from

step h. For any observed state-action pair (sih, a
i
h) in the

pretraining dataset, Q̂ζ(s
i
h, a

i
h|Di,h

Q ) and V̂φ(s
i
h|Di,h

V ) es-

timate the action-value function Qb
τ i(sih, a

i
h) and value

function V b
τ i(sih) respectively, conditioned on the histo-

ries of transitions Di,h
Q = {(sij , aij , Gi

j)}h−1
j=1 and Di,h

V =

{(sij , Gi
j)}h−1

j=1 , where we employ {Gi
j}j<h as the noisy la-

bels for value functions to facilitate in-context learning. See

Figure 6 for their visual representations.

Training. We train V̂φ and Q̂ζ with the following objective

function:

min
φ,ζ

LA(φ, ζ) := Lreg(φ, ζ) + λ · (LB
V (φ) + LB

Q(ζ)
)
, (8)
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where λ > 0 is a hyperparameter to balance

Lreg(φ, ζ) :=
1

mH

m∑
i=1

H∑
h=1

(
V̂φ(s

i
h|Di,h

V )−Gi
h

)2

+
(
Q̂ζ(s

i
h, a

i
h|Di,h

Q )−Gi
h

)2

,

LB
Q(ζ) :=

1

mH

∑
i,h

(
Q̂i

h(ζ)− Q̂ζ(s
i
h+1, a

i
h+1|Di,h+1

Q )
)2

where Q̂i
h(ζ) := rih + γQ̂ζ(s

i
h, a

i
h|Di,h

Q ), and

LB
V (φ) :=

1

mH

∑
i,h

(
V̂ i
h(φ)− V̂φ(s

i
h+1|Di,h+1

V )
)2

where V̂ i
h(φ) = rih + γV̂φ(s

i
h|Di,h

V ).

Here, LB
Q and LB

V regularize the transformer models with

the Bellman equations for value functions.

DIT with In-context Advantage Estimator. After training,

with Âb(s
i
h, a

i
h|τ i) defined in Equation (7) as an estimation

of the true advantage function, we can now optimize the

objective function of DIT to have the pretrained TM Tθ� for

ICRL, i.e.,

θ� ∈ argmin
θ∈Θ

− 1

mH

∑
i,h

wi
h log Tθ

(
aih|sih, Di

)
, (9)

where wi
h = exp(Âb(s

i
h, a

i
h|τ i)/η). We summarize the

complete procedure of DIT in Algorithm 1.

5. Experiments
We empirically demonstrate the efficacy of DIT through ex-

periments on various bandit and MDP problems. In bandit

problems, DIT showcases matching performance to that of

the theoretically optimal bandit algorithms in both online

and offline settings. In MDP problems, we corroborate that

DIT can infer close-to-optimal policies from suboptimal

pretraining datasets. Notably, albeit without optimal action

labels during pretraining, DIT models demonstrate perfor-

mance as strong as that of DPT, which has access to optimal

action labels during pretraining.

Implementation. We follow Lee et al. (2024) to choose

GPT-2 (Radford et al., 2019) as the backbone for Tθ, Q̂ξ,

and V̂φ due to limited computation resource, and note that

the performance may be further improved with larger mod-

els. We set γ = 0.8 for all tasks. We choose η = 1 for all

tasks. Due to space constraint, see Appendix G for more

details.

5.1. Bandit Problems

We consider linear bandit (LB) problems with an underly-

ing structure shared among tasks. Specifically, there ex-

ists a bandit feature function φ : A → R
d that is fixed

across tasks where d denotes the dimension of linear ban-

dit problems. The reward of a bandit a ∈ A in task τ i is

ri(a) ∼ N (
μi
a, σ

2
)

where μi
a = E[r|a, τ i] = 〈θi, φ(a)〉

and σ2 = 0.3. Here, θi is the task-specific parameter that

defines task τ i. We conduct experiments on LB problems

where K = 20, d = 10 and H = 200. The pretraining

dataset for DIT are generated as follows.

Pretraining Dataset. For LB problems, we generate the

feature function φ : A → R
d by sampling bandit fea-

tures from independent Gaussian distributions, i.e., φ(a) ∼
Nd (0, Id/d) for all a ∈ A. To generate the pretraining tasks

{τ i}, we sample their parameters {θi} independently fol-

lowing θi ∼ Nd (0, Id/d). To generate context dataset Di,

we randomly generate a behavioral policy by mixing (i) a

probability distribution samples a Dirichlet distribution and

(ii) a point-mass distribution on one random arm. The mix-

ing weights are uniform sampled from {0.0, 0.1, . . . , 1.0}.

At every time step h, the behavioral policy samples an ac-

tion aih and receives rih. We do not enforce extra coverage
of the optimal actions for bandit problems. Following the

setting of DPT (Lee et al., 2024), we collect 100k context

datasets for LB problems.

Comparisons. We compare to the following baselines (see

Appendix B for more details): Empirical Mean (EMP) se-

lects the bandit with the highest average reward; Upper Con-
fidence Bound (UCB) (Auer, 2002) builds upper confidence

bounds for all bandits and selects the bandit with the highest

upper bound; Lower Confidence Bound (LCB) (Xiao et al.,

2021) builds lower confidence bounds for all bandits and

selects the bandit with the highest lower bound; Thomp-
son Sampling (TS) (Russo et al., 2018) builds a posterior

distribution for the rewards of all bandits and selects the

bandit with the highest sampled mean. In terms of metrics,

for offline learning, we follow the convention to use the

suboptimality defined as (μa� − μâ) where μa� is the mean

reward of the optimal bandit and μâ is the mean reward of

the chosen bandit; for online learning we use the cumulative
regret defined as

∑
h(μa� − μah

) where ah is the chosen

action at time step h.

Empirical Results. In Figure 2, DIT models demonstrate

superior performance in the online setting to those of the

theoretically optimal bandit algorithms, i.e., UCB and TS.

Deployed for unseen bandit problems, DIT models quickly

identify the optimal bandits at the beginning and maintain

low regrets over the horizon. In the offline setting, DIT can

infer near-optimal bandits from trajectories collected by sub-

optimal policies. When the behavioral policies (captioned

as BEH) are randomly generated policies, DIT significantly
outperforms both TS and LCB, the theoretically optimal al-

gorithm for bandit problems. When the context is collected

by expert policies, DIT models further improve upon their
performance. We also observe that DIT is slightly outper-
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Figure 2: Results for Linear Bandits (lower values indicate better performance). Left: Online testing. Middle: Offline

testing conditioned on trajectories gathered by highly suboptimal, randomly generated policies. Right: Offline testing

condtioned on trajectories gathered by experts.

formed by DPT. This is expected given that DPT uses the

optimal bandit information during pretraining. However,

the loss curves of DPT and DIT demonstrate similar trend,

showcasing the effectiveness of DIT’s weighted pretraining.

5.2. MDP Problems

Environments. We conduct experiments on four chal-

lenging MDP environments: two navigating tasks with

sparse reward Dark Room (Laskin et al., 2022) and Mini-

world (Chevalier-Boisvert et al., 2023), as well as two com-

plex continuous-control tasks Meta-world (reach-v2) (Yu

et al., 2020) and Half-Cheetah (velocity) (Todorov et al.,

2012). In Dark Room, the agent is randomly placed in a

room of 10×10 grids with an unknown goal location on one

of the grid. The agent needs to move to the goal location

by choosing from 5 actions in 100 steps. In Miniworld, the

agent is placed in a room and receives a (25× 25× 3) color

image and its direction as input. It can choose from four

possible actions to reach a target box, out of four boxes

of different colors. In Meta-World, the task is to control a

robot hand to reach a target position in 3D space. In Half-
Cheetah, the agent controls a robot to reach a target velocity,

which is uniformly sampled from the interval [0, 3], and is

penalized based on how far its current velocity is from the

target velocity. See Appendix D for more details.

Pretraining Datasets. For Dark Room and Miniworld, to

ensure coverage of optimal actions (so that optimal policies

can be inferred), at every step, with probability p (respec-

tively 1 − p) we use optimal policy (respectively random

policy) to choose action. We choose p so that the average re-

ward of the trajectories in the pretraining dataset is less than

30% of that of the optimal trajectories. For Meta-World and

Half-Cheetah, we construct the pretraining datasets using

historical trajectories generated by Soft Actor Critic (SAC).

Specifically, SAC is trained until convergence for each task,

then we sample from its learning trajectories to build the

dataset. Our SAC model training follows the settings out-

lined in Haarnoja et al. (2018). See Appendix E for details.

Comparisons. We compare DIT to other in-context algo-

rithms as well as RL algorithms without pretraining. The

baseline algorithms are briefly described next (see their im-

plementation details in Appendix B).

• Soft Actor Critic (SAC) (Haarnoja et al., 2018): SAC

is an online RL algorithm that trains an agent from

scratch in every environment.

• Algorithm Distillation (AD): AD is a sequence

modeling-based approach for ICRL that emulates the

learning process of RL algorithms (Laskin et al., 2022).

To this end, AD requires the pretraining dataset to con-

sist of complete learning histories of an RL algorithm

—from episodes generated by randomly initialized poli-

cies to those collected by nearly optimal policies—

across a wide range of RL tasks. In this work we use

SAC as the RL algorithm for AD to emulate.

• Decision Pretrained Transformer (DPT): DPT and

DIT use the same context datasets for pretraining1.

However, DPT requires query states and their associ-

ated optimal action labels across different tasks.

• Prompt-DT (PDT): PDT is a Decision Transformer-

based approach (Xu et al., 2022), which leverages the

transformer’s prompt framework for few-shot adapta-

tion. PDT uses the same pretraining dataset as DIT.

Thus, the performance gain of DIT over PDT high-
lights the effectiveness of DIT’s design.

• Behavior Cloning (BC): We include an variation of

DIT without the exponential reweighting. This ap-

proach closely imitates BC, with the following pre-

1Note that the context datasets in our experiments are collected
using suboptimal policies, as opposed to the uniformly random
policies used by DPT in Lee et al. (2024). As a result, the reported
performance of DPT in the Dark Room environment differs from
that in the original paper.
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(a) Online Testing (b) Offline Random (c) Offline Expert

Figure 3: Results on Dark Room (higher values indicate better performance). (a): Change in return of policies with

additional online episodes for (in-context) learning. (b) and (c): Offline evaluations with context trajectories sampled from

random and expert policies.

training objective:

min
θ

1

mH

m∑
i=1

H∑
h=1

− log Tθ

(
aih|sih, Di

)
.

In particular, AD and DPT require extra information during

pretraining: AD requires the complete learning history of

RL algorithms while DPT requires optimal action labels.

Given that DIT only relies on suboptimal historical data,

the comparison is inherently unfair. Notably, despite these

disadvantages, DIT outperforms AD and matches with DPT

in most scenarios. In terms of metrics, we follow the con-

vention to use the episode cumulative return
∑H

h=1 rh.

In-context Decision-making for Navigating Tasks. We

explore how our method generalizes to unseen RL tasks,

using the Dark Room environment (Laskin et al., 2022).

Following the evaluation protocal of DPT (Lee et al., 2024),

we use 80 goals for training and evaluate on the remaining

20 unseen goals. For SAC, since it is an online learning

method, we directly train from scratch on the 20 goals to

benchmark the returns of ICRL. Figure 3a shows the online

evaluation over 40 episodes. After 40 episodes, SAC gains

little in return, demonstrating the difficulty of the RL tasks

for testing. Restricted by their capability to efficiently ex-

plore in new tasks, BC also perform poorly. Although our
method (DIT) initially has lower returns than DPT and AD,
it quickly surpasses them and continues to improve. Fig-

ures 3b and 3c show the results for offline evaluations with

expert (high-reward) trajectories and random (low-reward)

trajectories. Despite being pretrained without the optimal

action labels, DIT models demonstrate competitive perfor-

mance to that of DPT.

In-context Continuous Control. We explore two complex

continuous control tasks, Meta-World (Yu et al., 2020) and

Half-Cheetah (Todorov et al., 2012). Meta-World has 20
tasks in total, to evaluate our approach’s ability to generate

to new RL tasks, we use 15 tasks to train and 5 to test. Sim-

ilarly, for Half-Cheetah, out of the 40 total tasks, we use

35 tasks to train and 5 to test. Due to space constraints, the

results for Meta-World and Half-Cheetah are presented in

Figure 5 in the Appendix. We observe that DIT outperforms

PDT and BC in all testing scenarios. Moreover, DIT consis-

tently outperforms AD despite with less information used

for pretraining. It can also be observed that the performance

gap between DPT and DIT is larger in the Meta-World en-

vironment compared to Half-Cheetah. We believe this is

because Meta-World is a more challenging environment

than Half-Cheetah. As a result, the additional set of optimal

action labels for out-of-trajectory query states used by DPT

has a greater impact on performance, while DIT can only

utilize in-trajectory states and actions as query states with

pseudo-optimal labels.

Ablation Study on Weighted Supervised Pretraining.
While DIT’s significantly improved performance over BC

(the unweighted version of DIT) already demonstrates the

effectiveness of the proposed weighted pretraining objective,

we now conduct experiments in the Miniworld (Chevalier-

Boisvert et al., 2023) environment to explore whether DIT

reaches the limits of the weighted pretraining framework.

To this end, we compare our model to the DPT model that

uses a pretraining dataset containing only query states that

belong to the set of observed states in the pretraining dataset,

along with their associated optimal action labels. In this

scenario, the total number of pretraining context datasets

and optimal action labels for DPT remains the same, but

the query states are restricted. This restriction makes the

DPT model function as an oracle upper bound for DIT, as

all query states used by DIT in the weighted pretraining

originate from the observed states.

The significant performance gain of DIT over BC (the un-

weighted version of DIT) demonstrate the effectiveness of

the weighted pretraining framework. Surprisingly, in the

online setting, DPT struggles to perform, while DIT mod-

els gradually improve their returns, as shown in Figure 4.
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Figure 4: Ablation Study on Miniworld. From left to right: online testing, offline random, offline expert.

In the offline setting, DIT again demonstrates competitive

performance with DPT. These results indicate that DIT has

effectively leveraged the pretraining dataset to a significant

extent.

6. Discussion
We have proposed a framework DIT for pretraining TMs

from suboptimal historical data for ICRL. DIT has guar-

anteed policy improvements over the suboptimal behavior

policies and demonstrated superior empirical performance

on a comprehensive set of ICRL benchmarks. Despite these

strengths, DIT still requires the behavior policies to have

reasonable rewards. Most historical data typically adheres

to this constraint. That said, it is highly unlikely to infer

near-optimal actions solely from random trajectories with-

out any information about optimal policies. To this end,

we will further explore the limits of the proposed weighted

pretraining framework in future work.
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A. Results on Meta-World and Half-Cheetah

(a) Online Testing (b) Offline Random (c) Offline Expert

Figure 5: Top row shows results on Meta-World; bottom row shows results on Half-Cheetah.

B. Baselines
B.1. Bandit Algorithms

Empirical Mean (EMP). We follow (Lee et al., 2024) to consider a strengthened version of EMP which, in the offline

setting, only chooses from actions that have been observed at least once in the offline dataset while, in the online setting, at

least choosing every action once. At every time step, EMP chooses actions as

â ∈ argmax
a∈A

{μ̂a},

where μ̂a is the average observed reward for action a.

Upper Confidence Bound (UCB). Motivated by the Hoeffding’s Inequality, at each time step, UCB chooses actions as

â ∈ argmax
a∈A

{
μ̂a + C ·

√
1/na

}
,

where C is a hyperparameter and na is the number of times a has been chosen. For unseen actions, μ̂a is set to 0 and na is

set to 1. We follow (Lee et al., 2024) to set C to be 1 as it demonstrates the best empirical performance.

Lower Confidence Bound (LCB). LCB is on the contrary of UCB. In the offline setting, LCB only chooses from observed

actions in the offline dataset. Specifically, it chooses actions as

â ∈ argmax
a∈A

{
μ̂a − C ·

√
1/na

}
,

where C is a hyperparameter and na is the number of times a has been chosen. Similar to hyperparameter of UCB, the

hyperparameter C for LCB is also set to 1 due to its strong empirical performance.

Thompson Sampling (TS). We use Gaussian TS (Russo et al., 2018) with a Gaussian prior. The mean and variance of the

prior are set to the true mean and variance of the pretraining tasks: 0 for mean and 1 for variance.
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B.2. RL Baselines

Decision-Pretrained Transformer (DPT). The Decision-Pretrained Transformer (DPT) is designed to perform in-context

learning for reinforcement learning (RL) tasks by leveraging a supervised pretraining approach. The core idea is to train a

transformer model to predict optimal actions given a query state and a corresponding in-context dataset, which contains

interactions from a variety of tasks. These interactions are represented as transition tuples consisting of states, actions, and

rewards, offering context for decision-making. During pretraining, DPT samples a distribution of tasks. For each task Ti, an

in-context dataset Di is constructed to include sequences of state-action-reward interactions that represent past experience

with that task. Additionally, a query state s∗ is sampled from the MDP’s state distribution, and the model is trained to predict

the optimal action based on this query state and the context Di. Formally, the training objective is to minimize the expected

loss over the sampled task distribution by predicting a distribution over actions given the state and context.

Prompt-based Decision Transformer (Prompt-DT). Prompt-DT arranges its data to facilitate few-shot policy general-

ization by using trajectory prompts. For each task Ti, a prompt τ∗i of length K∗ is constructed from few-shot demonstration

data Pi, containing tuples of state, action, and reward-to-go (s∗, a∗, Ĝ∗). This prompt encodes task-specific context

necessary for policy adaptation. Additionally, the recent trajectory history τi of length K, sampled from an offline dataset

Di, is appended to the prompt to form the full input sequence τinput. Formally, this input sequence is represented as

τinput = (τ∗i , τi) = (r̂∗1 , s
∗
1, a

∗
1, . . . , r̂

∗
K∗ , s∗K∗ , a∗K∗ , r̂K∗+1, sK∗+1, aK∗+1, . . . , r̂K∗+K , sK∗+K , aK∗+K). This sequence

contains 3(K∗ +K) tokens, following the state-action-reward format. The full sequence τinput is then passed through a

Transformer model, which autoregressively predicts actions at the heads corresponding to each state token. We follow

Prompt-DT’s setting and set k = 20.

Algorithm Distillation (AD). Algorithm Distillation (AD) transforms the process of reinforcement learning (RL) into an

in-context learning task by training a transformer model to predict optimal actions based on a cross-episodic trajectory. AD

gathers trajectories from training episodes, where each trajectory T of length H encodes the states, actions, and rewards

observed over multiple episodes. Instead of training via traditional gradient updates, AD models the training history to

predict actions for subsequent episodes, effectively distilling the behavior of RL algorithms like SAC into the transformer.

This enables the model to learn directly from context, facilitating quick adaptation to new tasks and improving learning

efficiency.

Behavior Cloning (BC). Behavior Cloning (BC) is a supervised learning approach for imitation learning, where the

goal is to learn to mimic the behavior of a policy by mapping states to actions. Specifically, the objective is to minimize

the discrepancy between the actions predicted by the learned policy πθ and the target policy’s actions, often through a

loss function such as mean squared error or cross-entropy for continuous or discrete action spaces, respectively: J(θ) =
E(st,at)∼D[�(πθ(st), at)], where D is the dataset of state-action pairs collected from the target policy’s demonstrations, st
is the state at time step t, and at is the corresponding target action.

Soft Actor-Critic (SAC). Soft Actor-Critic (SAC) is an off-policy deep reinforcement learning algorithm that balances

exploration and exploitation by maximizing a trade-off between expected reward and entropy. The core objective of SAC is

to learn a policy that not only maximizes cumulative rewards but also encourages exploration by maximizing the entropy

of the policy’s actions. SAC uses an actor network to predict actions, and two critic networks to estimate the Q-values

of state-action pairs. The training objective involves learning the parameters of the policy to maximize a soft objective

function: J(π) =
∑

t E(st,at)∼D[Q(st, at) − α log π(at|st)], where Q(st, at) is the Q-value estimated by the critics, α
is a temperature parameter controlling the trade-off between reward and entropy, and π(at|st) is the action probability

distribution given the state. SAC is trained by sampling mini-batches of transitions from a replay buffer to update the policy

(actor) and Q-value estimates (critics). For model and training settings, we use the default implementation from Stable

Baselines3 (Raffin et al., 2021).
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C. Theoretical Results
C.1. Proof of Proposition 4.1

Consider the following optimization problem where Eτ,s,a is defined as in Equation (2) except that a ∼ π(a|s; τ), i.e., the
action is sampled from the task-conditioned policy rather than the behavioral policies:

max
π

J(π) = Eτ,s,a

[
Ab

τ (s, a)︸ ︷︷ ︸
(I)

−η ·DKL(π(·|s; τ)‖πb
τ (·|s))︸ ︷︷ ︸

(II)

]
, (10)

where DKL is the Kullback–Leibler (KL) divergence, and let π� ∈ argmaxπ J(π) be its optimizer. Then we have for any
policy π(a|s; τ),

Eτ∼p(τ),s∼dτ (s) [DKL (π
�(·|s; τ)‖π(·|s; τ))]

= −Eτ,s,a

[
1

Zτ (s)
exp

(
Ab

τ (s, a)/η
) · log π(a|s; τ)]+ C,

(11)

where Eτ,s,a is defined as in (2), C is a constant independent of π and Zτ (s) =
∑

a π
b
τ (a|s) exp(Ab

τ (s, a) /η).

Proof of Proposition 4.1. For any task τ and fixed state s, we have

max
π

Ea∼π(a|s;τ)
[
Ab

τ (s, a)− η ·DKL(π(·|s; τ)‖πb
τ (·|s))

]
= min

π
Ea∼π(a|s;τ)[log

π(a|s; τ)
πb
τ (a|s)

− 1

η
Ab

τ (s, a)]

= min
π

Ea∼π(a|s;τ)

[
log

π(a|s; τ)
πb
τ (a|s) exp(Ab

τ (s, a) /η)

]
= min

π
Ea∼π(a|s;τ)

[
log

π(a|s; τ)
πb
τ (a|s) exp(Ab

τ (s, a) /η)/Zτ (s)
− logZτ (s)

]
= min

π
Ea∼π(a|s;τ)

[
log

π(a|s; τ)
πb
τ (a|s) exp(Ab

τ (s, a) /η)/Zτ (s)

]
(Zτ (s) is independent of π)

= min
π

DKL(π(·|s; τ)‖π�
τ ),

where π�
τ (a|s) = πb

τ (·|s) exp(Ab
τ (s, a) /η)/Zτ (s). Note that the optimum π for a fixed s and task τ is obtained at π = π�

τ ,

which is unique by the uniqueness property of KL divergence, i.e., DKL(π‖π�
τ ) = 0 if and only if π = π�

τ (a|s). Thus, the

optimal task-conditioned policy is

π�(a|s; τ) = π�
τ = πb

τ (a|s) exp(Ab
τ (s, a) /η)/Zτ (s).

Thus, we further have

Eτ∼p(τ),s∼dτ (s) [DKL (π
�(·|s; τ)‖π(·|s; τ))]

= Eτ∼p(τ),s∼dτ (s),a∼π�(a|s;τ)

[
log

π�(a|s; τ)
π(a|s; τ)

]
= Eτ∼p(τ),s∼dτ (s)

[∑
a

πb
τ (a|s) exp(Ab

τ (s, a) /η)/Zτ (s) log
π�(a|s; τ)
π(a|s; τ)

]
= −Eτ∼p(τ),s∼dτ (s),a∼πb

τ (a|s)
[
exp(Ab

τ (s, a) /η)/Zτ (s) log π(a|s; τ)
]
+ C,

where C = Eτ∼p(τ),s∼dτ (s),a∼πb
τ (a|s)

[
exp(Ab

τ (s, a) /η)/Zτ (s) log π
�(a|s; τ)].

C.2. Proof of Proposition 4.2

Let π� be the policy that optimizes Equation (3). For any task τ and policy π, let Gτ (π) = E[
∑∞

h=0 γ
hrh|π, τ ] represent

the expected reward of π for τ . Let π�
τ denote π�(a|s; τ). Then

Eτ∼pτ [Gτ (π
�
τ )−Gτ (π

b
τ )] ≥

η

1− γ
Eτ∼pτ [C

D
τ ]− 2γ

(1− γ)2
Eτ∼pτ

[
CA

τ

√
CD

τ /2

]
, (12)
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where CD
τ = Es∼dτ (s)[DKL(π

�(·|s; τ)‖πb
τ (·|s))] and CA

τ = maxs |Ea∼π�(a|s;τ)Ab
τ (s, a)|.

Proof of Proposition 4.2. First consider any fixed task τ . From Corollary 1 in (Achiam et al., 2017), we have

Gτ (π
�
τ )−Gτ (π

b
τ ) ≥

1

1− γ

∑
s

dτ (s)
∑
a

π�(a|s; τ)Ab
τ (s, a)−

2γCA
τ

(1− γ)2
Es∼dτ (s)‖π�(·|s; τ)− πb

τ (·|s)‖TV , (13)

where CA
τ = maxs |Ea∼π�(a|s;τ)Ab

τ (s, a)| and ‖ · ‖TV is the total variation distance between two distributions. In the proof

of Propsition 4.1, we observe that: for any τ and s,

π�(·|s; τ) ∈ argmax
π

L(π, s) = Ea∼π(a|s;τ)
[
Ab

τ (s, a)− η ·DKL(π(·|s; τ)‖πb
τ (·|s))

]
.

Thus, L(π�
τ , s) ≥ L(πb

τ , s), which implies that

Ea∼π�(a|s;τ)
[
Ab

τ (s, a)− η ·DKL(π
�(·|s; τ)‖πb

τ (·|s))
] ≥ Ea∼πb

τ (a|s;τ)
[
Ab

τ (s, a)
]
= 0.

Hence, we have

Es∼dτ (s),a∼π�(a|s;τ)
[
Ab

τ (s, a)
] ≥ ηEs∼dτ (s)[DKL(π

�(·|s; τ)‖πb
τ (·|s))]. (14)

Moreover, from Pinsker’s inequality (Canonne, 2022),

Es∼dτ (s)‖π�(·|s; τ)− πb
τ (·|s)‖TV ≤ Es∼dτ (s)

√
1

2
DKL(π�(·|s; τ)‖πb

τ (·|s)) (15)

≤
√

1

2
Es∼dτ (s)[DKL(π�(·|s; τ)‖πb

τ (·|s))], (16)

where the last inequality comes from Jensen’s Inequality. Pluging (15) and (14) into (13), we have

Gτ (π
�
τ )−Gτ (π

b
τ ) ≥

η

1− γ
Es∼dτ (s)[DKL(π

�(·|s; τ)‖πb
τ (·|s))] (17)

− 2γCτ

(1− γ)2

√
1

2
Es∼dτ (s)[DKL(π�(·|s; τ)‖πb

τ (·|s))]. (18)

Taking expectation with respect to τ concludes the proof:

Eτ∼pτ [Gτ (π
�
τ )−Gτ (π

b
τ )] ≥

η

1− γ
Eτ∼pτ [C

D
τ ]− 2γ

(1− γ)2
Eτ∼pτ

[
CA

τ

√
CD

τ /2

]
, (19)

where CD
τ = Es∼dτ (s)[DKL(π

�(·|s; τ)‖πb
τ (·|s))] and CA

τ = maxs |Ea∼π�(a|s;τ)Ab
τ (s, a)|.

C.3. Justification for the identity Zτ (s) = 1

Assume that |Ab
τ (s, a)/η| 
 | log πb

τ (a|s)|. Note that this can always be satisfied through reward normalization. Then

Zτ (s) =
∑
a

πb
τ (a|s) exp(Ab

τ (s, a) /η) = Ea∼πb
τ (a|s)[exp(A

b
τ (s, a) /η)]

= Ea∼πb
τ (a|s)[1 +Ab

τ (s, a) /η + o((Ab
τ (s, a) /η)

2)] (by Taylor expansion).

Moreover, by definition of the advantage function, we have

Ea∼πb
τ (a|s)[A

b
τ (s, a)] = Ea∼πb

τ (a|s)[Q
b
τ (s, a)]− V b

τ (s) = 0.

Thus,

Zτ (s) = 1 + Ea∼πb
τ (a|s)[o((A

b
τ (s, a) /η)

2)] ≈ 1.
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D. MDP Environments
Dark Room. The agent is randomly placed in a room of 10 × 10 grids, and there is an unknown goal location on one

of the grid. Thus, there are 10x10 = 100 goals. The agent’s observation is its current position/grid in the room, i.e.,

S = [10]× [10]. The agent needs to move to the goal location by choosing from 5 actions: to move in one of the 4 directions

(up, down, left, right) or stay still. The agent receives a reward of 1 only when it is at the goal; otherwise, it receives 0. The

horizon for Dark Room is 100. We follow (Lee et al., 2024) to use the tasks on 80 out of the 100 goals for pretraining, and

reserve the rest 20 goals for testing our models’ in-context RL capability for unseen tasks. The optimal actions are defined

as: move up or down until the agent is on the same vertical position as the goal; otherwise move left or right until the agent

reaches the goal.

Miniworld. The agent is placed in a room with four boxes of different colors, one of which being the target box. The goal

is to reach a box of a specific color in the room. The agent receives a (25× 25× 3) color image and its 2-D direction as

input, and can choose from four possible actions: to turn left/right, move straight forward, or stay still. Similar to Dark

Room, it receives a reward of 1 only when it is near the target box while the horizon is 50. The optimal actions are defined

as follows: turn left/right towards the correct box if the agent’s front is not within 15 degrees of the correct box; otherwise

move forward and stay if the agent is near the box.

Meta-World. The agent needs to control a robotic arm to pick up an object and place it at a designated target location. In

each task, the state space is in 39 dims including the gripper’s position and state (open or closed), the 3D position of the

object to be manipulated, and the coordinates of the target location. The agent operates in a continuous action space, where

it can adjust the gripper’s 3D position and control the open/close state to enable successful grasping and releasing of the

object. It provides partial rewards for moving the gripper towards the object, grasping it correctly, transporting it to the

target location, and successfully releasing it there. The task goal is to learn an optimal policy that efficiently achieves the

sequence of actions required to pick up and accurately place the object at the specified location. Each task has a different

goal position. We train in 15 tasks and test in 5 tasks.

Half-Cheetah. The agent needs to control a 2D half-cheetah robot to achieve and maintain varying target velocities, which

change across episodes. The state space contains the cheetah’s motion, including joint angles, velocities, body velocity, and

position. These observations enable the agent to learn intricate movement patterns and maintain balance while running. The

action controls the torques applied to each joint of the cheetah, thus dictating its locomotion and stability. The reward is

designed to align with the core task objective: matching the agent’s velocity to the target velocity. Each task has different

target velocity, and we use 35 tasks to train and 5 to test.

E. Pretraining Dataset
Pretraining Datasets for Dark Room and Miniworld. To ensure coverage of optimal actions (so that optimal policies can

be inferred), at every step, with probability p (respectively 1− p) we use optimal policy (respectively random policy) to

choose action. We choose p so that the average reward of the trajectories in the pretraining dataset is less than 30% of that

of the optimal trajectories, reflecting the challenging yet common scenarios. For Dark Room, to test whether DIT models

can generalize to unseen RL problems in context, we collect context datasets from only 80 out of the total 100 goals and

reserves the rest 20 for testing. For each training goal, we follow the setting of DPT to collect 1k context datasets, leading to

a total of 80k context datasets in the pretraining dataset (64k for training and 16k for validation). For Miniworld, we collect

40k context datasets (32k for training and 8k for validation), 10k datasets for each of the four tasks corresponding to four

possible box colors.

Pretraining Datasets for Meta-World and Half-Cheetah. We construct the pretraining datasets using historical trajectories

generated by agents trained with Soft Actor Critic (SAC). Specifically, SAC is trained until convergence for each task,

then we sample from its learning trajectories to build the dataset. Our SAC model training follows the settings outlined

in (Haarnoja et al., 2018). For the Meta-World environment, we use its built-in deterministic policy as the optimal policy;

for Half-Cheetah, we use the optimal SAC policy. In Meta-World, we used 15 tasks to train and 5 to test. Similarly, for

Half-Cheetah, we used 35 tasks to train and 5 to test.
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Figure 6: Model structure of the in-context action-value transformer Q̂ (left) and value transformer V̂ (right) on the trajectory

of the i-th pretraining task.

F. Training Parameters.
For all methods, we use the AdamW optimizer with a weight decay of 1e− 4, a learning rate of 1e− 3, and a batch size of

128.

G. Model Details
Decision Transformer Architecture. Our model is based on a causal GPT-2 architecture (Radford et al., 2019). It consists

of 6 attention layers, each with a single attention head, and an embedding size of 256. To separately encode state, action, and

reward pairs, we employ three fully connected layers. We use a single fully connected layer to decode from the transformer’s

output.

Value Function Transformer Architecture. The architecture of the value function transformer mirrors that of the decision

transformer.

H. Computation Requirements
Our experiments can be conducted on a single A6000 GPU. It typically takes less than one hour to generate the required

dataset for training in parallel. For PPO, training usually takes less than 10 minutes per task. For the other methods, we

observe that the transformer model converges within 50 epochs.

I. Pseudocodes

Algorithm 1 Pretraining of Decision Importance Transformer

1: Input: Pretraining Dataset D = {Di}; transformer models Tθ, Q̂ζ , V̂φ.

2: // In-context Estimation of Advantage Functions

3: Randomly initialize and train Q̂ζ and V̂φ by optimizing the loss in Equation (8).

4: Construct the in-context advantage estimator as:

Âb = Q̂ζ − V̂φ.

5: // Weighted Pretraining

6: Randomly initialize Tθ.

7: With trained Âb and D, train Tθ by optimizing the loss in Equation (9).

J. Estimation of Advantage function
Figure 7 illustrates the performance of our value function estimators. Notably, the ground truth labels represent the

cumulative rewards empirically sampled using Monte Carlo, rather than the in-trajectory cumulative rewards. From the

two graphs, we observe that our function estimator effectively learns the empirical distribution of cumulative rewards.

Furthermore, the difference between the Q-function and V -function estimators provides the advantage function.
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Algorithm 2 Deployment of In-Context RL Models

1: Input: Pretrained transformer Model Tθ; Horizon of episodes H; Number of episodes N for online testing; Offline

dataset Doff = {(sh, ah, sh+1, rh)}h, consisting of transitions collected by a behavioral policy.

2: // Offline Testing

3: for every time step h ∈ {1, . . . , H} do
4: Observe state sh
5: Sample action with Tθ:

ah ∼ Tθ (·|sh, Doff)

6: Collect reward rh
7: end for
8: // Online Testing

9: Initialize an empty online data buffer Don = {}
10: for every online trial n ∈ {1, . . . , N} do
11: for every time step h ∈ {1, . . . , H} do
12: Observe state sh
13: Sample action with Tθ:

ah ∼ Tθ (·|sh, Don)

14: Collect reward rh
15: end for
16: Append the collected transitions {(sh, ah, sh+1, rh)}h into Don

17: end for

(a) Q function (b) V function

Figure 7: Performance of Q and V function estimator. On the x-axis is time step of horizon; on the y-axis is the model

predictions or ground truth values.

K. Effectiveness of in-context trajectory
Figure 8 illustrates the effectiveness of the in-context trajectory for DIT. Since DIT predicts actions based on the current

state and the historical states in the in-context trajectory, it is crucial to ensure that the task goal of the in-context trajectory

aligns with the current task that DIT is predicting. Here, ”In Task” refers to cases where the in-context trajectory is sampled
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Figure 8: Performance of DIT when the in-context trajectory is aligned (In Task) or misaligned (Out Task) with the current

task goal.

from the same task as the current task, while ”Out Task” indicates that the in-context trajectory is sampled from a different

task.

From Figure 8, we observe that alignment between the in-context trajectory and the current task goal is critical for effective

performance. This finding also validates that DIT relies heavily on the in-context trajectory for action prediction, as

misalignment with the current task goal leads to a significant decrease in performance.
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